
Jaybird JCA/JDBC Driver

Release Notes v 2.1.6

Table of Contents

General Notes
Supported Firebird versions
Specification support

What's new in Jaybird 2.1
Events
Support for multiple JNI libraries
Default holdable result sets
Other features

What's new in Jaybird 2.0
Refactorings
Updatable result sets
Firebird management interfaces
Incompatible changes since Jaybird 2.0
Jaybird JDBC extensions
JDBC 3.0 compatibility

Distribution package
License
Source Code

JDBC URL Format
Pure Java
Using Firebird client library
Embedded Server

JDBC connection properties
Using Type 2 and Embedded Server driver

Configuring Type 2 JDBC driver
Configuring Embedded Server JDBC driver

JDBC 3.0 Compatibility
JDBC 3.0 deviations and unimplemented features

Jaybird Specifics
Result sets
Using java.sql.ParameterMetaData with Callable Statements
Using ResultSet.getCharacterStream with BLOB fields
Heuristic transaction completion support

Connection pooling with Jaybird 2.0
Usage scenario
Connection Pool Classes
org.firebirdsql.pool.FBConnectionPoolDataSource
org.firebirdsql.pool.FBWrappingDataSource
Runtime object allocation and deallocation hints

Documentation and Support
Where to get more information on Jaybird
Where to get help
Reporting Bugs
Corrections/Additions To Release Notes

General Notes
Jaybird is JCA/JDBC driver suite to connect to Firebird database server. Historically Borland
opened sources of type 3 JDBC driver called InterClient. However due to some inherent limitations
of Firebird client library it was decided that type 3 driver is a dead end, and Firebird team developed
pure Java implementation of wire protocol. This implementation became basis for Jaybird, pure
Java driver for Firebird relational database.

This driver is based on both the new JCA standard for application server connections to enterprise
information systems and the well known JDBC standard. The JCA standard specifies an architecture
in which an application server can cooperate with a driver so that the application server manages
transactions, security, and resource pooling, and the driver supplies only the connection
functionality. While similar to the JDBC 2 XADataSource idea, the JCA specification is
considerably clearer on the division of responsibility between the application server and driver.

Supported Firebird versions
Jaybird supports Firebird 1.0.x, Firebird 1.5.x, Firebird 2.0.x and Firebird 2.1.x SuperServer and
Classic regardless of the platform on which server runs when type 4 JDBC driver is used. Type 2
and embedded server JDBC drivers require JNI library, precompiled binaries for Win32 and Linux
platforms are shipped in the default installation, other platforms require porting/building JNI library
for that platform.

Driver no longer supports InterBase servers due to a Firebird-specific changes in database
attachment parameters that are send to the server.

Specification support
Driver supports following specifications:

JDBC 4.0 Driver compiles and runs with JDK 6.0 and JDBC 4.0 interfaces.
Almost all new methods either return empty/unknown results or
throw appropriate exceptions.

JDBC 3.0 Driver passed complete JDBC compatibility test suite, though
some features are not implemented. It is not officially JDBC
compliant, because of high certification costs.

JDBC 2.0 Standard
Extensions

Jaybird provides implementation of following interfaces from
javax.sql.* package:

• ConnectionPoolDataSource implementation provides
connection and prepared statement pooling.

• DataSource implementation provides seamless integration
with major web and application servers.

• XADataSource implementation provides means to use
driver in distributed transactions.

JCA 1.0 Jaybird provides implementation of
javax.resource.spi.ManagedConnectionFactory and related
interfaces. CCI interfaces are not supported.

JTA 1.0.1 Driver provides implementation of
javax.transaction.xa.XAResource interface via JCA
framework and XADataSource implementation.

JMX 1.2 Jaybird provides MBean to manage Firebird server and installed
databases via JMX agent.

What's new in Jaybird 2.1.6

List of bugs fixed since Jaybird 2.1.5

JDBC-97 Blob.getBytes() method should not allow position below 1
JDBC-108 and
JDBC-119

JDBC-108: Problems with record resultset to call primary composite

JDBC-119: updateRow() primary key violation issue
JDBC-118 Remote PID and process name for FB 2.1 monitoring tables

The only platform independent solution turns out to be via the -D property,
therefore two new properties: org.firebirdsql.jdbc.pid and
org.firebirdsql.jdbc.processName. If they are specified, values are passed
to Firebird 2.1. Also the behavior with previous versions of FB is undefined, so
use them with care.

List of bugs fixed since Jaybird 2.1.4

- Fixed bug in event handling code under Linux.

List of bugs fixed since Jaybird 2.1.3

- Updated wire protocol implementation for events handling to make Jaybird
compatible with Firebird 2.1. See also
http://tracker.firebirdsql.org/browse/DNET-140

- Updated handling of the table reservation in test cases to make it compatible
with Firebird 2.1

List of bugs fixed since Jaybird 2.1.2

JDBC-106 When table name contains lower case letters, metadata information about table
columns is not returned from the driver.

List of bugs fixed since Jaybird 2.1.1

JDBC-100 When using the FBDatabaseMetaData.getColumns() method to check wether a
column is nullable or not, the method will return wrong values for columns,
wich are defined by a domain.

- Fixed issue with DatabaseMetaData result sets, when underlying statements
were not closed when connection was closed and caused errors during garbage
collection.

- Support for INSERT...RETURNING statements.
- JDK 6.0 compatibility.

List of bugs fixed since Jaybird 2.1.0

JDBC-92 DatabaseMetaData becomes unusable when the statement that serves the result
set is closed.

JDBC-87 Backported feature of upcoming Jaybird 2.2 release that allows specifying the
octetsAsBytes connection property and receive byte[] when using the

http://tracker.firebirdsql.org/browse/DNET-140

ResultSet.getObject() method
JDBC-85 Fixed returning of the error messages.
- Bug reported in Firebird-Java group. ClassCastException when obtaining

byte[] from BLOB fields in cached result set.

Jaybird 2.1 introduces following new features:

Events
Events is one of the unique features in the Firebird RDBMS and allows asynchronous notification
of the applications about named events that happen in the database. The information about how to
use this feature can found in free IB 6.0 documentation set as well as in The Firebird Book by Helen
Borrie.

The interfaces and classes for the event support can be found in org.firebirdsql.event package,
which includes:

● EventManager interface to register for the synchronous and asynchronous notification about
the events in the database;

● EventListener interface which has to be implemented by the application that wants to
participate in the asynchronous notification;

● DatabaseEvent interface which represents the object that will be passed to the
EventListener notification method;

● Implementation of the above interfaces: FBEventManager and FBDatabaseEvent.

Please note, that each instance of FBEventManager will open a new socket connection to the
Firebird server on the port specified by the Firebird.
Similar to other JDBC extensions in Jaybird, the interfaces are released under the modified BSD
license, the implementation of the code is released under LGPL license.

Support for multiple JNI libraries
Until this release only one client library could be loaded in the single JVM. That could be either
embedded Firebird library (fbembed.dll/libfbembed.so), or Firebird client library
(fbclient.dll/libfbclient.so) or Fyracle client library. This could lead to possible problems,
for example, if embedded Firebird was used first, JDBC driver would access database file directly
instead of using the local IPC protocol if only path to the database was specified. It was not possible
to change this without restarting the JVM.

Now Jaybird is able to correctly load arbitrary number of shared libraries that implement the ISC
API and forward the requests correctly depending on the type of the driver being used. Note, this
feature requires new JNI library (jaybird21.dll/libjaybird21.so)

Note, the JNI library (jaybird21.dll/libjaybird21.so) was changed in a incompatible manner
between Jaybird 2.1 beta 1 and Jaybird 2.1 RC1 releases. Please ensure to use the latest
version.

Default holdable result sets (closed ResultSet in auto-commit mode)
New connection property that allows to create holdable result sets by default. This is needed as an
workaround for the applications that do not follow JDBC specification in regard to the auto-commit
mode.

Specifically, such applications open a result set and, while traversing it, execute other statements
using the same connection. According to JDBC specification the result set has to be closed if

another statement is executed using the same connection in auto-commit mode. Among others the
OpenOffice Base users have problems with the restored JDBC 3.0 compatibility in Jaybird 2.0.

The new property is called:

● defaultResultSetHoldable as connection property for JDBC URL or for
java.sql.DriverManager class and no or empty value should be assigned to it; it has an
alias defaultHoldable to simplify the typing;

● isc_dpb_result_set_holdable as a DPB member;

● FirebirdConnectionProperties interface was with two methods extended (the
isDefaultResultSetHoldable() and setDefaultResultSetHoldable(boolean)) which
is also reflected in the FBConnectionPoolDataSource and FBWrappingDataSource
classes.

Note, the price for using this feature is that each holdable result set will be fully cached in
memory. The memory occupied by it will be released when the statement that produced the
result set is either closed or re-executed.

Other features
StatisticsManager now provides methods to fetch statistics for the specified tables only (like the
-t switch in gstat) and to provide also analysis of average record and version length.

What's new in Jaybird 2.0
Jaybird 2.0 underwent significant internal changes that are not directly visible to the client code, and
not necessarily introduced new features. However those changes significantly increase code
modularity, stability and maintainability.

Refactorings
• Significant refactoring of the org.firebirdsql.gds.* package. Implementations of the

interfaces defined in this package are now dynamically loaded from the classpath and
provide possibilities to extend driver with custom code without changing the driver itself.

• JCA code was significantly changed, bringing a long awaited stability when critical errors
happen into that vital part of code. There is no more so-called “fatal” errors that can cause
driver to recycle connections and transactions.

• Refactoring of the transaction and object life-cycle management in the JDBC code. Main
reason for this change was the need to remove result set caching in auto-commit mode and
make it JDBC specification compliant, but it has also positive effect on the code stability
and maintainability.

• Unified connection property handling in JCA, driver manager and pooling code. This solves
a longstanding issue with different configuration possibilities in different modes.

• Refactorings to support JDK 5.0.

Updatable result sets
Jaybird provides now support for the updatable result sets. Feature allows Java application to update
current record using the updateXXX methods of java.sql.ResultSet interface. Updates are
performed within the current transaction using a best row identifier in WHERE clause. This sets the
following limitation on the result set “updatability”:

• the SELECT references single table;

• all columns not referenced in SELECT permit NULLs (otherwise INSERTs will fail);

• the SELECT statement does not contain DISTINCT predicate, aggregate functions, joined
tables or stored procedures;

• the SELECT statement references all columns from the table primary key definition or an
RDB$DB_KEY column.

Firebird management interfaces
Jaybird provides full support of the Firebird Services API that allows Java applications to perform
various server management tasks:

• database backup/restore on remote server; it is possible to performs metadata-only backups,
switch the garbage collection during backup off, restore databases with no validity
constraints or active indices, etc.

• database maintenance, e.g. database shutdown, sweep, changing the forced writes settings,
changing SQL dialect of the database, shadow management, etc.

• retrieving database statistics including header page statistics, system table statistics, data
page statistics and index statistics.

• user management, including adding, modifying, and deleting user accounts.

Incompatible changes since Jaybird 1.5
• Signatures of all org.firebirdsql.gds.* classes have changed. This was done in

preparation of the official Firebird Java API. After the API release all signature changes will
be frozen and correctly versioned.

• FirebirdConnection.getBlob() method signature changed to return java.sql.Blob,
previously it returned org.firebirdsql.jdbc.FirebirdBlob. Object that is returned can
safely be casted to org.firebirdsql.jdbc.FirebirdBlob interface. The change is caused
by the forthcoming JDBC 4.0 specification to avoid conflict in next versions.

• Jaybird 1.x allowed to execute queries in auto-commit mode, loop through the obtained
result set and to execute other statements through the same connection. This is no longer
possible in Jaybird without changing the result set holdability. The behavior was changed in
order to conform the JDBC 3.0 specification, chapter 10.1 “Transaction Boundaries and
Auto-commit”. Applications willing to use this feature have to set the result set holdability
to ResultSet.HOLD_CURSORS_OVER_COMMIT. Please note, that this option assumes that
result set type is TYPE_SCROLL_INSENSITIVE and is completely cached on the client side.

Jaybird JDBC extensions
Jaybird provides extensions to some JDBC interfaces. JDBC extension interface classes are released
under modified BSD license, on “AS IS” and “do what you want” basis, this should make linking to
these classes safe from the legal point of view. All classes belong to org.firebirdsql.jdbc.*
package. Table below shows all JDBC extensions present in Jaybird with a driver version in which
the extension was introduced.

JDBC extensions
Interface Since Method name Description

FirebirdDriver 2.0 newConnectionProperties() Create new instance of
FirebirdConnectionProper
ties interface that can be used
to set connection properties
programmatically.

connect(FirebirdConnection
Properties) Connect to the Firebird

database using the specified

JDBC extensions
connection properties.

FirebirdConnectionP
roperties 2.0 see JDBC connection properties

section for more details.
FirebirdConnection 1.5 createBlob() Create new BLOB in the

database. Later this BLOB can
be passed as a parameter into
PreparedStatement or
CallableStatement.

1.5 getIscEncoding() Get connection character
encoding.

2.0 getTransactionParameters(
 int isolationLevel
)

Get the TPB parameters for
the specified transaction
isolation level.

2.0 createTransactionParameter
Buffer() Create an empty transaction

parameter buffer.

2.0 setTransactionParameters(
 int isolationLevel,
 TransactionParameterBu
ffer tpb
)

Set TPB parameters for the
specified transaction isolation
level. The newly specified
mapping is valid for the whole
connection lifetime.

2.0 setTransactionParameters(
 TransactionParameterBu
ffer tpb
)

Set TPB parameters for the
specified transaction isolation
level. The newly specified
parameters are effective until
the transaction isolation is
changed.

FirebirdDatabaseMet
aData

getProcedureSourceCode(Str
ing) Get source code for the

specified stored procedure
name.

getTriggerSourceCode(Strin
g) Get source code for the

specified trigger name.
getViewSourceCode(String) Get source code for the

specified view name.
FirebirdStatement 1.5 getInsertedRowsCount()

getUpdatedRowsCount()
getDeletedRowsCount()

Extension that allows to get
more precise information
about outcome of some
statement.

1.5 hasOpenResultSet() Check if this statement has
open result set. Correctly
works only when auto-commit
is disabled. Check method
documentation for details.

1.5 getCurrentResultSet() Get current result set.
Behaviour of this method is
similar to the behavior of the

JDBC extensions
Statement.getResultSet(),
except that this method can be
called as much as you like.

1.5 isValid() Check if this statement is still
valid. Statement might be
invalidated when connection
is automatically recycled
between transactions due to
some irrecoverable error.

2.0 getLastExecutionPlan() Get execution plan for the last
executed statement.

FirebirdPreparedSta
tement 2.0 getExecutionPlan() Get the execution plan of this

prepared statement.

2.0 getStatementType() Get the statement type of this
prepared statement.

FirebirdCallableSta
tement 1.5 setSelectableProcedure(

 boolean selectable
)

Mark this callable statement as
a call of the selectable
procedure. By default callable
statement uses "EXECUTE
PROCEDURE" SQL
statement to invoke stored
procedures that return single
row of output parameters or a
result set. In former case it
retrieves only the first row of
the result set.

FirebirdResultSet 2.0 getExecutionPlan() Get execution plan for this
result set.

FirebirdBlob 1.5 detach() Method “detaches” a BLOB
object from the underlying
result set. Lifetime of
“detached” BLOB is limited
by the lifetime of the
connection.

1.5 isSegmented() Check if this BLOB is
segmented. Seek operation is
not defined for the segmented
BLOBs.

1.5 setBinaryStream(
 long position
)

Opens an output stream at the
specified position, allows
modifying BLOB content. Due
to server limitations only
position 0 is supported.

FirebirdBlob.BlobIn
putStream 1.5 getBlob() Get corresponding BLOB

instance.

1.5 seek(int position) Change the position from

JDBC extensions
which BLOB content will be
read, works only for stream
BLOBs.

FirebirdSavepoint 2.0 interface is equivalent to the java.sql.Savepoint interface
introduced in JDBC 3.0 specification, however allows using
Firebird savepoints also in JDBC 2.0 (JDK 1.3.x) applications.

JDBC 3.0 compatibility
Jaybird includes number of fixes that allow it pass JDBC 3.0 compatibility suite. It successfully
passes 1216 tests, 60 tests were excluded, because they are either not applicable to Firebird or fail
due to some server problems (math rounding issues, limitations of NUMERIC data type, etc.).

Distribution package
Jaybird driver has compile-time and run-time dependencies to JCA 1.0, JTA 1.0.1, JAAS 1.0 and
JDBC 2.0 Optional Package. Additionally, if Log4J classes are found in the class path, it is possible
to enable extensive logging inside the driver.

Following file groups can be found in distribution package:

• jaybird-2.1.6.jar – archive containing JCA/JDBC driver and JMX management class. It
requires JCA 1.0, JTA 1.0.1, and JAAS 1.0.

• jaybird-pool-2.1.6.jar – archive contains implementation of connection pooling and
statement pooling interfaces.

• jaybird-full-2.1.6.jar – merge of firebirdsql.jar and mini-j2ee.jar (or mini-
j2ee_16.jar for JDK 6.0 deployments). This archive can be used for standalone1 Jaybird
deployments.

• jaybird-2.1.6.rar – resource archive ready for deployment in JCA-enabled application
servers.

• lib/jaas.jar – archive containing JAAS 1.0 classes.
• lib/log4j-core.jar – archive containing core Log4J classes that provide a possibility to

log into the file.
• lib/mini-j2ee.jar (or mini-j2ee_16.jar for JDK 6.0 deployments) – archive

containing JCA 1.0, JTA 1.0.1 and JDBC 2.0 Optional Package classes.
• jaybird21.dll – Windows version of the JNI library for Type 2 and Embedded Server

drivers.
• libjaybird21.so – Linux version of the JNI library for Type 2 and Embedded Server

drivers.

License
Jaybird JCA/JDBC driver is distributed under the GNU Lesser General Public License (LGPL).
Text of the license can be obtained from http://www.gnu.org/copyleft/lesser.html. Using Jaybird (by
importing Jaybird's public interfaces in your Java code), and extending Jaybird by subclassing or
implemention of an extension interface (but not abstract or concrete class) is considered by the
authors of Jaybird to be dynamic linking. Hence our interpretation of the LGPL is that the use of
the unmodified Jaybird source does not affect the license of your application code.

Even more, all extension interfaces to which application might want to link are released under dual
LGPL/modified BSD license. Latter is basically “AS IS” license that allows any kind of use of that

1 You have to ensure that your class path contains JAAS 1.0 classes when using JDK 1.3.x.

http://www.gnu.org/copyleft/lesser.html

source code. Jaybird should be viewed as an implementation of that interfaces and LGPL section for
dynamic linking is applicable in this case.

Source Code
Source code can be obtained from the CVS at SourceForge.net. The CVSROOT is
:pserver:anonymous@cvs.sourceforge.net:/cvsroot/firebird, the module name is client-
java. Alternatively source code can be viewed online at
http://cvs.sourceforge.net/viewcvs.py/firebird/client-java/

JDBC URL Format
Driver provides different JDBC URLs for different usage scenarios:

Pure Java
jdbc:firebirdsql:host[/port]:/path/to/db.fdb
jdbc:firebirdsql://host[:port]/path/to/db.fdb
Default URL, will connect to the database using type 4 JDBC driver. Best suited for client-server
applications with dedicated database server. Port can be omitted (default value is 3050), host name
must be present.

First format is considered official, second – compatibility mode for InterClient migration.

Using Firebird client library
jdbc:firebirdsql:native:host[/port]:/path/to/db.fdb
jdbc:firebirdsql:native://host[:port]/path/to/db.fdb
Type 2 driver, will connect to the database using client library (either fbclient.dll or gds32.dll
on Windows, and libfbclient.so or libgds.so on Linux). Requires correct installation of the
client library.
jdbc:firebirdsql:local:/path/to/db.fdb
Type 2 driver in local mode. Uses client library as in previous case, however will not use socket
communication, but rather access database directly. Requires correct installation of the client
library.

Embedded Server
jdbc:firebirdsql:embedded:/path/to/db.fdb
Similar to the Firebird client library, however fbembed.dll on Windows and libfbembed.so on
Linux are used. Requires correctly installed and configured Firebird embedded server.

JDBC connection properties
Table below contains properties that specify parameters of the connections that are obtained from
this data source. Commonly used parameters have the corresponding getter and setter methods, rest
of the Database Parameters Block parameters can be set using setNonStandardProperty setter
method.

Property Getter Setter Description
database + + Path to the database in the format

[host/port:]/path/to/database.f
db

type + + Type of the driver to use. Possible
values are:

http://cvs.sourceforge.net/viewcvs.py/firebird/client-java/

Property Getter Setter Description
• PURE_JAVA or TYPE4 for type 4

JDBC driver
• NATIVE or TYPE2 for type 2

JDBC driver
• EMBEDDED for using embedded

version of the Firebird.

blobBufferSize + + Size of the buffer used to transfer
BLOB content. Maximum value is
64k-1.

socketBufferSize + + Size of the socket buffer. Needed on
some Linux machines to fix
performance degradation.

buffersNumber + + Number of cache buffers (in database
pages) that will be allocated for the
connection. Makes sense for
ClassicServer only.

charSet + + Character set for the connection.
Similar to encoding property, but
accepts Java names instead of Firebird
ones.

encoding + + Character encoding for the connection.
See Firebird documentation for more
information.

useTranslation + + Path to the properties file containg
character translation map.

password + + Corresponding password.
roleName + + SQL role to use.
userName + + Name of the user that will be used by

default.

useStreamBlobs + + Boolean flag tells driver whether
stream BLOBs should be created by
the driver, by default “false”. Stream
BLOBs allow “seek” operation to be
called, however due to a bug in gbak
utility they are disabled by default.

useStandardUdf + + Boolean flag tells driver to assume that
standard UDFs are defined in the
database. This extends the set of
functions available via escaped
function calls. This does not affect

Property Getter Setter Description
non-escaped use of functions.

defaultResultSetHol
dable + + Boolean flag tells driver to construct

the default result set to be holdable.
This prevents it from closing in auto-
commit mode if another statement is
executed over the same connection.

tpbMapping + + TPB mapping for different transaction
isolation modes.

defaultIsolation + + Default transaction isolation level. All
newly created connections will have
this isolation level. One of:

• TRANSACTION_READ_COMMITTE
D

• TRANSACTION_REPEATABLE_RE
AD

• TRANSACTION_SERIALIZABLE
defaultTransactionI
solation + + Integer value from

java.sql.Connection interface
corresponding to the transaction
isolation level specified in isolation
property.

octetsAsBytes - - When set, the getObject() method of
ResultSet class will return byte[]
for character columns with OCTETS
charset.

noResultSetTracking - - When specified, the result sets are not
referenced by the underlying statement
objects, allowing more efficient
garbage collection.

nonStandardProperty getNonStandar
dProperty(Str

ing)
+

setNonStanda
rdProperty(S

tring)
setNonStanda
rdProperty(S

tring,
String)

Allows to set any valid connection
property that does not have
corresponding setter method. Two
setters are available:

setNonStandardProperty(String)
method takes only one parameter in
form
“propertyName[=propertyValue]”,
this allows setting non-standard
parameters using configuration files.
setNonStandardProperty(String,
String) takes property name as first
parameter, and its value as the second
parameter.

Using Type 2 and Embedded Server driver
Jaybird 2.1 provides type 2 JDBC driver that uses native client library to connect to the databases.
Additionally Jaybird 2.1 can use embedded version of Firebird relational database allowing to create
Java applications that does not require separate server setup.

However type 2 driver has also limitations:

• Due to multi-threading issues in Firebird client library as well as in embedded server
version, it is not possible to access them from different threads simultaneously. When using
client library only one thread is allowed to access connection at a time, however it is allowed
to access different connections from different threads. Client library in local mode and
embedded server library on Linux do not allow multithreaded access to the library. Jaybird
provides necessary synchronization in Java code, however corresponding mutex is local to
the classloader that loaded Jaybird driver. Care should be taken when deploying
applications in web or application servers: put jar files in the main library directory of
the web and/or application server, not in the library directory of the web or enterprise
application (WEB-INF/lib directory or in the .EAR file). This issue will be fixed in
Firebird client library after merge with Vulcan project.

• Current implementation of the JNI library allows that either client library or embedded
server library is loaded into memory. The first library being loaded wins, attempt to load
second library will produce an error. Usually this is not a problem, since embedded server
library can also act as a client library, so it is enough to load embedded server library first.
This limitation will be removed in Jaybird 2.1, implementation already exists, however it
was contributed already at RC stage; adding it to the release would delay it for few months.

Configuring Type 2 JDBC driver
Type 2 JDBC driver requires JNI library to be installed and available for Java Virtual Machine.
Precompiled binaries for Windows and Linux platforms are distributed with Jaybird:

Please note that Jaybird 2.1 provides update to the JNI libraries to support new features. It is
not compatible with JNI library for Jaybird 2.0.
• jaybird21.dll is precompiled binary for Windows platform. Successfully tested with Windows

2000 and Windows XP SP1, but there should be no issues also in other Win32 OS.
Library should be either copied into the directory specified in %PATH% environment variable,
or made available to JVM using the java.library.path system property.

• libjaybird21.so is precompiled binary for Linux platform. It must be available via the
LD_LIBRARY_PATH environment variable, e.g. copied into /usr/lib/ directory. Another
possibility is to specify path to the directory with Jaybird JNI library in java.library.path
system property during the JVM startup.

• Other platforms can easily compile the JNI library by checking out the Jaybird sources from the
CVS and using “./build.sh compile-native” command in the directory with checked out
sources.

After making Jaybird JNI library available to the JVM application has to tell driver to start using
this by either specifying TYPE2 or LOCAL type in the connection pool or data source properties or
using appropriate JDBC URL when connecting via java.sql.DriverManager.

Configuring Embedded Server JDBC driver
Embedded Server JDBC driver uses same JNI library and configuration steps for the type 2 JDBC
driver.

There is however one issue related to the algorithm of Firebird Embedded Server installation

directory resolution. Firebird server uses pluggable architecture for internationalization. By default
server loads fbintl.dll or libfbintl.so library that contains various character encodings and
collation orders. This library is expected to be installed in the intl/ subdirectory of the server
installation. The algorithm of directory resolution is the following:

1. FIREBIRD environment variable.

2. RootDirectory parameter in the firebird.conf file.

3. The directory where server binary is located.

When Embedded Server is used from Java and no FIREBIRD environment variable is specified, it
tries to find firebird.conf in the directory where application binary is located. In our case
application binary is JVM and therefore Embedded Server tries to find its configuration file in the
bin/ directory of the JDK or JRE installation. Same happens to the last item of the list. In most
cases this is not desired behavior.

Therefore, if application uses character encodings, UDFs or wants to fine-tune server's behavior
through the configuration file, the FIREBIRD environment variable must be specified and point to
the installation directory of the Embedded Server, e.g. current working directory.

JDBC 3.0 Compatibility
As it was mentioned before, Jaybird JCA/JDBC driver passed Sun JDBC CTS 1.3.1 test suite. All
tests except those that do not apply to Firebird RDBMS succeeded. However driver is not officially
JDBC-compliant because certification procedure is too expensive.

JDBC 3.0 deviations and unimplemented features
The following optional features and the methods for their support are not implemented:

● java.sql.Array data type is not yet supported.
● java.sql.Blob does not implement following methods:

– position(Blob, long) and position(byte[], long); Firebird does not provide
any server-side optimization for these calls, client application must fetch complete
BLOB content from the server to do pattern search.

– truncate(long); Firebird does not provide such functionality on the server side,
application must fetch old BLOB from the server and pump old content into a newly
created BLOB.

● java.sql.Clob data type is not yet supported.
● java.sql.Connection

– getCatalog() and setCatalog(String) are not supported by Firebird server.
– getTypeMap() and setTypeMap(Map) are not supported.
– prepareStatement(String, int), prepareStatement(String, int[]) and

prepareStatement(String, String[]) that return auto-generated keys are not
implemented, because this functionality is not provided by server.

● java.sql.PreparedStatement
– setObject(int index, Object object, int type) Target SQL type is

determined from the class of the passed object and corresponding parameter is
ignored.

– setObject(int index, Object object, int type, int scale) Same as
above, type and scale are ignored.

● java.sql.Ref data type is not supported by Firebird server.
● java.sql.SQLData data type is not supported by Firebird server.
● java.sql.SQLInput is not supported.
● java.sql.SQLOutput is not supported.
● java.sql.Statement

– cancel() is not supported by Firebird server.

– execute(String, int), execute(String, int[]), execute(String,
String[]), executeUpdate(String, int), executeUpdate(String, int[]),
and executeUpdate(String, String[]) that return auto-generated keys are not
implemented, because of server incapability.

– getGeneratedKeys() is not implemented because server does not support this
feature yet. As soon as support for this feature is available, driver will be updated.

● java.sql.Struct data type is not supported by server.
The following methods are implemented, but deviate from the specification:

● java.sql.Statement
– get/setMaxFieldSize does nothing, Firebird server does not support this feature.
– get/setQueryTimeout does nothing, Firebird server does not support this feature.

● java.sql.PreparedStatement
– setObject(int index, Object object, int type) Target SQL type is

determined from the class of the passed object and corresponding parameter is
ignored.

– setObject(int index, Object object, int type, int scale) Same as
above, type and scale are ignored.

● java.sql.ResultSetMetaData
– isReadOnly() always returns false
– isWritable() always returns true
– isDefinitivelyWritable() always returns true

Jaybird Specifics
Jaybird driver has also some implementation-specific issues that should be considered during
development.

Result sets
Jaybird behaves differently not only when different result set types are used but also the behavior
depends whether connection is in auto-commit mode or not.

ResultSet.TYPE_FORWARD_ONLY result sets when used in auto-commit mode are completely
cached on the client before the execution of the query is finished. This leads to the increased time
needed to execute statement, however the result set navigation happens almost instantly. When
auto-commit mode is switched off, only part of the result set specified by the fetch size is cached on
the client.

ResultSet.TYPE_SCROLL_INSENSITIVE result sets are always cached on the client. The reason is
quite simple – Firebird API does not provide scrollable cursor support, navigation is possible only
in one direction.

ResultSet.HOLD_CURSORS_OVER_COMMIT holdability is supported in Jaybird only for result sets of
type ResultSet.TYPE_SCROLL_INSENSITIVE. For other result set types driver will throw an
exception.

Using java.sql.ParameterMetaData with Callable Statements
This interface can be used only to obtain information about the IN parameters. Also it is not allowed
to call the PreparedStatement.getParameterMetaData method before all of the OUT parameters
are registered. Otherwise the corresponding method of CallableStatement throws an
SQLException, because the driver tries to prepare the procedure call with incorrect number of
parameters.

Using ResultSet.getCharacterStream with BLOB fields
Jaybird JDBC driver always uses connection encoding when converting array of bytes into character
stream. The BLOB SUB_TYPE 1 fields allow setting the character encoding for the field. However
when the contents of the field is sent to the client, it is not converted according to the character set
translation rules in Firebird, but is sent “as is”. When such field is accessed from Java application
via Jaybird and character set of the connection does not match the character encoding of the field,
conversion errors might happen. Therefore it is recommended to convert such fields in the
application using the appropriate encoding.

Heuristic transaction completion support
Current JCA implementation does not support XAResource.forget(Xid) method. It might be
important in cases when distributed transaction that was some time in-limbo was either committed
or rolled back by database administrator. Such transactions appear to Jaybird as successfully
completed, however XA specification requires resource manager to “remember” such transaction
until the XAResource.forget(Xid) is called.

Connection pooling with Jaybird
Connection pooling provides effective way to handle physical database connections. It is believed
that establishing new connection to the database takes some noticeable amount or time and in order
to speed things up one has to reuse connections as much as possible. While this is true for some
software and for old versions of Firebird database engine, establishing connection is hardly
noticeable with Firebird 1.0.3 and Firebird 1.5. So why is connection pooling needed?

There are few reasons for this. Each good connection pool provides a possibility to limit number of
physical connections established with the database server. This is an effective measure to localize
connection leaks. Any application cannot open more physical connections to the database than
allowed by connection pool. Good pools also provide some hints where connection leak occurred.
Another big advantage of connection pool is that it becomes a central place where connections are
obtained, thus simplifying system configuration. However, main advantage of good connection pool
comes from the fact that in addition to connection pooling, it can pool also prepared statement.
Tests executed using AS3AP benchmark suite show that prepared statement pooling might increase
speed of the application by 100% keeping source code clean and understandable.

Usage scenario
When some statement is used more than one time, it makes sense to use prepared statement. It will
be compiled by the server only once, but reused many times. It provides significant speedup when
some statement is executed in a loop. But what if some prepared statement will be used during
lifetime of some object? Should we prepare it in object's constructor and link object lifetime to
JDBC connection lifetime or should we prepare statement each time it is needed? All such cases
make handling of the prepared statements hard, they pollute application's code with irrelevant
details.

Connection and statement pooling remove such details from application's code. How would the
code in this case look like? Here's the example

Example 1. Typical JDBC code with statement pooling
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018

...
Connection connection = dataSource.getConnection();
try {
 PreparedStatement ps = connection.prepareStatement(
 “SELECT * FROM test_table WHERE id = ?”);
 try {
 ps.setInt(1, id);
 ResultSet rs = ps.executeQuery();
 while (rs.next()) {
 // do something here
 }
 } finally {
 ps.close();
 }
} finally {
 connection.close();
}
...

Lines 001-018 show typical code when prepared statement pooling is used. Application obtains
JDBC connection from the data source (instance of javax.sql.DataSource interface), prepares
some SQL statement as if it is used for the first time, sets parameters, and executes the query. Lines
012 and 015 ensure that statement and connection will be released under any circumstances. Where
do we benefit from the statement pooling? Call to prepare a statement in lines 004-005 is
intercepted by the pool, which checks if there's a free prepared statement for the specified SQL
query. If no such statement is found it prepares a new one. In line 013 prepared statement is not
closed, but returned to the pool, where it waits for the next call. Same happens to the connection
object that is returned to the pool in line 016.

Connection Pool Classes
Jaybird connection pooling classes belong to org.firebirdsql.pool.* package.

Description of some connection pool classes.
AbstractConnectionPool Base class for all connection pools. Can be used for

implementing custom pools, not necessarily for JDBC
connections.

BasicAbstractConnectionPool Subclass of AbstractConnectionPool, implements
javax.sql.ConnectionPoolDataSource interface. Also
provides some basic properties (minimum and maximum
number of connections, blocking and idle timeout, etc)
and code to handle JNDI-related issues.

DriverConnectionPoolDataSource Implementation of
javax.sql.ConnectionPoolDataSource for arbitrary
JDBC drivers, uses java.sql.DriverManager to obtain
connections, can be used as JNDI object factory.

FBConnectionPoolDataSource Jaybird specific implementation of
javax.sql.ConnectionPoolDataSource and
javax.sql.XADataSource interfaces, can be used as
JNDI object factory.

FBSimpleDataSource Implementation of javax.sql.DataSource interface, no
connection and statement pooling is available,
connections are physically opened in getConnection()
method and physically closed in their close() method.

Description of some connection pool classes.
FBWrappingDataSource Implementation of javax.sql.DataSource interface that

uses FBConnectionPoolDataSource to allocate
connections. This class defines some additional properties
that affect allocated connections. Can be used as JNDI
object factory.

SimpleDataSource Implementation of javax.sql.DataSource interface that
uses javax.sql.ConnectionPoolDataSource to allocate
physical connections.

org.firebirdsql.pool.FBConnectionPoolDataSource
This class is a corner stone of connection and statement pooling in Jaybird. It can be instantiated
within the application as well as it can be made accessible to other applications via JNDI. Class
implements both java.io.Serializable and javax.naming.Referenceable interfaces, which
allows using it in a wide range of web and application servers.

Class implements both javax.sql.ConnectionPoolDataSource and javax.sql.XADataSource
interfaces. Pooled connections returned by this class implement javax.sql.PooledConnection
and javax.sql.XAConnection interfaces and can participate in distributed JTA transactions.

Class provides following configuration properties:

Standard JDBC Properties
This group contains properties defined in the JDBC specification and should be standard to all
connection pools.

Property Getter Setter Description
maxIdleTime + + Maximum time in milliseconds after

which idle connection in the pool is
closed.

maxPoolSize + + Maximum number of open physical
connections.

minPoolSize + + Minimum number of open physical
connections. If value is greater than 0,
corresponding number of connections
will be opened when first connection
is obtained.

maxStatements + + Maximum size of prepared statement
pool. If 0, statement pooling is
switched off. When application
requests more statements than can be
kept in pool, Jaybird will allow
creating that statements, however
closing them would not return them
back to the pool, but rather
immediately release the resources.

Pool Properties
This group of properties are specific to the Jaybird implementation of the connection pooling
classes.

Property Getter Setter Description
blockingTimeout + + Maximum time in milliseconds during

which application can be blocked
waiting for a connection from the
pool. If no free connection can be
obtained, exception is thrown.

retryInterval + + Period in which pool will try to obtain
new connection while blocking the
application.

pooling + + Allows to switch connection pooling
off.

statementPooling + + Allows to switch statement pooling
off.

pingStatement + + Statement that will be used to “ping”
JDBC connection, in other words, to
check if it is still alive. This statement
must always succeed.

pingInterval + + Time during which connection is
believed to be valid in any case. Pool
“pings” connection before giving it to
the application only if more than
specified amount of time passed since
last “ping”.

Runtime Pool Properties
This group contains read-only properties that provide information about the state of the pool.

Property Getter Setter Description
freeSize + - Tells how many free connections are

in the pool. Value is between 0 and
totalSize.

workingSize + - Tells how many connections were
taken from the pool and are currently
used in the application.

totalSize + - Total size of open connection. At the
pool creation – 0, after obtaining first
connection – between minPoolSize
and maxPoolSize.

connectionCount + - Deprecated. Same as freeSize.

org.firebirdsql.pool.FBWrappingDataSource
This class is a wrapper for FBConnectionPoolDataSource converting interface from
javax.sql.ConnectionPoolDataSource to javax.sql.DataSource. It defines same properties as
FBConnectionPoolDataSource does.

Runtime object allocation and deallocation hints
Pool implementation shipped with Jaybird can provide hints for the application where the

connection was obtained from the pool, when it was released back to the pool, when the statement
was prepared. Such information is written into the log when appropriate system properties are set to
true. Additionally, when connection or prepared statement is closed twice, driver will throw an
SQL exception with an attached stack trace of previous call to close() method.

List of properties

Property name Description
FBLog4j Enables logging inside driver. This is the essential property, if it is

not present or set to false, no debug information is available.

When it is set to true, pool automatically prints the following
information:

• When physical connection is added to the pool – DEBUG
• When a maximum pool capacity is reached – DEBUG
• When connection is obtained from pool – DEBUG
• When connection is released back to pool – DEBUG
• Whether pool supports open statements across transaction

boundaries – INFO
FBPoolShowTrace Enables logging of the thread stack trace when debugging is enabled

and:

• Connection is allocated from the pool – DEBUG
• Thread is blocked while waiting for a free connection – WARN

FBPoolDebugStmtCache When statement caching is used and debugging is enabled, following
information is logged:

• When a statement is prepared – INFO
• When statement cache is cleaned – INFO
• When statement is obtained from or returned back to pool – INFO

Documentation and Support

Where to get more information on Jaybird
The most detailed information can be found in the Jaybird Frequently Asked Questions (FAQ). The
FAQ is included in the distribution, and is available on-line in several places.

Also a new resource, JaybirdWiki is available at http://Jaybirdwiki.firebirdsql.org.

Where to get help
The best place to start is the FAQ. Many details for using Jaybird with various programs are located
there. Below are some links to useful web sites.

• The http://groups.yahoo.com/group/Firebird-Java and corresponding mailing list Firebird-
Java@yahoogroups.com.

• The code for Firebird and this driver are on http://sourceforge.net/projects/firebird.

• The Firebird project home page http://www.firebirdsql.com.

http://www.firebirdsql.com/
http://sourceforge.net/projects/firebird
http://groups.yahoo.com/group/Firebird-Java
http://jaybirdwiki.firebirdsql.org/

Reporting Bugs
The developers follow the Firebird-Java@yahoogroups.com list. Join the list and post information
about suspected bugs. This is a good idea because what is often thought to be a bug turns out to be
something else. List members may be able o help out and get you going again, whereas bug fixes
might take awhile.

If you are sure that this is a bug you may report it in the Firebird bug tracker
http://tracker.firebirdsql.org for the project “Jaybird JCA/JDBC Driver”.

Corrections/Additions To Release Notes
Please send corrections, suggestions, or additions to these Release Notes to to the mailing list at
Firebird-Java@yahoogroups.com.

http://tracker.firebirdsql.org/

	Jaybird JCA/JDBC Driver

Release Notes v 2.1.6
	General Notes
	Supported Firebird versions
	Specification support

	What's new in Jaybird 2.1.6
	List of bugs fixed since Jaybird 2.1.5
	List of bugs fixed since Jaybird 2.1.4
	List of bugs fixed since Jaybird 2.1.3
	List of bugs fixed since Jaybird 2.1.2
	List of bugs fixed since Jaybird 2.1.1
	List of bugs fixed since Jaybird 2.1.0
	Events
	Support for multiple JNI libraries
	Default holdable result sets (closed ResultSet in auto-commit mode)
	Other features

	What's new in Jaybird 2.0
	Refactorings
	Updatable result sets
	Firebird management interfaces
	Incompatible changes since Jaybird 1.5
	Jaybird JDBC extensions
	JDBC 3.0 compatibility

	Distribution package
	License
	Source Code

	JDBC URL Format
	Pure Java
	Using Firebird client library
	Embedded Server

	JDBC connection properties
	Using Type 2 and Embedded Server driver
	Configuring Type 2 JDBC driver
	Configuring Embedded Server JDBC driver

	JDBC 3.0 Compatibility
	JDBC 3.0 deviations and unimplemented features

	Jaybird Specifics
	Result sets
	Using java.sql.ParameterMetaData with Callable Statements
	Using ResultSet.getCharacterStream with BLOB fields
	Heuristic transaction completion support

	Connection pooling with Jaybird
	Usage scenario
	Connection Pool Classes
	org.firebirdsql.pool.FBConnectionPoolDataSource
	org.firebirdsql.pool.FBWrappingDataSource
	Runtime object allocation and deallocation hints

	Documentation and Support
	Where to get more information on Jaybird
	Where to get help
	Reporting Bugs
	Corrections/Additions To Release Notes

