
1 Introduction

This describes a Python program wrapper for the CCP4 Program Scala
(Evans, P “Data Reduction” in Proceedings of 1993 CCP4 Study Week-
end.) This wrapper provides most of the commonly used functionality im-
plemented in Scala.

2 Use Cases

2.1 Simple 1: Scale and Merge Data

The simplest implementation of the Scala wrapper is to simply take data
from Mosflm and merge to a “standard” mtz file. This will need to perform
the following operations:

• Apply a resolution limit.

• Apply a scaling model.

• Apply an error model.

• Add project, crystal, dataset information.

• Raise an error sensibly if the input data are not sorted; are not MTZ
format; do not exist...

Use case test data exists for this in the XIA core test data repository.
This simple version will do something like:

#!/bin/bash

scala DNA scala.stf \

HKLIN 12287_1_E1_scaled_sorted.mtz \

HKLOUT 12287_1_E1_scaled.mtz << eof

USECWD

NAME PROJECT default CRYSTAL default DATASET default

run 1 all

sdcorrection full 2.000000 0.095000 partial 2.000000 0.085000

resolution high 1.53937314091

anomalous on

cycles 20

scales rotation spacing 5.0 secondary 6.0 bfactor on tails

eof

2.2 Simple 2: Just Merge

This implementation would take data previously scaled by an outside pro-
gram (for instance XSCALE; SCALEPACK) and merge the reflections to
provide scaling statistics and a merged reflection file. This will need to
provide the following operations:

• Apply a resolution limit.

• Add project, crystal, dataset information.

1

Tools to transform the input data from whatever the originating format
is would be provided externally, and must be used.

FIXME/to-do: Test data for this will need to be added. Make it so
or generate the test data during the implementation of the XDS/XSCALE
wrappers.

This will do something like:

#!/bin/bash

combat hklin SCALED.HKL hklout SCALED.HKL.tmp1 << eof

scale 0.02

input XDSASCII

pname default

dname xds

eof

sortmtz hklin SCALED.HKL.tmp1 \

hklout 12287_1_E1_scaled_scala.mtz.tmp2 << eof

H K L M/ISYM BATCH

eof

scala hklin 12287_1_E1_scaled_scala.mtz.tmp2 \

hklout 12287_1_E1_scaled_scala.mtz \

dnaout xds_scala.stf << eof

run 1 all

scales constant

initial unity

anomalous on

eof

This is probably best implemented as a separate method - e.g. s.merge()
in place of s.scale().

2.3 More Complex 1: Merging Data, 2 Passes

Two datasets processed with Mosflm, appropriately REBATCHED and SORTED.
The resulting MTZ file will need to be scaled and merged appropriately to
give reasonable merging statistics from the two or more runs. This will
require:

• Apply resolution limits.

• Apply a scaling model.

• Apply error models per run.

• Add project, crystal, dataset information.

The error models are best decided by scaling the data separately then
recycling the parameters.

2.4 More Complex 2: Scaling MAD Data

More than one data sets collected from the same crystal but at different
wavelengths. The data will need to be scaled separately but used together
for building the absorption model etc. This is much more complex.

This will produce a number of output reflection files.

2

This will further need the reflections to be appropriately sorted and
merged together in the file, with sensible project/crystal/dataset informa-
tion in advance of the processing.

FIXME this needs to be specified.
Test data for this exist within the XIA core source tree.

3 Implementation

3.1 Notes

To achieve a decent structure to this I may be better off implementing a
system based around data sets rather than files. This will be OK because
any data coming from outside (XDS, SCALEPACK) will have to have been
passed through COMBAT first and will hence have the appropriate infor-
mation in.

So, for instance
addDataset(reflection_file, # perhaps this should be part of

the setHklin() method?

batches = (start, end), # inclusive

project = x, # these should be set to

crystal = y, # sensible values to help

dataset = z, # the wrapper decide what

id = ’low_res_pass’) # is what

=> run 1 (say)

addError_model(id = ’low_res_pass’,

sd_partial = {’Fac’:1.0,

’Add’:0.02,

’B’:15},

sd_full = {’Fac’:1.0,

’Add’:0.02,

’B’:15})

may be a sensible way to make this work. The calling program can then
assign id’s appropriately as well as the standard error correction parameters.

In MAD scaling it’s probably the case that all wavelengths should have
the same standard error parameters, so this is a fairly efficient way of recy-
cling this information.

I’m not sure how likely it is that someone will want to scale multiple
wavelengths and multiple sweeps per wavelength, but in this case I guess
that anything is possible (there are JCSG examples like this - identify them.)

To-do: ID some interesting JCSG examples for this.
From the project/crystal/dataset information assumptions WILL be made

about what should be done. If two datasets have the same project/crystal/dataset
hierarchy then they should be merged together; if they have different wave-
lengths recorded in the reflection files then an exception will need to be
raised.

Note further that it is not possible to input more than one reflection file
into scala - in all cases above the data set reflection file should be the same
- anything else will raise an exception. Perhaps this aspect of the input
should be relegated to the default setHklin() method.

3

However this kind of input would be very helpful for CAD, where this
kind of thing wants to happen (though this could be at a higher level.)

4 Implementation

4.1 Loggraphs

The following loggraphs are in the Scala output (for UC1, data set name
was “Unspecified”):

Completeness, multiplicity, Rmeas v. resolution, Unspecified

Axial reflections, axis l, Unspecified

Run 1, standard deviation v. Intensity, Unspecified

Correlations within dataset, Unspecified

Axial reflections, axis h, Unspecified

Analysis against Batch, Unspecified

Analysis against resolution , Unspecified

Analysis against intensity, Unspecified

Scales v rotation range, Unspecified

4.2 Summary

This is the stuff in the summary at the end of the file (likewise for UC1):

Total number of observations [’110206’, ’9776’]

Rmerge [’0.056’, ’0.348’]

Rmeas (all I+ & I-) [’0.096’, ’0.522’]

Rmeas (within I+/I-) [’0.073’, ’0.465’]

Multiplicity [’4.2’, ’3.0’]

DelAnom correlation between half-sets [’0.583’, ’0.122’]

Mean((I)/sd(I)) [’12.8’, ’2.4’]

Rpim (within I+/I-) [’0.045’, ’0.305’]

Low resolution limit [’52.56’, ’1.74’]

Fractional partial bias [’-0.010’, ’0.008’]

High resolution limit [’1.65’, ’1.65’]

Anomalous multiplicity [’2.3’, ’1.7’]

Completeness [’97.9’, ’87.8’]

Mid-Slope of Anom Normal Probability [’1.573’]

Rpim (all I+ & I-) [’0.045’, ’0.283’]

Anomalous completeness [’96.8’, ’81.2’]

Total number unique [’26070’, ’3281’]

4

