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1 Introduction

Almost any automation in protein crystallography structure solution will
involve running existing programs at some stage - the only alternative is to
rewrite the substantial body of programs which is available. If we therefore
assume that running programs is desirable, the only problem is then the
matter of how.

Some systems, for example autoSHARP [Bricogne et Al., 2002] and Elves
[Holton & Alber, 2004], rely on a UNIX shell for this task - a reliance which
has typically been reasonably portable. However, in recent years the nature
of crystallography and the crystallographer has changed - more people are
now using Microsoft Windows for “real” computing tasks than ever before.

The nature of crystallographic computing is also changing. It used to be
usual to do all of the computing on a central server - now it’s more likely
to be a personal workstation or a cluster of computers. These environments
are both moderately hostile to script based solutions, though can be catered
for.

Here, we describe a more elegant solution, where the running of the
program is separated from the rest of the system, in such a way as to allow
extension to cover a variety of platforms. Implementation of this system in
Python'! is also discussed, along with some experiences of using the system
in anger.

2 The Problem

As described in the introduction, developing a system to automate a pro-
tein crystallography process often depends on interaction with the operating
system to run programs. This interaction can be difficult to port from one
platform to another, and can therefore limit the possible users of the system.
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«interface»
Driver

@ setExecutable(string)

@ getExecutable():string
@ setTask(string)

@ getTask():string

@ addCommand_line(string)
= start()

= close()

= close_wait()

= kill()

@ write_log_file(string)
= status()

= input(string)

= output():string

= finished():boolean

@ get_all_output():string[]

Figure 1: The “Driver” interface.

In general, when running programs for automating a crystallographic
process, we are interested in the following:

e Starting the program

e Providing program input

Reading program output

Deciding if the program has worked

Handling input and output files

e Handling cases where things go wrong, for example killing the program

Of course, almost all systems will interact with more than one program,
so chaining will be important. This is however out of the scope of this
discussion.

Developing portable tools to do this in addition to developing the “in-
teresting stuff” is not a trivial undertaking.

3 Conceptual Solution

Once we have decided on the functionality we want for running programs,
it is relatively straightforward to design an interface. Given an interface,
the only problem is then to implement or realize this interface, to give us
something we can use. The interface described above we call “Driver”, and
is shown as a UML diagram in Figure 1.

Since there are a number of ways we could implement this interface, and
a number of environments where this could take place, the next task is to
design a mechanism to hide these details from the application. A useful
metaphor or pattern? here is the factory. We ask the factory to provide

2If you want to find out more about this, google “Design Patterns.”



«interface»
ClusterDriver

SunGridEngineDriver

2 submit()

& cleanup() & Driver():Driver

SimpleDriver ScriptDriver
X
- Dﬁ\ver():Driver @ Driver():Driver

«interface»
Driver
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Figure 2: Accessing Driver implementations from a factory.

«interface»
Driver

@ Driver():Driver

- o constructor -
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Figure 3: Customizing Driver classes for e.g. CCP4.

something which satisfies the interface Driver, and it provides such a thing.
This is illustrated in Figure 2. In this way the factory can be delegated to
provide the most useful implementation for the current environment.

In some cases there will be sets of Driver implementations which have
a lot in common. For example, batch queuing systems on clusters all work
by submitting a script. Writing the script and handling the status of the
job is a general problem, while the details of the submission will depend on
the exact cluster. We can therefore define a new interface, ClusterDriver,
and a new factory to produce them. This factory can then be called by the
“general” DriverFactory when a Driver is wanted in a cluster environment.

Although the functionality we want in general is described above, there is
often a great deal of commonality between programs in a suite. For example,
in CCP4 most programs accept the “logical names” HKLIN, HKLOUT.
We could implement this every time we want to write a program, but this
will be both untidy and inefficient. A more elegant solution is to take the
Driver instance and “decorate3” this with the things which are nice for
running CCP4 programs, in particular methods for assigning HKLIN &
HKLOUT files, checking the status and parsing loggraph output. However,
unlike standard inheritance, this must be able to decorate anything which
implements the Driver interface. This is shown in Figure 3.

So far this has involved no programming - we are simply describing a

3 Another design pattern



set of requirements and designing a package which would be able to satisfy
those requirements. What we have described here could be implemented
in any moderately modern language. In the next section we describe the
Python implementation.

4 Python Implementation

Implementing this system in Python is in some ways straightforward, and in
others rather a challenge. Python includes some very nice tools for interact-
ing with the operating system, and more often than not these are portable
across the “usual suspect” platforms of Linux, Mac OS X and Windows.
However, the language does not include the concept of a virtual class or
interface, as used above. Some interesting “spells” were therefore necessary
to give this kind of functionality.

Defining the interface is relatively straightforward - simply write a Python
class which looks like what you want, have all of the useful methods raise
exceptions like “implement me”, and insist that any Driver implementations
inherit from this. A simple check of the class hierarchy can test this.

In python a factory is very simple - this is simply a function which returns
a fresh instance of a class. Implementing the DriverFactory as seen above
therefore only needed one detail - how to specify the default driver type.
This was solved by the old-fashioned approach of setting an environment
variable XIA2CORE_DRIVERTYPE.

Implementation of the Decorator pattern was less straightforward. With-
out interfaces, a class implementation (lilke CCP4Driver) must inherit from
a concrete implementation of a Driver class. This presented two possibilities
- either implemnenting m x n classes like CCP4ScriptDriver, or investigating
dynamic inheritance. The latter was selected in an instant!

Implementing a system using dynamic inheritance looks a lot like a fac-
tory function - you have a function that you call which will return a new
instance of a class. The only difference here is that you pass in an instance
of the class that you wish to decorate, giving the following pseudocode:

function CCP4DriverFactory(DriverInstance d) returns CCP4Driver
{

DriverClass = d.class()

class CCP4DecoratorClass(DriverClass)
{
// implement class based on Driver interface in here

}

return new CCP4DriverClass()

}



In Python, this allows you to decide at construction time what Driver
class we wish to inherit from, and so circumvents the challenges described
above.

This has only one side effect - when you wish to inherit from the CCP4-
decorated driver, you have to have a similar scheme in the code. However,
this ends up being a ten-line boilerplate, which is simply an empty wrapper
which can be populated with the “interesting stuff”. This is a relatively
small price to pay for portability.

5 Usage Examples

5.1 xia2dpa

xia2dpa is a toolkit for data processing and analysis, and builds on the
Python implementation of the xia2core described above. This makes use of
a large number of CCP4 programs as well as programs from outside. In the
new development portability was a key criterion, initiating the development
of the new core.

xia2dpa is currently being developed in a bottom-up approach. Those
components at the lowest level (program wrappers, inherited from Drivers)
are combined to give useful modules. An example is the development of
the xia2scan application - for analyzing diffraction images when using a
humidifier. This makes use of a couple of “standard” programs (labelit.index
and labelit.dist] [Sauter et Al., 2004, Zhang et Al, 2006]) and also makes use
of a “jiffy” application printheader. All of the programs have wrappers in
the xia2dpa wrapper library, and so can be treated as functions directly from
Python. In this application, results from the indexing and image analysis
are combined to select the best image - from here the best humidity for data
collection can be selected.

5.2 MrBUMP

MrBUMP is a new CCP4 project for doing automated molecular replace-
ment (MR). It is implemented in Python and wraps around the commonly
used MR programs Phaser and Molrep with particular emphasis on gener-
ating search models for use in MR. It takes a brute force approach to the
problem and attempts to generate as many suitable models as is practical.
It is designed to make use of compute clusters to aid this process. Apart
from Phaser and Molrep, MrBUMP makes use of several other CCP4 utility
programs for preparing the structure coodinate files of the search models
such as Chainsaw, Pdbcur, PDbset and Coord_format.

MrBUMP is designed as a framework allowing for additional model
preparation methods and MR programs to be incorporated into it as it
is further developed. The ease with which the xia2core Driver allows for



the creation of wrappers to programs is ideal for MrBUMPs purposes. In
addition the built-in portability afforded by xia2core means that program
wrappers can be developed on a single platform and be guaranteed to work
on any other platform. Another particularly attractive feature of the imple-
mentation is the Cluster Driver that can allow MrBUMP to take advantage
of the wide variety of different clustering systems available such Sun Grid
Engine, PBS, and LSF to name but a few, without having to be tailored to
handle the idosyncrasies of each of these systems.

Currently, MrBUMP has its own built-in wrappers for each of the pro-
grams it uses but re-writing these to make use of xia2core has proven to be
a fairly trivial task given the simple way in which interfaces can be designed
using xia2core. A developer looking to utilise it only needs a very rudi-
mentary understanding of how the underlying Driver and Decorator classes
are implemented before they can make use of them. This “low potential
barrier” to use is perhaps the most appealing feature of xia2core from a
practical point of view.

6 Discussion & Availability

6.1 License

This software is provided under the CCP4 “Applications” license, and should
shortly be distributed as a part of the CCP4 suite, in version 6.1.

6.2 Download

The latest version of the xia2core, including the Python implementation de-
scribed here, is available from http://www.ccp4.ac.uk/xia/xia2core-0.0.3.tar.gz.
For information on more up-to-date versions when available, please contact
g.winterQdl.ac.uk.
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