
1 Introduction

This module will provide expertise for finding diffraction images in a direc-
tory.

1.1 Glossary

The following exact terms will be used in this document.

• Template - a string which represents the names for a sequence of
diffraction images, like foo_bar_1_####.img. The ### will be re-
placed with a sequence of three-digit numbers.

• Directory - the location of these files.

• Prefix, Extension - - strings representing the two halfs of the template
around ###. e.g. foo bar 1 and img above.

2 Use Cases

2.1 UC 1: Derive Template and Directory from Image Name

Action: Derive from a (full path) image name, return a likely template and
directory for these files.

Function: image2template directory(image), image2template(image)

2.2 UC 2: Finding Images from Template and Directory

Action: a template and directory are provided. This directory is searched for
files which have a matching name, and the list of matching image numbers
returned as a sorted list of integers.

Function: find matching images(template, directory)

2.3 UC 3: Constructing Full Path

When provided with a template, directory and image, construct the full
path to the image.

Function: template directory number2image(template, directory, num-
ber)

3 Implementation

3.1 UC 1

This will use the following regular expression to match the image name:

(.*)_([0-9]*)\.(.*)

1

which means (whatever) (underscore) (some digits) (dot) (whatever).
This will not match files called foo001.img or foo.001 etc. Is this a problem??
Look in to this - could the (underscore) and (dot) be optional? Should be
doable. Adding ? after the offending tokens could do it - add this to the
unit test. This would make the expression:

(.*)_?([0-9]*)\.?(.*)?

Oh - this et’s stuck on the greediness of things - better off trying to
match a number of patterns in sequence and see which works best... Yes,
this works though it makes for notty code, including dictionarys of how to
put the template back together. I ended up with:

def image2template(filename):

’’’Return a template to match this filename.’’’

the patterns in the order I want to test them

pattern_keys = [r’(.*)_([0-9]*)\.(.*)’,

r’([^\.]*)\.([0-9]+)’,

r’(.*?)([0-9]*)\.(.*)’]

patterns is a dictionary of possible regular expressions with

the format strings to put the file name back together

patterns = {r’(.*)_([0-9]*)\.(.*)’:’%s_%s.%s’,

r’([^\.]*)\.([0-9]+)’:’%s.%s%s’,

r’(.*?)([0-9]*)\.(.*)’:’%s%s.%s’}

for pattern in pattern_keys:

match = re.compile(pattern).match(filename)

if match:

prefix = match.group(1)

number = match.group(2)

try:

exten = match.group(3)

except:

exten = ’’

for digit in string.digits:

number = number.replace(digit, ’#’)

return patterns[pattern] % (prefix, number, exten)

raise RuntimeError, ’filename %s not understood as a template’ % \

filename

Still - it works!

3.2 UC 2, 3

Implemented.

2

