
oneSIS v2.0: Administrator’s Manual

Josh England <jjengla@gmail.com>

Last update: oneSIS-2.0 (June, 2008)

This document is continually being updated.
Refer to http://onesis.org/docs.php for the latest documentation.

Contents

1 Introduction 1
1.1 A primer on diskless booting using NFS root 1
1.2 One root filesystem . 1
1.3 Centrally configured, centrally maintained 2

2 Installation 2
2.1 Dependencies and requirements . 3
2.2 Preparing the master image . 3

2.2.1 Run mk-sysimage . 4

3 Booting nodes 5
3.1 Traditional diskless NFSroot . 5
3.2 Booting diskless/diskful/mixed systems with an initramfs 5

3.2.1 Specifying the root filesystem . 6
3.2.2 Creating a new initramfs template 6

4 Implementation 7
4.1 Role abstractions . 7
4.2 Node deviations . 7
4.3 Utilization of the RAM disk . 7
4.4 Inherited behavior (node sub-classing) . 8
4.5 Boot-time configuration . 8
4.6 Porting to a new distribution . 9

5 Configuration 10
5.1 Specifying the distribution . 10

5.1.1 DISTRO syntax . 10
5.2 Defining node classes (functional roles) . 10

5.2.1 NODECLASS syntax . 11

1

5.3 Creating node sub-classes . 11
5.4 Defining node properties . 11
5.5 Specifying the RAM disk size . 12
5.6 Configuring RAM disk elements . 12

5.6.1 Duplicating files into /ram . 13
5.6.2 RAM* and LINK* syntax . 13

5.7 Using a read-only root filesystem . 15
5.8 Setting up variant system services . 16

5.8.1 SERVICE syntax . 16
5.9 Using linkbacks . 16

5.9.1 Forcing a linkback . 17
5.9.2 Linkbacks with sub-classes . 17
5.9.3 The case for hidden linkbacks . 17
5.9.4 LINKBACK syntax . 18

5.10 Management of local disks . 18
5.10.1 Dynamic or static partitions . 19
5.10.2 DISK* syntax . 19
5.10.3 A word of caution . 20
5.10.4 Deploying parts of the image to local disk 20
5.10.5 DEPLOY* syntax . 20
5.10.6 SYNCDIR syntax . 21
5.10.7 EXCLUDESYNC syntax . 22
5.10.8 Booting from a local disk . 22
5.10.9 BOOTLOADER syntax . 22

5.11 Manually setting a hostname . 23
5.11.1 MAC ADDR syntax . 23
5.11.2 ETH PRELOAD syntax . 23

5.12 Configuring the power and console interfaces 24
5.12.1 POWERCMD syntax . 24
5.12.2 CONSOLECMD syntax . 25

5.13 How to make a SPECFORMAT . 25
5.13.1 SPECFORMAT syntax . 25

5.14 Including extra configuration directives . 27

6 Utility Programs 27
6.1 mk-sysimage . 27
6.2 update-node . 28
6.3 copy-rootfs . 29
6.4 mk-initramfs-oneSIS . 30
6.5 mk-diskful . 32
6.6 sync-node . 33
6.7 pwr . 34
6.8 consl . 36
6.9 pxe-config . 37
6.10 myclass . 38

A Configuration Directives 39

1

1 Introduction

oneSIS is a system for enabling a single root filesystem (ie: ’/’ on your Linux machine) to be
shared by many (even functionally different) machines. It is comprised of a collection of tools
to install, configure, and maintain a cluster of diskless machines. It allows read-only NFS
(Network File System) root clusters to be deployed and maintained with ease, and enables
variations between nodes while still using a single root filesystem.

The root image (or any subset of it) can be deployed to disk, if desired, so that any cluster
node can boot from the local disk. Using oneSIS, it is possible to have nodes that use almost
any combination of NFS, RAM-based, and local disk for files/directories in the root image.

This document describes some of the techniques oneSIS employs and details all of the con-
figuration directives and helper applications that make up the system. It is written to serve
as reference material for the configuration directives and utilities, not as a detailed usage
guide. A useful resource detailing specific configuration examples can be found online at
oneSIS HOWTO at http://onesis.org/oneSIS-HOWTO.php.

1.1 A primer on diskless booting using NFS root

Although it can handle ‘diskful’ machines, oneSIS was designed primarily for managing disk-
less (NFSroot) nodes. Configuring machines to run diskless (to boot and run off the network)
is not a new concept. The technique has been available for several years and does not require
oneSIS or other similar software. oneSIS enables an administrator to cope easily with the
main peculiarity of running diskless: managing a read-only shared root filesystem.

Linux and DHCP enable diskless machines. oneSIS enables desired elements of the root
filesystem to ‘become’ writable and allows functional groups of nodes or individual nodes to
use different variations of the root filesystem. For a primer on configuring machines to run
diskless, read the NFSroot HOWTO at http://onesis.org/NFSroot-HOWTO.php.

1.2 One root filesystem

oneSIS was developed as a system that could essentially be a cluster ‘building block’ of sorts.
It does this by adhering to one simple constraint: the root filesystem of every node should
always be exactly identical. Every node is an exact mirror of the root image. This property
has many desirable benefits in terms of system manageability and scalability.

The root filesystem of every node is bit-for-bit identical whether it resides on a local disk or
is mounted via NFS. Functional groups of nodes or individual nodes can be configured to
behave differently by using ‘linkbacks’ to configure themselves at boot-time with symbolic
links going to and from a small RAM disk.

For large clusters, diskful mirrors of the image can each NFS export their root filesystem to a
reasonable number of ‘diskless’ nodes so that services such as DHCP, TFTP, and NFS of the

2

root image can be distributed efficiently to any scale necessary using commodity hardware.

1.3 Centrally configured, centrally maintained

Even with the complex-sounding architecture mentioned above, configuring and maintaining
a cluster of any size is remarkably simple. When running NFSroot with a read-only root
filesystem, oneSIS is used to configure certain paths to be read-write. These paths can be
configured to be either persistent across a reboot or not by directing them to reside on the
local disk, on remote mount points, or in RAM.

Managing system services and configuration files to be class-specific or node-specific is the
other central role of oneSIS. In addition, oneSIS provides some power wrapper scripts to
consolidate different remote power management and console utilities into a single command.
These aspects of the cluster’s behavior are centrally configured from a single configuration
file within each master image.

Typical configurations are usually minimal, but even complex setups are still easy. The
behavior of the entire cluster is easily viewable and modifiable with the control being as
fine-grained as necessary.

2 Installation

Building a cluster with oneSIS is a straight-forward process. The first step is to get your
nodes to boot NFSroot. Once NFS is setup and the infrastructure is in place to send a kernel
to every node, any cluster nodes can be booting quickly into a diskless NFSroot environment.

More information on installing and configuring oneSIS can be found in the oneSIS HOWTO
at http://onesis.org/oneSIS-HOWTO.php.

Any installed linux distribution can be copied and used as the master image for your cluster.
Several distributions are currently well-supported. Look in the ‘distro-patches’ directory in
the source tree to see well-supported distributions. See section 4.6 for information on how
to port to a new distribution.

Procedure 1 Download and install oneSIS
Download

The latest source can be found at http://onesis.org

Install
This will install the oneSIS scripts, perl module, initramfs templates, and documentation into
the current distribution.
cd oneSIS-2.0

make install

3

2.1 Dependencies and requirements

Several of the utility programs included with oneSIS are dependent on certain (mostly stan-
dard) system utilities being present. Also, certain functionality does need to be configured
into the kernel for oneSIS to operate.

The following features should be enabled in the kernel for all components of oneSIS to op-
erate effectively

– tmpfs (Virtual memory file system support)
– loopback device support (for initrd support – not needed for initramfs)
– devfs (/dev file system support) Note: only needed with 2.4 kernels

oneSIS uses a tmpfs ramdisk for many operations. Also, oneSIS requires either udev (with
2.6 kernels) or devfs (with 2.4 kernels) to handle the /dev directory.

A static /dev can be made to work (ie: LINKDIR /dev -d) with limited functionality, but
it is not recommended. Depending on what applications you are running you may not even
need to use udev or devfs to handle /dev, but that is also not recommended.

Note: It may be necessary to download and install udev or the devfsd program depending
on your linux distribution.

oneSIS makes use of the following linux utilities, most of which are present in most linux
distributions.

– cpio

– sfdisk

– mke2fs/tune2fs/e2label

– gzip/gunzip

– rsync

– grub

– lilo

2.2 Preparing the master image

Before any nodes can be booted, a ‘master image’ must be created that will be shared across
all nodes of the cluster. A filesystem image, normally an installation of some Linux distri-
bution, must be copied into an NFS-exportable directory to serve as the image of the cluster.

Creating the master image from an installed linux machine is a simple process, although it
can take some time to copy such a large volume of data. The copy-rootfs script (section
6.3) automates the details of copying a root filesystem from the local machine, or from a
remote machine with an ssh daemon running.

After it has been prepared, this master image will serve as the root filesystem for all cluster

4

nodes. Copies are used on diskful nodes, and the image itself is NFS mounted read-only on
diskless nodes.

Procedure 2 Create a root image
Method 1: Creating an image from the local machine

This will copy the root filesystem of the local machine into /var/lib/oneSIS/image

copy-rootfs -l /var/lib/oneSIS/image

Method 2: Creating an image from a remote machine
For a remote machine named rook, this will copy the root filesystem of the remote machine
into /var/lib/oneSIS/image, excluding the remote /home directory.
copy-rootfs -r rook -e /home /var/lib/oneSIS/image

Note: If it wasn’t installed on the remote machine, oneSIS will need to be installed in the
image. In the oneSIS source directory, run
cd oneSIS-2.0

prefix=/var/lib/oneSIS/image make install

Also note: If the local machine and the image use different versions of Perl, it may be
necessary to chroot into the image before installing oneSIS. This will ensure that the oneSIS
perl module is installed under the right directory in /usr/lib/perl.
cp -a oneSIS-2.0 /var/lib/oneSIS/image/usr/local/src

chroot /var/lib/oneSIS/image

cd /usr/local/src/oneSIS-2.0

make install

exit

Although diskful machines can mount their local root filesystems in read-write mode, it is
often desirable to treat the nodes as if they were diskless and mount the root filesystem read-
only. This is especially important if the diskful nodes are intended to distribute the image
to more diskless nodes. Any necessary filesystem alterations can be made in the master
image, and synchronizing diskful nodes with the master image is accomplished easily with
the sync-node script (section 6.6).

2.2.1 Run mk-sysimage

Once the master image has been created, the mk-sysimage script (section 6.1) must be run
to prepare the image for use. This script alters the filesystem of the master image so that
each node effectively sees a different ‘view’ of the image.

As described in the ‘Implementation’ section, mk-sysimage alters any files listed as a LINK*

directive to enable the image to serve as the root filesystem for as many nodes with potentially
many different functional roles. It will convert the distribution to be used as a read-only
root filesystem. As a convenience, it will also remove (backup) any configuration files that
try to mount local disk devices or configure network interfaces, or any other configuration
files that would create problems for client nodes.

5

Procedure 3 Run mk-sysimage on your image
Define your distribution

Edit /etc/sysimage.conf in the image to reflect the linux distribution being used.
Add the appropriate DISTRO directive.

Run mk-sysimage

This will prepare the image to be used as a shared root filesystem for many nodes. It may be
desirable to run with the --dryrun option the first time to see if the distribution patch will
apply cleanly. The effects of mk-sysimage can always be reverted with the --revert option.
mk-sysimage /var/lib/oneSIS/image

3 Booting nodes

When booting, your machine should come up, boot a kernel, and mount a root filesystem.
The kernel can come from the network via a mechanism such as PXE or EtherBoot, from a
local disk, or even from onboard flash with LinuxBIOS. Methods described here are tradi-
tional diskless NFSroot, and booting diskless/diskful/mixed systems with initramfs.

3.1 Traditional diskless NFSroot

To boot using the traditional in-kernel NFSroot mechanism, the network interface must be
compiled directly into the kernel rather than as a module. The same is also true for NFS
client capabilities. Kernel-level autoconfiguration via DHCP is needed, and the ability to
have the root file system on NFS (CONFIG ROOT NFS) must be enabled. Once DHCP is
configured, nodes can boot diskless by specifying the following on the kernel command line:

• root=/dev/nfs ro ip=dhcp

Booting in this way has the benefit that an initramfs doesn’t need to be sent across the
network at boot time, and the boot is a little faster.

3.2 Booting diskless/diskful/mixed systems with an initramfs

Although not required, using an initramfs to bootstrap oneSIS nodes can provide more flex-
ibility than traditional NFSroot methods. The mk-initramfs-oneSIS script (described in
section 6.4) is capable of automatically building an initramfs that can be customized for any
kind of node, or generalized for an entire cluster of nodes.

Once the initramfs is created, nodes can boot into diskless/diskful/mixed environments by
specifying the initramfs on the kernel command line:

• initrd=initramfs-2.6.25

The primary job of the initramfs is to bring up a network interface, configure the interface
via DHCP, set the node’s hostname, and mount its root filesystem. Specific kernel modules

6

can be loaded by supplying options to mk-initramfs-oneSIS.

The root filesystem itself can be mounted via NFS or from a local disk. When a portion
of the root filesystem has been deployed on a local disk, the initramfs can be configured to
automatically mount those partitions before pivoting into the root filesystem.

An entire cluster (or any individual node or group within it) can be configured any way you
want. The default initramfs template can also be extended to support almost any conceiv-
able creative boot method.

Note: The standard mkinitramfs utility can still be used to bootstrap diskful nodes in
many scenarios.

3.2.1 Specifying the root filesystem

The logic in the initramfs allows the root filesystem to be specified a number of different
ways. Two methods for setting the root filesystem are:

• Using the root= kernel command-line parameter

• Using a root-path option in DHCP
Note: Setting the root-path option for a node in DHCP will always override any
root= parameter on the kernel command line.

In either case, the actual root can be specified in three ways:

• NFS root, ie: 192.168.1.1:/var/lib/oneSIS/image,v3,tcp,rsize=8192,wsize=8192

• Local root specified by disklabel, ie: LABEL=/

• Local root specified by device, ie: /dev/hda1

3.2.2 Creating a new initramfs template

The initramfs template supplied by oneSIS can be used to bootstrap any x86 compatible
machine. Similar templates for other architectures may be included in future releases of one-
SIS. It is possible to add extra functionality to an existing template to create a new one and
still have the functionality and convenience offered by mk-initramfs-oneSIS for creating
new initramfss.

If none of the existing logic in the initramfs template is changed, mk-initramfs-oneSIS can
use any derived templates to create initramfss with added functionality. There is a specific
place in the initramfs’s init script specifically designated for additional logic. Any other
creative bootstrapping logic can be added there, without losing existing functionality.

7

4 Implementation

The root filesystem of every cluster node is bit-for-bit identical, whether it resides on a local
disk or is mounted via NFS. To achieve different behavior for each functional role within a
cluster, oneSIS uses a technique called a ‘linkback’ that involves creating symbolic links to
and from the oneSIS RAM disk at run-time.

4.1 Role abstractions

Clusters commonly consist of groups of many machines that behave the same way. The large
majority of nodes are usually used to compute scientific algorithms, run database applica-
tions, or provide high availability or failover services for web servers and the like. However, a
smaller set of nodes in the cluster usually have auxiliary functions necessary to the operation
of the cluster.

A typical cluster may have administration nodes, front-end nodes, login nodes, and nodes
dedicated to providing filesystem I/O to the rest of the cluster. For these nodes, it is desirable
to have a root filesystem image that is identical to the main ‘compute’ nodes. Although
using the same filesystem image for ‘admin’ or ‘IO’ nodes is not required, for example as for
‘compute’ nodes, consistency helps ease administration and reduce the overall complexity of
the system.

4.2 Node deviations

The independent behavior of nodes and functional groups of nodes can be configured in sev-
eral ways. In a cluster, compute nodes may run different services (daemons), have different
configuration files, mount different filesystems, and otherwise behave differently from other
class of nodes in many ways.

These differences usually require deviations from the master image that configure unique
behavior for each class of nodes. The types of deviations are grouped into three main
categories: deviation of system services, deviation of files and directories, and deviation in
usage of local hard disks (if they exist).

4.3 Utilization of the RAM disk

Most deviations in node behavior result from differences in configuration files in the root
filesystem. For example, some nodes may need to mount different filesystems than those
listed in the default configuration. Those nodes would require a different configuration in
the /etc/fstab file.

For any file requiring variations between nodes, oneSIS replaces the file with a symbolic link
pointing to its corresponding path in /ram. The original file is moved to a file with the same

8

name, but with a ‘.default’ extension.

At boot time, each node determines its role and uses the version of the file that corresponds
to that node’s class (see figure 1). Any node not configured to use an alternate file or
directory uses the original ‘.default’ file. This technique can be used to achieve different
behavior for any node or class of nodes.

Root Filesystem

RAM disk

/ram/path/to/file

lin
k

/path/to/file

/path/to/file.default

/path/to/file.admin

/path/to/file.computelinkback

Figure 1: RAM disk Usage. Configuration files for each class of node are linked
back to at run-time.

4.4 Inherited behavior (node sub-classing)

To further ease the management of node deviations, oneSIS allows subclasses to be defined
that inherit all properties of their parent class. For example, ‘compute.infiniband’ and ‘com-
pute.myrinet’ subclasses can be derived from a ‘compute’ class to account for differences
in the network hardware used on respective nodes. All ‘compute’ classes behave the same,
but ‘compute.myrinet’ classes can be configured to additionally run myrinet specific services.

Subclasses inherit all the behaviors of a parent class, can override those behaviors if desired,
and can define any additional behaviors considered necessary. There is no explicit limit on
the depth of sub-classing.

4.5 Boot-time configuration

At boot time, a node comes up and determines its hostname, usually in the initramfs via
DHCP. After /sbin/init is run, the system runs the primary oneSIS boot-time configu-
ration script, /sbin/rc.preinit. The rc.preinit script determines which class the node

9

belongs to and builds a RAM disk in /ram appropriate for the node.

The oneSIS RAM disk contains all necessary files and directories configured to help the node
function as normal without a writable root filesystem. It has all class-specific and node-
specific deviations. If a ‘login’ node needs a different /etc/fstab, rc.preinit creates a
/ram/etc/fstab symlink that points to /etc/fstab.login in the master image, if it exists.

If there is no class-specific version of /ram/etc/fstab, that symbolic link will link back to
the /etc/fstab.default file. This ‘linkback’ process provides flexibility. Any file in the
master image can be changed or deleted on a per-class and per-node basis, allowing for fine-
grained control of any file in the master image. All deviations in the filesystem are handled
similarly.

4.6 Porting to a new distribution

When oneSIS finishes configuring the system, control is passed back to the normal boot
scripts provided by the distribution. However, these boot scripts often attempt to do things
that do not make sense in a read-only environment. Most of these quirks from the distri-
bution’s boot scripts are harmless, merely cluttering the normally aesthetic boot sequence
with garbage, but some can be detrimental.

Commenting out the detrimental lines from the rc scripts usually eliminates the errors
originating from the distribution’s rc scripts. oneSIS does this automatically for several
distributions by applying a ‘distribution patch‘ against the filesystem.

Currently, oneSIS includes patches for several distributions. Minor changes often are made
to a distribution’s rc scripts between sub-versions of a distribution release. This requires
development of a patch to ‘port’ oneSIS to each version of a distribution.

Creating a patch for a newer version of an already supported distribution is simple. An older
patch for the same distribution can be used as a model for the new patch. The primary goal
of the patch is to ensure that the root filesystem is not mounted read-write at boot time. The
patch also comments some actions in the rc scripts that try to write to the root filesystem.
This results in a more aesthetic bootup.

At bootup many errors complaining about the ’Read-only file system’ may appear on the
console. Tracking down the source of these errors and commenting out the offending lines of
code is not difficult. However, leaving the script intact and creating configuration directives
so that the data is written to the RAM disk instead may be preferable in some cases.

In general, developing a patch for a new version of a distribution can be accomplished with
only a few iterations of booting a machine.

10

5 Configuration

Special directives in the configuration file, /etc/sysimage.conf are used to manage cluster
node behavior and node classes.

/etc/sysimage.conf centrally manages the behavior of every node booting into that image.
The directives are few and simple with clear functions. The directives are used to define role
abstractions for all the nodes and express the desired behavior of each role.

With the exception of the NODECLASS* directives, any directive in the configuration can
be overridden by directives further down in the configuration. Additionally, any directive
(except for NODECLASS* directives) can be limited to apply to only one or more classes of
nodes or to individual nodes.

5.1 Specifying the distribution

oneSIS performs some distribution-specific operations. The most notable is the distribution
patch, which is usually required to keep a distro’s rc scripts from causing errors when booting.

Enabling and disabling system services in the default runlevel is also distro-specific, and
some distro’s may require some minor boot-time initialization tasks.

A directive is included in /etc/sysimage.conf to specify the distribution of the master
image to enable oneSIS to handle these tasks for different distributions. If the specified
distribution is not currently supported, it may be necessary to create a distribution patch
as mentioned in section 4.6.

oneSIS will operate even on an unsupported distribution, but some of the distro-specific
features described above will not be available. Remember that any SERVICE directives in the
/etc/sysimage.conf file must always be enabled in the default runlevel. The rest of the
system will still work as expected.

5.1.1 DISTRO syntax

DISTRO <name> [version]

Specifies the name of the distribution of the master image, and optionally the version. Look
in the distro-patches directory to see distributions name/version pairs that are currently
supported.

5.2 Defining node classes (functional roles)

Nodes must be configured to belong to a single class, although that class can be a derived
subclass. Class names are completely arbitrary. oneSIS defines the class a node belongs to

11

based solely on the node’s hostname.

Node classes can be defined by perl-style regular expressions or by using a syntax to describe
range expressions. A combination of multiple NODECLASS* directives can be used to describe
a single class. For nodes with more than one matching NODECLASS* directive, but different
class names, later directives will override earlier ones.

Once a class is defined, the class name can be used in other directives to define behavior
specific to that class.

5.2.1 NODECLASS syntax

NODECLASS MAP <node> <class[.subclass]...>

Adds node to the specified class.

NODECLASS REGEXP <regexp> <class[.subclass]...>

Adds all nodes matching the regular expression to the specified class. Refer to related perl
documentation for the syntax of perl-style regular expressions.

NODECLASS RANGE <prefix[range]...suffix> <class[.subclass]...>

Adds all nodes matching the range expression to the specified class.
Any occurrence of a numerical range within brackets matches hostnames having digits within
that range. For instance the expression rack[1-4]node[1-32] would match a host with the
name rack4node12.
— Note: A range is always enclosed in [] brackets. and can be of the form a[-b][,x[-y]]... ,
where a<b and x<y

5.3 Creating node sub-classes

Any time a ‘.’ occurs in the name of a class, a subclass is implicitly created (see section
4.4). If no NODECLASS* directive is present for the parent class, the subclass can still operate.
For a cluster of 64 nodes, named cn1 through cn64, if half use gigabit ethernet (gige) and
the other half use myrinet, classes for each type of interconnect could be subclassed from a
common ‘compute’ class as follows:

NODECLASS REGEXP cn\d+ compute

NODECLASS RANGE cn[1-32] compute.gige

NODECLASS RANGE cn[33-64] compute.myri

5.4 Defining node properties

Any node or any class that has been defined can also be assigned an arbitrary property.
Properties can be used to define behavioral aspects that span over several classes and/or
nodes. A node may only belong to one class, but it can have as many properties as desired.

12

PROPERTY <property name> [-c class[,class]...] [-n node[,node]...]

[-r range] [-re regexp]

Defines a property that applies to the given nodes/classes.

property name is any alphanumeric string to be used to reference the property.

-c grants the property to all nodes in the given classes.

-n grants the property to the given nodes.

-r grants the property to all nodes matching the given node range.

-re grants the property to all nodes matching the given regular expression.

5.5 Specifying the RAM disk size

The oneSIS RAM disk often only needs to contain links and several small files. Server logs
and similar output can be configured to be sent to log servers or NFS-mounted directories
to eliminate the need for persistent local storage.

The oneSIS RAM disk defaults to use half of physical memory. The RAM disk size can be
bounded or made larger if necessary.

The RAM disk is first created by rc.preinit at boot time, but the update-node script can
be used to re-size the RAM disk according to the current configuration after a node is booted.

RAMSIZE <max size [k|m|g]> [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

Directs oneSIS to create a RAM disk that can grow to at most max size size. The max size
defaults to half of physical RAM. Units can be specified in kilobytes(k), megabytes(m), or
gigabytes(g).

max size is the upper bound on the size of the ramdisk created by oneSIS.

-c limits the directive to apply only to the given classes.

-n limits the directive to apply only to the given nodes.

-p limits the directive to apply only to nodes having one or more of the given properties.

5.6 Configuring RAM disk elements

Any files or directories that should exist in the ramdisk are configured with the RAM* and
LINK* directives. These directives can be used to create writable files and directories in the
RAM disk, and the LINK* directives can be used to essentially make any file or directory in
the root filesystem writable by converting it into a link into /ram, the oneSIS RAM disk.

The RAMFILE directive creates an empty file in the RAM disk, and the RAMDIR directive
creates an empty directory.

The LINKFILE directive also creates an empty file in the RAM disk, and the LINKDIR di-
rective creates an empty directory. In addition the LINK* directives direct the mk-sysimage

script to alter the corresponding files in the root filesystem to become symlinks to /ram.

13

RAM disk

RAMFILE /path/to/file/ram/path/to/file

/ram/path/to/dir

Config

RAMDIR /path/to/dir

Figure 2: Defining ram-based files with the RAM* directives.

LINKFILE /path/to/file

RAM disk Root Filesystem

/path/to/file

/path/to/dir

/ram/path/to/file

/ram/path/to/dir

Config

LINKDIR /path/to/dir

link

link

Figure 3: Defining links to ram-based files with the LINK* directives.

Both sets of directives have their role. The mk-sysimage script creates the necessary links
in the master image. rc.preinit creates the corresponding files and directories in the /ram

at boot-time or after update-node boots a node.

File permissions and ownership are mirrored from the root image, but can be set explicitly
for RAM* directives.

5.6.1 Duplicating files into /ram

At times having more than just an empty file or directory in /ram may be desirable. Larger
clusters or performance-sensitive systems may want to duplicate certain system libraries into
/ram to alleviate the overhead of going to NFS.

Other reasons to have certain files/directories copied into /ram are that any RAM* or LINK*
directives can specify the -d flag to duplicate the specified files or directories into /ram. The
maximum size of the ramdisk may need to be adjusted accordingly.

5.6.2 RAM* and LINK* syntax

RAMDIR <dir> [-d] [-cl] [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

[-m mode] [-u user] [-g group]

Creates a directory in the RAM disk.

14

-d causes the directory and all of its contents to be duplicated into /ram (default
behavior is to create an empty directory).

-cl flags the given dir in /ram as cleanable for any ′update-node --clean′ operations.

-c limits the directive to apply only to the given classes.

-n limits the directive to apply only to the given nodes.

-p limits the directive to apply only to nodes having one or more of the given properties.

-m manually sets permissions of the file in /ram.

-u manually sets the owner of the file in /ram.

-g manually sets the group of the file in /ram.

Note: All permissions and ownership are mirrored from the image by default.

RAMFILE <file> [-d] [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

[-m mode] [-u user] [-g group]

Creates a file in the RAM disk.

-d causes the file to be duplicated from the image into /ram (default behavior is to
touch the file).

-c limits the directive to apply only to the given classes.

-n limits the directive to apply only to the given nodes.

-p limits the directive to apply only to nodes having one or more of the given properties.

-m manually sets permissions of the directory in /ram.

-u manually sets the owner of the directory in /ram.

-g manually sets the group of the directory in /ram.

Note: All permissions and ownership are mirrored from the image by default.

LINKDIR <dir> [-d] [-cl] [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

Creates the directory in /ram, and changes the corresponding directory in the image into a
link pointing to the directory in /ram.

-d causes the directory and all of its contents to be duplicated into /ram (default
behavior is to create an empty directory).

-cl flags the given dir in /ram as cleanable for any ′update-node --clean′ operations.

-c limits the directive to apply only to the given classes.

-n limits the directive to apply only to the given nodes.

-p limits the directive to apply only to nodes having one or more of the given properties.

LINKFILE <file> [-d] [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

Creates a file in /ram, and changes the corresponding file in the image into a link point-
ing to the file in /ram.

15

-d causes the directory and all of its contents to be duplicated into /ram (default
behavior is to touch an empty file).

-cl flags the given dir in /ram as cleanable for any ′update-node --clean′ operations.

-c limits the directive to apply only to the given classes.

-n limits the directive to apply only to the given nodes.

-p limits the directive to apply only to nodes having one or more of the given properties.

Note: With all RAMDIR, RAMFILE, LINKDIR, and LINKFILE directives, any wildcard syntax
consisting of *, ?, [], or { } characters can be used to specify multiple files/directories in
accordance with the POSIX.2 glob() function.

5.7 Using a read-only root filesystem

Using a read-only root filesystem can be tricky at first. Many startup scripts and even some
daemons expect to be able to write to the root filesystem, and fail if they cannot.

To solve these kinds of problems, carefully watch the console of a booting node for errors
related to a ’Read-only file system’. When these kinds of errors occur, determine which file
or directory was trying to be written to and include LINKDIR or LINKFILE directives in
the configuration as appropriate.

As an example, several distributions like to write .pid files into /var/run to keep track of
the process IDs of running daemons. At boot time, when these daemons try to start, there
will be complaints about a ’Read-only file system’ when /var/run is not writable. One
solution for this problem is to add the following directive to the sysimage.conf file of the
master image:

LINKDIR /var/run

Don’t forget to run mk-sysimage on the image after creating any LINK* directives. Now
when the node boots, it will be able to write to /var/run, since the directory now effectively
lives in /ram, the oneSIS RAM disk.
Many distributions have directories nested under /var/run, and while the above directive
may work for most scenarios, it may be desirable to duplicate all of /var/run by adding the
-d option:

LINKDIR /var/run -d

This will duplicate your image exactly as-is, so you may want to clean out any existing .pid

files from that directory in your image.
Configuring the ability to write to a single file, such as /var/lib/random-seed, can be
handled similarly. Rather than link all of /var/lib into the RAM disk with a LINKDIR
directive, we can link just the one file the needs to be writable:

LINKFILE /var/lib/random-seed -d

16

Again, don’t forget to run mk-sysimage on the image. This directive also has the -d flag so
that the random-seed file is not created empty.

Closely watch the bootup and add any needed directives to the configuration to handle the
idiosyncrasies of a read-only root filesystem.

Important tip: It usually helps to disable most of the unnecessary daemons enabled by
default in many distributions. You can do this on RedHat compatible distributions by
chroot’ing into the image and running ’chkconfig <service> off’.

5.8 Setting up variant system services

oneSIS only needs to handle services that vary between nodes. If a service runs on ev-
ery node, it should be handled through the distribution’s normal mechanisms, for instance
chkconfig on RedHat systems.

When a service should only run on some subset of nodes using the image, SERVICE directives
can be used to specify which services should run on which nodes. The mk-sysimage script
must be run after adding or removing a SERVICE directive.

5.8.1 SERVICE syntax

SERVICE <service> [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

Directs oneSIS to start the named service. The name of the service must match the name
of its start script in the /etc/init.d directory.

-c limits the directive to apply only to the given classes.

-n limits the directive to apply only to the given nodes.

-p limits the directive to apply only to nodes having one or more of the given properties.

5.9 Using linkbacks

Linkbacks are the primary technique for defining variant configurations between nodes. A
linkback causes a file or directory to become a link into the oneSIS RAM disk, which can then
point back to a target in the master image based on a node’s class, hostname, or property.

A linkback can have several potential targets. The literal ‘CLASS’ target causes the linkback
to point back to the original filename appended with an extension that is the name of the
node class as determined by the NODECLASS directives. Similarly, the literal ‘NODE’ target
causes the final target to point back to the original filename appended with an extension
that is the hostname of the node. Since a node can potentially have many properties, the
literal ‘PROPERTY’ target causes the linkback to point to the first existing alphanumeric file
or directory having an extension that matches one of the node’s defined properties.

17

When not using CLASS, NODE, or PROPERTY, a linkback target can be given as any arbitrary
pathname. This path will be interpolated to replace any instance of ‘$CLASS’ and ‘$NODE’
with the class name and hostname of the node, respectively.

Note: Some files cannot have linkbacks created for them for various reasons. The most
notable of these are /etc/inittab, /boot/grub/menu.lst, and /etc/sysimage.conf.

5.9.1 Forcing a linkback

When oneSIS creates the linkback symlinks at boot time, it normally checks to make sure
that the symlink target actually exists in the master image first. If the target does not exist,
the linkback ends up pointing back to the ‘.default’ for the specified file.

However, the linkback can be forced even if the target doesn’t exist. Using the -f flag of
the LINKBACK directive will cause the link back to the target to be created even if the target
doesn’t exist at boot time.

Since oneSIS creates these links before any other system initialization is done, remote filesys-
tems specified in /etc/fstab are typically not mounted yet. The -f flag can be especially
useful to point to locations on a network filesystem that have not been mounted yet.

5.9.2 Linkbacks with sub-classes

Nodes defined as a subclass of another class will attempt to create a linkback for each parent
class if the target exists. If no appropriate targets are found, a linkback to the ‘.default’
file is created.

For example, if a node in the ‘compute.gige’ class has a ‘CLASS’ linkback defined for
/etc/fstab, oneSIS will attempt to linkback to /etc/fstab.compute.gige. If that target
doesn’t exist, it will attempt to linkback to /etc/fstab.compute, then finally /etc/fstab.default.

5.9.3 The case for hidden linkbacks

In several distributions, it is common for system scripts to try to operate on all files in
a directory to accomplish a task. For example, RedHat tries to bring up every interface
matching /etc/sysconfig/network-scripts/ifcfg-* at boot time.

If a LINKBACK is defined for /etc/sysconfig/network-scripts/ifcfg-eth0, the glob above will
match all of the linkback targets for that file, including ifcfg-eth0.default and all node-
specific versions of the file. The system script then tries to bring up the interface several
times with potentially different configurations. This creates many problems, which could
result in losing all static configurations.

For such cases it is desirable to ‘hide’ (with the LINKBACK -h flag) all linkback targets so
that the system scripts still function correctly.

18

When a linkback is hidden, all linkback targets will have a ’.’ pre-pended to the name, so
ifcfg-eth0.default, when hidden, will become .ifcfg-eth0.default. Remember that
all variants of the file also will need to be hidden. If you want a NODE-specific version
of ifcfg-eth0 for admin1, the file .ifcfg-eth0.admin1 needs to be created to hold the
configuration.

Note: Hidden LINKBACK directives only apply to CLASS, NODE, and PROPERTY spe-
cific linkback targets.

The mk-sysimage script transitions the .default file between hidden and un-hidden accord-
ing to the configuration, but it does not alter any other CLASS, NODE, or PROPERTY
specific linkback targets. The administrator must ensure that all of these targets are hidden
or un-hidden according to the configuration.

5.9.4 LINKBACK syntax

LINKBACK <file|dir> <CLASS|NODE|PROPERTY|target>

[-h] [-f] [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

A LINKBACK converts a file or directory in the image to point to its corresponding lo-
cation in /ram. At boot time, the location in /ram then points back to a location in the
master image based on the node’s class, hostname, or a defined property.

– The CLASS target causes the linkback to point to the file or directory having an
extension that matches the node’s class name.

– The NODE target causes the linkback to point to the file or directory having an
extension that matches the node’s hostname.

– The PROPERTY target causes the linkback to point to the first existing alphanumeric
file or directory having an extension that matches one of the node’s defined properties.

– Any arbitrary file or directory can be specified as the direct target of a linkback. This
target is interpolated to replace any instance of ‘$CLASS’ with the node’s class name,
and any instance of ‘$NODE’ with the node’s hostname.

-f forces the linkback to point to the specified target even if the target doesn’t exist.
Note: The -f option cannot be used with PROPERTY linkbacks.

-h specifies that the linkback target should be ’hidden’. Note: Only CLASS, NODE,
and PROPERTY linkbacks can use the -h option.

-c limits the directive to apply only to the given classes.

-n limits the directive to apply only to the given nodes.

-p limits the directive to apply only to nodes having one or more of the given properties.

5.10 Management of local disks

On clusters with local disk(s), oneSIS can partition and initialize local hard disks to be swap
partitions or local filesystems at boot time.

19

When detecting disks, oneSIS assigns a number to each disk it finds as determined by the
kernel order seen in /proc/partitions. This allows the configuration to specify that it
wants to use the first disk, for example, rather than requiring a specific device name. oneSIS
can detect any disk device that shows up as a normal block device if the appropriate drivers
are loaded.

Note: For rc.preinit to operate on a disk, the driver must already be loaded. This means
the disk driver needs to either be compiled directly into the kernel, or the module needs to
be loaded from an initramfs.

5.10.1 Dynamic or static partitions

There are two forms of disk directives, those that dynamically create disk partitions each time
at boot time, and those that create permanent locally deployed portions of the master image.

The DISKMOUNT and DISKSWAP directives causes the disk to be re-partitioned and filesystems
to be created every time at boot time. These directives are best used for creating filesystems
for temporary storage, such as /tmp.

Note: Local disk partitions that need to retain data across a reboot should be handled
normally through /etc/fstab.

5.10.2 DISK* syntax

DISKMOUNT <disk> <size[%]> <mointpoint>

[-t fstype] [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

Creates and mounts a local filesystem of size size on the specified disk.

– The disk parameter is either a number specifying disk order as seen in /proc/partitions,
or the name of a disk device (ie: /dev/sda).

– The size parameter can either be a percentage of the disk to use, or the exact size in
megabytes. If size is larger than the remaining capacity of disk, the remainder of the
disk is used.

– The mountpoint parameter specifies where the filesystem should be mounted. mount-

point must be a directory that already exists in the image.

-t specifies the filesystem type to create (the default filesytem type is ext2).

-c limits the directive to apply only to the given classes.

-n limits the directive to apply only to the given nodes.

-p limits the directive to apply only to nodes having one or more of the given properties.

DISKSWAP <disk> <size[%]> [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

Creates and enables a swap partition of a specified size on the specified disk.

20

– The disk parameter is either a number specifying disk order as seen in /proc/partitions,
or the name of a disk device (ie: /dev/sda).

– The size parameter can either be a percentage of the disk to use, or the exact size in
megabytes. If size is larger than the remaining capacity of disk, the remainder of the
disk is used.

-c limits the directive to apply only to the given classes.

-n limits the directive to apply only to the given nodes.

-p limits the directive to apply only to nodes having one or more of the given properties.

For example, to have nodes create (at boot time) a 3GB swap partition on the first local
disk and use the rest of the disk for a local /tmp directory, use the following directives:

DISKSWAP 1 3000

DISKMOUNT 1 100% /tmp

5.10.3 A word of caution

In environments with a mix of persistent and non-persistent local disks, it is important to
understand and use the DISK* directives very carefully.

By default on most Linux systems, device names are not guaranteed to be consistent across
a reboot. One must be aware that a failed disk could cause the device ordering to come
up inconsistently and potentially cause damage to subsequent local disks. One solution for
persistent device names is to use udev and configure it to have strong associations between
disk devices and their device names.

5.10.4 Deploying parts of the image to local disk

For some machines, having all or part of the root filesystem reside on a local disk may be
desirable. This is accomplished by using the DEPLOYMOUNT and DEPLOYSWAP directives in
combination with the mk-diskful script. These directives cause oneSIS to create partitions
and copy portions of the root filesystem to one or more local disks on a machine.

If a BOOTLOADER directive is defined for a node, and the /boot directory is deployed on a
local disk, the specified bootloader will be installed.

5.10.5 DEPLOY* syntax

DEPLOYMOUNT <disk> <size[%]> <mointpoint>

[-t fstype] [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

Directs the mk-diskful script to create and mount a filesystem partition of a specified
size on the specified disk, and copy the corresponding directory tree in the master image to
that partition.

21

– The disk parameter is either a number specifying disk order as seen in /proc/partitions,
or the name of a disk device (ie: /dev/sda).

– The size parameter can either be a percentage of the disk to use, or the exact size in
megabytes. If size is larger than the remaining capacity of disk, the remainder of the
disk is used.

– The mountpoint parameter specifies a directory in the image that should be deployed
as a partition on the local disk of a machine.

-t specifies the filesystem type to create (the default filesytem type is ext2).

-c limits the directive to apply only to the given classes.

-n limits the directive to apply only to the given nodes.

-p limits the directive to apply only to nodes having one or more of the given properties.

Note: For ext2 and ext3 filesystems, a disklabel matching the mountpoint will be created
on the filesystem. This label can be used to auto-mount the filesystem from an initramfs, or
can be used in /etc/fstab to mount by label (ie: LABEL=/).

DEPLOYSWAP <disk> <size[%]> [-c class[,class]...] [-n node[,node]...]

[-p property[,property]...]

Directs the mk-diskful script to create and enable a swap partition of size size on the
specified disk.

– The disk parameter is either a number specifying disk order as seen in /proc/partitions,
or the name of a disk device (ie: /dev/sda).

– The size parameter can either be a percentage of the disk to use, or the exact size in
megabytes. If size is larger than the remaining capacity of disk, the remainder of the
disk is used.

-c limits the directive to apply only to the given classes.

-n limits the directive to apply only to the given nodes.

-p limits the directive to apply only to nodes having one or more of the given properties.

5.10.6 SYNCDIR syntax

SYNCDIR <path> [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

Specifies the location of the master image to the sync-node program (see section 6.6).
Note: This directive is only applicable to diskful nodes.

– path can either be the a location where the master image is NFS mounted on the
node, or a ‘host:path’ location of the image.

-c limits the directive to apply only to the given classes.

-n limits the directive to apply only to the given nodes.

-p limits the directive to apply only to nodes having one or more of the given properties.

22

5.10.7 EXCLUDESYNC syntax

EXCLUDESYNC <path> [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

Specifies files/directories that should not be synchronized with the master image when
sync-node (section 6.6) is run.
Note: This directive is only applicable to diskful nodes.

– path specifies a file or directory that should not be synced.

-c limits the directive to apply only to the given classes.

-n limits the directive to apply only to the given nodes.

-p limits the directive to apply only to nodes having one or more of the given properties.

Network filesystems mounted on a node are automatically excluded, so those directories do
not need EXCLUDESYNC directives. However, any SAN filesystem that presents itself to
the OS as block device (eg: fiber-channel and iSCSI) will likely need one.
This is crucial for diskful nodes mounting filesystems from any storage that appears to the
system as a local device. Any attempt to synchronize that mountpoint would synchronize it
with the (probably empty) directory in the master image, possibly resulting in data loss.

5.10.8 Booting from a local disk

oneSIS supports booting from a local disk using either the grub or lilo bootloader. Other
methods can still be used, but oneSIS does not handle them automatically.

For a bootloader to be installed, a /boot directory must be deployed on a local disk. The
bootloader is installed onto the disk containing the /boot directory. A working configuration
for the chosen bootloader is necessary (ie: in lilo.conf or grub.conf).

It is not necessary to install a bootloader even if the entire root filesystem is on a local
disk. Any node capable of network booting can still retrieve its kernel and initramfs from a
network resource such as DHCP and PXELINUX.

Alternatively, NFSroot nodes can create a single /boot partition on a local disk, install a
bootloader, and load the kernel off the local disk, but still mount the root filesystem ac-
cessed via NFS. Loading the kernel from a local disk can help reduce network contention at
boot-time when many machines power on all at once.

Many options exist to boot any node or functional group of nodes (locally or from the
network) into a root filesystem that is either local, NFS mounted, or a combination of the
two. The best scenario depends on the function of the node and the situation.

5.10.9 BOOTLOADER syntax

BOOTLOADER <grub|lilo> [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

23

Directs the mk-diskful script to install a bootloader onto the master boot record of a
disk.

Either grub or lilo must be specified, and the given bootloader installed on the system.

-c limits the directive to apply only to the given classes.

-n limits the directive to apply only to the given nodes.

-p limits the directive to apply only to nodes having one or more of the given properties.

5.11 Manually setting a hostname

A substantial dependency of oneSIS is that the node’s hostname must have already been
set when rc.preinit runs at boot time. For this reason the hostname for diskless nodes is
normally set via DHCP in an initramfs prior to running /sbin/init.

There is another alternative that is useful for diskful nodes running an initramfs supplied
by the distribution (which typically do not set a hostname). If a node reaches rc.preinit

without having a hostname set, oneSIS can consult a list of MAC ADDR directives and
attempt to set the hostname based on a mapping of one of its network interfaces. This is
often necessary for bringing up stand-alone nodes that don’t use an initramfs created by
oneSIS.

Note: The MAC ADDR directives are only used when no hostname is set. They do not override
a previously set hostname.

5.11.1 MAC ADDR syntax

MAC ADDR <hostname> <mac address>

This directive can be used for nodes that do not retrieve their hostname from DHCP in
an initramfs. If a node boots without a hostname set, the MAC address of every net-
work interface is scanned. If the MAC address of any interface matches the mac address of a
directive, the node’s hostname is set from the directive’s corresponding hostname parameter.

For this directive to work, any referenced network interface’s drivers must have already been
loaded. This means the drivers need to be directly compiled into the kernel, loaded from an
initramfs, or specified via a ETH PRELOAD directive.

5.11.2 ETH PRELOAD syntax

ETH PRELOAD <driver[,driver]...>

This directive directs the boot-time script (rc.preinit) to load each ethernet driver speci-
fied in the directive. The driver gets loaded early on so that any MAC ADDR directive in the
configuration will be able to look at the mac address for all interfaces created by the given
ethernet driver.

24

5.12 Configuring the power and console interfaces

There are many existing solutions for power management of cluster nodes. Utilities have
been written to interface to many power controllers, and vendors often include their own
power management utilities with their products.

Every power utility has a different way of representing the set of nodes on which to operate.
Similarly, many different methods can be used to access the serial console of all cluster nodes.

oneSIS provides a generalized wrapper interface that can easily tie into any existing power
or console management solution. It serves as a common interface for power and console
management across all machines, eliminating the need for an admin to remember the partic-
ular command and syntax used for power management and console access on each particular
group of machines.

The POWERCMD directive is a way to quickly describe how a particular power management
utility works so that the pwr (section 6.7) command can then interface to it. Similarly, the
CONSOLECMD directive can quickly describe how to access the remote console of any node,
and thereafter the consl (section 6.8) command can be used to access a node’s serial console.

5.12.1 POWERCMD syntax

POWERCMD <function> [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

<command>

function can be one of: ON,OFF,CYCLE,STATUS,LEDON,LEDOFF,LEDSTATUS

command is the shell command to use to perform the given function. Any valid bash
command sequence, including pipes/redirects, is acceptable.

-c limits the directive to apply only to the given classes.

-n limits the directive to apply only to the given nodes.

-p limits the directive to apply only to nodes having one or more of the given properties.

Every command must reference the spec id of a SPECFORMAT directive (see section 5.13) by
including ‘SPEC:spec id’ in the appropriate place in the command sequence. The ‘SPEC:spec id’
text gets replaced with a hostname, or a range, etc., as defined in the SPECFORMAT cor-
responding to spec id.

A simple hostname format may work in most cases, but may not operate as fast as one of the
range formats. When using the hostname or ipaddr specformats, command is interpolated
to replace any instance of ‘$NODE’ or ‘$IP’ with the hostname or IP address of the node
being operated on, respectively.

25

5.12.2 CONSOLECMD syntax

CONSOLECMD [-c class[,class]...] [-n node[,node]...] [-p property[,property]...] <command>

command is the shell command to use to connect to a remote console. Any valid bash
command sequence, including pipes/redirects, is acceptable.

-c limits the directive to apply only to the given classes.

-n limits the directive to apply only to the given nodes.

-p limits the directive to apply only to nodes having one or more of the given properties.

Just as with POWERCMD, every command must reference the spec id of a SPECFORMAT
directive (see section 5.13) by including ‘SPEC:spec id’ in the appropriate place in the com-
mand sequence. The ‘SPEC:spec id’ text gets replaced with a hostname or a range, etc., as
defined in the SPECFORMAT corresponding to spec id.

A simple hostname format will work in most cases for remote console operations.

When using the hostname or ipaddr spec formats, command is interpolated to replace any
instance of ‘$NODE’ or ‘$IP’ with the hostname or IP address of the node being operated
on, respectively.

5.13 How to make a SPECFORMAT

oneSIS can interface to almost any conceivable power or console utility by generalizing the
single point of commonality that any such utility must have: a host specification. To make
use of a particular power or console utility, oneSIS needs to know the format that the utility
uses to represent a single host or a group of hosts. Some power utilities operate on a single
hostname. Others can operate in parallel on a range of hostnames. Others don’t operate on
hostnames at all, instead referencing IP addresses or particular ports on a power controller.

The oneSIS interface for power and console management can be used as long as any mapping
exists between the hostname (or IP address) of a node and the resulting parameter that gets
passed to the power management utility used for that host. The parameter itself could be a
hostname, a port, or anything else required by the specific utility.

The hostname to parameter mapping can be defined directly in the configuration with a
SPECFORMAT directive, or can be determined via more cumbersome methods involving
combinations of shell commands in the POWERCMD or CONSOLECMD directives.

5.13.1 SPECFORMAT syntax

SPECFORMAT <spec id> <format> [NODE:/// | IP:///] [SPEC:///]

26

– spec id can be any arbitrary single-word identifier.

– format must be one of the format names described below.

– NODE:/// provides a way to translate a node’s hostname using perl s/// syntax
before using it in a command

– IP:/// provides a way to translate a node’s IP address using perl s/// syntax before
using it in a command

– SPEC:/// provides a way to translate the entire string generated by a SPECFOR-
MAT substitution using perl s/// syntax before using it in the final command

Every POWERCMD directive must reference exactly one spec id from a SPECFORMAT
description. The resulting formats are sent through a POWERCMD command and executed
by the pwr script. The same is true for all CONSOLECMD directives.

A SPECFORMAT describes the hostname representation a particular command uses to
specify which nodes to operate on. Several formats currently exist which can be used to
describe a set of nodes.

Format name Format behavior
hostname The resulting command uses the hostname of each specified node and

runs one command for each hostname.
ipaddr The resulting command uses the IP address of each specified node and

runs one command for each IP address.
basic range One or more node ranges are constructed. Each range is of the form:

prefix[a-b], where a<b. (ie: node[1-32])
ext range One or more node ranges are constructed. Each range is of the form:

prefix[a-b,x-y,...], where a<b and x<y. (ie: node[1-4,10-20,25])

Note: Adding a ’+’ to the end of any format causes that format to be used multiple times
(space seperated) in a single command.

Consider the ipmipower utility as an example, which represents a range of nodes as host[a-b,x-y].
The ext range format translates a set of hostnames into one or more ranges in the form
acceptable to ipmipower.

The hostname and ipaddr formats are both used for commands that operate on a single
hostname or IP address. Each hostname or IP address can optionally have a transformation
applied to it before applying the given format, by using the NODE:/// or IP:/// options.

Similar to the NODE and IP translations, a final translation can be done on the formatted
string before it gets substituted into a command. The SPEC:/// option can define this
post-translation, if needed

The NODE:///, IP:///, and SPEC:/// translations can be any perl-style pattern re-
placement expression. Refer to the perl documentation (man perlop and man perlre) for

27

details on using the s/// operator.

In addition to normal perl syntax, the right-hand-side (replacement) portion of the transla-
tion expression can contain minimal inline perl code blocks within {} brackets. These code
blocks can be used to replace patterns in the hostname or IP addresses with values computed
from evaluating the inline code expression. This is useful for doing inline math on an IP
address, when necessary. The {...} code blocks must be kept very simple as they cannot yet
contain any spaces.

Note: The --dryrun option to the pwr and consl commands is useful when developing
a SPECFORMAT, POWERCMD, and CONSOLECMD directives for an environment. It
shows the commands that the current configuration can generate. A working configuration
can be arrived upon fairly quickly by iterating through changes in your configuration and
using the --dryrun option.

5.14 Including extra configuration directives

INCLUDE <path>

Includes the given file into the current configuration.

path is the absolute pathname of a valid oneSIS configuration file.

Directives can be bundled together into groups and included (or removed) all at once by
including a single extra config file. All directives from the included config file are applied as
if they were inserted into the configuration at the exact point as the INCLUDE directive.
This can be used to bundle configuration directives for specific scenarios, and then add or
remove them all at once.

6 Utility Programs

oneSIS comes with several utility programs to aid in deploying and maintaining a cluster.
Among other things, these programs help prepare a master image, make the master im-
age conform to the configuration, update a running node’s environment, build an initial
ramdisk for bootstrapping cluster nodes, deploy the root filesystem (or portions of it) onto a
node’s local disk, and synchronize a node with locally deployed portions of the master image.

Most utility programs have usage information that can be seen by running the command
with no arguments.

6.1 mk-sysimage

Usage: mk-sysimage [OPTION]... <basedir>

This program prepares a pre-installed linux distribution to be used as a master image for
oneSIS cluster nodes.

28

basedir should be the root of the client’s linux image.

Options:
-d, –dryrun Preview changes
-r, –revert Revert all files and services back to normal
-c, –config=FILE Specify alternate configuration file
-p, –patchfile=FILE Specify alternate distribution patch
-sp, –skippatch Skip distribution patch
-q, –quiet Suppress output

The mk-sysimage script reads the oneSIS configuration file, /etc/sysimage.conf, and al-
ters components of the filesystem for oneSIS to operate correctly. It creates some directories,
applies the patch file for the specific distribution (see section 4.6), and performs other helpful
tasks.

Several directives in /etc/sysimage.conf require altering a file in the image to point to its
corresponding location in /ram. mk-sysimage creates any new symbolic links to /ram and
the corresponding ‘.default’ files or directories.

mk-sysimage automatically restores files in the master image to their original state when
they are removed from the configuration. It can also revert the entire filesystem back to its
original state with the --revert option.

To ensure that configuration changes are reflected in the system image, it is recommended
that the mk-sysimage script be run after changing any LINK* directives in the configuration.

For an image located in /var/lib/oneSIS/image, mk-sysimage would be run with:

mk-sysimage /var/lib/oneSIS/image

Directives can be safely added or removed from the sysimage.conf file in any order.

Note: mk-sysimage will attempt to patch the target distribution every time it is run. A
warning will be displayed unless a patch exists for the distribution or the --skippatch option
is supplied. This is meant to encourage anyone hacking the rc scripts of a new distribution
to develop a patch for it and feed that back to the oneSIS community.

Warning: If you manually alter your distribution’s rc scripts, mk-sysimage will fail to
apply the distribution patch and display long error messages. If you plan to do this, you can
run mk-sysimage with the --skippatch option so it doesn’t try re-patch the distribution.

6.2 update-node

Usage: update-node [OPTION]... <--run>

29

This script updates all files and directories in /ram that have changed in the configura-
tion and starts/stops any services if necessary.

Options:
-r, –run This argument must be given to run the script
-c, –clean Removes files/directories in /ram not in the config
-d, –dryrun Shows updates without making them
-cf, –config=FILE Specify alternate configuration file
-q, –quiet Suppress output

The update-node script performs a very similar function as the boot-time script, rc.preinit.
It updates all the files and directories configured in /etc/sysimage.conf that reside in the
oneSIS RAM disk mounted on /ram. It will also resize the RAM disk if necessary.

If any new RAM* or LINK* directives are added to the configuration, running update-node

on all nodes will ensure that their RAM disk is consistent with the new configuration.

ssh node1 update-node --run

By default, if any directives are removed from the configuration, the corresponding files and
directories are NOT deleted from the RAM disk.

To remove files and directories in /ram that are no longer specified in the config, the --clean
option must be given to update-node. However, it is recommended to clean files no longer
in the config without destroying useful data that may be stored in a RAMDIR or LINKDIR.
To protect such directories from having useful data destroyed by an ‘update-node --clean’
operation, a -p flag can be added to the configuration directive:

LINKDIR /var/lock/subsys -p

After protecting such directories, ‘update-node -r --clean’ can safely be run on all nodes
as often as necessary to clean up the oneSIS RAM disk and keep the nodes consistent with
their configuration.

ssh node1 update-node -r -c

6.3 copy-rootfs

Usage: copy-rootfs [OPTION]... <-l | -r machine> <IMAGE DIR>

This program copies an installed linux distribution to a specified location.

IMAGE DIR is the destination directory for the root image.

30

Options:
-l, –local Copy root filesystem from the local machine
-r, –remote=MACHINE Copy root filesystem from a remote machine
-e, –exclude=DIR Exclude contents of DIR from being copied
-d, –dryrun Show local/remote directories that would be copied
-v, –verbose Verbose output (copies much slower)

The copy-rootfs script copies an installed linux distribution into a new location to serve as
a new master image for a cluster of nodes. The script recognizes which partitions reside on
a local disk, and copies each one over in the correct order without recursively copying itself
(for a local copy).

Since copy-rootfs attempts to copy any partitions mounted from a local disk, it may
copy more than you want or need to be a part of the master image. To prevent this, run
copy-rootfs with the --dryrun option to see a list of what the script intends to do. Any
directories that shouldn’t be copied over can be excluded with the --exclude option.

When copying the root filesystem from a remote machine, it is easiest if ssh keys are set up
such that no password is required to ssh to the machine. If ssh keys are not set up, the script
will prompt for a password several times (once for each remote partition being copied, and
once to determine remote partitions).

A typical scenario to create a master image may look as follows:

copy-rootfs -l -e /home /var/lib/oneSIS/image

This would copy the root filesystem of the local machine into another directory but exclude
the contents of the /home directory.

6.4 mk-initramfs-oneSIS

Usage: mk-initramfs-oneSIS [OPTION]... <initramfs> <kernel-version>

This program prepares an initramfs for bootstrapping oneSIS nodes.

initramfs is the pathname of the initial ramdisk to create.
Kernel modules are used for the given kernel-version.

Options:

31

-i, –initrd Output an initrd image instead of an initramfs image
-o, –overlay=DIR Overlay one or more directories on top of the

initramfs template being used
-b, –basedir=DIR Look for files relative to DIR (default: /)
-c, –config=FILE Configuration file to use for tayloring initramfs.

Any commandline parameters override settings
specified in the config file
(default: basedir/etc/oneSIS/initrams.conf)

-v, –variant=STRING If multiple variants of a config file exists,
specify the class or node variant to use

-s, –size=NUM Hard code the size of an initrd. By default,
the size is determined automatically and a small
buffer is added on for usable empty space

-bs, –buffersize=NUM Specify initrd empty space buffer size (default: 1024)
-d, –scsi Include all scsi hostadapter modules that are listed

in basedir/etc/modprobe.conf
-p, –preload=STRING Add the specified module (loads before SCSI modules)
-w, –with=STRING Add the specified module (loads after SCSI modules)
-t, –template=FILE Use the specified initramfs template.

(default: /usr/share/oneSIS/initramfs-templates/initramfs-x86.tar.gz
-f, –force Force overwrite of an existing output file
-td, –tempdir=DIR Use alternate staging directory instead of /tmp
-q, –quiet Suppress output

—— Initramfs Behavior Flags ——
-rr, –ramdiskroot Use the ramdisk as the root filesystem
-am, –automount Auto-mount labeled partitions and swapon swap

partitions from the initramfs
-rw, –readwrite=STRING Auto-mount specified labeled partitions read-write

The string ’ALL’ will mount all partitions read-write
-nd, –nodhcp Don’t run a DHCP client from the initramfs
-di, –dhcp if Run DHCP over the specified interface. (default: eth0)
-dr, –dhcp retries Attempt to retry DHCP this many times before failing

(0 means infinite retries, default: 3)
-nn, –nonfs Do not attempt to mount an NFS root

An alternate method for booting oneSIS systems is to bootstrap using an initial ramdisk
(initramfs). By using mk-initramfs-oneSIS, an initramfs can be built that is customized
for an entire cluster or for any subset of nodes.

Kernel modules needed for NFS and those specified by any eth0 aliases in /etc/modules.conf

are included automatically in the initramfs and loaded at boot time. Likewise, any scsi hostadapter

alias in /etc/modules.conf will cause the corresponding driver to be loaded when the

32

--scsi option is given.

Any other modules can be included with command-line arguments. All modules must exist
in /lib/modules/kernel-version relative to the basedir.

For example, to create an initramfs for a node running a 2.6.25 kernel with an e1000 network
card and IDE disk support built into the kernel, assuming kernel modules are installed in
/lib/modules/2.6.25, you would type:

mk-initramfs-oneSIS -w e1000 /tftpboot/initramfs-2.6.25 2.6.25

One initramfs template is included with oneSIS that can be configured to perform several
varying tasks (described in section 3.2). Others can be derived from this one to perform
specialized pre-boot tasks.

Local disk partitions that have been created with DEPLOYMOUNT, or DEPLOYSWAP directives
and the mk-diskful script (see section 6.5) can be mounted automatically (or swapped-on)
from the initramfs.

To automount locally deployed partitions on the system described above:

mk-initramfs-oneSIS -w e1000 -am /tftpboot/initramfs-2.6.25 2.6.25

Any locally deployed partitions can also be mounted read-write. One must be aware that
system utilities may write to the filesystem and erase your carefully crafted symlinks to /ram,
especially in directories like /var and /etc during a system boot. To automount the locally
deployed /etc directory read-write:

mk-initramfs-oneSIS -w e1000 -am -rw /etc /tftpboot/initramfs-2.6.25 2.6.25

Other behavior in the initramfs can be controlled by supplying options to mk-initramfs-oneSIS.
If any other functionality is needed in the initramfs, a new template can be derived from an
existing one to provide the extra functionality, as described in section 3.2.2.

Note: mk-initramfs-oneSIS does not currently look at /etc/fstab to determine which
local partitions to mount.

6.5 mk-diskful

Usage: mk-diskful [OPTION]... <--run>

This script will convert an NFSroot node into a diskful node.

Options:

33

–run This argument must be given to run the script
-i, –image=DIR Specify the NFS location of the master image
-e, –exclude=DIR Exclude DIR from being copied
-r, –reboot Reboot the node when finished
-d, –dryrun Show directories that would be copied to each partition
-v, –verbose Verbose output (copies much slower)
-q, –quiet Suppress output

Although booting oneSIS nodes with NFS root filesystems is preferred, oneSIS fully supports
booting from a local disk, mounting the root filesystem from a local disk, or mounting only
specific directories of the root filesystem from a local disk.

The mk-diskful script can be used to deploy portions of the root filesystem onto partitions
on a local disk. The script can be run on a node after it is booted into a normal NFS root
with no mounted partitions on the target disk. Alternatively, it can be run by calling it as
init directly from the kernel command line as follows:

init=/sbin/mk-diskful --run -r

Proper DEPLOY* directives must be listed in the sysimage.conf file of the system image to
make the desired portions of the root filesystem diskful, and a BOOTLOADER directive must
be defined if the node should boot from its local disk.

Any portion of a node’s root filesystem can be configured to reside on a local disk, so any
combination of NFS and local directories in the root filesystem is possible. Nodes having
/boot on a local disk can be configured to boot a kernel and initramfs from the disk or may
simply continue to boot off the network.

6.6 sync-node

Usage: sync-node [OPTION]... <-i image> <directory>...

Synchronizes a directory on a diskful or partially diskful oneSIS node with the master image.

At least one local directory to synchronize must be given.
The image parameter is required and must specify the host and remote path of the NFS-
exported master image.

Options:
-i, –image=HOST:DIR Specify the location of the master image
-l, –lilo Run lilo
-a, –all Synchronize all local partitions
-e, –exclude=PATTERN Exclude files matching PATTERN
-d, –dryrun Preview changes
-q, –quiet Suppress output

34

When portions of the root filesystem exist on local disk partitions, it is necessary to syn-
chronize these partitions with the master image as often as necessary. If a change is made
to /etc/passwd, for instance, all nodes having a local /etc partition could be synchronized
with:

sync-node /etc

Currently, synchronizing only from an NFS-exported directory is supported. Synchronizing
via other methods may be added if desired.

Note: Running ‘sync-node /’ will synchronize only the partition that / resides on. If /etc
is on another partition, ‘sync-node /etc’ would need to be run to synchronize it. To syn-
chronize all local partitions, use ‘sync-node -a’.

Warning: Running ‘sync-node -a’ will attempt to synchronize all locally mounted parti-
tions. However, if a /data directory, for example, is mounting a SAN storage device that
appears to the system as a SCSI disk, ‘sync-node -a’ will detect that it is local and attempt
to synchronize /data with the (probably-empty) /data directory in the master image, result-
ing in possible data loss. It is advisable to use EXCLUDESYNC directives as appropriate,
and use ‘sync-node -a’ with caution around nodes with a SAN.

6.7 pwr

Usage: pwr <FUNCTION> <NODESPEC>... [OPTION]...

This program is a wrapper script that calls an external power command (specified in /etc/sysimage.conf)
to power on/off cluster nodes.

FUNCTION can be one of: on, off, cycle, status, ledon, ledoff, or ledstatus

Note: Unambiguous short forms of the functions are also accepted.

NODESPEC can be:
[-h] HOSTNAME
[-r] RANGESPEC (any text with one or more RANGEs in brackets)

a RANGE is of the form <a-b [,x-y | ,z]...>, where a<b and x<y

ie: cn[1-10,15,20-32] or su[1,4]cn[1-32] or my[1-32]nodes
-re REGEXP (perl-style regular expression matching hostnames)
-c CLASS (oneSIS class name)

Options:

35

-h, –host=HOSTNAME Operate on hostname
-r, –range=RANGESPEC Specify a range of nodes to operate on
-re, –regexp=REGEXP Specify a regular expression of nodes to operate on
-c, –class=CLASS Specify a class of nodes to operate on
-p, –parallelism=NUM Specify the maximum number of parallel commands to run

(default: no limit)
-d, –dryrun Show command(s) that would be executed
-q, –quiet Suppress output

The pwr script is a convenient wrapper script supplied to provide a unified interface for
handling power management for cluster nodes. It enables the same command to be used on
every cluster regardless of the underlying mechanisms for handling node power.

Note: At least one valid SPECFORMAT directive and a POWERCMD for each FUNCTION must
be supplied for the pwr command to be able to perform that function.

The pwr script builds commands that it runs (in parallel) to power on, power off, cycle, or
query the power status of a given set of nodes. It can also turn on, turn off, or query the
status of a chassis LED (or similar mechanism) if that functionality is available.

To power on nodes named cn1 through cn100:

pwr on cn[1-100]

To power off all nodes with hostnames starting with cn and ending with sn:

pwr off -re cn.*sn

To power cycle all nodes belonging to the ‘compute’ class:

pwr c -c compute

Several different commands may be being issued under the covers. The actual command
that is run is specified in /etc/sysimage.conf with a POWERCMD directive.

For example consider an environment using IPMI for remote power operations and assume
hostname of the form node1 use node1-ipmi for their ipmi interface. Yo have pwr use the
ipmipower utility in this scenario, you could add the following lines to /etc/sysimage.conf:

SPECFORMAT freeipmi spec -h ext range HOST:/$/-ipmi/

POWERCMD ON ipmipower --on -h SPEC:freeipmi spec -u root -p calvin

POWERCMD OFF ipmipower --off -h SPEC:freeipmi spec -u root -p calvin

POWERCMD CYCLE ipmipower --cycle -h SPEC:freeipmi spec -u root -p calvin

POWERCMD STATUS ipmipower --stat -h SPEC:freeipmi spec -u root -p calvin

36

6.8 consl

Usage: consl <NODESPEC>... [OPTION]...

This program is a wrapper script that calls an external console command (specified in
/etc/sysimage.conf) to get on a remote node’s console.

NODESPEC can be:
[-h] HOSTNAME
[-r] RANGESPEC (any text with one or more RANGEs in brackets)

a RANGE is of the form <a-b [,x-y | ,z]...>, where a<b and x<y

ie: cn[1-10,15,20-32] or su[1,4]cn[1-32] or my[1-32]nodes
-re REGEXP (perl-style regular expression matching hostnames)
-c CLASS (oneSIS class name)

Options:
-h, –host=HOSTNAME Operate on hostname
-r, –range=RANGESPEC Specify a range of nodes to operate on
-re, –regexp=REGEXP Specify a regular expression of nodes to operate on
-c, –class=CLASS Specify a class of nodes to operate on
-p, –parallelism=NUM Specify the maximum number of parallel commands to run

(default: no limit)
-d, –dryrun Show command(s) that would be executed
-q, –quiet Suppress output

Like pwr, consl command is a convenient wrapper supplied to provide a unified interface
for accessing the serial console of cluster nodes. Typically, only one serial console is accessed
at a time, but if the underlying application supports it (for instance conman -b), multiple
consoles can be accessed at the same time.

Note: consl requires at least one valid SPECFORMAT and CONSOLECMD directive in
/etc/sysimage.conf to operate.

For example, if the cluster is set up such that the serial console of a node named node1

is accessible by telnetting to node1-term, the following configuration could be used in
(/etc/sysimage.conf):

SPECFORMAT spec1 hostname NODE:/$/-term/

CONSOLECMD telnet SPEC:spec1

To clear the screen and print a helpful message before opening each console:

CONSOLECMD clear; echo Connecting to $NODE; telnet SPEC:spec1

To open each console in a separate window:

37

CONSOLECMD xterm -T $NODE console -e telnet SPEC:spec1

Then to connect to the console of node1, run:

consl node1

Or, to connect to several consoles:

consl node[1-8]

6.9 pxe-config

Usage: pxe-config <NODESPEC>... <--show|--list|PXE CONFIG> [OPTION]...

This will create any necessary symlinks to use the PXE config specified by PXE CONFIG
on the specified nodes.

NODESPEC can be:
[-h] HOSTNAME
[-r] RANGESPEC (any text with one or more RANGEs in brackets)

a RANGE is of the form <a-b [,x-y | ,z]...>, where a<b and x<y

ie: cn[1-10,15,20-32] or su[1,4]cn[1-32] or my[1-32]nodes

Options:
-l, –list List available PXE configuration files
-s, –show Show which nodes are using which config file
-r, –revert Revert specified nodes back to the ’default’ config
-d, –dryrun Show command(s) that would be executed
-q, –quiet Suppress output

This script is supplied as a convenience for operators using the PXELINUX package for
network booting. PXELINUX allows individual nodes to use different configuration files by
looking for a file with the hex equivalent of the node’s IP address.

pxe-config provides a helpful interface to specify individual configuration files for given
nodes, list which configuration files are available, and show which nodes are using which
configuration.

PXE configuration files are normally kept in a directory like /tftpboot/pxelinux.cfg. If
you create a PXE configuration file called /tftpboot/pxelinux.cfg/x86 64/2.6.25 con-
taining your desired PXE configuration, you could direct nodes node1 through node100 to
use that config with:

pxe-config node[1-100] x86 64/2.6.25

38

6.10 myclass

Usage: myclass [OPTION]...

This is a very small program that will print the class name of the running node. It can
be used to do additional scripting based on the node’s class name.

Options:
-n, –node=HOSTNAME Specify the node to print the class name of
-c, –config=FILE Specify alternate configuration file

39

A Configuration Directives

DISTRO <name> [version]

INCLUDE <path>

NODECLASS MAP <node> <class[.subclass]...>

NODECLASS REGEXP <regexp> <class[.subclass]...>

NODECLASS RANGE <prefix[range]...suffix> <class[.subclass]...>

PROPERTY <property name> [-c class[,class]...] [-n node[,node]...]

[-r range] [-re regexp]

SERVICE <service> [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

RAMSIZE <max size [k|m|g]> [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

RAMDIR <dir> [-d] [-cl] [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

[-m mode] [-u user] [-g group]

RAMFILE <file> [-d] [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

[-m mode] [-u user] [-g group]

LINKDIR <dir> [-d] [-cl] [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

LINKFILE <file> [-d] [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

LINKBACK <file|dir> <CLASS|NODE|PROPERTY|target>

[-h] [-f] [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

DISKMOUNT <disk> <size[%]> <mointpoint>

[-t fstype] [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

DISKSWAP <disk> <size[%]> [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

DEPLOYMOUNT <disk> <size[%]> <mointpoint>

[-t fstype] [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

DEPLOYSWAP <disk> <size[%]> [-c class[,class]...] [-n node[,node]...]

[-p property[,property]...]

BOOTLOADER <grub|lilo> [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

SYNCDIR <path> [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

EXCLUDESYNC <path> [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

MAC ADDR <hostname> <mac address>

40

ETH PRELOAD <driver[,driver]...>

CONSOLECMD [-c class[,class]...] [-n node[,node]...] [-p property[,property]...] <command>

POWERCMD <function> [-c class[,class]...] [-n node[,node]...] [-p property[,property]...]

<command>

SPECFORMAT <spec id> <format> [NODE:/// | IP:///] [SPEC:///]

41

