[sabelle/jEdit

Makarius Wenzel

5 December 2013

Abstract

Isabelle/jEdit is a fully-featured Prover IDE, based on Isabelle/Scala and the
jEdit text editor. This document provides an overview of general principles
and its main IDE functionality.

Isabelle’s user interface is no advance over LCF’s, which is widely
condemned as “user-unfriendly”: hard to use, bewildering to begin-
ners. Hence the interest in proof editors, where a proof can be con-
structed and modified rule-by-rule using windows, mouse, and menus.
But Edinburgh LCF was invented because real proofs require millions
of inferences. Sophisticated tools — rules, tactics and tacticals, the
language ML, the logics themselves — are hard to learn, yet they are
essential. We may demand a mouse, but we need better education and
training.

Lawrence C. Paulson, “Isabelle: The Next 700 Theorem Provers”

Acknowledgements

Research and implementation of concepts around PIDE and Isabelle/jEdit
has started around 2008 and was kindly supported by:

e TU Miinchen http://www.in.tum.de

BMBEF http://www.bmbf.de

Université Paris-Sud http://www.u-psud.fr

Digiteo http://www.digiteo.fr

ANR http://www.agence-nationale-recherche.fr

http://www.in.tum.de
http://www.bmbf.de
http://www.u-psud.fr
http://www.digiteo.fr
http://www.agence-nationale-recherche.fr

Contents

1 Introduction

1.1 Concepts and terminology
1.2 The Isabelle/jEdit Prover IDE
1.2.1 Documentation
1.22 Plugins. o
1.23 Optionso
1.24 Keymaps. o
1.2.5 Look-and-feel

2 Prover IDE functionality

2.1 File-system access
2.2 Text buffers and theories
2.3 Proveroutput
2.4 Tooltips and hyperlinks
2.5 Text completion oo
2.6 Isabelle symbols 0L
2.7 Automatically tried tools
2.8 Sledgehammero
2.9 Find theorems
3 Miscellaneous tools
3.1 SideKick
3.2 Timingo
3.3 Isabelle/Scala console
3.4 Low-level output 0L

4 Known problems and workarounds

Bibliography

i

21
21
21
22
22

24

26

List of Figures

1.1

2.1

2.2
2.3
24
2.5
2.6

The Isabelle/jEdit Prover IDE 2

Multiple views on prover output: gutter area with icon, text
area with popup, overview area, Theories panel, Output panel 9

Tooltip and hyperlink for some formal entity 11
Nested tooltips over formal entities 11
Results of automatically tried tools 18
An instance of the Sledgehammer panel 19
An instance of the Find panel 20

il

LIST OF FIGURES

v

Chapter 1

Introduction

1.1 Concepts and terminology

Isabelle/jEdit is a Prover IDE that integrates parallel proof checking [5, 10]
with asynchronous user interaction [6, 9], based on a document-oriented ap-
proach to continuous proof processing [7, 8]. Many concepts and system
components are fit together in order to make this work. The main building
blocks are as follows.

PIDE is a general framework for Prover IDEs based on Isabelle/Scala. It
is built around a concept of parallel and asynchronous document pro-
cessing, which is supported natively by the parallel proof engine that
is implemented in Isabelle/ML. The prover discontinues the traditional
TTY-based command loop, and supports direct editing of formal source
text with rich formal markup for GUI rendering.

Isabelle/ML is the implementation and extension language of Isabelle, see
also [3]. It is integrated into the logical context of Isabelle/Isar and
allows to manipulate logical entities directly. Arbitrary add-on tools
may be implemented for object-logics such as Isabelle/HOL.

Isabelle/Scala is the system programming language of Isabelle. It extends
the pure logical environment of Isabelle/ML towards the “real world”
of graphical user interfaces, text editors, IDE frameworks, web services
etc. Special infrastructure allows to transfer algebraic datatypes and
formatted text easily between ML and Scala, using asynchronous pro-
tocol commands.

jEdit is a sophisticated text editor implemented in Java.! It is easily ex-
tensible by plugins written in languages that work on the JVM, e.g.
Scala?.

Thttp://www.jedit.org
http://www.scala-lang.org/

http://www.jedit.org
http://www.scala-lang.org/

CHAPTER 1. INTRODUCTION 2

Isabelle/jEdit is the main example application of the PIDE framework and
the default user-interface for Isabelle. It targets both beginners and ex-
perts. Technically, Isabelle/jEdit combines a slightly modified version
of the jEdit code base with a special plugin for Isabelle, integrated as
standalone application for the main operating system platforms: Linux,
Windows, Mac OS X.

The subtle differences of Isabelle/ML versus Standard ML, Isabelle/Scala
versus Scala, Isabelle/jEdit versus jEdit need to be taken into account when
discussing any of these PIDE building blocks in public forums, mailing lists,
or even scientific publications.

1.2 The Isabelle/jEdit Prover IDE

D -+ jEdit - Seq.thy
Fle Edit Search Markers Folding View Utilities Macros Plugins Help
Seq.thy ($ISABELLE_HOME/src/HOL/ex/) v @ isabelle -
~ |header {* Finite sequences *} B
Filter: %
~ [theory Seq o;esq.thy
. . eq
imports Main © header {* Finite sequences *)
begin theory Seq

I J[W[uopejuswnzoq JE E

datatype 'a seq = Emp

\ oo " fun conc :: "'a seq = 'a seq
- [datatype 'a seq = Empty | Seq ‘a &) 5= fun reverse :: "a seq="ast

© lemma conc_empty: "conc
© lemma conc_assoc: "conc

- we M [[n (
fun conc :: @ seq = 'a seq = a seq © lemma reverse_conc: "reve| &
where © lemma reverse_reverse: "re

"conc Empty ys = ys" end
| "conc (@ X Xs) ys = Seq x (conc xs ys)"
3 H
~ |fun revers constant "Seg.seq.Seq" &
where : 'a = 'aseq = 'aseq v
"reverse B -
| "reverse (Seq x xs) = conc (reverse xs) (Seq x Empty)" .
& Auto update Update| |Detach| | 100% -
Found termination order: "(\p. size (fst p)) <*mlex*> {}" H
|8 | ~ | Console | Find || Output || Sledgehammer | P -
14,6 (209/791) (isabelle,sidekick, UTF-8-Isabelle) M mir o U GEEEEEAMB 4:16 PM

Figure 1.1: The Isabelle/jEdit Prover IDE

Isabelle/jEdit (figure 1.1) consists of some plugins for the well-known jEdit
text editor http://www.jedit.org, according to the following principles.

http://www.jedit.org

CHAPTER 1. INTRODUCTION 3

e The original jEdit look-and-feel is generally preserved, although some
default properties are changed to accommodate Isabelle (e.g. the text
area font).

e Formal Isabelle/Isar text is checked asynchronously while editing. The
user is in full command of the editor, and the prover refrains from
locking portions of the buffer.

e Prover feedback works via colors, boxes, squiggly underline, hyper-
links, popup windows, icons, clickable output — all based on semantic
markup produced by Isabelle in the background.

e Using the mouse together with the modifier key CONTROL (Linux, Win-
dows) or COMMAND (Mac OS X) exposes additional formal content via
tooltips and/or hyperlinks.

e Formal output (in popups etc.) may be explored recursively, using the
same techniques as in the editor source buffer.

e Additional panels (e.g. Qutput, Symbols) are organized by the Dockable
Window Manager of jEdit, which also allows multiple floating instances
of each window class.

e The prover process and source files are managed on the editor side. The
prover operates on timeless and stateless document content as provided
via Isabelle/Scala.

e Plugin options of jEdit (for the Isabelle plugin) give access to a selection
of Isabelle/Scala options and its persistent preferences, usually with
immediate effect on the prover back-end or editor front-end.

e The logic image of the prover session may be specified within
Isabelle/jEdit. The new image is provided automatically by the Isabelle
build tool after restart of the application.

1.2.1 Documentation

Regular jEdit documentation is accessible via its Help menu or F1 keyboard
shortcut. This includes a full User’s Guide and Frequently Asked Questions
for this sophisticated text editor. The same can be browsed without the
technical restrictions of the built-in Java HTML viewer here: http://www.
jedit.org/index.php?page=docs (potentially for a different version of jEdit).

http://www.jedit.org/index.php?page=docs
http://www.jedit.org/index.php?page=docs

CHAPTER 1. INTRODUCTION 4

Most of this information about jEdit is relevant for Isabelle/jEdit as well,
but one needs to keep in mind that defaults sometimes differ, and the official
jEdit documentation does not know about the Isabelle plugin with its special
support for theory editing.

1.2.2 Plugins

The Plugin Manager of jEdit allows to augment editor functionality by JVM
modules (jars) that are provided by the central plugin repository, which is
accessible via various mirror sites.

Connecting to the plugin server infrastructure of the jEdit project allows to
update bundled plugins or to add further functionality. This needs to be
done with the usual care for such an open bazaar of contributions. Arbitrary
combinations of add-on features are apt to cause problems. It is advisable
to start with the default configuration of Isabelle/jEdit and develop some
understanding how it is supposed to work, before loading additional plugins
at a grand scale.

The main Isabelle plugin is an integral part of Isabelle/jEdit and needs
to remain active at all times! A few additional plugins are bundled with
Isabelle/jEdit for convenience or out of necessity, notably Console with its
Isabelle/Scala sub-plugin and SideKick with some Isabelle-specific parsers
for document tree structure. The FErrorList plugin is required by SideKick,
but not used specifically in Isabelle/jEdit.

1.2.3 Options

Both jEdit and Isabelle have distinctive management of persistent options.

Regular jEdit options are accessible via the dialog for Plugins / Plugin
Options, which is also accessible via Utilities / Global Options. Changed
properties are stored in $ISABELLE_HOME_USER/jedit/properties. In con-
trast, Isabelle system options are managed by Isabelle/Scala and changed
values stored in $ISABELLE_HOME_USER/etc/preferences, independently of
the jEdit properties. See also [11], especially the coverage of sessions and
command-line tools like isabelle build or isabelle options.

Those Isabelle options that are declared as public are configurable in jEdit
via Plugin Options / Isabelle / General. Moreover, there are various options
for rendering of document content, which are configurable via Plugin Options
/ Isabelle / Rendering. Thus Plugin Options / Isabelle in jEdit provides a
view on a subset of Isabelle system options. Note that some of these options

CHAPTER 1. INTRODUCTION 5

affect general parameters that are relevant outside Isabelle/jEdit as well, e.g.
threads or parallel_proofs for the Isabelle build tool [11].

All options are loaded on startup and saved on shutdown of Isabelle/jEdit.
Editing the machine-generated $ISABELLE_HOME_USER/jedit/properties
or $ISABELLE_HOME_USER/etc/preferences manually while the application
is running is likely to cause surprise due to lost update!

1.2.4 Keymaps

Keyboard shortcuts used to be managed as jEdit properties in the past, but
recent versions (2013) have a separate concept of keymap that is configurable
via Global Options / Shortcuts. The imported keymap is derived from the
initial environment of properties that is available at the first start of the
editor; afterwards the keymap file takes precedence.

This is relevant for Isabelle/jEdit due to various fine-tuning of default prop-
erties, and additional keyboard shortcuts for Isabelle specific functionality.
Users may change their keymap later, but need to copy Isabelle-specific key
bindings manually (see also $ISABELLE_HOME_USER/jedit/keymaps).

1.2.5 Look-and-feel

jEdit is a Java/AWT /Swing application with some ambition to support “na-
tive” look-and-feel on all platforms, within the limits of what Oracle as Java
provider and major operating system distributors allow (see also §4).

Isabelle/jEdit enables platform-specific look-and-feel by default as follows:

Linux The platform-independent Nimbus is used by default.
GTK+ works under the side-condition that the overall GTK theme is
selected in a Swing-friendly way.?

Windows Regular Windows is used by default, but Windows Classic also
works.

Mac OS X Regular Mac OS X is used by default.

Moreover the bundled MacOSX plugin provides various functions that
are expected from applications on that particular platform: quit from

3GTK support in Java/Swing was once marketed aggressively by Sun, but never quite
finished, and is today (2013) lagging a bit behind further development of Swing and GTK.
The graphics rendering performance can be worse than for other Swing look-and-feels.

CHAPTER 1. INTRODUCTION 6

menu or dock, preferences menu, drag-and-drop of text files on the
application, full-screen mode for main editor windows etc.

Users may experiment with different look-and-feels, but need to keep in mind
that this extra variance of GUI functionality is unlikely to work in arbitrary
combinations. The platform-independent Nimbus and Metal should always
work. The historic CDE/Motif is better avoided.

After changing the look-and-feel in Global Options / Appearance, it is advis-
able to restart Isabelle/jEdit in order to take full effect.

Chapter 2

Prover IDE functionality

2.1 File-system access

File specifications in jEdit follow various formats and conventions according
to Virtual File Systems, which may be also provided by additional plugins.
This allows to access remote files via the http: protocol prefix, for example.
Isabelle/jEdit attempts to work with the file-system access model of jEdit
as far as possible. In particular, theory sources are passed directly from the
editor to the prover, without indirection via files.

Despite the flexibility of URLs in jEdit, local files are particularly important
and are accessible without protocol prefix. Here the path notation is that
of the Java Virtual Machine on the underlying platform. On Windows the
preferred form uses backslashes; but happens to accept Unix/POSIX forward
slashes, too. Further differences arise due to drive letters and network shares.

The Java notation for files needs to be distinguished from the one of Isabelle,
which uses POSIX notation with forward slashes on all platforms.! More-
over, environment variables from the Isabelle process may be used freely, e.g.
$ISABELLE_HOME/etc/symbols or $POLYML_HOME/README. There are special
shortcuts: ~ for $USER_HOME and ~~ for $ISABELLE_HOME.

Since jEdit happens to support environment variables within file specifica-
tions as well, it is natural to use similar notation within the editor, e.g.
in the file-browser. This does not work in full generality, though, due to
the bias of jEdit towards platform-specific notation and of Isabelle towards
POSIX. Moreover, the Isabelle settings environment is not yet active when
starting Isabelle/jEdit via its standard application wrapper (in contrast to
isabelle jedit run from the command line).

For convenience, Isabelle/jEdit imitates at least $ISABELLE_HOME and
$ISABELLE_HOME_USER within the Java process environment, in order to al-
low easy access to these important places from the editor.

Moreover note that path specifications in prover input or output usually

Tsabelle on Windows uses Cygwin file-system access.

CHAPTER 2. PROVER IDE FUNCTIONALITY 8

include formal markup that turns it into a hyperlink (see also §2.4). This
allows to open the corresponding file in the text editor, independently of the
path notation.

2.2 Text buffers and theories

As regular text editor, jEdit maintains a collection of open text buffers to
store source files; each buffer may be associated with any number of visible
text areas. Buffers are subject to an edit mode that is determined from the
file type. Files with extension .thy are assigned to the mode isabelle and
treated specifically.

[sabelle theory files are automatically added to the formal document model
of Isabelle/Scala, which maintains a family of versions of all sources for the
prover. The Theories panel provides an overview of the status of continuous
checking of theory sources. Unlike batch sessions [11], theory nodes are iden-
tified by full path names; this allows to work with multiple (disjoint) Isabelle
sessions simultaneously within the same editor session.

Certain events to open or update buffers with theory files cause Isabelle /jEdit
to resolve dependencies of theory imports. The system requests to load addi-
tional files into editor buffers, in order to be included in the theory document
model for further checking. It is also possible to resolve dependencies auto-
matically, depending on Plugin Options / Isabelle / General / Auto load.

The open text area views on theory buffers define the visible perspective of
Isabelle/jEdit. This is taken as a hint for document processing: the prover
ensures that those parts of a theory where the user is looking are checked,
while other parts that are presently not required are ignored. The perspective
is changed by opening or closing text area windows, or scrolling within an
editor window.

The Theories panel provides some further options to influence the process
of continuous checking: it may be switched off globally to restrict the prover
to superficial processing of command syntax. It is also possible to indicate
theory nodes as required for continuous checking: this means such nodes and
all their imports are always processed independently of the visibility status
(if continuous checking is enabled). Big theory libraries that are marked as
required can have significant impact on performance, though.

Formal markup of checked theory content is turned into GUI rendering, based
on a standard repertoire known from IDEs for programming languages: col-
ors, icons, highlighting, squiggly underline, tooltips, hyperlinks etc. For outer

CHAPTER 2. PROVER IDE FUNCTIONALITY 9

syntax of Isabelle/Isar there is some traditional syntax-highlighting via static
keyword tables and tokenization within the editor. In contrast, the paint-
ing of inner syntax (term language etc.) uses semantic information that is
reported dynamically from the logical context. Thus the prover can provide
additional markup to help the user to understand the meaning of formal text,
and to produce more text with some add-on tools (e.g. information messages
by automated provers or disprovers running in the background).

2.3 Prover output

Prover output consists of markup and messages. Both are directly attached
to the corresponding positions in the original source text, and visualized in
the text area, e.g. as text colours for free and bound variables, or as squiggly
underline for warnings, errors etc. (see also figure 2.1). In the latter case,
the corresponding messages are shown by hovering with the mouse over the
highlighted text — although in many situations the user should already get
some clue by looking at the position of the text highlighting.

<l

Q-+ jEdit- Subspace.thy
File Edit Search Markers Folding Wiew Utilities Macros Plugins Help
| 0 Subspace.thy ($ISABELLE_HOME/src/HOLHahn_Banachi)

Bl

[¥] continuous checking

el

[Jorder_Relation_More_Base

= |lemma subspace_suml [iffl: [Prover: ready
assumes "vectorspace U" "vectorspace V" defautt o) |« | B
shows "U 9 U + V" [JcontiotDenum T
proof - [JBounds
interpret vectorspace U by fact [Jorder_Relation ﬁ
3
3

u| dinterpret vectorspace V by fact -
. [Jset_algebras
show 7thesis | Cwirec
proof Ignoring duplicate rewrite rule: [« [Jwellfounded_More_Base
" " 7al - B =0 0
show "U # {3" .. d (Jorder_union
show "U C U + V" Ignoring duplicate rewrite rule: [Jzomn
f - =0 =6 I [Cvector_Space
proo av L3 Qtineartorn
fix x assume x: "x € U" [Jsubspace
moreover have "0 € V" .. [[JFunction_order
ultimately have "x + 0 € U + V" .. [Normed_space
. : Fi t N
with x show "x € U + V" by simp | |JFunction Norm
14 - [JHahn_Banach_Ext_Lemmas

[Jzorn_Lemma

(] Auto update | Update Detach | 100% U [[JHahn_Banach_Sup_Lemmas

+ [JHahn_Banach_Lemmas
I @Hahn_Banach

Ignoring duplicate rewrite rule:
7al - 0 =0

Ignoring duplicate rewrite rule:
-0 =0

proof (state): step 5

goal (1 subgoal):
1. subspace U (U + V)

253,34 (6663/14681) (isabelle,sidekick, UTF-B-Isabelle) 1/ r o UGHIE2/448MB _5:26 PM|

<®

Figure 2.1: Multiple views on prover output: gutter area with icon, text area
with popup, overview area, Theories panel, Output panel

CHAPTER 2. PROVER IDE FUNCTIONALITY 10

The “gutter area” on the left-hand-side of the text area uses icons to provide a
summary of the messages within the adjacent line of text. Message priorities
are used to prefer errors over warnings, warnings over information messages
etc. Plain output is ignored here.

The “overview area” on the right-hand-side of the text area uses similar in-
formation to paint small rectangles for the overall status of the whole text
buffer. The graphics is scaled to fit the logical buffer length into the given
window height. Mouse clicks on the overview area position the cursor ap-
proximately to the corresponding line of text in the buffer. Repainting the
overview in real-time causes problems with big theories, so it is restricted
to part of the text according to Plugin Options / Isabelle / General / Text
Overview Limit (in characters).

Another course-grained overview is provided by the Theories panel, but with-
out direct correspondence to text positions. A double-click on one of the the-
ory entries with their status overview opens the corresponding text buffer,
without changing the cursor position.

In addition, the Qutput panel displays prover messages that correspond to a
given command, within a separate window.

The cursor position in the presently active text area determines the prover
commands whose cumulative message output is appended and shown in that
window (in canonical order according to the processing of the command).
There are also control elements to modify the update policy of the output
wrt. continued editor movements. This is particularly useful with several
independent instances of the Output panel, which the Dockable Window
Manager of jEdit can handle conveniently.

Former users of the old TTY interaction model (e.g. Proof General) might
find a separate window for prover messages familiar, but it is important to
understand that the main Prover IDE feedback happens elsewhere. It is
possible to do meaningful proof editing efficiently, using secondary output
windows only rarely.

The main purpose of the output window is to “debug” unclear situations by
inspecting internal state of the prover.? Consequently, some special messages
for tracing or proof state only appear here, and are not attached to the
original source.

In any case, prover messages also contain markup that may be explored
recursively via tooltips or hyperlinks (see §2.4), or clicked directly to initiate

2In that sense, unstructured tactic scripts depend on continuous debugging with inter-
nal state inspection.

CHAPTER 2. PROVER IDE FUNCTIONALITY

certain actions (see §2.7 and §2.8).

2.4 Tooltips and hyperlinks

11

Formally processed text (prover input or output) contains rich markup in-
formation that can be explored further by using the CONTROL modifier key
on Linux and Windows, or COMMAND on Mac OS X. Hovering with the mouse
while the modifier is pressed reveals a tooltip (grey box over the text with
a yellow popup) and/or a hyperlink (black rectangle over the text); see also

figure 2.2.

Q-+ jEdit - Scratch.thy v
File Edit Searcl Marker Foldin View Utilitie Macro Plugin Help
| 0 Scratch.thy (~) Iv)
~ [theory Scratch H

imports Main
begin
term "x x"
]
end constant "HOL.eq" E
| — T
< -
54l <1d A2k, UTF-8-Isabelle) 1m0 UGHEAL1/1176MB 7:25 PM|

Figure 2.2: Tooltip and hyperlink for some formal entity

Tooltip popups use the same rendering principles as the main text area, and
further tooltips and/or hyperlinks may be exposed recursively by the same

mechanism; see figure 2.3.

Figure 2.3: Nested tooltips over formal entities

Q-+ jEdit - Scratch.thy
File Edit Search Markers Folding wiew Utilities Macros Plugins Help
| O Seratch.thy (~/)
‘theory Scratch
imports Main
begin
term "x = x"
<]
end free variable :‘
< @ B
type 8
28 qué] r
free ty g 5
L | =
class "HOL.type"
L T
ar =
6.1 (48/52) (isabelle, sidekick,UTF-8-sabelle) N r o U GIEFENNIEFVE 7:24 PM|

The tooltip popup window provides some controls to close or detach the

window, turning it into a separate Info window managed by jEdit.

The

CHAPTER 2. PROVER IDE FUNCTIONALITY 12

ESCAPE key closes all popups, which is particularly relevant when nested
tooltips are stacking up.

A black rectangle in the text indicates a hyperlink that may be followed by
a mouse click (while the CONTROL or COMMAND modifier key is still pressed).
Presently (Isabelle2013-2) there is no systematic navigation within the editor
to return to the original location.

Also note that the link target may be a file that is itself not subject to formal
document processing of the editor session and thus prevents further explo-
ration: the chain of hyperlinks may end in some source file of the underlying
logic image, or within the Isabelle/ML bootstrap sources of Isabelle/Pure.

2.5 Text completion

Completion tables are determined statically from the “outer syntax” of
the underlying edit mode (for theory files this is the syntax of Isar com-
mands), and specifications of Isabelle symbols (see also §2.6).

Symbols are completed in backslashed forms, e.g. \forall or \<forall>
that both produce the Isabelle symbol V in its Unicode rendering.® Alterna-
tively, symbol abbreviations may be used as specified in $ISABELLE_HOME/
etc/symbols.

Completion popups are required in situations of ambiguous completion
results or where explicit confirmation is demanded before inserting completed
text into the buffer.

The popup is some minimally invasive GUI component over the text area.
It interprets special keys TAB, ESCAPE, UP, DOWN, PAGE_UP, PAGE_DOWN, but
all other key events are passed to the underlying text area. This allows to
ignore unwanted completions most of the time and continue typing quickly.

The meaning of special keys is as follows:

key action

TAB select completion

ESCAPE dismiss popup

UP move up one item

DOWN move down one item
PAGE_UP move up one page of items

PAGE_DOWN move down one page of items

3The extra backslash avoids overlap with keywords of the buffer syntax, and allows to
produce Isabelle symbols robustly in most syntactic contexts.

CHAPTER 2. PROVER IDE FUNCTIONALITY 13

Movement within the popup is only active for multiple items. Otherwise the
corresponding key event retains its standard meaning within the underlying
text area.

Explicit completion is triggered by the keyboard shortcut C+b (action
isabelle.complete). This overrides the original jEdit binding for action
complete-word, but the latter is used as fall-back for non-Isabelle edit
modes. It is also possible to restore the original jEdit keyboard mapping
of complete-word via Global Options / Shortcuts.

Replacement text is inserted immediately into the buffer, unless ambiguous
results demand an explicit popup.

Implicit completion is triggered by regular keyboard input events during
of the editing process in the main jEdit text area (and a few additional text
fields like the search criteria of the Find panel, see §2.9). Implicit completion
depends on on further side-conditions:

1. The system option jedit_completion needs to be enabled (default).

2. Completion of syntax keywords requires at least 3 relevant characters
in the text.

3. The system option jedit_completion_delay determines an additional
delay (0.0 by default), before opening a completion popup.

4. The system option jedit_completion_dismiss_delay determines an
additional delay (0.0 by default), before dismissing an earlier comple-
tion popup. A value like 0.1 is occasionally useful to reduce the chance
of loosing key strokes when the speed of typing exceeds that of repaint-
ing GUI components.

5. The system option jedit_completion_immediate (disabled by de-
fault) controls whether replacement text should be inserted immedi-
ately without popup. This is restricted to Isabelle symbols and their
abbreviations (§2.6) — plain keywords always demand a popup for
clarity.

6. Completion of symbol abbreviations with only one relevant charac-
ter in the text always enforces an explicit popup, independently of
jedit_completion_immediate.

CHAPTER 2. PROVER IDE FUNCTIONALITY 14

These completion options may be configured in Plugin Options / Isabelle /
General / Completion. The default is quite moderate in showing occasional
popups and refraining from immediate insertion. An additional completion
delay of 0.3 seconds will make it even less ambitious.

In contrast, more aggressive completion works via jedit_completion_delay= 0.0
and jedit_completion_immediate = true. Thus the editing process be-
comes dependent on the system guessing correctly what the user had in
mind. It requires some practice (and study of the symbol abbreviation
tables) to become productive in this advanced mode.

In any case, unintended completions can be reverted by the regular undo
operation of jEdit. When editing embedded languages such as ML, it is bet-
ter to disable either jedit_completion or jedit_completion_immediate
temporarily.

2.6 Isabelle symbols

Isabelle sources consist of symbols that extend plain ASCII to allow infinitely
many mathematical symbols within the formal sources. This works without
depending on particular encodings and varying Unicode standards [7].4

For the prover back-end, formal text consists of ASCII characters that
are grouped according to some simple rules, e.g. as plain “a” or symbolic
“\<alpha>".

For the editor front-end, a certain subset of symbols is rendered physically
via Unicode glyphs, in order to show “\<alpha>” as “a”, for example.
This symbol interpretation is specified by the Isabelle system distribution
in $ISABELLE_HOME/etc/symbols and may be augmented by the user in

$ISABELLE_HOME_USER/etc/symbols.

The appendix of [4] gives an overview of the standard interpretation of finitely
many symbols from the infinite collection. Uninterpreted symbols are dis-
played literally, e.g. “\<foobar>”. Overlap of Unicode characters used in
symbol interpretation with informal ones (which might appear e.g. in com-
ments) needs to be avoided! Raw Unicode characters within prover source
files should be restricted to informal parts, e.g. to write text in non-latin
alphabets in comments.

4Raw Unicode characters within formal sources would compromise portability and re-
liability in the face of changing interpretation of special features of Unicode, such as
Combining Characters or Bi-directional Text.

CHAPTER 2. PROVER IDE FUNCTIONALITY 15

Encoding. Technically, the Unicode view on Isabelle symbols is an encod-
ing in jEdit (not in the underlying JVM) that is called UTF-8-Isabelle. It
is provided by the Isabelle/jEdit plugin and enabled by default for all source
files. Sometimes such defaults are reset accidentally, or malformed UTF-8
sequences in the text force jEdit to fall back on a different encoding like
IS0-8859-15. In that case, verbatim “\<alpha>" will be shown in the text
buffer instead of its Unicode rendering “a”. The jEdit menu operation File
/ Reload with Encoding / UTF-8-Isabelle helps to resolve such problems,
potentially after repairing malformed parts of the text.

Font. Correct rendering via Unicode requires a font that contains glyphs for
the corresponding codepoints. Most system fonts lack that, so Isabelle/jEdit
prefers its own application font IsabelleText, which ensures that standard
collection of Isabelle symbols are actually seen on the screen (or printer).

Note that a Java/AWT /Swing application can load additional fonts only if
they are not installed on the operating system already! Some old version of
IsabelleText that happens to be provided by the operating system would
prevents Isabelle/jEdit from its bundled version. This could lead to missing
glyphs (black rectangles), when the system version of IsabelleText is older
than the application version. This problem can be avoided by refraining to
“install” any version of IsabelleText in the first place (although it might
be occasionally tempting to use the same font in other applications).

Input methods. In principle, Isabelle/jEdit could delegate the problem to
produce Isabelle symbols in their Unicode rendering to the underlying oper-
ating system and its input methods. Regular jEdit also provides various ways
to work with abbreviations to produce certain non-ASCII characters. Since
none of these standard input methods work satisfactorily for the mathemati-
cal characters required for Isabelle, various specific Isabelle/jEdit mechanisms
are provided.

Here is a summary for practically relevant input methods for Isabelle symbols:

1. The Symbols panel with some GUI buttons to insert certain symbols
in the text buffer. There are also tooltips to reveal the official Isabelle
representation with some additional information about symbol abbrevi-
ations (see below).

2. Copy / paste from decoded source files: text that is rendered as Unicode
already can be re-used to produce further text. This also works between

CHAPTER 2. PROVER IDE FUNCTIONALITY 16

different applications, e.g. Isabelle/jEdit and some web browser or mail
client, as long as the same Unicode view on Isabelle symbols is used
uniformly.

3. Copy / paste from prover output within Isabelle/jEdit. The same
principles as for text buffers apply, but note that copy in secondary
Isabelle/jEdit windows works via the keyboard shortcut C+c, while
jEdit menu actions always refer to the primary text areal!

4. Completion provided by Isabelle plugin (see §2.5). Isabelle symbols
have a canonical name and optional abbreviations. This can be used
with the text completion mechanism of Isabelle/jEdit, to replace a
prefix of the actual symbol like \<lambda>, or its backslashed name
\lambda, or its ASCII abbreviation % by the Unicode rendering.

The following table is an extract of the information provided by the
standard $ISABELLE_HOME/etc/symbols file:

symbol backslashed name abbreviation
\lambda b
\Rightarrow =>
\Longrightarrow ==>

\And I

\equiv ==

\forall !

\exists ?
\longrightarrow -—>

\and &

\or I

\not
\noteq =
\in
\notin

mmﬂ\1<>lm<|n>ﬂuy

Note that the above abbreviations refer to the input method. The
logical notation provides ASCII alternatives that often coincide, but
deviate occasionally. This occasionally causes user confusion with very
old-fashioned Isabelle source that use ASCII replacement notation like
! or ALL directly in the text.

On the other hand, coincidence of symbol abbreviations with ASCII re-
placement syntax syntax helps to update old theory sources via explicit
completion (see also C+b explained in §2.5).

CHAPTER 2. PROVER IDE FUNCTIONALITY 17

Control symbols. There are some special control symbols to modify the
display style of a single symbol (without nesting). Control symbols may be
applied to a region of selected text, either using the Symbols panel or key-
board shortcuts or jEdit actions. These editor operations produce a separate
control symbol for each symbol in the text, in order to make the whole text
appear in a certain style.

style symbol shortcut action

superscript \<“sup> C+e UP isabelle.control-sup
subscript \<"sub> C+e DOWN isabelle.control-sub
bold face \<"bold> C+e RIGHT isabelle.control-bold
reset C+e LEFT isabelle.control-reset

To produce a single control symbol, it is also possible to complete on \sup,
\sub, \bold as for regular symbols.

2.7 Automatically tried tools

Continuous document processing works asynchronously in the background.
Visible document source that has been evaluated already may get augmented
by additional results of asynchronous print functions. The canonical example
is proof state output, which is always enabled. More heavy-weight print
functions may be applied, in order to prove or disprove parts of the formal
text by other means.

Isabelle/HOL provides various automatically tried tools that operate on out-
ermost goal statements (e.g. lemma, theorem), independently of the state
of the current proof attempt. They work implicitly without any arguments.
Results are output as information messages, which are indicated in the text
area by blue squiggles and a blue information sign in the gutter (see fig-
ure 2.4). The message content may be shown as for other output (see also
§2.3). Some tools produce output with sendback markup, which means that
clicking on certain parts of the output inserts that text into the source in the
proper place.

The following Isabelle system options control the behavior of automatically
tried tools (see also the jEdit dialog window Plugin Options / Isabelle /
General / Automatically tried tools):

e auto_methods controls automatic use of a combination of standard
proof methods (auto, simp, blast, etc.). This corresponds to the Isar
command try0.

CHAPTER 2. PROVER IDE FUNCTIONALITY 18

e -+ jEdit - Scratch.thy (modified)
File Edit Search Markers Folding View litiliias Marras Plusing Heln

I Scratch.thy (~/) — Info =
~ [theory Scratch
imports Main
begin

185%

v Auto Quickcheck found a counterexample:

X = az
y = a1
v Auto Nitpick found a counterexample for
~O|lemma "x = x" oops| card 'a =2:
) -

Auto solve_direct: ¥

O|lemma "x = y" oops|

Free variables:
X = ap
Yy = az

< HOL.refl: 7t = 74
6,1 (brreo=rrr

Figure 2.4: Results of automatically tried tools

The tool is disabled by default, since unparameterized invocation of
standard proof methods often consumes substantial CPU resources
without leading to success.

e auto_nitpick controls a slightly reduced version of nitpick, which
tests for counterexamples using first-order relational logic. See also the
Nitpick manual [2].

This tool is disabled by default, due to the extra overhead of invoking
an external Java process for each attempt to disprove a subgoal.

e auto_quickcheck controls automatic use of quickcheck, which tests
for counterexamples using a series of assignments for free variables of
a subgoal.

This tool is enabled by default. It requires little overhead, but is a bit
weaker than nitpick.

e auto_sledgehammer controls a significantly reduced version of
sledgehammer, which attempts to prove a subgoal using external
automatic provers. See also the Sledgehammer manual [1].

This tool is disabled by default, due to the relatively heavy nature of
Sledgehammer.

e auto_solve_direct controls automatic use of solve_direct, which
checks whether the current subgoals can be solved directly by an exist-
ing theorem. This also helps to detect duplicate lemmas.

This tool is enabled by default.

Invocation of automatically tried tools is subject to some global policies of
parallel execution, which may be configured as follows:

CHAPTER 2. PROVER IDE FUNCTIONALITY 19

e auto_time_limit (default 2.0) determines the timeout (in seconds) for
each tool execution.

e auto_time_start (default 1.0) determines the start delay (in seconds)

for automatically tried tools, after the main command evaluation is
finished.

Each tool is submitted independently to the pool of parallel execution tasks in
Isabelle/ML, using hardwired priorities according to its relative “heaviness”.
The main stages of evaluation and printing of proof states take precedence,
but an already running tool is not canceled and may thus reduce reactivity
of proof document processing.

Users should experiment how the available CPU resources (number of cores)
are best invested to get additional feedback from prover in the background,
by using a selection of weaker or stronger tools.

2.8 Sledgehammer

The Sledgehammer panel (figure 2.5) provides a view on some independent
execution of the Isar command sledgehammer, with process indicator (spin-
ning wheel) and GUI elements for important Sledgehammer arguments and
options. Any number of Sledgehammer panels may be active, according to
the standard policies of Dockable Window Management in jEdit. Closing
such windows also cancels the corresponding prover tasks.

Q-+ JEdit - Scratch.thy (modified)

File Edit Search Markers Folding View Utilities Macros Plugins Help
Im Scratch.thy (~/) -

i |Llemma "[a] = [b] = a = b"lby (metis the_elem set)

Provers: e spass remote_vampire z3 remote_e_sine remote_waldmeisv | [Isar proofs 3¢ M Cancel | |Locate| | 100% -
"e": Try this: by (metis the_elem_set) (9 ms).
"spass": Try this: by (metis list.inject) (15 ms).
"remote_vampire": Try this: by (metis list.inject) (10 ms).
"remote_e_sine": Try this: by (metis list.inject) (10 ms).
"remote_waldmeister": The generated problem lies outside the prover's scope.
"z3": Try this: by (metis list.inject) (8 ms).

2 Sledgehammer
5,26 (60/42556) (isabelle,sidekick, UTF-8-Isabelle) ' m r o U GIEEPIRESZINIB5:02 PM

Figure 2.5: An instance of the Sledgehammer panel

CHAPTER 2. PROVER IDE FUNCTIONALITY 20

The Apply button attaches a fresh invocation of sledgehammer to the com-
mand where the cursor is pointing in the text — this should be some pending
proof problem. Further buttons like Cancel and Locate help to manage the
running process.

Results appear incrementally in the output window of the panel. Proposed
proof snippets are marked-up as sendback, which means a single mouse click
inserts the text into a suitable place of the original source. Some manual
editing may be required nonetheless, say to remove earlier proof attempts.

2.9 Find theorems

The Find panel (figure 2.6) provides an independent view for the Isar com-
mand find_theorems. The main text field accepts search criteria according
to the syntax thmeriterium given in [4]. Further options of find_theorems
are available via GUI elements.

Q-+ JEdit - Unix.thy

File Edit Search Markers Folding View Utilities Macros Plugins Help
b Unixthy ($ISABELLE HOME/srHOL/Uni) |«
> aheorem transition_type_safe: -
assumes tr: "root —x— root'"
and inv: "Jatt dir. root = Env att dir"
shows "Jatt dir. root' = Env att dir"
~ |proof (cases "path_of x")
case Nil

Search criteria: | Env name: simp -

q . POV E—
[current context v a0 | O Duplicates + |Apply|[85% v

found 14 theorem(s):

= Nested_Environment.env.eq.simps(2): equal_class.equal (VMal ?al) (Env ?b'l ?fun'l) = False

= Nested_Environment.env.eq.simps(l): equal_class.equal (Env ?b'l ?fun'l) (Val ?al) = False

= Nested Environment.env.simps(3): Val ?a # Env ?b' ?7fun’ _
L) - JiEnd)
62,1(16776/37993) (isabelle,sidekick, UTF-8-Isabelle) \ m 1 o U G1 task(s)E68/1427MB 4:56 PM

Figure 2.6: An instance of the Find panel

The Apply button attaches a fresh invocation of find_theorems to the cur-
rent context of the command where the cursor is pointing in the text, unless
an alternative theory context (from the underlying logic image) is specified
explicitly.

Chapter 3

Miscellaneous tools

3.1 SideKick

The SideKick plugin of jEdit provides some general services to display buffer
structure in a tree view.

Isabelle/jEdit provides SideKick parsers for its main mode for theory files,
as well as some minor modes for the NEWS file, session ROOT files, and system
options.

Moreover, the special SideKick parser isabelle-markup provides access to
the full (uninterpreted) markup tree of the PIDE document model of the
current buffer. This is occasionally useful for informative purposes, but the
amount of displayed information might cause problems for large buffers, both
for the human and the machine.

3.2 Timing

Managed evaluation of commands within PIDE documents includes timing
information, which consists of elapsed (wall-clock) time, CPU time, and GC
(garbage collection) time. Note that in a multithreaded system it is difficult
to measure execution time precisely: elapsed time is closer to the real require-
ments of runtime resources than CPU or GC time, which are both subject
to influences from the parallel environment that are outside the scope of the
current command transaction.

The Twiming panel provides an overview of cumulative command timings
for each document node. Commands with elapsed time below the given
threshold are ignored in the grand total. Nodes are sorted according to their
overall timing. For the document node that corresponds to the current buffer,
individual command timings are shown as well. A double-click on a theory
node or command moves the editor focus to that particular source position.

It is also possible to reveal individual timing information via some tooltip for
the corresponding command keyword, using the technique of mouse hovering
with CONTROL/COMMAND modifier key as explained in §2.4. Actual display of

21

CHAPTER 3. MISCELLANEOUS TOOLS 22

timing depends on the global option jedit_timing_threshold, which can
be configured in ”Plugin Options / Isabelle / General”.

The Monitor panel provides a general impression of recent activity of the
farm of worker threads in Isabelle/ML. Its display is continuously up-
dated according to editor_chart_delay. Note that the painting of the
chart takes considerable runtime itself — on the Java Virtual Machine
that runs Isabelle/Scala, not Isabelle/ML. Internally, the Isabelle/Scala
module isabelle.ML_Statistics provides further access to statistics of
Isabelle/ML.

3.3 Isabelle/Scala console

The Console plugin of jEdit manages various shells (command interpreters),
e.g. BeanShell, which is the official jEdit scripting language, and the cross-
platform System shell. Thus the console provides similar functionality than
the special buffers *scratch* and *shell* in Emacs.

Isabelle/jEdit extends the repertoire of the console by Scala, which is
the regular Scala toplevel loop running inside the same JVM process as
Isabelle/jEdit itself. This means the Scala command interpreter has access
to the JVM name space and state of the running Prover IDE application:
the main entry points are view (the current editor view of jEdit) and PIDE
(the Isabelle/jEdit plugin object).

For example, the subsequent Scala snippet gets the PIDE document model
of the current buffer within the current editor view:

PIDE.document_model (view.getBuffer) .get

This helps to explore Isabelle/Scala functionality interactively. Some care is
required to avoid interference with the internals of the running application,
especially in production use.

3.4 Low-level output

Prover output is normally shown directly in the main text area or secondary
Output panels, as explained in §2.3.

Beyond this, it is occasionally useful to inspect low-level output channels via
some of the following additional panels:

CHAPTER 3. MISCELLANEOUS TOOLS 23

e Protocol shows internal messages between the Isabelle/Scala and
Isabelle/ML side of the PIDE editing protocol. Recording of messages
starts with the first activation of the corresponding dockable window;
earlier messages are lost.

Actual display of protocol messages causes considerable slowdown, so
it is important to undock all Protocol panels for production work.

e Raw Output shows chunks of text from the stdout and stderr chan-
nels of the prover process. Recording of output starts with the first
activation of the corresponding dockable window; earlier output is lost.

The implicit stateful nature of physical I/O channels makes it difficult
to relate raw output to the actual command from where it was originat-
ing. Parallel execution may add to the confusion. Peeking at physical
process 1/O is only the last resort to diagnose problems with tools that
are not fully PIDE compliant.

Under normal circumstances, prover output always works via managed
message channels (corresponding to writeln, warning, error etc. in
Isabelle/ML), which are displayed by regular means within the docu-
ment model (§2.3).

e Syslog shows system messages that might be relevant to diagnose prob-
lems with the startup or shutdown phase of the prover process; this also
includes raw output on stderr.

A limited amount of syslog messages are buffered, independently of
the docking state of the Syslog panel. This allows to diagnose seri-
ous problems with Isabelle/PIDE process management, outside of the
actual protocol layer.

Under normal situations, such low-level system output can be ignored.

Chapter 4

Known problems and
workarounds

e Problem: Lack of dependency management for auxiliary files that con-
tribute to a theory (e.g. ML _file).

Workaround: Re-load files manually within the prover, by editing
corresponding command in the text.

e Problem: Odd behavior of some diagnostic commands with global
side-effects, like writing a physical file.

Workaround: Copy / paste complete command text from elsewhere,
or discontinue continuous checking temporarily.

e Problem: No way to delete document nodes from the overall collection
of theories.

Workaround: Ignore unused files. Restart whole Isabelle/jEdit session
In worst-case situation.

e Problem: Keyboard shortcuts C+PLUS and C+MINUS for adjusting the
editor font size depend on platform details and national keyboards.

Workaround: Rebind keys via Global Options / Shortcuts.

e Problem: The Mac OS X keyboard shortcut COMMAND+COMMA for ap-
plication Preferences is in conflict with the jEdit default shortcut for
Incremental Search Bar (action quick-search).

Workaround: Rebind key via Global Options / Shortcuts according
to national keyboard, e.g. COMMAND+SLASH on English ones.
e Problem: Mac OS X system fonts sometimes lead to character drop-

outs in the main text area.

Workaround: Use the default IsabelleText font. (Do not install
that font on the system.)

24

CHAPTER 4. KNOWN PROBLEMS AND WORKAROUNDS 25

e Problem: Some Linux / X11 input methods such as IBus tend to
disrupt key event handling of Java/AWT /Swing.

Workaround: Do not use input methods, reset the environment vari-
able XMODIFIERS within Isabelle settings (default in Isabelle2013-2).

e Problem: Some Linux / X11 window managers that are not “re-
parenting” cause problems with additional windows opened by Java.
This affects either historic or neo-minimalistic window managers like
awesome or xmonad.

Workaround: Use regular re-parenting window manager.
e Problem: Recent forks of Linux / X11 window managers and desktop

environments (variants of Gnome) disrupt the handling of menu popups
and mouse positions of Java/AWT /Swing.

Workaround: Use mainstream versions of Linux desktops.
e Problem: Full-screen mode via jEdit action toggle-full-screen (de-

fault shortcut F11) works on Windows, but not on Mac OS X or various
Linux / X11 window managers.

Workaround: Use native full-screen control of the window manager
(notably on Mac OS X).

e Problem: Full-screen mode and dockable windows in floating state
may lead to confusion about window placement (depending on platform
characteristics).

Workaround: Avoid this combination.

Bibliography

1]

J. C. Blanchette. Hammering Away: A User’s Guide to Sledgehammer for
Isabelle/HOL. http://isabelle.in.tum.de/doc/sledgehammer.pdf.

J. C. Blanchette. Picking Nits: A User’s Guide to Nitpick for Isabelle/HOL.
http://isabelle.in.tum.de/doc/nitpick.pdf.

M. Wenzel. The Isabelle/Isar Implementation.
http://isabelle.in.tum.de/doc/implementation.pdf.

M. Wenzel. The Isabelle/Isar Reference Manual.
http://isabelle.in.tum.de/doc/isar-ref.pdf.

M. Wenzel. Parallel proof checking in Isabelle/Isar. In G. Dos Reis and

L. Théry, editors, ACM SIGSAM Workshop on Programming Languages for
Mechanized Mathematics Systems (PLMMS 2009). ACM Digital Library,
20009.

M. Wenzel. Asynchronous proof processing with Isabelle/Scala and
Isabelle/jEdit. In C. S. Coen and D. Aspinall, editors, User Interfaces for
Theorem Provers (UITP 2010), FLOC 2010 Satellite Workshop, ENTCS.
Elsevier, July 2010.

M. Wengzel. Isabelle as document-oriented proof assistant. In J. H.
Davenport, W. M. Farmer, F. Rabe, and J. Urban, editors, Conference on
Intelligent Computer Mathematics / Mathematical Knowledge Management
(CICM/MKM 2011), volume 6824 of LNAI Springer, 2011.

M. Wenzel. Isabelle/jEdit — a Prover IDE within the PIDE framework. In
J. Jeuring et al., editors, Conference on Intelligent Computer Mathematics
(CICM 2012), volume 7362 of LNAI Springer, 2012.

M. Wenzel. READ-EVAL-PRINT in parallel and asynchronous
proof-checking. In User Interfaces for Theorem Provers (UITP 2012),
EPTCS, 2013.

M. Wenzel. Shared-memory multiprocessing for interactive theorem proving.
In S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, Interactive
Theorem Proving - 4th International Conference, ITP 2013, Rennes, France,
July 22-26, 2013. Proceedings, volume 7998 of Lecture Notes in Computer
Science. Springer, 2013.

26

http://isabelle.in.tum.de/doc/sledgehammer.pdf
http://isabelle.in.tum.de/doc/nitpick.pdf
http://isabelle.in.tum.de/doc/implementation.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf

BIBLIOGRAPHY

[11] M. Wenzel and S. Berghofer. The Isabelle System Manual.
http://isabelle.in.tum.de/doc/system.pdf.

27

http://isabelle.in.tum.de/doc/system.pdf

	Introduction
	Concepts and terminology
	The Isabelle/jEdit Prover IDE
	Documentation
	Plugins
	Options
	Keymaps
	Look-and-feel

	Prover IDE functionality
	File-system access
	Text buffers and theories
	Prover output
	Tooltips and hyperlinks
	Text completion
	Isabelle symbols
	Automatically tried tools
	Sledgehammer
	Find theorems

	Miscellaneous tools
	SideKick
	Timing
	Isabelle/Scala console
	Low-level output

	Known problems and workarounds
	Bibliography

