SCons User Guide 2.3.0

Steven Knight

SCons User Guide 2.3.0
by Steven Knight

Revision (2013/03/03 09:48:35) Edition

Published 2004, 2005, 2006, 2007, 2008, 2009, 2010
Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 Steven Knight

SCons User’s Guide Copyright (c) 2004, 2005, 2006, 2007 Steven Knight

Table of Contents

Preface ix
1. SCONS PLINCIPIES ..ottt ettt ettt st sttt et b et et eaeenaesbeenaens ix

2. A Caveat About This Guide’s COMPIELENESSceruerueerieririeriiniieieneetenie ettt ix

3. ACKNOWIEAZEMENESouviiieiiiiiiieteetee ettt ettt st ettt et b et bt et esbesbt et e b et e e eaee X

4 COMEACE ..ottt t ettt ettt b e ettt e bt et s bt et e s bt e e s e bt e bt et e h e et s b e bt e b e bt et e ebe e e naes xi

1. Building and Installing SCons 1
1.1, INStAlling PYTRON «.cueviiiiiiiieiecie ettt sttt sttt esate st e e sbeesabesnbeeseensee s 1

1.2. Installing SCons From Pre-Built Packagesccccvevieriiiiiiniiiniiiieeiteeecie et 1

1.2.1. Installing SCons on Red Hat (and Other RPM-based) Linux Systems...........ccccccueuuenne. 2

1.2.2. Installing SCons on Debian LinuxX SYSEMScccueeruierieriiieniienienieeieeniesieeieenieeseee e 2

1.2.3. Installing SCons on Windows SYSIEIMScccverruieriierienieeiienieeieeieeseesreeieesieesieesaees 2

1.3. Building and Installing SCons on ANy SYSIEM.......ccccuerieriiirniienienieeieenee st eieeniee st sieesiee e 3

1.3.1. Building and Installing Multiple Versions of SCons Side-by-Side..........cccccceeervennne 3

1.3.2. Installing SCons in Other LOCAtIONS.coiiiriiriiiiniienienieeiteste ettt 4

1.3.3. Building and Installing SCons Without Administrative Privilegesc..cccocevvueeenncene 4

2. Simple Builds 5
2.1. Building Simple C / CH4 ProZramsccoeieiiiiiiiiiiieieeeeieeeeeeie et 5

2.2. Building ODBjJECt FIIEScccuiiiiiiiiiiieiieieieeee ettt et s 6

2.3, Simple Java BUILAS ...coveiiiiiieeieeeet ettt s 7

2.4. Cleaning Up After a BUildcoiiiiiiiiiiee ettt st 7

2.5. The SCONSTEIUCE FIl@uuiiiiiiiiieiieiiecieeie ettt ettt et te et e b e e be e seessaeesbaessaesseeas 8
2.5.1. sconstruct Files Are Python SCriptsccoceeveririieiinieieeee e 8

2.5.2. SCons Functions Are Order-Independent............cocoecvererieiininieneieeeseeeescee e 8

2.6. Making the SCons Output Less VErDOSe.........coveruiriiiiniiiieieciieiesieeee e 10

3. Less Simple Things to Do With Builds 11
3.1. Specifying the Name of the Target (Output) File.........ccccooeriininiiiiiniininieeeeeeeeen 11

3.2. Compiling Multiple Source Filesccccririiririiiiniiiineeeteecee et 11

3.3. Making a list Of files With GLOD .c.eeouiriiriirieiieriiriieieecee ettt 12

3.4. Specifying Single Files Vs. Lists of FIlesccccooiiiiniininiiiiiicincenceceseeescecee 13

3.5. Making Lists of Files Easier t0 Readccceoieriiiiiiniiiniiiieeieeee et 14

3.6. KEYWOTA ATGUITIENES ...eouvieiieriieeiieiieniieeieeteesttesttesseeteesteesaseesseenseesssesssesnseesssesssesnseesseesssesnsen 15

3.7. Compiling MUultiple PrOZIamscccecueriiiiriienienieiiieitenite sttt ettt ettt esaesaeeateesbaesaaesnee s 15

3.8. Sharing Source Files Between Multiple Programsccoceevieenienieniienneenienieeieeneeseeeeeen 16

4. Building and Linking with Libraries 18
4.1, BUIlING LIDTATIESeeeuvieiieeiieiiieniteete ettt ettt ettt ettt ettt et e sae e st e beesbeesateebeenbee e 18
4.1.1. Building Libraries From Source Code or Object Files.......cc.cccecevviiiniinieniinniieniennnen. 18

4.1.2. Building Static Libraries Explicitly: the StaticLibrary Builder.......c...c..cccccenee. 19

4.1.3. Building Shared (DLL) Libraries: the SharedLibrary Builder........c.ccocceeveeneenen. 19

4.2. Linking with LIDFAriesccccecueiiiiiiiiinieieeceeeeceeeie ettt e 20

4.3. Finding Libraries: the SLIBPATH Construction Variable.............cocccuveireireinirennieeneeneenes 21

iii

5. Node Objects 23

5.1. Builder Methods Return Lists of Target NOdescccccceciiiiiiininiiniiiiiiiniciceccecec 23
5.2. Explicitly Creating File and Directory NOdEs............ccccecviiiiniiiiiniiiiiiiiicccccccc 24
5.3. Printing Node File NamMES..........cccociiiiiiiiiiiiiiiiiiii e 24
5.4. Using a Node’s File Name as @ STrNGcc.cceevieriirieniininieiinieeeeeceee e 25
5.5. GetBuildPath: Getting the Path From a Node Or String.........ccccoeveveniiieneninicnincccnceneen 26
6. Dependencies 27
6.1. Deciding When an Input File Has Changed: the Decider Functioncccccceeiniiinnne. 27
6.1.1. Using MD5 Signatures to Decide if a File Has Changed............ccccoocevinieiiniennnnnee. 27
6.1.2. Using Time Stamps to Decide If a File Has Changed...........c.ccccceeerinienenenecennencnnens 29
6.1.3. Deciding If a File Has Changed Using Both MD Signatures and Time Stamps.......... 30
6.1.4. Writing Your Own Custom Decider FUNCHONcocevviiiiiiiiiiiiieeeeeceee e 31
6.1.5. Mixing Different Ways of Deciding If a File Has Changed...........cccccooevieiiniennnnnee. 33
6.2. Older Functions for Deciding When an Input File Has Changed..........ccoccooeiiniinininncnennee. 33
6.2.1. The SourceSignatures FUNCHONcociiiiiiiiiiie e 34
6.2.2. The TargetSignatures FUNCHONc...cccuiiiiiiiiiiii e 34
6.3. Implicit Dependencies: The SCPPPATH Construction Variable.............coeeeeenrerereenennenenee 35
6.4. Caching Implicit DePendenciesccoeeuerierieriireenienieniteieeieete ettt 37
6.4.1. The ~—implicit-deps—changed OPtionc.coceveririininienenenienienteieeieeee e 38
6.4.2. The ~—implicit-deps—unchanged OPioN......ccccomiiririininiennenenienieneeree e 38
6.5. Explicit Dependencies: the Depends FUNCHONcooveviiiiiiniiinienieciceceeeeeee e 39
6.6. Dependencies From External Files: the ParseDepends Functionccceeeveevienieniennenne. 39
6.7. Ignoring Dependencies: the Tgnore FUNCHONc.coviiriiiiiiiiiiieiecceeee e 41
6.8. Order-Only Dependencies: the Requires FUNCHONcocuivviiiriiiiiiiieieieeieecee e 42
6.9. The AlwaysBuild FUNCHOMNoocviiiiiiiiii ettt eeree e e et e e e nreee s 44
7. Environments 46
7.1. Using Values From the External Environment............ccoccovoveiieenieniinnieenienieeieeieesiee e 46
7.2. Construction EnvVironments............ccccociviiiiiiiiiiiiiiiiiiiicecec e 47
7.2.1. Creating a Construction Environment:the Environment Function.................. 47
7.2.2. Fetching Values From a Construction Environment ... 48
7.2.3. Expanding Values From a Construction Environment: the subst Method........ 49
7.2.4. Handling Problems With Value EXpansioncccccocceviiiniininiinenieineneneeieenene 50
7.2.5. Controlling the Default Construction Environment:the DefaultEnvironment
FUNCHON L.ttt st 51
7.2.6. Multiple Construction ENVITONMENTS wiriirieiereiieieitieienieeseeiesreeeesseeseeeeeneenes 52
7.2.7. Making Copies of Construction Environments:the Clone Method.................. 53
7.2.8. Replacing Values: the Replace Method.........ccocovieiiiniiiiiniiiec e 54
7.2.9. Setting Values Only If They’re Not Already Defined: the SetDefault Method 56
7.2.10. Appending to the End of Values: the Append Methodccccovieiiiiniincnieniee 56
7.2.11. Appending Unique Values: the AppendUnique Method........cccceceeviriiiicneniencncene. 57
7.2.12. Appending to the Beginning of Values: the Prepend Methodcccceverieinncee. 57
7.2.13. Prepending Unique Values: the PrependUnique Method........cccooeverienenienicnncne. 58
7.3. Controlling the Execution Environment for Issued Commandscc.ccoceevenerienencenenennee. 58
7.3.1. Propagating PATH From the External Environmentc..cccevevveenencnncncniencnene. 59
7.3.2. Adding to PATH Values in the Execution Environment.........c..cccccocceverernienenieniencne. 59

8. Automatically Putting Command-line Options into their Construction Variables........................ 61

8.1. Merging Options into the Environment: the MergeFlags Function..........ccccoccecveeiincencnennee. 61
8.2. Separating Compile Arguments into their Variables: the ParseFlags Function.................... 62
8.3. Finding Installed Library Information: the ParseConfig Functionccccceecuevvieinieniennnen. 64
9. Controlling Build Output 66
9.1. Providing Build Help: the Help FUNCHONccoooiiiiiiniiiiiiic e 66
9.2. Controlling How SCons Prints Build Commands: the $*COMSTR Variablesc....c..c...... 67
9.3. Providing Build Progress Output: the Progress Function..............cccccocooiiiiiiiiiiininnnne. 69
9.4. Printing Detailed Build Status: the GetBuildFailures Function.......ccccoovvevcncnecncnncnn 71
10. Controlling a Build From the Command Line 74
10.1. Command-Line OPLIONS.........cceruerueerieriirieniietiete ettt ettt ettt ete sttt entesbeetesbeestetesbeeeesaeeaees 74
10.1.1. Not Having to Specify Command-Line Options Each Time: the SCONSFLAGS
Environment Variablec..cocieviiiiiiiiiieieiieee ettt 74
10.1.2. Getting Values Set by Command-Line Options: the GetOpt ion Function............... 75
10.1.3. Setting Values of Command-Line Options: the SetOption Function...................... 75
10.1.4. Strings for Getting or Setting Values of SCons Command-Line Options.................. 77
10.1.5. Adding Custom Command-Line Options: the AddOpt ion Function.........c...cc.c....... 78
10.2. Command-Line variable=value Build Variablesccccccoviniviinnninnininciieinnne 79
10.2.1. Controlling Command-Line Build Variables...........ccccceeveerieniiiriiiinienieniieneeneeeeenn 80
10.2.2. Providing Help for Command-Line Build Variables..........cccccccceceevenirnenenneniencne. 81
10.2.3. Reading Build Variables From a Fileccccociiiiiniiniiiiiiieniccicecee e 82
10.2.4. Pre-Defined Build Variable FUNCHONS.....c..ccccooiriiiininiiniinceicnccicieeecieeceeeeeen 83
10.2.5. Adding Multiple Command-Line Build Variables at Once..........c.ccceeceevvervveenueeneene 90
10.2.6. Handling Unknown Command-Line Build Variables: the Unknownvariables
FUNCHON ..c.oviiiiiiiici e e 91
10.3. Command-Line TarZeLS.......ccuieueerierieiiieieerie sttt ettt et ettt e e st st e sbeesabesabeenbes 92
10.3.1. Fetching Command-Line Targets: the COMMAND_LINE_TARGETS Variable.............. 92
10.3.2. Controlling the Default Targets: the Default Function.........cccocceeeniivencnienienncnne. 92
10.3.3. Fetching the List of Build Targets, Regardless of Origin: the BUILD_TARGETS
VATIADLE ...ttt sttt et e 96
11. Installing Files in Other Directories: the Install Builder 98
11.1. Installing Multiple Files in @ DIr€CtOryccceoiriiiiiiiiiiiiiiiie e 98
11.2. Installing a File Under a Different Name..........ccccoevvevierieiirininienenccieencecereseeneeeeeeesne e 99
11.3. Installing Multiple Files Under Different Namescccooceeeeririenienieiienieereecee e 100
12. Platform-Independent File System Manipulation 101
12.1. Copying Files or Directories: The Copy Factoryccccecevieiieninienieniiieneeeeecee e 101
12.2. Deleting Files or Directories: The Delete Factory.......coccoievininiininiiienieienccee s 102
12.3. Moving (Renaming) Files or Directories: The Move Factorycccoceevenenieniniencncnnns 103
12.4. Updating the Modification Time of a File: The Touch Factorycccccccevevvieniniencnnnns 103
12.5. Creating a Directory: The Mkdir FaCtOry......cccocirviireniiiiiniiiiniiieenececetee e 104
12.6. Changing File or Directory Permissions: The Chmod Factory........c.ccoceeeeneniieniniencncnnnens 104
12.7. Executing an action immediately: the Execute Function..........c.ccccceeeeviininiincnnncncnnenn. 105
13. Controlling Removal of Targets 107
13.1. Preventing target removal during build: the Precious Functionc..ccccceceeveevinvencncnnns 107
13.2. Preventing target removal during clean: the NoClean FuUnctionc.ccccceveeceeninvcencncnnns 107
13.3. Removing additional files during clean: the Clean Function............ccecceevievieniienieeneennnnns 108

14. Hierarchical Builds

15.

16.
17.

18.

19.
20.
21.

22,

14.1.
14.2.
14.3.
14.4.
14.5.

Separating Source and Build Directories

SConscript Filesccccoovvvenenn.

Path Names Are Relative to the SConscript DIr€Ctorycccooiervieeieeniienienieeieeseeeeeeeen
Top-Level Path Names in Subsidiary SConscript Files......cccooeiininiininnencnincnieennn

Absolute Path Names....................

Sharing Environments (and Other Variables) Between SConscript Files.......ccoceviennnen.

14.5.1. Exporting Variables
14.5.2. Importing Variables

14.5.3. Returning Values From an SConscript File ...,

15.1. Specifying a Variant Directory Tree as Part of an SConscript Callcccooveoiiiiiencneneen,
15.2. Why SCons Duplicates Source Files in a Variant Directory Tree...........cccoeceeeenerceneneenens
15.3. Telling SCons to Not Duplicate Source Files in the Variant Directory Treecc.cccuce....

15.4.

The variantDir Function..........

15.5. Using variantDir With an SConscript File ...

15.6.

Internationalization and localization with gettext

17.1.
17.2.

Writing Your Own Builders

18.1.
18.2.
18.3.
18.4.
18.5.
18.6.
18.7.

Not Writing a Builder: the Command Builder
Pseudo-Builders: the AddMethod function

Writing Scanners

21.1.

Using Glob with VariantDir....
Variant Builds

PrerequiSitesccoeeeereerieenieennnn.
Simple Projectcceeveereercvencneenne

Writing Builders That Execute External Commands..........cocceeviervieriieniienieniieenieenieseeeeen
Attaching a Builder to a Construction ENVironmenteceeeeoioieneoeeneeneeenes
Letting SCons Handle The File SuffiXes........cocceevierriiniiniiiiiiieeeecteeeeeeeeeeeee
Builders That Execute Python FUNCHONScccociiiiiiiiiiiniiieiniciccec e
Builders That Create Actions USINZ @ GENET ALt OL wuiveeiirierienienieienieerere e
Builders That Modify the Target or Source Lists Using an Emitter ...ccuoererreereneennnn.
Where To Put Your Custom Builders and TOOISccccueevueriieniiiienieeieieeeeeeseeeeeeeen

A Simple Scanner Example

21.2. Adding a search path to a scanner: FindPathDIirs ccueererierenirierienieeienieeieneeieeeeseeeaeens

Building From Code Repositories

22.1.
22.2.
22.3.

22.4.
22.5.
22.6.

The Repository Method

Finding source files in rEPOSILOTIEScevuirierrieriirieniinieetenieeteniesit ettt
Finding #include files i TePOSITOIIES.eruerreriiriieiiniieienieeteiesiteet ettt

22.3.1. Limitations on #include files i TePOSItOTIESeevvrerieriieerieeniienieerieeriee e eveeneees

Finding the SConstruct file in rePOSItOLIES ...c..evuveiireeiiniirieierietecetee e
Finding derived files in rePOSILOTIESccvvirueeieriiriiiinieeienieetene ettt et

Guaranteeing local copies of files

110

110
110
111
112
113
113
114
115

116

116
116
117
118
119
119

121
123

123
123

129

129
129
130
131
132
133
135

138
140
142

142
143

145

145
145
146
147
148
148
149

Vi

23. Multi-Platform Configuration (Autoconf Functionality) 151

23, 1. CONFiGUIE COMEEXE S cttritiiiiiriieeeeiitreeeeeeiirreeeeesitreeeeeesisreeeeeeitseeeeeessseeeeeestsseeeeesrreeeeeensreens 151
23.2. Checking for the Existence of Header Files..........ccccoviiiiiniiiiiiiniiniicieeiceeceeeeeeeene 151
23.3. Checking for the Availability of @ FUNCHON..........cociiiiiiiiiiiiieieiececeeee e 152
23.4. Checking for the Availability of @ Libraryc..cccccoevvieiiininiininieineeeceecce s 152
23.5. Checking for the Availability 0f @ typedef....ccoiiveriiiieiinieiiieceeceeee e 153
23.6. Adding Your Own Custom CheCKS.........cc.ceieviiriiiiiniiiieieniceceeeeeseeree e 153
23.7. Not Configuring When Cleaning Targets...........cceceeerieiiinieieninienieieeeseeeeee e 155
24. Caching Built Files 157
24.1. Specifying the Shared Cache DIr€CtOrycccorieieririieiieieiee ettt 157
24.2. Keeping Build Output CONSISTENTeeueeiieeieieriieienieeieeteeteeie st eite e steete st eieeseeeseenaesaeeneens 157
24.3. Not Using the Shared Cache for Specific Files........cccoooieiiriiiiniiiieiieeeeeeeeee e 158
24.4. Disabling the Shared Cachecooiiieiiiriiiiiieeeee et 159
24.5. Populating a Shared Cache With Already-Built Files...........ccccoviviininiiiiniiniiniieccene 159
24.6. Minimizing Cache Contention: the ——random OPON......c.ccecuererierenienieneniene e 160
25. Alias Targets 162
26. Java Builds 164
26.1. Building Java Class Files: the Java Builder.........ccccovviiriiniiiiniinieniecieeeeeeeeeeeesee s 164
26.2. How SCons Handles Java Dependenciescvevueerierieriieeniienienieeieenieeseesieenieeseeesnneens 164
26.3. Building Java Archive (. jar) Files: the Jar Buildercccocceevvieviiiiiiinieniinieienienee 165
26.4. Building C Header and Stub Files: the JavaH Builder........c.cocceeviiniiiniiienienieniccicenienee 166
26.5. Building RMI Stub and Skeleton Class Files: the RMIC Builder........c..ccccceeecienincencnennen. 167
27. Miscellaneous Functionality 169
27.1. Verifying the Python Version: the EnsurePythonVersion Function........cccecceceeeinennnen. 169
27.2. Verifying the SCons Version: the EnsureSConsVersion Function........c.ccceevvvcencncnnns 169
27.3. Explicitly Terminating SCons While Reading SConscript Files: the Exit Function....... 170
27.4. Searching for Files: the FindFile FUNCHON.......cccooiiiiiiiniiiiiiicieecreec e 170
27.5. Handling Nested Lists: the Flatten FUNCHON........ccccociiiiiiiiiiniiiiiicc s 172
27.6. Finding the Invocation Directory: the Get LaunchDir Function..........cccecoeveiinienincnnns 173
28. Troubleshooting 175
28.1. Why is That Target Being Rebuilt? the ——debug=explain Optionccccecevvrceerrrennnnns 175
28.2. What’s in That Construction Environment? the Dump Method...........c..cccoviieiiiieiieeeneee. 177
28.3. What Dependencies Does SCons Know About? the ——tree Option........ccceeceevercenierennnens 181
28.4. How is SCons Constructing the Command Lines It Executes? the -—debug=presub Option
187
28.5. Where is SCons Searching for Libraries? the ~—debug=findlibs Optionc.ccccereeruee 188
28.6. Where is SCons Blowing Up? the ——debug=stacktrace Option......c.ccecerceeruireeruerennns 188
28.7. How is SCons Making Its Decisions? the ——taskmastertrace Optioncccceceevueruennnenn 189
28.8. Watch SCons prepare targets for building: the —-—debug=prepare Optioncccccoueeueee. 191
28.9. Why is a file disappearing? the --debug=duplicate Option..........cc.ccocerervrerencienirieencnennens 191
A. Construction Variables 193
B. Builders 251
C. Tools 275
D. Functions and Environment Methods 293
E. Handling Common Tasks 335

Vii

List of Examples

E-1. Wildcard globbing to create a list Of fIlenames...........ccoceerieruerieriinieiineeeeeeee e 335
E-2. Filename extension SUDSTIULIONcc.eitirtertirtentietiete sttt ettt ettt ete st st e et eseeneesaeenaesaeennens 335
E-3. Appending a path prefix to a list of fiIleNamesccccooeeviererieriinieieeeeeeeee e 335
E-4. Substituting a path prefix with another 0Neccooiiiiiiiiiiiiieeee e 335
E-5. Filtering a filename list to exclude/retain only a specific set of eXtensions..........ccccecvevereerereenens 335
E-6. The "backtick function": run a shell command and capture the output...........ccceveeveenereenenennens 335
E-7. Generating source code: how code can be generated and used by SCONS........ccccevveevenereencnennen. 335

viii

Preface

Thank you for taking the time to read about SCons. SCons is a next-generation software construction
tool, or make tool--that is, a software utility for building software (or other files) and keeping built
software up-to-date whenever the underlying input files change.

The most distinctive thing about SCons is that its configuration files are actually scripts, written in the
Python programming language. This is in contrast to most alternative build tools, which typically invent
a new language to configure the build. SCons still has a learning curve, of course, because you have to
know what functions to call to set up your build properly, but the underlying syntax used should be
familiar to anyone who has ever looked at a Python script.

Paradoxically, using Python as the configuration file format makes SCons easier for non-programmers to
learn than the cryptic languages of other build tools, which are usually invented by programmers for other
programmers. This is in no small part due to the consistency and readability that are hallmarks of Python.
It just so happens that making a real, live scripting language the basis for the configuration files makes it

a snap for more accomplished programmers to do more complicated things with builds, as necessary.

1. SCons Principles

There are a few overriding principles we try to live up to in designing and implementing SCons:

Correctness

First and foremost, by default, SCons guarantees a correct build even if it means sacrificing
performance a little. We strive to guarantee the build is correct regardless of how the software being
built is structured, how it may have been written, or how unusual the tools are that build it.

Performance

Given that the build is correct, we try to make SCons build software as quickly as possible. In
particular, wherever we may have needed to slow down the default SCons behavior to guarantee a
correct build, we also try to make it easy to speed up SCons through optimization options that let
you trade off guaranteed correctness in all end cases for a speedier build in the usual cases.

Convenience

SCons tries to do as much for you out of the box as reasonable, including detecting the right tools
on your system and using them correctly to build the software.

In a nutshell, we try hard to make SCons just "do the right thing" and build software correctly, with a
minimum of hassles.

Preface

2. A Caveat About This Guide’s Completeness

One word of warning as you read through this Guide: Like too much Open Source software out there, the
SCons documentation isn’t always kept up-to-date with the available features. In other words, there’s a
lot that SCons can do that isn’t yet covered in this User’s Guide. (Come to think of it, that also describes
a lot of proprietary software, doesn’t it?)

Although this User’s Guide isn’t as complete as we’d like it to be, our development process does
emphasize making sure that the SCons man page is kept up-to-date with new features. So if you’re trying
to figure out how to do something that SCons supports but can’t find enough (or any) information here, it
would be worth your while to look at the man page to see if the information is covered there. And if you
do, maybe you’d even consider contributing a section to the User’s Guide so the next person looking for
that information won’t have to go through the same thing...?

3. Acknowledgements

SCons would not exist without a lot of help from a lot of people, many of whom may not even be aware
that they helped or served as inspiration. So in no particular order, and at the risk of leaving out someone:

First and foremost, SCons owes a tremendous debt to Bob Sidebotham, the original author of the classic
Perl-based Cons tool which Bob first released to the world back around 1996. Bob’s work on Cons
classic provided the underlying architecture and model of specifying a build configuration using a real
scripting language. My real-world experience working on Cons informed many of the design decisions in
SCons, including the improved parallel build support, making Builder objects easily definable by users,
and separating the build engine from the wrapping interface.

Greg Wilson was instrumental in getting SCons started as a real project when he initiated the Software
Carpentry design competition in February 2000. Without that nudge, marrying the advantages of the
Cons classic architecture with the readability of Python might have just stayed no more than a nice idea.

The entire SCons team have been absolutely wonderful to work with, and SCons would be nowhere near
as useful a tool without the energy, enthusiasm and time people have contributed over the past few years.
The "core team" of Chad Austin, Anthony Roach, Bill Deegan, Charles Crain, Steve Leblanc, Greg Noel,
Gary Oberbrunner, Greg Spencer and Christoph Wiedemann have been great about reviewing my (and
other) changes and catching problems before they get in the code base. Of particular technical note:
Anthony’s outstanding and innovative work on the tasking engine has given SCons a vastly superior
parallel build model; Charles has been the master of the crucial Node infrastructure; Christoph’s work on
the Configure infrastructure has added crucial Autoconf-like functionality; and Greg has provided
excellent support for Microsoft Visual Studio.

Special thanks to David Snopek for contributing his underlying "Autoscons" code that formed the basis
of Christoph’s work with the Configure functionality. David was extremely generous in making this code

Preface

available to SCons, given that he initially released it under the GPL and SCons is released under a
less-restrictive MIT-style license.

Thanks to Peter Miller for his splendid change management system, Aegis, which has provided the
SCons project with a robust development methodology from day one, and which showed me how you
could integrate incremental regression tests into a practical development cycle (years before eXtreme
Programming arrived on the scene).

And last, thanks to Guido van Rossum for his elegant scripting language, which is the basis not only for
the SCons implementation, but for the interface itself.

4. Contact

The best way to contact people involved with SCons, including the author, is through the SCons mailing
lists.

If you want to ask general questions about how to use SCons send email to users@scons.tigris.org.

If you want to contact the SCons development community directly, send email to

dev@scons.tigris.org.

If you want to receive announcements about SCons, join the low-volume

announce@scons.tigris.org mailing list.

Xi

Chapter 1. Building and Installing SCons

This chapter will take you through the basic steps of installing SCons on your system, and building
SCons if you don’t have a pre-built package available (or simply prefer the flexibility of building it
yourself). Before that, however, this chapter will also describe the basic steps involved in installing
Python on your system, in case that is necessary. Fortunately, both SCons and Python are very easy to
install on almost any system, and Python already comes installed on many systems.

1.1. Installing Python

Because SCons is written in Python, you must obviously have Python installed on your system to use
SCons. Before you try to install Python, you should check to see if Python is already available on your
system by typing python -V (capital ’V’) or python —-version at your system’s command-line
prompt.

$ python -V
Python 2.5.1

And on a Windows system with Python installed:

C:\>python -V
Python 2.5.1

If Python is not installed on your system, you will see an error message stating something like
"command not found" (on UNIX or Linux) or "’python’ is not recognized as an internal or external
command, operable progam or batch file" (on Windows). In that case, you need to install Python before
you can install SCons.

The standard location for information about downloading and installing Python is
http://www.python.org/download/. See that page for information about how to download and install
Python on your system.

SCons will work with any 2.x version of Python from 2.4 on; 3.0 and later are not yet supported. If you
need to install Python and have a choice, we recommend using the most recent 2.x Python version
available. Newer Pythons have significant improvements that help speed up the performance of SCons.

1.2. Installing SCons From Pre-Built Packages

SCons comes pre-packaged for installation on a number of systems, including Linux and Windows

Chapter 1. Building and Installing SCons

systems. You do not need to read this entire section, you should need to read only the section appropriate
to the type of system you’re running on.

1.2.1. Installing SCons on Red Hat (and Other RPM-based)
Linux Systems

SCons comes in RPM (Red Hat Package Manager) format, pre-built and ready to install on Red Hat
Linux, Fedora, or any other Linux distribution that uses RPM. Your distribution may already have an
SCons RPM built specifically for it; many do, including SUSE, Mandrake and Fedora. You can check for
the availability of an SCons RPM on your distribution’s download servers, or by consulting an RPM
search site like http://www.rpmfind.net/ or http://rpm.pbone.net/.

If your distribution supports installation via yum, you should be able to install SCons by running:

yum install scons

If your Linux distribution does not already have a specific SCons RPM file, you can download and install
from the generic RPM provided by the SCons project. This will install the SCons script(s) in /usr/bin,
and the SCons library modules in /usr/1ib/scons.

To install from the command line, simply download the appropriate . rpm file, and then run:

rpm -Uvh scons-2.3.0-1.noarch.rpm

Or, you can use a graphical RPM package manager. See your package manager application’s
documention for specific instructions about how to use it to install a downloaded RPM.

1.2.2. Installing SCons on Debian Linux Systems

Debian Linux systems use a different package management format that also makes it very easy to install
SCons.

If your system is connected to the Internet, you can install the latest official Debian package by running:

apt-get install scons

Chapter 1. Building and Installing SCons

1.2.3. Installing SCons on Windows Systems

SCons provides a Windows installer that makes installation extremely easy. Download the
scons—2.3.0.win32.exe file from the SCons download page at http://www.scons.org/download.php.
Then all you need to do is execute the file (usually by clicking on its icon in Windows Explorer). These
will take you through a small sequence of windows that will install SCons on your system.

1.3. Building and Installing SCons on Any System

If a pre-built SCons package is not available for your system, then you can still easily build and install
SCons using the native Python distutils package.

The first step is to download either the scons-2.3.0.tar.gz or scons-2.3.0.zip, which are
available from the SCons download page at http://www.scons.org/download.html.

Unpack the archive you downloaded, using a utility like tar on Linux or UNIX, or WinZip on Windows.
This will create a directory called scons-2. 3.0, usually in your local directory. Then change your
working directory to that directory and install SCons by executing the following commands:

cd scons-2.3.0
python setup.py install

This will build SCons, install the scons script in the python which is used to run the setup.py’s scripts
directory (/usr/local/bin or C:\Python25\Scripts), and will install the SCons build engine in
the corresponding library directory for the python used (/usr/local/lib/scons or
C:\Python25\scons). Because these are system directories, you may need root (on Linux or UNIX) or
Administrator (on Windows) privileges to install SCons like this.

1.3.1. Building and Installing Multiple Versions of SCons
Side-by-Side

The SCons setup.py script has some extensions that support easy installation of multiple versions of
SCons in side-by-side locations. This makes it easier to download and experiment with different versions
of SCons before moving your official build process to a new version, for example.

To install SCons in a version-specific location, add the -—version-1ib option when you call
setup.py:

python setup.py install --version-lib

Chapter 1. Building and Installing SCons

This will install the SCons build engine in the /usr/1lib/scons-2.3.0 or
C:\Python25\scons-2. 3.0 directory, for example.

If you use the ——version-1ib option the first time you install SCons, you do not need to specify it each
time you install a new version. The SCons setup.py script will detect the version-specific directory
name(s) and assume you want to install all versions in version-specific directories. You can override that
assumption in the future by explicitly specifying the ~—standalone-1ib option.

1.3.2. Installing SCons in Other Locations

You can install SCons in locations other than the default by specifying the ——prefix= option:

python setup.py install --prefix=/opt/scons

This would install the scons script in /opt/scons/bin and the build engine in

/opt/scons/1lib/scons,

Note that you can specify both the -——prefix=and the --version-1ib options at the same type, in
which case setup.py will install the build engine in a version-specific directory relative to the specified
prefix. Adding ——version-1ib to the above example would install the build engine in
/opt/scons/1lib/scons-2.3.0.

1.3.3. Building and Installing SCons Without Administrative
Privileges

If you don’t have the right privileges to install SCons in a system location, simply use the ——prefix=
option to install it in a location of your choosing. For example, to install SCons in appropriate locations
relative to the user’s SHOME directory, the scons script in $HOME /bin and the build engine in
$HOME/1ib/scons, simply type:

$ python setup.py install —--prefix=$HOME

You may, of course, specify any other location you prefer, and may use the —-version-1ib option if
you would like to install version-specific directories relative to the specified prefix.

This can also be used to experiment with a newer version of SCons than the one installed in your system
locations. Of course, the location in which you install the newer version of the scons script (SHOME /bin
in the above example) must be configured in your PATH variable before the directory containing the
system-installed version of the scons script.

Chapter 2. Simple Builds

In this chapter, you will see several examples of very simple build configurations using SCons, which
will demonstrate how easy it is to use SCons to build programs from several different programming
languages on different types of systems.

2.1. Building Simple C / C++ Programs

Here’s the famous "Hello, World!" program in C:

int
main ()
{
printf ("Hello, world!\n");

And here’s how to build it using SCons. Enter the following into a file named SConstruct:

Program(’hello.c’)

This minimal configuration file gives SCons two pieces of information: what you want to build (an
executable program), and the input file from which you want it built (the hello.c file). Programis a
builder_method, a Python call that tells SCons that you want to build an executable program.

That’s it. Now run the scons command to build the program. On a POSIX-compliant system like Linux
or UNIX, you’ll see something like:

o

% scons
scons: Reading SConscript files
scons: done reading SConscript files.
scons: Building targets

cc -o hello.o -c hello.c

cc -o hello hello.o

scons: done building targets.

On a Windows system with the Microsoft Visual C++ compiler, you’ll see something like:

C:\>scons

scons: Reading SConscript files
scons: done reading SConscript files.
scons: Building targets

cl /Fohello.obj /c hello.c /nologo

Chapter 2. Simple Builds

link /nologo /OUT:hello.exe hello.obj
embedManifestExeCheck (target, source, env)
scons: done building targets.

First, notice that you only need to specify the name of the source file, and that SCons correctly deduces
the names of the object and executable files to be built from the base of the source file name.

Second, notice that the same input sConstruct file, without any changes, generates the correct output
file names on both systems: hello.o and hello on POSIX systems, hello.obsj and hello.exe on
Windows systems. This is a simple example of how SCons makes it extremely easy to write portable
software builds.

(Note that we won’t provide duplicate side-by-side POSIX and Windows output for all of the examples
in this guide; just keep in mind that, unless otherwise specified, any of the examples should work equally
well on both types of systems.)

2.2. Building Object Files

The Program builder method is only one of many builder methods that SCons provides to build different
types of files. Another is the Object builder method, which tells SCons to build an object file from the
specified source file:

Object ("hello.c’)

Now when you run the scons command to build the program, it will build just the hello. o object file
on a POSIX system:

)

% scons
scons: Reading SConscript files
scons: done reading SConscript files.
scons: Building targets

cc -o hello.o —-c hello.c

scons: done building targets.

And just the hello.obj object file on a Windows system (with the Microsoft Visual C++ compiler):

C:\>scons

scons: Reading SConscript files
scons: done reading SConscript files.
scons: Building targets

cl /Fohello.obj /c hello.c /nologo
scons: done building targets.

2.3. Simple Java Builds

Chapter 2. Simple Builds

SCons also makes building with Java extremely easy. Unlike the Program and Ob ject builder methods,
however, the Java builder method requires that you specify the name of a destination directory in which
you want the class files placed, followed by the source directory in which the . java files live:

Java (' classes’, ’'src’)

If the src directory contains a single hello. java file, then the output from running the scons

command would look something like this (on a POSIX system):

% scons

scons: Reading SConscript files
scons: done reading SConscript files.
scons: Building targets

javac -d classes -sourcepath src src/hello.java

scons: done building targets.

We’ll cover Java builds in more detail, including building Java archive (. jar) and other types of file, in

Chapter 26.

2.4. Cleaning Up After a Build

When using SCons, it is unnecessary to add special commands or target names to clean up after a build.
Instead, you simply use the —c or ——clean option when you invoke SCons, and SCons removes the
appropriate built files. So if we build our example above and then invoke scons -c afterwards, the

output on POSIX looks like:

% scons

scons: Reading SConscript files
scons: done reading SConscript files.
scons: Building targets

cc -o hello.o -c hello.c

cc -o hello hello.o

scons: done building targets.

s scons -—cC

scons: Reading SConscript files

scons: done reading SConscript files.

scons: Cleaning targets
Removed hello.o

Removed hello

scons: done cleaning targets.

Chapter 2. Simple Builds

And the output on Windows looks like:

C:\>scons

scons: Reading SConscript files
scons: done reading SConscript files.
scons: Building targets

cl /Fohello.obj /c hello.c /nologo
link /nologo /OUT:hello.exe hello.obj
embedManifestExeCheck (target, source, env)
scons: done building targets.
C:\>scons -c

scons: Reading SConscript files
scons: done reading SConscript files.
scons: Cleaning targets

Removed hello.obj

Removed hello.exe

scons: done cleaning targets.

Notice that SCons changes its output to tell you that it is Cleaning targets ... and done

cleaning targets.

2.5. The sconstruct File

If you’re used to build systems like Make you’ve already figured out that the SConstruct file is the
SCons equivalent of a Makefile. That is, the SConstruct file is the input file that SCons reads to
control the build.

2.5.1. sconstruct Files Are Python Scripts

There is, however, an important difference between an SConstruct file and a Makefile: the
SConstruct file is actually a Python script. If you’re not already familiar with Python, don’t worry. This
User’s Guide will introduce you step-by-step to the relatively small amount of Python you’ll need to
know to be able to use SCons effectively. And Python is very easy to learn.

One aspect of using Python as the scripting language is that you can put comments in your SConstruct
file using Python’s commenting convention; that is, everything between a ’#’ and the end of the line will
be ignored:

Arrange to build the "hello" program.
Program(’hello.c’) # "hello.c" is the source file.

You’ll see throughout the remainder of this Guide that being able to use the power of a real scripting
language can greatly simplify the solutions to complex requirements of real-world builds.

Chapter 2. Simple Builds

2.5.2. SCons Functions Are Order-Independent

One important way in which the SConstruct file is not exactly like a normal Python script, and is more
like a Makefile, is that the order in which the SCons functions are called in the SConstruct file does
not affect the order in which SCons actually builds the programs and object files you want it to build.' In
other words, when you call the Program builder (or any other builder method), you’re not telling SCons
to build the program at the instant the builder method is called. Instead, you’re telling SCons to build the
program that you want, for example, a program built from a file named hello.c, and it’s up to SCons to
build that program (and any other files) whenever it’s necessary. (We’ll learn more about how SCons
decides when building or rebuilding a file is necessary in Chapter 6, below.)

SCons reflects this distinction between calling a builder method like Program and actually building the
program by printing the status messages that indicate when it’s "just reading" the sConstruct file, and
when it’s actually building the target files. This is to make it clear when SCons is executing the Python
statements that make up the sConstruct file, and when SCons is actually executing the commands or
other actions to build the necessary files.

Let’s clarify this with an example. Python has a print statement that prints a string of characters to the
screen. If we put print statements around our calls to the Program builder method:

print "Calling Program(’hello.c’)"
Program(’hello.c’)

print "Calling Program(’goodbye.c’)"
Program(’goodbye.c’)

print "Finished calling Program()"

Then when we execute SCons, we see the output from the print statements in between the messages
about reading the SConscript files, indicating that that is when the Python statements are being
executed:

% scons

scons: Reading SConscript files
Calling Program(’hello.c’)
Calling Program(’goodbye.c’)
Finished calling Program()
scons: done reading SConscript files.
scons: Building targets

cc —-o goodbye.o —-c goodbye.c

cc —-o goodbye goodbye.o

cc -o hello.o -c hello.c

cc -o hello hello.o

scons: done building targets.

Notice also that SCons built the goodbye program first, even though the "reading SConscript" output
shows that we called Program (' hello.c’) firstin the SConstruct file.

Chapter 2. Simple Builds

2.6. Making the SCons Output Less Verbose

You’ve already seen how SCons prints some messages about what it’s doing, surrounding the actual
commands used to build the software:

C:\>scons

scons: Reading SConscript files

scons: done reading SConscript files.
scons: Building targets

cl /Fohello.obj /c hello.c /nologo

link /nologo /OUT:hello.exe hello.obj
embedManifestExeCheck (target, source, env)
scons: done building targets.

These messages emphasize the order in which SCons does its work: all of the configuration files
(generically referred to as SConscript files) are read and executed first, and only then are the target
files built. Among other benefits, these messages help to distinguish between errors that occur while the
configuration files are read, and errors that occur while targets are being built.

One drawback, of course, is that these messages clutter the output. Fortunately, they’re easily disabled by
using the -0 option when invoking SCons:

C:\>scons -Q

cl /Fohello.obj /c hello.c /nologo

link /nologo /OUT:hello.exe hello.obj
embedManifestExeCheck (target, source, env)

Because we want this User’s Guide to focus on what SCons is actually doing, we’re going to use the —Q
option to remove these messages from the output of all the remaining examples in this Guide.

Notes

1. In programming parlance, the sConstruct file is declarative, meaning you tell SCons what you
want done and let it figure out the order in which to do it, rather than strictly imperative, where you
specify explicitly the order in which to do things.

10

Chapter 3. Less Simple Things to Do With
Builds

In this chapter, you will see several examples of very simple build configurations using SCons, which
will demonstrate how easy it is to use SCons to build programs from several different programming
languages on different types of systems.

3.1. Specifying the Name of the Target (Output) File

You’ve seen that when you call the Program builder method, it builds the resulting program with the
same base name as the source file. That is, the following call to build an executable program from the
hello.c source file will build an executable program named hello on POSIX systems, and an
executable program named hello.exe on Windows systems:

Program(’hello.c’)

If you want to build a program with a different name than the base of the source file name, you simply
put the target file name to the left of the source file name:

Program(’new_hello’, 'hello.c’)

(SCons requires the target file name first, followed by the source file name, so that the order mimics that
of an assignment statement in most programming languages, including Python: "program = source
files".)

Now SCons will build an executable program named new_hello when run on a POSIX system:

% scons -Q
cc -0 hello.o -c hello.c
cc —o new_hello hello.o

And SCons will build an executable program named new_hello.exe when run on a Windows system:

C:\>scons -Q

cl /Fohello.obj /c hello.c /nologo

link /nologo /OUT:new_hello.exe hello.obj
embedManifestExeCheck (target, source, env)

11

Chapter 3. Less Simple Things to Do With Builds

3.2. Compiling Multiple Source Files

You’ve just seen how to configure SCons to compile a program from a single source file. It’s more
common, of course, that you’ll need to build a program from many input source files, not just one. To do
this, you need to put the source files in a Python list (enclosed in square brackets), like so:

Program([’'prog.c’, ’"filel.c’, '"file2.c’])

A build of the above example would look like:

% scons -Q

cc -o filel.o -c filel.c

cc -o file2.0 -c file2.c

cc -0 prog.o —c prog.c

cc -o prog prog.o filel.o file2.o

Notice that SCons deduces the output program name from the first source file specified in the list--that is,
because the first source file was prog. c, SCons will name the resulting program prog (or prog.exe on
a Windows system). If you want to specify a different program name, then (as we’ve seen in the previous
section) you slide the list of source files over to the right to make room for the output program file name.
(SCons puts the output file name to the left of the source file names so that the order mimics that of an
assignment statement: "program = source files".) This makes our example:

Program(’program’, [’'prog.c’, "filel.c’, 'file2.c’])

On Linux, a build of this example would look like:

)

% scons —Q

cc -o filel.o -c filel.c

cc -o file2.0 -c file2.c

cC -0 Prog.o —-C prog.c

cc -0 program prog.o filel.o file2.o

Or on Windows:

C:\>scons -Q

cl /Fofilel.obj /c filel.c /nologo

cl /Fofile2.0obj /c file2.c /nologo

cl /Foprog.obj /c prog.c /nologo

link /nologo /OUT:program.exe prog.obj filel.obj file2.obj
embedManifestExeCheck (target, source, env)

12

Chapter 3. Less Simple Things to Do With Builds

3.3. Making a list of files with G1ob

You can also use the G1ob function to find all files matching a certain template, using the standard shell
pattern matching characters =, ? and [abc] to match any of a, b or c. [!abc] is also supported, to
match any character except a, b or c. This makes many multi-source-file builds quite easy:

Program ('’ program’, Glob(’=*.c’))

The SCons man page has more details on using G1ob with variant directories (see Chapter 16, below)
and repositories (see Chapter 22, below), and returning strings rather than Nodes.

3.4. Specifying Single Files Vs. Lists of Files

We’ve now shown you two ways to specify the source for a program, one with a list of files:

Program(’hello’, [’filel.c’, ’"file2.c’])

And one with a single file:

Program(’hello’, ’"hello.c’)

You could actually put a single file name in a list, too, which you might prefer just for the sake of
consistency:

Program(’hello’, ['hello.c’])

SCons functions will accept a single file name in either form. In fact, internally, SCons treats all input as
lists of files, but allows you to omit the square brackets to cut down a little on the typing when there’s
only a single file name.

Important: Although SCons functions are forgiving about whether or not you use a string vs. a list for
a single file name, Python itself is more strict about treating lists and strings differently. So where
SCons allows either a string or list:

The following two calls both work correctly:
Program(’programl’, ’'programl.c’)
Program(’program2’, [’program2.c’])

Trying to do "Python things" that mix strings and lists will cause errors or lead to incorrect results:

common_sources = [/filel.c’, ’"file2.c’]

13

Chapter 3. Less Simple Things to Do With Builds

THE FOLLOWING IS INCORRECT AND GENERATES A PYTHON ERROR
BECAUSE IT TRIES TO ADD A STRING TO A LIST:
Program(’programl’, common_sources + ’programl.c’)

The following works correctly, because it’s adding two
lists together to make another list.
Program(’program2’, common_sources + [’'program2.c’])

3.5. Making Lists of Files Easier to Read

One drawback to the use of a Python list for source files is that each file name must be enclosed in quotes
(either single quotes or double quotes). This can get cuambersome and difficult to read when the list of file
names is long. Fortunately, SCons and Python provide a number of ways to make sure that the
SConstruct file stays easy to read.

To make long lists of file names easier to deal with, SCons provides a Sp1it function that takes a quoted
list of file names, with the names separated by spaces or other white-space characters, and turns it into a
list of separate file names. Using the Split function turns the previous example into:

Program (' program’, Split('main.c filel.c file2.c’))

(If you’re already familiar with Python, you’ll have realized that this is similar to the split () method in
the Python standard st ring module. Unlike the split () member function of strings, however, the
Split function does not require a string as input and will wrap up a single non-string object in a list, or
return its argument untouched if it’s already a list. This comes in handy as a way to make sure arbitrary
values can be passed to SCons functions without having to check the type of the variable by hand.)

Putting the call to the Sp1it function inside the Program call can also be a little unwieldy. A more
readable alternative is to assign the output from the Split call to a variable name, and then use the
variable when calling the Program function:

src_files = Split('main.c filel.c file2.c’)
Program (' program’, src_files)

Lastly, the sp1it function doesn’t care how much white space separates the file names in the quoted
string. This allows you to create lists of file names that span multiple lines, which often makes for easier
editing:

src_files = Split("""main.c

filel.c
file2.c""")

14

Chapter 3. Less Simple Things to Do With Builds

Program (' program’, src_files)

(Note in this example that we used the Python "triple-quote" syntax, which allows a string to contain
multiple lines. The three quotes can be either single or double quotes.)

3.6. Keyword Arguments

SCons also allows you to identify the output file and input source files using Python keyword arguments.
The output file is known as the target, and the source file(s) are known (logically enough) as the source.
The Python syntax for this is:

src_files = Split('main.c filel.c file2.c’)
Program(target = ’'program’, source = src_files)

Because the keywords explicitly identify what each argument is, you can actually reverse the order if you
prefer:

src_files = Split('main.c filel.c file2.c’)
Program(source = src_files, target = ’"program’)

Whether or not you choose to use keyword arguments to identify the target and source files, and the order
in which you specify them when using keywords, are purely personal choices; SCons functions the same
regardless.

3.7. Compiling Multiple Programs

In order to compile multiple programs within the same sConstruct file, simply call the Program
method multiple times, once for each program you need to build:

Program(’ foo.c’)
Program(’bar’, [’'barl.c’, ’'bar2.c’])

SCons would then build the programs as follows:

)

% scons —-Q

cc —-o barl.o -c barl.c
cc -o bar2.o0 -c bar2.c
cc -0 bar barl.o bar2.o
cc -o foo.o -c foo.c

cc -o foo foo.o

15

Chapter 3. Less Simple Things to Do With Builds

Notice that SCons does not necessarily build the programs in the same order in which you specify them
in the sconstruct file. SCons does, however, recognize that the individual object files must be built
before the resulting program can be built. We’ll discuss this in greater detail in the "Dependencies”
section, below.

3.8. Sharing Source Files Between Multiple Programs

It’s common to re-use code by sharing source files between multiple programs. One way to do this is to
create a library from the common source files, which can then be linked into resulting programs.
(Creating libraries is discussed in Chapter 4, below.)

A more straightforward, but perhaps less convenient, way to share source files between multiple
programs is simply to include the common files in the lists of source files for each program:

Program (Split (' foo.c commonl.c common2.c’))
Program(’bar’, Split('barl.c bar2.c commonl.c common2.c’))

SCons recognizes that the object files for the common1 . c and common2 . c source files each need to be
built only once, even though the resulting object files are each linked in to both of the resulting
executable programs:

o

% scons —-Q

cc -o barl.o -c barl.c

cc -o bar2.o0 -c bar2.c

cc —-o commonl.o —c commonl.c

cc -0 common2.o0 —C common2.c

cc -o bar barl.o bar2.o commonl.o common?2.o
cc -o foo.o -c foo.c

cc -o foo foo.o commonl.o common2.o

If two or more programs share a lot of common source files, repeating the common files in the list for
each program can be a maintenance problem when you need to change the list of common files. You can
simplify this by creating a separate Python list to hold the common file names, and concatenating it with
other lists using the Python + operator:

common = [’commonl.c’, ’common2.c’]
foo_files = ['foo.c’] + common

bar_files ["barl.c’, ’'bar2.c’] + common
Program(’ foo’, foo_files)

Program (’bar’, bar_files)

16

Chapter 3. Less Simple Things to Do With Builds

This is functionally equivalent to the previous example.

17

Chapter 4. Building and Linking with Libraries

It’s often useful to organize large software projects by collecting parts of the software into one or more
libraries. SCons makes it easy to create libraries and to use them in the programs.

4.1. Building Libraries

You build your own libraries by specifying Library instead of Program:

Library ('’ foo’, ["fl.c’, '"f2.c’, "£f3.c’'])

SCons uses the appropriate library prefix and suffix for your system. So on POSIX or Linux systems, the
above example would build as follows (although ranlib may not be called on all systems):

%

cc
cc
cc
ar

scons -Q

-o fl.o -¢c fl.c
-0 f2.0 -c f2.c
-o £f3.0 -c f3.c
rc libfoo.a fl.o f2.0 £f3.0

ranlib libfoo.a

On a Windows system, a build of the above example would look like:

C:\>scons -Q

cl
cl
cl

/Fofl.obj /c fl.c /nologo
/Fof2.0bj /c f2.c /nologo
/Fof3.0bj /c £3.c /nologo

lib /nologo /OUT:foo.lib fl.obj f2.0bj f£3.0bj

The rules for the target name of the library are similar to those for programs: if you don’t explicitly
specify a target library name, SCons will deduce one from the name of the first source file specified, and
SCons will add an appropriate file prefix and suffix if you leave them off.

4.1.1. Building Libraries From Source Code or Object Files

The previous example shows building a library from a list of source files. You can, however, also give the
Library call object files, and it will correctly realize In fact, you can arbitrarily mix source code files
and object files in the source list:

Library ('’ foo’, ["fl.c’, "f2.0", "£f3.c’, "f4.0"1])

18

Chapter 4. Building and Linking with Libraries
And SCons realizes that only the source code files must be compiled into object files before creating the
final library:

% scons -Q

cc -o fl.o -c fl.c

cc -o £f3.0 -c f3.c

ar rc libfoo.a fl.o f2.0 £3.0 f4.0
ranlib libfoo.a

Of course, in this example, the object files must already exist for the build to succeed. See Chapter 5,
below, for information about how you can build object files explicitly and include the built files in a
library.

4.1.2. Building Static Libraries Explicitly: the staticLibrary
Builder

The Library function builds a traditional static library. If you want to be explicit about the type of
library being built, you can use the synonym StaticLibrary function instead of Library:

StaticLibrary (' foo’, ["fl.c’, "f2.c’, "£f3.c’1])

There is no functional difference between the StaticLibrary and Library functions.

4.1.3. Building Shared (DLL) Libraries: the sharedLibrary
Builder

If you want to build a shared library (on POSIX systems) or a DLL file (on Windows systems), you use
the SharedLibrary function:

SharedLibrary (’ foo’, ["fl.c’, "f2.c’, "£3.c’1])

The output on POSIX:

% scons -Q

cc —o fl.os -c fl.c

cc -o f2.0s -c f2.c

cc -o f3.0s -c f3.c

cc -o libfoo.so -shared fl.os f2.o0s f3.os

And the output on Windows:

19

Chapter 4. Building and Linking with Libraries

C:\>scons -Q

cl /Fofl.obj /c fl.c /nologo

cl /Fof2.0bj /c f2.c /nologo

cl /Fof3.0obj /c £3.c /nologo

link /nologo /dll /out:foo.dll /implib:foo.lib fl.obj f2.0bj £3.0bj
RegServerFunc (target, source, env)

embedManifestDl1lCheck (target, source, env)

Notice again that SCons takes care of building the output file correctly, adding the -shared option for a
POSIX compilation, and the /d11 option on Windows.

4.2. Linking with Libraries

Usually, you build a library because you want to link it with one or more programs. You link libraries
with a program by specifying the libraries in the $SLIBS construction variable, and by specifying the
directory in which the library will be found in the $SLIBPATH construction variable:

Library ('’ foo’, ["fl.c’, "f2.c’, "£f3.c’'])
Program(’prog.c’, LIBS=['foo’, ’'bar’], LIBPATH='.')

Notice, of course, that you don’t need to specify a library prefix (like 1ib) or suffix (like .a or .1ib).
SCons uses the correct prefix or suffix for the current system.

On a POSIX or Linux system, a build of the above example would look like:

o

% scons —-Q

cc -o fl.o -c fl.c

cc -o f2.0 -¢c f2.c

cc -o £3.0 -c f3.c

ar rc libfoo.a fl.o f2.0 £f3.0
ranlib libfoo.a

cCC -0 Prog.o —-c prog.c

cc -o prog prog.o -L. -1lfoo -lbar

On a Windows system, a build of the above example would look like:

C:\>scons -Q

cl /Fofl.obj /c fl.c /nologo

cl /Fof2.0bj /c f2.c /nologo

cl /Fof3.0bj /c f3.c /nologo

1lib /nologo /OUT:foo.lib fl.obj f2.0bj £3.0bj

cl /Foprog.obj /c prog.c /nologo

link /nologo /OUT:prog.exe /LIBPATH:. foo.lib bar.lib prog.obj

20

Chapter 4. Building and Linking with Libraries

embedManifestExeCheck (target, source, env)

As usual, notice that SCons has taken care of constructing the correct command lines to link with the
specified library on each system.

Note also that, if you only have a single library to link with, you can specify the library name in single
string, instead of a Python list, so that:

Program(’prog.c’, LIBS=’foo’, LIBPATH='.’)

is equivalent to:

Program(’prog.c’, LIBS=['foo’], LIBPATH='.’)

This is similar to the way that SCons handles either a string or a list to specify a single source file.

4.3. Finding Libraries: the $LIBPATH Construction
Variable

By default, the linker will only look in certain system-defined directories for libraries. SCons knows how
to look for libraries in directories that you specify with the SLIBPATH construction variable. SLIBPATH
consists of a list of directory names, like so:

Program(’prog.c’, LIBS = 'm’

’
LIBPATH [/usr/1lib’, ’/usr/local/lib’])

Using a Python list is preferred because it’s portable across systems. Alternatively, you could put all of
the directory names in a single string, separated by the system-specific path separator character: a colon
on POSIX systems:

LIBPATH = ’/usr/lib:/usr/local/lib’

or a semi-colon on Windows systems:

LIBPATH = ’C:\\1lib;D:\\1lib’

21

Chapter 4. Building and Linking with Libraries

(Note that Python requires that the backslash separators in a Windows path name be escaped within
strings.)

When the linker is executed, SCons will create appropriate flags so that the linker will look for libraries
in the same directories as SCons. So on a POSIX or Linux system, a build of the above example would
look like:

% scons -Q

cc -0 pProg.o —c prog.c
cc -0 prog prog.o -L/usr/lib -L/usr/local/lib -1m

On a Windows system, a build of the above example would look like:

C:\>scons -Q

cl /Foprog.obj /c prog.c /nologo

link /nologo /OUT:prog.exe /LIBPATH:\usr\lib /LIBPATH:\usr\localllib m.lib prog.obj
embedManifestExeCheck (target, source, env)

Note again that SCons has taken care of the system-specific details of creating the right command-line
options.

22

Chapter 5. Node Objects

Internally, SCons represents all of the files and directories it knows about as Nodes. These internal
objects (not object files) can be used in a variety of ways to make your SConscript files portable and
easy to read.

5.1. Builder Methods Return Lists of Target Nodes

All builder methods return a list of Node objects that identify the target file or files that will be built.
These returned Nodes can be passed as arguments to other builder methods.

For example, suppose that we want to build the two object files that make up a program with different
options. This would mean calling the Object builder once for each object file, specifying the desired
options:

Object ("hello.c’, CCFLAGS=’-DHELLO’)
Object (" goodbye.c’, CCFLAGS=’-DGOODBYE’)

One way to combine these object files into the resulting program would be to call the Program builder
with the names of the object files listed as sources:

Object ("hello.c’, CCFLAGS='-DHELLO')
Object (' goodbye.c’, CCFLAGS='-DGOODBYE')
Program(["hello.o’, ’"goodbye.o’])

The problem with specifying the names as strings is that our SConstruct file is no longer portable
across operating systems. It won’t, for example, work on Windows because the object files there would
be named hello.obj and goodbye.obj, not hello.o and goodbye.o.

A better solution is to assign the lists of targets returned by the calls to the Object builder to variables,
which we can then concatenate in our call to the Program builder:

hello_list = Object (’hello.c’, CCFLAGS=’-DHELLO’)

goodbye_list = Object ('goodbye.c’, CCFLAGS=’-DGOODBYE’)
Program(hello_list + goodbye_list)

This makes our sConstruct file portable again, the build output on Linux looking like:
% scons -Q

cc -o goodbye.o —-c —-DGOODBYE goodbye.c
cc -o hello.o —-c¢ -DHELLO hello.c

23

Chapter 5. Node Objects

cc -0 hello hello.o goodbye.o

And on Windows:

C:\>scons —-Q

cl /Fogoodbye.obj /c goodbye.c —-DGOODBYE

cl /Fohello.obj /c hello.c -DHELLO

link /nologo /OUT:hello.exe hello.obj goodbye.ob]
embedManifestExeCheck (target, source, env)

We’ll see examples of using the list of nodes returned by builder methods throughout the rest of this
guide.

5.2. Explicitly Creating File and Directory Nodes

It’s worth mentioning here that SCons maintains a clear distinction between Nodes that represent files
and Nodes that represent directories. SCons supports File and Dir functions that, respectively, return a
file or directory Node:

hello_c¢ = File('hello.c’)
Program(hello_c)

classes = Dir(’classes’)
Java (classes, ’'src’)

Normally, you don’t need to call File or Dir directly, because calling a builder method automatically
treats strings as the names of files or directories, and translates them into the Node objects for you. The
File and Dir functions can come in handy in situations where you need to explicitly instruct SCons
about the type of Node being passed to a builder or other function, or unambiguously refer to a specific
file in a directory tree.

There are also times when you may need to refer to an entry in a file system without knowing in advance
whether it’s a file or a directory. For those situations, SCons also supports an Entry function, which
returns a Node that can represent either a file or a directory.

xyzzy = Entry(’xyzzy’)

The returned xyzzy Node will be turned into a file or directory Node the first time it is used by a builder
method or other function that requires one vs. the other.

24

Chapter 5. Node Objects

5.3. Printing Node File Names

One of the most common things you can do with a Node is use it to print the file name that the node
represents. Keep in mind, though, that because the object returned by a builder call is a list of Nodes, you
must use Python subscripts to fetch individual Nodes from the list. For example, the following
SConstruct file:

hello_c¢ = File('hello.c’)
Program(hello_c)

classes = Dir(’classes’)
Java (classes, ’'src’)

object_list = Object(’hello.c’)

program_list = Program(object_list)

print "The object file is:", object_list[0]
print "The program file is:", program_list[0]

Would print the following file names on a POSIX system:

% scons -Q

The object file is: hello.o
The program file is: hello
cc -o hello.o -c hello.c

cc -o hello hello.o

And the following file names on a Windows system:

C:\>scons -Q

The object file is: hello.obj

The program file is: hello.exe

cl /Fohello.obj /c hello.c /nologo

link /nologo /OUT:hello.exe hello.obj
embedManifestExeCheck (target, source, env)

Note that in the above example, the object_1ist [0] extracts an actual Node object from the list, and
the Python print statement converts the object to a string for printing.

5.4. Using a Node’s File Name as a String

Printing a Node’s name as described in the previous section works because the string representation of a
Node object is the name of the file. If you want to do something other than print the name of the file, you
can fetch it by using the builtin Python st r function. For example, if you want to use the Python

25

Chapter 5. Node Objects

os.path.exists to figure out whether a file exists while the SConstruct file is being read and
executed, you can fetch the string as follows:

import os.path

program_list Program(’hello.c’)
program_name = str (program_list[0])
if not os.path.exists (program_name) :

print program_name, "does not exist!"

Which executes as follows on a POSIX system:

% scons -Q

hello does not exist!
cc -0 hello.o -c hello.c
cc -o hello hello.o

5.5. GetBuildrath: Getting the Path From a Node or String

env.GetBuildPath (file_or_list) returns the path of a Node or a string representing a path. It can
also take a list of Nodes and/or strings, and returns the list of paths. If passed a single Node, the result is
the same as calling str (node) (see above). The string(s) can have embedded construction variables,
which are expanded as usual, using the calling environment’s set of variables. The paths can be files or
directories, and do not have to exist.

env=Environment (VAR="value")

n=File("foo.c")
print env.GetBuildPath([n, "sub/dir/S$VAR"])

Would print the following file names:
scons —Q

%
["foo.c’, "sub/dir/value’]
scons: ‘.’ 1s up to date.

There is also a function version of GetBuildPath which can be called without an Environment; that
uses the default SCons Environment to do substitution on any string arguments.

26

Chapter 6. Dependencies

So far we’ve seen how SCons handles one-time builds. But one of the main functions of a build tool like
SCons is to rebuild only what is necessary when source files change--or, put another way, SCons should
not waste time rebuilding things that don’t need to be rebuilt. You can see this at work simply by
re-invoking SCons after building our simple hello example:

o)

% scons —-Q
cc -0 hello.o —-c hello.c
cc -0 hello hello.o

% scons —-Q

scons: ‘.’ is up to date.

The second time it is executed, SCons realizes that the hello program is up-to-date with respect to the
current hello. c source file, and avoids rebuilding it. You can see this more clearly by naming the
hello program explicitly on the command line:

o)

% scons —-Q hello

cc —o hello.o —-c hello.c

cc -o hello hello.o

% scons -Q hello

scons: ‘hello’ is up to date.

Note that SCons reports "...is up to date" only for target files named explicitly on the command
line, to avoid cluttering the output.

6.1. Deciding When an Input File Has Changed: the
Decider Function

Another aspect of avoiding unnecessary rebuilds is the fundamental build tool behavior of rebuilding
things when an input file changes, so that the built software is up to date. By default, SCons keeps track
of this through an MD5 signature, or checksum, of the contents of each file, although you can easily
configure SCons to use the modification times (or time stamps) instead. You can even specify your own
Python function for deciding if an input file has changed.

6.1.1. Using MD5 Signatures to Decide if a File Has Changed

By default, SCons keeps track of whether a file has changed based on an MD5 checksum of the file’s
contents, not the file’s modification time. This means that you may be surprised by the default SCons
behavior if you are used to the Make convention of forcing a rebuild by updating the file’s modification
time (using the touch command, for example):

27

Chapter 6. Dependencies

% scons -Q hello

cc -o hello.o -c hello.c

cc -o hello hello.o

touch hello.c

scons -Q hello

scons: ‘hello’ 1is up to date.

o
°
o
°

Even though the file’s modification time has changed, SCons realizes that the contents of the hello.c
file have not changed, and therefore that the hel1lo program need not be rebuilt. This avoids unnecessary
rebuilds when, for example, someone rewrites the contents of a file without making a change. But if the
contents of the file really do change, then SCons detects the change and rebuilds the program as required:

o

% scons —Q hello
cc -o hello.o —-c hello.c
cc -o hello hello.o
% edit hello.c
[CHANGE THE CONTENTS OF hello.c]
% scons -Q hello
cc -o hello.o -c hello.c
cc -o hello hello.o

Note that you can, if you wish, specify this default behavior (MDS5 signatures) explicitly using the
Decider function as follows:

Program("hello.c’)
Decider ('MD5")

You can also use the string ' content’ as a synonym for ' MD5’ when calling the Decider function.

6.1.1.1. Ramifications of Using MD5 Signatures

Using MDS5 signatures to decide if an input file has changed has one surprising benefit: if a source file
has been changed in such a way that the contents of the rebuilt target file(s) will be exactly the same as
the last time the file was built, then any "downstream" target files that depend on the
rebuilt-but-not-changed target file actually need not be rebuilt.

So if, for example, a user were to only change a comment in a hello.c file, then the rebuilt hello.o
file would be exactly the same as the one previously built (assuming the compiler doesn’t put any
build-specific information in the object file). SCons would then realize that it would not need to rebuild

the hello program as follows:

% scons -Q hello
cc -0 hello.o -c hello.c
cc -o hello hello.o

28

Chapter 6. Dependencies

% edit hello.c
[CHANGE A COMMENT IN hello.c]
% scons -Q hello
cc -o hello.o -c hello.c
scons: ‘hello’ is up to date.

In essence, SCons "short-circuits" any dependent builds when it realizes that a target file has been rebuilt
to exactly the same file as the last build. This does take some extra processing time to read the contents
of the target (hello. o) file, but often saves time when the rebuild that was avoided would have been

time-consuming and expensive.

6.1.2. Using Time Stamps to Decide If a File Has Changed

If you prefer, you can configure SCons to use the modification time of a file, not the file contents, when
deciding if a target needs to be rebuilt. SCons gives you two ways to use time stamps to decide if an
input file has changed since the last time a target has been built.

The most familiar way to use time stamps is the way Make does: that is, have SCons decide that a target
must be rebuilt if a source file’s modification time is newer than the target file. To do this, call the
Decider function as follows:

Object ("hello.c’)
Decider (' timestamp-newer’)

This makes SCons act like Make when a file’s modification time is updated (using the touch command,

for example):

% scons -Q hello.o

cc -o hello.o —-c hello.c
touch hello.c

scons -Q hello.o

o
)
o
°

cc -o hello.o -c hello.c

And, in fact, because this behavior is the same as the behavior of Make, you can also use the string
"make’ as a synonym for ’ t imestamp-newer’ when calling the Decider function:

Object ("hello.c’)
Decider ('make’)

One drawback to using times stamps exactly like Make is that if an input file’s modification time
suddenly becomes older than a target file, the target file will not be rebuilt. This can happen if an old

29

Chapter 6. Dependencies

copy of a source file is restored from a backup archive, for example. The contents of the restored file will
likely be different than they were the last time a dependent target was built, but the target won’t be rebuilt
because the modification time of the source file is not newer than the target.

Because SCons actually stores information about the source files’ time stamps whenever a target is built,
it can handle this situation by checking for an exact match of the source file time stamp, instead of just
whether or not the source file is newer than the target file. To do this, specify the argument
"timestamp-match’ when calling the Decider function:

Object ("hello.c’)
Decider (' timestamp-match’)

When configured this way, SCons will rebuild a target whenever a source file’s modification time has
changed. So if we use the touch -t option to change the modification time of hello. c to an old date
(January 1, 1989), SCons will still rebuild the target file:

% scons —-Q hello.o

% touch -t 198901010000 hello.c
% scons -Q hello.o
cc -0 hello.o -c hello.c

In general, the only reason to prefer t imestamp-newer instead of t imestamp-match, would be if you
have some specific reason to require this Make-like behavior of not rebuilding a target when an
otherwise-modified source file is older.

6.1.3. Deciding If a File Has Changed Using Both MD
Signatures and Time Stamps

As a performance enhancement, SCons provides a way to use MD5 checksums of file contents but to
read those contents only when the file’s timestamp has changed. To do this, call the Decider function
with ' MD5-timestamp’ argument as follows:

Program(’hello.c’)
Decider ("MD5-timestamp’)

So configured, SCons will still behave like it does when using Decider (MD5"):

o)

% scons —-Q hello

cc -o hello.o -c hello.c
cc -o hello hello.o
touch hello.c

scons -Q hello

o
°
o
°

30

Chapter 6. Dependencies

scons: ‘hello’ is up to date.
% edit hello.c
[CHANGE THE CONTENTS OF hello.c]
% scons -Q hello
cc -o hello.o —-c hello.c
cc -o hello hello.o

However, the second call to SCons in the above output, when the build is up-to-date, will have been
performed by simply looking at the modification time of the hello. c file, not by opening it and
performing an MDS5 checksum calcuation on its contents. This can significantly speed up many
up-to-date builds.

The only drawback to using Decider (' MD5-timestamp’) is that SCons will not rebuild a target file if
a source file was modified within one second of the last time SCons built the file. While most developers
are programming, this isn’t a problem in practice, since it’s unlikely that someone will have built and
then thought quickly enough to make a substantive change to a source file within one second. Certain
build scripts or continuous integration tools may, however, rely on the ability to apply changes to files
automatically and then rebuild as quickly as possible, in which case use of

Decider (' MD5-timestamp’) may not be appropriate.

6.1.4. Writing Your Own Custom pecider Function

The different string values that we’ve passed to the Decider function are essentially used by SCons to
pick one of several specific internal functions that implement various ways of deciding if a dependency
(usually a source file) has changed since a target file has been built. As it turns out, you can also supply
your own function to decide if a dependency has changed.

For example, suppose we have an input file that contains a lot of data, in some specific regular format,
that is used to rebuild a lot of different target files, but each target file really only depends on one
particular section of the input file. We’d like to have each target file depend on only its section of the
input file. However, since the input file may contain a lot of data, we want to open the input file only if its
timestamp has changed. This could be done with a custom Decider function that might look something
like this:

Program(’hello.c’)
def decide_if_changed(dependency, target, prev_ni):
if self.get_timestamp() != prev_ni.timestamp:
dep = str (dependency)
tgt = str(target)
if specific_part_of_ file_has_changed(dep, tgt):
return True
return False
Decider (decide_if_changed)

31

Chapter 6. Dependencies

Note that in the function definition, the dependency (input file) is the first argument, and then the
target. Both of these are passed to the functions as SCons Node objects, which we convert to strings
using the Python str ().

The third argument, prev_ni, is an object that holds the signature or timestamp information that was
recorded about the dependency the last time the target was built. A prev_ni object can hold different
information, depending on the type of thing that the dependency argument represents. For normal files,
the prev_n1i object has the following attributes:

.csig

The content signature, or MDS5 checksum, of the contents of the dependency file the list time the
target was built.

.size

The size in bytes of the dependency file the list time the target was built.

.timestamp

The modification time of the dependency file the list time the target was built.

Note that ignoring some of the arguments in your custom Decider function is a perfectly normal thing
to do, if they don’t impact the way you want to decide if the dependency file has changed.

Another thing to look out for is the fact that the three attributes above may not be present at the time of
the first run. Without any prior build, no targets have been created and no . sconsign DB file exists yet.
So, you should always check whether the prev_ni attribute in question is available.

We finally present a small example for a csig-based decider function. Note how the signature
information for the dependency file has to get initialized via get_csig during each function call (this
is mandatory!).

env = Environment ()

def config_file_decider (dependency, target, prev_ni):
import os.path

We always have to init the .csig value...
dep_csig = dependency.get_csig()
.csig may not exist, because no target was built yet...
if ’"csig’ not in dir(prev_ni):
return True
Target file may not exist yet
if not os.path.exists(str (target.abspath)):
return True
if dep_csig != prev_ni.csig:
Some change on source file => update installed one
return True
return False

32

def update_file():
f = open("test.txt","a")
f.write("some line\n")
f.close()

update_file ()

Activate our own decider function
env.Decider (config_file_decider)

env.Install ("install", "test.txt")

Chapter 6. Dependencies

6.1.5. Mixing Different Ways of Deciding If a File Has Changed

The previous examples have all demonstrated calling the global Decider function to configure all
dependency decisions that SCons makes. Sometimes, however, you want to be able to configure different
decision-making for different targets. When that’s necessary, you can use the env.Decider method to
affect only the configuration decisions for targets built with a specific construction environment.

For example, if we arbitrarily want to build one program using MD5 checkums and another using file

modification times from the same source we might configure it this way:

envl = Environment (CPPPATH = [7."])

env2 = envl.Clone ()
env2.Decider (' timestamp-match’)
envl.Program(’'prog-MD5’, ’'programl.c’)
env2.Program(’prog-timestamp’, ’'program2.c’)

If both of the programs include the same inc.h file, then updating the modification time of inc.h

(using the touch command) will cause only prog-t imestamp to be rebuilt:

o)

% scons —-Q

cc -o programl.o -c -I. programl.c
cc —-o prog-MD5 programl.o

cc —-o program2.0 —-c —-I. program2.c
cc -0 prog-timestamp program2.o

% touch inc.h

% scons -Q

cc -0 program2.o0 —-c —-I. program2.cC
cc -o prog-timestamp program2.o

33

Chapter 6. Dependencies

6.2. Older Functions for Deciding When an Input File Has
Changed

SCons still supports two functions that used to be the primary methods for configuring the decision about
whether or not an input file has changed. These functions have been officially deprecated as SCons
version 2.0, and their use is discouraged, mainly because they rely on a somewhat confusing distinction
between how source files and target files are handled. These functions are documented here mainly in
case you encounter them in older SConscript files.

6.2.1. The sourcesignatures Function

The SourceSignatures function is fairly straightforward, and supports two different argument values
to configure whether source file changes should be decided using MDS5 signatures:

Program("hello.c’)
SourceSignatures (' MD5”)

Or using time stamps:

Program(’hello.c’)
SourceSignatures (' timestamp’)

These are roughly equivalent to specifying Decider (' MD5’) or Decider (’ timestamp-match’),
respectively, although it only affects how SCons makes decisions about dependencies on source
files--that is, files that are not built from any other files.

6.2.2. The TargetSignatures Function

The TargetSignatures function specifies how SCons decides when a target file has changed when it
is used as a dependency of (input to) another target--that is, the TargetSignatures function
configures how the signatures of "intermediate" target files are used when deciding if a "downstream"
target file must be rebuilt. '

The TargetSignatures function supports the same ' MD5’ and ’ timestamp’ argument values that
are supported by the SourceSignatures, with the same meanings, but applied to target files. That is, in
the example:

Program(’hello.c’)
TargetSignatures ('MD5’)

34

Chapter 6. Dependencies

The MDS5 checksum of the hello. o target file will be used to decide if it has changed since the last time
the "downstream" hello target file was built. And in the example:

Program("hello.c’)
TargetSignatures (' timestamp’)

The modification time of the hello. o target file will be used to decide if it has changed since the last
time the "downstream" hel1o target file was built.

The TargetSignatures function supports two additional argument values: ’ source’ and " build’.
The ’ source’ argument specifies that decisions involving whether target files have changed since a
previous build should use the same behavior for the decisions configured for source files (using the
SourceSignatures function). So in the example:

Program("hello.c’)
TargetSignatures (' source’)
SourceSignatures (' timestamp’)

All files, both targets and sources, will use modification times when deciding if an input file has changed
since the last time a target was built.

Lastly, the "build’ argument specifies that SCons should examine the build status of a target file and
always rebuild a "downstream" target if the target file was itself rebuilt, without re-examining the
contents or timestamp of the newly-built target file. If the target file was not rebuilt during this scons
invocation, then the target file will be examined the same way as configured by the SourceSignature
call to decide if it has changed.

This mimics the behavior of build signatures in earlier versions of SCons. A build signature
re-combined signatures of all the input files that went into making the target file, so that the target file
itself did not need to have its contents read to compute an MDS5 signature. This can improve performance
for some configurations, but is generally not as effective as using Decider (' MD5-timestamp’).

6.3. Implicit Dependencies: The $CPPPATH Construction
Variable

Now suppose that our "Hello, World!" program actually has an #include line to include the hello.h
file in the compilation:

#include <hello.h>
int
main ()

35

Chapter 6. Dependencies

printf ("Hello, %s!\n", string);

And, for completeness, the hello.h file looks like this:

#define string "world"

In this case, we want SCons to recognize that, if the contents of the hello.h file change, the hello
program must be recompiled. To do this, we need to modify the SConstruct file like so:

Program(’hello.c’, CPPPATH = ’.")

The $SCPPPATH value tells SCons to look in the current directory (” .) for any files included by C
source files (. c or .h files). With this assignment in the SConstruct file:

% scons -Q hello
cc -0 hello.o —-c¢ -I. hello.c
cc -o hello hello.o
% scons -Q hello
scons: ‘hello’ is up to date.
% edit hello.h
[CHANGE THE CONTENTS OF hello.h]
% scons -Q hello
cc -o hello.o —-c -I. hello.c
cc -o hello hello.o

First, notice that SCons added the -1 . argument from the SCPPPATH variable so that the compilation
would find the hello.n file in the local directory.

Second, realize that SCons knows that the hello program must be rebuilt because it scans the contents
of the hello. c file for the #include lines that indicate another file is being included in the
compilation. SCons records these as implicit dependencies of the target file, Consequently, when the
hello.h file changes, SCons realizes that the hello. c file includes it, and rebuilds the resulting hello
program that depends on both the hello.c and hello.h files.

Like the $LIBPATH variable, the $CPPPATH variable may be a list of directories, or a string separated
by the system-specific path separation character (*:> on POSIX/Linux, ’;> on Windows). Either way,
SCons creates the right command-line options so that the following example:

Program(’hello.c’, CPPPATH = [’include’, ' /home/project/inc’])

36

Chapter 6. Dependencies

Will look like this on POSIX or Linux:

% scons -Q hello
cc -0 hello.o -c -Iinclude -I/home/project/inc hello.c
cc -o hello hello.o

And like this on Windows:

C:\>scons -Q hello.exe

cl /Fohello.obj /c hello.c /nologo /Iinclude /I\home\project\inc
link /nologo /OUT:hello.exe hello.obj
embedManifestExeCheck (target, source, env)

6.4. Caching Implicit Dependencies

Scanning each file for #include lines does take some extra processing time. When you’re doing a full
build of a large system, the scanning time is usually a very small percentage of the overall time spent on
the build. You’re most likely to notice the scanning time, however, when you rebuild all or part of a large
system: SCons will likely take some extra time to "think about" what must be built before it issues the
first build command (or decides that everything is up to date and nothing must be rebuilt).

In practice, having SCons scan files saves time relative to the amount of potential time lost to tracking
down subtle problems introduced by incorrect dependencies. Nevertheless, the "waiting time" while
SCons scans files can annoy individual developers waiting for their builds to finish. Consequently, SCons
lets you cache the implicit dependencies that its scanners find, for use by later builds. You can do this by
specifying the ——implicit-cache option on the command line:

% scons —-Q —--implicit-cache hello
cc -0 hello.o -c hello.c
cc -0 hello hello.o

o

% scons —-Q hello
scons: ‘hello’ is up to date.

If you don’t want to specify ——implicit-cache on the command line each time, you can make it the
default behavior for your build by setting the implicit_cache option in an SConscript file:

SetOption (’implicit_cache’, 1)

SCons does not cache implicit dependencies like this by default because the ——implicit-cache causes
SCons to simply use the implicit dependencies stored during the last run, without any checking for

37

Chapter 6. Dependencies

whether or not those dependencies are still correct. Specifically, this means ——implicit-cache
instructs SCons to not rebuild "correctly" in the following cases:

+ When ——implicit-cache is used, SCons will ignore any changes that may have been made to
search paths (like $CPPPATH or $SLIBPATH,). This can lead to SCons not rebuilding a file if a change
to $CPPPATH would normally cause a different, same-named file from a different directory to be used.

« When —-implicit-cache is used, SCons will not detect if a same-named file has been added to a
directory that is earlier in the search path than the directory in which the file was found last time.

6.4.1. The ——-implicit-deps—changed Option

When using cached implicit dependencies, sometimes you want to "start fresh” and have SCons re-scan
the files for which it previously cached the dependencies. For example, if you have recently installed a
new version of external code that you use for compilation, the external header files will have changed
and the previously-cached implicit dependencies will be out of date. You can update them by running
SCons with the ~—implicit-deps—changed option:

)

% scons —-Q —-implicit-deps-changed hello
cc -o hello.o -c hello.c
cc -o hello hello.o

o

% scons —Q hello
scons: ‘hello’ is up to date.

In this case, SCons will re-scan all of the implicit dependencies and cache updated copies of the
information.

6.4.2. The ——-implicit-deps—unchanged Option

By default when caching dependencies, SCons notices when a file has been modified and re-scans the
file for any updated implicit dependency information. Sometimes, however, you may want to force
SCons to use the cached implicit dependencies, even if the source files changed. This can speed up a
build for example, when you have changed your source files but know that you haven’t changed any
#include lines. In this case, you can use the ~—implicit-deps—unchanged option:

% scons —-Q ——implicit-deps—-unchanged hello
cc -o hello.o -c hello.c
cc -o hello hello.o

% scons —-Q hello
scons: ‘hello’ is up to date.

In this case, SCons will assume that the cached implicit dependencies are correct and will not bother to
re-scan changed files. For typical builds after small, incremental changes to source files, the savings may
not be very big, but sometimes every bit of improved performance counts.

38

Chapter 6. Dependencies

6.5. Explicit Dependencies: the bepends Function

Sometimes a file depends on another file that is not detected by an SCons scanner. For this situation,
SCons allows you to specific explicitly that one file depends on another file, and must be rebuilt
whenever that file changes. This is specified using the Depends method:

hello = Program(’hello.c’)
Depends (hello, ’other_file’)

)

% scons —-Q hello
cc —-c¢ hello.c -o hello.o
cc -o hello hello.o
% scons -Q hello
scons: ‘hello’ is up to date.
% edit other_file
[CHANGE THE CONTENTS OF other_file]
% scons -Q hello
cc —c¢ hello.c -o hello.o
cc -o hello hello.o

Note that the dependency (the second argument to Depends) may also be a list of Node objects (for
example, as returned by a call to a Builder):

hello = Program(’hello.c’)
goodbye = Program(’goodbye.c’)
Depends (hello, goodbye)

in which case the dependency or dependencies will be built before the target(s):

o

% scons —Q hello

cc —-c goodbye.c —-o goodbye.o
cc -o goodbye goodbye.o

cc —c hello.c -o hello.o

cc -o hello hello.o

6.6. Dependencies From External Files: the ParseDepends
Function

SCons has built-in scanners for a number of languages. Sometimes these scanners fail to extract certain
implicit dependencies due to limitations of the scanner implementation.

39

Chapter 6. Dependencies

The following example illustrates a case where the built-in C scanner is unable to extract the implicit

dependency on a header file.

#define FOO_HEADER <foo.h>
#include FOO_HEADER

int main() {
return FOO;

% scons -Q
cc -o hello.o -c¢ -I. hello.c
cc -o hello hello.o
% edit foo.h

[CHANGE CONTENTS OF foo.h]
% scons -Q
scons: ‘.’ 1s up to date.

Apparently, the scanner does not know about the header dependency. Being not a full-fledged C

preprocessor, the scanner does not expand the macro.

In these cases, you may also use the compiler to extract the implicit dependencies. ParseDepends can
parse the contents of the compiler output in the style of Make, and explicitly establish all of the listed

dependencies.

The following example uses ParseDepends to process a compiler generated dependency file which is

generated as a side effect during compilation of the object file:

obj = Object (’hello.c’, CCFLAGS=’'-MD -MF hello.d’,

SideEffect ("hello.d’, obj)
ParseDepends (' hello.d’)
Program(’hello’, obj)

% scons -Q

cc -0 hello.o -c¢ -MD -MF hello.d -I. hello.c

cc -o hello hello.o
% edit foo.h
[CHANGE CONTENTS OF foo.h]

% scons -Q

cc -o hello.o -c¢c -MD -MF hello.d -I. hello.c

CPPPATH=".")

Parsing dependencies from a compiler-generated . d file has a chicken-and-egg problem, that causes

unnecessary rebuilds:

% scons -Q

cc -0 hello.o -c¢ -MD -MF hello.d -I. hello.c

40

Chapter 6. Dependencies

cc -o hello hello.o

% scons —-Q —-—-debug=explain

scons: rebuilding ‘hello.o’ because ‘foo.h’ is a new dependency
cc -o hello.o -c¢ -MD -MF hello.d -I. hello.c

o

% scons —-Q

scons: ‘.’ 1s up to date.

In the first pass, the dependency file is generated while the object file is compiled. At that time, SCons
does not know about the dependency on foo.h. In the second pass, the object file is regenerated because
foo.h is detected as a new dependency.

ParseDepends immediately reads the specified file at invocation time and just returns if the file does
not exist. A dependency file generated during the build process is not automatically parsed again. Hence,
the compiler-extracted dependencies are not stored in the signature database during the same build pass.
This limitation of ParseDepends leads to unnecessary recompilations. Therefore, ParseDepends
should only be used if scanners are not available for the employed language or not powerful enough for
the specific task.

6.7. Ignoring Dependencies: the I1gnore Function

Sometimes it makes sense to not rebuild a program, even if a dependency file changes. In this case, you
would tell SCons specifically to ignore a dependency as follows:

hello_obj=0bject ("hello.c’)
hello = Program(hello_obj)
Ignore (hello_obj, ’'hello.h’)

% scons -Q hello
cc —c¢c -o hello.o hello.c
cc —-o hello hello.o
% scons -Q hello
scons: ‘hello’ is up to date.
% edit hello.h
[CHANGE THE CONTENTS OF hello.h]
% scons -Q hello

scons: ‘hello’ is up to date.

Now, the above example is a little contrived, because it’s hard to imagine a real-world situation where
you wouldn’t want to rebuild hello if the hello.h file changed. A more realistic example might be if
the hello program is being built in a directory that is shared between multiple systems that have
different copies of the stdio.h include file. In that case, SCons would notice the differences between
the different systems’ copies of stdio.h and would rebuild hello each time you change systems. You
could avoid these rebuilds as follows:

41

Chapter 6. Dependencies

hello = Program(’hello.c’, CPPPATH=[’/usr/include’])
Ignore (hello, ’/usr/include/stdio.h’)

TIgnore can also be used to prevent a generated file from being built by default. This is due to the fact
that directories depend on their contents. So to ignore a generated file from the default build, you specify
that the directory should ignore the generated file. Note that the file will still be built if the user
specifically requests the target on scons command line, or if the file is a dependency of another file which
is requested and/or is built by default.

hello_obj=0bject ("hello.c’)
hello = Program(hello_obj)
Ignore(’.’, [hello,hello_obij])

% scons -Q

scons: ‘.’ is up to date.
% scons -Q hello

cc -o hello.o -c hello.c
cc -o hello hello.o

o

% scons —Q hello
scons: ‘hello’ is up to date.

6.8. Order-Only Dependencies: the Requires Function

Occasionally, it may be useful to specify that a certain file or directory must, if necessary, be built or
created before some other target is built, but that changes to that file or directory do not require that the
target itself be rebuilt. Such a relationship is called an order-only dependency because it only affects the
order in which things must be built--the dependency before the target--but it is not a strict dependency
relationship because the target should not change in response to changes in the dependent file.

For example, suppose that you want to create a file every time you run a build that identifies the time the
build was performed, the version number, etc., and which is included in every program that you build.
The version file’s contents will change every build. If you specify a normal dependency relationship, then
every program that depends on that file would be rebuilt every time you ran SCons. For example, we
could use some Python code in a SConstruct file to create a new version. c file with a string
containing the current date every time we run SCons, and then link a program with the resulting object
file by listing version. c in the sources:

import time

version_c_text = """
char xdate = "%s";
" Y time.ctime (time.time ())
(I

open ('version.c’, 'w’).write(version_c_text)

42

Chapter 6. Dependencies

hello = Program([’hello.c’, ’'version.c’])

If we list version.c as an actual source file, though, then the version. o file will get rebuilt every time
we run SCons (because the SConstruct file itself changes the contents of version.c) and the hello
executable will get re-linked every time (because the version. o file changes):

% scons -Q hello

cc -0 hello.o -c hello.c

cc -0 version.o -c version.c

cc -0 hello hello.o version.o
% sleep 1

% scons -Q hello

cc -0 version.o -c version.c

cc -0 hello hello.o version.o
% sleep 1

% scons —-Q hello

cc -0 version.o —-c version.c

cc -0 hello hello.o version.o

(Note that for the above example to work, we sleep for one second in between each run, so that the
SConstruct file will create a version. c file with a time string that’s one second later than the
previous run.)

One solution is to use the Requires function to specify that the version.o must be rebuilt before it is
used by the link step, but that changes to version. o should not actually cause the hello executable to
be re-linked:

import time

version_c_text = """

char *date = "%s";
"mrog time.ctime (time.time ())
(7

open (’version.c’, ’'w’).write(version_c_text)
version_obj = Object ('version.c’)

hello = Program(’hello.c’,
LINKFLAGS = str(version_obj[0]))

Requires (hello, version_obj)

Notice that because we can no longer list version. c as one of the sources for the hello program, we
have to find some other way to get it into the link command line. For this example, we’re cheating a bit
and stuffing the object file name (extracted from version_ob3 list returned by the Object call) into the
$LINKFLAGS variable, because SLINKFLAGS is already included in the $SLINKCOM command line.

43

Chapter 6. Dependencies

With these changes, we get the desired behavior of only re-linking the hello executable when the
hello.c has changed, even though the version. o is rebuilt (because the SConstruct file still
changes the version. c contents directly each run):

% scons -Q hello
cc -o version.o —-c version.c
cc -o hello.o —-c hello.c
cc -o hello version.o hello.o
% sleep 1
% scons -Q hello
cc -o version.o —-c version.c
scons: ‘hello’ is up to date.
sleep 1
edit hello.c
[CHANGE THE CONTENTS OF hello.c]
% scons -Q hello

o
°
o
°

cc -0 version.o -c version.c
cc -0 hello.o -c hello.c

cc -o hello version.o hello.o
% sleep 1

% scons -Q hello

cc -0 version.o -c version.c

scons: ‘hello’ is up to date.

6.9. The alwaysBuild Function

How SCons handles dependencies can also be affected by the AlwaysBuild method. When a file is
passed to the AlwaysBuild method, like so:

hello = Program(’hello.c’)
AlwaysBuild (hello)

Then the specified target file (hello in our example) will always be considered out-of-date and rebuilt
whenever that target file is evaluated while walking the dependency graph:

% scons -Q
cc -o hello.o -c hello.c
cc -0 hello hello.o

% scons —Q
cc -0 hello hello.o

The AlwaysBuild function has a somewhat misleading name, because it does not actually mean the
target file will be rebuilt every single time SCons is invoked. Instead, it means that the target will, in fact,
be rebuilt whenever the target file is encountered while evaluating the targets specified on the command

44

Chapter 6. Dependencies

line (and their dependencies). So specifying some other target on the command line, a target that does
not itself depend on the AlwaysBuild target, will still be rebuilt only if it’s out-of-date with respect to

its dependencies:

% scons -Q

cc -0 hello.o -c hello.c

cc -o hello hello.o

% scons -Q hello.o

scons: ‘hello.o’ is up to date.

Notes

1. This easily-overlooked distinction between how SCons decides if the target itself must be rebuilt and
how the target is then used to decide if a different target must be rebuilt is one of the confusing things
that has led to the TargetSignatures and SourceSignatures functions being replaced by the

simpler Decider function.

45

Chapter 7. Environments

An environment is a collection of values that can affect how a program executes. SCons distinguishes
between three different types of environments that can affect the behavior of SCons itself (subject to the
configuration in the SConscript files), as well as the compilers and other tools it executes:

External Environment

The external environment is the set of variables in the user’s environment at the time the user
runs SCons. These variables are available within the sConscript files through the Python
os.environ dictionary. See Section 7.1, below.

Construction Environment

A construction environment is a distinct object creating within a SConscript file and and
which contains values that affect how SCons decides what action to use to build a target, and even
to define which targets should be built from which sources. One of the most powerful features of
SCons is the ability to create multiple construction environments, including the ability to
clone a new, customized construction environment from an existing construction
environment. See Section 7.2, below.

Execution Environment

An execution environment is the values that SCons sets when executing an external command
(such as a compiler or linker) to build one or more targets. Note that this is not the same as the
external environment (see above). See Section 7.3, below.

Unlike Make, SCons does not automatically copy or import values between different environments (with
the exception of explicit clones of construction environments, which inherit values from their
parent). This is a deliberate design choice to make sure that builds are, by default, repeatable regardless
of the values in the user’s external environment. This avoids a whole class of problems with builds where
a developer’s local build works because a custom variable setting causes a different compiler or build
option to be used, but the checked-in change breaks the official build because it uses different
environment variable settings.

Note that the sConscript writer can easily arrange for variables to be copied or imported between
environments, and this is often very useful (or even downright necessary) to make it easy for developers
to customize the build in appropriate ways. The point is not that copying variables between different
environments is evil and must always be avoided. Instead, it should be up to the implementer of the build
system to make conscious choices about how and when to import a variable from one environment to
another, making informed decisions about striking the right balance between making the build repeatable
on the one hand and convenient to use on the other.

46

Chapter 7. Environments

7.1. Using Values From the External Environment

The external environment variable settings that the user has in force when executing SCons are
available through the normal Python os.environ dictionary. This means that you must add an import os
statement to any SConscript file in which you want to use values from the user’s external environment.

import os

More usefully, you can use the os.environ dictionary in your SConscript files to initialize
construction environments with values from the user’s external environment. See the next section,
Section 7.2, for information on how to do this.

7.2. Construction Environments

It is rare that all of the software in a large, complicated system needs to be built the same way. For
example, different source files may need different options enabled on the command line, or different
executable programs need to be linked with different libraries. SCons accommodates these different
build requirements by allowing you to create and configure multiple construction environments
that control how the software is built. A construction environment is an object that has a number
of associated construction variables, each with a name and a value. (A construction environment
also has an attached set of Builder methods, about which we’ll learn more later.)

7.2.1. Creating a Construction Environment: the
Environment Function

A construction environment is created by the Environment method:

env = Environment ()

By default, SCons initializes every new construction environment with a set of construction
variables based on the tools that it finds on your system, plus the default set of builder methods
necessary for using those tools. The construction variables are initialized with values describing the C
compiler, the Fortran compiler, the linker, etc., as well as the command lines to invoke them.

When you initialize a construction environment you can set the values of the environment’s
construction variables to control how a program is built. For example:

import os

env = Environment (CC = ’'gcc’,
CCFLAGS = ’'-02")

47

Chapter 7. Environments

env.Program(’ foo.c’)

The construction environment in this example is still initialized with the same default construction
variable values, except that the user has explicitly specified use of the GNU C compiler gcc, and further
specifies that the -02 (optimization level two) flag should be used when compiling the object file. In
other words, the explicit initializations of $CC and $CCFLAGS override the default values in the
newly-created construction environment. So a run from this example would look like:

% scons -Q
gcc -o foo.o —-c -02 foo.c
gcc -o foo foo.o

7.2.2. Fetching Values From a construction Environment

You can fetch individual construction variables using the normal syntax for accessing individual named
items in a Python dictionary:

env = Environment ()
print "CC is:", env[’/CC’]

This example SConstruct file doesn’t build anything, but because it’s actually a Python script, it will
print the value of $CC for us:

% scons -Q
CC is: cc
scons: ‘.’ 1is up to date.

A construction environment, however, is actually an object with associated methods, etc. If you want to
have direct access to only the dictionary of construction variables, you can fetch this using the
Dictionary method:

env = Environment (FOO = ’'foo’, BAR = ’bar’)
dict = env.Dictionary ()
for key in [/OBJSUFFIX’, ’'LIBSUFFIX’, ’'PROGSUFFIX’]:

o)

print "key = %s, value = %s" % (key, dictl[key])

This sConstruct file will print the specified dictionary items for us on POSIX systems as follows:

o

% scons —Q
key = OBJSUFFIX, value = .o

48

Chapter 7. Environments

key = LIBSUFFIX, value = .a
PROGSUFFIX, value =
scons: ‘.’ is up to date.

key

And on Windows:

C:\>scons -Q

key = OBJSUFFIX, value = .obj
key = LIBSUFFIX, value = .lib
key = PROGSUFFIX, value = .exe

scons: ‘.’ is up to date.

If you want to loop and print the values of all of the construction variables in a construction environment,
the Python code to do that in sorted order might look something like:

env = Environment ()
for item in sorted(env.Dictionary () .items()):
print "construction variable = ’%s’, value = "%$s’" % item

7.2.3. Expanding Values From a construction Environment:
the subst Method

Another way to get information from a construction environment is to use the subst method on a string
containing $ expansions of construction variable names. As a simple example, the example from the
previous section that used env [’ cC’] to fetch the value of $CC could also be written as:

env = Environment ()
print "CC is:", env.subst (’$CC’)

One advantage of using subst to expand strings is that construction variables in the result get
re-expanded until there are no expansions left in the string. So a simple fetch of a value like $CCCOM:

env = Environment (CCFLAGS = ’-DFO0’)
print "CCCOM is:", env[’/CCCOM’]

Will print the unexpanded value of $CCCOM, showing us the construction variables that still need to be
expanded:

% scons -Q

CCCOM is: $CC SCCFLAGS SCPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS —-c -o STARGET S$SOURCES
scons: ‘.’ 1is up to date.

49

Chapter 7. Environments

Calling the subst method on $ccoM, however:

env = Environment (CCFLAGS = ’-DFOO0’)
print "CCCOM is:", env.subst (’$CCCOM’)

Will recursively expand all of the construction variables prefixed with $ (dollar signs), showing us the
final output:

o)

% scons —-Q
CCCOM is: gcc -DFOO -c -o
scons: ‘.’ is up to date.

Note that because we’re not expanding this in the context of building something there are no target or
source files for STARGET and $SOURCES to expand.

7.2.4. Handling Problems With Value Expansion

If a problem occurs when expanding a construction variable, by default it is expanded to ” (a null string),
and will not cause scons to fail.

env = Environment ()
print "value is:", env.subst(’->$MISSING<-')

o)

% scons -Q
value is: —-><-

scons: ‘.’ is up to date.

This default behaviour can be changed using the A11owSubstExceptions function. When a problem
occurs with a variable expansion it generates an exception, and the A1lowSubstExceptions function
controls which of these exceptions are actually fatal and which are allowed to occur safely. By default,
NameError and IndexError are the two exceptions that are allowed to occur: so instead of causing
scons to fail, these are caught, the variable expanded to ” and scons execution continues. To require that
all construction variable names exist, and that indexes out of range are not allowed, call
AllowSubstExceptions with no extra arguments.

AllowSubstExceptions ()
env = Environment ()
print "value is:", env.subst(’->$MISSING<-')

% scons -Q

50

Chapter 7. Environments

value is:
scons: *#*x NameError ‘MISSING’ trying to evaluate ‘$SMISSING’
File "/home/my/project/SConstruct", line 3, in <module>

This can also be used to allow other exceptions that might occur, most usefully with the ${ ...}
construction variable syntax. For example, this would allow zero-division to occur in a variable
expansion in addition to the default exceptions allowed

AllowSubstExceptions (IndexError, NameError, ZeroDivisionError)
env = Environment ()
print "value is:", env.subst('->${1 / 0}<-')

% scons -Q
value is: -><-
scons: ‘.’ is up to date.

If AllowSubstExceptions is called multiple times, each call completely overwrites the previous list of
allowed exceptions.

7.2.5. Controlling the Default construction Environment: the
DefaultEnvironment Function

All of the Builder functions that we’ve introduced so far, like Program and Library, actually use a
default construction environment that contains settings for the various compilers and other tools
that SCons configures by default, or otherwise knows about and has discovered on your system. The goal
of the default construction environment is to make many configurations to "just work" to build software
using readily available tools with a minimum of configuration changes.

You can, however, control the settings in the default construction environment by using the
DefaultEnvironment function to initialize various settings:

DefaultEnvironment (CC = ' /usr/local/bin/gcc’)

When configured as above, all calls to the Program or Object Builder will build object files with the
/usr/local/bin/gcc compiler.

51

Chapter 7. Environments

Note that the DefaultEnvironment function returns the initialized default construction environment
object, which can then be manipulated like any other construction environment. So the following would
be equivalent to the previous example, setting the $CC variable to /usr/local/bin/gcc but as a
separate step after the default construction environment has been initialized:

env = DefaultEnvironment ()
env[’/CC’] = ’/usr/local/bin/gcc’

One very common use of the DefaultEnvironment function is to speed up SCons initialization. As
part of trying to make most default configurations "just work," SCons will actually search the local
system for installed compilers and other utilities. This search can take time, especially on systems with
slow or networked file systems. If you know which compiler(s) and/or other utilities you want to
configure, you can control the search that SCons performs by specifying some specific tool modules with
which to initialize the default construction environment:

env = DefaultEnvironment (tools = [’'gcc’, ’"gnulink’],
CC = ’/usr/local/bin/gcc’)

So the above example would tell SCons to explicitly configure the default environment to use its normal
GNU Compiler and GNU Linker settings (without having to search for them, or any other utilities for
that matter), and specifically to use the compiler found at /usr/local/bin/gcc.

7.2.6. Multiple construction Environments

The real advantage of construction environments is that you can create as many different construction
environments as you need, each tailored to a different way to build some piece of software or other file.
If, for example, we need to build one program with the -02 flag and another with the —g (debug) flag, we
would do this like so:

opt = Environment (CCFLAGS = ’'-027")
dbg = Environment (CCFLAGS r—g’)

opt.Program(’ foo’, ’"foo.c’)

dbg.Program(’bar’, ’'bar.c’)

% scons -Q

cc -o bar.o -c¢ —g bar.c
cc -0 bar bar.o

cc -o foo.o -c -02 foo.c
cc -o foo foo.o

52

Chapter 7. Environments

We can even use multiple construction environments to build multiple versions of a single program. If
you do this by simply trying to use the Program builder with both environments, though, like this:

opt = Environment (CCFLAGS = ’'-027)
dbg = Environment (CCFLAGS = '-g’)

opt.Program(’ foo’, ’foo.c’)

dbg.Program(’ foo’, ’'foo.c’)

Then SCons generates the following error:

)

% scons —-Q

scons: xxx Two environments with different actions were specified for the same tar
File "/home/my/project/SConstruct", line 6, in <module>

This is because the two Program calls have each implicitly told SCons to generate an object file named
foo.o, one with a SCCFLAGS value of -02 and one with a SCCFLAGS value of —g. SCons can’t just
decide that one of them should take precedence over the other, so it generates the error. To avoid this
problem, we must explicitly specify that each environment compile foo. c to a separately-named object
file using the Object builder, like so:

opt = Environment (CCFLAGS
dbg = Environment (CCFLAGS

r-02")
r_gr)

o = opt.Object (' foo-opt’, "foo.c’)
opt.Program (o)

d = dbg.Object (' foo-dbg’, ’"foo.c’)
dbg.Program(d)

Notice that each call to the object builder returns a value, an internal SCons object that represents the
object file that will be built. We then use that object as input to the Program builder. This avoids having
to specify explicitly the object file name in multiple places, and makes for a compact, readable
SConstruct file. Our SCons output then looks like:

% scons -Q

cc -o foo-dbg.o -c -g foo.c
cc -o foo-dbg foo-dbg.o

cc -o foo-opt.o -c -02 foo.c
cc -o foo-opt foo-opt.o

53

7.2.7. Making Copies of Construction Environments: the

Chapter 7. Environments

Clone Method

Sometimes you want more than one construction environment to share the same values for one or more

variables. Rather than always having to repeat all of the common variables when you create each

construction environment, you can use the C1one method to create a copy of a construction environment.

Like the Environment call that creates a construction environment, the Clone method takes
construction variable assignments, which will override the values in the copied construction
environment. For example, suppose we want to use gcc to create three versions of a program, one
optimized, one debug, and one with neither. We could do this by creating a "base" construction
environment that sets $CC to gcc, and then creating two copies, one which sets SCCFLAGS for

optimization and the other which sets SCCFLAGS for debugging:

env =
opt =
dbg =

env.Pr

Environment (CC = ’'gcc’)
env.Clone (CCFLAGS = ’'-02")

env.Clone (CCFLAGS "—g’)

ogram ('’ foo’, ’"foo.c’)

o = opt.Object (' foo-opt’, ’'foo.c’)

opt.Pr

d = db
dbg.Pr

ogram (o)

g.Object (" foo-dbg’, ’foo.c’)
ogram (d)

Then our output would look like:

)

gcc -o
gcc —-o
gcc -o
gcc —-o
gcc -o

gcc -o

% scons —Q

foo.o -c foo.c

foo foo.o

foo-dbg.o -c -g foo.c
foo-dbg foo-dbg.o
foo-opt.o —-c -02 foo.c
foo-opt foo-opt.o

7.2.8. Replacing Values: the Replace Method

You can replace existing construction variable values using the Replace method:

env =
env.Re
env.Pr

Environment (CCFLAGS = ’'-DDEFINE1’)
place (CCFLAGS = ’'-DDEFINE2’)
ogram(’ foo.c’)

54

Chapter 7. Environments

The replacing value (-DDEFINE2 in the above example) completely replaces the value in the
construction environment:

% scons -Q
cc -o foo.o —-c -DDEFINE2 foo.c
cc -o foo foo.o

You can safely call Replace for construction variables that don’t exist in the construction environment:

env = Environment ()
env.Replace (NEW_VARIABLE = ’"xyzzy’)
print "NEW_VARIABLE =", env[’/NEW_VARIABLE’]

In this case, the construction variable simply gets added to the construction environment:

)

% scons —Q
NEW_VARIABLE = xyzzy
\ 14

scons: is up to date.

Because the variables aren’t expanded until the construction environment is actually used to build the
targets, and because SCons function and method calls are order-independent, the last replacement "wins"
and is used to build all targets, regardless of the order in which the calls to Replace() are interspersed
with calls to builder methods:

env = Environment (CCFLAGS = ’-DDEFINE1’)
print "CCFLAGS =", env[’/CCFLAGS’]
env.Program(’ foo.c’)

env.Replace (CCFLAGS = ’'-DDEFINE2’)
print "CCFLAGS =", env[’/CCFLAGS’]
env.Program(’bar.c’)

The timing of when the replacement actually occurs relative to when the targets get built becomes
apparent if we run scons without the —Q option:

)

% scons
scons: Reading SConscript files
CCFLAGS = -DDEFINE1

CCFLAGS = -DDEFINE2

scons: done reading SConscript files.
scons: Building targets

cc -o bar.o -c -DDEFINE2 bar.c

cc -o bar bar.o

cc -o foo.o —-c -DDEFINE2 foo.c

cc -o foo foo.o

scons: done building targets.

55

Chapter 7. Environments

Because the replacement occurs while the SConscript files are being read, the SCCFLAGS variable
has already been set to -DDEFINE2 by the time the foo. o target is built, even though the call to the
Replace method does not occur until later in the SConscript file.

7.2.9. Setting Values Only If They’re Not Already Defined: the
SetDefault Method

Sometimes it’s useful to be able to specify that a construction variable should be set to a value only if the
construction environment does not already have that variable defined You can do this with the
SetDefault method, which behaves similarly to the set_default method of Python dictionary
objects:

env.SetDefault (SPECIAL_FLAG = ’'-extra-option’)

This is especially useful when writing your own Tool modules to apply variables to construction
environments.

7.2.10. Appending to the End of Values: the append Method

You can append a value to an existing construction variable using the Append method:

env = Environment (CCFLAGS = [’-DMY_VALUE’])
env.Append (CCFLAGS = [’-DLAST’])
env.Program(’ foo.c’)

SCons then supplies both the -DMY_VALUE and -DLAST flags when compiling the object file:

o

% scons -Q
cc -o foo.o -c -DMY_VALUE -DLAST foo.c
cc -o foo foo.o

If the construction variable doesn’t already exist, the Append method will create it:

env = Environment ()

env.Append (NEW_VARIABLE = ’added’)

print "NEW_VARIABLE =", env[’/NEW_VARIABLE’]
Which yields:

56

Chapter 7. Environments

% scons -Q

NEW_VARIABLE = added
scons: ‘.’ is up to date.

Note that the Append function tries to be "smart" about how the new value is appended to the old value.
If both are strings, the previous and new strings are simply concatenated. Similarly, if both are lists, the
lists are concatenated. If, however, one is a string and the other is a list, the string is added as a new
element to the list.

7.2.11. Appending Unique Values: the appendunique Method

Some times it’s useful to add a new value only if the existing construction variable doesn’t already
contain the value. This can be done using the AppendUnique method:

env.AppendUnique (CCFLAGS=["-g’])

In the above example, the —g would be added only if the SCCFLAGS variable does not already contain a
—g value.

7.2.12. Appending to the Beginning of Values: the Prepend
Method

You can append a value to the beginning of an existing construction variable using the P repend method:

env = Environment (CCFLAGS = [’-DMY_VALUE’])
env.Prepend (CCFLAGS = [’/-DFIRST’])
env.Program(’ foo.c’)

SCons then supplies both the -DFIRST and -DMY_VALUE flags when compiling the object file:

o)

% scons —-Q
cc -o foo.o -c -DFIRST -DMY_VALUE foo.c
cc -o foo foo.o

If the construction variable doesn’t already exist, the Prepend method will create it:

env = Environment ()
env.Prepend (NEW_VARIABLE = ’added’)
print "NEW_VARIABLE =", env[’/NEW_VARIABLE’]

57

Chapter 7. Environments

Which yields:

o)

% scons —-Q
NEW_VARIABLE = added
scons: ‘.’ is up to date.

Like the append function, the Prepend function tries to be "smart" about how the new value is
appended to the old value. If both are strings, the previous and new strings are simply concatenated.
Similarly, if both are lists, the lists are concatenated. If, however, one is a string and the other is a list, the
string is added as a new element to the list.

7.2.13. Prepending Unique Values: the prependunique Method

Some times it’s useful to add a new value to the beginning of a construction variable only if the existing
value doesn’t already contain the to-be-added value. This can be done using the PrependUnique
method:

env.PrependUnique (CCFLAGS=["-g’])

In the above example, the —g would be added only if the SCCFLAGS variable does not already contain a
—g value.

7.3. Controlling the Execution Environment for Issued
Commands

When SCons builds a target file, it does not execute the commands with the same external environment
that you used to execute SCons. Instead, it uses the dictionary stored in the $ENV construction variable
as the external environment for executing commands.

The most important ramification of this behavior is that the PATH environment variable, which controls
where the operating system will look for commands and utilities, is not the same as in the external
environment from which you called SCons. This means that SCons will not, by default, necessarily find
all of the tools that you can execute from the command line.

The default value of the PATH environment variable on a POSIX system is
/usr/local/bin:/bin:/usr/bin. The default value of the PATH environment variable on a
Windows system comes from the Windows registry value for the command interpreter. If you want to
execute any commands--compilers, linkers, etc.--that are not in these default locations, you need to set
the PATH value in the $ENV dictionary in your construction environment.

58

Chapter 7. Environments

The simplest way to do this is to initialize explicitly the value when you create the construction
environment; this is one way to do that:

path = [’ /usr/local/bin’, ’/bin’, ' /usr/bin’]
env = Environment (ENV = {’/PATH’ : path})

Assign a dictionary to the $ENV construction variable in this way completely resets the external
environment so that the only variable that will be set when external commands are executed will be the
PATH value. If you want to use the rest of the values in $ENV and only set the value of PATH, the most
straightforward way is probably:

env [’ENV’] ["PATH’] = [’ /usr/local/bin’, ’/bin’, ' /usr/bin’]

Note that SCons does allow you to define the directories in the PATH in a string, separated by the
pathname-separator character for your system (’:”> on POSIX systems, ’;” on Windows):

env[’ENV’] [PATH’] = ' /usr/local/bin:/bin:/usr/bin’

But doing so makes your sConscript file less portable, (although in this case that may not be a huge
concern since the directories you list are likley system-specific, anyway).

7.3.1. Propagating paTH From the External Environment

You may want to propagate the external PATH to the execution environment for commands. You do this
by initializing the PATH variable with the PATH value from the os . environ dictionary, which is
Python’s way of letting you get at the external environment:

import os
env = Environment (ENV = {’PATH’ : os.environ[’PATH’]})

Alternatively, you may find it easier to just propagate the entire external environment to the execution
environment for commands. This is simpler to code than explicity selecting the PATH value:

import os
env = Environment (ENV = os.environ)

Either of these will guarantee that SCons will be able to execute any command that you can execute from
the command line. The drawback is that the build can behave differently if it’s run by people with
different PATH values in their environment--for example, if both the /bin and /usr/local/bin
directories have different cc commands, then which one will be used to compile programs will depend on
which directory is listed first in the user’s PATH variable.

59

Chapter 7. Environments

7.3.2. Adding to paTH Values in the Execution Environment

One of the most common requirements for manipulating a variable in the execution environment is to
add one or more custom directories to a search like the $PATH variable on Linux or POSIX systems, or
the %PATH% variable on Windows, so that a locally-installed compiler or other utility can be found
when SCons tries to execute it to update a target. SCons provides PrependENVPath and
AppendENVPath functions to make adding things to execution variables convenient. You call these
functions by specifying the variable to which you want the value added, and then value itself. So to add
some /usr/local directories to the $PATH and $LIB variables, you might:

env = Environment (ENV = os.environ)

env.PrependENVPath (' PATH’, ' /usr/local/bin’)
env.AppendENVPath (' LIB’, ’/usr/local/lib’)

Note that the added values are strings, and if you want to add multiple directories to a variable like
$PATH, you must include the path separate character (: on Linux or POSIX, ; on Windows) in the string.

60

Chapter 8. Automatically Putting Command-line
Options into their Construction Variables

This chapter describes the MergeFlags, ParseFlags, and ParseConfig methods of a

construction environment.

8.1. Merging Options into the Environment: the
MergeFlags Function

SCons construction environments have a MergeFlags method that merges a dictionary of values into
the construction environment. MergeFlags treats each value in the dictionary as a list of options such as
one might pass to a command (such as a compiler or linker). MergeFlags will not duplicate an option if
it already exists in the construction environment variable.

MergeFlags tries to be intelligent about merging options. When merging options to any variable whose
name ends in PATH, MergeFlags keeps the leftmost occurrence of the option, because in typical lists of
directory paths, the first occurrence "wins." When merging options to any other variable name,
MergeFlags keeps the rightmost occurrence of the option, because in a list of typical command-line
options, the last occurrence "wins."

env = Environment ()

env.Append (CCFLAGS = ’'-option -03 -01")
flags = { 'CCFLAGS’ : ’"-whatever -03’ }
env.MergeFlags (flags)

print env[’/CCFLAGS’]

% scons -Q
[/ -option’, ’'-01', ’-whatever’, ’"-03"]
scons: ‘.’ 1is up to date.

Note that the default value for SCCFLAGS is an internal SCons object which automatically converts the
options we specified as a string into a list.

env = Environment ()

env.Append (CPPPATH = [’ /include’, ’/usr/local/include’, ’/usr/include’])
flags = { 'CPPPATH’ : [’ /usr/opt/include’, ’/usr/local/include’] }
env.MergeFlags (flags)

print env [’/ CPPPATH’]

% scons —-Q
[’ /include’, ' /usr/local/include’, ' /usr/include’, ’/usr/opt/include’]

61

Chapter 8. Automatically Putting Command-line Options into their Construction Variables

scons: ‘.’ is up to date.

Note that the default value for §CPPPATH is a normal Python list, so we must specify its values as a list
in the dictionary we pass to the MergeFlags function.

If MergeFlags is passed anything other than a dictionary, it calls the ParseFlags method to convert it
into a dictionary.

env = Environment ()

env.Append (CCFLAGS = ’'-option -03 -01")

env.Append (CPPPATH [’ /include’, ' /usr/local/include’, ' /usr/include’])
env.MergeFlags (/ -whatever -I/usr/opt/include -03 -I/usr/local/include’)
print env[’CCFLAGS’]

print env [’/ CPPPATH’]

% scons -Q

["-option’, ’"-01', ’-whatever’, ’'-03']

["/include’, ' /usr/local/include’, ’/usr/include’, ’/usr/opt/include’]
scons: ‘.’ 1is up to date.

In the combined example above, ParseFlags has sorted the options into their corresponding variables
and returned a dictionary for MergeFlags to apply to the construction variables in the specified
construction environment.

8.2. Separating Compile Arguments into their Variables:
the rarseFlags Function

SCons has a bewildering array of construction variables for different types of options when building
programs. Sometimes you may not know exactly which variable should be used for a particular option.

SCons construction environments have a ParseFlags method that takes a set of typical command-line
options and distrbutes them into the appropriate construction variables. Historically, it was created to
support the ParseConfig method, so it focuses on options used by the GNU Compiler Collection
(GCC) for the C and C++ toolchains.

ParseFlags returns a dictionary containing the options distributed into their respective construction
variables. Normally, this dictionary would be passed to MergeFlags to merge the options into a
construction environment, but the dictionary can be edited if desired to provide additional
functionality. (Note that if the flags are not going to be edited, calling MergeFlags with the options
directly will avoid an additional step.)

62

Chapter 8. Automatically Putting Command-line Options into their Construction Variables

env = Environment ()
d = env.ParseFlags ("-I/opt/include -L/opt/lib -1foo")
for k,v in sorted(d.items()) :
if wv:
print k, v
env.MergeFlags (d)
env.Program(’fl.c’)

% scons -Q

CPPPATH [’ /opt/include’]

LIBPATH [’ /opt/lib’]

LIBS [’ foo’]

cc —o fl.o -c -I/opt/include fl.c
cc —o fl1 fl.o -L/opt/lib -1foo

Note that if the options are limited to generic types like those above, they will be correctly translated for
other platform types:

C:\>scons -Q

CPPPATH [’ /opt/include’]

LIBPATH [/ /opt/lib’]

LIBS [’ foo’]

cl /Fofl.obj /c fl.c /nologo /I\opt\include

link /nologo /OUT:fl.exe /LIBPATH:\opt\lib foo.lib fl.obj
embedManifestExeCheck (target, source, env)

Since the assumption is that the flags are used for the GCC toolchain, unrecognized flags are placed in
$CCFLAGS so they will be used for both C and C++ compiles:

env = Environment ()
d = env.ParseFlags ("-whatever")
for k,v in sorted(d.items()):
if wv:
print k, v
env.MergeFlags (d)
env.Program(’fl.c’)

o

% scons —Q

CCFLAGS —-whatever

cc -o fl.o —-c —-whatever fl.c
cc —o fl fl.o

ParseFlags will also accept a (recursive) list of strings as input; the list is flattened before the strings
are processed:

env = Environment ()

63

Chapter 8. Automatically Putting Command-line Options into their Construction Variables

d = env.ParseFlags(["-I/opt/include", ["-L/opt/lib", "-1foo"]])
for k,v in sorted(d.items()):
if v:
print k, v
env.MergeFlags (d)
env.Program(’fl.c’)

% scons -Q

CPPPATH [’ /opt/include’]

LIBPATH [’ /opt/lib’]

LIBS [’ foo’]

cc -o fl.o -c -I/opt/include fl.c
cc -—o fl1 fl.o -L/opt/lib -1foo

mn

If a string begins with a "!" (an exclamation mark, often called a bang), the string is passed to the shell
for execution. The output of the command is then parsed:

env = Environment ()
d = env.ParseFlags(["!echo -I/opt/include", "!echo -L/opt/lib", "-1foo"])
for k,v in sorted(d.items()):
if wv:
print k, v
env.MergeFlags (d)
env.Program(’fl.c’)

% scons -Q

CPPPATH [’ /opt/include’]

LIBPATH [’ /opt/lib’]

LIBS [’ foo’]

cc -o fl.o -c -I/opt/include fl.c
cc —o fl1 fl.o -L/opt/lib -1foo

ParseFlags is regularly updated for new options; consult the man page for details about those currently
recognized.

8.3. Finding Installed Library Information: the
ParseConfig Function

Configuring the right options to build programs to work with libraries--especially shared libraries--that
are available on POSIX systems can be very complicated. To help this situation, various utilies with
names that end in config return the command-line options for the GNU Compiler Collection (GCC)
that are needed to use these libraries; for example, the command-line options to use a library named 1ib
would be found by calling a utility named 1ib-config.

64

Chapter 8. Automatically Putting Command-line Options into their Construction Variables

A more recent convention is that these options are available from the generic pkg-config program,
which has common framework, error handling, and the like, so that all the package creator has to do is
provide the set of strings for his particular package.

SCons construction environments have a ParseConfig method that executes a »config utility (either
pkg-config or a more specific utility) and configures the appropriate construction variables in the
environment based on the command-line options returned by the specified command.

env = Environment ()

env[’/CPPPATH’] = [’/lib/compat’]
env.ParseConfig("pkg-config x11 --cflags —--libs")
print env [’ CPPPATH’]

SCons will execute the specified command string, parse the resultant flags, and add the flags to the
appropriate environment variables.

% scons -Q
["/1lib/compat’, ’/usr/X11l/include’]
scons: ‘.’ is up to date.

In the example above, SCons has added the include directory to cPpPPATH. (Depending upon what other
flags are emitted by the pkg—config command, other variables may have been extended as well.)

Note that the options are merged with existing options using the MergeF1lags method, so that each
option only occurs once in the construction variable:

env = Environment ()

env.ParseConfig("pkg-config x11 --cflags —--libs")
env.ParseConfig("pkg-config x11 --cflags —--libs")
print env [’ CPPPATH’]

% scons -Q
["/usr/X11l/include’]
scons: ‘.’ is up to date.

65

Chapter 9. Controlling Build Output

A key aspect of creating a usable build configuration is providing good output from the build so its users
can readily understand what the build is doing and get information about how to control the build. SCons
provides several ways of controlling output from the build configuration to help make the build more
useful and understandable.

9.1. Providing Build Help: the He1p Function

It’s often very useful to be able to give users some help that describes the specific targets, build options,
etc., that can be used for your build. SCons provides the He1p function to allow you to specify this help
text:

Help (nmnn
Type: ’scons program’ to build the production program,
"scons debug’ to build the debug version.

nn ")

(Note the above use of the Python triple-quote syntax, which comes in very handy for specifying
multi-line strings like help text.)

When the SConstruct or SConscript files contain such a call to the He1p function, the specified help
text will be displayed in response to the SCons -h option:

% scons -h
scons: Reading SConscript files
scons: done reading SConscript files.

Type: ’scons program’ to build the production program,
"scons debug’ to build the debug version.

Use scons —-H for help about command-line options.

The sconscript files may contain multiple calls to the He1p function, in which case the specified
text(s) will be concatenated when displayed. This allows you to split up the help text across multiple
SConscript files. In this situation, the order in which the SConscript files are called will determine
the order in which the Help functions are called, which will determine the order in which the various bits
of text will get concatenated.

Another use would be to make the help text conditional on some variable. For example, suppose you
only want to display a line about building a Windows-only version of a program when actually run on
Windows. The following SConstruct file:

66

Chapter 9. Controlling Build Output
env = Environment ()
Help ("\nType: ’scons program’ to build the production program.\n")

if env[’PLATFORM’] == ’"win32':
Help ("\nType: ’scons windebug’ to build the Windows debug version.\n")

Will display the complete help text on Windows:
C:\>scons -h
scons: Reading SConscript files
scons: done reading SConscript files.
Type: ’scons program’ to build the production program.

Type: ’scons windebug’ to build the Windows debug version.

Use scons -H for help about command-line options.

But only show the relevant option on a Linux or UNIX system:

% scons -h
scons: Reading SConscript files
scons: done reading SConscript files.

Type: ’scons program’ to build the production program.

Use scons —-H for help about command-line options.

If there is no Help text in the SConstruct or SConscript files, SCons will revert to displaying its
standard list that describes the SCons command-line options. This list is also always displayed whenever
the —H option is used.

9.2. Controlling How SCons Prints Build Commands: the
$*COMSTR Variables

Sometimes the commands executed to compile object files or link programs (or build other targets) can
get very long, long enough to make it difficult for users to distinguish error messages or other important
build output from the commands themselves. All of the default $*COM variables that specify the
command lines used to build various types of target files have a corresponding $*COMSTR variable that
can be set to an alternative string that will be displayed when the target is built.

67

Chapter 9. Controlling Build Output

For example, suppose you want to have SCons display a "Compiling" message whenever it’s
compiling an object file, and a "Linking" when it’s linking an executable. You could write a
SConstruct file that looks like:

env = Environment (CCCOMSTR = "Compiling S$TARGET",
LINKCOMSTR = "Linking $TARGET")
env.Program(’ foo.c’)

Which would then yield the output:

)

% scons —-Q
Compiling foo.o
Linking foo

SCons performs complete variable substitution on $*COMSTR variables, so they have access to all of
the standard variables like STARGET $SOURCES, etc., as well as any construction variables that
happen to be configured in the construction environment used to build a specific target.

Of course, sometimes it’s still important to be able to see the exact command that SCons will execute to
build a target. For example, you may simply need to verify that SCons is configured to supply the right
options to the compiler, or a developer may want to cut-and-paste a compile command to add a few
options for a custom test.

One common way to give users control over whether or not SCons should print the actual command line
or a short, configured summary is to add support for a VERBOSE command-line variable to your
SConstruct file. A simple configuration for this might look like:

env = Environment ()

if ARGUMENTS.get (' VERBOSE’) != "1':
env[’/CCCOMSTR’] = "Compiling $TARGET"
env [’ LINKCOMSTR’] = "Linking $TARGET"

env.Program(’ foo.c’)

By only setting the appropriate $*COMSTR variables if the user specifies VERBOSE=1 on the command
line, the user has control over how SCons displays these particular command lines:

)

% scons —-Q

Compiling foo.o
Linking foo

% scons -Q -c

Removed foo.o
Removed foo

% scons —-Q VERBOSE=1
cc -o foo.o -c foo.c

cc -o foo foo.o

68

Chapter 9. Controlling Build Output

9.3. Providing Build Progress Output: the Progress
Function

Another aspect of providing good build output is to give the user feedback about what SCons is doing
even when nothing is being built at the moment. This can be especially true for large builds when most of
the targets are already up-to-date. Because SCons can take a long time making absolutely sure that every
target is, in fact, up-to-date with respect to a lot of dependency files, it can be easy for users to
mistakenly conclude that SCons is hung or that there is some other problem with the build.

One way to deal with this perception is to configure SCons to print something to let the user know what
it’s "thinking about." The Progress function allows you to specify a string that will be printed for every
file that SCons is "considering" while it is traversing the dependency graph to decide what targets are or
are not up-to-date.

Progress (' Evaluating $TARGET\n’)
Program(’fl.c’)
Program(’f2.c’)

Note that the Progress function does not arrange for a newline to be printed automatically at the end of
the string (as does the Python print statement), and we must specify the \n that we want printed at the
end of the configured string. This configuration, then, will have SCons print that it is Evaluating each
file that it encounters in turn as it traverses the dependency graph:

o

% scons —-Q
Evaluating SConstruct
Evaluating fl.c
Evaluating fl.o

cc -o fl.o —-c fl.c
Evaluating f1l

cc —o fl fl.o
Evaluating f2.c
Evaluating f2.o0

cc -o f2.0 -¢c f2.c
Evaluating f2

cc -o f2 f2.0
Evaluating

Of course, normally you don’t want to add all of these additional lines to your build output, as that can
make it difficult for the user to find errors or other important messages. A more useful way to display this
progress might be to have the file names printed directly to the user’s screen, not to the same standard

69

Chapter 9. Controlling Build Output

output stream where build output is printed, and to use a carriage return character (\r) so that each file
name gets re-printed on the same line. Such a configuration would look like:

Progress (! STARGET\r’,
file=open ('’ /dev/tty’, "w’'),
overwrite=True)

Program(’fl.c’)

Program(’f2.c’)

Note that we also specified the overwrite=True argument to the Progress function, which causes
SCons to "wipe out" the previous string with space characters before printing the next Progress string.
Without the overwrite=True argument, a shorter file name would not overwrite all of the charactes in
a longer file name that precedes it, making it difficult to tell what the actual file name is on the output.
Also note that we opened up the /dev/tty file for direct access (on POSIX) to the user’s screen. On
Windows, the equivalent would be to open the con: file name.

Also, it’s important to know that although you can use STARGET to substitute the name of the node in the
string, the Progress function does not perform general variable substitution (because there’s not
necessarily a construction environment involved in evaluating a node like a source file, for example).

You can also specify a list of strings to the Progress function, in which case SCons will display each
string in turn. This can be used to implement a "spinner" by having SCons cycle through a sequence of
strings:

Progress (['-\r’, "\\\z’, "|\xr’, '/\r’]l, interval=5)
Program(’'fl.c’)
Program(’f2.c’)

Note that here we have also used the interval= keyword argument to have SCons only print a new
"spinner" string once every five evaluated nodes. Using an interval= count, even with strings that use
STARGET like our examples above, can be a good way to lessen the work that SCons expends printing
Progress strings, while still giving the user feedback that indicates SCons is still working on evaluating
the build.

Lastly, you can have direct control over how to print each evaluated node by passing a Python function
(or other Python callable) to the Progress function. Your function will be called for each evaluated
node, allowing you to implement more sophisticated logic like adding a counter:

screen = open ('’ /dev/tty’, 'w’)

count = 0

def progress_function (node)
count += 1

o

screen.write (' Node %4d: %s\r’ % (count, node))

Progress (progress_function)

70

Chapter 9. Controlling Build Output

Of course, if you choose, you could completely ignore the node argument to the function, and just print
a count, or anything else you wish.

(Note that there’s an obvious follow-on question here: how would you find the total number of nodes that
will be evaluated so you can tell the user how close the build is to finishing? Unfortunately, in the general
case, there isn’t a good way to do that, short of having SCons evaluate its dependency graph twice, first
to count the total and the second time to actually build the targets. This would be necessary because you
can’t know in advance which target(s) the user actually requested to be built. The entire build may
consist of thousands of Nodes, for example, but maybe the user specifically requested that only a single
object file be built.)

9.4. Printing Detailed Build Status: the GetBuildrailures
Function

SCons, like most build tools, returns zero status to the shell on success and nonzero status on failure.
Sometimes it’s useful to give more information about the build status at the end of the run, for instance to
print an informative message, send an email, or page the poor slob who broke the build.

SCons provides a GetBuildFailures method that you can use in a python atexit function to get a
list of objects describing the actions that failed while attempting to build targets. There can be more than
one if you’re using —j. Here’s a simple example:

import atexit

def print_build_failures():
from SCons.Script import GetBuildFailures
for bf in GetBuildFailures():
print "%s failed: %$s" % (bf.node, bf.errstr)
atexit.register (print_build_failures)

The atexit.register call registers print_build_failures as an atexit callback, to be called
before SCons exits. When that function is called, it calls GetBuildFailures to fetch the list of failed
objects. See the man page for the detailed contents of the returned objects; some of the more useful
attributes are .node, .errstr, .filename, and . command. The filename is not necessarily the same
file as the node; the node is the target that was being built when the error occurred, while the
filenameis the file or dir that actually caused the error. Note: only call GetBuildFailures at the end
of the build; calling it at any other time is undefined.

Here is a more complete example showing how to turn each element of GetBuildFailures into a
string:

Make the build fail if we pass fail=1] on the command line
if ARGUMENTS.get (" fail’, 0):

71

Chapter 9. Controlling Build Output

Command (' target’, ’source’, [’/bin/false’])

def bf_to_str(bf):
"""Convert an element of GetBuildFailures() to a string
in a useful way."""
import SCons.Errors
if bf is None: # unknown targets product None in list
return ’ (unknown tgt)’
elif isinstance (bf, SCons.Errors.StopError):
return str (bf)
elif bf.node:
return str(bf.node) + ': ' + bf.errstr
elif bf.filename:
return bf.filename + ’: ' + bf.errstr
return ’"unknown failure: ' + bf.errstr
import atexit

def build_status() :

"""Convert the build status to a 2-tuple, (status, msg)."""

from SCons.Script import GetBuildFailures
bf = GetBuildFailures ()
if bf:

bf is normally a list of build failures; if an element is None,
it’s because of a target that scons doesn’t know anything about.

status = ’failed’

)

failures_message = "\n".join(["Failed building %s" %

for x in bf if x is not None])
else:
if bf is None, the build completed successfully.
status = "ok’

failures_message =
return (status, failures_message)

def display_build_status():
"""Display the build status. Called by atexit.
Here you could do all kinds of complicated things."""

status, failures_message = build_status/()
if status == ’failed’:

print "FAILED!!!!"™ # could display alert, ring bell,
elif status == ’'ok’:

print "Build succeeded."
print failures_message

atexit.register (display_build_status)

When this runs, you’ll see the appropriate output:

% scons -Q
scons: ‘.’ is up to date.
Build succeeded.

o

% scons —Q fail=1

bf_to_str(x)

etc.

72

Chapter 9. Controlling Build Output

scons: **x [target] Source ‘source’ not found, needed by target ‘target’.
FAILED!!!!
Failed building target: Source ‘source’ not found, needed by target ‘target’.

73

Chapter 10. Controlling a Build From the
Command Line

SCons provides a number of ways for the writer of the SConscript files to give the users who will run
SCons a great deal of control over the build execution. The arguments that the user can specify on the
command line are broken down into three types:

Options

Command-line options always begin with one or two — (hyphen) characters. SCons provides ways
for you to examine and set options values from within your SConscript files, as well as the ability
to define your own custom options. See Section 10.1, below.

Variables

Any command-line argument containing an = (equal sign) is considered a variable setting with the
form variable=value. SCons provides direct access to all of the command-line variable settings,
the ability to apply command-line variable settings to construction environments, and functions for
configuring specific types of variables (Boolean values, path names, etc.) with automatic validation
of the user’s specified values. See Section 10.2, below.

Targets

Any command-line argument that is not an option or a variable setting (does not begin with a
hyphen and does not contain an equal sign) is considered a target that the user (presumably) wants
SCons to build. A list of Node objects representing the target or targets to build. SCons provides
access to the list of specified targets, as well as ways to set the default list of targets from within the
SConscript files. See Section 10.3, below.

10.1. Command-Line Options

SCons has many command-line options that control its behavior. A SCons command-line option always
begins with one or two - (hyphen) characters.

10.1.1. Not Having to Specify Command-Line Options Each
Time: the sconsrrLaGcs Environment Variable

Users may find themselves supplying the same command-line options every time they run SCons. For
example, you might find it saves time to specify a value of -3 2 to have SCons run up to two build
commands in parallel. To avoid having to type —j 2 by hand every time, you can set the external
environment variable SCONSFLAGS to a string containing command-line options that you want SCons to
use.

74

Chapter 10. Controlling a Build From the Command Line

If, for example, you’re using a POSIX shell that’s compatible with the Bourne shell, and you always
want SCons to use the —Q option, you can set the SCONSFLAGS environment as follows:

% scons
scons: Reading SConscript files
scons: done reading SConscript files.
scons: Building targets

[build output]
scons: done building targets.
export SCONSFLAGS="-Q"

scons

o° o

[build output]

Users of csh-style shells on POSIX systems can set the SCONSFLAGS environment as follows:

$ setenv SCONSFLAGS "-Q"

Windows users may typically want to set the SCONSFLAGS in the appropriate tab of the System
Properties window.

10.1.2. Getting Values Set by Command-Line Options: the
GetOption Function

SCons provides the GetOpt ion function to get the values set by the various command-line options. One
common use of this is to check whether or not the -h or ——help option has been specified. Normally,
SCons does not print its help text until after it has read all of the sConscript files, because it’s possible
that help text has been added by some subsidiary SConscript file deep in the source tree hierarchy. Of
course, reading all of the SConscript files takes extra time.

If you know that your configuration does not define any additional help text in subsidiary SConscript
files, you can speed up the command-line help available to users by using the GetOption function to
load the subsidiary SConscript files only if the the user has not specified the —h or ——help option, like
so:

if not GetOption(’'help’):
SConscript (’ src/SConscript’, export=’'env’)

In general, the string that you pass to the GetOpt ion function to fetch the value of a command-line
option setting is the same as the "most common" long option name (beginning with two hyphen
characters), although there are some exceptions. The list of SCons command-line options and the
GetOption strings for fetching them, are available in the Section 10.1.4 section, below.

75

Chapter 10. Controlling a Build From the Command Line

10.1.3. Setting Values of Command-Line Options: the
SetoOption Function

You can also set the values of SCons command-line options from within the SConscript files by using
the setOption function. The strings that you use to set the values of SCons command-line options are
available in the Section 10.1.4 section, below.

One use of the SetOption function is to specify a value for the —j or ——jobs option, so that users get
the improved performance of a parallel build without having to specify the option by hand. A
complicating factor is that a good value for the —j option is somewhat system-dependent. One rough
guideline is that the more processors your system has, the higher you want to set the - § value, in order to
take advantage of the number of CPUs.

For example, suppose the administrators of your development systems have standardized on setting a
NUM_CPU environment variable to the number of processors on each system. A little bit of Python code to
access the environment variable and the SetOption function provide the right level of flexibility:

import os

num_cpu = int (os.environ.get (' NUM_CPU’, 2))
SetOption (' num_jobs’, num_cpu)

print "running with -3j", GetOption (’/num_jobs’)

The above snippet of code sets the value of the ——jobs option to the value specified in the $NUM_CPU
environment variable. (This is one of the exception cases where the string is spelled differently from the
from command-line option. The string for fetching or setting the —-jobs value is num_jobs for
historical reasons.) The code in this example prints the num_jobs value for illustrative purposes. It uses
a default value of 2 to provide some minimal parallelism even on single-processor systems:

% scons -Q

running with -3j 2
scons: ‘.’ 1s up to date.

But if the $NUM_CPU environment variable is set, then we use that for the default number of jobs:

export NUM_CPU="4"
scons —-Q

o° o

running with -3j 4
scons: ‘.’ 1is up to date.

But any explicit -3 or —-jobs value the user specifies an the command line is used first, regardless of
whether or not the $SNUM_CPU environment variable is set:

o)

% scons -Q -j 7
running with -3 7

76

Chapter 10. Controlling a Build From the Command Line

scons: ‘.’ 1is up to date.
export NUM_CPU="4"
scons -Q -j 3

o° oe

running with -3j 3
scons: ‘.’ is up to date.

10.1.4. Strings for Getting or Setting Values of SCons
Command-Line Options

The strings that you can pass to the GetOption and SetOption functions usually correspond to the first
long-form option name (beginning with two hyphen characters: —-), after replacing any remaining
hyphen characters with underscores.

The full list of strings and the variables they correspond to is as follows:

String for Getoption and setOption Command-Line Option(s)

cache_debug ——cache-debug

cache_disable ——-cache-disable

cache_force ——cache-force

cache_show ——cache—-show

clean -c, ——clean, ——remove

config —-—config

directory —-C, ——directory

diskcheck ——diskcheck

duplicate —-—duplicate

file -f,——file, ——makefile , ——sconstruct

help —-h, ——help

ignore_errors —-—ignore-errors

implicit_cache ——implicit-cache

implicit_deps_changed ——implicit-deps—-changed

implicit_deps_unchanged ——implicit-deps—-unchanged

interactive -—interact, ——interactive

keep_going -k, ——keep-going

max_drift ——max—-drift

no_exec -n, ——no—-exec, ——just-print, -—dry-run,
-—recon

no_site_dir —-—no-site—-dir

num_jobs -Jj, ——Jjobs

profile_file —-—profile

77

Chapter 10. Controlling a Build From the Command Line

String for Getoption and setoption

Command-Line Option(s)

question -, ——question

random ——random

repository -Y, ——repository, ——srcdir
silent -s, ——silent, ——quiet
site_dir ——site—-dir

stack_size

—-—stack-size

taskmastertrace_file

—-—taskmastertrace

warn

—-—warn ——warning

10.1.5. Adding Custom Command-Line Options: the

Addoption Function

SCons also allows you to define your own command-line options with the AddOpt ion function. The
Addopt ion function takes the same arguments as the optparse.add_option function from the
standard Python library. ' Once you have added a custom command-line option with the AddOpt ion
function, the value of the option (if any) is immediately available using the standard GetOption
function. (The value can also be set using SetOpt ion, although that’s not very useful in practice
because a default value can be specified in directly in the AddOption call.)

One useful example of using this functionality is to provide a ——prefix for users:

AddOption (’ ——-prefix’,
dest='prefix’
type=’'string’
nargs=1,
action=’'store
metavar='DIR’

4

’

’
’

I4

help='installation prefix’)

env = Environment (PREFIX

= GetOption ('prefix’))

installed_foo = env.Install ('’ SPREFIX/usr/bin’, ’'foo.in’)

Default (installed_foo)

The above code uses the Get Option function to set the SPREFIX construction variable to any value that

the user specifies with a command-line option of -—prefix. Because $PREFIX will expand to a null

string if it’s not initialized, running SCons without the option of —-pre £ix will install the file in the

/usr/bin/ directory:

o)

% scons —-Q -n
Install file: "foo.in"

as

"/usr/bin/foo.in"

78

Chapter 10. Controlling a Build From the Command Line

But specifying ——prefix=/tmp/install on the command line causes the file to be installed in the
/tmp/install/usr/bin/ directory:

o

% scons -Q -n —-prefix=/tmp/install
Install file: "foo.in" as "/tmp/install/usr/bin/foo.in"

10.2. Command-Line variable=value Build Variables

You may want to control various aspects of your build by allowing the user to specify variable=value
values on the command line. For example, suppose you want users to be able to build a debug version of
a program by running SCons as follows:

o

% scons —-Q debug=1

SCons provides an ARGUMENTS dictionary that stores all of the variable=value assignments from the
command line. This allows you to modify aspects of your build in response to specifications on the
command line. (Note that unless you want to require that users always specify a variable, you probably
want to use the Python ARGUMENTS . get () function, which allows you to specify a default value to be
used if there is no specification on the command line.)

The following code sets the SCCFLAGS construction variable in response to the debug flag being set in
the ARGUMENTS dictionary:

env = Environment ()
debug = ARGUMENTS.get (‘debug’, 0)
if int (debug) :

env.Append (CCFLAGS = '—-g’)
env.Program(’prog.c’)

This results in the —g compiler option being used when debug=1 is used on the command line:

)

% scons —-Q debug=0

cCC -0 Prog.o —-c prog.c

cCC -0 Prog prog.o

% scons —-Q debug=0

scons: ‘.’ is up to date.
% scons —-Q debug=1l

cC -0 Prog.o -Cc —g prog.c
cCC -0 Prog prog.o

% scons —Q debug=1

scons: ‘.’ is up to date.

79

Chapter 10. Controlling a Build From the Command Line

Notice that SCons keeps track of the last values used to build the object files, and as a result correctly
rebuilds the object and executable files only when the value of the debug argument has changed.

The ARGUMENTS dictionary has two minor drawbacks. First, because it is a dictionary, it can only store
one value for each specified keyword, and thus only "remembers" the last setting for each keyword on
the command line. This makes the ARGUMENTS dictionary inappropriate if users should be able to specify
multiple values on the command line for a given keyword. Second, it does not preserve the order in
which the variable settings were specified, which is a problem if you want the configuration to behave
differently in response to the order in which the build variable settings were specified on the command
line.

To accomodate these requirements, SCons provides an ARGLIST variable that gives you direct access to
variable=value settings on the command line, in the exact order they were specified, and without
removing any duplicate settings. Each element in the ARGLIST variable is itself a two-element list
containing the keyword and the value of the setting, and you must loop through, or otherwise select from,
the elements of ARGLIST to process the specific settings you want in whatever way is appropriate for
your configuration. For example, the following code to let the user add to the CPPDEFINES construction
variable by specifying multiple de fine= settings on the command line:

cppdefines = []
for key, value in ARGLIST:
if key == ’'define’:

cppdefines.append (value)
env = Environment (CPPDEFINES = cppdefines)
env.Object ('prog.c’)

Yields the following output:

% scons -Q define=FO0O

cc —o prog.o —c —-DFOO prog.c

% scons -Q define=FOO define=BAR

cc -0 prog.o —c -DFOO -DBAR prog.c

Note that the ARGLIST and ARGUMENTS variables do not interfere with each other, but merely provide
slightly different views into how the user specified variable=value settings on the command line. You
can use both variables in the same SCons configuration. In general, the ARGUMENTS dictionary is more
convenient to use, (since you can just fetch variable settings through a dictionary access), and the
ARGLIST list is more flexible (since you can examine the specific order in which the user’s
command-line variabe settings).

10.2.1. Controlling Command-Line Build Variables

Being able to use a command-line build variable like debug=1 is handy, but it can be a chore to write
specific Python code to recognize each such variable, check for errors and provide appropriate messages,

80

Chapter 10. Controlling a Build From the Command Line

and apply the values to a construction variable. To help with this, SCons supports a class to define such
build variables easily, and a mechanism to apply the build variables to a construction environment. This
allows you to control how the build variables affect construction environments.

For example, suppose that you want users to set a RELEASE construction variable on the command line
whenever the time comes to build a program for release, and that the value of this variable should be
added to the command line with the appropriate —D option (or other command line option) to pass the
value to the C compiler. Here’s how you might do that by setting the appropriate value in a dictionary for
the $CPPDEFINES construction variable:

vars = Variables (None, ARGUMENTS)

vars.Add ('RELEASE’, ’'Set to 1 to build for release’, 0)

env = Environment (variables = vars,
CPPDEFINES={’RELEASE_BUILD’ : ’'S${RELEASE}’'})

env.Program ([’ foo.c’, ’'bar.c’])

This sConstruct file first creates a Variables object which uses the values from the command-line
options dictionary ARGUMENTS (the vars = Variables (None, ARGUMENTS) call). It then uses the
object’s Add method to indicate that the RELEASE variable can be set on the command line, and that its
default value will be 0 (the third argument to the Add method). The second argument is a line of help
text; we’ll learn how to use it in the next section.

We then pass the created variables object as a variables keyword argument to the Environment
call used to create the construction environment. This then allows a user to set the RELEASE build
variable on the command line and have the variable show up in the command line used to build each
object from a C source file:

% scons -Q RELEASE=1

cc -0 bar.o —-c -DRELEASE_BUILD=1 bar.c
cc -o foo.o -c -DRELEASE_BUILD=1 foo.c
cc -o foo foo.o bar.o

NOTE: Before SCons release 0.98.1, these build variables were known as "command-line build options."
The class was actually named the Options class, and in the sections below, the various functions were
named BoolOption, EnumOption, ListOption, PathOption, PackageOption and AddOptions.
These older names still work, and you may encounter them in older SConscript files, but they have
been officially deprecated as of SCons version 2.0.

10.2.2. Providing Help for Command-Line Build Variables

To make command-line build variables most useful, you ideally want to provide some help text that will
describe the available variables when the user runs scons -h. You could write this text by hand, but
SCons provides an easier way. Variables objects support a GenerateHelpText method that will, as

81

Chapter 10. Controlling a Build From the Command Line

its name suggests, generate text that describes the various variables that have been added to it. You then
pass the output from this method to the He1p function:

vars = Variables (None, ARGUMENTS)

vars.Add (' RELEASE’, ’'Set to 1 to build for release’, 0)
env = Environment (variables = vars)

Help (vars.GenerateHelpText (env))

SCons will now display some useful text when the —h option is used:

o)

% scons —-Q -h

RELEASE: Set to 1 to build for release
default: 0
actual: O

Use scons —-H for help about command-line options.

Notice that the help output shows the default value, and the current actual value of the build variable.

10.2.3. Reading Build Variables From a File

Giving the user a way to specify the value of a build variable on the command line is useful, but can still
be tedious if users must specify the variable every time they run SCons. We can let users provide
customized build variable settings in a local file by providing a file name when we create the variables

object:

vars = Variables (’/custom.py’)
vars.Add ('RELEASE’, ’'Set to 1 to build for release’, 0)
env = Environment (variables = vars,

CPPDEFINES={’RELEASE_BUILD’ : ’'${RELEASE}’})
env.Program([’ foo.c’, ’'bar.c’])
Help (vars.GenerateHelpText (env))

This then allows the user to control the RELEASE variable by setting it in the custom. py file:

RELEASE = 1

Note that this file is actually executed like a Python script. Now when we run SCons:

% scons -Q

cc -0 bar.o -c -DRELEASE_BUILD=1 bar.c
cc -o foo.o —-c -DRELEASE_BUILD=1 foo.c
cc -o foo foo.o bar.o

82

Chapter 10. Controlling a Build From the Command Line

And if we change the contents of custom.py to:

RELEASE = 0

The object files are rebuilt appropriately with the new variable:

o

% scons —Q

cc -0 bar.o —c -DRELEASE_BUILD=0 bar.c
cc -o foo.o —-c -DRELEASE_BUILD=0 foo.c
cc -o foo foo.o bar.o

Finally, you can combine both methods with:

vars = Variables (’custom.py’, ARGUMENTS)

where values in the option file custom. py get overwritten by the ones specified on the command line.

10.2.4. Pre-Defined Build Variable Functions

SCons provides a number of functions that provide ready-made behaviors for various types of
command-line build variables.

10.2.4.1. True/False Values: the Boolvariable Build Variable Function

It’s often handy to be able to specify a variable that controls a simple Boolean variable with a t rue or
false value. It would be even more handy to accomodate users who have different preferences for how
to represent t rue or false values. The BoolVariable function makes it easy to accomodate these
common representations of true or false.

The Boolvariable function takes three arguments: the name of the build variable, the default value of
the build variable, and the help string for the variable. It then returns appropriate information for passing
to the Add method of a variables object, like so:

vars = Variables (’custom.py’)
vars.Add (BoolVariable (' RELEASE’, ’"Set to build for release’, 0))
env = Environment (variables = vars,

CPPDEFINES={’RELEASE_BUILD’ : ’${RELEASE}’})
env.Program(’ foo.c’)

83

Chapter 10. Controlling a Build From the Command Line

With this build variable, the RELEASE variable can now be enabled by setting it to the value yes or t:

% scons —-Q RELEASE=yes foo.o0
cc -o foo.o —-c -DRELEASE_BUILD=True foo.c

% scons —-Q RELEASE=t foo.o
cc —-o foo.o -c -DRELEASE_BUILD=True foo.c

Other values that equate to t rue include y, 1, on and all.

Conversely, RELEASE may now be given a false value by setting it to no or £:

% scons -Q RELEASE=no foo.o
cc —-o foo.o —-c -DRELEASE_BUILD=False foo.c

% scons —-Q RELEASE=f foo.o
cc —-o foo.o —-c -DRELEASE_BUILD=False foo.c

Other values that equate to false include n, 0, off and none.

Lastly, if a user tries to specify any other value, SCons supplies an appropriate error message:
% scons —-Q RELEASE=bad value foo.o

scons: *** Error converting option: RELEASE
Invalid value for boolean option: bad_value
File "/home/my/project/SConstruct", line 4, in <module>

10.2.4.2. Single Value From a List: the Enumvariable Build Variable
Function

Suppose that we want a user to be able to set a COLOR variable that selects a background color to be
displayed by an application, but that we want to restrict the choices to a specific set of allowed colors.
This can be set up quite easily using the Enumvariable, which takes a list of allowed_values in
addition to the variable name, default value, and help text arguments:

vars = Variables (’custom.py’)
vars.Add (EnumVariable (" COLOR’, ’'Set background color’, ’red’,
allowed_values=('red’, ’'green’, ’'blue’)))

env = Environment (variables = vars,
CPPDEFINES={’COLOR’ : ""${COLOR}"'})

env.Program(’ foo.c’)

84

Chapter 10. Controlling a Build From the Command Line

The user can now explicity set the COLOR build variable to any of the specified allowed values:

% scons -Q COLOR=red foo.o

cc -o foo.o -c -DCOLOR="red" foo.c

% scons —-Q COLOR=blue foo.o

cc -o foo.o —-c -DCOLOR="blue" foo.c
% scons —-Q COLOR=green foo.o

cc -o foo.o —-c -DCOLOR="green" foo.c

But, almost more importantly, an attempt to set COLOR to a value that’s not in the list generates an error

message:

% scons —-Q COLOR=magenta foo.o

scons: *** Invalid value for option COLOR: magenta. Valid values are: ('red’, ’'g
File "/home/my/project/SConstruct", line 5, in <module>
The Enumvariable function also supports a way to map alternate names to allowed values. Suppose,
for example, that we want to allow the user to use the word navy as a synonym for blue. We do this by
adding a map dictionary that will map its key values to the desired legal value:
vars = Variables (’custom.py’)
vars.Add (EnumVariable (" COLOR’, ’'Set background color’, ’red’,
allowed_values=("red’, ’'green’, ’'blue’),
map={'navy’ :’"blue’}))
env = Environment (variables = vars,
CPPDEFINES={’COLOR’ : ’"S${COLOR}"’})
env.Program(’ foo.c’)
As desired, the user can then use navy on the command line, and SCons will translate it into blue when
it comes time to use the COLOR variable to build a target:
% scons —Q COLOR=navy foo.o
cc -o foo.o —-c -DCOLOR="blue" foo.c
By default, when using the Enumvariable function, arguments that differ from the legal values only in
case are treated as illegal values:
% scons —-Q COLOR=Red foo.o
scons: **% Invalid value for option COLOR: Red. Valid values are: ('red’, ’'green

File "/home/my/project/SConstruct", line 5, in <module>
% scons —-Q COLOR=BLUE foo.o

85

Chapter 10. Controlling a Build From the Command Line

scons: *** Invalid value for option COLOR: BLUE. Valid values are: ('red’, ’'gree
File "/home/my/project/SConstruct", line 5, in <module>
% scons —-Q COLOR=nAvY foo.o

scons: *x% Invalid value for option COLOR: nAvY. Valid values are: ('red’, ’'gree
File "/home/my/project/SConstruct", line 5, in <module>

The Enumvariable function can take an additional ignorecase keyword argument that, when set to 1,
tells SCons to allow case differences when the values are specified:

vars = Variables (’custom.py’)
vars.Add (EnumVariable (" COLOR’, ’'Set background color’, ’red’,
allowed_values=("red’, ’'green’, ’'blue’),
map={'navy’ :"blue’},
ignorecase=1))
env = Environment (variables = vars,
CPPDEFINES={’COLOR’ : '"S${COLOR}"’})

env.Program(’ foo.c’)

Which yields the output:

% scons -Q COLOR=Red foo.o

cc -o foo.o —-c -DCOLOR="Red" foo.c

% scons —-Q COLOR=BLUE foo.o

cc -o foo.o —-c -DCOLOR="BLUE" foo.c
% scons —-Q COLOR=nAvY foo.o

cc -o foo.o —-c -DCOLOR="blue" foo.c
% scons —-Q COLOR=green foo.o

cc -o foo.o —-c -DCOLOR="green" foo.c

Notice that an ignorecase value of 1 preserves the case-spelling that the user supplied. If you want
SCons to translate the names into lower-case, regardless of the case used by the user, specify an

ignorecase value of 2:

vars = Variables (’custom.py’)

vars.Add (EnumVariable (' COLOR’, ’'Set background color’, ’red’,
allowed_values=("red’, ’'green’, ’'blue’),
map={'navy’ :'blue’ },
ignorecase=2))

env = Environment (variables = vars,
CPPDEFINES={’COLOR’ : ""${COLOR}"'})

env.Program(’ foo.c’)

Now SCons will use values of red, green or blue regardless of how the user spells those values on the

command line:

86

Chapter 10. Controlling a Build From the Command Line

% scons —-Q COLOR=Red foo.o

cc -o foo.o —-c -DCOLOR="red" foo.c
% scons —Q COLOR=nAvY foo.o

cc -o foo.o —-c¢ -DCOLOR="blue" foo.c
% scons —Q COLOR=GREEN foo.o

cc -o foo.o -c -DCOLOR="green" foo.c

10.2.4.3. Multiple Values From a List: the Listvariable Build Variable
Function

Another way in which you might want to allow users to control a build variable is to specify a list of one
or more legal values. SCons supports this through the Listvariable function. If, for example, we want
a user to be able to set a COLORS variable to one or more of the legal list of values:

vars = Variables (’custom.py’)
vars.Add (ListVariable (' COLORS’, ’"List of colors’, 0,
["red’", "green’, ’'blue’]))

env = Environment (variables = vars,
CPPDEFINES={’COLORS’ : ""S${COLORS}!"'})

env.Program(’ foo.c’)

A user can now specify a comma-separated list of legal values, which will get translated into a
space-separated list for passing to the any build commands:

% scons —-Q COLORS=red,blue foo.o
cc -o foo.o —-c -DCOLORS="red blue" foo.c
% scons —-Q COLORS=blue,green,red foo.o

°

cc -o foo.o —-c -DCOLORS="blue green red" foo.c

In addition, the L.i stvVariable function allows the user to specify explicit keywords of a11 or none to
select all of the legal values, or none of them, respectively:

% scons —-Q COLORS=all foo.o
cc -o foo.o —-c -DCOLORS="red green blue" foo.c

% scons —-Q COLORS=none foo.o
cc -o foo.o —c -DCOLORS="" foo.c

And, of course, an illegal value still generates an error message:
% scons —Q COLORS=magenta foo.o

scons: *** Error converting option: COLORS
Invalid value(s) for option: magenta

File "/home/my/project/SConstruct", line 5, in <module>

87

Chapter 10. Controlling a Build From the Command Line

10.2.4.4. Path Names: the pathvariable Build Variable Function

SCons supports a PathvVariable function to make it easy to create a build variable to control an
expected path name. If, for example, you need to define a variable in the preprocessor that controls the
location of a configuration file:

vars = Variables (’custom.py’)
vars.Add (PathVariable (' CONFIG',
"Path to configuration file’,
' /etc/my_config’))
env = Environment (variables = vars,
CPPDEFINES={’CONFIG_FILE’ : ’"SCONFIG"’})
env.Program(’ foo.c’)

This then allows the user to override the CONFIG build variable on the command line as necessary:

o)

% scons -Q foo.o

cc -o foo.o —-c -DCONFIG_FILE="/etc/my_config" foo.c
% scons —-Q CONFIG=/usr/local/etc/other_config foo.o
scons: ‘foo.o’ is up to date.

By default, Pathvariable checks to make sure that the specified path exists and generates an error if it
doesn’t:

% scons —-Q CONFIG=/does/not/exist foo.o

scons: *x* Path for option CONFIG does not exist: /does/not/exist
File "/home/my/project/SConstruct", line 6, in <module>

PathVariable provides a number of methods that you can use to change this behavior. If you want to
ensure that any specified paths are, in fact, files and not directories, use the
PathVariable.PathIsFile method:

vars = Variables (’custom.py’)

vars.Add (PathVariable (' CONFIG',
"Path to configuration file’,
"/etc/my_config’,
PathVariable.PathIsFile))

env = Environment (variables = vars,

CPPDEFINES={’/CONFIG_FILE’ : ’""SCONFIG"’})
env.Program(’ foo.c’)

88

Chapter 10. Controlling a Build From the Command Line

Conversely, to ensure that any specified paths are directories and not files, use the
PathVariable.PathIsDir method:

vars = Variables (’custom.py’)
vars.Add (PathVariable (' DBDIR’,
"Path to database directory’,
" /var/my_dbdir’,
PathVariable.PathIsDir))
env = Environment (variables = vars,
CPPDEFINES={’DBDIR’ : ’"SDBDIR"’})
env.Program(’ foo.c’)

If you want to make sure that any specified paths are directories, and you would like the directory created
if it doesn’t already exist, use the Pathvariable.PathIsDirCreate method:

vars = Variables (’custom.py’)
vars.Add (Pathvariable (' DBDIR’,
"Path to database directory’,
" /var/my_dbdir’,
PathVariable.PathIsDirCreate))
env = Environment (variables = vars,
CPPDEFINES={’DBDIR’ : ’"S$SDBDIR"’})
env.Program(’ foo.c’)

Lastly, if you don’t care whether the path exists, is a file, or a directory, use the
PathVariable.PathAccept method to accept any path that the user supplies:

vars = Variables (’custom.py’)
vars.Add (Pathvariable (' OUTPUT',
"Path to output file or directory’,

None,
PathVariable.PathAccept))
env = Environment (variables = vars,

CPPDEFINES={’OQUTPUT’ : ""SOUTPUT"'})
env.Program(’ foo.c’)

10.2.4.5. Enabled/Disabled Path Names: the packagevariable Build
Variable Function

Sometimes you want to give users even more control over a path name variable, allowing them to
explicitly enable or disable the path name by using yes or no keywords, in addition to allow them to
supply an explicit path name. SCons supports the PackageVariable function to support this:

vars = Variables (’custom.py’)
vars.Add (PackageVariable (' PACKAGE',

89

env =

Chapter 10. Controlling a Build From the Command Line

"Location package’,

" /opt/location’))

Environment (variables = vars,

CPPDEFINES={'PACKAGE’

env.Program(’ foo.c’)

" "SPACKAGE"' })

When the sConscript file uses the Packagevariable funciton, user can now still use the default or
supply an overriding path name, but can now explicitly set the specified variable to a value that indicates

the package should be enabled (in which case the default should be used) or disabled:

10.2.5. Adding Multiple Command-Line Build Variables at

Once

<)

% scons —-Q
cc -o foo

o)

% scons —-Q
cc -o foo
% scons -Q
cc -o foo
°

% scons —-Q
cc -o foo

foo.o

.0 —c -DPACKAGE="/opt/location" foo.c

PACKAGE=/usr/local/location foo.o

.0 —c¢ —-DPACKAGE="/usr/local/location"

PACKAGE=yes foo.o

.0 —c —-DPACKAGE="True" foo.c
PACKAGE=no foo.o
.0 —c -DPACKAGE="False" foo.c

foo.c

Lastly, SCons provides a way to add multiple build variables to a variables object at once. Instead of
having to call the Add method multiple times, you can call the Addvariables method with a list of
build variables to be added to the object. Each build variable is specified as either a tuple of arguments,

just like you’d pass to the Add method itself, or as a call to one of the pre-defined functions for

pre-packaged command-line build variables. in any order:

vars = Va
vars.Addv
(" REL
(" CON

BoolVariable (' warnings’,
EnumVariable (' debug’,

riables ()

ariables (

EASE’, ’'Set to 1 to build for release’,
FIG’, ’'Configuration file’,

allowed_values=('yes’,

map={}, ignorecase=0),

ListVariable (' shared’,

"libraries to build as
rall’,

names = list_of_ libs),

PackageVariable (' x11’,

PathVariable (' gtdir’,

"use X11 installed here
"yes’),

"no’,

0),

"debug output and symbols’,

rfull’),

(yes =

' /etc/my_config’),
"compilation with -Wall and similiar’,

’no’,

case sensitive

shared libraries’,

"where the root of Qt is installed’,

1),

search some places)’,

gtdir),

90

Chapter 10. Controlling a Build From the Command Line

10.2.6. Handling Unknown Command-Line Build Variables:
the Unknownvariables Function

Users may, of course, occasionally misspell variable names in their command-line settings. SCons does
not generate an error or warning for any unknown variables the users specifies on the command line.
(This is in no small part because you may be processing the arguments directly using the ARGUMENTS
dictionary, and therefore SCons can’t know in the general case whether a given "misspelled" variable is
really unknown and a potential problem, or something that your SConscript file will handle directly
with some Python code.)

If, however, you're using a Variables object to define a specific set of command-line build variables
that you expect users to be able to set, you may want to provide an error message or warning of your own
if the user supplies a variable setting that is not among the defined list of variable names known to the
Variables object. You can do this by calling the UnknownvVariables method of the variables
object:

vars = Variables (None)
vars.Add (' RELEASE’, ’'Set to 1 to build for release’, 0)

env = Environment (variables = vars,
CPPDEFINES={’RELEASE_BUILD’ : ’${RELEASE}’})
unknown = vars.UnknownVariables ()

if unknown:
print "Unknown variables:", unknown.keys()
Exit (1)

env.Program(’ foo.c’)

The UnknownvVariables method returns a dictionary containing the keywords and values of any
variables the user specified on the command line that are not among the variables known to the
Variables object (from having been specified using the variables object’sadd method). In the
examble above, we check for whether the dictionary returned by the Unknownvariables is non-empty,
and if so print the Python list containing the names of the unknwown variables and then call the Exit
function to terminate SCons:

% scons —-Q NOT KNOWN=foo
Unknown variables: [’/NOT_KNOWN’]

Of course, you can process the items in the dictionary returned by the Unknownvariables function in
any way appropriate to your build configuration, including just printing a warning message but not
exiting, logging an error somewhere, etc.

91

Chapter 10. Controlling a Build From the Command Line

Note that you must delay the call of Unknownvariables until after you have applied the variables
object to a construction environment with the variables= keyword argument of an Environment call.

10.3. Command-Line Targets

10.3.1. Fetching Command-Line Targets: the
COMMAND LINE TARGETS Variable

SCons supports a COMMAND_LINE_TARGETS variable that lets you fetch the list of targets that the user
specified on the command line. You can use the targets to manipulate the build in any way you wish. As
a simple example, suppose that you want to print a reminder to the user whenever a specific program is
built. You can do this by checking for the target in the COMMAND_LINE_TARGETS list:

if 'bar’ in COMMAND_LINE_TARGETS:

print "Don’t forget to copy ‘bar’ to the archive!"
Default (Program(’ foo.c’))
Program(’bar.c’)

Then, running SCons with the default target works as it always does, but explicity specifying the bar
target on the command line generates the warning message:

o)

% scons —-Q
cc -o foo.o -c foo.c
cc -o foo foo.o

o)

% scons —-Q bar

Don’t forget to copy ‘bar’ to the archive!
cc —-o bar.o -c bar.c

cc —-o bar bar.o

Another practical use for the COMMAND_LINE_TARGETS variable might be to speed up a build by only
reading certain subsidiary SConscript files if a specific target is requested.

10.3.2. Controlling the Default Targets: the pefault Function

One of the most basic things you can control is which targets SCons will build by default--that is, when
there are no targets specified on the command line. As mentioned previously, SCons will normally build
every target in or below the current directory by default--that is, when you don’t explicitly specify one or
more targets on the command line. Sometimes, however, you may want to specify explicitly that only
certain programs, or programs in certain directories, should be built by default. You do this with the
Default function:

92

Chapter 10. Controlling a Build From the Command Line

env = Environment ()

hello = env.Program(’hello.c’)
env.Program ('’ goodbye.c’)
Default (hello)

This sConstruct file knows how to build two programs, hello and goodbye, but only builds the
hello program by default:

o

% scons —-Q

cc -o hello.o -c hello.c

cc -o hello hello.o

% scons -Q

scons: ‘hello’ is up to date.
% scons —Q goodbye

cc -o goodbye.o —-c goodbye.c
cc —-o goodbye goodbye.o

Note that, even when you use the Default function in your SConstruct file, you can still explicitly
specify the current directory (.) on the command line to tell SCons to build everything in (or below) the
current directory:

% scons -Q .

cc —-o goodbye.o —-c goodbye.c
cc —-o goodbye goodbye.o

cc -o hello.o —-c hello.c

cc -o hello hello.o

You can also call the Default function more than once, in which case each call adds to the list of targets
to be built by default:

env = Environment ()

progl = env.Program(’progl.c’)
Default (progl)

prog2 = env.Program(’prog2.c’)
prog3 = env.Program(’prog3.c’)
Default (prog3)

Or you can specify more than one target in a single call to the Default function:

env = Environment ()

progl = env.Program(’progl.c’)

prog2 = env.Program(’prog2.c’)

prog3 = env.Program(’prog3.c’)
3

Default (progl, prog3)

93

Chapter 10. Controlling a Build From the Command Line

Either of these last two examples will build only the progl and prog3 programs by default:

% scons -Q

cc -o progl.o —-c progl.c
cc -o progl progl.o

cc -0 prog3.0 —-c prog3.c
cc -0 prog3 prog3.o

% scons -Q .

cC -0 prog2.0 —-c prog2.c
cCC -0 prog2 prog2.o0

You can list a directory as an argument to Default:

env = Environment ()
env.Program([’progl/main.c’, ’progl/foo.c’])
env.Program([’prog2/main.c’, ’'prog2/bar.c’])
Default (' progl’)

In which case only the target(s) in that directory will be built by default:

% scons -Q

cc -o progl/foo.o -c progl/foo.c

cc -o progl/main.o -c progl/main.c

cc -o progl/main progl/main.o progl/foo.o
% scons -Q

scons: ‘progl’ is up to date.

% scons -Q .

cc -o prog2/bar.o —-c prog2/bar.c

cc -0 prog2/main.o -c prog2/main.c

cc -0 prog2/main prog2/main.o prog2/bar.o

Lastly, if for some reason you don’t want any targets built by default, you can use the Python None
variable:

env = Environment ()
progl = env.Program(’progl.c’)
prog2 = env.Program(’prog2.c’)

Default (None)

Which would produce build output like:

% scons -Q

scons: *** No targets specified and no Default () targets found. Stop.
% scons -Q .

cc -o progl.o -c progl.c

cc -o progl progl.o

94

Chapter 10. Controlling a Build From the Command Line

cc -0 prog2.o0 —-c prog2.c
cCC -0 prog2 prog2.o

10.3.2.1. Fetching the List of Default Targets: the DEFAULT TARGETS
Variable

SCons supports a DEFAULT_TARGETS variable that lets you get at the current list of default targets. The
DEFAULT_TARGETS variable has two important differences from the COMMAND_LINE_TARGETS variable.
First, the DEFAULT_TARGETS variable is a list of internal SCons nodes, so you need to convert the list
elements to strings if you want to print them or look for a specific target name. Fortunately, you can do
this easily by using the Python map function to run the list through str:

progl = Program(’progl.c’)
Default (progl)
print "DEFAULT_TARGETS is", map(str, DEFAULT_TARGETS)

(Keep in mind that all of the manipulation of the DEFAULT_TARGETS list takes place during the first
phase when SCons is reading up the SConscript files, which is obvious if we leave off the -0 flag
when we run SCons:)

% scons

scons: Reading SConscript files
DEFAULT_TARGETS is [’progl’]

scons: done reading SConscript files.
scons: Building targets

cc -o progl.o -c progl.c

cc -o progl progl.o

scons: done building targets.

Second, the contents of the DEFAULT_TARGETS list change in response to calls to the Default function,
as you can see from the following SConstruct file:

progl = Program(’progl.c’)

Default (progl)

print "DEFAULT_TARGETS is now", map(str, DEFAULT_TARGETS)
prog2 = Program(’prog2.c’)

Default (prog2)

print "DEFAULT_TARGETS is now", map(str, DEFAULT_TARGETS)

Which yields the output:
% scons

scons: Reading SConscript files
DEFAULT_TARGETS is now ['progl’]

95

Chapter 10. Controlling a Build From the Command Line

DEFAULT_TARGETS is now [’'progl’, ’'prog2’]
scons: done reading SConscript files.
scons: Building targets

cc -o progl.o —-c progl.c

cc -o progl progl.o

cc -0 prog2.0 —-c prog2.c

cCC -0 prog2 prog2.o

scons: done building targets.

In practice, this simply means that you need to pay attention to the order in which you call the Default
function and refer to the DEFAULT_TARGETS list, to make sure that you don’t examine the list before
you’ve added the default targets you expect to find in it.

10.3.3. Fetching the List of Build Targets, Regardless of
Origin: the BuiLD_TARGETS Variable

We’ve already been introduced to the COMMAND_LINE_TARGETS variable, which contains a list of targets
specified on the command line, and the DEFAULT_TARGETS variable, which contains a list of targets
specified via calls to the Default method or function. Sometimes, however, you want a list of whatever
targets SCons will try to build, regardless of whether the targets came from the command line or a
Default call. You could code this up by hand, as follows:

if COMMAND_LINE_TARGETS:

targets = COMMAND_LINE_TARGETS
else:

targets = DEFAULT_TARGETS

SCons, however, provides a convenient BUILD_TARGETS variable that eliminates the need for this
by-hand manipulation. Essentially, the BUILD_TARGETS variable contains a list of the command-line
targets, if any were specified, and if no command-line targets were specified, it contains a list of the
targets specified via the Default method or function.

Because BUILD_TARGETS may contain a list of SCons nodes, you must convert the list elements to
strings if you want to print them or look for a specific target name, just like the DEFAULT_TARGETS list:

progl = Program(’progl.c’)

Program(’'prog2.c’)

Default (progl)

print "BUILD_TARGETS is", map(str, BUILD_TARGETS)

Notice how the value of BUILD_TARGETS changes depending on whether a target is specified on the
command line:

96

Notes

1.

o)

% scons —Q

BUILD_TARGETS is [’progl’]
cc -o progl.o —-c progl.c
cc -o progl progl.o

% scons —-Q prog2
BUILD_TARGETS is ['prog2’]
cC -0 prog2.o0 —-Cc prog2.c
cCC -0 prog2 prog2.o

% scons -Q -c .
BUILD_TARGETS is [’.']
Removed progl.o

Removed progl

Removed prog2.o

Removed prog?2

optparse.OptionParser

Chapter 10. Controlling a Build From the Command Line

The Addoption function is, in fact, implemented using a subclass of the

97

Chapter 11. Installing Files in Other Directories:
the I1nstall Builder

Once a program is built, it is often appropriate to install it in another directory for public use. You use the
Install method to arrange for a program, or any other file, to be copied into a destination directory:

env = Environment ()
hello = env.Program(’hello.c’)
env.Install (’/usr/bin’, hello)

Note, however, that installing a file is still considered a type of file "build." This is important when you
remember that the default behavior of SCons is to build files in or below the current directory. If, as in the
example above, you are installing files in a directory outside of the top-level SConstruct file’s directory
tree, you must specify that directory (or a higher directory, such as /) for it to install anything there:

% scons -Q

cc -o hello.o —-c hello.c

cc —-o hello hello.o

% scons -Q /usr/bin

Install file: "hello" as "/usr/bin/hello"

It can, however, be cumbersome to remember (and type) the specific destination directory in which the
program (or any other file) should be installed. This is an area where the A1ias function comes in handy,
allowing you, for example, to create a pseudo-target named install that can expand to the specified

destination directory:

env = Environment ()

hello = env.Program(’hello.c’)
env.Install ('’ /usr/bin’, hello)
env.Alias (’install’, ’/usr/bin’)

This then yields the more natural ability to install the program in its destination as follows:
% scons -Q

cc -o hello.o -c hello.c

cc -o hello hello.o

% scons -Q install

Install file: "hello" as "/usr/bin/hello"

98

Chapter 11. Installing Files in Other Directories: the Install Builder

11.1. Installing Multiple Files in a Directory

You can install multiple files into a directory simply by calling the Install function multiple times:

env = Environment ()

hello = env.Program(’hello.c’)
goodbye = env.Program(’goodbye.c’)
env.Install(’ /usr/bin’, hello)
env.Install (' /usr/bin’, goodbye)
env.Alias (’install’, ’/usr/bin’)

Or, more succinctly, listing the multiple input files in a list (just like you can do with any other builder):

env = Environment ()

hello = env.Program(’hello.c’)

goodbye = env.Program(’goodbye.c’)
env.Install ('’ /usr/bin’, [hello, goodbyel)
env.Alias (’install’, ’/usr/bin’)

Either of these two examples yields:

)

% scons —-Q install

cc -o goodbye.o —-c goodbye.c

cc —-o goodbye goodbye.o

Install file: "goodbye" as "/usr/bin/goodbye"
cc -0 hello.o —-c hello.c

cc -o hello hello.o

Install file: "hello" as "/usr/bin/hello"

11.2. Installing a File Under a Different Name

The Install method preserves the name of the file when it is copied into the destination directory. If
you need to change the name of the file when you copy it, use the InstallAs function:

env = Environment ()
hello = env.Program(’hello.c’)

env.InstallAs (' /usr/bin/hello—-new’, hello)
env.Alias (’install’, ' /usr/bin’)

This installs the hello program with the name hello-new as follows:

% scons -Q install
cc -0 hello.o -c hello.c

99

Chapter 11. Installing Files in Other Directories: the Install Builder

cc -0 hello hello.o
Install file: "hello" as "/usr/bin/hello-new"

11.3. Installing Multiple Files Under Different Names

Lastly, if you have multiple files that all need to be installed with different file names, you can either call
the Tnstallas function multiple times, or as a shorthand, you can supply same-length lists for both the
target and source arguments:

env = Environment ()
hello = env.Program(’hello.c’)
goodbye = env.Program(’goodbye.c’)
env.InstallAs ([’ /usr/bin/hello—new’,
" /usr/bin/goodbye-new’],
[hello, goodbye])
env.Alias (’install’, ’/usr/bin’)

In this case, the Tnstallas function loops through both lists simultaneously, and copies each source file
into its corresponding target file name:

)

% scons —-Q install

cc -o goodbye.o —-c goodbye.c

cc —-o goodbye goodbye.o

Install file: "goodbye" as "/usr/bin/goodbye-new"
cc -o hello.o —-c hello.c

cc -o hello hello.o

Install file: "hello" as "/usr/bin/hello-new"

100

Chapter 12. Platform-Independent File System
Manipulation

SCons provides a number of platform-independent functions, called factories, that perform common
file system manipulations like copying, moving or deleting files and directories, or making directories.
These functions are factories because they don’t perform the action at the time they’re called, they
each return an Action object that can be executed at the appropriate time.

12.1. Copying Files or Directories: The copy Factory

Suppose you want to arrange to make a copy of a file, and don’t have a suitable pre-existing builder. '
One way would be to use the Copy action factory in conjunction with the Command builder:

Command ("file.out", "file.in", Copy ("S$TARGET", "S$SOURCE"))

Notice that the action returned by the Copy factory will expand the $TARGET and $SOURCE strings at
the time file.out is built, and that the order of the arguments is the same as that of a builder itself--that
is, target first, followed by source:

)

% scons —-Q

Copy ("file.out", "file.in")

You can, of course, name a file explicitly instead of using $TARGET or $SOURCE:

Command ("file.out", [], Copy("$STARGET", "file.in"))

Which executes as:

% scons -Q

Copy ("file.out", "file.in")

The usefulness of the Copy factory becomes more apparent when you use it in a list of actions passed to
the Command builder. For example, suppose you needed to run a file through a utility that only modifies
files in-place, and can’t "pipe" input to output. One solution is to copy the source file to a temporary file
name, run the utility, and then copy the modified temporary file to the target, which the copy factory
makes extremely easy:

Command ("file.out", "file.in",

[

101

Chapter 12. Platform-Independent File System Manipulation

Copy ("tempfile", "S$SOURCE"),

"modify tempfile",

Copy ("$TARGET", "tempfile"),
1)

The output then looks like:

% scons -Q

Copy ("tempfile", "file.in")
modify tempfile

Copy ("file.out", "tempfile")

12.2. Deleting Files or Directories: The pelete Factory

If you need to delete a file, then the Delete factory can be used in much the same way as the Copy
factory. For example, if we want to make sure that the temporary file in our last example doesn’t exist
before we copy to it, we could add Delete to the beginning of the command list:

Command ("file.out", "file.in",
[
Delete("tempfile"),
Copy ("tempfile", "$SOURCE"),
"modify tempfile",
Copy ("STARGET", "tempfile"),

Which then executes as follows:

% scons -Q

Delete ("tempfile")

Copy ("tempfile", "file.in")
modify tempfile

Copy ("file.out", "tempfile")

Of course, like all of these Action factories, the Delete factory also expands $TARGET and
$SOURCE variables appropriately. For example:

Command ("file.out", "file.in",
[
Delete ("STARGET"),
Copy ("STARGET", "$SOURCE")

)

102

Chapter 12. Platform-Independent File System Manipulation

Executes as:

o

% scons -Q
Delete ("file.out")
Copy ("file.out", "file.in")

Note, however, that you typically don’t need to call the Delete factory explicitly in this way; by default,
SCons deletes its target(s) for you before executing any action.

One word of caution about using the Delete factory: it has the same variable expansions available as
any other factory, including the $SOURCE variable. Specifying Delete ("$SOURCE") is not something
you usually want to do!

12.3. Moving (Renaming) Files or Directories: The Move
Factory

The Move factory allows you to rename a file or directory. For example, if we don’t want to copy the
temporary file, we could use:

Command ("file.out", "file.in",
[
Copy ("tempfile", "S$SOURCE"),
"modify tempfile",
Move ("STARGET", "tempfile"),
1)

Which would execute as:

o

% scons —-Q

Copy ("tempfile", "file.in")
modify tempfile

Move ("file.out", "tempfile")

12.4. Updating the Modification Time of a File: The Touch
Factory

If you just need to update the recorded modification time for a file, use the Touch factory:

Command ("file.out", "file.in",

103

Chapter 12. Platform-Independent File System Manipulation

Copy ("STARGET", "$SOURCE"),
Touch ("STARGET"),

1

Which executes as:

o

% scons —-Q
Copy ("file.out", "file.in")
Touch ("file.out")

12.5. Creating a Directory: The Mkdir Factory

If you need to create a directory, use the Mkdi r factory. For example, if we need to process a file in a
temporary directory in which the processing tool will create other files that we don’t care about, you

could use:

Command ("file.out", "file.in",
[
Delete ("tempdir"),
Mkdir ("tempdir"),
Copy ("tempdir/${SOURCE.file}", "S$SOURCE"),
"process tempdir",
Move ("STARGET", "tempdir/output_file"),
Delete ("tempdir"),

Which executes as:

o

% scons —-Q
Delete ("tempdir")
Mkdir ("tempdir")

Copy ("tempdir/file.in", "file.in")
process tempdir
Move ("file.out", "tempdir/output_file")

scons: **x [file.out] tempdir/output_file: No such file or directory

104

Chapter 12. Platform-Independent File System Manipulation

12.6. Changing File or Directory Permissions: The chmod
Factory

To change permissions on a file or directory, use the Chmod factory. The permission argument uses
POSIX-style permission bits and should typically be expressed as an octal, not decimal, number:

Command ("file.out", "file.in",
[
Copy ("STARGET", "S$SOURCE"),
Chmod ("$TARGET", 0755),
1)

Which executes:

% scons -Q

Copy ("file.out", "file.in")
Chmod ("file.out", 0755)

12.7. Executing an action immediately: the Execute
Function

We’ve been showing you how to use Action factories in the Command function. You can also execute an
Action returned by a factory (or actually, any Action) at the time the SConscript file is read by using
the Execute function. For example, if we need to make sure that a directory exists before we build any
targets,

Execute (Mkdir (/ /tmp/my_temp_directory’))

Notice that this will create the directory while the SConscript file is being read:

% scons

scons: Reading SConscript files
Mkdir ("/tmp/my_temp_directory")
scons: done reading SConscript files.
scons: Building targets

scons: ‘.’ is up to date.

scons: done building targets.

If you’re familiar with Python, you may wonder why you would want to use this instead of just calling
the native Python os.mkdir () function. The advantage here is that the Mkdir action will behave

105

Chapter 12. Platform-Independent File System Manipulation

appropriately if the user specifies the SCons —n or —q options--that is, it will print the action but not
actually make the directory when —n is specified, or make the directory but not print the action when —g
is specified.

The Execute function returns the exit status or return value of the underlying action being executed. It
will also print an error message if the action fails and returns a non-zero value. SCons will not, however,
actually stop the build if the action fails. If you want the build to stop in response to a failure in an action
called by Execute, you must do so by explicitly checking the return value and calling the Exit function
(or a Python equivalent):

if Execute (Mkdir (’/tmp/my_temp_directory’)):
A problem occurred while making the temp directory.
Exit (1)

Notes

1. Unfortunately, in the early days of SCons design, we used the name Copy for the function that
returns a copy of the environment, otherwise that would be the logical choice for a Builder that
copies a file or directory tree to a target location.

106

Chapter 13. Controlling Removal of Targets

There are two occasions when SCons will, by default, remove target files. The first is when SCons
determines that an target file needs to be rebuilt and removes the existing version of the target before
executing The second is when SCons is invoked with the —c option to "clean" a tree of its built targets.
These behaviours can be suppressed with the Precious and NoClean functions, respectively.

13.1. Preventing target removal during build: the
Precious Function

By default, SCons removes targets before building them. Sometimes, however, this is not what you want.
For example, you may want to update a library incrementally, not by having it deleted and then rebuilt
from all of the constituent object files. In such cases, you can use the Precious method to prevent
SCons from removing the target before it is built:

env = Environment (RANLIBCOM=")
lib = env.Library (' foo’, ["fl.c’, "f2.c’, "£3.c’])
env.Precious (lib)

Although the output doesn’t look any different, SCons does not, in fact, delete the target library before
rebuilding it:

% scons -Q

cc -o fl.o -c fl.c

cc —o f2.0 -¢c f2.c

cc -o £f3.0 -c £f3.c

ar rc libfoo.a fl.o f2.0 f£3.0

SCons will, however, still delete files marked as Precious when the —c option is used.

13.2. Preventing target removal during clean: the NoClean
Function

By default, SCons removes all built targets when invoked with the —c option to clean a source tree of
built targets. Sometimes, however, this is not what you want. For example, you may want to remove only
intermediate generated files (such as object files), but leave the final targets (the libraries) untouched. In
such cases, you can use the NoClean method to prevent SCons from removing a target during a clean:

env = Environment (RANLIBCOM=")

107

Chapter 13. Controlling Removal of Targets

lib = env.Library(’ foo’, ['fl.c’, "f2.c', "£3.c’])
env.NoClean (1ib)

Notice that the 1ibfoo.a is not listed as a removed file:

% scons —-Q

cc -o fl.o -c fl.c

cc -o f2.0 -c f2.c

cc -o f3.0 -c f3.c

ar rc libfoo.a fl.o f2.0 £3.0

% scons -c

scons: Reading SConscript files
scons: done reading SConscript files.
scons: Cleaning targets

Removed fl.o

Removed f2.o0

Removed f£3.0

scons: done cleaning targets.

13.3. Removing additional files during clean: the clean
Function

There may be additional files that you want removed when the —c option is used, but which SCons
doesn’t know about because they’re not normal target files. For example, perhaps a command you invoke
creates a log file as part of building the target file you want. You would like the log file cleaned, but you
don’t want to have to teach SCons that the command "builds" two files.

You can use the Clean function to arrange for additional files to be removed when the -c option is used.
Notice, however, that the Clean function takes two arguments, and the second argument is the name of
the additional file you want cleaned (foo. log in this example):

t = Command (’ foo.out’, ’'foo.in’, ’'build -o S$STARGET $SOURCE’)
Clean(t, ’"foo.log’)

The first argument is the target with which you want the cleaning of this additional file associated. In the
above example, we’ve used the return value from the Command function, which represents the foo.out
target. Now whenever the foo. out target is cleaned by the —c option, the foo. log file will be removed
as well:

% scons -Q
build -o foo.out foo.in
o

% scons —-Q —-c
Removed foo.out

108

Chapter 13. Controlling Removal of Targets

Removed foo.log

109

Chapter 14. Hierarchical Builds

The source code for large software projects rarely stays in a single directory, but is nearly always divided
into a hierarchy of directories. Organizing a large software build using SCons involves creating a
hierarchy of build scripts using the SConscript function.

14.1. sConscript Files

As we’ve already seen, the build script at the top of the tree is called SConstruct. The top-level
SConstruct file can use the SConscript function to include other subsidiary scripts in the build.
These subsidiary scripts can, in turn, use the SConscript function to include still other scripts in the
build. By convention, these subsidiary scripts are usually named sConscript. For example, a top-level
SConstruct file might arrange for four subsidiary scripts to be included in the build as follows:

SConscript ([’drivers/display/SConscript’,
"drivers/mouse/SConscript’,
"parser/SConscript’,
"utilities/SConscript’])

In this case, the SConstruct file lists all of the SConscript files in the build explicitly. (Note,
however, that not every directory in the tree necessarily has an SConscript file.) Alternatively, the
drivers subdirectory might contain an intermediate SConscript file, in which case the SConscript
call in the top-level SConstruct file would look like:

SConscript ([’drivers/SConscript’,
"parser/SConscript’,
"utilities/SConscript’])

And the subsidiary SConscript file in the drivers subdirectory would look like:

SConscript ([’display/SConscript’,
"mouse/SConscript’])

Whether you list all of the SConscript files in the top-level SConstruct file, or place a subsidiary
SConscript file in intervening directories, or use some mix of the two schemes, is up to you and the
needs of your software.

110

Chapter 14. Hierarchical Builds

14.2. Path Names Are Relative to the sconscript
Directory

Subsidiary sConscript files make it easy to create a build hierarchy because all of the file and directory
names in a subsidiary SConscript files are interpreted relative to the directory in which the
SConscript file lives. Typically, this allows the SConscript file containing the instructions to build a
target file to live in the same directory as the source files from which the target will be built, making it
easy to update how the software is built whenever files are added or deleted (or other changes are made).

For example, suppose we want to build two programs progl and prog?2 in two separate directories with
the same names as the programs. One typical way to do this would be with a top-level SConstruct file
like this:

SConscript ([’ progl/SConscript’,
"prog2/SConscript’])

And subsidiary SConscript files that look like this:

env = Environment ()
env.Program(’progl’, ['main.c’, ’'fool.c’, ’'foo2.c’])

And this:

env = Environment ()
env.Program(’prog2’, ['main.c’, ’'barl.c’, ’'bar2.c’])

Then, when we run SCons in the top-level directory, our build looks like:

% scons -Q

cc —-o progl/fool.o —-c progl/fool.c

cc -o progl/foo2.0 -c progl/foo2.c

cc -o progl/main.o -c progl/main.c

cc -o progl/progl progl/main.o progl/fool.o progl/foo2.o
cc -o prog2/barl.o -c prog2/barl.c

cc -o prog2/bar2.o0 -c prog2/bar2.c

cc -0 prog2/main.o -c prog2/main.c

cc -0 prog2/prog2 prog2/main.o prog2/barl.o prog2/bar2.o

Notice the following: First, you can have files with the same names in multiple directories, like main.c in
the above example. Second, unlike standard recursive use of Make, SCons stays in the top-level directory
(where the sConstruct file lives) and issues commands that use the path names from the top-level
directory to the target and source files within the hierarchy.

111

Chapter 14. Hierarchical Builds

14.3. Top-Level Path Names in Subsidiary sconscript
Files

If you need to use a file from another directory, it’s sometimes more convenient to specify the path to a
file in another directory from the top-level SConstruct directory, even when you’re using that file in a
subsidiary SConscript file in a subdirectory. You can tell SCons to interpret a path name as relative to
the top-level sConstruct directory, not the local directory of the SConscript file, by appending a #
(hash mark) to the beginning of the path name:

env = Environment ()
env.Program(’prog’, [’‘main.c’, ’'#lib/fool.c’, ’"foo2.c’])

In this example, the 11ib directory is directly underneath the top-level sConstruct directory. If the
above sConscript file is in a subdirectory named src/prog, the output would look like:

)

% scons —-Q

cc -o lib/fool.o -c lib/fool.c

cc -o src/prog/foo2.o0 -c src/prog/foo2.c

cc -o src/prog/main.o —-c src/prog/main.c

cc —-o src/prog/prog src/prog/main.o lib/fool.o src/prog/foo2.o

(Notice that the 1ib/fool .o object file is built in the same directory as its source file. See Chapter 15,
below, for information about how to build the object file in a different subdirectory.)

14.4. Absolute Path Names

Of course, you can always specify an absolute path name for a file--for example:

env = Environment ()
env.Program(’prog’, [’‘main.c’, ’'/usr/joe/lib/fool.c’, "foo2.c’])

Which, when executed, would yield:

% scons -Q

cc -o src/prog/foo2.0 -c src/prog/foo2.c

cc -o src/prog/main.o —-c src/prog/main.c

cc -o /usr/joe/lib/fool.o -c /usr/joe/lib/fool.c

cc -o src/prog/prog src/prog/main.o /usr/joe/lib/fool.o src/prog/foo2.o

112

Chapter 14. Hierarchical Builds

(As was the case with top-relative path names, notice that the /usr/joe/1ib/fool.o object file is
built in the same directory as its source file. See Chapter 15, below, for information about how to build
the object file in a different subdirectory.)

14.5. Sharing Environments (and Other Variables)
Between sconscript Files

In the previous example, each of the subsidiary SsConscript files created its own construction
environment by calling Environment separately. This obviously works fine, but if each program must
be built with the same construction variables, it’s cumbersome and error-prone to initialize separate
construction environments in the same way over and over in each subsidiary SConscript file.

SCons supports the ability to export variables from a parent SConscript file to its subsidiary
SConscript files, which allows you to share common initialized values throughout your build hierarchy.

14.5.1. Exporting Variables

There are two ways to export a variable, such as a construction environment, from an SConscript file,
so that it may be used by other SConscript files. First, you can call the Export function with a list of
variables, or a string of white-space separated variable names. Each call to Export adds one or more
variables to a global list of variables that are available for import by other sConscript files.

env = Environment ()
Export ("env’)

You may export more than one variable name at a time:
env = Environment ()

debug = ARGUMENTS [’ debug’]
Export ("env’, ’"debug’)

Because white space is not legal in Python variable names, the Export function will even automatically
split a string into separate names for you:

Export (" env debug’)

Second, you can specify a list of variables to export as a second argument to the SConscript function
call:

SConscript (' src/SConscript’, ’'env’)

113

Chapter 14. Hierarchical Builds

Or as the exports keyword argument:

SConscript (src/SConscript’, exports=’'env’)

These calls export the specified variables to only the listed SConscript files. You may, however, specify
more than one SConscript file in a list:

SConscript ([’srcl/SConscript’,
’src2/SConscript’], exports=’env’)

This is functionally equivalent to calling the SConscript function multiple times with the same
exports argument, one per SConscript file.

14.5.2. Importing Variables

Once a variable has been exported from a calling SConscript file, it may be used in other SConscript
files by calling the Import function:

Import ("env’)
env.Program(’prog’, [’prog.c’])

The Import call makes the env construction environment available to the SConscript file, after which
the variable can be used to build programs, libraries, etc.

Like the Export function, the Import function can be used with multiple variable names:
Import ("env’, ’"debug’)

env = env.Clone (DEBUG = debug)
env.Program(’'prog’, [’'prog.c’])

And the ITmport function will similarly split a string along white-space into separate variable names:
Import ('env debug’)

env = env.Clone (DEBUG = debug)
env.Program(’prog’, ['prog.c’])

Lastly, as a special case, you may import all of the variables that have been exported by supplying an
asterisk to the Import function:

114

Chapter 14. Hierarchical Builds

Import (")
env = env.Clone (DEBUG = debug)
env.Program(’prog’, ['prog.c’])

If you’re dealing with a lot of SConscript files, this can be a lot simpler than keeping arbitrary lists of
imported variables in each file.

14.5.3. Returning Values From an sconscript File

Sometimes, you would like to be able to use information from a subsidiary SConscript file in some
way. For example, suppose that you want to create one library from source files scattered throughout a
number of subsidiary sConscript files. You can do this by using the Return function to return values
from the subsidiary sConscript files to the calling file.

If, for example, we have two subdirectories foo and bar that should each contribute a source file to a
Library, what we’d like to be able to do is collect the object files from the subsidiary SConscript calls
like this:

env = Environment ()
Export ("env’)

objs = []
for subdir in [’ foo’, ’'bar’]:
o = SConscript ('%$s/SConscript’ % subdir)

objs.append (o)
env.Library ('prog’, objs)

We can do this by using the Return function in the foo/SConscript file like this:

Import (“env’)
obj = env.Object (' foo.c’)
Return (' obj’)

(The corresponding bar/SConscript file should be pretty obvious.) Then when we run SCons, the
object files from the subsidiary subdirectories are all correctly archived in the desired library:

% scons -Q

cc —-o bar/bar.o -c bar/bar.c

cc -o foo/foo.o -c foo/foo.c

ar rc libprog.a foo/foo.o bar/bar.o
ranlib libprog.a

115

Chapter 15. Separating Source and Build
Directories

It’s often useful to keep any built files completely separate from the source files. In SCons, this is usually
done by creating one or more separate variant directory trees that are used to hold the built objects files,
libraries, and executable programs, etc. for a specific flavor, or variant, of build. SCons provides two
ways to do this, one through the sConscript function that we’ve already seen, and the second through a
more flexible variantDir function.

One historical note: the VariantDir function used to be called Buildpir. That name is still supported
but has been deprecated because the SCons functionality differs from the model of a "build directory"
implemented by other build systems like the GNU Autotools.

15.1. Specifying a Variant Directory Tree as Part of an
SConscript Call

The most straightforward way to establish a variant directory tree uses the fact that the usual way to set
up a build hierarchy is to have an SConscript file in the source subdirectory. If you then pass a
variant_dir argument to the SConscript function call:

SConscript (' src/SConscript’, variant_dir=’build’)

SCons will then build all of the files in the build subdirectory:

% 1ls src
SConscript hello.c

o

% scons —Q

cc —-o build/hello.o -c build/hello.c
cc -o build/hello build/hello.o

% 1ls build

SConscript hello hello.c hello.o

But wait a minute--what’s going on here? SCons created the object file build/hello.o in the build
subdirectory, as expected. But even though our hello. c file lives in the src subdirectory, SCons has
actually compiled a build/hello.c file to create the object file.

What’s happened is that SCons has duplicated the hello.c file from the src subdirectory to the build
subdirectory, and built the program from there. The next section explains why SCons does this.

116

Chapter 15. Separating Source and Build Directories

15.2. Why SCons Duplicates Source Files in a Variant
Directory Tree

SCons duplicates source files in variant directory trees because it’s the most straightforward way to
guarantee a correct build regardless of include-file directory paths, relative references between files, or
tool support for putting files in different locations, and the SCons philosophy is to, by default, guarantee
a correct build in all cases.

The most direct reason to duplicate source files in variant directories is simply that some tools (mostly
older versions) are written to only build their output files in the same directory as the source files. In this
case, the choices are either to build the output file in the source directory and move it to the variant
directory, or to duplicate the source files in the variant directory.

Additionally, relative references between files can cause problems if we don’t just duplicate the hierarchy
of source files in the variant directory. You can see this at work in use of the C preprocessor #include
mechanism with double quotes, not angle brackets:

#include "file.h"

The de facto standard behavior for most C compilers in this case is to first look in the same directory as
the source file that contains the #include line, then to look in the directories in the preprocessor search
path. Add to this that the SCons implementation of support for code repositories (described below)
means not all of the files will be found in the same directory hierarchy, and the simplest way to make
sure that the right include file is found is to duplicate the source files into the variant directory, which
provides a correct build regardless of the original location(s) of the source files.

Although source-file duplication guarantees a correct build even in these end-cases, it can usually be
safely disabled. The next section describes how you can disable the duplication of source files in the
variant directory.

15.3. Telling SCons to Not Duplicate Source Files in the
Variant Directory Tree

In most cases and with most tool sets, SCons can place its target files in a build subdirectory without
duplicating the source files and everything will work just fine. You can disable the default SCons
behavior by specifying duplicate=0 when you call the SConscript function:

SConscript (’ src/SConscript’, variant_dir=’'build’, duplicate=0)

117

Chapter 15. Separating Source and Build Directories

When this flag is specified, SCons uses the variant directory like most people expect--that is, the output
files are placed in the variant directory while the source files stay in the source directory:

% 1ls src

SConscript

hello.c

% scons -Q

cc -c src/hello.c -o build/hello.o
cc —o build/hello build/hello.o

% 1ls build

hello

hello.o

15.4. The variantDir Function

Use the variantDir function to establish that target files should be built in a separate directory from the

source files:

VariantDir ('build’, ’src’)
env = Environment ()
env.Program(’build/hello.c’)

Note that when you’re not using an SConscript file in the src subdirectory, you must actually specify
that the program must be built from the build/hello.c file that SCons will duplicate in the build

subdirectory.

When using the variantDir function directly, SCons still duplicates the source files in the variant

directory by default:

% 1ls src
hello.c

% scons -Q

cc -o build/hello.o -c build/hello.c
cc -o build/hello build/hello.o

% 1ls build

hello hello.c hello.o

You can specify the same duplicate=0 argument that you can specify for an SConscript call:
VariantDir ("build’, ’src’, duplicate=0)

env = Environment ()
env.Program(’build/hello.c’)

118

Chapter 15. Separating Source and Build Directories

In which case SCons will disable duplication of the source files:

o
S

1ls src

hello.c

o
°

scons —-Q

cc -o build/hello.o -c src/hello.c

cc —o build/hello build/hello.o

S

°

h

1ls build

ello hello.o

15.5. Using variantDir With an sconscript File

Even when using the variantDir function, it’s much more natural to use it with a subsidiary
SConscript file. For example, if the src/SConscript looks like this:

env = Environment ()
env.Program(’hello.c’)

Then our sConstruct file could look like:

VariantDir (‘build’,

SConscript ('build/SConscript’)

Yielding the following output:

% 1ls src
SConscript

% scons —-Q

hello.c

"src')

cc -0 build/hello.o -c build/hello.c
cc —-o build/hello build/hello.o

o

% 1ls build
SConscript

hello

hello.c

hello.o

Notice that this is completely equivalent to the use of SConscript that we learned about in the previous

section.

15.6. Using Glob With variantDir

The G1lob file name pattern matching function works just as usual when using VariantDir. For

example, if the src/SConscript looks like this:

119

Chapter 15. Separating Source and Build Directories

env = Environment ()
env.Program(’hello’, Glob('x.c’))

Then with the same SConstruct file as in the previous section, and source files £1.c and f2. c in src,
we would see the following output:

% 1ls src

SConscript fl.c f2.c £f2.h

% scons -Q

cc —-o build/fl.o —-c build/fl.c

cc -o build/f2.0 -c build/f2.c

cc -o build/hello build/fl.o build/f2.o0

% 1s build

SConscript fl.c fl.o f2.c f2.h f2.o0 hello

The Glob function returns Nodes in the build/ tree, as you’d expect.

120

Chapter 16. Variant Builds

The variant_dir keyword argument of the SConscript function provides everything we need to
show how easy it is to create variant builds using SCons. Suppose, for example, that we want to build a
program for both Windows and Linux platforms, but that we want to build it in a shared directory with
separate side-by-side build directories for the Windows and Linux versions of the program.

platform = ARGUMENTS.get ('0S’, Platform())

include = "#export/S$PLATFORM/include"
1lib = "#export/S$PLATFORM/1ib"
bin = "#export/$PLATFORM/bin"

env = Environment (PLATFORM = platform,
BINDIR = bin,
INCDIR = include,
LIBDIR = 1lib,
CPPPATH = [include],
LIBPATH = [1lib],
LIBS = ’"world’)

Export ("env’)

env.SConscript (' src/SConscript’, variant_dir='build/$PLATFORM’)

This SConstruct file, when run on a Linux system, yields:

)

% scons —Q OS=linux

Install file: "build/linux/world/world.h" as "export/linux/include/world.h"

cc —o build/linux/hello/hello.o —-c —-Iexport/linux/include build/linux/hello/hello.c
cc -o build/linux/world/world.o —-c —-Iexport/linux/include build/linux/world/world.c
ar rc build/linux/world/libworld.a build/linux/world/world.o

ranlib build/linux/world/libworld.a

Install file: "build/linux/world/libworld.a" as "export/linux/lib/libworld.a"

cc —-o build/linux/hello/hello build/linux/hello/hello.o -Lexport/linux/lib -lworld
Install file: "build/linux/hello/hello" as "export/linux/bin/hello"

The same SConstruct file on Windows would build:

C:\>scons -Q OS=windows

Install file: "build/windows/world/world.h" as "export/windows/include/world.h"

cl /Fobuild\windows\hello\hello.obj /c build\windows\hello\hello.c /nologo /Iexport\win
cl /Fobuild\windows\world\world.obj /c build\windows\world\world.c /nologo /Iexport\win
lib /nologo /OUT:build\windows\world\world.lib build\windows\world\world.ob]

Install file: "build/windows/world/world.lib" as "export/windows/lib/world.lib"

link /nologo /OUT:build\windows\hello\hello.exe /LIBPATH:export\windows\lib world.lib b
embedManifestExeCheck (target, source, env)

Install file: "build/windows/hello/hello.exe" as "export/windows/bin/hello.exe"

121

Chapter 16. Variant Builds

122

Chapter 17. Internationalization and
localization with gettext

The gettext toolset supports internationalization and localization of SCons-based projects. Builders
provided by get text automatize generation and updates of translation files. You can manage
translations and translation templates similarly to how it’s done with autotools.

17.1. Prerequisites

To follow examples provided in this chapter set up your operating system to support two or more
languages. In following examples we use locales en_US, de_DE, and p1_PL.

Ensure, that you have GNU gettext utilities (http://www.gnu.org/software/gettext/manual/gettext.html)
installed on your system.

To edit translation files you may wish to install poedit (http://www.poedit.net/) editor.

17.2. Simple project

Let’s start with a very simple project, the "Hello world" program for example

/* hello.c =*/
#include <stdio.h>
int main(int argc, charx argvl[])
{
printf ("Hello world\n");
return 0;

Prepare a SConstruct to compile the program as usual.

SConstruct
env = Environment ()
hello = Program(["hello.c"])

Now we’ll convert the project to a multi-lingual one. If you don’t already have GNU gettext utilities
(http://www.gnu.org/software/gettext/manual/gettext.html) installed, install them from your preffered
package repository, or download from http://ftp.gnu.org/gnu/gettext/ (http://ftp.gnu.org/gnu/gettext/).

123

Chapter 17. Internationalization and localization with gettext

For the purpose of this example, you should have following three locales installed on your system:
en_UsS, de_DE and p1_PL. On debian, for example, you may enable certain locales through
dpkg-reconfigure locales.

First prepare the hello.c program for internationalization. Change the previous code so it reads as
follows:

/*x hello.c =/

#include <stdio.h>

#include <libintl.h>

#include <locale.h>

int main(int argc, charx argv[])

{
bindtextdomain ("hello", "locale");
setlocale (LC_ALL, "");
textdomain ("hello");
printf (gettext ("Hello world\n"));
return 0;

Detailed recipes for such conversion can be found at
http://www.gnu.org/software/gettext/manual/gettext.html#Sources
(http://www.gnu.org/software/gettext/manual/gettext.html#Sources). The gettext ("...") has two
purposes. First, it marks messages for the xgettext(1) program, which we will use to extract from the
sources the messages for localization. Second, it calls the gettext library internals to translate the
message at runtime.

Now we shall instruct SCons how to generate and maintain translation files. For that, use the Translate
builder and MOF i 1es builder. The first one takes source files, extracts internationalized messages from
them, creates so-called POT file (translation template), and then creates PO translation files, one for each
requested language. Later, during the development lifecycle, the builder keeps all these files up-to date.
The MOF1iles builder compiles the PO files to binary form. Then install the Mo files under directory
called locale.

The completed SConstruct is as follows:

SConstruct
env = Environment (tools = [’'default’, ’'gettext’])
hello = env.Program(["hello.c"])
env [/ XGETTEXTFLAGS'] = [

! ——package—-name=%s’ % "hello’,

' ——package-version=%s’ % 1.0,
]
po = env.Translate (["pl","en", "de"], ["hello.c"], POAUTOINIT = 1)
mo = env.MOFiles (po)
InstallAs(["locale/en/LC_MESSAGES/hello.mo"], ["en.mo"])
InstallAs(["locale/pl/LC_MESSAGES/hello.mo"], ["pl.mo"])
InstallAs (["locale/de/LC_MESSAGES/hello.mo"], ["de.mo"])

124

Chapter 17. Internationalization and localization with gettext

Generate the translation files with scons po-update. You should see the output from SCons simillar to
this:

user@host:$ scons po-update

scons: Reading SConscript files

scons: done reading SConscript files.

scons: Building targets

Entering ' /home/ptomulik/projects/tmp’

xgettext —--package-name=hello --package-version=1.0 -o - hello.c
Leaving ’ /home/ptomulik/projects/tmp’

Writting ’'messages.pot’ (new file)

msginit —--no-translator -1 pl -i messages.pot -o pl.po
Created pl.po.

msginit —--no-translator -1 en -i messages.pot -0 en.po
Created en.po.

msginit --no-translator -1 de -i messages.pot -o de.po
Created de.po.

scons: done building targets.

If everything is right, you should see following new files.

user@host:$ 1ls x.pox
de.po en.po messages.pot pl.po

Open en.po in poedit and provide the English translation to message "Hello world\n". Do the same
for de.po (deutsch) and p1 . po (polish). Let the translations be, for example:

¢ en: "Welcome to beautiful world!\n"
e de: "Hallo Welt!\n"

e pl: "Witaj swiecie!\n"

Now compile the project by executing scons. The output should be similar to this:

user@host:$ scons

scons: Reading SConscript files
scons: done reading SConscript files.
scons: Building targets

msgfmt -c -o de.mo de.po

125

Chapter 17. Internationalization and localization with gettext

msgfmt -c -0 en.mo en.po

gcc —o hello.o —-c hello.c

gcc -o hello hello.o

Install file: "de.mo" as "locale/de/LC_MESSAGES/hello.mo"
Install file: "en.mo" as "locale/en/LC_MESSAGES/hello.mo"
msgfmt -c -o pl.mo pl.po

Install file: "pl.mo" as "locale/pl/LC_MESSAGES/hello.mo"
scons: done building targets.

SCons automatically compiled the po files to binary format M0, and the InstallAs lines installed these
files under 1ocale folder.

Your program should be now ready. You may try it as follows (linux):

user@host:$ LANG=en_US.UTF-8 ./hello
Welcome to beautiful world

user@host:$ LANG=de_DE.UTF-8 ./hello
Hallo Welt

user@host:$ LANG=pl_PL.UTF-8 ./hello
Witaj swiecie

To demonstrate the further life of translation files, let’s change Polish translation (poedit pl.po) to
"Witaj drogi swiecie\n".Run scons to see how scons reacts to this

user@host:$scons

scons: Reading SConscript files

scons: done reading SConscript files.

scons: Building targets

msgfmt -c -o pl.mo pl.po

Install file: "pl.mo" as "locale/pl/LC_MESSAGES/hello.mo"
scons: done building targets.

Now, open hello.c and add another one print £ line with new message.

/+ hello.c =/

#include <stdio.h>

#include <libintl.h>

#include <locale.h>

int main(int argc, charx argv[])

{

126

Chapter 17. Internationalization and localization with gettext

bindtextdomain ("hello", "locale");
setlocale (LC_ALL, ""™);

textdomain ("hello");

printf (gettext ("Hello world\n"));
printf (gettext ("and good bye\n"));
return 0;

Compile project with scons. This time, the msgmerge(1) program is used by SCons to update po file.
The output from compilation is like:

user@host:$scons
scons: Reading SConscript files
scons: done reading SConscript files.
scons: Building targets
Entering ’ /home/ptomulik/projects/tmp’
xgettext —--package-name=hello --package-version=1.0 -o - hello.c
Leaving ’ /home/ptomulik/projects/tmp’
Writting ’'messages.pot’ (messages in file were outdated)
msgmerge —-update de.po messages.pot
done.
msgfmt -c -o de.mo de.po
msgmerge —--update en.po messages.pot
done.
msgfmt -c -0 en.mo en.po
gcc —o hello.o —-c hello.c
gcc —-o hello hello.o
Install file: "de.mo" as "locale/de/LC_MESSAGES/hello.mo"
Install file: "en.mo" as "locale/en/LC_MESSAGES/hello.mo"
msgmerge —-update pl.po messages.pot
done.
msgfmt -c -o pl.mo pl.po
Install file: "pl.mo" as "locale/pl/LC_MESSAGES/hello.mo"
scons: done building targets.

The next example demonstrates what happens if we change the source code in such way that the
internationalized messages do not change. The answer is that none of translation files (POT, PO) are
touched (i.e. no content changes, no creation/modification time changed and so on). Let’s append another
line to the program (after the last printf), so its code becomes:

/x hello.c =/

#include <stdio.h>

#include <libintl.h>

#include <locale.h>

int main(int argc, charx argvl[])

127

Chapter 17. Internationalization and localization with gettext

bindtextdomain ("hello", "locale");
setlocale (LC_ALL, "");

textdomain ("hello");

printf (gettext ("Hello world\n"));
printf (gettext ("and good bye\n"));
printf ("~ \n") ;
return a;

Compile the project. You’ll see on your screen

user@host:$scons

scons: Reading SConscript files

scons: done reading SConscript files.

scons: Building targets

Entering ’ /home/ptomulik/projects/tmp’

xgettext —--package-name=hello --package-version=1.0 -o - hello.c
Leaving ’ /home/ptomulik/projects/tmp’

Not writting ’"messages.pot’ (messages in file found to be up-to-date)
gcc —-o hello.o —-c hello.c

gcc —o hello hello.o

scons: done building targets.

As you see, the internationalized messages ditn’t change, so the POT and the rest of translation files have
not even been touched.

128

Chapter 18. Writing Your Own Builders

Although SCons provides many useful methods for building common software products (programs,
libraries, documents, etc.), you frequently want to be able to build some other type of file not supported
directly by SCons. Fortunately, SCons makes it very easy to define your own Builder objects for any
custom file types you want to build. (In fact, the SCons interfaces for creating Bui l1der objects are
flexible enough and easy enough to use that all of the the SCons built-in Builder objects are created
using the mechanisms described in this section.)

18.1. Writing Builders That Execute External Commands

The simplest Builder to create is one that executes an external command. For example, if we want to
build an output file by running the contents of the input file through a command named foobuild,
creating that Builder might look like:

bld = Builder (action = ’foobuild < $SOURCE > STARGET’)

All the above line does is create a free-standing Builder object. The next section will show us how to
actually use it.

18.2. Attaching a Builder to a construction Environment

A Builder object isn’t useful until it’s attached to a construction environment so that we can call
it to arrange for files to be built. This is done through the $BUILDERS construction variable inan
environment. The $BUILDERS variable is a Python dictionary that maps the names by which you want
to call various Builder objects to the objects themselves. For example, if we want to call the Builder
we just defined by the name Foo, our SConstruct file might look like:

bld Builder (action = ' foobuild < $SOURCE > STARGET')
env = Environment (BUILDERS = {’Foo’ : bld})

With the Builder attached to our construction environment with the name Foo, we can now
actually call it like so:

env.Foo (' file.foo’, ’'file.input’)

Then when we run SCons it looks like:

% scons -Q

129

foobuild < file.input > file.foo

Chapter 18. Writing Your Own Builders

Note, however, that the default $SBUILDERS variable in a construction environment comes with a
default set of Builder objects already defined: Program, Library, etc. And when we explicitly set the
$BUILDERS variable when we create the construction environment, the default Builders are no

longer part of the environment:

bld = Builder (action = ’foobuild < $SOURCE > STARGET’)

env = Environment (BUILDERS = {’Foo’
env.Foo (' file.foo’, ’'file.input’)

env.Program(’hello.c’)

% scons —-Q

AttributeError: ’SConsEnvironment’
File "/home/my/project/SConstruct",

env.Program(’hello.c’)

bld})

object has no attribute ’Program’:
line 4:

To be able to use both our own defined Builder objects and the default Builder objects in the same
construction environment, you can either add to the $BUILDERS variable using the Append

function:

env = Environment ()

bld = Builder (action = ’foobuild < $SOURCE > S$TARGET’)

env.Append (BUILDERS = {’'Foo’

env.Foo (' file.foo’, ’'file.input’)

env.Program(’hello.c’)

Or you can explicitly set the appropriately-named key in the $BUILDERS dictionary:

env = Environment ()

bld = Builder (action = ’foobuild < $SOURCE > STARGET’)

env [’BUILDERS’] ['Foo’] = bld

env.Foo (' file.foo’, ’'file.input’)

env.Program(’hello.c’)

Either way, the same construction environment can then use both the newly-defined Foo Builder

and the default Program Builder:

% scons -Q

foobuild < file.input > file.foo
cc -0 hello.o -c hello.c
cc -o hello hello.o

130

Chapter 18. Writing Your Own Builders

18.3. Letting SCons Handle The File Suffixes

By supplying additional information when you create a Builder, you can let SCons add appropriate file
suffixes to the target and/or the source file. For example, rather than having to specify explicitly that you
want the Foo Builder to build the file. foo target file from the file. input source file, you can give
the . foo and . input suffixes to the Builder, making for more compact and readable calls to the Foo
Builder:

bld = Builder (action = ’foobuild < $SOURCE > S$TARGET’,
suffix = ’.foo’,
src_suffix = 7 .input’)
env = Environment (BUILDERS = {’Foo’ : bld})
env.Foo (' filel’)
env.Foo (' file2’)

o

% scons —-Q
foobuild < filel.input > filel.foo
foobuild < file2.input > file2.foo

You can also supply a prefix keyword argument if it’s appropriate to have SCons append a prefix to the
beginning of target file names.

18.4. Builders That Execute Python Functions

In SCons, you don’t have to call an external command to build a file. You can, instead, define a Python
function that a Builder object can invoke to build your target file (or files). Such a builder
function definition looks like:

def build_function(target, source, env):
Code to build "target" from "source"
return None

The arguments of a builder function are:

target

A list of Node objects representing the target or targets to be built by this builder function. The file
names of these target(s) may be extracted using the Python st r function.

source

A list of Node objects representing the sources to be used by this builder function to build the
targets. The file names of these source(s) may be extracted using the Python st r function.

131

Chapter 18. Writing Your Own Builders

env

The construction environment used for building the target(s). The builder function may use
any of the environment’s construction variables in any way to affect how it builds the targets.

The builder function must return a 0 or None value if the target(s) are built successfully. The builder
function may raise an exception or return any non-zero value to indicate that the build is unsuccessful,

Once you’ve defined the Python function that will build your target file, defining a Builder object for it
is as simple as specifying the name of the function, instead of an external command, as the Builder’s
action argument:

def build_function(target, source, env):
Code to build "target" from "source"
return None
bld = Builder (action = build_function,
suffix = ’.foo’,
src_suffix = ’.input’)
env = Environment (BUILDERS = {’Foo’ : bld})
env.Foo (' file’)

And notice that the output changes slightly, reflecting the fact that a Python function, not an external
command, is now called to build the target file:

o

% scons —-Q
build_function(["file.foo"], ["file.input"])

18.5. Builders That Create Actions Using a Generator

SCons Builder objects can create an action "on the fly" by using a function called a generator. This
provides a great deal of flexibility to construct just the right list of commands to build your target. A
generator looks like:

def generate_actions (source, target, env, for_signature):
return ’foobuild < %$s > %s’ % (target[0], sourcel0])
The arguments of a generator are:

source

A list of Node objects representing the sources to be built by the command or other action generated
by this function. The file names of these source(s) may be extracted using the Python st r function.

132

target

Chapter 18. Writing Your Own Builders

A list of Node objects representing the target or targets to be built by the command or other action
generated by this function. The file names of these target(s) may be extracted using the Python str

function.

env

The construction environment used for building the target(s). The generator may use any of
the environment’s construction variables in any way to determine what command or other action to

return.

for_signature

A flag that specifies whether the generator is being called to contribute to a build signature, as
opposed to actually executing the command.

The generator must return a command string or other action that will be used to build the specified
target(s) from the specified source(s).

Once you’ve defined a generator, you create a Builder to use it by specifying the generator keyword
argument instead of action.

def generate_actions (source, target, env, for_signature):
return ’foobuild < %s > %s’ % (source[0], target[0])
bld = Builder (generator = generate_actions,
suffix = ’.foo’,
src_suffix = 7 .input’)
env = Environment (BUILDERS = {’Foo’ : bld})
env.Foo (' file’)

% scons -Q

foobuild < file.input > file.foo

Note that it’s illegal to specify both an action and a generator for a Builder.

18.6. Builders That Modify the Target or Source Lists

Using an Emitter

SCons supports the ability for a Builder to modify the lists of target(s) from the specified source(s). You
do this by defining an emitter function that takes as its arguments the list of the targets passed to the
builder, the list of the sources passed to the builder, and the construction environment. The emitter
function should return the modified lists of targets that should be built and sources from which the targets

will be built.

133

Chapter 18. Writing Your Own Builders

For example, suppose you want to define a Builder that always calls a foobuild program, and you want
to automatically add a new target file named new_target and a new source file named new_source
whenever it’s called. The sconstruct file might look like this:

def modify_targets(target, source, env):
target.append (' new_target’)
source.append (' new_source’)
return target, source
bld = Builder (action = ’foobuild $TARGETS - S$SOURCES’,
suffix = ’.foo’,
src_suffix = ’.input’,
emitter = modify_targets)
env = Environment (BUILDERS = {’Foo’ : bld})
env.Foo (' file’)

And would yield the following output:

o

% scons —Q

foobuild file.foo new_target - file.input new_source

One very flexible thing that you can do is use a construction variable to specify different emitter
functions for different construction variable. To do this, specify a string containing a construction
variable expansion as the emitter when you call the Builder function, and set that construction variable
to the desired emitter function in different construction environments:

bld = Builder (action = ’"my_command $SOURCES > S$TARGET',
suffix = ’.foo’,
src_suffix = ' .input’,
emitter = ’$MY_EMITTER')
def modifyl (target, source, env):
return target, source + ['modifyl.in’]
def modify2 (target, source, env):
return target, source + ['modify2.in’]
envl = Environment (BUILDERS = {’Foo’ : bld},
MY_EMITTER = modifyl)
env?2 = Environment (BUILDERS = {’Foo’ : bld},
MY_EMITTER = modify2)
envl.Foo (' filel’)
env?2.Foo (' file2’)
import os
envl [’ENV’] ['PATH’] = env2[’ENV’][’PATH’] + os.pathsep + os.getcwd()
env2 ["ENV’] [PATH’] = env2[’'ENV’][’PATH’] + os.pathsep + os.getcwd()

bld = Builder (action = ’"my_command $SOURCES > S$TARGET’,
suffix = ’.foo’,
src_suffix = ' .input’,
emitter = ’$SMY_EMITTER')

134

Chapter 18. Writing Your Own Builders

def modifyl (target, source, env):
return target, source + ['modifyl.in’]
def modify?2 (target, source, env):
return target, source + ['modify2.in’]
envl = Environment (BUILDERS = {’Foo’ : bld},
MY_EMITTER = modifyl)
env2 = Environment (BUILDERS = {’Foo’ : bld},
MY_EMITTER = modify2)
envl.Foo (' filel’)
env2.Foo (' file2’)

In this example, the modifyl.in and modify2. in files get added to the source lists of the different
commands:

o

% scons —Q
my_command filel.input modifyl.in > filel.foo
my_command file2.input modify2.in > file2.foo

18.7. Where To Put Your Custom Builders and Tools

The site_scons directories give you a place to put Python modules and packages that you can import
into your SConscript files (site_scons), add-on tools that can integrate into SCons
(site_scons/site_tools),and a site_scons/site_init.py file that gets read before any
SConstruct or SConscript file, allowing you to change SCons’s default behavior.

Each system type (Windows, Mac, Linux, etc.) searches a canonical set of directories for site_scons; see
the man page for details. The top-level SConstruct’s site_scons dir is always searched last, and its dir is
placed first in the tool path so it overrides all others.

If you get a tool from somewhere (the SCons wiki or a third party, for instance) and you’d like to use it in
your project, a site_scons dir is the simplest place to put it. Tools come in two flavors; either a Python
function that operates on an Environment or a Python module or package containing two functions,
exists () and generate ().

A single-function Tool can just be included in your site_scons/site_init.py file where it will be
parsed and made available for use. For instance, you could have a site_scons/site_init.py file like
this:

def TOOL_ADD_HEADER (env) :
"""A Tool to add a header from $HEADER to the source file"""
add_header = Builder (action=[’echo "SHEADER" > S$STARGET’,
"cat $SOURCE >> STARGET'])
env.Append (BUILDERS = {’AddHeader’ : add_header})

135

Chapter 18. Writing Your Own Builders

env[’HEADER’] = ” # set default value

and a SConstruct like this:

Use TOOL_ADD_HEADER from site_scons/site_init.py
env=Environment (tools=["default’, TOOL_ADD_HEADER], HEADER="=====")
env.AddHeader ("tgt’, ’src’)

The TOOL_ADD_HEADER tool method will be called to add the AddHeader tool to the environment.

A more full-fledged tool with exists () and generate () methods can be installed either as a module
in the file site_scons/site_tools/toolname.py or as a package in the directory
site_scons/site_tools/toolname. In the case of using a package, the exists () and
generate () are in the file site_scons/site_tools/toolname/__init__.py. (In all the above
case toolname is replaced by the name of the tool.) Since site_scons/site_tools is automatically
added to the head of the tool search path, any tool found there will be available to all environments.
Furthermore, a tool found there will override a built-in tool of the same name, so if you need to change
the behavior of a built-in tool, site_scons gives you the hook you need.

Many people have a library of utility Python functions they’d like to include in SConscripts; just put
that module in site_scons/my_utils.py or any valid Python module name of your choice. For
instance you can do something like this in site_scons/my_utils.py toadd build_id and
MakeWorkDir functions:

from SCons.Script import = # for Execute and Mkdir
def build_id():
"""Return a build ID (stub version)"""
return "100"
def MakeWorkDir (workdir) :
"""Create the specified dir immediately"""
Execute (Mkdir (workdir))

And then in your SConscript or any sub-SConscript anywhere in your build, you can import
my_utils and use it:

import my_utils
print "build_id=" + my_utils.build_id()
my_utils.MakeWorkDir (/ /tmp/work’)

Note that although you can put this library in site_scons/site_init.py, it is no better there than
site_scons/my_utils.py since you still have to import that module into your SConscript. Also
note that in order to refer to objects in the SCons namespace such as Environment or Mkdir or
Execute in any file other than a SConstruct or SConscript you always need to do

136

Chapter 18. Writing Your Own Builders

from SCons.Script import =

This is true in modules in site_scons such as site_scons/site_init.py as well.

You can use any of the user- or machine-wide site dirs such as ~/ . scons/site_scons instead of
./site_scons, or use the —~—site-dir option to point to your own dir. site_init.py and
site_tools will be located under that dir. To avoid using a site_scons dir at all, even if it exists, use
the ——no-site-dir option.

137

Chapter 19. Not Writing a Builder: the command
Builder

Creating a Builder and attaching it to a construction environment allows for a lot of flexibility
when you want to re-use actions to build multiple files of the same type. This can, however, be
cumbersome if you only need to execute one specific command to build a single file (or group of files).
For these situations, SCons supports a Command Builder that arranges for a specific action to be
executed to build a specific file or files. This looks a lot like the other builders (like Program, Object,
etc.), but takes as an additional argument the command to be executed to build the file:

env = Environment ()
env.Command (' foo.out’, ’foo.in’, "sed ’s/x/y/’ < $SOURCE > S$TARGET")

When executed, SCons runs the specified command, substituting $SOURCE and $TARGET as expected:

% scons -Q

sed 's/x/y/' < foo.in > foo.out

This is often more convenient than creating a Builder object and adding it to the $BUILDERS variable
of a construction environment

Note that the action you specify to the Command Builder can be any legal SCons Action, such as a
Python function:

env = Environment ()

def build(target, source, env):
Whatever it takes to build
return None

env.Command (’ foo.out’, ’foo.in’, build)

‘Which executes as follows:

o

% scons —-Q
build(["foo.out"], ["foo.in"])

Note that $SOURCE and $TARGET are expanded in the source and target as well as of SCons 1.1, so
you can write:

env.Command (’ ${SOURCE .basename}.out’, 'foo.in’, build)

138

Chapter 19. Not Writing a Builder: the Command Builder

which does the same thing as the previous example, but allows you to avoid repeating yourself.

139

Chapter 20. Pseudo-Builders: the AddMethod
function

The AddMethod function is used to add a method to an environment. It’s typically used to add a
"pseudo-builder," a function that looks like a Builder but wraps up calls to multiple other Builders or
otherwise processes its arguments before calling one or more Builders. In the following example, we
want to install the program into the standard /usr/bin directory hierarchy, but also copy it into a local
install/bin directory from which a package might be built:

def install_in_bin_dirs (env, source):
"""Tnstall source in both bin dirs"""

il = env.Install ("$BIN", source)
i2 = env.Install ("SLOCALBIN", source)
return [11[0], 1i2[0]] # Return a list, like a normal builder

env = Environment (BIN=’/usr/bin’, LOCALBIN=’#install/bin’)
env.AddMethod (install_in_bin_dirs, "InstallInBinDirs")
env.InstallInBinDirs (Program(’hello.c’)) # installs hello in both bin dirs

This produces the following:

% scons -Q /

cc -o hello.o —-c hello.c

cc -o hello hello.o

Install file: "hello" as "/usr/bin/hello"
Install file: "hello" as "install/bin/hello"

As mentioned, a pseudo-builder also provides more flexibility in parsing arguments than you can get
with a Builder. The next example shows a pseudo-builder with a named argument that modifies the
filename, and a separate argument for the resource file (rather than having the builder figure it out by file
extension). This example also demonstrates using the global AddMethod function to add a method to the
global Environment class, so it will be used in all subsequently created environments.

def BuildTestProg(env, testfile, resourcefile, testdir="tests"):
"""Build the test program;

prepends "test_" to src and target,
and puts target into testdir."""
srcfile = "test_%s.c" % testfile
target = "%$s/test_%s" % (testdir, testfile)
if env[’PLATFORM’] == ’'win32’:
resfile = env.RES (resourcefile)
p = env.Program(target, [srcfile, resfile])
else:

p = env.Program(target, srcfile)
return p
AddMethod (Environment, BuildTestProg)

140

Chapter 20. Pseudo-Builders: the AddMethod function

env = Environment ()

env.BuildTestProg(’stuff’, resourcefile='res.rc’)

This produces the following on Linux:

% scons -Q
cc —o test_stuff.o -c test_stuff.c
cc -0 tests/test_stuff test_stuff.o

And the following on Windows:

C:\>scons -Q

rc /fores.res res.rc

cl /Fotest_stuff.obj /c test_stuff.c /nologo

link /nologo /OUT:tests\test_stuff.exe test_stuff.obj res.res
embedManifestExeCheck (target, source, env)

Using AddMethod is better than just adding an instance method to a construction environment

because it gets called as a proper method, and because AddMethod provides for copying the method to
any clones of the construction environment instance.

141

Chapter 21. Writing Scanners

SCons has built-in scanners that know how to look in C, Fortran and IDL source files for information
about other files that targets built from those files depend on--for example, in the case of files that use the
C preprocessor, the . h files that are specified using #include lines in the source. You can use the same
mechanisms that SCons uses to create its built-in scanners to write scanners of your own for file types
that SCons does not know how to scan "out of the box."

21.1. A Simple Scanner Example

Suppose, for example, that we want to create a simple scanner for . foo files. A . foo file contains some
text that will be processed, and can include other files on lines that begin with include followed by a
file name:

include filename.foo

Scanning a file will be handled by a Python function that you must supply. Here is a function that will
use the Python re module to scan for the include lines in our example:

import re
include_re = re.compile (r’*include\s+ (\S+)$’, re.M)

def kfile_scan(node, env, path, arg):
contents = node.get_text_contents|()
return env.File (include_re.findall (contents))

It is important to note that you have to return a list of File nodes from the scanner function, simple
strings for the file names won’t do. As in the examples we are showing here, you can use the File
function of your current Environment in order to create nodes on the fly from a sequence of file names
with relative paths.

The scanner function must accept the four specified arguments and return a list of implicit dependencies.
Presumably, these would be dependencies found from examining the contents of the file, although the
function can perform any manipulation at all to generate the list of dependencies.

node

An SCons node object representing the file being scanned. The path name to the file can be used by
converting the node to a string using the str () function, or an internal SCons
get_text_contents () object method can be used to fetch the contents.

142

Chapter 21. Writing Scanners

env
The construction environment in effect for this scan. The scanner function may choose to use
construction variables from this environment to affect its behavior.

path

A list of directories that form the search path for included files for this scanner. This is how SCons
handles the $CPPPATH and $LIBPATH variables.

arg

An optional argument that you can choose to have passed to this scanner function by various
scanner instances.

A Scanner object is created using the Scanner function, which typically takes an skeys argument to
associate the type of file suffix with this scanner. The Scanner object must then be associated with the
$SCANNERS construction variable of a construction environment, typically by using the Append
method:

kscan = Scanner (function = kfile_scan,

skeys = [’.k"])
env.Append (SCANNERS = kscan)

When we put it all together, it looks like:
import re
include_re = re.compile(r’“include\s+ (\S+)$’, re.M)
def kfile_scan(node, env, path):
contents = node.get_text_contents /()
includes = include_re.findall (contents)

return env.File (includes)

kscan = Scanner (function = kfile_scan,
skeys = [".k’])

env = Environment (ENV = {’PATH’ : ’/usr/local/bin’})
env.Append (SCANNERS = kscan)

env.Command (' foo’, ’foo.k’, ’"kprocess < $SOURCES > S$STARGET')

21.2. Adding a search path to a scanner: FindPathDirs

Many scanners need to search for included files or dependencies using a path variable; this is how
$CPPPATH and $LIBPATH work. The path to search is passed to your scanner as the path argument.

143

Chapter 21. Writing Scanners

Path variables may be lists of nodes, semicolon-separated strings, or even contain SCons variables which
need to be expanded. Fortunately, SCons provides the FindPathDirs function which itself returns a
function to expand a given path (given as a SCons construction variable name) to a list of paths at the
time the scanner is called. Deferring evaluation until that point allows, for instance, the path to contain
$TARGET references which differ for each file scanned.

Using FindPathDirs is quite easy. Continuing the above example, using KPATH as the construction
variable with the search path (analogous to SCPPPATH), we just modify the Scanner constructor call to
include a path keyword arg:

kscan = Scanner (function = kfile_scan,
skeys = [’ .k’'],
path=FindPathDirs (' KPATH’))

FindPathDirs returns a callable object that, when called, will essentially expand the elements in
env[’KPATH’] and tell the scanner to search in those dirs. It will also properly add related repository and
variant dirs to the search list. As a side note, the returned method stores the path in an efficient way so
lookups are fast even when variable substitutions may be needed. This is important since many files get
scanned in a typical build.

144

Chapter 22. Building From Code Repositories

Often, a software project will have one or more central repositories, directory trees that contain source
code, or derived files, or both. You can eliminate additional unnecessary rebuilds of files by having
SCons use files from one or more code repositories to build files in your local build tree.

22.1. The rRepository Method

It’s often useful to allow multiple programmers working on a project to build software from source files
and/or derived files that are stored in a centrally-accessible repository, a directory copy of the source
code tree. (Note that this is not the sort of repository maintained by a source code management system
like BitKeeper, CVS, or Subversion.) You use the Repository method to tell SCons to search one or
more central code repositories (in order) for any source files and derived files that are not present in the
local build tree:

env = Environment ()
env.Program(’hello.c’)
Repository (’ /usr/repositoryl’, ’/usr/repository2’)

Multiple calls to the Repository method will simply add repositories to the global list that SCons
maintains, with the exception that SCons will automatically eliminate the current directory and any
non-existent directories from the list.

22.2. Finding source files in repositories

The above example specifies that SCons will first search for files under the /usr/repositoryl tree
and next under the /usr/repository?2 tree. SCons expects that any files it searches for will be found
in the same position relative to the top-level directory. In the above example, if the hello. c file is not
found in the local build tree, SCons will search first for a /usr/repositoryl/hello.c file and then
for a /usr/repository2/hello.c file to use in its place.

So given the SConstruct file above, if the hello. c file exists in the local build directory, SCons will
rebuild the hello program as normal:

)

% scons —Q
cc -0 hello.o -c hello.c
cc —o hello hello.o

If, however, there is no local hello. c file, but one exists in /usr/repositoryl, SCons will recompile
the hello program from the source file it finds in the repository:

145

Chapter 22. Building From Code Repositories

% scons -Q
cc -o hello.o -c /usr/repositoryl/hello.c
cc -o hello hello.o

And similarly, if there is no local hello.c file and no /usr/repositoryl/hello.c, but one exists in
/usr/repository?2:

% scons -Q
cc -o hello.o -c /usr/repository2/hello.c
cc -o hello hello.o

22.3. Finding #include files in repositories

We’ve already seen that SCons will scan the contents of a source file for #include file names and
realize that targets built from that source file also depend on the #include file(s). For each directory in
the $CPPPATH list, SCons will actually search the corresponding directories in any repository trees and
establish the correct dependencies on any #include files that it finds in repository directory.

Unless the C compiler also knows about these directories in the repository trees, though, it will be unable
to find the #include files. If, for example, the hello.c file in our previous example includes the
hello.h inits current directory, and the hello.h only exists in the repository:

% scons -Q

cc -o hello.o -c hello.c
hello.c:1: hello.h: No such file or directory

In order to inform the C compiler about the repositories, SCons will add appropriate —I flags to the
compilation commands for each directory in the §CPPPATH list. So if we add the current directory to the
construction environment $CPPPATH like so:

env = Environment (CPPPATH = [’'.’'])
env.Program(’hello.c’)
Repository (’ /usr/repositoryl’)

Then re-executing SCons yields:
% scons -Q

cc -0 hello.o -c¢ -I. -I/usr/repositoryl hello.c
cc -o hello hello.o

146

Chapter 22. Building From Code Repositories

The order of the -1 options replicates, for the C preprocessor, the same repository-directory search path
that SCons uses for its own dependency analysis. If there are multiple repositories and multiple
$CPPPATH directories, SCons will add the repository directories to the beginning of each SCPPPATH
directory, rapidly multiplying the number of -1 flags. If, for example, the SCPPPATH contains three
directories (and shorter repository path names!):

env = Environment (CPPPATH = [’dirl’, ’"dir2’, ’"dir3’1])
env.Program(’hello.c’)
Repository ('’ /rl’, ' /r2")

Then we’ll end up with nine -T options on the command line, three (for each of the SCPPPATH
directories) times three (for the local directory plus the two repositories):

% scons -Q
cc -o hello.o -c¢ -Idirl -I/rl/dirl -I/r2/dirl -Idir2 -I/rl/dir2 -I/r2/dir2 -Idir3 -1/
cc -o hello hello.o

22.3.1. Limitations on #include files in repositories

SCons relies on the C compiler’s —I options to control the order in which the preprocessor will search
the repository directories for #include files. This causes a problem, however, with how the C
preprocessor handles #include lines with the file name included in double-quotes.

As we’ve seen, SCons will compile the hello. c file from the repository if it doesn’t exist in the local
directory. If, however, the hello. c file in the repository contains a #include line with the file name in
double quotes:

#include "hello.h"
int
main (int argc, char *argv([])
{
printf (HELLO_MESSAGE) ;
return (0);

Then the C preprocessor will always use a hello.h file from the repository directory first, even if there
isahello.h file in the local directory, despite the fact that the command line specifies -1 as the first
option:

% scons —-Q
cc -o hello.o -c -I. —-I/usr/repositoryl /usr/repositoryl/hello.c

cc -o hello hello.o

147

Chapter 22. Building From Code Repositories

This behavior of the C preprocessor--always search for a #include file in double-quotes first in the
same directory as the source file, and only then search the —I--can not, in general, be changed. In other
words, it’s a limitation that must be lived with if you want to use code repositories in this way. There are
three ways you can possibly work around this C preprocessor behavior:

1. Some modern versions of C compilers do have an option to disable or control this behavior. If so,
add that option to SCFLAGS (or SCXXFLAGS or both) in your construction environment(s). Make
sure the option is used for all construction environments that use C preprocessing!

2. Change all occurrences of #include "file.h" to #include <file.h>.Use of #include with
angle brackets does not have the same behavior--the -1 directories are searched first for #include
files--which gives SCons direct control over the list of directories the C preprocessor will search.

3. Require that everyone working with compilation from repositories check out and work on entire
directories of files, not individual files. (If you use local wrapper scripts around your source code
control system’s command, you could add logic to enforce this restriction there.

22.4. Finding the sconstruct file in repositories

SCons will also search in repositories for the sConstruct file and any specified sConscript files. This
poses a problem, though: how can SCons search a repository tree for an SConstruct file if the
SConstruct file itself contains the information about the pathname of the repository? To solve this
problem, SCons allows you to specify repository directories on the command line using the —Y option:

o

% scons —-Q -Y /usr/repositoryl -Y /usr/repository2

When looking for source or derived files, SCons will first search the repositories specified on the
command line, and then search the repositories specified in the SConstruct or SConscript files.

22.5. Finding derived files in repositories

If a repository contains not only source files, but also derived files (such as object files, libraries, or
executables), SCons will perform its normal MDS5 signature calculation to decide if a derived file in a
repository is up-to-date, or the derived file must be rebuilt in the local build directory. For the SCons
signature calculation to work correctly, a repository tree must contain the . sconsign files that SCons
uses to keep track of signature information.

Usually, this would be done by a build integrator who would run SCons in the repository to create all of
its derived files and . sconsign files, or who would run SCons in a separate build directory and copy the
resulting tree to the desired repository:

cd /usr/repositoryl

o
°
o
°

scons —Q

148

Chapter 22. Building From Code Repositories

cc -o filel.o -c filel.c
cc -o file2.0 -c file2.c
cc -o hello.o —-c hello.c
cc -0 hello hello.o filel.o file2.o0

(Note that this is safe even if the SConstruct file lists /usr/repositoryl as a repository, because
SCons will remove the current build directory from its repository list for that invocation.)

Now, with the repository populated, we only need to create the one local source file we’re interested in
working with at the moment, and use the -y option to tell SCons to fetch any other files it needs from the
repository:

% cd $HOME/build

% edit hello.c

% scons -Q -Y /usr/repositoryl

cc —c —o hello.o hello.c

cc -o hello hello.o /usr/repositoryl/filel.o /usr/repositoryl/file2.o

Notice that SCons realizes that it does not need to rebuild local copies filel.o and file2.o files, but
instead uses the already-compiled files from the repository.

22.6. Guaranteeing local copies of files

If the repository tree contains the complete results of a build, and we try to build from the repository
without any files in our local tree, something moderately surprising happens:

mkdir $HOME/build2
cd $HOME/build2
scons -Q -Y /usr/all/repository hello

o o oe

scons: ‘hello’ is up-to-date.

Why does SCons say that the hello program is up-to-date when there is no hello program in the local
build directory? Because the repository (not the local directory) contains the up-to-date hello program,
and SCons correctly determines that nothing needs to be done to rebuild that up-to-date copy of the file.

There are, however, many times when you want to ensure that a local copy of a file always exists. A
packaging or testing script, for example, may assume that certain generated files exist locally. To tell
SCons to make a copy of any up-to-date repository file in the local build directory, use the Local
function:

env = Environment ()
hello = env.Program(’hello.c’)

149

Chapter 22. Building From Code Repositories

Local (hello)

If we then run the same command, SCons will make a local copy of the program from the repository
copy, and tell you that it is doing so:

% scons -Y /usr/all/repository hello

Local copy of hello from /usr/all/repository/hello
scons: ‘hello’ is up-to-date.

(Notice that, because the act of making the local copy is not considered a "build" of the hel1lo file,
SCons still reports that it is up-to-date.)

150

Chapter 23. Multi-Platform Configuration
(Autoconf Functionality)

SCons has integrated support for multi-platform build configuration similar to that offered by GNU
Autoconf, such as figuring out what libraries or header files are available on the local system. This
section describes how to use this SCons feature.

Note: This chapter is still under development, so not everything is explained as well as it should be.
See the SCons man page for additional information.

23.1. Configure Contexts

The basic framework for multi-platform build configuration in SCons is to attach a configure
context to a construction environment by calling the Configure function, perform a number of checks
for libraries, functions, header files, etc., and to then call the configure context’s Finish method to finish
off the configuration:

env = Environment ()

conf = Configure (env)

Checks for libraries, header files, etc. go here!
env = conf.Finish ()

SCons provides a number of basic checks, as well as a mechanism for adding your own custom checks.

Note that SCons uses its own dependency mechanism to determine when a check needs to be run--that is,
SCons does not run the checks every time it is invoked, but caches the values returned by previous
checks and uses the cached values unless something has changed. This saves a tremendous amount of
developer time while working on cross-platform build issues.

The next sections describe the basic checks that SCons supports, as well as how to add your own custom
checks.

23.2. Checking for the Existence of Header Files

Testing the existence of a header file requires knowing what language the header file is. A configure
context has a CheckCHeader method that checks for the existence of a C header file:

env = Environment ()

151

Chapter 23. Multi-Platform Configuration (Autoconf Functionality)

conf = Configure (env)

if not conf.CheckCHeader ('math.h’):
print 'Math.h must be installed!’
Exit (1)

if conf.CheckCHeader (' foo.h’):
conf.env.Append (' -DHAS_FOO_H')

env = conf.Finish ()

Note that you can choose to terminate the build if a given header file doesn’t exist, or you can modify the
construction environment based on the existence of a header file.

If you need to check for the existence a C++ header file, use the CheckCxxHeader method:

env = Environment ()

conf = Configure (env)

if not conf.CheckCXXHeader ('vector.h’):
print ’‘vector.h must be installed!’
Exit (1)

env = conf.Finish({()

23.3. Checking for the Availability of a Function

Check for the availability of a specific function using the CheckFunc method:

env = Environment ()
conf = Configure (env)
if not conf.CheckFunc (’strcpy’):
print ’Did not find strcpy(), using local version’
conf.env.Append (CPPDEFINES = ’'-Dstrcpy=my_local_strcpy’)
env = conf.Finish ()

23.4. Checking for the Availability of a Library

Check for the availability of a library using the CheckLib method. You only specify the basename of the
library, you don’t need to add a 1ib prefix or a .a or . 1ib suffix:

env = Environment ()

conf = Configure (env)

if not conf.CheckLib('m’):
print ’'Did not find libm.a or m.lib, exiting!’
Exit (1)

152

Chapter 23. Multi-Platform Configuration (Autoconf Functionality)

env = conf.Finish{()

Because the ability to use a library successfully often depends on having access to a header file that

describes the library’s interface, you can check for a library and a header file at the same time by using
the CheckLibWithHeader method

env = Environment ()
conf = Configure (env)
if not conf.CheckLibWithHeader ('m’, ’'math.h’, ’'c’):

print ’'Did not find libm.a or m.lib, exiting!’
Exit (1)
env = conf.Finish ()

This is essentially shorthand for separate calls to the CheckHeader and CheckLib functions.

23.5. Checking for the Availability of a typedef

Check for the availability of a typedef by using the CheckType method:

env = Environment ()

conf = Configure (env)

if not conf.CheckType(’'off_t’):
print 'Did not find off_t typedef, assuming int’
conf.env.Append (CCFLAGS = ’'-Doff_t=int’)

env = conf.Finish ()

You can also add a string that will be placed at the beginning of the test file that will be used to check for
the typedef. This provide a way to specify files that must be included to find the typedef:

env = Environment ()
conf = Configure (env)
if not conf.CheckType (‘off_t’, ’#include <sys/types.h>\n’):

print ’'Did not find off_t typedef, assuming int’
conf.env.Append (CCFLAGS = '-Doff_t=int’)
env = conf.Finish({()

23.6. Adding Your Own Custom Checks

A custom check is a Python function that checks for a certain condition to exist on the running system,
usually using methods that SCons supplies to take care of the details of checking whether a compilation

153

Chapter 23. Multi-Platform Configuration (Autoconf Functionality)

succeeds, a link succeeds, a program is runnable, etc. A simple custom check for the existence of a
specific library might look as follows:

mylib_test_source_file = """
finclude <mylib.h>
int main(int argc, char xxargv)
{
MyLibrary mylib (argc, argv);
return 0;

}

wnn

def CheckMyLibrary (context) :
context .Message (' Checking for MyLibrary...’)
result = context.TryLink (mylib_test_source_file, ’.c’)
context .Result (result)
return result

The Message and Result methods should typically begin and end a custom check to let the user know
what’s going on: the Message call prints the specified message (with no trailing newline) and the
Result call prints yes if the check succeeds and no if it doesn’t. The TryLink method actually tests for
whether the specified program text will successfully link.

(Note that a custom check can modify its check based on any arguments you choose to pass it, or by
using or modifying the configure context environment in the context . env attribute.)

This custom check function is then attached to the configure context by passing a dictionary to the
Configure call that maps a name of the check to the underlying function:

env = Environment ()
conf = Configure(env, custom_tests = {’CheckMyLibrary’ : CheckMyLibrary})

You’ll typically want to make the check and the function name the same, as we’ve done here, to avoid
potential confusion.

We can then put these pieces together and actually call the CheckMyLibrary check as follows:

mylib_test_source_file = """
finclude <mylib.h>
int main(int argc, char xxargv)
{
MyLibrary mylib (argc, argv);
return 0;

}

wnwn

def CheckMyLibrary (context) :

154

Chapter 23. Multi-Platform Configuration (Autoconf Functionality)

context .Message (' Checking for MyLibrary... ')
result = context.TrylLink (mylib_test_source_file,
context.Result (result)

return result

env = Environment ()

conf = Configure(env, custom_tests = {’CheckMyLibrary’

if not conf.CheckMyLibrary() :
print ’MyLibrary is not installed!’
Exit (1)

env = conf.Finish ()

14

.c’)

CheckMyLibrary})

We would then add actual calls like Program() to build

something using the "env" construction environment.

If MyLibrary is not installed on the system, the output will look like:

o)

% scons
scons: Reading SConscript file
Checking for MyLibrary... failed

MyLibrary is not installed!

If MyLibrary is installed, the output will look like:

o

% scons
scons: Reading SConscript file
Checking for MyLibrary... failed

scons: done reading SConscript
scons: Building targets

Using multi-platform configuration as described in the previous sections will run the configuration

commands even when invoking scons -c to clean targets:

% scons -Q -c

Checking for MyLibrary... yes
Removed foo.o
Removed foo

23.7. Not Configuring When Cleaning Targets

155

Chapter 23. Multi-Platform Configuration (Autoconf Functionality)

Although running the platform checks when removing targets doesn’t hurt anything, it’s usually
unnecessary. You can avoid this by using the GetOpt ion method to check whether the —c (clean) option
has been invoked on the command line:

env = Environment ()
if not env.GetOption(’clean’):
conf = Configure(env, custom_tests = {’CheckMyLibrary’ : CheckMyLibrary})

if not conf.CheckMyLibrary () :
print 'MylLibrary is not installed!’
Exit (1)

env = conf.Finish ()

o)

% scons —-Q -c
Removed foo.o
Removed foo

156

Chapter 24. Caching Built Files

On multi-developer software projects, you can sometimes speed up every developer’s builds a lot by
allowing them to share the derived files that they build. SCons makes this easy, as well as reliable.

24.1. Specifying the Shared Cache Directory

To enable sharing of derived files, use the CacheDir function in any SConscript file:

CacheDir (' /usr/local/build_cache’)

Note that the directory you specify must already exist and be readable and writable by all developers
who will be sharing derived files. It should also be in some central location that all builds will be able to
access. In environments where developers are using separate systems (like individual workstations) for
builds, this directory would typically be on a shared or NFS-mounted file system.

Here’s what happens: When a build has a cacheDir specified, every time a file is built, it is stored in the
shared cache directory along with its MD5 build signature. ' On subsequent builds, before an action is
invoked to build a file, SCons will check the shared cache directory to see if a file with the exact same
build signature already exists. If so, the derived file will not be built locally, but will be copied into the
local build directory from the shared cache directory, like so:

o

% scons —-Q

cc -o hello.o -c hello.c
cc -o hello hello.o

% scons -Q -c

Removed hello.o

Removed hello

% scons -Q

Retrieved ‘hello.o’ from cache

Retrieved ‘hello’ from cache

Note that the CacheDir feature still calculates MDS5 build sigantures for the shared cache file names
even if you configure SCons to use timestamps to decide if files are up to date. (See the Chapter 6 chapter
for information about the Decider function.) Consequently, using CacheDir may reduce or eliminate
any potential performance improvements from using timestamps for up-to-date decisions.

157

Chapter 24. Caching Built Files

24.2. Keeping Build Output Consistent

One potential drawback to using a shared cache is that the output printed by SCons can be inconsistent
from invocation to invocation, because any given file may be rebuilt one time and retrieved from the
shared cache the next time. This can make analyzing build output more difficult, especially for

automated scripts that expect consistent output each time.

If, however, you use the ——cache-show option, SCons will print the command line that it would have

executed to build the file, even when it is retrieving the file from the shared cache. This makes the build

output consistent every time the build is run:

% scons —-Q

cc -o hello.o —-c hello.c
cc —-o hello hello.o

% scons -Q -c

Removed hello.o

Removed hello

% scons -Q —--cache-show

cc -o hello.o -c hello.c

cc -0 hello hello.o

The trade-off, of course, is that you no longer know whether or not SCons has retrieved a derived file

from cache or has rebuilt it locally.

24.3. Not Using the Shared Cache for Specific Files

You may want to disable caching for certain specific files in your configuration. For example, if you only

want to put executable files in a central cache, but not the intermediate object files, you can use the

NoCache function to specify that the object files should not be cached:

env = Environment ()

obj = env.Object ("hello.c’)
env.Program(’hello.c’)
CacheDir (' cache’)

NoCache ("hello.o’)

Then when you run scons after cleaning the built targets, it will recompile the object file locally (since it
doesn’t exist in the shared cache directory), but still realize that the shared cache directory contains an

up-to-date executable program that can be retrieved instead of re-linking:

% scons -Q
cc -0 hello.o -c hello.c
cc -o hello hello.o

% scons -Q -c

158

Chapter 24. Caching Built Files

Removed hello.o

Removed hello

% scons -Q

cc -o hello.o -c hello.c

Retrieved ‘hello’ from cache

24.4. Disabling the Shared Cache

Retrieving an already-built file from the shared cache is usually a significant time-savings over
rebuilding the file, but how much of a savings (or even whether it saves time at all) can depend a great
deal on your system or network configuration. For example, retrieving cached files from a busy server
over a busy network might end up being slower than rebuilding the files locally.

In these cases, you can specify the —~—cache-disable command-line option to tell SCons to not
retrieve already-built files from the shared cache directory:

o

% scons —Q

cc -o hello.o -c hello.c

cc -o hello hello.o

% scons -Q -c

Removed hello.o

Removed hello

% scons -Q

Retrieved ‘hello.o’ from cache
Retrieved ‘hello’ from cache

% scons -Q -c

Removed hello.o

Removed hello

% scons -Q —--cache-disable
cc -o hello.o —-c hello.c

cc -o hello hello.o

24.5. Populating a Shared Cache With Already-Built Files

Sometimes, you may have one or more derived files already built in your local build tree that you wish to
make available to other people doing builds. For example, you may find it more effective to perform
integration builds with the cache disabled (per the previous section) and only populate the shared cache
directory with the built files after the integration build has completed successfully. This way, the cache
will only get filled up with derived files that are part of a complete, successful build not with files that
might be later overwritten while you debug integration problems.

159

Chapter 24. Caching Built Files

In this case, you can use the the ——cache-force option to tell SCons to put all derived files in the
cache, even if the files already exist in your local tree from having been built by a previous invocation:

% scons -Q —--cache-disable
cc -o hello.o -c hello.c
cc -o hello hello.o

% scons -Q -c

Removed hello.o

Removed hello

% scons -Q —--cache-disable
cc -o hello.o —-c hello.c
cc -o hello hello.o

% scons —-Q —--cache-force
scons: ‘.’ 1s up to date.
% scons —-Q

scons: ‘.’ 1s up to date.

Notice how the above sample run demonstrates that the ——cache-disable option avoids putting the
built hello.o and hello files in the cache, but after using the ——cache-force option, the files have
been put in the cache for the next invocation to retrieve.

24.6. Minimizing Cache Contention: the ——random Option

If you allow multiple builds to update the shared cache directory simultaneously, two builds that occur at
the same time can sometimes start "racing" with one another to build the same files in the same order. If,
for example, you are linking multiple files into an executable program:

Program(’prog’,
["fl.c", "f2.c', "£3.c’", '"f4.c’, "f5.c’])

SCons will normally build the input object files on which the program depends in their normal, sorted
order:

o

% scons —-Q

cc -o fl.o -c fl.c
cc -o f2.0 -¢c f2.c
cc -o £f3.0 -c f3.c
cc -o f4.0 -c f4.c
cc -o £f5.0 -¢c f5.c

cc -o prog fl.o f2.0 f3.0 f4.0 £f5.0

But if two such builds take place simultaneously, they may each look in the cache at nearly the same time
and both decide that £1 .o must be rebuilt and pushed into the shared cache directory, then both decide
that £2 . o must be rebuilt (and pushed into the shared cache directory), then both decide that £3. o must

160

Chapter 24. Caching Built Files

be rebuilt... This won’t cause any actual build problems--both builds will succeed, generate correct
output files, and populate the cache--but it does represent wasted effort.

To alleviate such contention for the cache, you can use the ——random command-line option to tell SCons
to build dependencies in a random order:

>

]
cc
cc
cc
cc
cc
cc

£3.
f1.
£5.
f2.
f4.

prog

O O O O O

scons —-Q —-random
-c £3.
-c fl.
-c £f5.
-c f2.
-c f4.

Q Q0 Q Q

C

fl.o f2.0 £f3.0 f4.0 £5.0

Multiple builds using the ——random option will usually build their dependencies in different, random
orders, which minimizes the chances for a lot of contention for same-named files in the shared cache
directory. Multiple simultaneous builds might still race to try to build the same target file on occasion,
but long sequences of inefficient contention should be rare.

Note, of course, the ——random option will cause the output that SCons prints to be inconsistent from
invocation to invocation, which may be an issue when trying to compare output from different build runs.

If you want to make sure dependencies will be built in a random order without having to specify the
—-random on very command line, you can use the SetOption function to set the random option within

any SConscript file:

Program ('’ prog’,

["fl.c’,

"f2.c’, "£3.c’, 'f4.c’, "£5.c’])

SetOption (’ random’, 1)

Program(’prog’,

Notes

["fl.c’,

rf2.c’, "£3.c’, "f4.c’', "£5.c’])

1. Actually, the MDS5 signature is used as the name of the file in the shared cache directory in which the
contents are stored.

161

Chapter 25. Alias Targets

We’ve already seen how you can use the Alias function to create a target named install:

env = Environment ()

hello = env.Program(’hello.c’)
env.Install ('’ /usr/bin’, hello)
env.Alias (’install’, ' /usr/bin’)

You can then use this alias on the command line to tell SCons more naturally that you want to install files:

% scons -Q install
cc -0 hello.o -c hello.c
cc -o hello hello.o

Install file: "hello" as "/usr/bin/hello"

Like other Builder methods, though, the A1ias method returns an object representing the alias being
built. You can then use this object as input to anothother Builder. This is especially useful if you use

such an object as input to another call to the Alias Builder, allowing you to create a hierarchy of

nested aliases:

env = Environment ()

p = env.Program(’foo.c’)

1 = env.Library('bar.c’)
env.Install (' /usr/bin’, p)
env.Install(’ /usr/lib’, 1)

ib = env.Alias(’install-bin’, ’/usr/bin’)
il = env.Alias(’install-1ib’, ’/usr/lib’)

env.Alias (’'install’, [ib, il])

This example defines separate install, install-bin, and install-1ib aliases, allowing you finer

control over what gets installed:

o)

% scons —-Q install-bin
cc -o foo.o —-c foo.c
cc -o foo foo.o

Install file: "foo" as "/usr/bin/foo"

% scons -Q install-1lib

cc -0 bar.o -c bar.c
ar rc libbar.a bar.o
ranlib libbar.a

Install file: "libbar.a" as "/usr/lib/libbar.a"

% scons -Q -c /

Removed foo.o
Removed foo
Removed /usr/bin/foo

162

Chapter 25. Alias Targets

Removed bar.o

Removed libbar.a

Removed /usr/lib/libbar.a

% scons -Q install

cc -o foo.o -c foo.c

cc -o foo foo.o

Install file: "foo" as "/usr/bin/foo"
cc -o bar.o -c bar.c

ar rc libbar.a bar.o

ranlib libbar.a

Install file: "libbar.a" as "/usr/lib/libbar.a"

163

Chapter 26. Java Builds

So far, we’ve been using examples of building C and C++ programs to demonstrate the features of
SCons. SCons also supports building Java programs, but Java builds are handled slightly differently,
which reflects the ways in which the Java compiler and tools build programs differently than other
languages’ tool chains.

26.1. Building Java Class Files: the Java Builder

The basic activity when programming in Java, of course, is to take one or more . java files containing
Java source code and to call the Java compiler to turn them into one or more .class files. In SCons, you
do this by giving the Java Builder a target directory in which to put the . class files, and a source
directory that contains the . java files:

Java (' classes’, ’'src’)

If the src directory contains three . java source files, then running SCons might look like this:

% scons -Q
javac -d classes -sourcepath src src/Examplel.java src/Example2.java src/Example3.jav

SCons will actually search the src directory tree for all of the . java files. The Java compiler will then
create the necessary class files in the classes subdirectory, based on the class names found in the
. java files.

26.2. How SCons Handles Java Dependencies

In addition to searching the source directory for . java files, SCons actually runs the . java files through
a stripped-down Java parser that figures out what classes are defined. In other words, SCons knows,
without you having to tell it, what . class files will be produced by the javac call. So our one-liner
example from the preceding section:

Java (' classes’, ’'src’)

Will not only tell you reliably that the . class files in the classes subdirectory are up-to-date:

% scons -Q
javac —-d classes -sourcepath src src/Examplel.java src/Example2.java src/Example3.jav

o

% scons —Q classes
scons: ‘classes’ is up to date.

164

Chapter 26. Java Builds

But it will also remove all of the generated . class files, even for inner classes, without you having to
specify them manually. For example, if our Examplel. java and Example3. java files both define
additional classes, and the class defined in Example2. java has an inner class, running scons -c will
clean up all of those . class files as well:

% scons —-Q

javac —-d classes -sourcepath src src/Examplel.java src/Example2.java src/Example3.jav
% scons -Q —-c classes

Removed classes/Examplel.class

Removed classes/AdditionalClassl.class
Removed classes/Example2$Inner2.class
Removed classes/Example2.class

Removed classes/Example3.class

Removed classes/AdditionalClass3.class

To ensure correct handling of . class dependencies in all cases, you need to tell SCons which Java
version is being used. This is needed because Java 1.5 changed the . class file names for nested
anonymous inner classes. Use the JAVAVERSTON construction variable to specify the version in use.
With Java 1.6, the one-liner example can then be defined like this:

Java ('classes’, ’src’, JAVAVERSION='1.6")

See JAVAVERSION in the man page for more information.

26.3. Building Java Archive (. jar) Files: the Jar Builder

After building the class files, it’s common to collect them into a Java archive (. jar) file, which you do
by calling the Jar Builder method. If you want to just collect all of the class files within a subdirectory,
you can just specify that subdirectory as the Jar source:

Java (target = ’'classes’, source = ’src’)
Jar (target = ’'test.jar’, source = ’classes’)

SCons will then pass that directory to the jar command, which will collect all of the underlying .class
files:

% scons -Q
javac -d classes -sourcepath src src/Examplel.java src/Example2.java src/Example3.jav
jar cf test.jar classes

165

Chapter 26. Java Builds

If you want to keep all of the . class files for multiple programs in one location, and only archive some
of them in each . jar file, you can pass the Jar builder a list of files as its source. It’s extremely simple
to create multiple . jar files this way, using the lists of target class files created by calls to the Java
builder as sources to the various Jar calls:

progl_class_files = Java(target = ’classes’, source = ’'progl’)
prog2_class_files = Java(target = ’'classes’, source = ’'prog2’)
Jar (target = ’'progl.jar’, source = progl_class_files)
Jar (target = ’'prog2.jar’, source = prog2_class_files)

This will then create progl . jar and prog2 . jar next to the subdirectories that contain their . java
files:

o

% scons —-Q

javac —-d classes -sourcepath progl progl/Examplel.java progl/Example2. java
javac —-d classes -sourcepath prog2 prog2/Example3.java prog2/Exampled. java
jar cf progl.jar -C classes Examplel.class -C classes Example2.class

jar cf prog2.jar -C classes Example3.class -C classes Exampled.class

26.4. Building C Header and Stub Files: the gavau Builder

You can generate C header and source files for implementing native methods, by using the JavaH
Builder. There are several ways of using the JavaHt Builder. One typical invocation might look like:

classes = Java(target = ’classes’, source = ’'src/pkg/sub’)
JavaH (target = 'native’, source = classes)

The source is a list of class files generated by the call to the Java Builder, and the target is the output
directory in which we want the C header files placed. The target gets converted into the —-d when SCons
runs javah:

o

% scons —-Q
javac —-d classes —-sourcepath src/pkg/sub src/pkg/sub/Examplel.java src/pkg/sub/Exampl
javah -d native -classpath classes pkg.sub.Examplel pkg.sub.Example2 pkg.sub.Example3

In this case, the call to javah will generate the header files native/pkg_sub_Examplel.h,
native/pkg_sub_Example2.h and native/pkg_sub_Example3.h. Notice that SCons remembered
that the class files were generated with a target directory of classes, and that it then specified that target
directory as the —classpath option to the call to javah.

166

Chapter 26. Java Builds

Although it’s more convenient to use the list of class files returned by the Java Builder as the source of a
call to the JavaHt Builder, you can specify the list of class files by hand, if you prefer. If you do, you
need to set the SJAVACLASSDIR construction variable when calling JavaH:

Java (target = ’classes’, source = ’'src/pkg/sub’)

class_file_list = [’classes/pkg/sub/Examplel.class’,
"classes/pkg/sub/Example2.class’,
"classes/pkg/sub/Example3.class’]

JavaHl (target = 'native’, source = class_file_list, JAVACLASSDIR = ’classes’)

The $JAVACLASSDIR value then gets converted into the —classpath when SCons runs javah:

% scons -Q

javac -d classes -sourcepath src/pkg/sub src/pkg/sub/Examplel. java src/pkg/sub/Exampl
javah -d native -classpath classes pkg.sub.Examplel pkg.sub.Example2 pkg.sub.Example3

Lastly, if you don’t want a separate header file generated for each source file, you can specify an explicit
File Node as the target of the JavaH Builder:

classes = Java(target = 'classes’, source = ’'src/pkg/sub’)
JavaH (target = File('native.h’), source = classes)

Because SCons assumes by default that the target of the JavaH builder is a directory, you need to use the
File function to make sure that SCons doesn’t create a directory named native.h. When a file is used,
though, SCons correctly converts the file name into the javah —o option:

% scons -Q
javac -d classes -sourcepath src/pkg/sub src/pkg/sub/Examplel.java src/pkg/sub/Exampl
javah -o native.h -classpath classes pkg.sub.Examplel pkg.sub.Example2 pkg.sub.Exampl

26.5. Building RMI Stub and Skeleton Class Files: the
rMIC Builder

You can generate Remote Method Invocation stubs by using the RMIC Builder. The source is a list of
directories, typically returned by a call to the Java Builder, and the target is an output directory where
the _Stub.class and _Skel.class files will be placed:

classes = Java(target = ’classes’, source = ’'src/pkg/sub’)
RMIC (target = ’'outdir’, source = classes)

167

Chapter 26. Java Builds

As it did with the JavaH Builder, SCons remembers the class directory and passes it as the —~classpath
option to rmic:

% scons -Q
javac -d classes -sourcepath src/pkg/sub src/pkg/sub/Examplel. java src/pkg/sub/Exampl
rmic —-d outdir -classpath classes pkg.sub.Examplel pkg.sub.Example?2

This example would generate the files outdir/pkg/sub/Examplel_Skel.class,
outdir/pkg/sub/Examplel_Stub.class, outdir/pkg/sub/Example2_Skel.class and
outdir/pkg/sub/Example2_Stub.class.

168

Chapter 27. Miscellaneous Functionality

SCons supports a lot of additional functionality that doesn’t readily fit into the other chapters.

27.1. Verifying the Python Version: the
EnsurePythonVersion Function

Although the SCons code itself will run on any 2.x Python version 2.4 or later, you are perfectly free to
make use of Python syntax and modules from more modern versions (for example, Python 2.5 or 2.6)
when writing your SConscript files or your own local modules. If you do this, it’s usually helpful to
configure SCons to exit gracefully with an error message if it’s being run with a version of Python that
simply won’t work with your code. This is especially true if you’re going to use SCons to build source
code that you plan to distribute publicly, where you can’t be sure of the Python version that an
anonymous remote user might use to try to build your software.

SCons provides an EnsurePythonVersion function for this. You simply pass it the major and minor
versions numbers of the version of Python you require:

EnsurePythonVersion (2, 5)

And then SCons will exit with the following error message when a user runs it with an unsupported
earlier version of Python:

o

% scons -Q
Python 2.5 or greater required, but you have Python 2.3.6

27.2. Verifying the SCons Version: the
EnsureSConsVersion Function

You may, of course, write your SConscript files to use features that were only added in recent versions
of SCons. When you publicly distribute software that is built using SCons, it’s helpful to have SCons
verify the version being used and exit gracefully with an error message if the user’s version of SCons
won’t work with your SConscript files. SCons provides an EnsureSConsVersion function that
verifies the version of SCons in the same the EnsurePythonVersion function verifies the version of
Python, by passing in the major and minor versions numbers of the version of SCons you require:

EnsureSConsVersion (1, 0)

169

Chapter 27. Miscellaneous Functionality

And then SCons will exit with the following error message when a user runs it with an unsupported
earlier version of SCons:

% scons -Q

SCons 1.0 or greater required, but you have SCons 0.98.5

27.3. Explicitly Terminating SCons While Reading
Sconscript Files: the Exit Function

SCons supports an Exit function which can be used to terminate SCons while reading the SConscript
files, usually because you’ve detected a condition under which it doesn’t make sense to proceed:

if ARGUMENTS.get (' FUTURE’) :
print "The FUTURE option is not supported yet!"
Exit (2)

env = Environment ()

env.Program(’hello.c’)

% scons -Q FUTURE=1

The FUTURE option is not supported yet!
% scons -Q

cc -o hello.o —-c hello.c

cc -o hello hello.o

The Exit function takes as an argument the (numeric) exit status that you want SCons to exit with. If
you don’t specify a value, the default is to exit with 0, which indicates successful execution.

Note that the Exit function is equivalent to calling the Python sys.exit function (which the it actually
calls), but because Exit is a SCons function, you don’t have to import the Python sys module to use it.

27.4. Searching for Files: the Findrile Function

The FindFile function searches for a file in a list of directories. If there is only one directory, it can be
given as a simple string. The function returns a File node if a matching file exists, or None if no file is
found. (See the documentation for the G1ob function for an alternative way of searching for entries in a
directory.)

one directory

print FindFile (‘missing’, '.")
t = FindFile ('exists’, '.")
print t.__class__, t

170

Chapter 27. Miscellaneous Functionality

% scons -Q

None
<class ’SCons.Node.FS.File’> exists
scons: ‘.’ 1is up to date.

several directories
includes = [’.’, ’'include’, ’'src/include’]
headers = ['nonesuch.h’, ’config.h’, ’private.h’, ’dist.h’]
for hdr in headers:
print '%-12s’ % ('%s:’ % hdr), FindFile (hdr, includes)

)

% scons —Q
nonesuch.h: None

config.h: config.h
private.h: src/include/private.h
dist.h: include/dist.h

scons: ‘.’ is up to date.

If the file exists in more than one directory, only the first occurrence is returned.

print FindFile ('multiple’, [’subl’, ’sub2’, ’"sub3’])
print FindFile (‘multiple’, [’sub2’, ’sub3’, ’subl’])
print FindFile ('multiple’, [’sub3’, ’subl’, ’"sub2’])

% scons -Q

subl/multiple
sub2/multiple
sub3/multiple

scons: ‘.’ 1is up to date.

In addition to existing files, FindFile will also find derived files (that is, non-leaf files) that haven’t
been built yet. (Leaf files should already exist, or the build will fail!)

Neither file exists, so build will fail
Command (' derived’, ’'leaf’, ’"cat >STARGET S$SOURCE’)
print FindFile (' leaf’, ’.")

print FindFile (’derived’, ’.")

)

% scons —Q
None
derived
scons: *** [derived] Source ‘leaf’ not found, needed by target ‘derived’.

171

Chapter 27. Miscellaneous Functionality

Neither file exists, so build will fail
Command (' derived’, ’leaf’, ’'cat >$TARGET $SOURCE’)
print FindFile(’leaf’, ".”")

print FindFile (’derived’, ’.")

Only ’leaf’ exists

Command (" derived’, ’'leaf’, ’'cat >$TARGET S$SOURCE’)
print FindFile(’leaf’, ".”")

print FindFile (’derived’, '.")

)

% scons —-Q

leaf

derived

cat > derived leaf

If a source file exists, FindFile will correctly return the name in the build directory.

Only ’'src/leaf’ exists
VariantDir ('build’, ’'src’)
print FindFile(’leaf’, ’build’)

)

% scons —-Q
build/leaf
scons: ‘.’ is up to date.

27.5. Handling Nested Lists: the F1atten Function

SCons supports a Flatten function which takes an input Python sequence (list or tuple) and returns a
flattened list containing just the individual elements of the sequence. This can be handy when trying to
examine a list composed of the lists returned by calls to various Builders. For example, you might collect
object files built in different ways into one call to the P rogram Builder by just enclosing them in a list, as
follows:

objects = [

Object ('progl.c’),

Object ('prog2.c’, CCFLAGS=’-DFO0O’),
]

Program(objects)

Because the Builder calls in SCons flatten their input lists, this works just fine to build the program:

% scons -Q

cc -o progl.o —-c progl.c

172

Chapter 27. Miscellaneous Functionality

cc -0 prog2.o0 —-c -DFOO prog2.c
cc -o progl progl.o prog2.o

But if you were debugging your build and wanted to print the absolute path of each object file in the
objects list, you might try the following simple approach, trying to print each Node’s abspath
attribute:

objects = [
Object ("progl.c’),
Object (' prog2.c’, CCFLAGS=’-DFO0O0’),
]

Program (objects)

for object_file in objects:
print object_file.abspath

This does not work as expected because each call to str is operating an embedded list returned by each
Object call, not on the underlying Nodes within those lists:

o

% scons —Q
AttributeError: ’'Nodelist’ object has no attribute ’abspath’:
File "/home/my/project/SConstruct", line 8:

print object_file.abspath

The solution is to use the Flatten function so that you can pass each Node to the str separately:

objects = [

Object ('progl.c’),

Object ('prog2.c’, CCFLAGS=’-DFO0O’),
]

Program (objects)

for object_file in Flatten (objects):
print object_file.abspath

% scons -Q
/home/me/project/progl.o
/home/me/project/prog2.o

cc -o progl.o —-c progl.c

cc -0 prog2.o0 —-c -DFOO prog2.c
cc -o progl progl.o prog2.o

173

Chapter 27. Miscellaneous Functionality

27.6. Finding the Invocation Directory: the GetLaunchDir
Function

If you need to find the directory from which the user invoked the scons command, you can use the
GetLaunchDir function:

env = Environment (
LAUNCHDIR = GetLaunchDir (),
)
env.Command (' directory_build_info’,
" $LAUNCHDIR/build_info’
Copy (" STARGET’, ’SSOURCE’))

Because SCons is usually invoked from the top-level directory in which the SConstruct file lives, the
Python os.getcwd () is often equivalent. However, the SCons —u, —U and -D command-line options,
when invoked from a subdirectory, will cause SCons to change to the directory in which the
SConstruct file is found. When those options are used, Get LaunchDir will still return the path to the
user’s invoking subdirectory, allowing the SConscript configuration to still get at configuration (or
other) files from the originating directory.

174

Chapter 28. Troubleshooting

The experience of configuring any software build tool to build a large code base usually, at some point,
involves trying to figure out why the tool is behaving a certain way, and how to get it to behave the way
you want. SCons is no different. This appendix contains a number of different ways in which you can get
some additional insight into SCons’ behavior.

Note that we’re always interested in trying to improve how you can troubleshoot configuration problems.
If you run into a problem that has you scratching your head, and which there just doesn’t seem to be a
good way to debug, odds are pretty good that someone else will run into the same problem, too. If so,
please let the SCons development team know (preferably by filing a bug report or feature request at our
project pages at tigris.org) so that we can use your feedback to try to come up with a better way to help
you, and others, get the necessary insight into SCons behavior to help identify and fix configuration
issues.

28.1. Why is That Target Being Rebuilt? the
——debug=explain Option

Let’s look at a simple example of a misconfigured build that causes a target to be rebuilt every time
SCons is run:

Intentionally misspell the output file name in the
command used to create the file:
Command (' file.out’, 'file.in’, ’'cp S$SOURCE file.oout’)

(Note to Windows users: The POSIX cp command copies the first file named on the command line to the
second file. In our example, it copies the file.in file to the file.out file.)

Now if we run SCons multiple times on this example, we see that it re-runs the cp command every time:

o

% scons -Q
cp file.in file.oout
% scons -Q
cp file.in file.oout

% scons —Q
cp file.in file.oout

In this example, the underlying cause is obvious: we’ve intentionally misspelled the output file name in
the cp command, so the command doesn’t actually build the file.out file that we’ve told SCons to
expect. But if the problem weren’t obvious, it would be helpful to specify the --debug=explain option
on the command line to have SCons tell us very specifically why it’s decided to rebuild the target:

175

Chapter 28. Troubleshooting

% scons —-Q —--debug=explain
scons: building ‘file.out’ because it doesn’t exist
cp file.in file.oout

If this had been a more complicated example involving a lot of build output, having SCons tell us that it’s
trying to rebuild the target file because it doesn’t exist would be an important clue that something was
wrong with the command that we invoked to build it.

The --debug=explain option also comes in handy to help figure out what input file changed. Given a
simple configuration that builds a program from three source files, changing one of the source files and
rebuilding with the -—debug=explain option shows very specifically why SCons rebuilds the files that
it does:

% scons -Q
cc -o filel.o -c filel.c
cc —o file2.0 -c file2.c
cc -o file3.o -c file3.c
cc -o prog filel.o file2.o0 file3.o
% edit file2.c
[CHANGE THE CONTENTS OF file2.c]
% scons —-Q —-—-debug=explain
scons: rebuilding ‘file2.o’ because ‘file2.c’ changed
cc -o file2.o0 -c file2.c
scons: rebuilding ‘prog’ because ‘file2.o’ changed
cc -o prog filel.o file2.o0 file3.o

This becomes even more helpful in identifying when a file is rebuilt due to a change in an implicit
dependency, such as an incuded .h file. If the filel.c and £ile3. c files in our example both included
ahello.h file, then changing that included file and re-running SCons with the ——debug=explain
option will pinpoint that it’s the change to the included file that starts the chain of rebuilds:

o

% scons —-Q
cc -o filel.o -c -I. filel.c
cc -o file2.0 -c -I. file2.c
cc -o file3.o -c -I. file3.c
cc -o prog filel.o file2.0 file3.o
% edit hello.h
[CHANGE THE CONTENTS OF hello.h]
% scons —-Q —--debug=explain
scons: rebuilding ‘filel.o’ because ‘hello.h’ changed
cc -o filel.o -c -I. filel.c
scons: rebuilding ‘file3.o’ because ‘hello.h’ changed
cc -o file3.o -c -I. file3.c
scons: rebuilding ‘prog’ because:
‘filel.o’ changed
‘file3.0’ changed
cc -o prog filel.o file2.o0 file3.o

176

Chapter 28. Troubleshooting

(Note that the —~—debug=explain option will only tell you why SCons decided to rebuild necessary
targets. It does not tell you what files it examined when deciding not to rebuild a target file, which is
often a more valuable question to answer.)

28.2. What’s in That Construction Environment? the pump
Method

When you create a construction environment, SCons populates it with construction variables that are set
up for various compilers, linkers and utilities that it finds on your system. Although this is usually helpful
and what you want, it might be frustrating if SCons doesn’t set certain variables that you expect to be set.
In situations like this, it’s sometimes helpful to use the construction environment Dump method to print
all or some of the construction variables. Note that the Dump method returns the representation of the
variables in the environment for you to print (or otherwise manipulate):

env = Environment ()
print env.Dump ()

On a POSIX system with gcc installed, this might generate:

% scons
scons: Reading SConscript files
{ "BUILDERS’: {’_InternallInstall’: <function InstallBuilderWrapper at 0x700000>,
"CONFIGUREDIR’ : ’#/.sconf_temp’,
" CONFIGURELOG’ : ’#/config.log’,
"CPPSUFFIXES': [".c’,
r.cr,

rLexx!’,

.cpp’,
"LcH+’,

’

".cc’,

r.h',

' LH!,

" .hxx’,

" .hpp’,

" .hh’,

" LF’,

".fpp’,

" .FPP’,

".m’,

" .mm’,

r.s’,

".spp’,

' .SPP’,

".sx’],
"DSUFFIXES’': [".d"],
"Dir’: <SCons.Defaults.Variable_Method_Caller object at 0x700000>,
"Dirs’: <SCons.Defaults.Variable_Method_Caller object at 0x700000>,

177

4

_In

Chapter 28. Troubleshooting

"ENV’: { 'PATH’: ' /usr/local/bin:/opt/bin:/bin:/usr/bin’},
"ESCAPE’ : <function escape at 0x700000>,
’File’: <SCons.Defaults.Variable_Method_Caller object at 0x700000>,
"HOST_ARCH’ : None,
"HOST_OS’ : None,
’IDLSUFFIXES’: [’ .idl’, ’.IDL'],
"INSTALL’ : <function copyFunc at 0x700000>,
'LIBPREFIX’: "1ib’,
"LIBPREFIXES’: [’/SLIBPREFIX’],
"LIBSUFFIX': '.a’,
"LIBSUFFIXES’: [’/SLIBSUFFIX’, ’'S$SHLIBSUFFIX’],
"MAXLINELENGTH’ : 128072,
"OBJPREFIX': ",
"OBJSUFFIX': '.0’,
"PLATFORM’ : ’posix’,
"PROGPREFIX": ",
"PROGSUFFIX’": ",
"PSPAWN’ : <function piped_env_spawn at 0x700000>,
’RDirs’: <SCons.Defaults.Variable_Method_Caller object at 0x700000>,
' SCANNERS’ : [],
’SHELL’ : ’sh’,
’ SHLIBPREFIX’ : ’'SLIBPREFIX’,
"SHLIBSUFFIX’": ’.so’,
’ SHOBJPREFIX’ : ' SOBJPREFIX’,
' SHOBJSUFFIX’ : ' $OBJSUFFIX’,
’SPAWN'’ : <function spawnvpe_spawn at 0x700000>,
"TARGET_ARCH’ : None,
" TARGET_OS’ : None,
'TEMPFILE’ : <class ’'SCons.Platform.TempFileMunge’>,
'TEMPFILEPREFIX’: @',
’TOOLS’: [’"install’, ’"install’],
! _CPPDEFFLAGS’: ’S${_defines (CPPDEFPREFIX, CPPDEFINES, CPPDEFSUFFIX, _ _env_)}’,
/ _CPPINCFLAGS’: ’$(${_concat (INCPREFIX, CPPPATH, INCSUFFIX, _ env__, RDirs, TARGET
' _LIBDIRFLAGS’: ’S$(${_concat (LIBDIRPREFIX, LIBPATH, LIBDIRSUFFIX, _ env__, RDirs,
’ _LIBFLAGS’: ’'${_concat (LIBLINKPREFIX, LIBS, LIBLINKSUFFIX, __env__)}’,
/__RPATH’: ’$_RPATH’,
’ _concat’: <function _concat at 0x700000>,
! _defines’: <function _defines at 0x700000>,
" _stripixes’: <function _stripixes at 0x700000>}
scons: done reading SConscript files.
scons: Building targets
scons: ‘.’ is up to date.
scons: done building targets.

On a Windows system with Visual C++ the output might look like:

C:\>scons

scons: Reading SConscript files

{ "BUILDERS’: {’_InternalInstall’: <function InstallBuilderWrapper at 0x700000>, ’Obj
rccr: el
"CCCOM’ : <SCons.Action.FunctionAction object at 0x700000>,

178

Chapter 28. Troubleshooting

"CCFLAGS’: [’ /nologo’],
"CCPCHFLAGS’ : [’S${(PCH and "/Yu%s \\"/Fp%s\\""% (PCHSTOP or "",File(PCH))) or ""}'7],
' CCPDBFLAGS’ : [’/S$S{(PDB and "/2Z7") or ""}’1,
'CFILESUFFIX': '.c’,
"CFLAGS’ : [],
" CONFIGUREDIR’ : '#/.sconf_temp’,
"CONFIGURELOG’ : ’#/config.log’,
' CPPDEFPREFIX’: ’/D’,
' CPPDEFSUFFIX’: ",
'CPPSUFFIXES’: [’.c’,

r.cr,

" .cexx!’,

".cpp’,

r.ct++’,

".cc’,

'.h',

rLH,

" hxx!',

" .hpp’,

’.hh',

rLUE,

".fpp’,

' .FPP’,

" .mm’,

r.s’,

".spp’,

"’ .SPP’,

r.sx’],
rCXX’: rsccr,
" CXXCOM’ : " S${TEMPFILE ("$CXX $_MSVC_OUTPUT_FLAG /c $CHANGED_SOURCES S$SCXXFLAGS S$CCFLA
'CXXFILESUFFIX': ’.cc’,
'CXXFLAGS': ["S(', "/TP’, "$)"1,
"DSUFFIXES': [’.d"],
"Dir’: <SCons.Defaults.Variable_Method_Caller object at 0x700000>,
’Dirs’: <SCons.Defaults.Variable_Method_Caller object at 0x700000>,
"ENV’: { 'PATH’: ’'C:\\WINDOWS\\System32’,

/PATHEXT’ : ’ .COM; .EXE; .BAT; .CMD’,
’SystemRoot’ : ’C:\\WINDOWS'},

"ESCAPE’ : <function escape at 0x700000>,
"File’: <SCons.Defaults.Variable_Method_Caller object at 0x700000>,
"HOST_ARCH' : ",
"HOST_OS’: ’"win32',
/' IDLSUFFIXES’: [’.idl’, ’.IDL’],
" INCPREFIX': ' /I',
"INCSUFFIX': ",
"INSTALL’ : <function copyFunc at 0x700000>,
"LIBPREFIX': ",
'LIBPREFIXES’: [’/SLIBPREFIX’'],
"LIBSUFFIX': ' .1lib’,
"LIBSUFFIXES’: [’/SLIBSUFFIX'],
'MAXLINELENGTH’ : 2048,
"MSVC_SETUP_RUN’ : True,

179

Chapter 28. Troubleshooting

"OBJPREFIX'": ",
"OBJSUFFIX’: ' .obj’",
"PCHCOM’ : ’CXX /Fo{TARGETS[1]} S$CXXFLAGS S$CCFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPIN
"PCHPDBFLAGS’ : [’${(PDB and "/Yd") or ""}’'],
"PLATFORM’ : "win32',
"PROGPREFIX": ",
"PROGSUFFIX’': ' .exe’,
"PSPAWN’ : <function piped_spawn at 0x700000>,
"RC’: 'rc’,
"RCCOM’ : <SCons.Action.FunctionAction object at 0x700000>,
"RCFLAGS’: [1],
"RCSUFFIXES’: [’ .rc’, ".xrc2'],
"RDirs’: <SCons.Defaults.Variable_Method_Caller object at 0x700000>,
/' SCANNERS’ : [],
’SHCC': ’'scc’,
" SHCCCOM' : <SCons.Action.FunctionAction object at 0x700000>,
" SHCCFLAGS’ : [’ $CCFLAGS'],
" SHCFLAGS’ : [’/ S$CFLAGS’],
" SHCXX' : ' S$CXX',
" SHCXXCOM’ : ' ${TEMPFILE ("$SHCXX $_MSVC_OUTPUT_FLAG /c $CHANGED_SOURCES $SHCXXFLAGS
" SHCXXFLAGS'’ : [’ $SCXXFLAGS'],
’ SHELL'’ : None,
"SHLIBPREFIX": ”,
/SHLIBSUFFIX’': ’.dl1l’,
" SHOBJPREFIX': ' $OBJPREFIX’,
’ SHOBJSUFFIX’ : ' S$SOBJSUFFIX’,
"SPAWN’ : <function spawn at 0x700000>,
" STATIC_AND_SHARED_OBJECTS_ARE_THE_SAME’ : 1,
" TARGET_ARCH' : ",
"TARGET_OS’ : ’"win32',
"TEMPFILE’ : <class ’SCons.Platform.TempFileMunge’>,
"TEMPFILEPREFIX': ’Q@’,
’TOOLS’: ['msvc’, ’'install’, ’install’],
’ _CCCOMCOM’ : ' $SCPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS S$CCPCHFLAGS S$CCPDBFLAGS’,
’ _CPPDEFFLAGS’: ’'S${_defines (CPPDEFPREFIX, CPPDEFINES, CPPDEFSUFFIX, _ _env__)}’,
’ _CPPINCFLAGS’: ’'S$(${_concat (INCPREFIX, CPPPATH, INCSUFFIX, _ env__, RDirs, TARGET
/' _LIBDIRFLAGS’: ’$(${_concat (LIBDIRPREFIX, LIBPATH, LIBDIRSUFFIX, _ env__, RDirs,
/ _LIBFLAGS’: ’S${_concat (LIBLINKPREFIX, LIBS, LIBLINKSUFFIX, _ env_)}’,
! _MSVC_OUTPUT_FLAG’ : <function msvc_output_flag at 0x700000>,
’_concat’: <function _concat at 0x700000>,
' _defines’: <function _defines at 0x700000>,
/' _stripixes’: <function _stripixes at 0x700000>}
scons: done reading SConscript files.
scons: Building targets
scons: ‘.’ 1s up to date.
scons: done building targets.

The construction environments in these examples have actually been restricted to just gcc and Visual
C++, respectively. In a real-life situation, the construction environments will likely contain a great many
more variables. Also note that we’ve massaged the example output above to make the memory address of

180

Chapter 28. Troubleshooting

all objects a constant 0x700000. In reality, you would see a different hexadecimal number for each
object.

To make it easier to see just what you’re interested in, the Dump method allows you to specify a specific
constrcution variable that you want to disply. For example, it’s not unusual to want to verify the external
environment used to execute build commands, to make sure that the PATH and other environment
variables are set up the way they should be. You can do this as follows:

env = Environment ()
print env.Dump (' ENV’)

Which might display the following when executed on a POSIX system:

o

% scons
scons: Reading SConscript files

{ "PATH’: ' /usr/local/bin:/opt/bin:/bin:/usr/bin’}
scons: done reading SConscript files.

scons: Building targets

scons: ‘.’ 1s up to date.

scons: done building targets.

And the following when executed on a Windows system:

C:\>scons

scons: Reading SConscript files

{ "PATH’ : 'C:\\WINDOWS\\System32’,
"PATHEXT'’ : ' .COM; .EXE; .BAT; .CMD’,
"SystemRoot’ : ’C:\\WINDOWS’ }

scons: done reading SConscript files.

scons: Building targets

scons: ‘.’ 1s up to date.

scons: done building targets.

28.3. What Dependencies Does SCons Know About? the
—-tree Option

Sometimes the best way to try to figure out what SCons is doing is simply to take a look at the
dependency graph that it constructs based on your sConscript files. The ——t ree option will display all
or part of the SCons dependency graph in an "ASCII art" graphical format that shows the dependency
hierarchy.

For example, given the following input SConstruct file:

181

Chapter 28. Troubleshooting

env = Environment (CPPPATH = [’.'])
env.Program(’prog’, ['"fl.c’, "f2.c’, "£3.c’])

Running SCons with the -—t ree=a11 option yields:

% scons -Q —--tree=all
cc —o fl.o -¢ -I. fl.c
cc -o f2.0 -¢c -I. f2.c
cc -o £f3.0 -¢ -I. f3.c
cc -o prog fl.o f2.0 £3.0
+-.
+-SConstruct
+-fl.c
+-fl.o
| +-fl.c
| +-inc.h
+-f2.c
+-f2.0
| +-f2.c
| +-=inc.h
+-£f3.c
+-f3.0
| +-f3.c
| +-inc.h
+-inc.h
+-prog
+-fl.o
| +-fl.c
| +-inc.h
+-f2.0
| +=f2.c
| +-inc.h
+-f3.0
+-f3.c
+-inc.h

The tree will also be printed when the —-n (no execute) option is used, which allows you to examine the
dependency graph for a configuration without actually rebuilding anything in the tree.

The —--tree option only prints the dependency graph for the specified targets (or the default target(s) if
none are specified on the command line). So if you specify a target like £2 .o on the command line, the
—-—tree option will only print the dependency graph for that file:

% scons -Q --tree=all f2.o0
cc -o f2.0 -¢ -I. f2.c
+-f2.0

+-f2.c

+-inc.h

182

Chapter 28. Troubleshooting

This is, of course, useful for restricting the output from a very large build configuration to just a portion
in which you’re interested. Multiple targets are fine, in which case a tree will be printed for each
specified target:

o

% scons —-Q —-tree=all fl.o £f3.o0
cc -o fl.o -¢ -I. fl.c
+-fl.o

+-fl.c

+-inc.h
cc -o £f3.0 -¢ -I. f3.c
+-f3.0
+-£f3.c
+-inc.h

The status argument may be used to tell SCons to print status information about each file in the
dependency graph:

% scons -Q —--tree=status

cc -o fl.o -¢ -I. fl.c

cc -o f2.0 -¢c -I. f2.c

cc -o £f3.0 -¢ -I. f3.c

cc -o prog fl.o f2.0 £3.0
E = exists

)
I

exists in repository only

o
Il

implicit builder
B = explicit builder
S = side effect
P = precious
A = always build
C = current
N = no clean
H = no cache

1+-.

] +-SConstruct
] +-fl.c

] +-fl.o

] | +-fl.c

] | +-inc.h
] +-f2.c

] +-f2.0

] | +-f2.c

] | +-inc.h
] +-f3.c

] +-f3.0

] | +-f3.c

] | +-inc.h
]

L I e I = e e = =R = =
vy]
oo NeReNeNe e e NN N Ne e

+-inc.h

183

Chapter 28. Troubleshooting

[E B c 1 +-prog

[E B cC] +-fl.o

[E Cc 1 | +-fl.c
[E c] | +-inc.h
[E B c 1 +-f2.0

[E cC] | +-f2.c
[E c] | +-inc.h
[E B c 1 +-f3.0

[E cC] +-f3.c
[E c 1] +-inc.h

Note that -—tree=all, status is equivalent; the a1l is assumed if only status is present. As an
alternative to all, you can specify ——t ree=derived to have SCons only print derived targets in the
tree output, skipping source files (like . c and . h files):

)

% scons —Q —-tree=derived
cc -o fl.o -¢ -I. fl.c
cc -o f2.0 -¢ -I. f2.c
cc -o £f3.0 -¢ -I. f3.c
cc -o prog fl.o f2.0 £3.0
+-.
+-fl.o
+-f2.0
+-f3.0
+-prog

+-fl.o

+-f2.0

+-f3.0

You can use the status modifier with derived as well:

o

% scons —-Q —-tree=derived, status
cc -o fl.o -¢ -I. fl.c

cc -o f2.0 -¢c -I. f2.c

cc -o £f3.0 -¢ -I. f3.c

cc -o prog fl.o f2.0 £3.0

E = exists
R = exists in repository only
b = implicit builder
B = explicit builder
S = side effect
P = precious
A = always build
C = current
N = no clean
H = no cache
[E b]+-
[E B c] +-fl.o

184

Chapter 28. Troubleshooting

] +-f2.0
] +-f3.0
] +-prog
] +-fl.o
] +-f2.0
] +-f3.0

WEEEEE
W wwww
QO 00

Note that the order of the ——t ree= arguments doesn’t matter; ——tree=status, derived is completely
equivalent.

The default behavior of the ——t ree option is to repeat all of the dependencies each time the library
dependency (or any other dependency file) is encountered in the tree. If certain target files share other
target files, such as two programs that use the same library:

env = Environment (CPPPATH = [’.'],
LIBS = ['foo0o’],
LIBPATH = ['."])

env.Library ('’ foo’, ['fl.c’, "f2.c', "£3.c’])
env.Program(’progl.c’)
env.Program(’prog2.c’)

Then there can be a lot of repetition in the --t ree= output:

o)

% scons —Q —-tree=all

cc -o fl.o -¢ -I. fl.c

cc -o f2.0 -¢ -I. f2.c

cc -o £f3.0 -¢ -I. £f3.c

ar rc libfoo.a fl.o f2.0 £f3.0
ranlib libfoo.a

cc -o progl.o -c -I. progl.c
cc -o progl progl.o -L. -1foo
cc -0 prog2.o0 -c -I. prog2.c
cc -o prog2 prog2.o -L. -1foo
+-.

+-SConstruct

+-fl.c

+-fl.o

| +-fl.c

| +-inc.h

+-f2.c

+-f2.0

| +-f2.c

| +-inc.h

+-f3.c

+-£3.0

| +-£f3.c

| +-inc.h

+-inc.h

185

Chapter 28. Troubleshooting

+-1libfoo.a
+-fl.o

progl

+

| +-progl.c
| +-inc.h

+-1libfoo.a
+-fl.o

| +-fl.c

| +-inc.h
+-f2.0

| +-f2.c

| +-inc.h
+-£f3.0

+-f3.c

+-inc.h

progl.o
+-progl.c
+-inc.h
prog2
+-prog2.o
| +-prog2.c
| +-inc.h
+-1libfoo.a
+-fl.o
| +-fl.c
| +-inc.h
+-f2.0
| +-f2.c
| +-inc.h
+-f3.0
+-£f3.c
| +-inc.h

\

\

\

\

\

\

\

\

\
+7
\

\

\

\

\

\

\

\

\

\

\

\

\
+-progl.c
+_
\

\
+—
\

\

\

\

\

\

\

\

\

\

\

\

+-prog2.c

+-prog2.o
+-prog2.c
+-inc.h

In a large configuration with many internal libraries and include files, this can very quickly lead to huge
output trees. To help make this more manageable, a prune modifier may be added to the option list, in
which case SCons will print the name of a target that has already been visited during the tree-printing in

186

Chapter 28. Troubleshooting

[square brackets] as an indication that the dependencies of the target file may be found by looking
farther up the tree:

%

cc
cc
cc

ar

ranlib libfoo.a

cc
cc
cc
cc

scons —-Q —--tree=prune

-o fl.o -c -I.
-o f2.0 -c -I.
-o £f3.0 -c -I.

fl.c
f2.c
f3.c

rc libfoo.a fl.o f2.0 f3.0

-0 progl.o —-c¢ -I. progl.c

-0 progl progl.o -L. -1lfoo

-0 prog2.o0 —-c¢ —-I. prog2.c

-0 prog2 prog2.o -L. -1foo

+-.

+-SConstruct

+-fl.c

+-fl.o

| +-fl.c

| +-inc.h

+-f2.c

+-f2.0

| +-f2.c

| +-inc.h

+-£f3.c

+-£f3.0

| +-f3.c

| +-inc.h

+—inc.h

+-1libfoo.a

| +-[f1l.0]

| +-[f2.0]
+-[f£3.0]

progl

-progl.o
+-progl.
+-inc.h

rogl.c
progl.o]
prog2
-prog2.o

+
\
\

+

p
(

+-prog2.

+-inc.h

rog2.c

\
+7
\
\
\
\
+_
+_
+_
\
\
\
\
+_
+-[prog2.o]

+
\
\
+
P
(

[libfoo.a]

[libfoo.a]

Like the status keyword, the prune argument by itself is equivalent to —~-tree=all, prune

187

Chapter 28. Troubleshooting

28.4. How is SCons Constructing the Command Lines It

Executes? the --debug=presub Option

Sometimes it’s useful to look at the pre-substitution string that SCons uses to generate the command

lines it executes. This can be done with the —~—debug=presub option:

o

% scons —-Q —-debug=presub
Building prog.o with action:

$CC —o STARGET -c S$CFLAGS S$CCFLAGS $_CCOMCOM $SOURCES

cc —o prog.o —c —I.

Building prog with action:
$SSMART_LINKCOM

cCC -0 Prog prog.o

prog.c

28.5. Where is SCons Searching for Libraries? the

——debug=findlibs Option

To get some insight into what library names SCons is searching for, and in which directories it is
searching, Use the -——debug=findlibs option. Given the following input sConstruct file:

Environment (LIBPATH =
LIBS=[' foo’,

["1libsl’, ’1libs2’])
"bar’])

env =
env.Program(’prog.c’,

And the libraries 1ibfoo.a and 1ibbar.a in 1ibs1 and 1ibs2, respectively, use of the

—--debug=findlibs option yields:

% scons —-Q —-—-debug=findlibs

findlibs: looking for ’libfoo.a’ in ’'libsl’
findlibs: FOUND ’libfoo.a’ in ’1libsl’
findlibs: looking for ’libfoo.so’ in "libsl’
findlibs: looking for ’libfoo.so’ in ’'libs2’
findlibs: looking for ’libbar.a’ in ’libsl’
findlibs: looking for ’libbar.a’ in ’'libs2’
findlibs: FOUND ’libbar.a’ in ’1libs2’
findlibs: looking for ’libbar.so’ in ’libsl’
findlibs: looking for ’libbar.so’ in ’libs2’

cc -0 prog
cc -0 prog

.0 —C prog.c
prog.o —-Llibsl -Llibs2 -1foo -lbar

188

Chapter 28. Troubleshooting

28.6. Where is SCons Blowing Up? the
——debug=stacktrace Option

In general, SCons tries to keep its error messages short and informative. That means we usually try to
avoid showing the stack traces that are familiar to experienced Python programmers, since they usually
contain much more information than is useful to most people.

For example, the following SConstruct file:

Program (’'prog.c’)

Generates the following error if the prog. c file does not exist:

% scons -Q
scons: *x%x [prog.o] Source ‘prog.c’ not found, needed by target ‘prog.o’.

In this case, the error is pretty obvious. But if it weren’t, and you wanted to try to get more information
about the error, the -—debug=stacktrace option would show you exactly where in the SCons source
code the problem occurs:

% scons —-Q —--debug=stacktrace
scons: *%% [prog.o] Source ‘prog.c’ not found, needed by target ‘prog.o’.
scons: internal stack trace:
File "bootstrap/src/engine/SCons/Job.py", line 199, in start
task.prepare ()
File "bootstrap/src/engine/SCons/Script/Main.py", line 168, in prepare
return SCons.Taskmaster.OutOfDateTask.prepare(self)
File "bootstrap/src/engine/SCons/Taskmaster.py", line 189, in prepare
executor.prepare ()
File "bootstrap/src/engine/SCons/Executor.py", line 392, in prepare
raise SCons.Errors.StopError(msg % (s, self.batches[0].targets[0]))

Of course, if you do need to dive into the SCons source code, we’d like to know if, or how, the error
messages or troubleshooting options could have been improved to avoid that. Not everyone has the
necessary time or Python skill to dive into the source code, and we’d like to improve SCons for those
people as well...

28.7. How is SCons Making Its Decisions? the
——taskmastertrace Option

The internal SCons subsystem that handles walking the dependency graph and controls the

189

Chapter 28. Troubleshooting

decision-making about what to rebuild is the Taskmaster. SCons supports a ——taskmastertrace
option that tells the Taskmaster to print information about the children (dependencies) of the various
Nodes on its walk down the graph, which specific dependent Nodes are being evaluated, and in what

order.

The ——taskmastertrace option takes as an argument the name of a file in which to put the trace
output, with - (a single hyphen) indicating that the trace messages should be printed to the standard

output:

env =

Environment (CPPPATH = [’

11

env.Program(’'prog.c’)

% scons —-Q —--taskmastertrace=- prog

Taskmaster:
Taskmaster:
Taskmaster:
Taskmaster:
Taskmaster:
Taskmaster:
Taskmaster:
Taskmaster:
Taskmaster:
Taskmaster:
Taskmaster:

Task.make_ready_current () :
Task.prepare() :
Task.executed_with_callbacks () :
Task.postprocess () :
Task.postprocess () :
Task.postprocess () :

Taskmaster:
Taskmaster:
Taskmaster:

Task.make_ready_current () :
Task.prepare () :
Task.executed_with_callbacks () :
Task.postprocess () :
Task.postprocess () :
Task.postprocess () :

Taskmaster:
Taskmaster:
Taskmaster:
Taskmaster:
Taskmaster:

Task.make_ready_current () :

Looking for a node to evaluate

Considering node <no_state 0 "prog’> and its children:
<no_state 0 "prog.o’>
adjusted ref count: <pending 1 "prog’>, child ’"prog.o’
Considering node <no_state 0 "prog.o’> and its children:
<no_state 0 "prog.c’ >
<no_state 0 inc.h'>
adjusted ref count: <pending 1 "prog.o’>, child ’'prog.c’
adjusted ref count: <pending 2 "prog.o’>, child ’"inc.h’
Considering node <no_state 0 "prog.c’> and its children:

Evaluating <pending 0 "prog.c’>

node <pending 0 "prog.c’>
"prog.c’>
node <up_to_date 0

node <up_to_date 0

"prog.c’>

node <up_to_date 0 "prog.c’>

removing <up_to_date 0 "prog.c’>

adjusted parent ref count <pending 1 "prog.o’ >

Looking for a node to evaluate
Considering node <no_state 0 "inc.h’> and its children:

Evaluating <pending 0 "inc.h’>

node <pending 0 "inc.h’>

node <up_to_date 0 "inc.h'’>

node <up_to_date 0 "inc.h’>

node <up_to_date 0 "inc.h'’>
removing <up_to_date 0 "inc.h’>
adjusted parent ref count <pending 0 "prog.o’ >

Looking for a node to evaluate
Considering node <pending 0
<up_to_date 0
<up_to_date 0
Evaluating <pending 0

"prog.o’> and its children:
'prog.c’ >

"inc.h’>

"prog.o’ >

node <pending 0 "prog.o’ >

190

Chapter 28. Troubleshooting

Task.prepare () : node <executing O "prog.o’ >

Task.execute () : node <executing 0 "prog.o’ >

cc -o prog.o -c —-I. prog.c

Task.executed_with_callbacks () : node <executing 0 "prog.o’ >
Task.postprocess () : node <executed 0 "prog.o’ >
Task.postprocess () : removing <executed 0 "prog.o’ >
Task.postprocess (): adjusted parent ref count <pending 0 "prog’ >

Taskmaster: Looking for a node to evaluate

Taskmaster: Considering node <pending 0 "prog’> and its children:
Taskmaster: <executed 0 'prog.o’ >

Taskmaster: Evaluating <pending 0 "prog’ >

Task.make_ready_current () : node <pending 0 "prog’ >

Task.prepare() : node <executing O "prog’ >

Task.execute() : node <executing 0 "prog’ >

ccC -0 pProg prog.o

Task.executed_with_callbacks () : node <executing O "prog’>
Task.postprocess () : node <executed 0 "prog’ >

Taskmaster: Looking for a node to evaluate
Taskmaster: No candidate anymore.

The --taskmastertrace option doesn’t provide information about the actual calculations involved in
deciding if a file is up-to-date, but it does show all of the dependencies it knows about for each Node, and
the order in which those dependencies are evaluated. This can be useful as an alternate way to determine
whether or not your SCons configuration, or the implicit dependency scan, has actually identified all the
correct dependencies you want it to.

28.8. Watch SCons prepare targets for building: the
——debug=prepare Option
Sometimes SCons doesn’t build the target you want and it’s difficult to figure out why. You can use the

—--debug=prepare option to see all the targets SCons is considering, whether they are already
up-to-date or not. The message is printed before SCons decides whether to build the target.

28.9. Why is a file disappearing? the --debug=duplicate
Option
When using the Duplicate option to create variant dirs, sometimes you may find files not getting
copied to where you expect (or not at all), or files mysteriously disappearing. These are usually because

of a misconfiguration of some kind in the SConstruct/SConscript, but they can be tricky to debug. The
--debug=duplicate option shows each time a variant file is unlinked and relinked from its source (or

191

Chapter 28. Troubleshooting
copied, depending on settings), and also shows a message for removing "stale" variant-dir files that no

longer have a corresponding source file. It also prints a line for each target that’s removed just before
building, since that can also be mistaken for the same thing.

192

Appendix A. Construction Variables

This appendix contains descriptions of all of the construction variables that are potentially available "out
of the box" in this version of SCons. Whether or not setting a construction variable in a construction
environment will actually have an effect depends on whether any of the Tools and/or Builders that use
the variable have been included in the construction environment.

In this appendix, we have appended the initial $ (dollar sign) to the beginning of each variable name
when it appears in the text, but left off the dollar sign in the left-hand column where the name appears for
each entry.

AR

The static library archiver.

ARCHITECTURE

Specifies the system architecture for which the package is being built. The default is the system
architecture of the machine on which SCons is running. This is used to fill in the Architecture:
field in an Ipkg control file, and as part of the name of a generated RPM file.

ARCOM

The command line used to generate a static library from object files.

ARCOMSTR

The string displayed when an object file is generated from an assembly-language source file. If this
is not set, then SARCOM (the command line) is displayed.

env = Environment (ARCOMSTR = "Archiving $TARGET")

ARFLAGS

General options passed to the static library archiver.

AS

The assembler.

ASCOM

The command line used to generate an object file from an assembly-language source file.

ASCOMSTR

The string displayed when an object file is generated from an assembly-language source file. If this
is not set, then $ASCOM (the command line) is displayed.

env = Environment (ASCOMSTR = "Assembling S$TARGET")

ASFLAGS

General options passed to the assembler.

193

Appendix A. Construction Variables

ASPPCOM

The command line used to assemble an assembly-language source file into an object file after first
running the file through the C preprocessor. Any options specified in the SASFLAGS and
$CPPFLAGS construction variables are included on this command line.

ASPPCOMSTR

The string displayed when an object file is generated from an assembly-language source file after
first running the file through the C preprocessor. If this is not set, then SASPPCOM (the command
line) is displayed.

env = Environment (ASPPCOMSTR = "Assembling S$TARGET")

ASPPFLAGS

General options when an assembling an assembly-language source file into an object file after first
running the file through the C preprocessor. The default is to use the value of SASFLAGS.

BIBTEX

The bibliography generator for the TeX formatter and typesetter and the LaTeX structured formatter
and typesetter.

BIBTEXCOM

The command line used to call the bibliography generator for the TeX formatter and typesetter and
the LaTeX structured formatter and typesetter.

BIBTEXCOMSTR

The string displayed when generating a bibliography for TeX or LaTeX. If this is not set, then
$BIBTEXCOM (the command line) is displayed.

env = Environment (BIBTEXCOMSTR = "Generating bibliography $TARGET")

BIBTEXFLAGS

General options passed to the bibliography generator for the TeX formatter and typesetter and the
LaTeX structured formatter and typesetter.

BITKEEPER

The BitKeeper executable.

BITKEEPERCOM

The command line for fetching source files using BitKeeper.

BITKEEPERCOMSTR

The string displayed when fetching a source file using BitKeeper. If this is not set, then
$BITKEEPERCOM (the command line) is displayed.

BITKEEPERGET
The command ($BITKEEPER) and subcommand for fetching source files using BitKeeper.

194

Appendix A. Construction Variables

BITKEEPERGETFLAGS

Options that are passed to the BitKeeper get subcommand.

BUILDERS

A dictionary mapping the names of the builders available through this environment to underlying
Builder objects. Builders named Alias, CFile, CXXFile, DVI, Library, Object, PDF, PostScript, and
Program are available by default. If you initialize this variable when an Environment is created:

env = Environment (BUILDERS = {’/NewBuilder’ : foo})

the default Builders will no longer be available. To use a new Builder object in addition to the
default Builders, add your new Builder object like this:

env = Environment ()
env.Append (BUILDERS = {’NewBuilder’ : foo})

or this:

env = Environment ()
env [/ BUILDERS] [/ NewBuilder’] = foo

CC
The C compiler.

CCCOM

The command line used to compile a C source file to a (static) object file. Any options specified in
the $CFLAGS, $CCFLAGS and $CPPFLAGS construction variables are included on this command
line.

CCCOMSTR

The string displayed when a C source file is compiled to a (static) object file. If this is not set, then
$CCCOM (the command line) is displayed.

env = Environment (CCCOMSTR = "Compiling static object S$TARGET")

CCFLAGS

General options that are passed to the C and C++ compilers.

CCPCHFLAGS

Options added to the compiler command line to support building with precompiled headers. The
default value expands expands to the appropriate Microsoft Visual C++ command-line options
when the $PCH construction variable is set.

CCPDBFLAGS

Options added to the compiler command line to support storing debugging information in a
Microsoft Visual C++ PDB file. The default value expands expands to appropriate Microsoft Visual
C++ command-line options when the $PDB construction variable is set.

195

Appendix A. Construction Variables

The Visual C++ compiler option that SCons uses by default to generate PDB information is /2 7.
This works correctly with parallel (-3) builds because it embeds the debug information in the
intermediate object files, as opposed to sharing a single PDB file between multiple object files. This
is also the only way to get debug information embedded into a static library. Using the /z1i instead
may yield improved link-time performance, although parallel builds will no longer work.

You can generate PDB files with the /z1i switch by overriding the default SCCPDBFLAGS variable
as follows:

env [/ CCPDBFLAGS’] = ['${(PDB and "/Zi /Fd%s" % File(PDB)) or ""}']

An alternative would be to use the /zi to put the debugging information in a separate .pdb file for
each object file by overriding the SCCPDBFLAGS variable as follows:

env [’ CCPDBFLAGS’] = '/zi /FA${TARGET} .pdb’

CCVERSION

The version number of the C compiler. This may or may not be set, depending on the specific C
compiler being used.

CFILESUFFIX

The suffix for C source files. This is used by the internal CFile builder when generating C files from
Lex (.I) or YACC (.y) input files. The default suffix, of course, is . c (lower case). On
case-insensitive systems (like Windows), SCons also treats . C (upper case) files as C files.

CFLAGS

General options that are passed to the C compiler (C only; not C++).

CHANGE_SPECFILE

A hook for modifying the file that controls the packaging build (the . spec for RPM, the control
for Ipkg, the . wxs for MSI). If set, the function will be called after the SCons template for the file
has been written. XXX

CHANGED_SOURCES

A reserved variable name that may not be set or used in a construction environment. (See "Variable
Substitution," below.)

CHANGED_TARGETS

A reserved variable name that may not be set or used in a construction environment. (See "Variable
Substitution," below.)

CHANGELOG

The name of a file containing the change log text to be included in the package. This is included as
the $changelog section of the RPM . spec file.

196

Appendix A. Construction Variables

_concat

A function used to produce variables like $_CPPINCFLAGS. It takes four or five arguments: a
prefix to concatenate onto each element, a list of elements, a suffix to concatenate onto each
element, an environment for variable interpolation, and an optional function that will be called to
transform the list before concatenation.

env[’_CPPINCFLAGS’] = '$(${_concat (INCPREFIX, CPPPATH, INCSUFFIX, _ _env__, RDirs)} $)’,

CONFIGUREDIR

The name of the directory in which Configure context test files are written. The default is
.sconf_temp in the top-level directory containing the SConstruct file.

CONFIGURELOG

The name of the Configure context log file. The default is config. log in the top-level directory
containing the SConstruct file.

_CPPDEFFLAGS

An automatically-generated construction variable containing the C preprocessor command-line
options to define values. The value of $_CPPDEFFLAGS is created by appending
$CPPDEFPREFIX and $CPPDEFSUFFIX to the beginning and end of each definition in
$CPPDEFINES.

CPPDEFINES

A platform independent specification of C preprocessor definitions. The definitions will be added to
command lines through the automatically-generated $_CPPDEFFLAGS construction variable (see
above), which is constructed according to the type of value of SCPPDEFINES:

If SCPPDEFINES is a string, the values of the $CPPDEFPREFIX and $CPPDEFSUFFIX
construction variables will be added to the beginning and end.

Will add -Dxyz to POSIX compiler command lines,
and /Dxyz to Microsoft Visual C++ command lines.
env = Environment (CPPDEFINES='xyz’)

If $CPPDEFINES is a list, the values of the $CPPDEFPREFIX and $CPPDEFSUFFIX construction
variables will be appended to the beginning and end of each element in the list. If any element is a
list or tuple, then the first item is the name being defined and the second item is its value:

Will add -DB=2 -DA to POSIX compiler command lines,
and /DB=2 /DA to Microsoft Visual C++ command lines.
env = Environment (CPPDEFINES=[('B’, 2), '"A’])

If SCPPDEFINES is a dictionary, the values of the SCPPDEFPREFIX and $CPPDEFSUFFIX
construction variables will be appended to the beginning and end of each item from the dictionary.
The key of each dictionary item is a name being defined to the dictionary item’s corresponding
value; if the value is None, then the name is defined without an explicit value. Note that the
resulting flags are sorted by keyword to ensure that the order of the options on the command line is
consistent each time scons is run.

197

Appendix A. Construction Variables

Will add -DA -DB=2 to POSIX compiler command lines,
and /DA /DB=2 to Microsoft Visual C++ command lines.
env = Environment (CPPDEFINES={’B’:2, ’'A’ :None})

CPPDEFPREFIX

The prefix used to specify preprocessor definitions on the C compiler command line. This will be
appended to the beginning of each definition in the $CPPDEFINES construction variable when the
$_CPPDEFFLAGS variable is automatically generated.

CPPDEFSUFFIX

The suffix used to specify preprocessor definitions on the C compiler command line. This will be
appended to the end of each definition in the $CPPDEFINES construction variable when the
$_CPPDEFFLAGS variable is automatically generated.

CPPFLAGS

User-specified C preprocessor options. These will be included in any command that uses the C
preprocessor, including not just compilation of C and C++ source files via the SCCCOM,
$SHCCCOM, $CXXCOM and $SHCXXCOM command lines, but also the SFORTRANPPCOM,
$SHFORTRANPPCOM, $F77PPCOM and $SHF77PPCOM command lines used to compile a
Fortran source file, and the $ASPPCOM command line used to assemble an assembly language
source file, after first running each file through the C preprocessor. Note that this variable does not
contain -I (or similar) include search path options that scons generates automatically from
$CPPPATH. See $_CPPINCFLAGS, below, for the variable that expands to those options.

_CPPINCFLAGS

An automatically-generated construction variable containing the C preprocessor command-line
options for specifying directories to be searched for include files. The value of $_CPPINCFLAGS is
created by appending $SINCPREFIX and $INCSUFFIX to the beginning and end of each directory
in $CPPPATH.

CPPPATH

The list of directories that the C preprocessor will search for include directories. The C/C++
implicit dependency scanner will search these directories for include files. Don’t explicitly put
include directory arguments in CCFLAGS or CXXFLAGS because the result will be non-portable
and the directories will not be searched by the dependency scanner. Note: directory names in
CPPPATH will be looked-up relative to the SConscript directory when they are used in a command.
To force scons to look-up a directory relative to the root of the source tree use #:

env = Environment (CPPPATH='#/include’)

The directory look-up can also be forced using the Dir() function:

include = Dir(’include’)
env = Environment (CPPPATH=include)

The directory list will be added to command lines through the automatically-generated
$_CPPINCFLAGS construction variable, which is constructed by appending the values of the
$INCPREFIX and $INCSUFFIX construction variables to the beginning and end of each directory

198

Appendix A. Construction Variables

in $CPPPATH. Any command lines you define that need the CPPPATH directory list should include
$_CPPINCFLAGS:

env = Environment (CCCOM="my_compiler $_CPPINCFLAGS -c -o S$TARGET $SOURCE")

CPPSUFFIXES

The list of suffixes of files that will be scanned for C preprocessor implicit dependencies (#include
lines). The default list is:

[".c", ".C", ".cxx", ll_cppu’ "ocH+", ".cc",
".h", ".H", ".hxx", ".hpp", " . hh",

'l.F", "'fpp"’ ".FPP",

".om", ".mm",

".S", ".spp", ".SPP"]

CVS
The CVS executable.

CVSCOFLAGS

Options that are passed to the CVS checkout subcommand.

CVSCOM

The command line used to fetch source files from a CVS repository.

CVSCOMSTR

The string displayed when fetching a source file from a CVS repository. If this is not set, then
$CVSCOM (the command line) is displayed.

CVSFLAGS

General options that are passed to CVS. By default, this is set to -d SCVSREPOSITORY to specify
from where the files must be fetched.

CVSREPOSITORY
The path to the CVS repository. This is referenced in the default §CVSFLAGS value.

CXX

The C++ compiler.

CXXCOM

The command line used to compile a C++ source file to an object file. Any options specified in the
$CXXFLAGS and $CPPFLAGS construction variables are included on this command line.

CXXCOMSTR

The string displayed when a C++ source file is compiled to a (static) object file. If this is not set,
then $CXXCOM (the command line) is displayed.

env = Environment (CXXCOMSTR = "Compiling static object $TARGET")

199

Appendix A. Construction Variables

CXXFILESUFFIX

The suffix for C++ source files. This is used by the internal CXXFile builder when generating C++
files from Lex (.11) or YACC (.yy) input files. The default suffix is . cc. SCons also treats files with
the suffixes .cpp, .cxx, .c++, and .C++ as C++ files, and files with .mm suffixes as Objective C++
files. On case-sensitive systems (Linux, UNIX, and other POSIX-alikes), SCons also treats .C
(upper case) files as C++ files.

CXXFLAGS

General options that are passed to the C++ compiler. By default, this includes the value of
$CCFLAGS, so that setting $CCFLAGS affects both C and C++ compilation. If you want to add
C++-specific flags, you must set or override the value of $CXXFLAGS.

CXXVERSION

The version number of the C++ compiler. This may or may not be set, depending on the specific
C++ compiler being used.

DESCRIPTION

A long description of the project being packaged. This is included in the relevant section of the file
that controls the packaging build.

DESCRIPTION_lang

A language-specific long description for the specified 1ang. This is used to populate a
$description -1 section of an RPM . spec file.

Dir

A function that converts a string into a Dir instance relative to the target being built.
Dirs

A function that converts a list of strings into a list of Dir instances relative to the target being built.
DSUFFIXES

The list of suffixes of files that will be scanned for imported D package files. The default list is:
[r.d"]
DVIPDF

The TeX DVI file to PDF file converter.

DVIPDFCOM

The command line used to convert TeX DVI files into a PDF file.

DVIPDFCOMSTR

The string displayed when a TeX DVI file is converted into a PDF file. If this is not set, then
$DVIPDFCOM (the command line) is displayed.

200

Appendix A. Construction Variables

DVIPDFFLAGS
General options passed to the TeX DVI file to PDF file converter.

DVIPS
The TeX DVI file to PostScript converter.

DVIPSFLAGS

General options passed to the TeX DVI file to PostScript converter.

ENV

A dictionary of environment variables to use when invoking commands. When $ENV is used in a
command all list values will be joined using the path separator and any other non-string values will
simply be coerced to a string. Note that, by default, scons does not propagate the environment in
force when you execute scons to the commands used to build target files. This is so that builds will
be guaranteed repeatable regardless of the environment variables set at the time scons is invoked.

If you want to propagate your environment variables to the commands executed to build target files,
you must do so explicitly:

import os
env = Environment (ENV = os.environ)

Note that you can choose only to propagate certain environment variables. A common example is
the system PATH environment variable, so that scons uses the same utilities as the invoking shell
(or other process):

import os
env = Environment (ENV = {’PATH’ : os.environ[’PATH’]})

ESCAPE

A function that will be called to escape shell special characters in command lines. The function
should take one argument: the command line string to escape; and should return the escaped
command line.

F77

The Fortran 77 compiler. You should normally set the SFORTRAN variable, which specifies the
default Fortran compiler for all Fortran versions. You only need to set $F77 if you need to use a
specific compiler or compiler version for Fortran 77 files.

F77COM

The command line used to compile a Fortran 77 source file to an object file. You only need to set
$F77COM if you need to use a specific command line for Fortran 77 files. You should normally set
the SFORTRANCOM variable, which specifies the default command line for all Fortran versions.

F77COMSTR

The string displayed when a Fortran 77 source file is compiled to an object file. If this is not set,
then $F77COM or SFORTRANCOM (the command line) is displayed.

201

Appendix A. Construction Variables

F77FILESUFFIXES
The list of file extensions for which the F77 dialect will be used. By default, this is [*.f77’]

F77FLAGS

General user-specified options that are passed to the Fortran 77 compiler. Note that this variable
does not contain - I (or similar) include search path options that scons generates automatically from
$F77PATH. See $_F77INCFLAGS below, for the variable that expands to those options. You only
need to set SF77FLAGS if you need to define specific user options for Fortran 77 files. You should
normally set the SFORTRANFLAGS variable, which specifies the user-specified options passed to
the default Fortran compiler for all Fortran versions.

_F77INCFLAGS

An automatically-generated construction variable containing the Fortran 77 compiler command-line
options for specifying directories to be searched for include files. The value of $_F77INCFLAGS is
created by appending SINCPREFIX and $INCSUFFIX to the beginning and end of each directory
in $F77PATH.

F77PATH

The list of directories that the Fortran 77 compiler will search for include directories. The implicit
dependency scanner will search these directories for include files. Don’t explicitly put include
directory arguments in $F77FLAGS because the result will be non-portable and the directories will
not be searched by the dependency scanner. Note: directory names in $F77PATH will be looked-up
relative to the SConscript directory when they are used in a command. To force scons to look-up a
directory relative to the root of the source tree use #: You only need to set $F77PATH if you need to
define a specific include path for Fortran 77 files. You should normally set the SFORTRANPATH
variable, which specifies the include path for the default Fortran compiler for all Fortran versions.

env = Environment (F77PATH=’'#/include’)

The directory look-up can also be forced using the Dir() function:

include = Dir (’include’)
env = Environment (F77PATH=include)

The directory list will be added to command lines through the automatically-generated
$_F77INCFLAGS construction variable, which is constructed by appending the values of the
$INCPREFIX and $INCSUFFIX construction variables to the beginning and end of each directory
in $F77PATH. Any command lines you define that need the F77PATH directory list should include
$_F77INCFLAGS:

env = Environment (F77COM="my_compiler $_F77INCFLAGS -c -o S$TARGET $SOURCE")

F77PPCOM

The command line used to compile a Fortran 77 source file to an object file after first running the
file through the C preprocessor. Any options specified in the $F77FLAGS and $SCPPFLAGS
construction variables are included on this command line. You only need to set $F77PPCOM if you
need to use a specific C-preprocessor command line for Fortran 77 files. You should normally set

202

Appendix A. Construction Variables

the SFORTRANPPCOM variable, which specifies the default C-preprocessor command line for all
Fortran versions.

F77PPCOMSTR
The string displayed when a Fortran 77 source file is compiled to an object file after first running the
file through the C preprocessor. If this is not set, then $F77PPCOM or SFORTRANPPCOM (the
command line) is displayed.

F77PPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for F77 dialect will be
used. By default, this is empty

Fo0

The Fortran 90 compiler. You should normally set the SFORTRAN variable, which specifies the
default Fortran compiler for all Fortran versions. You only need to set $F90 if you need to use a
specific compiler or compiler version for Fortran 90 files.

FO0COM

The command line used to compile a Fortran 90 source file to an object file. You only need to set
$F90COM if you need to use a specific command line for Fortran 90 files. You should normally set
the SFORTRANCOM variable, which specifies the default command line for all Fortran versions.

FO90COMSTR
The string displayed when a Fortran 90 source file is compiled to an object file. If this is not set,
then $F90COM or SFORTRANCOM (the command line) is displayed.

FOOFILESUFFIXES
The list of file extensions for which the F90 dialect will be used. By default, this is [*.f90’]

FOOFLAGS

General user-specified options that are passed to the Fortran 90 compiler. Note that this variable
does not contain - I (or similar) include search path options that scons generates automatically from
$F90PATH. See $_FI90INCFLAGS below, for the variable that expands to those options. You only
need to set SFOOFLAGS if you need to define specific user options for Fortran 90 files. You should
normally set the SFORTRANFLAGS variable, which specifies the user-specified options passed to
the default Fortran compiler for all Fortran versions.

_F90INCFLAGS

An automatically-generated construction variable containing the Fortran 90 compiler command-line
options for specifying directories to be searched for include files. The value of $_FIOINCFLAGS is
created by appending $SINCPREFIX and $INCSUFFIX to the beginning and end of each directory
in $F9OPATH.

FOOPATH

The list of directories that the Fortran 90 compiler will search for include directories. The implicit
dependency scanner will search these directories for include files. Don’t explicitly put include

203

Appendix A. Construction Variables

directory arguments in $FOOFLAGS because the result will be non-portable and the directories will
not be searched by the dependency scanner. Note: directory names in $FOOPATH will be looked-up
relative to the SConscript directory when they are used in a command. To force scons to look-up a
directory relative to the root of the source tree use #: You only need to set $FOOPATH if you need to
define a specific include path for Fortran 90 files. You should normally set the SFORTRANPATH
variable, which specifies the include path for the default Fortran compiler for all Fortran versions.

env = Environment (FO90PATH='#/include’)

The directory look-up can also be forced using the Dir() function:

include = Dir (’include’)
env = Environment (F90PATH=include)

The directory list will be added to command lines through the automatically-generated
$_F90INCFLAGS construction variable, which is constructed by appending the values of the
$INCPREFIX and $INCSUFFIX construction variables to the beginning and end of each directory
in $F9OPATH. Any command lines you define that need the FOOPATH directory list should include
$_F90INCFLAGS:

env = Environment (F90COM="my_compiler $_F90INCFLAGS -c -o S$TARGET $SOURCE")

FOOPPCOM

The command line used to compile a Fortran 90 source file to an object file after first running the
file through the C preprocessor. Any options specified in the $SFOOFLAGS and $SCPPFLAGS
construction variables are included on this command line. You only need to set SFOOPPCOM if you
need to use a specific C-preprocessor command line for Fortran 90 files. You should normally set
the SFORTRANPPCOM variable, which specifies the default C-preprocessor command line for all
Fortran versions.

FOOPPCOMSTR
The string displayed when a Fortran 90 source file is compiled after first running the file through the
C preprocessor. If this is not set, then $FOOPPCOM or SFORTRANPPCOM (the command line) is
displayed.

FOOPPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for FO0 dialect will be
used. By default, this is empty

F95

The Fortran 95 compiler. You should normally set the SFORTRAN variable, which specifies the
default Fortran compiler for all Fortran versions. You only need to set $F95 if you need to use a
specific compiler or compiler version for Fortran 95 files.

FO5COM

The command line used to compile a Fortran 95 source file to an object file. You only need to set
$F95COM if you need to use a specific command line for Fortran 95 files. You should normally set
the SFORTRANCOM variable, which specifies the default command line for all Fortran versions.

204

Appendix A. Construction Variables

FOSCOMSTR

The string displayed when a Fortran 95 source file is compiled to an object file. If this is not set,
then $F95COM or SFORTRANCOM (the command line) is displayed.

FOSFILESUFFIXES
The list of file extensions for which the F95 dialect will be used. By default, this is [*.f95°]

FOSFLAGS

General user-specified options that are passed to the Fortran 95 compiler. Note that this variable
does not contain - I (or similar) include search path options that scons generates automatically from
$F95PATH. See $_F95INCFLAGS below, for the variable that expands to those options. You only
need to set $FOSFLAGS if you need to define specific user options for Fortran 95 files. You should
normally set the SFORTRANFLAGS variable, which specifies the user-specified options passed to
the default Fortran compiler for all Fortran versions.

_F95INCFLAGS

An automatically-generated construction variable containing the Fortran 95 compiler command-line
options for specifying directories to be searched for include files. The value of $_F9SINCFLAGS is
created by appending $SINCPREFIX and $INCSUFFIX to the beginning and end of each directory
in $F9SPATH.

FOSPATH

The list of directories that the Fortran 95 compiler will search for include directories. The implicit
dependency scanner will search these directories for include files. Don’t explicitly put include
directory arguments in $F9SFLAGS because the result will be non-portable and the directories will
not be searched by the dependency scanner. Note: directory names in $F95PATH will be looked-up
relative to the SConscript directory when they are used in a command. To force scons to look-up a
directory relative to the root of the source tree use #: You only need to set $F95PATH if you need to
define a specific include path for Fortran 95 files. You should normally set the SFORTRANPATH
variable, which specifies the include path for the default Fortran compiler for all Fortran versions.

env = Environment (FO95PATH='#/include’)

The directory look-up can also be forced using the Dir() function:

include = Dir(’include’)
env = Environment (F95PATH=include)

The directory list will be added to command lines through the automatically-generated
$_F95INCFLAGS construction variable, which is constructed by appending the values of the
$INCPREFIX and $INCSUFFIX construction variables to the beginning and end of each directory
in $F9SPATH. Any command lines you define that need the FOSPATH directory list should include
$_F95INCFLAGS:

env = Environment (F95COM="my_compiler $_F95INCFLAGS -c -o $TARGET $SOURCE")

205

Appendix A. Construction Variables

F95PPCOM

The command line used to compile a Fortran 95 source file to an object file after first running the
file through the C preprocessor. Any options specified in the $FOSFLAGS and $CPPFLAGS
construction variables are included on this command line. You only need to set $F9SPPCOM if you
need to use a specific C-preprocessor command line for Fortran 95 files. You should normally set
the SFORTRANPPCOM variable, which specifies the default C-preprocessor command line for all
Fortran versions.

F95PPCOMSTR
The string displayed when a Fortran 95 source file is compiled to an object file after first running the
file through the C preprocessor. If this is not set, then $F9SPPCOM or SFORTRANPPCOM (the
command line) is displayed.

FOSPPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for F95 dialect will be
used. By default, this is empty

File

A function that converts a string into a File instance relative to the target being built.

FORTRAN

The default Fortran compiler for all versions of Fortran.

FORTRANCOM
The command line used to compile a Fortran source file to an object file. By default, any options
specified in the SFORTRANFLAGS, $CPPFLAGS, $_CPPDEFFLAGS, $_FORTRANMODFLAG,
and $_FORTRANINCFLAGS construction variables are included on this command line.
FORTRANCOMSTR
The string displayed when a Fortran source file is compiled to an object file. If this is not set, then
$FORTRANCOM (the command line) is displayed.
FORTRANFILESUFFIXES
The list of file extensions for which the FORTRAN dialect will be used. By default, this is [’.f7,
> for’, ’.ftn’]
FORTRANFLAGS

General user-specified options that are passed to the Fortran compiler. Note that this variable does
not contain -I (or similar) include or module search path options that scons generates automatically
from $FORTRANPATH. See $_ FORTRANINCFLAGS and $_FORTRANMODEFLAG, below, for
the variables that expand those options.

_FORTRANINCFLAGS

An automatically-generated construction variable containing the Fortran compiler command-line
options for specifying directories to be searched for include files and module files. The value of

206

Appendix A. Construction Variables

$_FORTRANINCFLAGS is created by prepending/appending $INCPREFIX and $INCSUFFIX to
the beginning and end of each directory in SFORTRANPATH.

FORTRANMODDIR

Directory location where the Fortran compiler should place any module files it generates. This
variable is empty, by default. Some Fortran compilers will internally append this directory in the
search path for module files, as well.

FORTRANMODDIRPREFIX

The prefix used to specify a module directory on the Fortran compiler command line. This will be
appended to the beginning of the directory in the SFORTRANMODDIR construction variables
when the $_FORTRANMODFLAG variables is automatically generated.

FORTRANMODDIRSUFFIX

The suffix used to specify a module directory on the Fortran compiler command line. This will be
appended to the beginning of the directory in the SFORTRANMODDIR construction variables
when the $_ FORTRANMODFLAG variables is automatically generated.

_FORTRANMODFLAG

An automatically-generated construction variable containing the Fortran compiler command-line
option for specifying the directory location where the Fortran compiler should place any module
files that happen to get generated during compilation. The value of $_ FORTRANMODFLAG is
created by prepending/appending SFORTRANMODDIRPREFIX and
$FORTRANMODDIRSUFFIX to the beginning and end of the directory in SFORTRANMODDIR.

FORTRANMODPREFIX

The module file prefix used by the Fortran compiler. SCons assumes that the Fortran compiler
follows the quasi-standard naming convention for module files of module_name.mod. As a result,
this variable is left empty, by default. For situations in which the compiler does not necessarily
follow the normal convention, the user may use this variable. Its value will be appended to every
module file name as scons attempts to resolve dependencies.

FORTRANMODSUFFIX

The module file suffix used by the Fortran compiler. SCons assumes that the Fortran compiler
follows the quasi-standard naming convention for module files of module_name.mod. As a result,
this variable is set to ".mod", by default. For situations in which the compiler does not necessarily
follow the normal convention, the user may use this variable. Its value will be appended to every
module file name as scons attempts to resolve dependencies.

FORTRANPATH

The list of directories that the Fortran compiler will search for include files and (for some
compilers) module files. The Fortran implicit dependency scanner will search these directories for
include files (but not module files since they are autogenerated and, as such, may not actually exist
at the time the scan takes place). Don’t explicitly put include directory arguments in
FORTRANFLAGS because the result will be non-portable and the directories will not be searched
by the dependency scanner. Note: directory names in FORTRANPATH will be looked-up relative to

207

Appendix A. Construction Variables

the SConscript directory when they are used in a command. To force scons to look-up a directory
relative to the root of the source tree use #:

env = Environment (FORTRANPATH='#/include’)

The directory look-up can also be forced using the Dir() function:

include = Dir (’include’)
env = Environment (FORTRANPATH=include)

The directory list will be added to command lines through the automatically-generated
$_FORTRANINCFLAGS construction variable, which is constructed by appending the values of
the SINCPREFIX and $INCSUFFIX construction variables to the beginning and end of each
directory in SFORTRANPATH. Any command lines you define that need the FORTRANPATH
directory list should include $_FORTRANINCFLAGS:

env = Environment (FORTRANCOM="my_compiler $_FORTRANINCFLAGS -c -o $TARGET $SOURCE")

FORTRANPPCOM

The command line used to compile a Fortran source file to an object file after first running the file
through the C preprocessor. By default, any options specified in the SFORTRANFLAGS,
$CPPFLAGS, $_CPPDEFFLAGS, $_FORTRANMODFLAG, and $_FORTRANINCFLAGS
construction variables are included on this command line.

FORTRANPPCOMSTR
The string displayed when a Fortran source file is compiled to an object file after first running the
file through the C preprocessor. If this is not set, then SFORTRANPPCOM (the command line) is
displayed.

FORTRANPPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for FORTRAN dialect will
be used. By default, this is [*.fpp’, *.FPP’]

FORTRANSUFFIXES

The list of suffixes of files that will be scanned for Fortran implicit dependencies INCLUDE lines
and USE statements). The default list is:

["'f", "‘F", "'for", "‘FOR", ".ftn", "'FTN", "‘fpp", ".FPP",
".£77", ".F77", ".£90", ".F90", ".£95", ".F95"]
FRAMEWORKPATH

On Mac OS X with gcc, a list containing the paths to search for frameworks. Used by the compiler
to find framework-style includes like #include <Fmwk/Header.h>. Used by the linker to find
user-specified frameworks when linking (see SFRAMEWORKS). For example:

env.AppendUnique (FRAMEWORKPATH=' #myframeworkdir’)

will add

. —Fmyframeworkdir

208

Appendix A. Construction Variables

to the compiler and linker command lines.

_FRAMEWORKPATH

On Mac OS X with gcc, an automatically-generated construction variable containing the linker
command-line options corresponding to SFRAMEWORKPATH.

FRAMEWORKPATHPREFIX
On Mac OS X with gcc, the prefix to be used for the FRAMEWORKPATH entries. (see
$FRAMEWORKPATH). The default value is -F.

FRAMEWORKPREFIX
On Mac OS X with gec, the prefix to be used for linking in frameworks (see SFRAMEWORKS).
The default value is -framework.

_FRAMEWORKS

On Mac OS X with gcc, an automatically-generated construction variable containing the linker
command-line options for linking with FRAMEWORKS.

FRAMEWORKS

On Mac OS X with gcc, a list of the framework names to be linked into a program or shared library
or bundle. The default value is the empty list. For example:

env.AppendUnique (FRAMEWORKS=Split (' System Cocoa SystemConfiguration’))

FRAMEWORKSFLAGS

On Mac OS X with gcc, general user-supplied frameworks options to be added at the end of a
command line building a loadable module. (This has been largely superseded by the
$FRAMEWORKPATH, $FRAMEWORKPATHPREFIX, SFRAMEWORKPREFIX and
$FRAMEWORKS variables described above.)

GS

The Ghostscript program used to convert PostScript to PDF files.

GSCOM

The Ghostscript command line used to convert PostScript to PDF files.

GSCOMSTR

The string displayed when Ghostscript is used to convert a PostScript file to a PDF file. If this is not
set, then $GSCOM (the command line) is displayed.

GSFLAGS

General options passed to the Ghostscript program when converting PostScript to PDF files.

209

Appendix A. Construction Variables

HOST_ARCH

Sets the host architecture for Visual Studio compiler. If not set, default to the detected host
architecture: note that this may depend on the python you are using. This variable must be passed as
an argument to the Environment() constructor; setting it later has no effect.

Valid values are the same as for STARGET ARCH.

This is currently only used on Windows, but in the future it will be used on other OSes as well.

HOST_OS

The name of the host operating system used to create the Environment. If a platform is specified
when creating the Environment, then that Platform’s logic will handle setting this value. This value
is immutable, and should not be changed by the user after the Environment is initialized. Currently
only set for Win32.

IDLSUFFIXES

The list of suffixes of files that will be scanned for IDL implicit dependencies (#include or import
lines). The default list is:

[.idl", " IDL"]

IMPLICIT_COMMAND_DEPENDENCIES

Controls whether or not SCons will add implicit dependencies for the commands executed to build
targets.

By default, SCons will add to each target an implicit dependency on the command represented by
the first argument on any command line it executes. The specific file for the dependency is found by
searching the PATH variable in the ENV environment used to execute the command.

If the construction variable $SIMPLICIT _COMMAND_DEPENDENCIES is set to a false value
(None, False, 0, etc.), then the implicit dependency will not be added to the targets built with that
construction environment.

env = Environment (IMPLICIT_COMMAND_DEPENDENCIES = 0)

INCPREFIX

The prefix used to specify an include directory on the C compiler command line. This will be
appended to the beginning of each directory in the §CPPPATH and $FORTRANPATH construction
variables when the $_CPPINCFLAGS and $_FORTRANINCFLAGS variables are automatically
generated.

INCSUFFIX

The suffix used to specify an include directory on the C compiler command line. This will be
appended to the end of each directory in the SCPPPATH and $FORTRANPATH construction

210

Appendix A. Construction Variables

variables when the $_CPPINCFLAGS and $_FORTRANINCFLAGS variables are automatically
generated.

INSTALL

A function to be called to install a file into a destination file name. The default function copies the
file into the destination (and sets the destination file’s mode and permission bits to match the source
file’s). The function takes the following arguments:

def install (dest, source, env):

dest is the path name of the destination file. source is the path name of the source file. env is the
construction environment (a dictionary of construction values) in force for this file installation.

INSTALLSTR
The string displayed when a file is installed into a destination file name. The default is:

Install file: "$SOURCE" as "STARGET"

INTEL_C_COMPILER_VERSION

Set by the "intelc" Tool to the major version number of the Intel C compiler selected for use.

JAR

The Java archive tool.

JARCHDIR

The directory to which the Java archive tool should change (using the —C option).

JARCOM

The command line used to call the Java archive tool.

JARCOMSTR

The string displayed when the Java archive tool is called If this is not set, then $JARCOM (the
command line) is displayed.

env = Environment (JARCOMSTR = "JARchiving $SOURCES into $TARGET")

JARFLAGS

General options passed to the Java archive tool. By default this is set to c £ to create the necessary
jar file.

JARSUFFIX

The suffix for Java archives: . jar by default.

JAVABOOTCLASSPATH

Specifies the list of directories that will be added to the javac command line via the
-bootclasspath option. The individual directory names will be separated by the operating
system’s path separate character (: on UNIX/Linux/POSIX, ; on Windows).

211

Appendix A. Construction Variables

JAVAC

The Java compiler.

JAVACCOM

The command line used to compile a directory tree containing Java source files to corresponding
Java class files. Any options specified in the $JAVACFLAGS construction variable are included on
this command line.

JAVACCOMSTR

The string displayed when compiling a directory tree of Java source files to corresponding Java
class files. If this is not set, then $JAVACCOM (the command line) is displayed.

env = Environment (JAVACCOMSTR = "Compiling class files $TARGETS from $SOURCES")

JAVACFLAGS

General options that are passed to the Java compiler.

JAVACLASSDIR

The directory in which Java class files may be found. This is stripped from the beginning of any
Java .class file names supplied to the JavaH builder.

JAVACLASSPATH

Specifies the list of directories that will be searched for Java . class file. The directories in this list
will be added to the javac and javah command lines via the —classpath option. The individual
directory names will be separated by the operating system’s path separate character (: on
UNIX/Linux/POSIX, ; on Windows).

Note that this currently just adds the specified directory via the -classpath option. SCons does
not currently search the $JAVACLASSPATH directories for dependency . class files.

JAVACLASSSUFFIX

The suffix for Java class files; . class by default.

JAVAH

The Java generator for C header and stub files.

JAVAHCOM

The command line used to generate C header and stub files from Java classes. Any options specified
in the $JAVAHFLAGS construction variable are included on this command line.

JAVAHCOMSTR

The string displayed when C header and stub files are generated from Java classes. If this is not set,
then $JAVAHCOM (the command line) is displayed.

env = Environment (JAVAHCOMSTR = "Generating header/stub file(s) S$TARGETS from $SOURCES",

212

Appendix A. Construction Variables

JAVAHFLAGS

General options passed to the C header and stub file generator for Java classes.

JAVASOURCEPATH

Specifies the list of directories that will be searched for input . java file. The directories in this list
will be added to the javac command line via the —~sourcepath option. The individual directory
names will be separated by the operating system’s path separate character (: on
UNIX/Linux/POSIX, ; on Windows).

Note that this currently just adds the specified directory via the ~sourcepath option. SCons does
not currently search the $JAVASOURCEPATH directories for dependency . java files.

JAVASUFFIX
The suffix for Java files; . java by default.

JAVAVERSION

Specifies the Java version being used by the Java builder. This is not currently used to select one
version of the Java compiler vs. another. Instead, you should set this to specify the version of Java
supported by your javac compiler. The defaultis 1. 4.

This is sometimes necessary because Java 1.5 changed the file names that are created for nested
anonymous inner classes, which can cause a mismatch with the files that SCons expects will be
generated by the javac compiler. Setting $JAVAVERSION to 1.5 (or 1. 6, as appropriate) can make
SCons realize that a Java 1.5 or 1.6 build is actually up to date.

LATEX

The LaTeX structured formatter and typesetter.

LATEXCOM

The command line used to call the LaTeX structured formatter and typesetter.

LATEXCOMSTR

The string displayed when calling the LaTeX structured formatter and typesetter. If this is not set,
then SLATEXCOM (the command line) is displayed.

env = Environment (LATEXCOMSTR = "Building $TARGET from LaTeX input S$SOURCES")

LATEXFLAGS

General options passed to the LaTeX structured formatter and typesetter.

LATEXRETRIES

The maximum number of times that LaTeX will be re-run if the . 1og generated by the
$LATEXCOM command indicates that there are undefined references. The default is to try to
resolve undefined references by re-running LaTeX up to three times.

213

Appendix A. Construction Variables

LATEXSUFFIXES

The list of suffixes of files that will be scanned for LaTeX implicit dependencies (\include or
\import files). The default list is:

[".tex", ".1ltx", ".latex"]

LDMODULE
The linker for building loadable modules. By default, this is the same as $SHLINK.

LDMODULECOM

The command line for building loadable modules. On Mac OS X, this uses the SLDMODULE,
$LDMODULEFLAGS and $FRAMEWORKSFLAGS variables. On other systems, this is the same
as $SHLINK.

LDMODULECOMSTR

The string displayed when building loadable modules. If this is not set, then SLDMODULECOM
(the command line) is displayed.

LDMODULEFLAGS

General user options passed to the linker for building loadable modules.

LDMODULEPREFIX

The prefix used for loadable module file names. On Mac OS X, this is null; on other systems, this is
the same as $SHLIBPREFIX.

LDMODULESUFFIX

The suffix used for loadable module file names. On Mac OS X, this is null; on other systems, this is
the same as $SHLIBSUFFIX.

LEX

The lexical analyzer generator.

LEXCOM

The command line used to call the lexical analyzer generator to generate a source file.

LEXCOMSTR

The string displayed when generating a source file using the lexical analyzer generator. If this is not
set, then SLEXCOM (the command line) is displayed.

env = Environment (LEXCOMSTR = "Lex’ing $TARGET from S$SOURCES")

LEXFLAGS

General options passed to the lexical analyzer generator.

_LIBDIRFLAGS

An automatically-generated construction variable containing the linker command-line options for
specifying directories to be searched for library. The value of $_LIBDIRFLAGS is created by

214

Appendix A. Construction Variables

appending $LIBDIRPREFIX and $LIBDIRSUFFIX to the beginning and end of each directory in
$LIBPATH.

LIBDIRPREFIX

The prefix used to specify a library directory on the linker command line. This will be appended to
the beginning of each directory in the SLIBPATH construction variable when the $_LIBDIRFLAGS
variable is automatically generated.

LIBDIRSUFFIX

The suffix used to specify a library directory on the linker command line. This will be appended to
the end of each directory in the $LIBPATH construction variable when the $_LIBDIRFLAGS
variable is automatically generated.

LIBEMITTER
TODO

_LIBFLAGS

An automatically-generated construction variable containing the linker command-line options for
specifying libraries to be linked with the resulting target. The value of $_LIBFLAGS is created by
appending $LIBLINKPREFIX and $LIBLINKSUFFIX to the beginning and end of each filename
in $LIBS.

LIBLINKPREFIX

The prefix used to specify a library to link on the linker command line. This will be appended to the
beginning of each library in the $LIBS construction variable when the $_LIBFLAGS variable is
automatically generated.

LIBLINKSUFFIX

The suffix used to specify a library to link on the linker command line. This will be appended to the
end of each library in the $LIBS construction variable when the $_LIBFLAGS variable is
automatically generated.

LIBPATH

The list of directories that will be searched for libraries. The implicit dependency scanner will
search these directories for include files. Don’t explicitly put include directory arguments in
$LINKFLAGS or $SHLINKFLAGS because the result will be non-portable and the directories will
not be searched by the dependency scanner. Note: directory names in LIBPATH will be looked-up
relative to the SConscript directory when they are used in a command. To force scons to look-up a
directory relative to the root of the source tree use #:

env = Environment (LIBPATH='#/1libs’)

The directory look-up can also be forced using the Dir() function:

libs = Dir(’1libs’)
env = Environment (LIBPATH=1ibs)

215

Appendix A. Construction Variables

The directory list will be added to command lines through the automatically-generated
$_LIBDIRFLAGS construction variable, which is constructed by appending the values of the
$LIBDIRPREFIX and $LIBDIRSUFFIX construction variables to the beginning and end of each
directory in SLIBPATH. Any command lines you define that need the LIBPATH directory list
should include $_LIBDIRFLAGS:

env = Environment (LINKCOM="my_linker $_LIBDIRFLAGS $_LIBFLAGS -o S$TARGET $SOURCE")

LIBPREFIX

The prefix used for (static) library file names. A default value is set for each platform (posix, win32,
0s2, etc.), but the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect
the names of the libraries they create.

LIBPREFIXES

A list of all legal prefixes for library file names. When searching for library dependencies, SCons
will look for files with these prefixes, the base library name, and suffixes in the SLIBSUFFIXES list.

LIBS

A list of one or more libraries that will be linked with any executable programs created by this
environment.

The library list will be added to command lines through the automatically-generated $_LIBFLAGS
construction variable, which is constructed by appending the values of the SLIBLINKPREFIX and
$LIBLINKSUFFIX construction variables to the beginning and end of each filename in $LIBS. Any
command lines you define that need the LIBS library list should include $_LIBFLAGS:

env = Environment (LINKCOM="my_linker $_LIBDIRFLAGS $_LIBFLAGS -o S$TARGET $SOURCE")

If you add a File object to the $LIBS list, the name of that file will be added to $_LIBFLAGS, and
thus the link line, as is, without SLIBLINKPREFIX or $LIBLINKSUFFIX. For example:

env.Append (LIBS=File (' /tmp/mylib.so’))

In all cases, scons will add dependencies from the executable program to all the libraries in this list.

LIBSUFFIX

The suffix used for (static) library file names. A default value is set for each platform (posix, win32,
0s2, etc.), but the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect
the names of the libraries they create.

LIBSUFFIXES

A list of all legal suffixes for library file names. When searching for library dependencies, SCons
will look for files with prefixes, in the SLIBPREFIXES list, the base library name, and these
suffixes.

216

Appendix A. Construction Variables

LICENSE

The abbreviated name of the license under which this project is released (gpl, Ipgl, bsd etc.). See
http://www.opensource.org/licenses/alphabetical for a list of license names.

LINESEPARATOR

The separator used by the Substfile and Text £ile builders. This value is used between sources
when constructing the target. It defaults to the current system line separator.

LINGUAS_FILE

The SLINGUAS_FILE defines file(s) containing list of additional linguas to be processed by
POInit, POUpdate or MOFiles builders. It also affects Translate builder. If the variable
contains a string, it defines name of the list file. The SLINGUAS_FILE may be a list of file names
as well. If SLINGUAS_FILE is set to True (or non-zero numeric value), the list will be read from
default file named LINGUAS.

LINK
The linker.

LINKCOM

The command line used to link object files into an executable.

LINKCOMSTR

The string displayed when object files are linked into an executable. If this is not set, then
$LINKCOM (the command line) is displayed.

env = Environment (LINKCOMSTR = "Linking $TARGET")

LINKFLAGS

General user options passed to the linker. Note that this variable should not contain -1 (or similar)
options for linking with the libraries listed in $LIBS, nor -L (or similar) library search path options
that scons generates automatically from $SLIBPATH. See $_LIBFLAGS above, for the variable that
expands to library-link options, and $_LIBDIRFLAGS above, for the variable that expands to
library search path options.

M4

The M4 macro preprocessor.

M4COM

The command line used to pass files through the M4 macro preprocessor.

M4COMSTR

The string displayed when a file is passed through the M4 macro preprocessor. If this is not set, then
$M4COM (the command line) is displayed.

MAFLAGS

General options passed to the M4 macro preprocessor.

217

Appendix A. Construction Variables

MAKEINDEX

The makeindex generator for the TeX formatter and typesetter and the LaTeX structured formatter
and typesetter.

MAKEINDEXCOM

The command line used to call the makeindex generator for the TeX formatter and typesetter and
the LaTeX structured formatter and typesetter.

MAKEINDEXCOMSTR

The string displayed when calling the makeindex generator for the TeX formatter and typesetter and
the LaTeX structured formatter and typesetter. If this is not set, then SMAKEINDEXCOM (the
command line) is displayed.

MAKEINDEXFLAGS

General options passed to the makeindex generator for the TeX formatter and typesetter and the
LaTeX structured formatter and typesetter.

MAXLINELENGTH

The maximum number of characters allowed on an external command line. On Win32 systems, link
lines longer than this many characters are linked via a temporary file name.

MIDL
The Microsoft IDL compiler.

MIDLCOM

The command line used to pass files to the Microsoft IDL compiler.

MIDLCOMSTR

The string displayed when the Microsoft IDL copmiler is called. If this is not set, then SMIDLCOM
(the command line) is displayed.

MIDLFLAGS

General options passed to the Microsoft IDL compiler.

MOSUFFIX

Suffix used for Mo files (default: 7 .mo’). See msgfmt tool and MOFiles builder.

MSGFMT

Absolute path to msgfmt(1) binary, found by Detect (). See msgfmt tool and MOFiles builder.

MSGFMTCOM

Complete command line to run msgfmt(1) program. See msgfmt tool and MOFiles builder.

MSGFMTCOMSTR

String to display when msgfmt(1) is invoked (default: 7, which means “print SMSGFMTCOM”).
See msgfmt tool and MOFiles builder.

218

Appendix A. Construction Variables

MSGFMTFLAGS

Additional flags to msgfmt(1). See msgfmt tool and MOFiles builder.

MSGINIT

Path to msginit(1) program (found via Detect ()). See msginit tool and POInit builder.

MSGINITCOM

Complete command line to run msginit(1) program. See msginit tool and POInit builder.

MSGINITCOMSTR

String to display when msginit(1) is invoked (default: ”, which means “print SMSGINITCOM”).
See msginit tool and POInit builder.

MSGINITFLAGS

List of additional flags to msginit(1) (default: []). See msginit tool and POInit builder.

_MSGINITLOCALE

Internal “macro”. Computes locale (language) name based on target filename (default:
' ${TARGET.filebase}’).

MSGMERGE

Absolute path to msgmerge(1) binary as found by Detect (). See msgmerge tool and POUpdate
builder.

MSGMERGECOM

Complete command line to run msgmerge(1) command. See msgmerge tool and POUpdate
builder.

MSGMERGECOMSTR

String to be displayed when msgmerge(1) is invoked (default: 7, which means “print
$MSGMERGECOM”). See msgmerge tool and POUpdate builder.

MSGMERGEFLAGS

Additional flags to msgmerge(1) command. See msgmerge tool and POUpdate builder.

MSSDK_DIR
The directory containing the Microsoft SDK (either Platform SDK or Windows SDK) to be used for
compilation.

MSSDK_VERSION
The version string of the Microsoft SDK (either Platform SDK or Windows SDK) to be used for
compilation. Supported versions include 6.1, 6.02, 6.0, 2003R2 and 2003R1.

MSVC_BATCH

When set to any true value, specifies that SCons should batch compilation of object files when
calling the Microsoft Visual C/C++ compiler. All compilations of source files from the same source

219

Appendix A. Construction Variables

directory that generate target files in a same output directory and were configured in SCons using
the same construction environment will be built in a single call to the compiler. Only source files
that have changed since their object files were built will be passed to each compiler invocation (via
the SCHANGED_SOURCES construction variable). Any compilations where the object (target) file
base name (minus the . ob7j) does not match the source file base name will be compiled separately.

MSVC_USE_SCRIPT

Use a batch script to set up Microsoft Visual Studio compiler

$MSVC_USE_SCRIPT overrides $SMSVC_VERSION and $TARGET_ARCH. If set to the name of
a Visual Studio .bat file (e.g. vevars.bat), SCons will run that bat file and extract the relevant
variables from the result (typically %INCLUDE%, %LIB%, and %PATH%). Setting
MSVC_USE_SCRIPT to None bypasses the Visual Studio autodetection entirely; use this if you are
running SCons in a Visual Studio cmd window and importing the shell’s environment variables.

MSVC_VERSION

Sets the preferred version of Microsoft Visual C/C++ to use.

If SMSVC_VERSION is not set, SCons will (by default) select the latest version of Visual C/C++
installed on your system. If the specified version isn’t installed, tool initialization will fail. This
variable must be passed as an argument to the Environment() constructor; setting it later has no
effect. Set it to an unexpected value (e.g. "XXX") to see the valid values on your system.

MSVS

When the Microsoft Visual Studio tools are initialized, they set up this dictionary with the following
keys:

VERSION: the version of MSVS being used (can be set via SMSVS_VERSION)

VERSIONS: the available versions of MSVS installed

VCINSTALLDIR: installed directory of Visual C++

VSINSTALLDIR: installed directory of Visual Studio

FRAMEWORKDIR: installed directory of the .NET framework

FRAMEWORKVERSIONS: list of installed versions of the .NET framework, sorted latest to oldest.

FRAMEWORKVERSION: latest installed version of the .NET framework

220

Appendix A. Construction Variables

FRAMEWORKSDKDIR: installed location of the .NET SDK.

PLATFORMSDKDIR: installed location of the Platform SDK.

PLATFORMSDK_MODULES: dictionary of installed Platform SDK modules, where the
dictionary keys are keywords for the various modules, and the values are 2-tuples where the first is
the release date, and the second is the version number.

If a value isn’t set, it wasn’t available in the registry.

MSVS_ARCH

Sets the architecture for which the generated project(s) should build.

The default value is x86. amd64 is also supported by SCons for some Visual Studio versions.
Trying to set SMSVS_ARCH to an architecture that’s not supported for a given Visual Studio
version will generate an error.

MSVS_PROJECT_GUID

The string placed in a generated Microsoft Visual Studio project file as the value of the
ProjectGUID attribute. There is no default value. If not defined, a new GUID is generated.

MSVS_SCC_AUX_PATH

The path name placed in a generated Microsoft Visual Studio project file as the value of the
SccAuxPath attribute if the MSVS_SCC_PROVIDER construction variable is also set. There is no
default value.

MSVS_SCC_CONNECTION_ROOT

The root path of projects in your SCC workspace, i.e the path under which all project and solution
files will be generated. It is used as a reference path from which the relative paths of the generated
Microsoft Visual Studio project and solution files are computed. The relative project file path is
placed as the value of the SccLocalPath attribute of the project file and as the values of the
SccProjectFilePathRelativizedFromConnection[i] (where [i] ranges from O to the
number of projects in the solution) attributes of the GlobalSection (SourceCodeControl)
section of the Microsoft Visual Studio solution file. Similarly the relative solution file path is placed
as the values of the SccLocalPath[i] (where [i] ranges from O to the number of projects in the
solution) attributes of the GlobalSection (SourceCodeControl) section of the Microsoft
Visual Studio solution file. This is used only if the MSVS_SCC_PROVIDER construction variable
is also set. The default value is the current working directory.

MSVS_SCC_PROJECT_NAME

The project name placed in a generated Microsoft Visual Studio project file as the value of the
SccProjectName attribute if the MSVS_SCC_PROVIDER construction variable is also set. In this
case the string is also placed in the SccProjectName0 attribute of the

221

Appendix A. Construction Variables

GlobalSection (SourceCodeControl) section of the Microsoft Visual Studio solution file.
There is no default value.
MSVS_SCC_PROVIDER

The string placed in a generated Microsoft Visual Studio project file as the value of the
SccProvider attribute. The string is also placed in the SccProvider0 attribute of the
GlobalSection (SourceCodeControl) section of the Microsoft Visual Studio solution file.
There is no default value.

MSVS_VERSION

Sets the preferred version of Microsoft Visual Studio to use.

If SMSVS_VERSION is not set, SCons will (by default) select the latest version of Visual Studio
installed on your system. So, if you have version 6 and version 7 (MSVS .NET) installed, it will
prefer version 7. You can override this by specifying the MSVS_VERSION variable in the
Environment initialization, setting it to the appropriate version (6.0’ or ’7.0’, for example). If the
specified version isn’t installed, tool initialization will fail.

This is obsolete: use SMSVC_VERSION instead. If $MSVS_VERSION is set and
$MSVC_VERSION is not, SMSVC_VERSION will be set automatically to $MSVS_VERSION. If
both are set to different values, scons will raise an error.

MSVSBUILDCOM

The build command line placed in a generated Microsoft Visual Studio project file. The default is to
have Visual Studio invoke SCons with any specified build targets.

MSVSCLEANCOM

The clean command line placed in a generated Microsoft Visual Studio project file. The default is to
have Visual Studio invoke SCons with the -c option to remove any specified targets.

MSVSENCODING

The encoding string placed in a generated Microsoft Visual Studio project file. The default is
encoding Windows-1252.

MSVSPROJECTCOM

The action used to generate Microsoft Visual Studio project files.

MSVSPROJECTSUFFIX

The suffix used for Microsoft Visual Studio project (DSP) files. The default value is . vcproj when
using Visual Studio version 7.x (NET) or later version, and . dsp when using earlier versions of
Visual Studio.

222

Appendix A. Construction Variables

MSVSREBUILDCOM

The rebuild command line placed in a generated Microsoft Visual Studio project file. The default is
to have Visual Studio invoke SCons with any specified rebuild targets.

MSVSSCONS

The SCons used in generated Microsoft Visual Studio project files. The default is the version of
SCons being used to generate the project file.

MSVSSCONSCOM

The default SCons command used in generated Microsoft Visual Studio project files.

MSVSSCONSCRIPT

The sconscript file (that is, SConstruct or SConscript file) that will be invoked by Visual Studio
project files (through the $MSVSSCONSCOM variable). The default is the same sconscript file that
contains the call to MSVSProject to build the project file.

MSVSSCONSFLAGS

The SCons flags used in generated Microsoft Visual Studio project files.

MSVSSOLUTIONCOM

The action used to generate Microsoft Visual Studio solution files.

MSVSSOLUTIONSUFFIX

The suffix used for Microsoft Visual Studio solution (DSW) files. The default value is . s1n when
using Visual Studio version 7.x (NET), and . dsw when using earlier versions of Visual Studio.

MT

The program used on Windows systems to embed manifests into DLLs and EXEs. See also
$WINDOWS_EMBED_MANIFEST.

MTEXECOM

The Windows command line used to embed manifests into executables. See also SMTSHLIBCOM.

MTFLAGS
Flags passed to the $MT manifest embedding program (Windows only).

MTSHLIBCOM

The Windows command line used to embed manifests into shared libraries (DLLs). See also
$MTEXECOM.

MWCW_VERSION

The version number of the MetroWerks CodeWarrior C compiler to be used.

MWCW_VERSIONS

A list of installed versions of the MetroWerks CodeWarrior C compiler on this system.

223

Appendix A. Construction Variables

NAME
Specfies the name of the project to package.
no_import_lib

When set to non-zero, suppresses creation of a corresponding Windows static import lib by the
SharedLibrary builder when used with MinGW, Microsoft Visual Studio or Metrowerks. This
also suppresses creation of an export (.exp) file when using Microsoft Visual Studio.

OBJPREFIX

The prefix used for (static) object file names.

OBJSUFFIX

The suffix used for (static) object file names.

P4

The Perforce executable.

P4ACOM

The command line used to fetch source files from Perforce.

PACOMSTR

The string displayed when fetching a source file from Perforce. If this is not set, then $P4COM (the
command line) is displayed.

PAFLAGS

General options that are passed to Perforce.

PACKAGEROOT

Specifies the directory where all files in resulting archive will be placed if applicable. The default
value is "$NAME-$VERSION".

PACKAGETYPE

Selects the package type to build. Currently these are available:

* msi - Microsoft Installer * rpm - Redhat Package Manger * ipkg - Itsy Package Management
System * tarbz2 - compressed tar * targz - compressed tar * zip - zip file * src_tarbz2 - compressed
tar source * src_targz - compressed tar source * src_zip - zip file source

This may be overridden with the "package_type" command line option.

PACKAGEVERSION

The version of the package (not the underlying project). This is currently only used by the rpm
packager and should reflect changes in the packaging, not the underlying project code itself.

224

Appendix A. Construction Variables

PCH

The Microsoft Visual C++ precompiled header that will be used when compiling object files. This
variable is ignored by tools other than Microsoft Visual C++. When this variable is defined SCons
will add options to the compiler command line to cause it to use the precompiled header, and will
also set up the dependencies for the PCH file. Example:

env[’'PCH’] = ’'StdAfx.pch’

PCHCOM

The command line used by the PCH builder to generated a precompiled header.

PCHCOMSTR

The string displayed when generating a precompiled header. If this is not set, then SPCHCOM (the
command line) is displayed.

PCHPDBFLAGS

A construction variable that, when expanded, adds the /yD flag to the command line only if the
$PDB construction variable is set.

PCHSTOP

This variable specifies how much of a source file is precompiled. This variable is ignored by tools
other than Microsoft Visual C++, or when the PCH variable is not being used. When this variable is
define it must be a string that is the name of the header that is included at the end of the precompiled
portion of the source files, or the empty string if the "#pragma hrdstop" construct is being used:

env [’PCHSTOP’] = ’"StdAfx.h’

PDB

The Microsoft Visual C++ PDB file that will store debugging information for object files, shared
libraries, and programs. This variable is ignored by tools other than Microsoft Visual C++. When
this variable is defined SCons will add options to the compiler and linker command line to cause
them to generate external debugging information, and will also set up the dependencies for the PDB
file. Example:

env|[’PDB’] = "hello.pdb’

The Visual C++ compiler switch that SCons uses by default to generate PDB information is /Z7.
This works correctly with parallel (- 5) builds because it embeds the debug information in the
intermediate object files, as opposed to sharing a single PDB file between multiple object files. This
is also the only way to get debug information embedded into a static library. Using the /zi instead
may yield improved link-time performance, although parallel builds will no longer work. You can
generate PDB files with the /zi switch by overriding the default SCCPDBFLAGS variable; see the
entry for that variable for specific examples.

PDFCOM
A deprecated synonym for SDVIPDFCOM.

225

Appendix A. Construction Variables

PDFLATEX
The pdflatex utility.

PDFLATEXCOM

The command line used to call the pdflatex utility.

PDFLATEXCOMSTR

The string displayed when calling the pdflatex utility. If this is not set, then SPDFLATEXCOM (the
command line) is displayed.

env = Environment (PDFLATEX; COMSTR = "Building $TARGET from LaTeX input $SOURCES")

PDFLATEXFLAGS

General options passed to the pdflatex utility.

PDFPREFIX
The prefix used for PDF file names.

PDFSUFFIX
The suffix used for PDF file names.

PDFTEX
The pdftex utility.

PDFTEXCOM

The command line used to call the pdftex utility.

PDFTEXCOMSTR

The string displayed when calling the pdftex utility. If this is not set, then SPDFTEXCOM (the
command line) is displayed.

env = Environment (PDFTEXCOMSTR = "Building S$TARGET from TeX input $SOURCES")

PDFTEXFLAGS

General options passed to the pdftex utility.

PKGCHK

On Solaris systems, the package-checking program that will be used (along with SPKGINFO) to
look for installed versions of the Sun PRO C++ compiler. The default is /usr/sbin/pgkchk.

PKGINFO

On Solaris systems, the package information program that will be used (along with $PKGCHK) to
look for installed versions of the Sun PRO C++ compiler. The default is pkginfo.

PLATFORM

The name of the platform used to create the Environment. If no platform is specified when the
Environment is created, scons autodetects the platform.

226

Appendix A. Construction Variables

env = Environment (tools = [])
if env[’PLATFORM’] == ’cygwin’:
Tool ('mingw’) (env)
else:
Tool ("msvc’) (env)

POAUTOINIT
The $POAUTOINIT variable, if set to True (on non-zero numeric value), let the msginit tool to
automatically initialize missing PO files with msginit(1). This applies to both, POInit and
POUpdate builders (and others that use any of them).

POCREATE_ALIAS
Common alias for all po files created with POInit builder (default: ’ po-create’). See msginit
tool and POInit builder.

POSUFFIX

Suffix used for PO files (default: ’ .po’) See msginit tool and POInit builder.

POTDOMAIN

The SPOTDOMAIN defines default domain, used to generate POT filename as $POTDOMAIN. pot
when no pOT file name is provided by the user. This applies to POTUpdate, POInit and POUpdate
builders (and builders, that use them, e.g. Translate). Normally (if SPOTDOMALIN is not
defined), the builders use messages.pot as default POT file name.

POTSUFFIX

Suffix used for PO Template files (default: ’ .pot’). See xgettext tool and POTUpdate builder.

POTUPDATE_ALIAS
Name of the common phony target for all PO Templates created with POUpdate (default:
' pot—update’). See xgettext tool and POTUpdate builder.
POUPDATE_ALIAS
Common alias for all PO files being defined with POUpdate builder (default: " po-update’). See
msgmerge tool and POUpdate builder.
PRINT_CMD_LINE_FUNC

A Python function used to print the command lines as they are executed (assuming command
printing is not disabled by the —q or —s options or their equivalents). The function should take four
arguments: s, the command being executed (a string), target, the target being built (file node, list,
or string name(s)), source, the source(s) used (file node, list, or string name(s)), and env, the
environment being used.

The function must do the printing itself. The default implementation, used if this variable is not set
or is None, is:

def print_cmd_line (s, target, source, env):
sys.stdout.write(s + "\n")

227

Appendix A. Construction Variables

Here’s an example of a more interesting function:

def print_cmd_line (s, target, source, env):
sys.stdout.write ("Building %s —-> %s...\n" %
(" and ’.join([str(x) for x in source]),
’and ' .Jjoin([str(x) for x in target])))
env=Environment (PRINT_CMD_LINE_FUNC=print_cmd_line)
env.Program(’ foo’, ’"foo.c’)

This just prints "Building targetname from sourcename..." instead of the actual commands.
Such a function could also log the actual commands to a log file, for example.

PROGEMITTER
TODO

PROGPREFIX

The prefix used for executable file names.

PROGSUFFIX

The suffix used for executable file names.

PSCOM

The command line used to convert TeX DVI files into a PostScript file.

PSCOMSTR

The string displayed when a TeX DVI file is converted into a PostScript file. If this is not set, then
$PSCOM (the command line) is displayed.

PSPREFIX

The prefix used for PostScript file names.

PSSUFFIX

The prefix used for PostScript file names.

QT_AUTOSCAN

Turn off scanning for mocable files. Use the Moc Builder to explicitly specify files to run moc on.
QT_BINPATH

The path where the qt binaries are installed. The default value is *$QTDIR/bin’.

QT_CPPPATH

The path where the gt header files are installed. The default value is *$QTDIR/include’. Note: If you
set this variable to None, the tool won’t change the $CPPPATH construction variable.

QT_DEBUG

Prints lots of debugging information while scanning for moc files.

228

Appendix A. Construction Variables

QT_LIB

Default value is *qt’. You may want to set this to ’qt-mt’. Note: If you set this variable to None, the
tool won’t change the $LIBS variable.

QT_LIBPATH

The path where the qt libraries are installed. The default value is *$QTDIR/lib’. Note: If you set this
variable to None, the tool won’t change the $LIBPATH construction variable.

QT_MOC
Default value is *$QT_BINPATH/moc’.

QT_MOCCXXPREFIX

Default value is . Prefix for moc output files, when source is a cxx file.

QT_MOCCXXSUFFIX

Default value is *.moc’. Suffix for moc output files, when source is a cxx file.

QT_MOCFROMCXXCOM

Command to generate a moc file from a cpp file.

QT_MOCFROMCXXCOMSTR

The string displayed when generating a moc file from a cpp file. If this is not set, then
$QT_MOCFROMCXXCOM (the command line) is displayed.

QT_MOCFROMCXXFLAGS

Default value is ’-i’. These flags are passed to moc, when moccing a C++ file.

QT_MOCFROMHCOM

Command to generate a moc file from a header.

QT_MOCFROMHCOMSTR

The string displayed when generating a moc file from a cpp file. If this is not set, then
$QT_MOCFROMHCOM (the command line) is displayed.

QT_MOCFROMHFLAGS

Default value is . These flags are passed to moc, when moccing a header file.

QT_MOCHPREFIX

Default value is 'moc_’. Prefix for moc output files, when source is a header.

QT_MOCHSUFFIX
Default value is *$CXXFILESUFFIX’. Suffix for moc output files, when source is a header.

QT_UIC
Default value is *$QT_BINPATH/uic’.

229

Appendix A. Construction Variables

QT_UICCOM

Command to generate header files from .ui files.

QT_UICCOMSTR

The string displayed when generating header files from .ui files. If this is not set, then
$QT_UICCOM (the command line) is displayed.

QT_UICDECLFLAGS

Default value is ”. These flags are passed to uic, when creating a a h file from a .ui file.

QT_UICDECLPREFIX

Default value is . Prefix for uic generated header files.

QT_UICDECLSUFFIX

Default value is ’.h’. Suffix for uic generated header files.

QT_UICIMPLFLAGS

Default value is ”. These flags are passed to uic, when creating a cxx file from a .ui file.

QT_UICIMPLPREFIX

Default value is "uic_’. Prefix for uic generated implementation files.

QT_UICIMPLSUFFIX
Default value is *$CXXFILESUFFIX’. Suffix for uic generated implementation files.

QT_UISUFFIX

Default value is *.ui’. Suffix of designer input files.

QTDIR

The qt tool tries to take this from os.environ. It also initializes all QT_* construction variables listed
below. (Note that all paths are constructed with python’s os.path.join() method, but are listed here
with the ’/> separator for easier reading.) In addition, the construction environment variables
$CPPPATH, $LIBPATH and $LIBS may be modified and the variables SPROGEMITTER,
$SHLIBEMITTER and SLIBEMITTER are modified. Because the build-performance is affected
when using this tool, you have to explicitly specify it at Environment creation:

Environment (tools=["default’,’ qgt’])

The qt tool supports the following operations:

Automatic moc file generation from header files. You do not have to specify moc files explicitly, the
tool does it for you. However, there are a few preconditions to do so: Your header file must have the
same filebase as your implementation file and must stay in the same directory. It must have one of
the suffixes .h, .hpp, .H, .hxx, .hh. You can turn off automatic moc file generation by setting
QT_AUTOSCAN to 0. See also the corresponding Moc(); builder method.

230

Appendix A. Construction Variables

Automatic moc file generation from cxx files. As stated in the qt documentation, include the moc file
at the end of the cxx file. Note that you have to include the file, which is generated by the
transformation ${QT_MOCCXXPREFIX }<basename>${ QT_MOCCXXSUFFIX}, by default
<basename>.moc. A warning is generated after building the moc file, if you do not include the
correct file. If you are using VariantDir, you may need to specify duplicate=1. You can turn off
automatic moc file generation by setting QT_AUTOSCAN to 0. See also the corresponding Moc
builder method.

Automatic handling of .ui files. The implementation files generated from .ui files are handled much
the same as yacc or lex files. Each .ui file given as a source of Program, Library or SharedLibrary
will generate three files, the declaration file, the implementation file and a moc file. Because there
are also generated headers, you may need to specify duplicate=1 in calls to VariantDir. See also the
corresponding Uic builder method.

RANLIB

The archive indexer.

RANLIBCOM

The command line used to index a static library archive.

RANLIBCOMSTR

The string displayed when a static library archive is indexed. If this is not set, then SRANLIBCOM
(the command line) is displayed.

env = Environment (RANLIBCOMSTR = "Indexing S$TARGET")

RANLIBFLAGS

General options passed to the archive indexer.

RC

The resource compiler used to build a Microsoft Visual C++ resource file.

RCCOM

The command line used to build a Microsoft Visual C++ resource file.

RCCOMSTR

The string displayed when invoking the resource compiler to build a Microsoft Visual C++ resource
file. If this is not set, then SRCCOM (the command line) is displayed.

RCFLAGS
The flags passed to the resource compiler by the RES builder.

RCINCFLAGS

An automatically-generated construction variable containing the command-line options for
specifying directories to be searched by the resource compiler. The value of SRCINCFLAGS is

231

Appendix A. Construction Variables

created by appending $RCINCPREFIX and $SRCINCSUFFIX to the beginning and end of each
directory in SCPPPATH.

RCINCPREFIX

The prefix (flag) used to specify an include directory on the resource compiler command line. This
will be appended to the beginning of each directory in the SCPPPATH construction variable when
the SRCINCFLAGS variable is expanded.

RCINCSUFFIX

The suffix used to specify an include directory on the resource compiler command line. This will be
appended to the end of each directory in the SCPPPATH construction variable when the
$RCINCFLAGS variable is expanded.

RCS

The RCS executable. Note that this variable is not actually used for the command to fetch source
files from RCS; see the $RCS_CO construction variable, below.

RCS_CO

The RCS "checkout" executable, used to fetch source files from RCS.

RCS_COCOM

The command line used to fetch (checkout) source files from RCS.

RCS_COCOMSTR

The string displayed when fetching a source file from RCS. If this is not set, then SRCS_COCOM
(the command line) is displayed.

RCS_COFLAGS
Options that are passed to the SRCS_CO command.

RDirs

A function that converts a string into a list of Dir instances by searching the repositories.

REGSVR

The program used on Windows systems to register a newly-built DLL library whenever the
SharedLibrary builder is passed a keyword argument of register=1.

REGSVRCOM

The command line used on Windows systems to register a newly-built DLL library whenever the
SharedLibrary builder is passed a keyword argument of register=1.

REGSVRCOMSTR

The string displayed when registering a newly-built DLL file. If this is not set, then
$REGSVRCOM (the command line) is displayed.

232

Appendix A. Construction Variables

REGSVRFLAGS

Flags passed to the DLL registration program on Windows systems when a newly-built DLL library
is registered. By default, this includes the /s that prevents dialog boxes from popping up and
requiring user attention.

RMIC
The Java RMI stub compiler.

RMICCOM

The command line used to compile stub and skeleton class files from Java classes that contain RMI
implementations. Any options specified in the SRMICFLAGS construction variable are included on
this command line.

RMICCOMSTR

The string displayed when compiling stub and skeleton class files from Java classes that contain
RMI implementations. If this is not set, then SRMICCOM (the command line) is displayed.

env = Environment (RMICCOMSTR = "Generating stub/skeleton class files $TARGETS from $SOUI

RMICFLAGS

General options passed to the Java RMI stub compiler.

_RPATH

An automatically-generated construction variable containing the rpath flags to be used when linking
a program with shared libraries. The value of $_RPATH is created by appending SRPATHPREFIX
and SRPATHSUFFIX to the beginning and end of each directory in $RPATH.

RPATH

A list of paths to search for shared libraries when running programs. Currently only used in the
GNU (gnulink), IRIX (sgilink) and Sun (sunlink) linkers. Ignored on platforms and toolchains that
don’t support it. Note that the paths added to RPATH are not transformed by scons in any way: if
you want an absolute path, you must make it absolute yourself.

RPATHPREFIX

The prefix used to specify a directory to be searched for shared libraries when running programs.
This will be appended to the beginning of each directory in the SRPATH construction variable when
the $_RPATH variable is automatically generated.

RPATHSUFFIX

The suffix used to specify a directory to be searched for shared libraries when running programs.
This will be appended to the end of each directory in the SRPATH construction variable when the
$_RPATH variable is automatically generated.

RPCGEN
The RPC protocol compiler.

233

Appendix A. Construction Variables

RPCGENCLIENTFLAGS

Options passed to the RPC protocol compiler when generating client side stubs. These are in
addition to any flags specified in the SRPCGENFLAGS construction variable.

RPCGENFLAGS

General options passed to the RPC protocol compiler.

RPCGENHEADERFLAGS

Options passed to the RPC protocol compiler when generating a header file. These are in addition to
any flags specified in the SRPCGENFLAGS construction variable.

RPCGENSERVICEFLAGS

Options passed to the RPC protocol compiler when generating server side stubs. These are in
addition to any flags specified in the SRPCGENFLAGS construction variable.

RPCGENXDRFLAGS

Options passed to the RPC protocol compiler when generating XDR routines. These are in addition
to any flags specified in the SRPCGENFLAGS construction variable.

SCANNERS

A list of the available implicit dependency scanners. New file scanners may be added by appending
to this list, although the more flexible approach is to associate scanners with a specific Builder. See
the sections "Builder Objects" and "Scanner Objects," below, for more information.

SCCS
The SCCS executable.

SCCSCOM

The command line used to fetch source files from SCCS.

SCCSCOMSTR

The string displayed when fetching a source file from a CVS repository. If this is not set, then
$SCCSCOM (the command line) is displayed.

SCCSFLAGS

General options that are passed to SCCS.

SCCSGETFLAGS

Options that are passed specifically to the SCCS "get" subcommand. This can be set, for example,
to —e to check out editable files from SCCS.

SCONS_HOME

The (optional) path to the SCons library directory, initialized from the external environment. If set,
this is used to construct a shorter and more efficient search path in the $SMSVSSCONS command
line executed from Microsoft Visual Studio project files.

234

Appendix A. Construction Variables

SHCC

The C compiler used for generating shared-library objects.

SHCCCOM

The command line used to compile a C source file to a shared-library object file. Any options
specified in the $SSHCFLAGS, $SHCCFLAGS and $CPPFLAGS construction variables are
included on this command line.

SHCCCOMSTR

The string displayed when a C source file is compiled to a shared object file. If this is not set, then
$SHCCCOM (the command line) is displayed.

env = Environment (SHCCCOMSTR = "Compiling shared object $TARGET")

SHCCFLAGS

Options that are passed to the C and C++ compilers to generate shared-library objects.

SHCFLAGS

Options that are passed to the C compiler (only; not C++) to generate shared-library objects.

SHCXX

The C++ compiler used for generating shared-library objects.

SHCXXCOM

The command line used to compile a C++ source file to a shared-library object file. Any options
specified in the $SHCXXFLAGS and $CPPFLAGS construction variables are included on this
command line.

SHCXXCOMSTR

The string displayed when a C++ source file is compiled to a shared object file. If this is not set,
then $SSHCXXCOM (the command line) is displayed.

env = Environment (SHCXXCOMSTR = "Compiling shared object S$TARGET")

SHCXXFLAGS

Options that are passed to the C++ compiler to generate shared-library objects.

SHELL
A string naming the shell program that will be passed to the $SPAWN function. See the $SSPAWN
construction variable for more information.

SHF77

The Fortran 77 compiler used for generating shared-library objects. You should normally set the
$SHFORTRAN variable, which specifies the default Fortran compiler for all Fortran versions. You
only need to set $SSHF77 if you need to use a specific compiler or compiler version for Fortran 77
files.

235

Appendix A. Construction Variables

SHF77COM

The command line used to compile a Fortran 77 source file to a shared-library object file. You only
need to set $SHF77COM if you need to use a specific command line for Fortran 77 files. You
should normally set the $SSHFORTRANCOM variable, which specifies the default command line
for all Fortran versions.

SHF77COMSTR

The string displayed when a Fortran 77 source file is compiled to a shared-library object file. If this
is not set, then $SHF77COM or $SHFORTRANCOM (the command line) is displayed.

SHF77FLAGS

Options that are passed to the Fortran 77 compiler to generated shared-library objects. You only
need to set $SSHF77FLAGS if you need to define specific user options for Fortran 77 files. You
should normally set the $SHFORTRANFLAGS variable, which specifies the user-specified options
passed to the default Fortran compiler for all Fortran versions.

SHF77PPCOM

The command line used to compile a Fortran 77 source file to a shared-library object file after first
running the file through the C preprocessor. Any options specified in the $SHF77FLAGS and
$CPPFLAGS construction variables are included on this command line. You only need to set
$SHF77PPCOM if you need to use a specific C-preprocessor command line for Fortran 77 files.
You should normally set the $SHFORTRANPPCOM variable, which specifies the default
C-preprocessor command line for all Fortran versions.

SHF77PPCOMSTR

The string displayed when a Fortran 77 source file is compiled to a shared-library object file after
first running the file through the C preprocessor. If this is not set, then $SHF77PPCOM or
$SHFORTRANPPCOM (the command line) is displayed.

SHF90

The Fortran 90 compiler used for generating shared-library objects. You should normally set the
$SHFORTRAN variable, which specifies the default Fortran compiler for all Fortran versions. You
only need to set $SHF90 if you need to use a specific compiler or compiler version for Fortran 90
files.

SHF90COM

The command line used to compile a Fortran 90 source file to a shared-library object file. You only
need to set SSHF90COM if you need to use a specific command line for Fortran 90 files. You
should normally set the $SSHFORTRANCOM variable, which specifies the default command line
for all Fortran versions.

SHF90COMSTR

The string displayed when a Fortran 90 source file is compiled to a shared-library object file. If this
is not set, then $SHF90COM or $SHFORTRANCOM (the command line) is displayed.

236

Appendix A. Construction Variables

SHF90FLAGS

Options that are passed to the Fortran 90 compiler to generated shared-library objects. You only
need to set SSHF9OFLAGS if you need to define specific user options for Fortran 90 files. You
should normally set the $SHFORTRANFLAGS variable, which specifies the user-specified options
passed to the default Fortran compiler for all Fortran versions.

SHF90PPCOM

The command line used to compile a Fortran 90 source file to a shared-library object file after first
running the file through the C preprocessor. Any options specified in the $SSHF90FLAGS and
$CPPFLAGS construction variables are included on this command line. You only need to set
$SHF90PPCOM if you need to use a specific C-preprocessor command line for Fortran 90 files.
You should normally set the SSHFORTRANPPCOM variable, which specifies the default
C-preprocessor command line for all Fortran versions.

SHF90PPCOMSTR

The string displayed when a Fortran 90 source file is compiled to a shared-library object file after
first running the file through the C preprocessor. If this is not set, then $SHF90PPCOM or
$SHFORTRANPPCOM (the command line) is displayed.

SHF95

The Fortran 95 compiler used for generating shared-library objects. You should normally set the
$SHFORTRAN variable, which specifies the default Fortran compiler for all Fortran versions. You
only need to set $SSHF95 if you need to use a specific compiler or compiler version for Fortran 95
files.

SHF95COM

The command line used to compile a Fortran 95 source file to a shared-library object file. You only
need to set $SSHF95COM if you need to use a specific command line for Fortran 95 files. You
should normally set the $SHFORTRANCOM variable, which specifies the default command line
for all Fortran versions.

SHF95COMSTR
The string displayed when a Fortran 95 source file is compiled to a shared-library object file. If this
is not set, then $SHF95COM or $SHFORTRANCOM (the command line) is displayed.
SHF95FLAGS

Options that are passed to the Fortran 95 compiler to generated shared-library objects. You only
need to set $SHF9SFLAGS if you need to define specific user options for Fortran 95 files. You
should normally set the $SSHFORTRANFLAGS variable, which specifies the user-specified options
passed to the default Fortran compiler for all Fortran versions.

SHF95PPCOM

The command line used to compile a Fortran 95 source file to a shared-library object file after first
running the file through the C preprocessor. Any options specified in the $SHF9SFLAGS and
$CPPFLAGS construction variables are included on this command line. You only need to set
$SHF95PPCOM if you need to use a specific C-preprocessor command line for Fortran 95 files.

237

Appendix A. Construction Variables

You should normally set the $SHFORTRANPPCOM variable, which specifies the default
C-preprocessor command line for all Fortran versions.

SHF95PPCOMSTR

The string displayed when a Fortran 95 source file is compiled to a shared-library object file after
first running the file through the C preprocessor. If this is not set, then $SHF95PPCOM or
$SHFORTRANPPCOM (the command line) is displayed.

SHFORTRAN

The default Fortran compiler used for generating shared-library objects.

SHFORTRANCOM

The command line used to compile a Fortran source file to a shared-library object file.

SHFORTRANCOMSTR
The string displayed when a Fortran source file is compiled to a shared-library object file. If this is
not set, then SSHFORTRANCOM (the command line) is displayed.

SHFORTRANFLAGS

Options that are passed to the Fortran compiler to generate shared-library objects.

SHFORTRANPPCOM

The command line used to compile a Fortran source file to a shared-library object file after first
running the file through the C preprocessor. Any options specified in the $SSHFORTRANFLAGS
and $CPPFLAGS construction variables are included on this command line.

SHFORTRANPPCOMSTR

The string displayed when a Fortran source file is compiled to a shared-library object file after first
running the file through the C preprocessor. If this is not set, then $SSHFORTRANPPCOM (the
command line) is displayed.

SHLIBEMITTER
TODO

SHLIBPREFIX

The prefix used for shared library file names.

SHLIBSUFFIX

The suffix used for shared library file names.

SHLIBVERSION

When this construction variable is defined, a versioned shared library is created. This modifies the
$SHLINKFLAGS as required, adds the version number to the library name, and creates the
symlinks that are needed. $SHLIBVERSION needs to be of the form X.Y.Z, where X and Y are
numbers, and Z is a number but can also contain letters to designate alpha, beta, or release candidate
patch levels.

238

Appendix A. Construction Variables

SHLINK

The linker for programs that use shared libraries.

SHLINKCOM

The command line used to link programs using shared libraries.

SHLINKCOMSTR

The string displayed when programs using shared libraries are linked. If this is not set, then
$SHLINKCOM (the command line) is displayed.

env = Environment (SHLINKCOMSTR = "Linking shared S$TARGET")

SHLINKFLAGS

General user options passed to the linker for programs using shared libraries. Note that this variable
should not contain -1 (or similar) options for linking with the libraries listed in $LIBS, nor -1 (or
similar) include search path options that scons generates automatically from $LIBPATH. See
$_LIBFLAGS above, for the variable that expands to library-link options, and $_LIBDIRFLAGS
above, for the variable that expands to library search path options.

SHOBJPREFIX

The prefix used for shared object file names.

SHOBJSUFFIX

The suffix used for shared object file names.

SOURCE
A reserved variable name that may not be set or used in a construction environment. (See "Variable
Substitution," below.)

SOURCE_URL
The URL (web address) of the location from which the project was retrieved. This is used to fill in
the Source: field in the controlling information for Ipkg and RPM packages.

SOURCES

A reserved variable name that may not be set or used in a construction environment. (See "Variable
Substitution," below.)

SPAWN

A command interpreter function that will be called to execute command line strings. The function
must expect the following arguments:

def spawn(shell, escape, cmd, args, env):

sh is a string naming the shell program to use. escape is a function that can be called to escape
shell special characters in the command line. cmd is the path to the command to be executed. args
is the arguments to the command. env is a dictionary of the environment variables in which the
command should be executed.

239

Appendix A. Construction Variables

SUBST_DICT

The dictionary used by the Substfile or Textfile builders for substitution values. It can be
anything acceptable to the dict() constructor, so in addition to a dictionary, lists of tuples are also
acceptable.

SUBSTFILEPREFIX

The prefix used for Substfile file names, the null string by default.

SUBSTFILESUFFIX

The suffix used for Subst file file names, the null string by default.

SUMMARY

A short summary of what the project is about. This is used to fill in the Summary: field in the
controlling information for Ipkg and RPM packages, and as the Description: field in MSI
packages.

SWIG

The scripting language wrapper and interface generator.

SWIGCFILESUFFIX

The suffix that will be used for intermediate C source files generated by the scripting language
wrapper and interface generator. The default value is _wrap$CFILESUFFIX. By default, this value
is used whenever the —c++ option is not specified as part of the SSWIGFLAGS construction
variable.

SWIGCOM

The command line used to call the scripting language wrapper and interface generator.

SWIGCOMSTR
The string displayed when calling the scripting language wrapper and interface generator. If this is
not set, then SSWIGCOM (the command line) is displayed.

SWIGCXXFILESUFFIX

The suffix that will be used for intermediate C++ source files generated by the scripting language
wrapper and interface generator. The default value is _wrap$CFILESUFFIX. By default, this value
is used whenever the —c++ option is specified as part of the $SSWIGFLAGS construction variable.

SWIGDIRECTORSUFFIX

The suffix that will be used for intermediate C++ header files generated by the scripting language
wrapper and interface generator. These are only generated for C++ code when the SWIG ’directors’
feature is turned on. The default value is _wrap.h.

240

Appendix A. Construction Variables

SWIGFLAGS

General options passed to the scripting language wrapper and interface generator. This is where you
should set -python, -perl15, —tcl, or whatever other options you want to specify to SWIG. If you
set the —c++ option in this variable, scons will, by default, generate a C++ intermediate source file
with the extension that is specified as the $SCXXFILESUFFIX variable.

_SWIGINCFLAGS

An automatically-generated construction variable containing the SWIG command-line options for
specifying directories to be searched for included files. The value of $_SWIGINCFLAGS is created
by appending $SWIGINCPREFIX and $SWIGINCSUFFIX to the beginning and end of each
directory in $SWIGPATH.

SWIGINCPREFIX

The prefix used to specify an include directory on the SWIG command line. This will be appended
to the beginning of each directory in the $SWIGPATH construction variable when the
$_SWIGINCFLAGS variable is automatically generated.

SWIGINCSUFFIX

The suffix used to specify an include directory on the SWIG command line. This will be appended
to the end of each directory in the $SWIGPATH construction variable when the
$_SWIGINCFLAGS variable is automatically generated.

SWIGOUTDIR

Specifies the output directory in which the scripting language wrapper and interface generator
should place generated language-specific files. This will be used by SCons to identify the files that
will be generated by the swig call, and translated into the swig —outdir option on the command
line.

SWIGPATH

The list of directories that the scripting language wrapper and interface generate will search for
included files. The SWIG implicit dependency scanner will search these directories for include files.
The default is to use the same path specified as SCPPPATH.

Don’t explicitly put include directory arguments in SWIGFLAGS; the result will be non-portable
and the directories will not be searched by the dependency scanner. Note: directory names in
SWIGPATH will be looked-up relative to the SConscript directory when they are used in a
command. To force scons to look-up a directory relative to the root of the source tree use #:

env = Environment (SWIGPATH='#/include’)

The directory look-up can also be forced using the Dir() function:

include = Dir (’include’)
env = Environment (SWIGPATH=include)

241

Appendix A. Construction Variables

The directory list will be added to command lines through the automatically-generated
$_SWIGINCFLAGS construction variable, which is constructed by appending the values of the
$SWIGINCPREFIX and $SWIGINCSUFFIX construction variables to the beginning and end of
each directory in $SSWIGPATH. Any command lines you define that need the SWIGPATH directory
list should include $_SWIGINCFLAGS:

env = Environment (SWIGCOM="my_swig —-o S$TARGET $_SWIGINCFLAGS S$SORUCES")

SWIGVERSION

The version number of the SWIG tool.

TAR

The tar archiver.

TARCOM

The command line used to call the tar archiver.

TARCOMSTR

The string displayed when archiving files using the tar archiver. If this is not set, then $STARCOM
(the command line) is displayed.

env = Environment (TARCOMSTR = "Archiving $TARGET")

TARFLAGS

General options passed to the tar archiver.

TARGET

A reserved variable name that may not be set or used in a construction environment. (See "Variable
Substitution," below.)

TARGET_ARCH

Sets the target architecture for Visual Studio compiler (i.e. the arch of the binaries generated by the
compiler). If not set, default to SHOST_ARCH, or, if that is unset, to the architecture of the running
machine’s OS (note that the python build or architecture has no effect). This variable must be passed
as an argument to the Environment() constructor; setting it later has no effect. This is currently only
used on Windows, but in the future it will be used on other OSes as well.

Valid values for Windows are x86, 1386 (for 32 bits); amd64, emt 64, x86_64 (for 64 bits); and
ia64 (Itanium). For example, if you want to compile 64-bit binaries, you would set
TARGET_ARCH='x86_64" in your SCons environment.

TARGET_OS

The name of the target operating system for the compiled objects created by this Environment. This
defaults to the value of HOST_OS, and the user can override it. Currently only set for Win32.

242

Appendix A. Construction Variables

TARGETS

A reserved variable name that may not be set or used in a construction environment. (See "Variable
Substitution," below.)

TARSUFFIX

The suffix used for tar file names.

TEMPFILEPREFIX

The prefix for a temporary file used to execute lines longer than SMAXLINELENGTH. The default
is *@’. This may be set for toolchains that use other values, such as ’-@’ for the diab compiler or
’-via’ for ARM toolchain.

TEX

The TeX formatter and typesetter.

TEXCOM

The command line used to call the TeX formatter and typesetter.

TEXCOMSTR

The string displayed when calling the TeX formatter and typesetter. If this is not set, then
$TEXCOM (the command line) is displayed.

env = Environment (TEXCOMSTR = "Building $TARGET from TeX input $SOURCES")

TEXFLAGS

General options passed to the TeX formatter and typesetter.

TEXINPUTS

List of directories that the LaTeX program will search for include directories. The LaTeX implicit
dependency scanner will search these directories for \include and \import files.

TEXTFILEPREFIX

The prefix used for Text £ile file names, the null string by default.

TEXTFILESUFFIX

The suffix used for Text £ile file names; . txt by default.

TOOLS

A list of the names of the Tool specifications that are part of this construction environment.

UNCHANGED_SOURCES

A reserved variable name that may not be set or used in a construction environment. (See "Variable
Substitution," below.)

243

Appendix A. Construction Variables

UNCHANGED_TARGETS

A reserved variable name that may not be set or used in a construction environment. (See "Variable
Substitution," below.)

VENDOR

The person or organization who supply the packaged software. This is used to fill in the vendor:
field in the controlling information for RPM packages, and the Manufacturer: field in the
controlling information for MSI packages.

VERSION

The version of the project, specified as a string.

WIN32_INSERT_DEF
A deprecated synonym for SWINDOWS_INSERT_DEF.

WIN32DEFPREFIX
A deprecated synonym for SWINDOWSDEFPREFIX.

WIN32DEFSUFFIX
A deprecated synonym for SWINDOWSDEFSUFFIX.

WIN32EXPPREFIX
A deprecated synonym for SWINDOWSEXPSUFFIX.

WIN32EXPSUFFIX
A deprecated synonym for SWINDOWSEXPSUFFIX.

WINDOWS_EMBED_MANIFEST

Set this variable to True or 1 to embed the compiler-generated manifest (normally
${TARGET} .manifest) into all Windows exes and DLLs built with this environment, as a resource
during their link step. This is done using $MT and SMTEXECOM and SMTSHLIBCOM.

WINDOWS_INSERT_DEF

When this is set to true, a library build of a Windows shared library (.d11 file) will also build a
corresponding . def file at the same time, if a . def file is not already listed as a build target. The
default is O (do not build a . def file).

WINDOWS_INSERT MANIFEST

When this is set to true, scons will be aware of the .manifest files generated by Microsoft Visua
C/C++ 8.

WINDOWSDEFPREFIX

The prefix used for Windows . def file names.

WINDOWSDEFSUFFIX

The suffix used for Windows . def file names.

244

Appendix A. Construction Variables

WINDOWSEXPPREFIX

The prefix used for Windows . exp file names.

WINDOWSEXPSUFFIX

The suffix used for Windows . exp file names.

WINDOWSPROGMANIFESTPREFIX

The prefix used for executable program .manifest files generated by Microsoft Visual C/C++.

WINDOWSPROGMANIFESTSUFFIX

The suffix used for executable program .manifest files generated by Microsoft Visual C/C++.

WINDOWSSHLIBMANIFESTPREFIX

The prefix used for shared library .manifest files generated by Microsoft Visual C/C++.

WINDOWSSHLIBMANIFESTSUFFIX

The suffix used for shared library .manifest files generated by Microsoft Visual C/C++.

X_IPK_DEPENDS

This is used to fill in the Depends: field in the controlling information for Ipkg packages.

X_TPK_DESCRIPTION

This is used to fill in the Description: field in the controlling information for Ipkg packages. The
default value is $ SUMMARY \n$DESCRIPTION

X_TPK_MAINTAINER

This is used to fill in the Maintainer: field in the controlling information for Ipkg packages.

X_TPK_PRIORITY

This is used to fill in the Priority: field in the controlling information for Ipkg packages.

X_TPK_SECTION

This is used to fill in the Section: field in the controlling information for Ipkg packages.

X_MSI_LANGUAGE

This is used to fill in the Language: attribute in the controlling information for MSI packages.

X_MSI_LICENSE_TEXT

The text of the software license in RTF format. Carriage return characters will be replaced with the
RTF equivalent \\par.

X_MSI_UPGRADE_CODE
TODO

245

Appendix A. Construction Variables

X_RPM_AUTOREQPROV

This is used to fill in the Aut oRegProv: field in the RPM . spec file.

X_RPM_BUILD

internal, but overridable

X_RPM_BUILDREQUIRES

This is used to fill in the BuildRequires: field in the RPM . spec file.

X_RPM_BUILDROOT

internal, but overridable

X_RPM_CLEAN

internal, but overridable

X_RPM_CONFLICTS

This is used to fill in the Conflicts: field in the RPM . spec file.

X_RPM_DEFATTR

This value is used as the default attributes for the files in the RPM package. The default value is

(-, root, root).

X_RPM_DISTRIBUTION

This is used to fill in the Distribution: field in the RPM . spec file.

X_RPM_EPOCH

This is used to fill in the Epoch: field in the controlling information for RPM packages.

X_RPM_EXCLUDEARCH

This is used to fill in the ExcludeArch: field in the RPM . spec file.

X_RPM_EXLUSIVEARCH

This is used to fill in the ExclusiveArch: field in the RPM . spec file.

X_RPM_GROUP
This is used to fill in the Group: field in the RPM . spec file.

X_RPM_GROUP_lang

This is used to fill in the Group (1ang) : field in the RPM . spec file. Note that 1ang is not literal
and should be replaced by the appropriate language code.

X_RPM_ICON
This is used to fill in the Icon: field in the RPM . spec file.

246

Appendix A. Construction Variables

X_RPM_INSTALL

internal, but overridable

X_RPM_PACKAGER

This is used to fill in the Packager: field in the RPM . spec file.

X_RPM_POSTINSTALL

This is used to fill in the $post : section in the RPM . spec file.

X_RPM_POSTUNINSTALL

This is used to fill in the $postun: section in the RPM . spec file.

X_RPM_PREFIX
This is used to fill in the Prefix: field in the RPM . spec file.

X_RPM_PREINSTALL

This is used to fill in the $pre: section in the RPM . spec file.

X_RPM_PREP

internal, but overridable

X_RPM_PREUNINSTALL

This is used to fill in the $preun: section in the RPM . spec file.

X_RPM_PROVIDES

This is used to fill in the Provides: field in the RPM . spec file.

X_RPM_REQUIRES

This is used to fill in the Requires: field in the RPM . spec file.

X_RPM_SERIAL

This is used to fill in the Serial: field in the RPM . spec file.

X_RPM_URL
This is used to fill in the Ur1: field in the RPM . spec file.

XGETTEXT

Path to xgettext(1) program (found via Detect ()). See xgettext tool and POTUpdate builder.

XGETTEXTCOM

Complete xgettext command line. See xgettext tool and POTUpdate builder.

XGETTEXTCOMSTR

A string that is shown when xgettext(1) command is invoked (default: ”, which means "print
$XGETTEXTCOM"). See xgettext tool and POTUpdate builder.

247

Appendix A. Construction Variables

_XGETTEXTDOMAIN

Internal "macro”. Generates xgettext domain name form source and target (default:
"${TARGET.filebase}’).

XGETTEXTFLAGS

Additional flags to xgettext(1). See xgettext tool and POTUpdate builder.

XGETTEXTFROM

Name of file containing list of xgettext(1)’s source files. Autotools’ users know this as

POTFILES. in so they will in most cases set XGETTEXTFROM="POTFILES. in" here. The
$XGETTEXTFROM files have same syntax and semantics as the well known GNU POTFILES. in.
See xgettext tool and POTUpdate builder.

_XGETTEXTFROMFLAGS
Internal "macro". Genrates list of -D<dir> flags from the $XGETTEXTPATH list.

XGETTEXTFROMPREFIX

This flag is used to add single $XGETTEXTFROM file to xgettext(1)’s commandline (default:
r_fr)

XGETTEXTFROMSUFFIX
(default:)

XGETTEXTPATH

List of directories, there xgettext(1) will look for source files (default: [7]).

Note: This variable works only together with $XGETTEXTFROM

See also xgettext tool and POTUpdate builder.

_XGETTEXTPATHFLAGS
Internal "macro". Generates list of -f<file> flags from $XGETTEXTFROM.

XGETTEXTPATHPREFIX

This flag is used to add single search path to xgettext(1)’s commandline (default: * -D").

XGETTEXTPATHSUFFIX
(default: ")

YACC

The parser generator.

YACCCOM

The command line used to call the parser generator to generate a source file.

248

Appendix A. Construction Variables

YACCCOMSTR

The string displayed when generating a source file using the parser generator. If this is not set, then
$YACCCOM (the command line) is displayed.

env = Environment (YACCCOMSTR = "Yacc’ing $TARGET from S$SOURCES")

YACCFLAGS

General options passed to the parser generator. If $YACCFLAGS contains a —d option, SCons
assumes that the call will also create a .h file (if the yacc source file ends in a .y suffix) or a .hpp file
(if the yacc source file ends in a .yy suffix)

YACCHFILESUFFIX

The suffix of the C header file generated by the parser generator when the —d option is used. Note
that setting this variable does not cause the parser generator to generate a header file with the
specified suffix, it exists to allow you to specify what suffix the parser generator will use of its own
accord. The default value is . h.

YACCHXXFILESUFFIX

The suffix of the C++ header file generated by the parser generator when the —d option is used. Note
that setting this variable does not cause the parser generator to generate a header file with the
specified suffix, it exists to allow you to specify what suffix the parser generator will use of its own
accord. The default value is . hpp, except on Mac OS X, where the default is
${TARGET.suffix}.h. because the default bison parser generator just appends . h to the name of
the generated C++ file.

YACCVCGFILESUFFIX

The suffix of the file containing the VCG grammar automaton definition when the ——graph= option
is used. Note that setting this variable does not cause the parser generator to generate a VCG file
with the specified suffix, it exists to allow you to specify what suffix the parser generator will use of
its own accord. The default value is .vcg.

ZIP

The zip compression and file packaging utility.

ZIPCOM

The command line used to call the zip utility, or the internal Python function used to create a zip
archive.

ZIPCOMPRESSION

The compression flag from the Python zipfile module used by the internal Python function to
control whether the zip archive is compressed or not. The default value is
zipfile.ZIP_DEFLATED, which creates a compressed zip archive. This value has no effect if the
zipfile module is unavailable.

ZIPCOMSTR

The string displayed when archiving files using the zip utility. If this is not set, then $ZIPCOM (the
command line or internal Python function) is displayed.

249

Appendix A. Construction Variables

env = Environment (ZIPCOMSTR = "Zipping S$TARGET")

ZIPFLAGS

General options passed to the zip utility.

ZIPSUFFIX

The suffix used for zip file names.

250

Appendix B. Builders

This appendix contains descriptions of all of the Builders that are potentially available "out of the box" in
this version of SCons.

CFile ()
env.CFile ()
Builds a C source file given a lex (. 1) or yacc (. y) input file. The suffix specified by the

$CFILESUFFIX construction variable (. c by default) is automatically added to the target if it is not
already present. Example:

builds foo.c

env.CFile (target = ’"foo.c’, source = ’"foo.1l’)

builds bar.c

env.CFile(target = ’'bar’, source = 'bar.y’)
Command ()

env.Command ()

The Command "Builder" is actually implemented as a function that looks like a Builder, but actually
takes an additional argument of the action from which the Builder should be made. See the
Command function description for the calling syntax and details.

CXXFile ()

env.CXXFile ()

Builds a C++ source file given a lex (. 11) or yacc (. yy) input file. The suffix specified by the
$CXXFILESUFFIX construction variable (. cc by default) is automatically added to the target if it
is not already present. Example:

builds foo.cc

env.CXXFile (target = 'foo.cc’, source = 'foo.11l")
builds bar.cc
env.CXXFile (target = ’'bar’, source = ’'bar.yy’)
DVI ()
env.DVI ()

Builds a .dvi file from a .tex, .1tx or . latex input file. If the source file suffix is .tex, scons
will examine the contents of the file; if the string \documentclass or \documentstyle is found,
the file is assumed to be a LaTeX file and the target is built by invoking the SLATEXCOM
command line; otherwise, the STEXCOM command line is used. If the file is a LaTeX file, the DVI
builder method will also examine the contents of the . aux file and invoke the $BIBTEX command
line if the string bibdata is found, start SMAKEINDEX to generate an index if a . ind file is
found and will examine the contents . 1og file and re-run the SLATEXCOM command if the log file
says it is necessary.

251

Appendix B. Builders

The suffix .dvi (hard-coded within TeX itself) is automatically added to the target if it is not
already present. Examples:

builds from aaa.tex

env.DVI (target = ’'aaa.dvi’, source = "aaa.tex’)

builds bbb.dvi

env.DVI (target = 'bbb’, source = ’"bbb.ltx’)

builds from ccc.latex

env.DVI (target = ’'ccc.dvi’, source = ’'ccc.latex’)

Install ()

env.Install ()

Installs one or more source files or directories in the specified target, which must be a directory. The
names of the specified source files or directories remain the same within the destination directory.
The sources may be given as a string or as a node returned by a builder.

env.Install(’ /usr/local/bin’, source = [’'foo’, ’'bar’])

InstallAs ()

env.InstallAs ()

Installs one or more source files or directories to specific names, allowing changing a file or
directory name as part of the installation. It is an error if the target and source arguments list
different numbers of files or directories.

InstallVersionedLib ()
env.InstallVersionedLib ()
Installs a versioned shared library. The $SHLIBVERSION construction variable should be defined

in the environment to confirm the version number in the library name. The symlinks appropriate to
the architecture will be generated.

env.InstallAs (target = ’/usr/local/bin/foo’,

source " foo_debug’)
env.InstallAs (target = [’../lib/libfoo.a’, ’../lib/libbar.a’],
["1ibF0O.a’, "1libBAR.a’])

source

Jar ()
env.Jar ()
Builds a Java archive (. jar) file from the specified list of sources. Any directories in the source list

will be searched for . class files). Any . java files in the source list will be compiled to .class
files by calling the Java Builder.

If the $JARCHDIR value is set, the jar command will change to the specified directory using the —C
option. If $JARCHDIR is not set explicitly, SCons will use the top of any subdirectory tree in which
Java . class were built by the Java Builder.

If the contents any of the source files begin with the string Manifest-Version, the file is assumed
to be a manifest and is passed to the jar command with the m option set.

252

Appendix B. Builders

env.Jar (target = ’foo.jar’, source = 'classes’)
env.Jar (target = ’bar.jar’,
source = [’'barl.java’, ’'bar2.java’l])
Java ()

env.Java ()

Builds one or more Java class files. The sources may be any combination of explicit . java files, or
directory trees which will be scanned for . java files.

SCons will parse each source . java file to find the classes (including inner classes) defined within
that file, and from that figure out the target . class files that will be created. The class files will be
placed underneath the specified target directory.

SCons will also search each Java file for the Java package name, which it assumes can be found on a
line beginning with the string package in the first column; the resulting . class files will be placed
in a directory reflecting the specified package name. For example, the file Foo. java defining a
single public Foo class and containing a package name of sub.dir will generate a corresponding
sub/dir/Foo.class class file.

Examples:

env.Java (target = ’'classes’, source = ’'src’)

env.Java (target = ’'classes’, source = [’'srcl’, ’'src2’])

env.Java (target = ’'classes’, source = ['Filel.java’, ’'File2.java’l)

Java source files can use the native encoding for the underlying OS. Since SCons compiles in simple
ASCII mode by default, the compiler will generate warnings about unmappable characters, which
may lead to errors as the file is processed further. In this case, the user must specify the LANG
environment variable to tell the compiler what encoding is used. For portibility, it’s best if the
encoding is hard-coded so that the compile will work if it is done on a system with a different

encoding.

env = Environment ()

env['ENV’] ["LANG’] = "en_GB.UTF-8"'
JavaH ()

env.JavaH ()

Builds C header and source files for implementing Java native methods. The target can be either a
directory in which the header files will be written, or a header file name which will contain all of the
definitions. The source can be the names of . class files, the names of . java files to be compiled
into . class files by calling the Java builder method, or the objects returned from the Java builder
method.

253

Appendix B. Builders

If the construction variable $JAVACLASSDIR is set, either in the environment or in the call to the
JavaH builder method itself, then the value of the variable will be stripped from the beginning of
any .class file names.

Examples:

builds java_native.h
classes = env.Java(target = ‘classdir’, source = ’'src’)
env.JavaHl (target = ’Jjava_native.h’, source = classes)

builds include/package_foo.h and include/package_bar.h
env.JavaH (target = ’'include’,

source = [’package/foo.class’, ’'package/bar.class’])

builds export/foo.h and export/bar.h
env.JavaH (target = ’'export’,

source = [’classes/foo.class’, ’'classes/bar.class’],
JAVACLASSDIR = ’'classes’)

Library ()

env.Library ()

A synonym for the StaticLibrary builder method.

LoadableModule ()

env.LoadableModule ()

On most systems, this is the same as SharedLibrary. On Mac OS X (Darwin) platforms, this
creates a loadable module bundle.

M4 ()

env.M4 ()
Builds an output file from an M4 input file. This uses a default SM4FLAGS value of -E, which
considers all warnings to be fatal and stops on the first warning when using the GNU version of m4.
Example:
env.M4 (target = "foo.c’, source = 'foo.c.m4’)

Moc ()

env.Moc ()

Builds an output file from a moc input file. Moc input files are either header files or cxx files. This
builder is only available after using the tool *qt’. See the $QTDIR variable for more information.
Example:

env.Moc (" foo.h’) # generates moc_foo.cc
env.Moc (' foo.cpp’) # generates foo.moc

254

Appendix B. Builders

MOFiles ()
env.MOFiles ()

This builder belongs to msgfmt tool. The builder compiles po files to MO files.

Example 1. Create pl.mo and en.mo by compiling p1.po and en.po:

#o...
env.MOFiles (["pl’, ’'en’])

Example 2. Compile files for languages defined in LINGUAS file:

...
env.MOFiles (LINGUAS_FILE = 1)

Example 3. Create pl.mo and en.mo by compiling pl.po and en.po plus files for languages
defined in LINGUAS file:

o,
env.MOFiles (["pl’, ’'en’], LINGUAS_FILE = 1)

Example 4. Compile files for languages defined in LINGUAS file (another version):

...
env [’ LINGUAS_FILE’] =1
env.MOFiles ()

MSVSProject ()
env.MSVSProject ()

Builds a Microsoft Visual Studio project file, and by default builds a solution file as well.

This builds a Visual Studio project file, based on the version of Visual Studio that is configured
(either the latest installed version, or the version specified by $SMSVS_VERSION in the
Environment constructor). For Visual Studio 6, it will generate a . dsp file. For Visual Studio 7
(.NET) and later versions, it will generate a . vcpro file.

By default, this also generates a solution file for the specified project, a . dsw file for Visual Studio 6
or a . sln file for Visual Studio 7 (.NET). This behavior may be disabled by specifying
auto_build_solution=0 when you call MSVSProject, in which case you presumably want to
build the solution file(s) by calling the MSVSSolution Builder (see below).

The MSVSProject builder takes several lists of filenames to be placed into the project file. These
are currently limited to srcs, incs, localincs, resources, and misc. These are pretty
self-explanatory, but it should be noted that these lists are added to the $SOURCES construction
variable as strings, NOT as SCons File Nodes. This is because they represent file names to be added
to the project file, not the source files used to build the project file.

255

Appendix B. Builders

The above filename lists are all optional, although at least one must be specified for the resulting
project file to be non-empty.

In addition to the above lists of values, the following values may be specified:

target: The name of the target .dsp or .vcproj file. The correct suffix for the version of Visual
Studio must be used, but the $MSVSPROJECTSUFFIX construction variable will be defined to the
correct value (see example below).

variant: The name of this particular variant. For Visual Studio 7 projects, this can also be a list of
variant names. These are typically things like "Debug" or "Release"”, but really can be anything you
want. For Visual Studio 7 projects, they may also specify a target platform separated from the
variant name by a | (vertical pipe) character: Debug | Xbox. The default target platform is Win32.
Multiple calls to MSVSProject with different variants are allowed; all variants will be added to the
project file with their appropriate build targets and sources.

buildtarget: An optional string, node, or list of strings or nodes (one per build variant), to tell the
Visual Studio debugger what output target to use in what build variant. The number of
buildtarget entries must match the number of variant entries.

runfile: The name of the file that Visual Studio 7 and later will run and debug. This appears as the
value of the output field in the resutling Visual Studio project file. If this is not specified, the
default is the same as the specified buildtarget value.

Note that because SCons always executes its build commands from the directory in which the
SConstruct file is located, if you generate a project file in a different directory than the
SConstruct directory, users will not be able to double-click on the file name in compilation error
messages displayed in the Visual Studio console output window. This can be remedied by adding
the Visual C/C++ /FC compiler option to the SCCFLAGS variable so that the compiler will print
the full path name of any files that cause compilation errors.

Example usage:

barsrcs = ['bar.cpp’],

barincs = ['bar.h’],

barlocalincs = [’StdAfx.h’]
barresources = [’'bar.rc’,’resource.h’]
barmisc = [’bar_readme.txt’]

dll = env.SharedLibrary(target = ’'bar.dll’,
source = barsrcs)

env.MSVSProject (target = ’"Bar’ + env[’MSVSPROJECTSUFFIX’'],

srcs = barsrcs,
incs = barincs,
localincs = barlocalincs,

256

Appendix B. Builders

resources = barresources,
misc = barmisc,
buildtarget = dl1,
variant = ’'Release’)

MSVSSolution ()
env.MSVSSolution ()

Builds a Microsoft Visual Studio solution file.

This builds a Visual Studio solution file, based on the version of Visual Studio that is configured
(either the latest installed version, or the version specified by SMSVS_VERSION in the
construction environment). For Visual Studio 6, it will generate a . dsw file. For Visual Studio 7
(.NET), it will generate a . s1n file.

The following values must be specified:

target: The name of the target .dsw or .sln file. The correct suffix for the version of Visual Studio
must be used, but the value SMSVSSOLUTIONSUFFIX will be defined to the correct value (see
example below).

variant: The name of this particular variant, or a list of variant names (the latter is only supported
for MSVS 7 solutions). These are typically things like "Debug" or "Release"”, but really can be
anything you want. For MSVS 7 they may also specify target platform, like this "Debug|Xbox".
Default platform is Win32.

projects: A list of project file names, or Project nodes returned by calls to the MSVSProject
Builder, to be placed into the solution file. It should be noted that these file names are NOT added to
the $SOURCES environment variable in form of files, but rather as strings. This is because they
represent file names to be added to the solution file, not the source files used to build the solution

file.

Example Usage:

env.MSVSSolution (target = ’Bar’ + env[’MSVSSOLUTIONSUFFIX’],
projects = ['bar’ + env[’MSVSPROJECTSUFFIX']],
variant = ’"Release’)

Object ()
env.Object ()

A synonym for the StaticObject builder method.

257

Appendix B. Builders

Package ()
env.Package ()

Builds software distribution packages. Packages consist of files to install and packaging
information. The former may be specified with the source parameter and may be left out, in which
case the FindInstalledFiles function will collect all files that have an Install or InstallAs
Builder attached. If the target is not specified it will be deduced from additional information
given to this Builder.

The packaging information is specified with the help of construction variables documented below.
This information is called a tag to stress that some of them can also be attached to files with the Tag
function. The mandatory ones will complain if they were not specified. They vary depending on
chosen target packager.

The target packager may be selected with the "PACKAGETYPE" command line option or with the
$PACKAGETYPE construction variable. Currently the following packagers available:

* msi - Microsoft Installer * rpm - Redhat Package Manger * ipkg - Itsy Package Management
System * tarbz2 - compressed tar * targz - compressed tar * zip - zip file * src_tarbz2 - compressed
tar source * src_targz - compressed tar source * src_zip - zip file source

An updated list is always available under the "package_type" option when running "scons --help"
on a project that has packaging activated.

env = Environment (tools=[’"default’, ’'packaging’])
env.Install ('’ /bin/’, ’'my_program’)

env.Package (NAME = "foo’,
VERSION =71.2.3",
PACKAGEVERSION = O,
PACKAGETYPE = "rpm’,
LICENSE = ’'gpl’,
SUMMARY = ’"balalalalal’,
DESCRIPTION = 'this should be really really long’,
X_RPM_GROUP = ’'Application/fu’,
SOURCE_URL = 'http://foo.org/foo-1.2.3.tar.gz’
)
PCH ()
env.PCH ()

Builds a Microsoft Visual C++ precompiled header. Calling this builder method returns a list of two
targets: the PCH as the first element, and the object file as the second element. Normally the object
file is ignored. This builder method is only provided when Microsoft Visual C++ is being used as
the compiler. The PCH builder method is generally used in conjuction with the PCH construction
variable to force object files to use the precompiled header:

env[’'PCH’] = env.PCH('StdAfx.cpp’) [0]

258

Appendix B. Builders

PDF ()

env.PDF ()

Builds a . pdf file from a .dvi input file (or, by extension, a .tex, .1tx, or . latex input file).
The suffix specified by the $PDFSUFFIX construction variable (.pdf by default) is added
automatically to the target if it is not already present. Example:

builds from aaa.tex

env.PDF (target = ’'aaa.pdf’, source = "aaa.tex’)

builds bbb.pdf from bbb.dvi

env.PDF (target = ’'bbb’, source = 'bbb.dvi’)

POInit ()

env.POInit ()

This builder belongs to msginit tool. The builder initializes missing PO file(s) if SPOAUTOINIT is
set. If SPOAUTOINIT is not set (default), POInit prints instruction for user (that is supposed to be
a translator), telling how the PO file should be initialized. In normal projects you should not use
POInit and use POUpdate instead. POUpdate chooses intelligently between msgmerge(1) and
msginit(1). POInit always uses msginit(1) and should be regarded as builder for special purposes
or for temporary use (e.g. for quick, one time initialization of a bunch of po files) or for tests.

Target nodes defined through POInit are not built by default (they’re Ignored from ’ .’ node) but
are added to special Alias (" po-create’ by default). The alias name may be changed through the
$POCREATE_ALIAS construction variable. All PO files defined through POTnit may be easily
initialized by scons po-create.

Example 1. Initialize en.po and pl.po from messages.pot:

#
env.POInit ([’'en’, 'pl’]) # messages.pot —--> [en.po, pl.po]

Example 2. Initialize en.po and p1.po from foo.pot:

...
env.POInit ([’'en’, 'pl’], ['foo’]) # foo.pot —--> [en.po, pl.po]

Example 3. Initialize en.po and p1.po from foo.pot but using SPOTDOMAIN construction
variable:

#
env.POInit ([’"en’, ’"pl’], POTDOMAIN=’foo’) # foo.pot —--> [en.po, pl.po]

Example 4. Initialize po files for languages defined in LINGUAS file. The files will be initialized
from template messages.pot:

#
env.POInit (LINGUAS_FILE = 1) # needs ’'LINGUAS’ file

259

Appendix B. Builders

Example 5. Initialize en.po and pl.pl PO files plus files for languages defined in LINGUAS file.
The files will be initialized from template messages.pot:

#
env.POInit(["en’, ’'pl’], LINGUAS_FILE = 1)

Example 6. You may preconfigure your environment first, and then initialize po files:

#

env [/ POAUTOINIT’] = 1
env [’/ LINGUAS_FILE’] =1
env [/ POTDOMAIN’] = ’foo’

env.POInit ()

which has same efect as:

#
env.POInit (POAUTOINIT = 1, LINGUAS_FILE = 1, POTDOMAIN = ’foo’)

PostScript ()

env.PostScript ()

Builds a . ps file from a . dvi input file (or, by extension, a .tex, .1tx, or .latex input file). The
suffix specified by the $PSSUFFIX construction variable (.ps by default) is added automatically to
the target if it is not already present. Example:

builds from aaa.tex

env.PostScript (target = "aaa.ps’, source = ’'aaa.tex’)
builds bbb.ps from bbb.dvi

env.PostScript (target = "bbb’, source = ’"bbb.dvi’)

POTUpdate (

env.POTUpdate ()

The builder belongs to xgettext tool. The builder updates target pOT file if exists or creates one if
it doesn’t. The node is not built by default (i.e. it is Ignored from ’ . "), but only on demand (i.e.
when given POT file is required or when special alias is invoked). This builder adds its targe node
(messages.pot, say) to a special alias (pot -update by default, see SPOTUPDATE_ALIAS) so
you can update/create them easily with scons pot-update. The file is not written until there is no
real change in internationalized messages (or in comments that enter POT file).

Note: You may see xgettext(1) being invoked by the xgettext tool even if there is no real
change in internationalized messages (so the por file is not being updated). This happens
every time a source file has changed. In such case we invoke xgettext(1) and compare its
output with the content of por file to decide whether the file should be updated or not.

260

Appendix B. Builders

Example 1. Let’s create po/ directory and place following sConstruct script there:

SConstruct in 'po/’ subdir

env = Environment (tools = [’default’, ’xgettext’])
env.POTUpdate ([’ foo’], [’../a.cpp’, "../b.cpp’]l)
env.POTUpdate (['bar’], [’../c.cpp’, '../d.cpp’l)

Then invoke scons few times:

user@host:$ scons Does not create foo.pot nor bar.pot

user@host:$ scons foo.pot Updates or creates foo.pot

user@host:$ scons pot-update Updates or creates foo.pot and bar.pot

H H =

user@host:$ scons -c Does not clean foo.pot nor bar.pot.

the results shall be as the comments above say.

Example 2. The POTUpdate builder may be used with no target specified, in which case default
target messages.pot will be used. The default target may also be overriden by setting
$POTDOMAIN construction variable or providing it as an override to POTUpdate builder:

SConstruct script

env = Environment (tools = [’default’, ’xgettext’])

env [’ POTDOMAIN’] = "foo"

env.POTUpdate (source = ["a.cpp", "b.cpp"l) # Creates foo.pot

env.POTUpdate (POTDOMAIN = "bar", source = ["c.cpp", "d.cpp"]) # and bar.pot

Example 3. The sources may be specified within separate file, for example POTFILES. in:

POTFILES.in in ’po/’ subdirectory
../a.cpp

../b.cpp

end of file

The name of the file (POTFILES. in) containing the list of sources is provided via
$XGETTEXTFROM:

SConstruct file in ’'po/’ subdirectory
env = Environment (tools = [’'default’, ’xgettext’])
env.POTUpdate (XGETTEXTFROM = ’'POTFILES.in’)

Example 4. You may use $XGETTEXTPATH to define source search path. Assume, for example,
that you have files a . cpp, b.cpp, po/SConstruct, po/POTFILES. in. Then your pOT-related
files could look as below:

POTFILES.in in ’po/’ subdirectory
a.cpp
b.cpp
end of file

261

Appendix B. Builders

SConstruct file in ’'po/’ subdirectory
env = Environment (tools = [’‘default’, ’xgettext’])
env.POTUpdate (XGETTEXTFROM = 'POTFILES.in’, XGETTEXTPATH='../')

Example 5. Multiple search directories may be defined within a list, i.e. XGETTEXTPATH =
["dirl’, ’'dir2’, ...1.The order in the list determines the search order of source files. The
path to the first file found is used.

Let’s create 0/1/po/SConstruct script:

SConstruct file in '0/1/po/’ subdirectory
env = Environment (tools = [’default’, ’xgettext’])
env.POTUpdate (XGETTEXTFROM = 'POTFILES.in’, XGETTEXTPATH=[’../’, '../../"1)

and 0/1/po/POTFILES. in:

POTFILES.in in '0/1/po/’ subdirectory

a.cpp
end of file

Write two «* . cpp files, the first one is 0/a . cpp:

/% 0/a.cpp */
gettext ("Hello from ../../a.cpp")

and the second is 0/1/a.cpp:

/+x 0/1/a.cpp */
gettext ("Hello from ../a.cpp")

then run scons. You’ll obtain 0/1/po/messages.pot with the message "Hello from
./a.cpp". When you reverse order in $XGETTEXTFOM, i.e. when you write SConscript as

SConstruct file in ’'0/1/po/’ subdirectory
env = Environment (tools = [’‘default’, ’xgettext’])
env.POTUpdate (XGETTEXTFROM = 'POTFILES.in’, XGETTEXTPATH=['../../', "../"1)

then the messages.pot will contain msgid "Hello from ../../a.cpp" line and not msgid
"Hello from ../a.cpp".

POUpdate ()

env.POUpdate ()
The builder belongs to msgmerge tool. The builder updates po files with msgmerge(1), or
initializes missing PO files as described in documentation of msginit tool and POInit builder (see

also SPOAUTOINIT). Note, that POUpdate does not add its targets to po—create alias as POInit
does.

262

Appendix B. Builders

Target nodes defined through POUpdate are not built by default (they’re Tgnored from ’ .’ node).

Instead, they are added automatically to special Alias (' po—update’ by default). The alias name

may be changed through the SPOUPDATE_ALIAS construction variable. You can easilly update poO
files in your project by scons po-update.

Example 1. Update en.po and p1.po from messages.pot template (see also SPOTDOMAIN),
assuming that the later one exists or there is rule to build it (see POTUpdate):

#
env.POUpdate([’en’,’'pl’]) # messages.pot —--> [en.po, pl.po]

Example 2. Update en.po and pl.po from foo.pot template:

#
env.POUpdate([’en’, 'pl’], ["foo’]) # foo.pot —-—> [en.po, pl.pl]

Example 3. Update en.po and pl.po from foo.pot (another version):

...
env.POUpdate([’en’, 'pl’], POTDOMAIN=’foo’) # foo.pot -- > [en.po, pl.pl]

Example 4. Update files for languages defined in LINGUAS file. The files are updated from
messages.pot template:

...
env.POUpdate (LINGUAS_FILE = 1) # needs ’LINGUAS’ file

Example 5. Same as above, but update from foo.pot template:

...
env.POUpdate (LINGUAS_FILE = 1, source = [’'foo0’])

Example 6. Update en.po and pl.po plus files for languages defined in LINGUAS file. The files are
updated from messages.pot template:

produce ’'en.po’, ’'pl.po’ + files defined in ’'LINGUAS’:
env.POUpdate(["en’, ’'pl’], LINGUAS_FILE = 1)

Example 7. Use SPOAUTOINIT to automatically initialize PO file if it doesn’t exist:

...
env.POUpdate (LINGUAS_FILE = 1, POAUTOINIT = 1)

Example 8. Update po files for languages defined in LINGUAS file. The files are updated from
foo.pot template. All necessary settings are pre-configured via environment.

oo,

env [/ POAUTOINIT’] = 1
env [’ LINGUAS_FILE'] =1
env [’ POTDOMAIN’] = ’foo’

263

Appendix B. Builders

env.POUpdate ()

Program ()
env.Program()

Builds an executable given one or more object files or C, C++, D, or Fortran source files. If any C,
C++, D or Fortran source files are specified, then they will be automatically compiled to object files
using the Object builder method; see that builder method’s description for a list of legal source file
suffixes and how they are interpreted. The target executable file prefix (specified by the
$PROGPREFIX construction variable; nothing by default) and suffix (specified by the
$PROGSUFFIX construction variable; by default, . exe on Windows systems, nothing on POSIX
systems) are automatically added to the target if not already present. Example:

env.Program(target = ’'foo’, source = [’'foo.0’, ’'bar.c’, ’'baz.f’])

RES ()

env.RES ()
Builds a Microsoft Visual C++ resource file. This builder method is only provided when Microsoft
Visual C++ or MinGW is being used as the compiler. The . res (or .o for MinGW) suffix is added
to the target name if no other suffix is given. The source file is scanned for implicit dependencies as
though it were a C file. Example:
env.RES (' resource.rc’)

RMIC ()

env.RMIC ()

Builds stub and skeleton class files for remote objects from Java . class files. The target is a
directory relative to which the stub and skeleton class files will be written. The source can be the
names of . class files, or the objects return from the Java builder method.

If the construction variable $JAVACLASSDIR is set, either in the environment or in the call to the
RMIC builder method itself, then the value of the variable will be stripped from the beginning of any
.class file names.

classes = env.Java(target = ’classdir’, source = ’'src’)

env.RMIC (target = ’'outdirl’, source = classes)

env.RMIC (target = ’'outdir2’,
source = [’package/foo.class’, ’'package/bar.class’])

env.RMIC (target "outdir3’,
source = [’classes/foo.class’, ’'classes/bar.class’],
JAVACLASSDIR = ’‘classes’)

264

Appendix B. Builders

RPCGenClient ()
env.RPCGenClient ()

Generates an RPC client stub (_c1nt.c) file from a specified RPC (. x) source file. Because rpcgen
only builds output files in the local directory, the command will be executed in the source file’s
directory by default.

Builds src/rpcif_clnt.c
env.RPCGenClient (' src/rpcif.x’)

RPCGenHeader ()

env.RPCGenHeader ()

Generates an RPC header (. h) file from a specified RPC (. x) source file. Because rpcgen only
builds output files in the local directory, the command will be executed in the source file’s directory
by default.

Builds src/rpcif.h
env.RPCGenHeader (' src/rpcif.x’)

RPCGenService ()
env.RPCGenService ()
Generates an RPC server-skeleton (_svc. c) file from a specified RPC (. x) source file. Because

rpcgen only builds output files in the local directory, the command will be executed in the source
file’s directory by default.

Builds src/rpcif_svc.c
env.RPCGenClient (' src/rpcif.x’)

RPCGenXDR ()
env.RPCGenXDR ()
Generates an RPC XDR routine (_xdr . c) file from a specified RPC (. x) source file. Because

rpcgen only builds output files in the local directory, the command will be executed in the source
file’s directory by default.

Builds src/rpcif_xdr.c
env.RPCGenClient (' src/rpcif.x’)

SharedLibrary ()

env.SharedLibrary ()

Builds a shared library (. so on a POSIX system, .d11 on Windows) given one or more object files
or C, C++, D or Fortran source files. If any source files are given, then they will be automatically
compiled to object files. The static library prefix and suffix (if any) are automatically added to the
target. The target library file prefix (specified by the $SHLIBPREFIX construction variable; by
default, 1ib on POSIX systems, nothing on Windows systems) and suffix (specified by the
$SHLIBSUFFIX construction variable; by default, .d11 on Windows systems, . so on POSIX
systems) are automatically added to the target if not already present. Example:

env.SharedLibrary (target = ’"bar’, source = [’'bar.c’, ’"foo.o0’'])

265

Appendix B. Builders

On Windows systems, the SharedLibrary builder method will always build an import (. 1ib)
library in addition to the shared (.d11) library, adding a . 1ib library with the same basename if
there is not already a . 11ib file explicitly listed in the targets.

Any object files listed in the source must have been built for a shared library (that is, using the
SharedObject builder method). scons will raise an error if there is any mismatch.

On some platforms, there is a distinction between a shared library (loaded automatically by the
system to resolve external references) and a loadable module (explicitly loaded by user action). For
maximum portability, use the LoadableModule builder for the latter.

When the $SHLIBVERSION construction variable is defined a versioned shared library is created.
This modifies the $SSHLINKFLAGS as required, adds the version number to the library name, and
creates the symlinks that are needed. $SSHLIBVERSION needs to be of the form X.Y.Z, where X
and Y are numbers, and Z is a number but can also contain letters to designate alpha, beta, or release
candidate patch levels.

This builder may create multiple links to the library. On a POSIX system, for the shared library
libbar.so.2.3.1, the links created would be libbar.so, libbar.so.2, and libbar.so.2.3; on a Darwin
(OSX) system the library would be libbar.2.3.1.dylib and the link would be libbar.dylib.

On Windows systems, specifying register=1 will cause the .d11 to be registered after it is built
using REGSVR32. The command that is run ("regsvr32" by default) is determined by $SREGSVR
construction variable, and the flags passed are determined by SREGSVRFLAGS. By default,
$REGSVRFLAGS includes the /s option, to prevent dialogs from popping up and requiring user
attention when it is run. If you change SREGSVRFLAGS, be sure to include the /s option. For
example,

env.SharedLibrary (target = ’"bar’,
source = [’'bar.cxx’, ’'foo.obj’],
register=1)

will register bar.d11 as a COM object when it is done linking it.

SharedObject ()

env.SharedObject ()

Builds an object file for inclusion in a shared library. Source files must have one of the same set of
extensions specified above for the StaticObject builder method. On some platforms building a
shared object requires additional compiler option (e.g. -£PIC for gce) in addition to those needed to
build a normal (static) object, but on some platforms there is no difference between a shared object
and a normal (static) one. When there is a difference, SCons will only allow shared objects to be
linked into a shared library, and will use a different suffix for shared objects. On platforms where
there is no difference, SCons will allow both normal (static) and shared objects to be linked into a
shared library, and will use the same suffix for shared and normal (static) objects. The target object

266

Appendix B. Builders

file prefix (specified by the $SHOBJPREFIX construction variable; by default, the same as
$OBJPREFIX) and suffix (specified by the $SHOBJSUFFIX construction variable) are
automatically added to the target if not already present. Examples:

env.SharedObject (target = ’ddd’, source = ’'ddd.c’)
env.SharedObject (target = ’"eee.o’, source = ’'eee.cpp’)
env.SharedObject (target = 'fff.obj’, source = "fff.for’)

Note that the source files will be scanned according to the suffix mappings in the
SourceFileScanner object. See the section "Scanner Objects," below, for more information.

StaticLibrary ()

env.StaticLibrary ()

Builds a static library given one or more object files or C, C++, D or Fortran source files. If any
source files are given, then they will be automatically compiled to object files. The static library
prefix and suffix (if any) are automatically added to the target. The target library file prefix
(specified by the $LIBPREFIX construction variable; by default, 1ib on POSIX systems, nothing
on Windows systems) and suffix (specified by the $LIBSUFFIX construction variable; by default,
.1ib on Windows systems, .a on POSIX systems) are automatically added to the target if not
already present. Example:

env.StaticLibrary (target = ’"bar’, source = [’'bar.c’, ’'foo.0’])

Any object files listed in the source must have been built for a static library (that is, using the
StaticObject builder method). scons will raise an error if there is any mismatch.

StaticObject ()

env.StaticObject ()

Builds a static object file from one or more C, C++, D, or Fortran source files. Source files must
have one of the following extensions:

.asm assembly language file

.ASM assembly language file

.C C file

.C Windows: C file
POSIX: C++ file

.cc C++ file

. Ccpp C++ file

. CXX Ct++ file

. CXX C++ file

.ctt C++ file

.C++ C++ file

.d D file

£ Fortran file

F Windows: Fortran file
POSIX: Fortran file + C pre-processor
.for Fortran file

267

Appendix B. Builders

.FOR Fortran file
.fpp Fortran file + C pre-processor
.FPP Fortran file + C pre-processor
.m Object C file
.mm Object C++ file
.S assembly language file
.S Windows: assembly language file
ARM: CodeSourcery Sourcery Lite
.SX assembly language file + C pre-processor
POSIX: assembly language file + C pre-processor
. Spp assembly language file + C pre-processor
.SPP assembly language file + C pre-processor

The target object file prefix (specified by the SOBJPREFIX construction variable; nothing by
default) and suffix (specified by the SOBJSUFFIX construction variable; . ob3j on Windows
systems, .o on POSIX systems) are automatically added to the target if not already present.

Examples:

env.StaticObject (target = ’"aaa’, source = 'aaa.c’)
env.StaticObject (target = ’"bbb.o’, source = ’'bbb.c++’)
env.StaticObject (target = ’"ccc.obj’, source = ’"ccc.f’)

Note that the source files will be scanned according to the suffix mappings in
SourceFileScanner object. See the section "Scanner Objects," below, for more information.

Substfile ()
env.Substfile ()

The subst f£ile builder generates a single text file by concatenating the source files. Nested lists of
sources are flattened. SLINESEPARATOR is used to separate the source files; see the description of
Textfile for details.

If a single source file is present with an . in suffix, the suffix is stripped and the remainder is used as
the default target name.

The prefix and suffix specified by the $SUBSTFILEPREFIX and $SUBSTFILESUFFIX
construction variables (the null string by default in both cases) are automatically added to the target
if they are not already present.

If a construction variable named $SUBST_DICT is present, it may be either a Python dictionary or
a sequence of (key,value) tuples. If the former, the dictionary is converted into a list of tuples in an
arbitrary order, so if one key is a prefix of another key or if one substitution could be further
expanded by another subsitition, it is unpredictible whether the expansion will occur.

268

Appendix B. Builders

Any occurences in the source of a key are replaced by the corresponding value, which may be a
Python callable function or a string. If a value is a function, it is first called (with no arguments) to
produce a string. The string is subst-expanded and the result replaces the key.

env = Environment (tools = ['default’, ’'textfile’])

env[’/prefix’] = ’/usr/bin’
script_dict = {’Q@prefix@’: ’/bin’, Qexec_prefix@: ’'Sprefix’}
env.Substfile (’script.in’, SUBST_DICT = script_dict)

conf_dict = {’%VERSION%’: '1.2.3’, ’'%BASE%’: ’"MyProg’}
env.Substfile(’config.h.in’, conf_dict, SUBST_DICT = conf_dict)

UNPREDICTABLE - one key is a prefix of another
bad_foo = {’S$foo’: "S$foo’, ’'Sfoobar’: ’Sfoobar’}
env.Substfile(’ foo.in’, SUBST_DICT = bad_foo)

PREDICTABLE - keys are applied longest first
good_foo = [('S$foobar’, ’'Sfoobar’), (’S$foo’, ’'S$foo’)]
env.Substfile (' foo.in’, SUBST_DICT = good_foo)

UNPREDICTABLE - one substitution could be futher expanded
bad_bar = {’@bar@’: ’'@soap@’, ’'@soapl’: ’"lye’}
env.Substfile("bar.in’, SUBST_DICT = bad_bar)

PREDICTABLE - substitutions are expanded in order
good_bar = (('@bar@’, ’'@scap@’), ('@soapl’, ’'lye’))
env.Substfile(’bar.in’, SUBST_DICT = good_bar)

the SUBST_DICT may be in common (and not an override)

substutions = {}

subst = Environment (tools = ['textfile’], SUBST_DICT = substitutions)
substitutions[’@fooR’] = ' foo’

subst [/ SUBST_DICT’] [’ @bar@’] = ’'bar’

subst.Substfile ("pgml.c’, [Value(’#include "@foo@.h"'"),
Value (' #include "@bar@.h"’),
"common.in",
"pgml.in"
1)

subst.Substfile ('pgm2.c’, [Value (’#include "@foo@.h"’),
Value (' #include "@bar@.h"’),
"common.in",
"pgm2.in"
1)

Tar ()

env.Tar ()

Builds a tar archive of the specified files and/or directories. Unlike most builder methods, the Tar
builder method may be called multiple times for a given target; each additional call adds to the list
of entries that will be built into the archive. Any source directories will be scanned for changes to

269

Appendix B. Builders

any on-disk files, regardless of whether or not scons knows about them from other Builder or
function calls.

env.Tar ("src.tar’, ’"src’)

Create the stuff.tar file.
env.Tar (' stuff’, [’subdirl’, ’subdir2’])

Also add "another" to the stuff.tar file.
env.Tar ("stuff’, ’another’)

Set TARFLAGS to create a gzip-filtered archive.
env = Environment (TARFLAGS = "-c —-z')
env.Tar (' foo.tar.gz’, ’'foo’)

Also set the suffix to .tgz.

env = Environment (TARFLAGS = "-c -z',
TARSUFFIX = '.tgz’)

env.Tar (" foo’)

Textfile ()

env.Textfile ()

The Text file builder generates a single text file. The source strings constitute the lines; nested
lists of sources are flattened. SLINESEPARATOR is used to separate the strings.

If present, the $SUBST_DICT construction variable is used to modify the strings before they are
written; see the Subst £ile description for details.

The prefix and suffix specified by the $TEXTFILEPREFIX and $STEXTFILESUFFIX construction
variables (the null string and . txt by default, respectively) are automatically added to the target if
they are not already present. Examples:

builds/writes foo.txt
env.Textfile (target = "foo.txt’, source = [’Goethe’, 42, ’'Schiller’])

builds/writes bar.txt

env.Textfile (target = ’'bar’,
source = [’lalala’, ’tanteratei’],
LINESEPARATOR=" | *')

nested lists are flattened automatically
env.Textfile(target = 'blob’,

source = [’lalala’, [’Goethe’, 42 ’'Schiller’], ’"tanteratei’])

files may be used as input by wraping them in File ()

env.Textfile (target = ’concat’, # concatenate files with a marker between
source = [File(’concatl’), File(’concat2’)],
LINESEPARATOR = ' \n’)

Results are:
foo.txt
T < Sttt

270

Appendix B. Builders

Goethe

42

Schiller

....8<-——-= (no linefeed at the end)

bar.txt:
e 8=
lalalal*tanteratei
....8<———— (no linefeed at the end)

blob.txt
T
lalala
Goethe
42
Schiller
tanteratei
...8<———— (no linefeed at the end)

Translate ()

env.Translate ()

This pseudo-builder belongs to get text toolset. The builder extracts internationalized messages
from source files, updates POT template (if necessary) and then updates PO translations (if
necessary). If SPOAUTOINIT is set, missing PO files will be automatically created (i.e. without
translator person intervention). The variables SLINGUAS_FILE and $POTDOMAIN are taken into
acount too. All other construction variables used by POTUpdate, and POUpdate work here too.

Example 1. The simplest way is to specify input files and output languages inline in a SCons script
when invoking Translate

SConscript in ’po/’ directory

env = Environment (tools = ["default", "gettext"])
env[’/POAUTOINIT’] = 1

env.Translate([’'en’,’pl’], [’'../a.cpp’,’../b.cpp’])

Example 2. If you wish, you may also stick to conventional style known from autotools, i.e. using
POTFILES.in and LINGUAS files

LINGUAS
en pl
#end

POTFILES.in

.cpp

.cpp
end

#+= O 0 #*

SConscript

271

Appendix B. Builders

env = Environment (tools = ["default", "gettext"])
env [/POAUTOINIT’] = 1
env [/ XGETTEXTPATH’] = ['../"]

env.Translate (LINGUAS_FILE = 1, XGETTEXTFROM = ’'POTFILES.in’)

The last approach is perhaps the recommended one. It allows easily split
internationalization/localization onto separate SCons scripts, where a script in source tree is
responsible for translations (from sources to PO files) and script(s) under variant directories are
responsible for compilation of PO to MO files to and for installation of MO files. The "gluing factor"
synchronizing these two scripts is then the content of LINGUAS file. Note, that the updated POT and
PO files are usually going to be committed back to the repository, so they must be updated within
the source directory (and not in variant directories). Additionaly, the file listing of po/ directory
contains LINGUAS file, so the source tree looks familiar to translators, and they may work with the
project in their usual way.

Example 3. Let’s prepare a development tree as below

project/

+ SConstruct

+ build/

+ src/

+ po/

+ SConscript
+ SConscript.il8n
+ POTFILES.in
+ LINGUAS

with build being variant directory. Write the top-level SConstruct script as follows

SConstruct
env = Environment (tools = ["default", "gettext"])

VariantDir ("build’, ’src’, duplicate = 0)

env [/ POAUTOINIT’] = 1
SConscript (! src/po/SConscript.il8n’, exports = ’'env’)
SConscript (‘build/po/SConscript’, exports = ’env’)

the src/po/SConscript.il18n as

src/po/SConscript.il8n
Import ("env’)

env.Translate (LINGUAS_FILE=1, XGETTEXTFROM='POTFILES.in’, XGETTEXTPATH=['.

and the src/po/SConscript

src/po/SConscript
Import ("env’)
env.MOFiles (LINGUAS_FILE = 1)

272

/7))

Appendix B. Builders

Such setup produces POT and PO files under source tree in src/po/ and binary MO files under
variant tree in build/po/. This way the POT and PO files are separated from other output files,
which must not be committed back to source repositories (e.g. MO files).

Note: In above example, the po files are not updated, nor created automatically when you issue
scons ’. command. The files must be updated (created) by hand via scons po-update and
then mo files can be compiled by running scons °..

TypeLibrary ()
env.TypelLibrary ()
Builds a Windows type library (.t 1b) file from an input IDL file (. 1d1). In addition, it will build

the associated inteface stub and proxy source files, naming them according to the base name of the
.id1 file. For example,

env.Typelibrary (source="foo.idl")

Will create foo.t1lb, foo.h, foo_i.c, foo_p.c and foo_data. c files.

Uic ()

env.Uic ()

Builds a header file, an implementation file and a moc file from an ui file. and returns the
corresponding nodes in the above order. This builder is only available after using the tool ’qt’. Note:
you can specify .ui files directly as source files to the Program, Library and SharedLibrary
builders without using this builder. Using this builder lets you override the standard naming
conventions (be careful: prefixes are always prepended to names of built files; if you don’t want
prefixes, you may set them to “). See the $QTDIR variable for more information. Example:
env.Uic (' foo.ui’) # -> [’foo.h’, 'uic_foo.cc’, 'moc_foo.cc’]
env.Uic (target = Split(’include/foo.h gen/uicfoo.cc gen/mocfoo.cc’),
source = "foo.ui’) # -> [’include/foo.h’, "gen/uicfoo.cc’, ’'gen/mocfoo.cc’]

z2ip ()

env.zZip ()
Builds a zip archive of the specified files and/or directories. Unlike most builder methods, the Zip
builder method may be called multiple times for a given target; each additional call adds to the list
of entries that will be built into the archive. Any source directories will be scanned for changes to

any on-disk files, regardless of whether or not scons knows about them from other Builder or
function calls.

env.Zip(’'src.zip’, ’'src’)

273

Appendix B. Builders

Create the stuff.zip file.
env.Zip (’stuff’, [’subdirl’, ’subdir2’])

Also add "another" to the stuff.tar file.

env.Zip (' stuff’, ’another’)

274

Appendix C. Tools

This appendix contains descriptions of all of the Tools modules that are available "out of the box" in this
version of SCons.

386asm

Sets construction variables for the 386 ASM assembler for the Phar Lap ETS embedded operating
system.

Sets: $AS, SASCOM, $ASFLAGS, $ASPPCOM, $ASPPFLAGS.

Uses: $CC, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPINCFLAGS.

aixc++

Sets construction variables for the IMB xIc / Visual Age C++ compiler.

Sets: $CXX, $CXXVERSION, $SHCXX, $SHOBJSUFFIX.

aixcc

Sets construction variables for the IBM xIc / Visual Age C compiler.

Sets: $CC, $CCVERSION, $SHCC.

aixf77

Sets construction variables for the IBM Visual Age {77 Fortran compiler.

Sets: $F77, $SHF77.

aixlink

Sets construction variables for the IBM Visual Age linker.

Sets: SLINKFLAGS, $SHLIBSUFFIX, $SHLINKFLAGS.

applelink

Sets construction variables for the Apple linker (similar to the GNU linker).

275

ar

as

Appendix C. Tools

Sets: SFRAMEWORKPATHPREFIX, SLDMODULECOM, $SLDMODULEFLAGS,
$LDMODULEPREFIX, SLDMODULESUFFIX, $LINKCOM, $SHLINKCOM,
$SHLINKFLAGS, $_ FRAMEWORKPATH, $_FRAMEWORKS.

Uses: SFRAMEWORKSFLAGS.

Sets construction variables for the ar library archiver.

Sets: SAR, SARCOM, $ARFLAGS, $SLIBPREFIX, $LIBSUFFIX, $SRANLIB, SRANLIBCOM,
$RANLIBFLAGS.

Sets construction variables for the as assembler.

Sets: $AS, SASCOM, $ASFLAGS, $ASPPCOM, $ASPPFLAGS.

Uses: $CC, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPINCFLAGS.

bee32

Sets construction variables for the bce32 compiler.

Sets: $CC, $CCCOM, $CCFLAGS, $CFILESUFFIX, $SCFLAGS, $CPPDEFPREFIX,
$CPPDEFSUFFIX, $INCPREFIX, $INCSUFFIX, $SHCC, $SHCCCOM, $SHCCFLAGS,
$SHCFLAGS, $SHOBJSUFFIX.

Uses: $_CPPDEFFLAGS, $_CPPINCFLAGS.

BitKeeper

CC

Sets construction variables for the BitKeeper source code control system.

Sets: $BITKEEPER, $BITKEEPERCOM, $BITKEEPERGET, $BITKEEPERGETFLAGS.

Uses: $BITKEEPERCOMSTR.

Sets construction variables for generic POSIX C copmilers.

276

cvf

CVS

cXX

Appendix C. Tools

Sets: $CC, $CCCOM, $CCFLAGS, $CFILESUFFIX, $SCFLAGS, $CPPDEFPREFIX,
$CPPDEFSUFFIX, SFRAMEWORKPATH, $FRAMEWORKS, $SINCPREFIX, $SINCSUFFIX,
$SHCC, $SHCCCOM, $SHCCFLAGS, $SHCFLAGS, $SHOBJSUFFIX.

Uses: $SPLATFORM.

Sets construction variables for the Compaq Visual Fortran compiler.

Sets: SFORTRAN, $SFORTRANCOM, SFORTRANMODDIR, $FORTRANMODDIRPREFIX,
$FORTRANMODDIRSUFFIX, SFORTRANPPCOM, $OBJSUFFIX, $SHFORTRANCOM,
$SHFORTRANPPCOM.

Uses: $CPPFLAGS, $SFORTRANFLAGS, $SHFORTRANFLAGS, $_CPPDEFFLAGS,
$_FORTRANINCFLAGS, $_FORTRANMODFLAG.

Sets construction variables for the CVS source code management system.

Sets: $CVS, SCVSCOFLAGS, $CVSCOM, $CVSFLAGS.

Uses: $CVSCOMSTR.

Sets construction variables for generic POSIX C++ compilers.

Sets: $CPPDEFPREFIX, $CPPDEFSUFFIX, $CXX, $CXXCOM, $CXXFILESUFFIX,
$CXXFLAGS, $INCPREFIX, $INCSUFFIX, $OBJSUFFIX, $SHCXX, $SHCXXCOM,
$SHCXXFLAGS, $SHOBJSUFFIX.

Uses: $CXXCOMSTR.

default

dmd

Sets variables by calling a default list of Tool modules for the platform on which SCons is running.

Sets construction variables for D language compilers (the Digital Mars D compiler, or GDC).

277

dvi

Appendix C. Tools

Attaches the DVI builder to the construction environment.

dvipdf

Sets construction variables for the dvipdf utility.

Sets: $DVIPDF, $DVIPDFCOM, $DVIPDFFLAGS.

Uses: $DVIPDFCOMSTR.

dvips

77

90

95

Sets construction variables for the dvips utility.

Sets: SDVIPS, $SDVIPSFLAGS, $PSCOM, $PSPREFIX, $PSSUFFIX.

Uses: $PSCOMSTR.

Set construction variables for generic POSIX Fortran 77 compilers.

Sets: $F77, SF77COM, $F77FILESUFFIXES, $F77FLAGS, $F77PPCOM,
$F77PPFILESUFFIXES, $FORTRAN, $FORTRANCOM, $FORTRANFLAGS, $SHF77,
$SHF77COM, $SHF77FLAGS, $SHF77PPCOM, $SHFORTRAN, $SHFORTRANCOM,
$SHFORTRANFLAGS, $SHFORTRANPPCOM, $_F77INCFLAGS.

Uses: $F77COMSTR, $F77PPCOMSTR, SFORTRANCOMSTR, SFORTRANPPCOMSTR,
$SHF77COMSTR, $SHF77PPCOMSTR, $SHFORTRANCOMSTR, $SHFORTRANPPCOMSTR.

Set construction variables for generic POSIX Fortran 90 compilers.

Sets: $F90, SFOOCOM, $FOOFLAGS, $FOOPPCOM, $SHF90, $SHF90COM, $SHF90FLAGS,
$SHF90PPCOM, $_F9OINCFLAGS.

Uses: SFOOCOMSTR, $F90PPCOMSTR, $SHF90COMSTR, $SHFOOPPCOMSTR.

Set construction variables for generic POSIX Fortran 95 compilers.

278

Appendix C. Tools

Sets: $F95, SFOSCOM, $F9SFLAGS, $F95SPPCOM, $SHF95, $SHF95COM, $SHF95SFLAGS,
$SHF95PPCOM, $_F95INCFLAGS.

Uses: $SF9SCOMSTR, $F9SPPCOMSTR, $SHF9SCOMSTR, $SHFOSPPCOMSTR.

fortran

Set construction variables for generic POSIX Fortran compilers.

Sets: SFORTRAN, SFORTRANCOM, $SFORTRANFLAGS, $SHFORTRAN,
$SHFORTRANCOM, $SHFORTRANFLAGS, $SHFORTRANPPCOM.

Uses: SFORTRANCOMSTR, $SFORTRANPPCOMSTR, $SHFORTRANCOMSTR,
$SHFORTRANPPCOMSTR.

g++

Set construction variables for the gXX C++ compiler.

Sets: $CXX, $CXXVERSION, $SHCXXFLAGS, $SHOBJSUFFIX.

g77

Set construction variables for the g77 Fortran compiler. Calls the £77 Tool module to set variables.

gas

Sets construction variables for the gas assembler. Calls the as module.

Sets: $AS.

gcc

Set construction variables for the gcc C compiler.

Sets: $CC, $CCVERSION, $SHCCFLAGS.

gettext

This is actually a toolset, which supports internationalization and localization of sofware being
constructed with SCons. The toolset loads following tools:

+ xgettext - to extract internationalized messages from source code to POT file(s),

279

Appendix C. Tools

+ msginit - may be optionally used to initialize PO files,
« msgmerge - to update PO files, that already contain translated messages,

+ msgfmt - to compile textual PO file to binary installable Mo file.

When you enable gettext, it internally loads all abovementioned tools, so you’re encouraged to
see their individual documentation.

Each of the above tools provides its own builder(s) which may be used to perform particular
activities related to software internationalization. You may be however interested in top-level
builder Translate described few paragraphs later.

To use gettext tools add ' gettext’ tool to your environment:

env = Environment (tools = [’'default’, ’'gettext’])

gfortran

Sets construction variables for the GNU F95/F2003 GNU compiler.

Sets: $F77, $F90, $F95, SFORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHFOOFLAGS,
$SHF95, $SHF95FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

gnulink

Set construction variables for GNU linker/loader.

Sets: SRPATHPREFIX, $RPATHSUFFIX, $SHLINKFLAGS.

: Set construction variables for Ghostscript.
Sets: $GS, $GSCOM, $GSFLAGS.
Uses: $GSCOMSTR.

hpc++

Set construction variables for the compilers aCC on HP/UX systems.

280

hpcc

Appendix C. Tools

Set construction variables for the aCC on HP/UX systems. Calls the cxX tool for additional
variables.

Sets: $CXX, $CXXVERSION, $SHCXXFLAGS.

hplink

icc

icl

ifl

ifort

Sets construction variables for the linker on HP/UX systems.

Sets: SLINKFLAGS, $SHLIBSUFFIX, $SHLINKFLAGS.

Sets construction variables for the icc compiler on OS/2 systems.

Sets: $CC, $CCCOM, $CFILESUFFIX, $CPPDEFPREFIX, $CPPDEFSUFFIX, $CXXCOM,
$CXXFILESUFFIX, $INCPREFIX, $INCSUFFIX.

Uses: $CCFLAGS, $CFLAGS, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPINCFLAGS.

Sets construction variables for the Intel C/C++ compiler. Calls the intelc Tool module to set its
variables.

Sets construction variables for the Intel Fortran compiler.

Sets: SFORTRAN, $FORTRANCOM, $FORTRANPPCOM, $SHFORTRANCOM,
$SHFORTRANPPCOM.

Uses: $CPPFLAGS, SFORTRANFLAGS, $_CPPDEFFLAGS, $_FORTRANINCFLAGS.

Sets construction variables for newer versions of the Intel Fortran compiler for Linux.

Sets: $F77, $F90, $F95, SFORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHFOOFLAGS,
$SHF95, $SHF95FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

281

Appendix C. Tools
ilink

Sets construction variables for the ilink linker on OS/2 systems.

Sets: SLIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX, $LINK,
$LINKCOM, $LINKFLAGS.

ilink32

Sets construction variables for the Borland ilink32 linker.

Sets: SLIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX, $LINK,
$LINKCOM, $LINKFLAGS.

install

Sets construction variables for file and directory installation.

Sets: SINSTALL, $INSTALLSTR.

intelc

Sets construction variables for the Intel C/C++ compiler (Linux and Windows, version 7 and later).
Calls the gcc or msvce (on Linux and Windows, respectively) to set underlying variables.

Sets: $AR, $CC, $CXX, $INTEL_C_COMPILER_VERSION, SLINK.

jar

Sets construction variables for the jar utility.

Sets: $JAR, $JARCOM, $JARFLAGS, $JARSUFFIX.

Uses: $JARCOMSTR.

javac

Sets construction variables for the javac compiler.

Sets: STAVABOOTCLASSPATH, $JAVAC, $JAVACCOM, $JAVACFLAGS, $JAVACLASSPATH,
$JAVACLASSSUFFIX, $JAVASOURCEPATH, $JAVASUFFIX.

Uses: $JAVACCOMSTR.

282

Appendix C. Tools

javah

Sets construction variables for the javah tool.

Sets: $JAVACLASSSUFFIX, $JAVAH, $JAVAHCOM, $JAVAHFLAGS.

Uses: $JAVACLASSPATH, $JAVAHCOMSTR.

latex

Sets construction variables for the latex utility.

Sets: SLATEX, SLATEXCOM, $LATEXFLAGS.

Uses: SLATEXCOMSTR.

lex

Sets construction variables for the lex lexical analyser.

Sets: $LEX, SLEXCOM, $SLEXFLAGS.

Uses: SLEXCOMSTR.

link

Sets construction variables for generic POSIX linkers.

Sets: SLDMODULE, SLDMODULECOM, $LDMODULEFLAGS, $SLDMODULEPREFIX,
$LDMODULESUFFIX, SLIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX,
$LIBLINKSUFFIX, $LINK, SLINKCOM, $LINKFLAGS, $SHLIBSUFFIX, $SHLINK,
$SHLINKCOM, $SHLINKFLAGS.

Uses: SLDMODULECOMSTR, $LINKCOMSTR, $SHLINKCOMSTR.

linkloc

Sets construction variables for the LinkLoc linker for the Phar Lap ETS embedded operating
system.

283

m4

Appendix C. Tools

Sets: SLIBDIRPREFIX, $SLIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX, $LINK,
$LINKCOM, $LINKFLAGS, $SHLINK, $SHLINKCOM, $SHLINKFLAGS.

Uses: SLINKCOMSTR, $SHLINKCOMSTR.

Sets construction variables for the m4 macro processor.

Sets: $M4, $M4COM, $M4FLAGS.

Uses: $M4COMSTR.

masm

midl

Sets construction variables for the Microsoft assembler.

Sets: $AS, SASCOM, $ASFLAGS, $ASPPCOM, $ASPPFLAGS.

Uses: $ASCOMSTR, $ASPPCOMSTR, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPINCFLAGS.

Sets construction variables for the Microsoft IDL compiler.

Sets: $SMIDL, $MIDLCOM, $MIDLFLAGS.

Uses: SMIDLCOMSTR.

mingw

Sets construction variables for MinGW (Minimal Gnu on Windows).

Sets: $AS, $CC, $CXX, SLDMODULECOM, $LIBPREFIX, $LIBSUFFIX, $OBJSUFFIX, $RC,
$RCCOM, $RCFLAGS, $SRCINCFLAGS, $SRCINCPREFIX, $RCINCSUFFIX, $SHCCFLAGS,
$SHCXXFLAGS, $SHLINKCOM, $SHLINKFLAGS, $SHOBJSUFFIX,
$WINDOWSDEFPREFIX, $WINDOWSDEFSUFFIX.

Uses: $RCCOMSTR, $SHLINKCOMSTR.

284

Appendix C. Tools

msgfmt

This scons tool is a part of scons gettext toolset. It provides scons interface to msgfmt(1)
command, which generates binary message catalog (MO) from a textual translation description (PO).

Sets: SMOSUFFIX, $SMSGFMT, $SMSGFMTCOM, $MSGFMTCOMSTR, $MSGFMTFLAGS,
$POSUFFIX.

Uses: $LINGUAS_FILE.

msginit

This scons tool is a part of scons gettext toolset. It provides scons interface to msginit(1)
program, which creates new PO file, initializing the meta information with values from user’s
environment (or options).

Sets: SMSGINIT, SMSGINITCOM, $MSGINITCOMSTR, $MSGINITFLAGS, $POAUTOINIT,
$POCREATE_ALIAS, $POSUFFIX, $POTSUFFIX, $_MSGINITLOCALE.

Uses: $LINGUAS_FILE, $SPOAUTOINIT, $SPOTDOMAIN.

msgmerge
This scons tool is a part of scons gettext toolset. It provides scons interface to msgmerge(1)

command, which merges two Uniform style . po files together.

Sets: SMSGMERGE, $MSGMERGECOM, $MSGMERGECOMSTR, $SMSGMERGEFLAGS,
$POSUFFIX, $POTSUFFIX, SPOUPDATE_ALIAS.

Uses: $LINGUAS_FILE, $SPOAUTOINIT, SPOTDOMAIN.

mslib

Sets construction variables for the Microsoft mslib library archiver.

Sets: $AR, SARCOM, $ARFLAGS, $SLIBPREFIX, $LIBSUFFIX.

Uses: SARCOMSTR.

mslink

Sets construction variables for the Microsoft linker.

285

Appendix C. Tools

Sets: SLDMODULE, SLDMODULECOM, $LDMODULEFLAGS, $SLDMODULEPREFIX,
$LDMODULESUFFIX, SLIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX,
$LIBLINKSUFFIX, $LINK, SLINKCOM, $LINKFLAGS, $REGSVR, SREGSVRCOM,
$REGSVRFLAGS, $SHLINK, $SHLINKCOM, $SHLINKFLAGS, $WIN32DEFPREFIX,
$WIN32DEFSUFFIX, $WIN32EXPPREFIX, $WIN32EXPSUFFIX, $WINDOWSDEFPREFIX,
$WINDOWSDEFSUFFIX, $WINDOWSEXPPREFIX, $WINDOW SEXPSUFFIX,
$WINDOWSPROGMANIFESTPREFIX, SWINDOWSPROGMANIFESTSUFFIX,
$WINDOWSSHLIBMANIFESTPREFIX, $WINDOWSSHLIBMANIFESTSUFFIX,
$WINDOWS_INSERT_DEF.

Uses: SLDMODULECOMSTR, $LINKCOMSTR, $REGSVRCOMSTR, $SHLINKCOMSTR.

mssdk

Sets variables for Microsoft Platform SDK and/or Windows SDK. Note that unlike most other Tool
modules, mssdk does not set construction variables, but sets the environment variables in the
environment SCons uses to execute the Microsoft toolchain: $INCLUDES%, $LIB%, $LIBPATHS and
SPATHS.

Uses: $MSSDK_DIR, $MSSDK_VERSION, $MSVS_VERSION.

msvce

Sets construction variables for the Microsoft Visual C/C++ compiler.

Sets: SBUILDERS, $CC, $CCCOM, $CCFLAGS, $CCPCHFLAGS, $CCPDBFLAGS,
$CFILESUFFIX, $CFLAGS, $CPPDEFPREFIX, $CPPDEFSUFFIX, $CXX, $CXXCOM,
$CXXFILESUFFIX, $CXXFLAGS, $INCPREFIX, $INCSUFFIX, $OBJPREFIX, $SOBJSUFFIX,
$PCHCOM, $PCHPDBFLAGS, $RC, SRCCOM, $RCFLAGS, $SHCC, $SHCCCOM,
$SHCCFLAGS, $SHCFLAGS, $SHCXX, $SHCXXCOM, $SHCXXFLAGS, $SHOBJPREFIX,
$SHOBJSUFFIX.

Uses: SCCCOMSTR, $CXXCOMSTR, $PCH, SPCHSTOP, $PDB, $SHCCCOMSTR,
$SHCXXCOMSTR.

msvs

Sets construction variables for Microsoft Visual Studio.

Sets: SMSVSBUILDCOM, $MSVSCLEANCOM, $MSVSENCODING, $MSVSPROJECTCOM,
$MSVSREBUILDCOM, $MSVSSCONS, $SMSVSSCONSCOM, $MSVSSCONSCRIPT,
$MSVSSCONSFLAGS, $SMSVSSOLUTIONCOM.

286

Appendix C. Tools

mwcce

Sets construction variables for the Metrowerks CodeWarrior compiler.

Sets: $CC, $CCCOM, $CFILESUFFIX, $CPPDEFPREFIX, $CPPDEFSUFFIX, $CXX,
$CXXCOM, $CXXFILESUFFIX, $INCPREFIX, $INCSUFFIX, SMWCW_VERSION,
$MWCW_VERSIONS, $SHCC, $SHCCCOM, $SHCCFLAGS, $SHCFLAGS, $SHCXX,
$SHCXXCOM, $SHCXXFLAGS.

Uses: $CCCOMSTR, $CXXCOMSTR, $SHCCCOMSTR, $SHCXXCOMSTR.

mwld

Sets construction variables for the Metrowerks CodeWarrior linker.

Sets: $AR, SARCOM, $LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX,
$LIBLINKSUFFIX, $LINK, $LINKCOM, $SHLINK, $SHLINKCOM, $SHLINKFLAGS.

nasm

Sets construction variables for the nasm Netwide Assembler.

Sets: $AS, SASCOM, $ASFLAGS, $ASPPCOM, $ASPPFLAGS.

Uses: SASCOMSTR, SASPPCOMSTR.

Packaging

Sets construction variables for the Package Builder.

packaging

A framework for building binary and source packages.

pdf

Sets construction variables for the Portable Document Format builder.

Sets: $PDFPREFIX, $PDFSUFFIX.

pdfiatex

Sets construction variables for the pdfiatex utility.

Sets: SLATEXRETRIES, $PDFLATEX, $PDFLATEXCOM, $PDFLATEXFLAGS.

287

Appendix C. Tools

Uses: $PDFLATEXCOMSTR.

pdftex

Sets construction variables for the pdftex utility.

Sets: SLATEXRETRIES, $PDFLATEX, $PDFLATEXCOM, $PDFLATEXFLAGS, $PDFTEX,
$PDFTEXCOM, $PDFTEXFLAGS.

Uses: SPDFLATEXCOMSTR, $PDFTEXCOMSTR.

Perforce

Sets construction variables for interacting with the Perforce source code management system.
Sets: $P4, $P4COM, $PAFLAGS.

Uses: $P4COMSTR.

qt

Sets construction variables for building Qt applications.

Sets: $QTDIR, $QT_AUTOSCAN, $QT_BINPATH, $QT_CPPPATH, $QT_LIB, $QT_LIBPATH,
$QT_MOC, $QT_MOCCXXPREFIX, $QT_MOCCXXSUFFIX, $QT_MOCFROMCXXCOM,
$QT_MOCFROMCXXFLAGS, $QT_MOCFROMHCOM, $QT_MOCFROMHFLAGS,
$QT_MOCHPREFIX, $QT_MOCHSUFFIX, $QT_UIC, $QT_UICCOM, $QT_UICDECLFLAGS,
$QT_UICDECLPREFIX, $QT_UICDECLSUFFIX, $QT_UICIMPLFLAGS,
$QT_UICIMPLPREFIX, $QT_UICIMPLSUFFIX, $QT_UISUFFIX.

RCS

Sets construction variables for the interaction with the Revision Control System.
Sets: $RCS, $RCS_CO, $RCS_COCOM, $RCS_COFLAGS.

Uses: $SRCS_COCOMSTR.

rmic

Sets construction variables for the rmic utility.

288

Appendix C. Tools

Sets: $JAVACLASSSUFFIX, $RMIC, $SRMICCOM, $SRMICFLAGS.

Uses: $RMICCOMSTR.

rpcgen

Sets construction variables for building with RPCGEN.

Sets: SRPCGEN, $SRPCGENCLIENTFLAGS, $RPCGENFLAGS, $RPCGENHEADERFLAGS,
$RPCGENSERVICEFLAGS, $SRPCGENXDRFLAGS.

SCCS

Sets construction variables for interacting with the Source Code Control System.

Sets: $SCCS, $SCCSCOM, $SCCSFLAGS, $SCCSGETFLAGS.

Uses: $SCCSCOMSTR.

sgiar

Sets construction variables for the SGI library archiver.

Sets: $AR, SARCOMSTR, $ARFLAGS, $SLIBPREFIX, $LIBSUFFIX, $SHLINK,
$SHLINKFLAGS.

Uses: SARCOMSTR, $SHLINKCOMSTR.

sgic++

Sets construction variables for the SGI C++ compiler.

Sets: $CXX, $CXXFLAGS, $SHCXX, $SHOBJSUFFIX.

sgicc

Sets construction variables for the SGI C compiler.

Sets: $CXX, $SHOBJSUFFIX.

289

Appendix C. Tools

sgilink

Sets construction variables for the SGI linker.

Sets: SLINK, $SRPATHPREFIX, $SRPATHSUFFIX, $SHLINKFLAGS.

sunar

Sets construction variables for the Sun library archiver.

Sets: $AR, SARCOM, $ARFLAGS, $SLIBPREFIX, $LIBSUFFIX, $SHLINK, $SHLINKCOM,
$SHLINKFLAGS.

Uses: SARCOMSTR, $SHLINKCOMSTR.

sunc++

Sets construction variables for the Sun C++ compiler.

Sets: $CXX, $CXXVERSION, $SHCXX, $SHCXXFLAGS, $SHOBJPREFIX, $SHOBJSUFFIX.

suncc

Sets construction variables for the Sun C compiler.

Sets: $CXX, $SSHCCFLAGS, $SHOBJPREFIX, $SHOBJSUFFIX.

sunf77

Set construction variables for the Sun f77 Fortran compiler.

Sets: $F77, SFORTRAN, $SHF77, $SHF77FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunf90

Set construction variables for the Sun f90 Fortran compiler.

Sets: $F90, SFORTRAN, $SHF90, $SHF90FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunf95

Set construction variables for the Sun f95 Fortran compiler.

290

Appendix C. Tools

Sets: $F95, SFORTRAN, $SHF95, $SHF95FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunlink

swig

tar

tex

Sets construction variables for the Sun linker.

Sets: SRPATHPREFIX, $RPATHSUFFIX, $SHLINKFLAGS.

Sets construction variables for the SWIG interface generator.

Sets: $SWIG, $SWIGCFILESUFFIX, $SWIGCOM, $SWIGCXXFILESUFFIX,
$SWIGDIRECTORSUFFIX, $SWIGFLAGS, $SWIGINCPREFIX, $SWIGINCSUFFIX,
$SWIGPATH, $SWIGVERSION, $_SWIGINCFLAGS.

Uses: $SWIGCOMSTR.

Sets construction variables for the tar archiver.

Sets: $TAR, $TARCOM, $TARFLAGS, $TARSUFFIX.

Uses: $STARCOMSTR.

Sets construction variables for the TeX formatter and typesetter.

Sets: SBIBTEX, $BIBTEXCOM, $BIBTEXFLAGS, $LATEX, SLATEXCOM, $LATEXFLAGS,
$MAKEINDEX, $SMAKEINDEXCOM, $SMAKEINDEXFLAGS, $TEX, $TEXCOM,
$TEXFLAGS.

Uses: $BIBTEXCOMSTR, SLATEXCOMSTR, SMAKEINDEXCOMSTR, $TEXCOMSTR.

textfile

Set construction variables for the Text file and Subst file builders.

Sets: SLINESEPARATOR, $SUBSTFILEPREFIX, $SUBSTFILESUFFIX, $STEXTFILEPREFIX,
$TEXTFILESUFFIX.

291

tlib

Appendix C. Tools

Uses: $SUBST_DICT.

Sets construction variables for the Borlan tib library archiver.

Sets: $AR, SARCOM, $ARFLAGS, $SLIBPREFIX, $LIBSUFFIX.

Uses: SARCOMSTR.

xgettext

yacc

zip

This scons tool is a part of scons gettext toolset. It provides scons interface to xgettext(1)
program, which extracts internationalized messages from source code. The tool provides
POTUpdate builder to make PO Template files.

Sets: $POTSUFFIX, $SPOTUPDATE_ALIAS, $XGETTEXTCOM, $XGETTEXTCOMSTR,
$XGETTEXTFLAGS, $XGETTEXTFROM, $XGETTEXTFROMPREFIX,
$XGETTEXTFROMSUFFIX, $XGETTEXTPATH, $XGETTEXTPATHPREFIX,
$XGETTEXTPATHSUFFIX, $_XGETTEXTDOMAIN, $_XGETTEXTFROMFLAGS,
$_XGETTEXTPATHFLAGS.

Uses: $POTDOMAIN.

Sets construction variables for the yacc parse generator.

Sets: $YACC, $YACCCOM, $YACCFLAGS, $YACCHFILESUFFIX, $YACCHXXFILESUFFIX,
$YACCVCGFILESUFFIX.

Uses: $YACCCOMSTR.

Sets construction variables for the zip archiver.

Sets: $ZIP, $ZIPCOM, $ZIPCOMPRESSION, $ZIPFLAGS, $ZIPSUFFIX.

Uses: $ZIPCOMSTR.

292

Appendix D. Functions and Environment
Methods

This appendix contains descriptions of all of the function and construction environment methods in this
version of SCons

Action (action, [cmd/str/fun, [var, ...]] [option=value, ...])
env.Action (action, [cmd/str/fun, [var, ...]] [option=value, ...])

Creates an Action object for the specified action. See the section "Action Objects," below, for a
complete explanation of the arguments and behavior.

Note that the env.Act ion() form of the invocation will expand construction variables in any
argument strings, including the act ion argument, at the time it is called using the construction
variables in the env construction environment through which env.Act ion() was called. The
Action() form delays all variable expansion until the Action object is actually used.

AddMethod (object, function, [name])

env.AddMethod (function, [name])

When called with the AddMethod() form, adds the specified function to the specified object as
the specified method name. When called with the env.AddMethod() form, adds the specified
function to the construction environment env as the specified method name. In both cases, if
name is omitted or None, the name of the specified function itself is used for the method name.

Examples:

Note that the first argument to the function to
be attached as a method must be the object through
which the method will be called; the Python
convention is to call it ’'self’.
def my_method(self, arg):
print "my_method() got", arg

Use the global AddMethod() function to add a method

to the Environment class. This
AddMethod (Environment, my_method)
env = Environment ()

env.my_method("arg’)

Add the function as a method, using the function
name for the method call.

env = Environment ()

env.AddMethod (my_method, ’'other_method_name’)
env.other_method_name (' another arg’)

293

Appendix D. Functions and Environment Methods

AddOption (arguments)

This function adds a new command-line option to be recognized. The specified arguments are the
same as supported by the standard Python optparse.add_option() method (with a few
additional capabilities noted below); see the documentation for optparse for a thorough discussion
of its option-processing capabities.

In addition to the arguments and values supported by the optparse.add_option() method, the
SCons AddOpt ion function allows you to set the nargs keyword value to 7 2?7 (a string with just
the question mark) to indicate that the specified long option(s) take(s) an optional argument. When
nargs = ’?’ is passed to the AddOpt ion function, the const keyword argument may be used to
supply the "default” value that should be used when the option is specified on the command line
without an explicit argument.

If no default=keyword argument is supplied when calling AddOpt ion, the option will have a
default value of None.

Once a new command-line option has been added with Addopt ion, the option value may be
accessed using GetOption or env.GetOption(). The value may also be set, using SetOption or
env.SetOption(), if conditions in a SConscript require overriding any default value. Note,
however, that a value specified on the command line will always override a value set by any
SConscript file.

Any specified he1p= strings for the new option(s) will be displayed by the —H or —h options (the
latter only if no other help text is specified in the SConscript files). The help text for the local
options specified by Addopt i on will appear below the SCons options themselves, under a separate
Local Options heading. The options will appear in the help text in the order in which the
AddOption calls occur.

Example:
AddOption (/! ——-prefix’,
dest='prefix’,
nargs=1l, type=’string’,
action=’store’,
metavar='DIR’,
help='installation prefix’)
env = Environment (PREFIX = GetOption (’'prefix’))

AddPostAction (target, action)
env.AddPostAction (target, action)

Arranges for the specified action to be performed after the specified target has been built. The
specified action(s) may be an Action object, or anything that can be converted into an Action object
(see below).

294

Appendix D. Functions and Environment Methods

When multiple targets are supplied, the action may be called multiple times, once after each action
that generates one or more targets in the list.

AddPreAction (target, action)

env.AddPreAction (target, action)

Arranges for the specified action to be performed before the specified target is built. The
specified action(s) may be an Action object, or anything that can be converted into an Action object
(see below).

When multiple targets are specified, the action(s) may be called multiple times, once before each
action that generates one or more targets in the list.

Note that if any of the targets are built in multiple steps, the action will be invoked just before the
"final" action that specifically generates the specified target(s). For example, when building an
executable program from a specified source . c file via an intermediate object file:

foo = Program(’ foo.c’)
AddPreAction (foo, ’'pre_action’)

The specified pre_action would be executed before scons calls the link command that actually

generates the executable program binary foo, not before compiling the foo. c file into an object
file.

Alias(alias, [targets, [action]])
env.Alias (alias, [targets, [action]])

Creates one or more phony targets that expand to one or more other targets. An optional action
(command) or list of actions can be specified that will be executed whenever the any of the alias
targets are out-of-date. Returns the Node object representing the alias, which exists outside of any
file system. This Node object, or the alias name, may be used as a dependency of any other target,
including another alias. A1ias can be called multiple times for the same alias to add additional
targets to the alias, or additional actions to the list for this alias.

Examples:

Alias(’install’)
Alias("install’, ' /usr/bin’)
Alias([’install’, ’install-1lib’], ’/usr/local/lib’)

env.Alias ("install’, [’ /usr/local/bin’, ’'/usr/local/lib’])
env.Alias ("install’, [’/usr/local/man’])

env.Alias ("update’, [’"filel’, "file2’], "update_database $SOURCES")

295

Appendix D. Functions and Environment Methods

AllowSubstExceptions ([exception, ...])

Specifies the exceptions that will be allowed when expanding construction variables. By default,
any construction variable expansions that generate a NameError or IndexError exception will
expand to a ” (a null string) and not cause scons to fail. All exceptions not in the specified list will
generate an error message and terminate processing.

If AllowSubstExceptions is called multiple times, each call completely overwrites the previous
list of allowed exceptions.

Example:

Requires that all construction variable names exist.

(You may wish to do this if you want to enforce strictly

that all construction variables must be defined before use.)
AllowSubstExceptions ()

Also allow a string containing a zero-division expansion
like "${1 / 0}’ to evalute to .
AllowSubstExceptions (IndexError, NameError, ZeroDivisionError)

AlwaysBuild (target, ...)

env

env.

env

.AlwaysBuild (target, ...)

Marks each given target so that it is always assumed to be out of date, and will always be rebuilt
if needed. Note, however, that AlwaysBuild does not add its target(s) to the default target list, so
the targets will only be built if they are specified on the command line, or are a dependent of a target
specified on the command line--but they will always be built if so specified. Multiple targets can be
passed in to a single call to AlwaysBuild.

Append (key=val, [...])

Appends the specified keyword arguments to the end of construction variables in the environment.
If the Environment does not have the specified construction variable, it is simply added to the
environment. If the values of the construction variable and the keyword argument are the same type,
then the two values will be simply added together. Otherwise, the construction variable and the
value of the keyword argument are both coerced to lists, and the lists are added together. (See also
the Prepend method, below.)

Example:

env.Append (CCFLAGS = ' -g’, FOO = [’foo.yyy’])

.AppendENVPath (name, newpath, [envname, sep, delete_existing])

This appends new path elements to the given path in the specified external environment (ENV by
default). This will only add any particular path once (leaving the last one it encounters and ignoring
the rest, to preserve path order), and to help assure this, will normalize all paths (using
os.path.normpath and os.path.normcase). This can also handle the case where the given old
path variable is a list instead of a string, in which case a list will be returned instead of a string.

296

Appendix D. Functions and Environment Methods

If delete_existingis 0, then adding a path that already exists will not move it to the end; it will
stay where it is in the list.

Example:

print ’'before:’,env[’ENV’] [/ INCLUDE’]
include_path = ’/foo/bar:/foo’
env.AppendENVPath (/ INCLUDE’, include_path)
print "after:’,env[’ENV’] [/ INCLUDE’]

yields:
before: /foo:/biz
after: /biz:/foo/bar:/foo

env.AppendUnique (key=val, [...], delete_existing=0)

Appends the specified keyword arguments to the end of construction variables in the environment.
If the Environment does not have the specified construction variable, it is simply added to the
environment. If the construction variable being appended to is a list, then any value(s) that already
exist in the construction variable will not be added again to the list. However, if delete_existing is 1,
existing matching values are removed first, so existing values in the arg list move to the end of the
list.

Example:

env.AppendUnique (CCFLAGS = "-g’, FOO = [’foo.yyy’'])

env.BitKeeper ()

A factory function that returns a Builder object to be used to fetch source files using BitKeeper. The
returned Builder is intended to be passed to the SourceCode function.

This function is deprecated. For details, see the entry for the SourceCode function.

Example:

env.SourceCode (’.’, env.BitKeeper())

BuildDir (build_dir, src_dir, [duplicate])
env.BuildDir (build_dir, src_dir, [duplicate])

Deprecated synonyms for VariantDir and env.VariantDir(). The build_dir argument
becomes the variant_dir argument of VariantDir or env.VariantDir().

Builder (action, [arguments])
env.Builder (action, [arguments])

Creates a Builder object for the specified action. See the section "Builder Objects," below, for a
complete explanation of the arguments and behavior.

297

Appendix D. Functions and Environment Methods

Note that the env.Builder() form of the invocation will expand construction variables in any
arguments strings, including the action argument, at the time it is called using the construction
variables in the env construction environment through which env.Builder() was called. The
Builder form delays all variable expansion until after the Builder object is actually called.

CacheDir (cache_dir)
env.CacheDir (cache_dir)

Specifies that scons will maintain a cache of derived files in cache_dir. The derived files in the
cache will be shared among all the builds using the same CacheDir call. Specifying a cache_dir
of None disables derived file caching.

Calling env.CacheDir() will only affect targets built through the specified construction
environment. Calling CacheDir sets a global default that will be used by all targets built through
construction environments that do not have an env.CacheDir() specified.

When a CacheDir() is being used and scons finds a derived file that needs to be rebuilt, it will first
look in the cache to see if a derived file has already been built from identical input files and an
identical build action (as incorporated into the MDS5 build signature). If so, scons will retrieve the
file from the cache. If the derived file is not present in the cache, scons will rebuild it and then
place a copy of the built file in the cache (identified by its MDS5 build signature), so that it may be
retrieved by other builds that need to build the same derived file from identical inputs.

Use of a specified CacheDir may be disabled for any invocation by using the —~—cache-disable
option.

If the ——cache-force option is used, scons will place a copy of all derived files in the cache,
even if they already existed and were not built by this invocation. This is useful to populate a cache
the first time CacheDir is added to a build, or after using the ——cache-disable option.

When using CacheDir, scons will report, "Retrieved ‘file’ from cache," unless the
——cache-show option is being used. When the ——cache-show option is used, scons will print
the action that would have been used to build the file, without any indication that the file was
actually retrieved from the cache. This is useful to generate build logs that are equivalent regardless
of whether a given derived file has been built in-place or retrieved from the cache.

The NoCache method can be used to disable caching of specific files. This can be useful if inputs
and/or outputs of some tool are impossible to predict or prohibitively large.

Clean (targets, files_or_dirs)
env.Clean (targets, files_or_dirs)

This specifies a list of files or directories which should be removed whenever the targets are

298

Appendix D. Functions and Environment Methods

specified with the —c command line option. The specified targets may be a list or an individual
target. Multiple calls to Clean are legal, and create new targets or add files and directories to the
clean list for the specified targets.

Multiple files or directories should be specified either as separate arguments to the C1ean method,
or as a list. Clean will also accept the return value of any of the construction environment Builder
methods. Examples:

The related NoClean function overrides calling Clean for the same target, and any targets passed
to both functions will not be removed by the —c option.

Examples:

Clean (" foo’, ['bar’, ’'baz’])
Clean(’dist’, env.Program(’hello’, "hello.c’))
Clean ([’ foo’, ’"bar’], ’'something_else_to_clean’)

In this example, installing the project creates a subdirectory for the documentation. This statement
causes the subdirectory to be removed if the project is deinstalled.

Clean (docdir, os.path.join(docdir, projectname))

env.Clone ([key=val, ...])

Returns a separate copy of a construction environment. If there are any keyword arguments
specified, they are added to the returned copy, overwriting any existing values for the keywords.

Example:

env2 = env.Clone ()
env3 = env.Clone (CCFLAGS = "—-g’)

Additionally, a list of tools and a toolpath may be specified, as in the Environment constructor:

def MyTool (env): env[’'FO0O’] = ’"bar’
env4d = env.Clone(tools = [‘msvc’, MyTool])

The parse_flags keyword argument is also recognized:

create an environment for compiling programs that use wxWidgets
wx_env = env.Clone (parse_flags = ’'!wx-config —--cflags —-cxxflags’)

Command (target, source, action, [key=val, ...])
env.Command (target, source, action, [key=val, ...])

Executes a specific action (or list of actions) to build a target file or files. This is more convenient
than defining a separate Builder object for a single special-case build.

299

Appendix D. Functions and Environment Methods

As a special case, the source_scanner keyword argument can be used to specify a Scanner object
that will be used to scan the sources. (The global DirScanner object can be used if any of the
sources will be directories that must be scanned on-disk for changes to files that aren’t already
specified in other Builder of function calls.)

Any other keyword arguments specified override any same-named existing construction variables.

An action can be an external command, specified as a string, or a callable Python object; see
"Action Objects," below, for more complete information. Also note that a string specifying an
external command may be preceded by an @ (at-sign) to suppress printing the command in question,
or by a — (hyphen) to ignore the exit status of the external command.

Examples:

env.Command (’ foo.out’, ’'foo.in’,
"SFOO_BUILD < $SOURCES > S$STARGET")

env.Command (' bar.out’, ’'bar.in’,
["rm —-f S$TARGET",
"$SBAR_BUILD < $SOURCES > $TARGET"],
ENV = {’PATH’ : ’/usr/local/bin/’})

def rename (env, target, source):
import os
os.rename (' .tmp’, str(target([0]))

env.Command ("baz.out’, ’'baz.in’,
["$BAZ_BUILD < $SOURCES > .tmp",
rename)

Note that the Command function will usually assume, by default, that the specified targets and/or
sources are Files, if no other part of the configuration identifies what type of entry it is. If necessary,
you can explicitly specify that targets or source nodes should be treated as directoriese by using the
Dir or env.Dir() functions.

Examples:

env.Command (’ddd.list’, Dir(’ddd’), "ls -1 $SOURCE > STARGET')

env[/DISTDIR’] = ’'destination/directory’
env.Command (env.Dir (' SDISTDIR’)), None, make_distdir)

(Also note that SCons will usually automatically create any directory necessary to hold a target file,
so you normally don’t need to create directories by hand.)

300

Appendix D. Functions and Environment Methods

Configure (env, [custom_tests, conf_dir, log_file, config_h])

env.

env

env

Configure ([custom_tests, conf_dir, log_file, config_h])

Creates a Configure object for integrated functionality similar to GNU autoconf. See the section
"Configure Contexts," below, for a complete explanation of the arguments and behavior.

.Copy ([key=val, ...])

A now-deprecated synonym for env.Clone().

.CVS (repository, module)

A factory function that returns a Builder object to be used to fetch source files from the specified
CVS repository. The returned Builder is intended to be passed to the SourceCode function.

This function is deprecated. For details, see the entry for the SourceCode function.

The optional specified module will be added to the beginning of all repository path names; this can
be used, in essence, to strip initial directory names from the repository path names, so that you only
have to replicate part of the repository directory hierarchy in your local build directory.

Examples:

Will fetch foo/bar/src.c
from /usr/local/CVSROOT/foo/bar/src.c.
env.SourceCode (' .’, env.CVS(’/usr/local/CVSROOT'))

Will fetch bar/src.c
from /usr/local/CVSROOT/foo/bar/src.c.
env.SourceCode (' .’, env.CVS(’/usr/local/CVSROOT’, ’"foo’))

Will fetch src.c
from /usr/local/CVSROOT/foo/bar/src.c.
env.SourceCode(’.’, env.CVS(’/usr/local/CVSROOT’, ’'foo/bar’))

Decider (function)

env.

Decider (function)

Specifies that all up-to-date decisions for targets built through this construction environment will be
handled by the specified function. The function can be one of the following strings that specify
the type of decision function to be performed:

timestamp-newer

Specifies that a target shall be considered out of date and rebuilt if the dependency’s timestamp
is newer than the target file’s timestamp. This is the behavior of the classic Make utility, and
make can be used a synonym for t imestamp-newer.

301

Appendix D. Functions and Environment Methods

timestamp-match

Specifies that a target shall be considered out of date and rebuilt if the dependency’s timestamp
is different than the timestamp recorded the last time the target was built. This provides
behavior very similar to the classic Make utility (in particular, files are not opened up so that
their contents can be checksummed) except that the target will also be rebuilt if a dependency
file has been restored to a version with an earlier timestamp, such as can happen when
restoring files from backup archives.

MD5

Specifies that a target shall be considered out of date and rebuilt if the dependency’s content
has changed sine the last time the target was built, as determined be performing an MD5
checksum on the dependency’s contents and comparing it to the checksum recorded the last
time the target was built. content can be used as a synonym for MD5.

MD5-timestamp

Specifies that a target shall be considered out of date and rebuilt if the dependency’s content
has changed sine the last time the target was built, except that dependencies with a timestamp
that matches the last time the target was rebuilt will be assumed to be up-to-date and not
rebuilt. This provides behavior very similar to the MD5 behavior of always checksumming file
contents, with an optimization of not checking the contents of files whose timestamps haven’t
changed. The drawback is that SCons will not detect if a file’s content has changed but its
timestamp is the same, as might happen in an automated script that runs a build, updates a file,
and runs the build again, all within a single second.

Examples:
Use exact timestamp matches by default.

Decider (' timestamp-match’)

Use MD5 content signatures for any targets built
with the attached construction environment.
env.Decider (' content’)

In addition to the above already-available functions, the function argument may be an actual
Python function that takes the following three arguments:

dependency
The Node (file) which should cause the target to be rebuilt if it has "changed" since the last
tme target was built.

target

The Node (file) being built. In the normal case, this is what should get rebuilt if the
dependency has "changed."

302

Appendix D. Functions and Environment Methods

prev_ni

Stored information about the state of the dependency the last time the target was built. This
can be consulted to match various file characteristics such as the timestamp, size, or content
signature.

The function should return a True (non-zero) value if the dependency has "changed" since the
last time the target was built (indicating that the target should be rebuilt), and False (zero)
otherwise (indicating that the target should not be rebuilt). Note that the decision can be made using
whatever criteria are appopriate. Ignoring some or all of the function arguments is perfectly normal.

Example:
def my_decider (dependency, target, prev_ni):

return not os.path.exists(str(target))

env.Decider (my_decider)

Default (targets)
env.Default (targets)

This specifies a list of default targets, which will be built by scons if no explicit targets are given
on the command line. Multiple calls to Default are legal, and add to the list of default targets.

Multiple targets should be specified as separate arguments to the Default method, or as a list.
Default will also accept the Node returned by any of a construction environment’s builder
methods.

Examples:

Default (' foo’, ’'bar’, ’'baz’)
env.Default (["a’, 'b’, 'c'1])

hello = env.Program(’hello’, ’"hello.c’)
env.Default (hello)

An argument to Default of None will clear all default targets. Later calls to Default will add to
the (now empty) default-target list like normal.

The current list of targets added using the Default function or method is available in the
DEFAULT_TARGETS list; see below.

DefaultEnvironment ([args])

Creates and returns a default construction environment object. This construction environment is
used internally by SCons in order to execute many of the global functions in this list, and to fetch
source files transparently from source code management systems.

303

Appendix D. Functions and Environment Methods

Depends (target, dependency)

env.

env.

Depends (target, dependency)

Specifies an explicit dependency; the target will be rebuilt whenever the dependency has
changed. Both the specified target and dependency can be a string (usually the path name of a
file or directory) or Node objects, or a list of strings or Node objects (such as returned by a Builder
call). This should only be necessary for cases where the dependency is not caught by a Scanner for
the file.

Example:

env.Depends (' foo’, ’'other-input-file-for-foo’)

mylib = env.Library ('mylib.c’)
installed_1lib = env.Install(’1lib’, mylib)
bar = env.Program(’'bar.c’)

Arrange for the library to be copied into the installation
directory before trying to build the "bar" program.

(Note that this is for example only. A "real" library
dependency would normally be configured through the S$LIBS
and S$LIBPATH variables, not using an env.Depends() call.)

S o W H e

env.Depends (bar, installed_1lib)

Dictionary ([vars])

Returns a dictionary object containing copies of all of the construction variables in the environment.
If there are any variable names specified, only the specified construction variables are returned in
the dictionary.

Example:

dict = env.Dictionary ()
cc_dict = env.Dictionary(’CC’, ’'CCFLAGS’, ’'CCCOM’)

Dir (name, [directory])

env

.Dir (name, [directory])

This returns a Directory Node, an object that represents the specified directory name. name can be a
relative or absolute path. directory is an optional directory that will be used as the parent
directory. If no directory is specified, the current script’s directory is used as the parent.

If name is a list, SCons returns a list of Dir nodes. Construction variables are expanded in name.

Directory Nodes can be used anywhere you would supply a string as a directory name to a Builder
method or function. Directory Nodes have attributes and methods that are useful in many situations;
see "File and Directory Nodes," below.

304

Appendix D. Functions and Environment Methods

env.Dump ([key])

Returns a pretty printable representation of the environment. key, if not None, should be a string
containing the name of the variable of interest.

This SConstruct:

env=Environment ()
print env.Dump (' CCCOM’)

will print:

"$SCC —-c -o S$TARGET S$CCFLAGS S$SCPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS $SOURCES’

While this SConstruct:

env=Environment ()
print env.Dump ()

will print:

{ "TAR’: "ar’,
"ARCOM’ : ’S$SAR SARFLAGS STARGET S$SOURCES\nSRANLIB SRANLIBFLAGS STARGET’,
"ARFLAGS’: ['r'],
"AS’: "as’,
"ASCOM’ : ’$AS SASFLAGS -o S$TARGET S$SOURCES’,
"ASFLAGS’ : [],

EnsurePythonVersion (major, minor)
env.EnsurePythonVersion (major, minor)

Ensure that the Python version is at least ma jor.minor. This function will print out an error
message and exit SCons with a non-zero exit code if the actual Python version is not late enough.

Example:

EnsurePythonVersion (2, 2)

EnsureSConsVersion (major, minor, [revision])
env.EnsureSConsVersion (major, minor, [revision])

Ensure that the SCons version is at least major .minor, or major.minor.revision. if
revision is specified. This function will print out an error message and exit SCons with a
non-zero exit code if the actual SCons version is not late enough.

Examples:

EnsureSConsVersion (0, 14)

EnsureSConsVersion (0, 96, 90)

305

Appendix D. Functions and Environment Methods

Environment ([key=value, ...])
env.Environment ([key=value, ...])

Return a new construction environment initialized with the specified key=value pairs.

Execute (action, [strfunction, varlist])
env.Execute (action, [strfunction, varlist])

Executes an Action object. The specified act ion may be an Action object (see the section "Action
Objects," below, for a complete explanation of the arguments and behavior), or it may be a
command-line string, list of commands, or executable Python function, each of which will be
converted into an Action object and then executed. The exit value of the command or return value of
the Python function will be returned.

Note that scons will print an error message if the executed action fails--that is, exits with or
returns a non-zero value. scons will not, however, automatically terminate the build if the specified
action fails. If you want the build to stop in response to a failed Execute call, you must explicitly
check for a non-zero return value:

Execute (Copy (' file.out’, ’"file.in’))

if Execute ("mkdir sub/dir/ectory"):
The mkdir failed, don’t try to build.
Exit (1)

Exit ([value])
env.Exit ([value])

This tells scons to exit immediately with the specified value. A default exit value of 0 (zero) is
used if no value is specified.

Export (vars)
env.Export (vars)

This tells scons to export a list of variables from the current SConscript file to all other SConscript
files. The exported variables are kept in a global collection, so subsequent calls to Export will
over-write previous exports that have the same name. Multiple variable names can be passed to
Export as separate arguments or as a list. Keyword arguments can be used to provide names and
their values. A dictionary can be used to map variables to a different name when exported. Both
local variables and global variables can be exported.

Examples:

env = Environment ()
Make env available for all SConscript files to Import().
Export ("env")

package = 'my_name’

Make env and package available for all SConscript files:.
Export ("env", "package")

306

Appendix D. Functions and Environment Methods

Make env and package available for all SConscript files:

Export (["env", "package"])

Make env available using the name debug:
Export (debug = env)

Make env available using the name debug:
Export ({"debug":env})

Note that the SConscript function supports an exports argument that makes it easier to to export
a variable or set of variables to a single SConscript file. See the description of the SConscript
function, below.

File (name, [directory])
env.File (name, [directory])

This returns a File Node, an object that represents the specified file name. name can be a relative or
absolute path. directory is an optional directory that will be used as the parent directory.

If name is a list, SCons returns a list of File nodes. Construction variables are expanded in name.

File Nodes can be used anywhere you would supply a string as a file name to a Builder method or
function. File Nodes have attributes and methods that are useful in many situations; see "File and
Directory Nodes," below.

FindFile (file, dirs)
env.FindFile (file, dirs)

Search for £ile in the path specified by dirs. dirs may be a list of directory names or a single
directory name. In addition to searching for files that exist in the filesystem, this function also
searches for derived files that have not yet been built.

Example:

foo = env.FindFile (' foo’, [’dirl’, ’'dir2’])

FindInstalledFiles ()
env.FindInstalledFiles ()
Returns the list of targets set up by the Install or InstallAs builders.

This function serves as a convenient method to select the contents of a binary package.

Example:

307

Appendix D. Functions and Environment Methods
Install(’/bin’, [’'executable_a’, ’'executable_b’])

will return the file node list
[’/bin/executable_a’, ’/bin/executable_b’]
FindInstalledFiles ()

Install("/1lib’, [’some_library’ 1)

will return the file node list
[’/bin/executable_a’, ’/bin/executable_b’, ’'/lib/some_library’]
FindInstalledFiles ()

FindPathDirs (variable)

Returns a function (actually a callable Python object) intended to be used as the path_function
of a Scanner object. The returned object will look up the specified variable in a construction
environment and treat the construction variable’s value as a list of directory paths that should be
searched (like $CPPPATH, $SLIBPATH, etc.).

Note that use of FindPathDirs is generally preferable to writing your own path_function for
the following reasons: 1) The returned list will contain all appropriate directories found in source
trees (when VariantDir is used) or in code repositories (wWhen Repository or the —Y option are
used). 2) scons will identify expansions of variable that evaluate to the same list of directories as,
in fact, the same list, and avoid re-scanning the directories for files, when possible.

Example:

def my_scan(node, env, path, arg):
Code to scan file contents goes here...
return include_files

scanner = Scanner (name = ’'myscanner’,
function = my_scan,
path_function = FindPathDirs ('MYPATH'))

FindSourceFiles (node=""."")
env.FindSourceFiles (node=""."")

Returns the list of nodes which serve as the source of the built files. It does so by inspecting the
dependency tree starting at the optional argument node which defaults to the *"."’-node. It will then
return all leaves of node. These are all children which have no further children.

This function is a convenient method to select the contents of a Source Package.

Example:

Program(’'src/main_a.c’)
Program(’'src/main_b.c’)
Program('main_c.c’)

308

Appendix D. Functions and Environment Methods

returns ['main_c.c’, ’src/main_a.c’, ’SConstruct’, ’'src/main_b.c’]
FindSourceFiles ()

returns [’src/main_b.c’, ’'src/main_a.c’]
FindSourceFiles(’"src’)

As you can see build support files (SConstruct in the above example) will also be returned by this
function.

Flatten (sequence)

env.Flatten (sequence)

Takes a sequence (that is, a Python list or tuple) that may contain nested sequences and returns a
flattened list containing all of the individual elements in any sequence. This can be helpful for
collecting the lists returned by calls to Builders; other Builders will automatically flatten lists
specified as input, but direct Python manipulation of these lists does not.

Examples:

foo = Object (' foo.c’)
bar = Object ("bar.c’)

Because ‘foo’ and ‘bar’ are lists returned by the Object () Builder,
‘objects’ will be a list containing nested lists:
objects = ["fl.o’, foo, "f2.0', bar, "f3.0"]

Passing such a list to another Builder is all right because
the Builder will flatten the list automatically:
Program (source = objects)

If you need to manipulate the list directly using Python, you need to
call Flatten() yourself, or otherwise handle nested lists:
for object in Flatten (objects):

print str (object)

GetBuildFailures ()

Returns a list of exceptions for the actions that failed while attempting to build targets. Each
element in the returned list is a Bui 1dError object with the following attributes that record various
aspects of the build failure:

.node The node that was being built when the build failure occurred.

.status The numeric exit status returned by the command or Python function that failed when
trying to build the specified Node.

309

Appendix D. Functions and Environment Methods

.errstr The SCons error string describing the build failure. (This is often a generic message like
"Error 2" to indicate that an executed command exited with a status of 2.)

. filename The name of the file or directory that actually caused the failure. This may be different
from the . node attribute. For example, if an attempt to build a target named sub/dir/target
fails because the sub/dir directory could not be created, then the . node attribute will be
sub/dir/target but the . filename attribute will be sub/dir.

.executor The SCons Executor object for the target Node being built. This can be used to retrieve
the construction environment used for the failed action.

.action The actual SCons Action object that failed. This will be one specific action out of the
possible list of actions that would have been executed to build the target.

.command The actual expanded command that was executed and failed, after expansion of
$TARGET, $SOURCE, and other construction variables.

Note that the GetBuildFailures function will always return an empty list until any build failure
has occurred, which means that GetBuildFailures will always return an empty list while the
SConscript files are being read. Its primary intended use is for functions that will be executed
before SCons exits by passing them to the standard Python atexit .register() function.
Example:

import atexit
def print_build_failures():

from SCons.Script import GetBuildFailures
for bf in GetBuildFailures():

o

print "%s failed: %s" % (bf.node, bf.errstr)

atexit.register (print_build_failures)

GetBuildPath (file, [...1])
env.GetBuildPath (file, [...])

Returns the scons path name (or names) for the specified £ile (or files). The specified £ile or
files may be scons Nodes or strings representing path names.

GetLaunchDir ()
env.GetLaunchDir ()

Returns the absolute path name of the directory from which scons was initially invoked. This can
be useful when using the —u, —U or —D options, which internally change to the directory in which the
SConstruct file is found.

310

GetOption (name)

env.GetOption (name)

Appendix D. Functions and Environment Methods

This function provides a way to query the value of SCons options set on scons command line (or set
using the setOption function). The options supported are:

cache_debug

which corresponds to --cache-debug;

cache_disable

which corresponds to --cache-disable;

cache_force

which corresponds to --cache-force;

cache_show

which corresponds to --cache-show;

clean

which corresponds to -c, --clean and --remove;

config

which corresponds to --config;

directory

which corresponds to -C and --directory;

diskcheck

which corresponds to --diskcheck

duplicate

which corresponds to --duplicate;

file

which corresponds to -f, --file, --makefile and --sconstruct;

help

which corresponds to -h and --help;

ignore_errors

which corresponds to --ignore-errors;

implicit_cache

which corresponds to --implicit-cache;

311

Appendix D. Functions and Environment Methods

implicit_deps_changed

which corresponds to --implicit-deps-changed;

implicit_deps_unchanged

which corresponds to --implicit-deps-unchanged;

interactive

which corresponds to --interact and --interactive;

keep_going

which corresponds to -k and --keep-going;

max_drift

which corresponds to --max-drift;

no_exec

which corresponds to -n, --no-exec, --just-print, --dry-run and --recon;

no_site_dir

which corresponds to --no-site-dir;

num_jobs

which corresponds to -j and --jobs;

profile_file

which corresponds to --profile;

question

which corresponds to -q and --question;

random

which corresponds to --random;

repository

which corresponds to -Y, --repository and --srcdir;

silent

which corresponds to -s, --silent and --quiet;

site_dir

which corresponds to --site-dir;

stack_size

which corresponds to --stack-size;

312

Appendix D. Functions and Environment Methods

taskmastertrace_file

which corresponds to --taskmastertrace; and

warn

which corresponds to --warn and --warning.

See the documentation for the corresponding command line object for information about each
specific option.

Glob (pattern, [ondisk, source, strings])
env.Glob (pattern, [ondisk, source, strings])

Returns Nodes (or strings) that match the specified pattern, relative to the directory of the current
SConscript file. The env.Glob() form performs string substition on pattern and returns
whatever matches the resulting expanded pattern.

The specified pattern uses Unix shell style metacharacters for matching:

* matches everything

? matches any single character
[seq] matches any character in seq
[!seq] matches any char not in seq

If the first character of a filename is a dot, it must be matched explicitly. Character matches do not
span directory separators.

The G1ob knows about repositories (see the Repository function) and source directories (see the
VariantDir function) and returns a Node (or string, if so configured) in the local (SConscript)
directory if matching Node is found anywhere in a corresponding repository or source directory.

The ondisk argument may be set to False (or any other non-true value) to disable the search for
matches on disk, thereby only returning matches among already-configured File or Dir Nodes. The
default behavior is to return corresponding Nodes for any on-disk matches found.

The source argument may be set to True (or any equivalent value) to specify that, when the local
directory is a VariantDir, the returned Nodes should be from the corresponding source directory,
not the local directory.

The strings argument may be set to True (or any equivalent value) to have the G1ob function
return strings, not Nodes, that represent the matched files or directories. The returned strings will be
relative to the local (SConscript) directory. (Note that This may make it easier to perform arbitrary
manipulation of file names, but if the returned strings are passed to a different SConscript file,

313

Appendix D. Functions and Environment Methods

any Node translation will be relative to the other SConscript directory, not the original
SConscript directory.)

Examples:

Program(’ foo’, Glob(’'*x.c’))
Zip (' /tmp/everything’, Glob(’.??%") + Glob(’'*"))

Help (text)
env.Help (text)

This specifies help text to be printed if the —-h argument is given to scons. If Help is called
multiple times, the text is appended together in the order that Help is called.

Ignore (target, dependency)
env.Ignore (target, dependency)

The specified dependency file(s) will be ignored when deciding if the target file(s) need to be rebuilt.

You can also use Ignore to remove a target from the default build. In order to do this you must
specify the directory the target will be built in as the target, and the file you want to skip building as
the dependency.

Note that this will only remove the dependencies listed from the files built by default. It will still be
built if that dependency is needed by another object being built. See the third and forth examples
below.

Examples:

env.Ignore ('’ foo’, ’"foo.c’)

(" foo
env.Ignore ("bar’, [’'barl.h’, ’"bar2.h’])
env.Ignore(’.’,’ foobar.obj’)

env.Ignore ('bar’,’bar/foobar.obj’)

Import (vars)

env.Import (vars)

This tells scons to import a list of variables into the current SConscript file. This will import
variables that were exported with Export or in the exports argument to SConscript. Variables
exported by SConscript have precedence. Multiple variable names can be passed to Import as
separate arguments or as a list. The variable "*" can be used to import all variables.

Examples:

Import ("env")

Import (["env", "variable"])

(
Import ("env", "variable")
(
("*")

Import

314

Appendix D. Functions and Environment Methods

Literal (string)
env.Literal (string)

The specified st ring will be preserved as-is and not have construction variables expanded.

Local (targets)
env.Local (targets)

The specified targets will have copies made in the local tree, even if an already up-to-date copy
exists in a repository. Returns a list of the target Node or Nodes.

env.MergeFlags (arg, [unique])

Merges the specified arg values to the construction environment’s construction variables. If the arg
argument is not a dictionary, it is converted to one by calling env.ParseFlags on the argument
before the values are merged. Note that arg must be a single value, so multiple strings must be
passed in as a list, not as separate arguments to env.MergeFlags.

By default, duplicate values are eliminated; you can, however, specify unique=0 to allow duplicate
values to be added. When eliminating duplicate values, any construction variables that end with the
string PATH keep the left-most unique value. All other construction variables keep the right-most
unique value.

Examples:

Add an optimization flag to S$CCFLAGS.
env.MergeFlags (/' -03")

Combine the flags returned from running pkg-config with an optimization
flag and merge the result into the construction variables.
env.MergeFlags ([’ !pkg-config gtk+-2.0 --cflags’, "-03'1])

Combine an optimization flag with the flags returned from running pkg-config
twice and merge the result into the construction variables.
env.MergeFlags ([’'-03",

" 'pkg-config gtk+-2.0 --cflags --1libs’,

" 'pkg-config libpngl2 --cflags —-1libs’])

NoCache (target, ...)

env.NoCache (target, ...)

Specifies a list of files which should not be cached whenever the CacheDir method has been
activated. The specified targets may be a list or an individual target.

Multiple files should be specified either as separate arguments to the NoCache method, or as a list.
NoCache will also accept the return value of any of the construction environment Builder methods.

Calling NoCache on directories and other non-File Node types has no effect because only File
Nodes are cached.

315

Appendix D. Functions and Environment Methods

Examples:

NoCache (' foo.elf’)
NoCache (env.Program(’hello’, ’"hello.c’))

NoClean (target, ...)

env.

env.

NoClean (target, ...)

Specifies a list of files or directories which should not be removed whenever the targets (or their
dependencies) are specified with the -c command line option. The specified targets may be a list or
an individual target. Multiple calls to NoClean are legal, and prevent each specified target from
being removed by calls to the -c option.

Multiple files or directories should be specified either as separate arguments to the NoClean
method, or as a list. NoClean will also accept the return value of any of the construction
environment Builder methods.

Calling NoClean for a target overrides calling Clean for the same target, and any targets passed to
both functions will not be removed by the —c option.

Examples:

NoClean (' foo.elf’)
NoClean (env.Program(’hello’, ’'hello.c’))

ParseConfig (command, [function, unique])

Calls the specified function to modify the environment as specified by the output of command.
The default function is env.MergeFlags, which expects the output of a typical *-config
command (for example, gtk-config) and adds the options to the appropriate construction variables.
By default, duplicate values are not added to any construction variables; you can specify unique=0
to allow duplicate values to be added.

Interpreted options and the construction variables they affect are as specified for the
env.ParseFlags method (which this method calls). See that method’s description, below, for a
table of options and construction variables.

ParseDepends (filename, [must_exist, only_onel])

env.

ParseDepends (filename, [must_exist, only_one])

Parses the contents of the specified £ilename as a list of dependencies in the style of Make or
mkdep, and explicitly establishes all of the listed dependencies.

By default, it is not an error if the specified £ilename does not exist. The optional must_exist
argument may be set to a non-zero value to have scons throw an exception and generate an error if
the file does not exist, or is otherwise inaccessible.

316

env.

Appendix D. Functions and Environment Methods

The optional only_one argument may be set to a non-zero value to have scons thrown an exception
and generate an error if the file contains dependency information for more than one target. This can
provide a small sanity check for files intended to be generated by, for example, the gcc -M flag,
which should typically only write dependency information for one output file into a corresponding
.d file.

The £ilename and all of the files listed therein will be interpreted relative to the directory of the
SConscript file which calls the ParseDepends function.

ParseFlags (flags, ...)

Parses one or more strings containing typical command-line flags for GCC tool chains and returns a
dictionary with the flag values separated into the appropriate SCons construction variables. This is
intended as a companion to the env.MergeFlags method, but allows for the values in the returned
dictionary to be modified, if necessary, before merging them into the construction environment.
(Note that env.MergeFlags will call this method if its argument is not a dictionary, so it is usually
not necessary to call env.ParseFlags directly unless you want to manipulate the values.)

If the first character in any string is an exclamation mark (!), the rest of the string is executed as a
command, and the output from the command is parsed as GCC tool chain command-line flags and
added to the resulting dictionary.

Flag values are translated accordig to the prefix found, and added to the following construction
variables:

—arch CCFLAGS, LINKFLAGS
-D CPPDEFINES
—framework FRAMEWORKS
—frameworkdir= FRAMEWORKPATH
—include CCFLAGS

—-isysroot CCFLAGS, LINKFLAGS
-I CPPPATH

-1 LIBS

-L LIBPATH

-mno-cygwin

CCFLAGS, LINKFLAGS

-mwindows LINKFLAGS

-pthread CCFLAGS, LINKFLAGS
-std= CFLAGS

-Wa, ASFLAGS, CCFLAGS
-Wl,-rpath= RPATH

-W1,-R, RPATH

-W1l,-R RPATH

-Wl, LINKFLAGS

-Wp, CPPFLAGS

- CCFLAGS

+ CCFLAGS, LINKFLAGS

317

env.

Appendix D. Functions and Environment Methods

Any other strings not associated with options are assumed to be the names of libraries and added to
the $LIBS construction variable.

Examples (all of which produce the same result):

dict = env.ParseFlags(’'-02 -Dfoo -Dbar=1")

dict = env.ParseFlags(’-02’, ’'-Dfoo’, ’'-Dbar=1")
dict = env.ParseFlags([’-02’, ’"-Dfoo -Dbar=1’])
dict = env.ParseFlags(’-02’, ’!echo -Dfoo -Dbar=1")
Perforce ()

A factory function that returns a Builder object to be used to fetch source files from the Perforce
source code management system. The returned Builder is intended to be passed to the SourceCode
function.

This function is deprecated. For details, see the entry for the SourceCode function.

Example:

env.SourceCode (’.’, env.Perforce())

Perforce uses a number of external environment variables for its operation. Consequently, this
function adds the following variables from the user’s external environment to the construction
environment’s ENV dictionary: PACHARSET, PACLIENT, PALANGUAGE, PAPASSWD,
P4PORT, PAUSER, SystemRoot, USER, and USERNAME.

Platform(string)

The Plat form form returns a callable object that can be used to initialize a construction
environment using the platform keyword of the Environment function.

Example:

env = Environment (platform = Platform(’win32’))

The env.Platform form applies the callable object for the specified platform st ring to the
environment through which the method was called.

env.Platform(’posix’)

Note that the win32 platform adds the SystemDrive and SystemRoot variables from the user’s
external environment to the construction environment’s $ENV dictionary. This is so that any
executed commands that use sockets to connect with other systems (such as fetching source files
from external CVS repository specifications like
:pserver:anonymous@cvs.sourceforge.net:/cvsroot/scons) will work on Windows
systems.

318

Appendix D. Functions and Environment Methods

Precious (target, ...)

env.

env

env.

env.

Precious (target, ...)

Marks each given target as precious so it is not deleted before it is rebuilt. Normally scons
deletes a target before building it. Multiple targets can be passed in to a single call to Precious.

.Prepend (key=val, [...])

Appends the specified keyword arguments to the beginning of construction variables in the
environment. If the Environment does not have the specified construction variable, it is simply
added to the environment. If the values of the construction variable and the keyword argument are
the same type, then the two values will be simply added together. Otherwise, the construction
variable and the value of the keyword argument are both coerced to lists, and the lists are added
together. (See also the Append method, above.)

Example:

env.Prepend (CCFLAGS = '—-g ', FOO = [’foo.yyy’'])

PrependENVPath (name, newpath, [envname, sep, delete_existing])

This appends new path elements to the given path in the specified external environment (SENV by
default). This will only add any particular path once (leaving the first one it encounters and ignoring
the rest, to preserve path order), and to help assure this, will normalize all paths (using
os.path.normpath and os.path.normcase). This can also handle the case where the given old
path variable is a list instead of a string, in which case a list will be returned instead of a string.

If delete_existingis 0, then adding a path that already exists will not move it to the beginning;
it will stay where it is in the list.

Example:

print ’"before:’,env[’ENV’] [’/ INCLUDE’]
include_path = ’/foo/bar:/foo’
env.PrependENVPath (/ INCLUDE’, include_path)
print "after:’,env[’ENV’] [/ INCLUDE’]

The above example will print:

before: /biz:/foo
after: /foo/bar:/foo:/biz

PrependUnique (key=val, delete_existing=0, [...])

Appends the specified keyword arguments to the beginning of construction variables in the
environment. If the Environment does not have the specified construction variable, it is simply
added to the environment. If the construction variable being appended to is a list, then any value(s)
that already exist in the construction variable will not be added again to the list. However, if

319

Appendix D. Functions and Environment Methods

delete_existing is 1, existing matching values are removed first, so existing values in the arg list
move to the front of the list.

Example:

env.PrependUnique (CCFLAGS = "—-g’, FOO = ['foo.yyy'])

Progress (callable, [intervall])
Progress (string, [interval, file, overwrite])
Progress (list_of_strings, [interval, file, overwrite])

Allows SCons to show progress made during the build by displaying a string or calling a function
while evaluating Nodes (e.g. files).

If the first specified argument is a Python callable (a function or an object thathasa __call_ ()
method), the function will be called once every interval times a Node is evaluated. The callable
will be passed the evaluated Node as its only argument. (For future compatibility, it’s a good idea to
also add rargs and xxkw as arguments to your function or method. This will prevent the code from
breaking if SCons ever changes the interface to call the function with additional arguments in the
future.)

An example of a simple custom progress function that prints a string containing the Node name
every 10 Nodes:
def my_progress_function (node, xargs, xxkw):
print ’Evaluating node %s!’ % node
Progress (my_progress_function, interval=10)

A more complicated example of a custom progress display object that prints a string containing a
count every 100 evaluated Nodes. Note the use of \ r (a carriage return) at the end so that the string
will overwrite itself on a display:
import sys
class ProgressCounter (object) :
count = 0
def __call__(self, node, =xargs, x*x*kw):
self.count += 100
sys.stderr.write ('Evaluated %s nodes\r’ % self.count)
Progress (ProgressCounter (), interval=100)

If the first argument Progress is a string, the string will be displayed every interval evaluated
Nodes. The default is to print the string on standard output; an alternate output stream may be
specified with the £ile= argument. The following will print a series of dots on the error output, one
dot for every 100 evaluated Nodes:

import sys

Progress(’.’, interval=100, file=sys.stderr)

320

env.

env.

Appendix D. Functions and Environment Methods

If the string contains the verbatim substring $STARGET, it will be replaced with the Node. Note that,
for performance reasons, this is not a regular SCons variable substition, so you can not use other
variables or use curly braces. The following example will print the name of every evaluated Node,
using a \r (carriage return) to cause each line to overwritten by the next line, and the overwrite=
keyword argument to make sure the previously-printed file name is overwritten with blank spaces:

import sys
Progress (! STARGET\r’, overwrite=True)

If the first argument to Progress is a list of strings, then each string in the list will be displayed in
rotating fashion every interval evaluated Nodes. This can be used to implement a "spinner” on
the user’s screen as follows:

Progress (["-\r’, "\\\r’, "|\r’, "/\r’], interval=5)

RCS ()

A factory function that returns a Builder object to be used to fetch source files from RCS. The
returned Builder is intended to be passed to the SourceCode function:

This function is deprecated. For details, see the entry for the SourceCode function.

Examples:

env.SourceCode(’.’”, env.RCS())

Note that scons will fetch source files from RCS subdirectories automatically, so configuring RCS
as demonstrated in the above example should only be necessary if you are fetching from RCS,v files
in the same directory as the source files, or if you need to explicitly specify RCS for a specific
subdirectory.

Replace (key=val, [...])

Replaces construction variables in the Environment with the specified keyword arguments.

Example:

env.Replace (CCFLAGS = '—g’, FOO = ’'foo.xxx")

Repository (directory)

env.

Repository (directory)

Specifies that directory is a repository to be searched for files. Multiple calls to Repository are
legal, and each one adds to the list of repositories that will be searched.

To scons, a repository is a copy of the source tree, from the top-level directory on down, which
may contain both source files and derived files that can be used to build targets in the local source
tree. The canonical example would be an official source tree maintained by an integrator. If the

321

Appendix D. Functions and Environment Methods

repository contains derived files, then the derived files should have been built using scons, so that
the repository contains the necessary signature information to allow scons to figure out when it is
appropriate to use the repository copy of a derived file, instead of building one locally.

Note that if an up-to-date derived file already exists in a repository, scons will not make a copy in
the local directory tree. In order to guarantee that a local copy will be made, use the Local method.

Requires (target, prerequisite)
env.Requires (target, prerequisite)

Specifies an order-only relationship between the specified target file(s) and the specified prerequisite
file(s). The prerequisite file(s) will be (re)built, if necessary, before the target file(s), but the target
file(s) do not actually depend on the prerequisites and will not be rebuilt simply because the
prerequisite file(s) change.

Example:

env.Requires (' foo’, ’'file-that-must-be-built-before-foo’)

Return([vars..., stop=])

By default, this stops processing the current SConscript file and returns to the calling SConscript file
the values of the variables named in the vars string arguments. Multiple strings contaning variable
names may be passed to Return. Any strings that contain white space

The optional st op= keyword argument may be set to a false value to continue processing the rest of
the SConscript file after the Return call. This was the default behavior prior to SCons 0.98.
However, the values returned are still the values of the variables in the named vars at the point
Return is called.

Examples:

Returns without returning a value.
Return ()

Returns the value of the ’"foo’ Python variable.
Return ("foo")

Returns the values of the Python variables ’'foo’ and ’'bar’.
Return ("foo", "bar")

Returns the values of Python variables ’vall’ and ’val2’.
Return(’vall val2’)

322

Appendix D. Functions and Environment Methods

Scanner (function, [argument, keys, path_function, node_class, node_factory, scan_check, recursive])
env.Scanner (function, [argument, keys, path_function, node_class, node_factory, scan_check, recurs]

Creates a Scanner object for the specified function. See the section "Scanner Objects," below, for
a complete explanation of the arguments and behavior.

env.SCCS ()

A factory function that returns a Builder object to be used to fetch source files from SCCS. The
returned Builder is intended to be passed to the SourceCode function.

Example:

env.SourceCode(’.’, env.SCCS())

Note that scons will fetch source files from SCCS subdirectories automatically, so configuring
SCCS as demonstrated in the above example should only be necessary if you are fetching from
s.sccs files in the same directory as the source files, or if you need to explicitly specify SCCS for
a specific subdirectory.

SConscript (scripts, [exports, variant_dir, duplicate])

env.SConscript (scripts, [exports, variant_dir, duplicate])

SConscript (dirs=subdirs, [name=script, exports, variant_dir, duplicate])
env.SConscript (dirs=subdirs, [name=script, exports, variant_dir, duplicate])

This tells scons to execute one or more subsidiary SConscript (configuration) files. Any variables
returned by a called script using Ret urn will be returned by the call to SConscript. There are two
ways to call the SConscript function.

The first way you can call sConscript is to explicitly specify one or more scripts as the first
argument. A single script may be specified as a string; multiple scripts must be specified as a list
(either explicitly or as created by a function like Sp1it). Examples:

SConscript (’ SConscript’) # run SConscript in the current directory
SConscript (src/SConscript’) # run SConscript in the src directory
SConscript ([’ src/SConscript’, ’doc/SConscript’])

config = SConscript ('MyConfig.py’)

The second way you can call SConscript is to specify a list of (sub)directory names as a
dirs=subdirs keyword argument. In this case, scons will, by default, execute a subsidiary
configuration file named SConscript in each of the specified directories. You may specify a name
other than SConscript by supplying an optional name=script keyword argument. The first three
examples below have the same effect as the first three examples above:

SConscript (dirs=".") # run SConscript in the current directory
SConscript (dirs=’'src’) # run SConscript in the src directory
SConscript (dirs=[’'src’, ’"doc’])

(

SConscript (dirs=[’subl’, ’'sub2’], name=’'MySConscript’)

323

Appendix D. Functions and Environment Methods

The optional exports argument provides a list of variable names or a dictionary of named values
to export to the script (s). These variables are locally exported only to the specified script (s),
and do not affect the global pool of variables used by the Export function. The subsidiary

script (s) must use the Import function to import the variables. Examples:

foo = SConscript (’ sub/SConscript’, exports=’env’)

SConscript (‘dir/SConscript’, exports=[’env’, ’variable’])
SConscript (dirs=’'subdir’, exports=’env variable’)

SConscript (dirs=['one’, ’"two’, ’'three’], exports=’shared_info’)

If the optional variant_dir argument is present, it causes an effect equivalent to the VariantDir
method described below. (If variant_dir is not present, the duplicate argument is ignored.)
The variant_dir argument is interpreted relative to the directory of the calling SConscript file.
See the description of the variantDir function below for additional details and restrictions.

If variant_dir is present, the source directory is the directory in which the SConscript file
resides and the SConscript file is evaluated as if it were in the variant_dir directory:

SConscript (' src/SConscript’, variant_dir = ’'build’)

is equivalent to

VariantDir ('build’, ’'src’)
SConscript ('build/SConscript’)

This later paradigm is often used when the sources are in the same directory as the SConstruct:

SConscript (’ SConscript’, variant_dir = ’build’)

is equivalent to

VariantDir ("build’, ’.")

SConscript (‘build/SConscript’)

Here are some composite examples:

collect the configuration information and use it to build src and doc
shared_info = SConscript ('MyConfig.py’)

SConscript (/' src/SConscript’, exports=’shared_info’)
SConscript (' doc/SConscript’, exports=’shared_info’)

build debugging and production versions. SConscript

can use Dir(’.’).path to determine variant.
SConscript (’ SConscript’, variant_dir=’'debug’, duplicate=0)
SConscript (’ SConscript’, variant_dir='prod’, duplicate=0)

build debugging and production versions. SConscript
is passed flags to use.

324

Appendix D. Functions and Environment Methods

opts = { ’CPPDEFINES’ : [/DEBUG’], ’'CCFLAGS’ : ’-pgdb’ }
SConscript (SConscript’, variant_dir=’debug’, duplicate=0, exports=opts)
opts = { 'CPPDEFINES’ : [’NODEBUG’], ’'CCFLAGS’ : '-0" }

SConscript (’ SConscript’, variant_dir='prod’, duplicate=0, exports=opts)

build common documentation and compile for different architectures
SConscript ('doc/SConscript’, variant_dir="build/doc’, duplicate=0)
SConscript (’ src/SConscript’, variant_dir=’'build/x86’, duplicate=0)
SConscript (/ src/SConscript’, variant_dir='build/ppc’, duplicate=0)

SConscriptChdir (value)
env.SConscriptChdir (value)

By default, scons changes its working directory to the directory in which each subsidiary
SConscript file lives. This behavior may be disabled by specifying either:

SConscriptChdir (0)
env.SConscriptChdir (0)

in which case scons will stay in the top-level directory while reading all SConscript files. (This
may be necessary when building from repositories, when all the directories in which SConscript
files may be found don’t necessarily exist locally.) You may enable and disable this ability by
calling SConscriptChdir() multiple times.

Example:

env = Environment ()

SConscriptChdir (0)

SConscript (/! foo/SConscript’) # will not chdir to foo
env.SConscriptChdir (1)

SConscript ('bar/SConscript’) # will chdir to bar

SConsignFile([file, dbm_module])

env.SConsignFile ([file, dbm_module])

This tells scons to store all file signatures in the specified database £ile. If the £ile name is
omitted, . sconsign is used by default. (The actual file name(s) stored on disk may have an
appropriated suffix appended by the dbm_module.) If £ile is not an absolute path name, the file
is placed in the same directory as the top-level SConstruct file.

If file is None, then scons will store file signatures in a separate . sconsign file in each
directory, not in one global database file. (This was the default behavior prior to SCons 0.96.91 and
0.97.)

The optional dbm_module argument can be used to specify which Python database module The
default is to use a custom SCons.dblite module that uses pickled Python data structures, and
which works on all Python versions.

325

env.

Appendix D. Functions and Environment Methods

Examples:

Explicitly stores signatures in ".sconsign.dblite"
in the top-level SConstruct directory (the

default behavior).

SConsignFile ()

Stores signatures in the file "etc/scons—-signatures"
relative to the top-level SConstruct directory.
SConsignFile ("etc/scons—-signatures")

Stores signatures in the specified absolute file name.
SConsignFile ("/home/me/SCons/signatures")

Stores signatures in a separate .sconsign file
in each directory.
SConsignFile (None)

SetDefault (key=val, [...])

Sets construction variables to default values specified with the keyword arguments if (and only if)
the variables are not already set. The following statements are equivalent:

env.SetDefault (FOO = ’'foo’)

if "FOO’ not in env: env[’'FO0’] = 'foo’

SetOption (name, value)

env.SetOption (name, value)

This function provides a way to set a select subset of the scons command line options from a
SConscript file. The options supported are:

clean

which corresponds to -c, --clean and --remove;

duplicate

which corresponds to --duplicate;

help

which corresponds to -h and --help;

implicit_cache

which corresponds to --implicit-cache;

max_drift

which corresponds to --max-drift;

326

Appendix D. Functions and Environment Methods

no_exec

which corresponds to -n, --no-exec, --just-print, --dry-run and --recon;

num__jobs

which corresponds to -j and --jobs;

random

which corresponds to --random; and

stack_size

which corresponds to --stack-size.

See the documentation for the corresponding command line object for information about each
specific option.

Example:

SetOption ('max_drift’, 1)

SideEffect (side_effect, target)
env.SideEffect (side_effect, target)

Declares side_effect as a side effect of building target. Both side_effect and target can
be a list, a file name, or a node. A side effect is a target file that is created or updated as a side effect
of building other targets. For example, a Windows PDB file is created as a side effect of building the
.obj files for a static library, and various log files are created updated as side effects of various TeX
commands. If a target is a side effect of multiple build commands, scons will ensure that only one
set of commands is executed at a time. Consequently, you only need to use this method for
side-effect targets that are built as a result of multiple build commands.

Because multiple build commands may update the same side effect file, by default the
side_effect target is not automatically removed when the target is removed by the —c option.
(Note, however, that the side_effect might be removed as part of cleaning the directory in which
it lives.) If you want to make sure the side_effect is cleaned whenever a specific target is
cleaned, you must specify this explicitly with the Clean or env.Clean function.

SourceCode (entries, builder)
env.SourceCode (entries, builder)

This function and its associate factory functions are deprecated. There is no replacement. The
intended use was to keep a local tree in sync with an archive, but in actuality the function only
causes the archive to be fetched on the first run. Synchronizing with the archive is best done external
to SCons.

327

Appendix D. Functions and Environment Methods

Arrange for non-existent source files to be fetched from a source code management system using
the specified builder. The specified entries may be a Node, string or list of both, and may
represent either individual source files or directories in which source files can be found.

For any non-existent source files, scons will search up the directory tree and use the first
SourceCode builder it finds. The specified builder may be None, in which case scons will not
use a builder to fetch source files for the specified entries, even if a SourceCode builder has
been specified for a directory higher up the tree.

scons will, by default, fetch files from SCCS or RCS subdirectories without explicit configuration.
This takes some extra processing time to search for the necessary source code management files on
disk. You can avoid these extra searches and speed up your build a little by disabling these searches
as follows:

env.SourceCode (’.’, None)

Note that if the specified builder is one you create by hand, it must have an associated
construction environment to use when fetching a source file.

scons provides a set of canned factory functions that return appropriate Builders for various
popular source code management systems. Canonical examples of invocation include:
4 4

env.SourceCode , env.BitKeeper (' /usr/local/BKsources’))

(
env.SourceCode (' src’, env.CVS(’/usr/local/CVSROOT’))
env.SourceCode (' /', env.RCS())
(
(

env.SourceCode (['fl.c’, "f2.c’"], env.SCCS())
’

env.SourceCode (' no_source.c’, None)

SourceSignatures (type)
env.SourceSignatures (type)

Note: Although it is not yet officially deprecated, use of this function is discouraged. See the
Decider function for a more flexible and straightforward way to configure SCons’
decision-making.

The SourceSignatures function tells scons how to decide if a source file (a file that is not built
from any other files) has changed since the last time it was used to build a particular target file.
Legal values are MD5 or t imestamp.

If the environment method is used, the specified type of source signature is only used when deciding
whether targets built with that environment are up-to-date or must be rebuilt. If the global function
is used, the specified type of source signature becomes the default used for all decisions about
whether targets are up-to-date.

MD5 means scons decides that a source file has changed if the MD5 checksum of its contents has
changed since the last time it was used to rebuild a particular target file.

328

Appendix D. Functions and Environment Methods

timestamp means scons decides that a source file has changed if its timestamp (modification
time) has changed since the last time it was used to rebuild a particular target file. (Note that
although this is similar to the behavior of Make, by default it will also rebuild if the dependency is
older than the last time it was used to rebuild the target file.)

There is no different between the two behaviors for Python value node objects.

MD5 signatures take longer to compute, but are more accurate than t imestamp signatures. The
default value is MD5.

Note that the default Target Signatures setting (see below) is to use this SourceSignatures
setting for any target files that are used to build other target files. Consequently, changing the value
of sourcesignatures will, by default, affect the up-to-date decision for all files in the build (or
all files built with a specific construction environment when env. SourceSignatures is used).

Split (arg)
env.Split (arg)

Returns a list of file names or other objects. If arg is a string, it will be split on strings of
white-space characters within the string, making it easier to write long lists of file names. If arg is
already a list, the list will be returned untouched. If arg is any other type of object, it will be
returned as a list containing just the object.

Example:

files = Split("fl.c f2.c £3.c")
files = env.Split("f4.c £5.c f6.c")
files = Split ("""

f7.c

f8.c

f9.c

nn ")

env.subst (input, [raw, target, source, conv])

Performs construction variable interpolation on the specified string or sequence argument input.

By default, leading or trailing white space will be removed from the result. and all sequences of
white space will be compressed to a single space character. Additionally, any $ (and $) character
sequences will be stripped from the returned string, The optional raw argument may be set to 1 if
you want to preserve white space and $ (-$) sequences. The raw argument may be set to 2 if you
want to strip all characters between any s (and $) pairs (as is done for signature calculation).

If the input is a sequence (list or tuple), the individual elements of the sequence will be expanded,
and the results will be returned as a list.

329

Appendix D. Functions and Environment Methods

The optional target and source keyword arguments must be set to lists of target and source
nodes, respectively, if you want the $TARGET, $TARGETS, $SOURCE and $SOURCES to be
available for expansion. This is usually necessary if you are calling env. subst from within a
Python function used as an SCons action.

Returned string values or sequence elements are converted to their string representation by default.
The optional conv argument may specify a conversion function that will be used in place of the
default. For example, if you want Python objects (including SCons Nodes) to be returned as Python
objects, you can use the Python) idiom to pass in an unnamed function that simply returns its
unconverted argument.

Example:
print env.subst ("The C compiler is: $CC")
def compile(target, source, env):
sourceDir = env.subst ("${SOURCE.srcdir}",

target=target,
source=source)

source_nodes = env.subst (' SEXPAND_TO_NODELIST’,
conv=lambda x: X)

Tag (node, tags)

Annotates file or directory Nodes with information about how the Package Builder should package
those files or directories. All tags are optional.

Examples:

makes sure the built library will be installed with 0644 file
access mode
Tag(Library(’lib.c’), UNIX_ATTR="0644")

marks file2.txt to be a documentation file
Tag("file2.txt’, DOC)

TargetSignatures (type)
env.TargetSignatures (type)

Note: Although it is not yet officially deprecated, use of this function is discouraged. See the
Decider function for a more flexible and straightforward way to configure SCons’
decision-making.

The TargetSignatures function tells scons how to decide if a target file (a file that is built from
any other files) has changed since the last time it was used to build some other target file. Legal
values are "build"; "content™" (or its synonym "MD5"); "t imestamp"; Or "source".

330

Appendix D. Functions and Environment Methods

If the environment method is used, the specified type of target signature is only used for targets built
with that environment. If the global function is used, the specified type of signature becomes the
default used for all target files that don’t have an explicit target signature type specified for their
environments.

"content" (or its synonym "MD5") means scons decides that a target file has changed if the MD5
checksum of its contents has changed since the last time it was used to rebuild some other target
file. This means scons will open up MDS5 sum the contents of target files after they’re built, and
may decide that it does not need to rebuild "downstream" target files if a file was rebuilt with
exactly the same contents as the last time.

"timestamp" means scons decides that a target file has changed if its timestamp (modification
time) has changed since the last time it was used to rebuild some other target file. (Note that
although this is similar to the behavior of Make, by default it will also rebuild if the dependency is
older than the last time it was used to rebuild the target file.)

"source" means scons decides that a target file has changed as specified by the corresponding
SourceSignatures setting ("MD5" or "t imestamp"). This means that scons will treat all input
files to a target the same way, regardless of whether they are source files or have been built from
other files.

"build" means scons decides that a target file has changed if it has been rebuilt in this invocation
or if its content or timestamp have changed as specified by the corresponding SourceSignatures
setting. This "propagates" the status of a rebuilt file so that other "downstream" target files will
always be rebuilt, even if the contents or the timestamp have not changed.

"build" signatures are fastest because "content" (or "MD5") signatures take longer to compute,
but are more accurate than "t imestamp" signatures, and can prevent unnecessary "downstream"
rebuilds when a target file is rebuilt to the exact same contents as the previous build. The "source"
setting provides the most consistent behavior when other target files may be rebuilt from both
source and target input files. The default value is "source™.

Because the default setting is "source", using SourceSignatures is generally preferable to
TargetSignatures, so that the up-to-date decision will be consistent for all files (or all files built
with a specific construction environment). Use of TargetSignatures provides specific control for
how built target files affect their "downstream" dependencies.

Tool (string, [toolpath, **kw])
env.Tool (string, [toolpath, *xkw])

The Tool form of the function returns a callable object that can be used to initialize a construction
environment using the tools keyword of the Environment() method. The object may be called with a
construction environment as an argument, in which case the object will add the necessary variables

331

Appendix D. Functions and Environment Methods

to the construction environment and the name of the tool will be added to the $TOOLS construction
variable.

Additional keyword arguments are passed to the tool’s generate() method.

Examples:

env = Environment (tools = [Tool (‘msvc’)])
env = Environment ()

t = Tool ('msvc’)

t (env) # adds ’'msvc’ to the TOOLS variable
u = Tool ("opengl’, toolpath = ['tools’])

u(env) # adds ’'opengl’ to the TOOLS variable

The env.Tool form of the function applies the callable object for the specified tool string to the
environment through which the method was called.

Additional keyword arguments are passed to the tool’s generate() method.

env.Tool ("gcc’)
env.Tool (' opengl’, toolpath = [’build/tools’])

Value (value, [built_value])

env.Value (value, [built_value])

Returns a Node object representing the specified Python value. Value Nodes can be used as
dependencies of targets. If the result of calling st r(value) changes between SCons runs, any
targets depending on Value(value) will be rebuilt. (This is true even when using timestamps to
decide if files are up-to-date.) When using timestamp source signatures, Value Nodes’ timestamps
are equal to the system time when the Node is created.

The returned Value Node object has a write() method that can be used to "build" a Value Node by
setting a new value. The optional built_value argument can be specified when the Value Node is
created to indicate the Node should already be considered "built." There is a corresponding read()

method that will return the built value of the Node.

Examples:

env = Environment ()

def create(target, source, env):
A function that will write a ’'prefix=$SOURCE’
string into the file name specified as the
STARGET.
f = open(str(target[0]), ’"wb’)
f.write ('prefix=' + source[0].get_contents())

Fetch the prefix= argument, if any, from the command

332

Appendix D. Functions and Environment Methods

line, and use /usr/local as the default.
prefix = ARGUMENTS.get (‘prefix’, ’/usr/local’)

Attach a .Config() builder for the above function action

to the construction environment.

env [’BUILDERS’] ['Config’] = Builder (action = create)
env.Config(target = ’'package-config’, source = Value (prefix))

def build_value (target, source, env):
A function that "builds" a Python Value by updating
the the Python value with the contents of the file
specified as the source of the Builder call ($SOURCE).
target [0] .write (source[0] .get_contents())

output = env.Value ("before’)
input = env.Value ('after’)

Attach a .UpdateValue() builder for the above function

action to the construction environment.

env ['BUILDERS’] [’ UpdateValue’] = Builder (action = build_value)
env.UpdateValue (target = Value (output), source = Value (input))

VariantDir (variant_dir, src_dir, [duplicate])
env.VariantDir (variant_dir, src_dir, [duplicate])

Use the variantDir function to create a copy of your sources in another location: if a name under
variant_dir is not found but exists under src_dir, the file or directory is copied to
variant_dir. Target files can be built in a different directory than the original sources by simply
refering to the sources (and targets) within the variant tree.

VariantDir can be called multiple times with the same src_dir to set up multiple builds with
different options (variants). The src_dir location must be in or underneath the SConstruct file’s
directory, and variant_dir may not be underneath src_dir.

The default behavior is for scons to physically duplicate the source files in the variant tree. Thus, a
build performed in the variant tree is guaranteed to be identical to a build performed in the source
tree even if intermediate source files are generated during the build, or preprocessors or other
scanners search for included files relative to the source file, or individual compilers or other invoked
tools are hard-coded to put derived files in the same directory as source files.

If possible on the platform, the duplication is performed by linking rather than copying; see also the
——duplicate command-line option. Moreover, only the files needed for the build are duplicated;
files and directories that are not used are not present in variant_dir.

Duplicating the source tree may be disabled by setting the duplicate argument to 0 (zero). This
will cause scons to invoke Builders using the path names of source files in src_dir and the path
names of derived files within variant_dir. This is always more efficient than duplicate=1, and
is usually safe for most builds (but see above for cases that may cause problems).

333

Appendix D. Functions and Environment Methods

Note that variantDir works most naturally with a subsidiary SConscript file. However, you would
then call the subsidiary SConscript file not in the source directory, but in the variant_dir,
regardless of the value of duplicate. This is how you tell scons which variant of a source tree to
build:

run src/SConscript in two variant directories
VariantDir (’build/variantl’, ’src’)

SConscript ('build/variantl/SConscript’)
VariantDir ('build/variant2’, ’src’)

SConscript ('build/variant2/SConscript’)

See also the SConscript function, described above, for another way to specify a variant directory
in conjunction with calling a subsidiary SConscript file.

Examples:

use names in the build directory, not the source directory
VariantDir ("build’, ’src’, duplicate=0)
Program(’build/prog’, ’build/source.c’)

this builds both the source and docs in a separate subtree
VariantDir ("build’, ’.’, duplicate=0)
SConscript (dirs=['build/src’,’build/doc’])

same as previous example, but only uses SConscript
SConscript (dirs="src’, variant_dir='build/src’, duplicate=0)
SConscript (dirs="doc’, variant_dir='build/doc’, duplicate=0)

Wherels (program, [path, pathext, reject])
env.Wherels (program, [path, pathext, reject])

Searches for the specified executable program, returning the full path name to the program if it is
found, and returning None if not. Searches the specified path, the value of the calling
environment’s PATH (env [ENV’] [/ PATH’]), or the user’s current external PATH
(os.environ[’PATH’]) by default. On Windows systems, searches for executable programs with
any of the file extensions listed in the specified pathext, the calling environment’s PATHEXT
(env[’ENV’] [/ PATHEXT' 1) or the user’s current PATHEXT (os.environ[’PATHEXT' 1) by
default. Will not select any path name or names in the specified reject list, if any.

334

Appendix E. Handling Common Tasks

There is a common set of simple tasks that many build configurations rely on as they become more
complex. Most build tools have special purpose constructs for performing these tasks, but since
SConscript files are Python scripts, you can use more flexible built-in Python services to perform these
tasks. This appendix lists a number of these tasks and how to implement them in Python and SCons.

Example E-1. Wildcard globbing to create a list of filenames

files = Glob (wildcard)

Example E-2. Filename extension substitution
import os.path
filename = os.path.splitext (filename) [0]+extension
Example E-3. Appending a path prefix to a list of filenames
import os.path
filenames = [os.path.join(prefix, x) for x in filenames]
Example E-4. Substituting a path prefix with another one
if filename.find(old_prefix) == 0:
filename = filename.replace (old_prefix, new_prefix)
Example E-5. Filtering a filename list to exclude/retain only a specific set of extensions
import os.path
filenames = [x for x in filenames if os.path.splitext(x)[1l] in extensions]
Example E-6. The ""backtick function'': run a shell command and capture the output
import os

output = os.popen (command) .read ()

Example E-7. Generating source code: how code can be generated and used by SCons

The Copy builders here could be any arbitrary shell or python function that produces one or more files.
This example shows how to create those files and use them in SCons.

SConstruct

env = Environment ()

env.Append (CPPPATH = "#")

Header example

335

Appendix E. Handling Common Tasks

env.Append (BUILDERS =
{"Copyl’ : Builder (action = ’'cat < $SOURCE > S$TARGET’,
suffix=’.h’, src_suffix=’.bar’)})
env.Copyl (' test.bar’) # produces test.h from test.bar.
env.Program(’app’, 'main.cpp’) # indirectly depends on test.bar

Source file example
env.Append (BUILDERS =
{’Copy2’ : Builder (action = ’'cat < $SOURCE > S$STARGET’,
suffix=".cpp’, src_suffix=’'.bar2’)})
foo = env.Copy2 (' foo.bar2’) # produces foo.cpp from foo.bar2.

env.Program(’app2’, ['main2.cpp’] + foo) # compiles main2.cpp and foo.cpp

Where main.cpp looks like this:
#include "test.h"

produces this:
% scons -Q
cc -0 app main.cpp
cat < foo.bar2 > foo.cpp
cc -0 app2 main2.cpp foo.cpp
cat < test.bar > test.h

into app2.

336

