Pudding (a widget system for Soya)

Release 0.1-0

Dunk Fordyce, dunk@dunkfordyce.co.uk

May 28, 2005

Abstract
This document describes how to use Pudding with Soya. Pudding is a replacement widget system for Soya’s current
widget system.
Contents

1

What is Pudding?

Software Requirements

Pudding Basics

3.1 Initializingpudding
3.2 TheRootWidget class.
3.3 HelloWorld! e

Module: pudding — Main pudding module

4.1 FUNCLIONS. o o e e e e e e e e
4.2 ClasSeS. . . . v o e e e e
4.3 Constants. e

Module: pudding.core — Core objects forpudding

B.1 Classes. v o e e e

Module: pudding.control — most basic widget for pudding

6.1 Classes. i e e

Module: pudding.container — containers for pudding

7.1 ClasSeS v v e e e e

Module: pudding.idler — a simple replacement idler for soya

8.1 ClasSesS. v i i e e e

pudding.sysfont — sysfont, used in the font module to find system fonts

1 What is Pudding?

Pudding is a widget system primarily for Soya, it could however with some tweaking be used for orther libraries such
as pyopengl|.

1.1 Why Pudding?

Pudding was started as a replacement to Soya’s current widget module. The current module, while usefull, is hard to
extend.

There are several other opengl Ul libraries available but all have theyre problems or would be complicated to use with
soya.

Pudding has been designed to allow components to be created from a core set of base classes. This allows the developer
to create any sort of widget, either, virtually from scratch or from a higher level.

1.2 Some cake to have and eat

Here is a minimal example of using pudding for the impatient:

2 1 Whatis Pudding?

import soya
import pudding

soya.path.append('data’)

soya.init()
pudding.init()

scene = soya.World()

sword_model = soya.Shape.get("sword")
sword = soya.Volume(scene, sword_model)
sword.x = 1

sword.rotate_lateral(90.)

light = soya.Light(scene)
light.set_xyz(.5, 0., 2.)

camera = soya.Camera(scene)
camera.z = 3.

soya.set_root_widget(pudding.core.RootWidget())
soya.root_widget.add_child(camera)

button_bar = pudding.container.HorizontalContainer(soya.root_widget,
left = 10, width= 164, height = 64)

button_bar.set_pos_bottom_right(bottom = 10)

button_bar.anchors = pudding. ANCHOR_BOTTOM

buttonl = button_bar.add_child(pudding.control.Button(label = 'Buttonl’),
pudding.EXPAND_BOTH)

button2 = button_bar.add_child(pudding.control.Button(label = 'Button2’),
pudding.EXPAND_BOTH)

logo = pudding.control.Logo(soya.root_widget, 'mylogo.png’)

pudding.idler.ldler(scene).idle()

2 Software Requirements
You need to have the following software installed:

e Python 2.3ttp://python.org

e Soya (and all relevant dependanciést)://oomadness.tuxfamily.org/en/soya/index.htm|

Optional software includes:

e ElementTreenttp:/effbot.org/zone/element-index.htm

e pycairohttp://cairographics.org

3 Pudding Basics

This section will introduce the basics paidding .

3.1 Initializing pudding

Using pudding is as simple as adding two extra statements to your Soya application.

import soya
import pudding

soya.init()
pudding.init()

You are now ready to createpaidding root widget to add components to.

3.2 The RootWidget class

To use pudding yomustusepudding.core.RootWidget

... initialize soya and pudding

soya.set_root_widget(pudding.core.RootWidget())

To add your camera to the root widget use:

... initialize soya and pudding

scene = soya.World()
camera = soya.Camera(scene)

soya.set_root_widget(pudding.core.RootWidget())

soya.root_widget.add_child(camera)

3.3 Hello World!

The infamous hello world script with pudding:

3 Pudding Basics

import soya
import pudding

soya.init()
pudding.init()

scene = soya.World()
camera = soya.Camera(scene)

soya.set_root_widget(pudding.core.RootWidget())
soya.root_widget.add_child(camera)

text = pudding.control.SimpleLabel(soya.root_widget, label = "Hello World!")

pudding.idler.Idler(scene).idle()

4 Module: pudding - Main pudding module

4.1 Functions
init (style=Non¢
Intialise {pudding. {style} should be a subclass ¢pudding.style.Stylg

process_event ()
This gets the event list from soya and filters it for any events handled by widgets. It returns an array with the
events that have not been used. If you use{fhelding.idler.ldlef then this function is called ifidler.begin-
round} and the events unprocessed pu{idier.events}

4.2 Classes

exceptionConstantError
Inherits: PuddingError Exception

Error using & pudding constant

exceptionPuddingError
Inherits: Exception

A {pudding exception

4.3 Constants

ALIGN_BOTTOM
ALIGN_LEFT
ALIGN_RIGHT
ALIGN_TOP
ANCHOR_ALL
ANCHOR_BOTTOM
ANCHOR_BOTTOM_LEFT

ANCHOR_BOTTOM_RIGHT
ANCHOR_LEFT
ANCHOR_RIGHT
ANCHOR_TOP
ANCHOR_TOP_LEFT
ANCHOR_TOP_RIGHT
BOTTOM_LEFT
BOTTOM_RIGHT
CENTER_BOTH
CENTER_HORIZ
CENTER_VERT
CLIP_BOTTOM
CLIP_LEFT
CLIP_NONE
CLIP_RIGHT
CLIP_TOP
CORNERS
EXPAND_BOTH
EXPAND_HORIZ
EXPAND_NONE
EXPAND_VERT
STYLE

TOP_LEFT
TOP_RIGHT

5 Module: pudding.core — Core objects for pudding

5.1 Classes

classBase
Inherits:

The base class for all widgets. Note a Base control doesnt render anything to the screen or it does it in a fashion
where position and size are not relevant. For graphical controls sugladding.Contral instead

child
child object

parent
parent object

advance_time (self, proportior)
soya advancéime event

6 5 Module: pudding.core — Core objects for pudding

begin_round (self)
soya begimround event

end_round (self)
soya.endround event

on_init (self)
event occurs at the end of initialisation for user processing

on_set_child (self, child
event triggered when the child attribute is set

process_event (self, event
process one event. returning False means that the event has not been handled and should be passed on to
other widgets. returning True means that the event has been handled and the event should no longer be
propogated

classControl

Inherits:Base

The main graphical base class for all widgets.

anchors

bottom
distance from the bottom edge of the screen to the bottom edge of the control

height
height of the control

left
distance from the left edge of the screen to the left edge of the control

right
distance from the right edge of the screen to the right edge of the control

screen_bottom
screen_left
screen_right
screen_top
top
distrance from the top edge of the screen to the top edge of the control
visible
is the object visible

width
width of the control

do_anchoring (self)
move the control based on anchor flags

end_render (self)

shuts down opengl state
on_hide (self)

event when the control is made invisible
on_resize (self)

event when the control is resized

on_show (self)
event when the control is made visible

5.1 Classes 7

process_event (self, event
process one event. returning False means that the event has not been handled and should be passed on to
other widgets. returning True means that the event has been handled and the event should no longer be
propogated.

render (self)
render the whole object. setup and take down opengl, render self and render all children

render_self (self)
renders the current object. ie dont render the children, render self

resize (self, left, top, width, height
set the position and size of the control
set_pos_bottom_right (self, right=None, bottom=None
whereas using .right and .bottom effect the width and height of the control this will effect the left and the
top
start_render (self)
sets up opengl state

classinputControl
This class should be used with multiple inheritance to create some standard events. call InputContral.process
event(self,event) from your widgets processent call.
Note the methods amouse*, onkey_*, on_focus and ordoosefocus
focus

on_focus (self)
event triggered when the control gets focus

on_key_down (self, key, mods

event triggered when a key is pressed
on_key up (self, key, mods

event triggered when a key is released
on_loose_focus (self)

event triggered when the control looses focus
on_mouse_down (self, x, y, buttoh

event triggered when a mouse button is pressed
on_mouse_over (self, x, y, buttors

event triggered when the mouse moves over the control
on_mouse_up (self, x, y, buttohp

event triggered when a mouse button is released
process_event (self, event

process an individial event and then pass it on the correct event handler. if that handler returns True the

event is assumed to of been dealt with
process_mouse_event (self, event

process a mouse event. focus is set if the mouse is over the widget. the event handlers ah an@use
called from here

classRootWidget
Inherits: Container Control Base

The root widget to be used witfpudding.
If your display looks incorrect try resizing the window. If that corrects the display then you need to call root
widget.onresize() at some point before the user gets control.

add_child (self, chilg
Add a child to the root widget{RootWidge} also accepts cameras as children altho these are stored in
.cameras

8 5 Module: pudding.core — Core objects for pudding

6

on_init (self)
Declares self.cameras

on_resize (self)
Resize all cameras and children

start_render (self)
Load the identity matrix for the root widget

widget_advance time (self, proportior)
Called once or more per round

widget_begin_round (self)
Called at the beginning of every round

widget_end _round (self)
Called at the end of every round

Module: pudding.control — most basic widget for pudding

6.1 Classes

classButton

Inherits: Box Control Base InputControl
A simple button widget. The label is a child SimpleLabel widget. Note thelak method provided

label
label on the button
on_click (self)
event triggered when the button is "clicked” either by the mouse or the keyboard

on_mouse_up (self, x, y, buttop
use the mouse up event handler to implement theliwk handler

on_resize (self)
use the resize event to move and resize the buttons child label

render_self (self)
render the box with current settings

classConsole

Inherits: VerticalContainer Container Control Base
A simple console style widget

on_focus (self)
automatically give focus to the input when the console gets focus

on_key press (self, key, mogds
allow scrolling thru the buffer

on_loose_focus (self)
automatically give focus to the input when the console gets focus

on_resize (self)
update child controls

on_return (self)
send all input to the output and clear the input ready for more

classimage

Inherits: Control Base
A simple image control

material
rotation
shade

render_self (self)
render the image to screen

classinput

Inherits: Box Control Base InputControl
Simple input box using a child SimpleLabel widget. Note thevaiue changed method

cursor
text used as a cursor. defaults tb’
prompt
static text used as a prompt

value
the text in the input box

clear (self)
clear the value of the input

on_focus (self)
append the cursor sybol when focus is gained
on_key down (self, key, mods
process and key strokes and add them to the current value

on_loose _focus (self)
remove the cursor symbol when the focus is lost

on_resize (self)
set the position and size of our child label

on_return (self)
event triggered when the return key is pressed

on_value_changed (self)

event triggered when the value is changed by the user
set_height_to_font (self)

set the height of the input control to the height of the font

classLabel

Inherits: SimpleLabel Control Base InputControl
Label with events. Created using SimpleLabel and InputControl with multiple inheritance
MAXLEN

process_event (self, event
let InputControl class deal with events

classLogo

Inherits:Image Control Base
Class to display an image in the bottom right corner, usefull for logo’s

classPanel

Inherits: Box Control Base InputControl
A simple window/panel control with a title. modify the style class to change the way this is draw
label

process_event (self, event
default event handling

10

6 Module: pudding.control — most basic widget for pudding

render_self (self)
render the box with current settings

classPrePostLabel
Inherits: SimpleLabel Control Base

A label with static pre/post -fix
MAXLEN

post

pre

set_display_text (self, tex}
set the display text with the pre and post strings

classSimpleLabel
Inherits: Control Base

A simple, unresponsive label widget
MAXLEN

autosize
should the label automatically adjust its size to accomodate all the text

clip
if there is too much text do we clip the left or right. must be pudding.core.[pudding.CEFPT —
pudding.CLIPRIGHT]

color
color of the text

font
font used for rendering

label
text displayed

wrap

on_resize (self)
update position with anchoring and apply wrapping/clipping

on_set label (self)
event triggered when the label is changed

render_self (self)
draw the text with the current settings

set_display_text (self, texy
get the text we should actually display. usefull if you want to add a constant string or perform some
processing before the string gets wrapped or clipped or whatever

update (self)
refresh settings based on clip and autoresize etc

7 Module: pudding.container — containers for pudding

7.1 Classes

classHorizontalContainer
Inherits: Container Control Base

class to resize all children in a row

11

on_resize (self)
resize all children into a row

classVerticalContainer
Inherits: Container Control Base

class to resize all children in a column

on_resize (self)
resize all children into a column

8 Module: pudding.idler — a simple replacement idler for soya

8.1 Classes

classldler
Inherits: Idler

Simple replacement for the soya.ldler that calls pudding.proeesst in beginround and places all unhandled
events into idler.events.

begin_round (self)
call pudding.process event and put all events in self.events so the "game” can handle other events

idle (self)
resize all widgets and start the idler

9 pudding.sysfont — sysfont, used in the font module to find system
fonts

12 9 pudding.sysfont — sysfont, used in the font module to find system fonts

	1 What is Pudding?
	1.1 Why Pudding?
	1.2 Some cake to have and eat

	2 Software Requirements
	3 Pudding Basics
	3.1 Initializing pudding
	3.2 The RootWidget class
	3.3 Hello World!

	4 Module: pudding -- Main pudding module
	4.1 Functions
	4.2 Classes
	4.3 Constants

	5 Module: pudding.core -- Core objects for pudding
	5.1 Classes

	6 Module: pudding.control -- most basic widget for pudding
	6.1 Classes

	7 Module: pudding.container -- containers for pudding
	7.1 Classes

	8 Module: pudding.idler -- a simple replacement idler for soya
	8.1 Classes

	9 pudding.sysfont -- sysfont, used in the font module to find system fonts

