
ICU User Guide

International Components For Unicode 

Version 3.8

Sep 14, 2007

1 ICU v3.8 User Guide



Table of Contents
Introduction to ICU..............................................................................................................4
Software Internationalization...............................................................................................7
Unicode Basics...................................................................................................................14
ICU Services...................................................................................................................... 25
ICU Architectural Design.................................................................................................. 36
C/POSIX Migration........................................................................................................... 53
Strings................................................................................................................................ 59
Properties........................................................................................................................... 75
CharacterIterator Class.......................................................................................................84
UText................................................................................................................................. 88
UnicodeSet.........................................................................................................................97
Regular Expressions.........................................................................................................102
StringPrep........................................................................................................................ 112
Conversion Basics............................................................................................................121
Using Converters............................................................................................................. 124
Conversion Data...............................................................................................................139
Character Set Detection................................................................................................... 154
Compression.................................................................................................................... 160
Locale Class..................................................................................................................... 162
Locale Examples..............................................................................................................175
Resource Management.....................................................................................................177
Localizing with ICU.........................................................................................................195
Date/Time Services..........................................................................................................206
Calendar Class................................................................................................................. 209
Calendar Examples.......................................................................................................... 215
ICU TimeZone Classes.................................................................................................... 217
Date and Time Zone Examples........................................................................................224
Universal Time Scale.......................................................................................................225
Formatting and Parsing.................................................................................................... 232
Formatting Numbers........................................................................................................ 236
RBNF Rules Examples.................................................................................................... 243
Formatting Dates and Times............................................................................................245
Format Date and Time Examples.................................................................................... 250
Formatting Messages....................................................................................................... 252
Message Format Examples.............................................................................................. 255
Transformations............................................................................................................... 260
Case Mappings.................................................................................................................261
The Bidi Algorithm..........................................................................................................263

2 ICU v3.8 User Guide



Normalization.................................................................................................................. 266
Normalization Examples..................................................................................................269
Transforms....................................................................................................................... 270
Transform Rule Tutorial.................................................................................................. 298
Collation Introduction......................................................................................................312
API Details.......................................................................................................................315
Collation Concepts...........................................................................................................325
ICU Collation Service Architecture.................................................................................342
Collation Examples..........................................................................................................355
Collation Customization.................................................................................................. 360
ICU Search String Service............................................................................................... 377
Collation FAQ..................................................................................................................383
Text Element Boundary Analysis.................................................................................... 385
LayoutEngine................................................................................................................... 401
Data Management............................................................................................................ 404
Packaging ICU................................................................................................................. 419
Java Native Interface (JNI) ............................................................................................. 424
How To Use ICU4C From COBOL.................................................................................427
Coding Guidelines........................................................................................................... 437
Synchronization Issues.....................................................................................................467
Contributions to the ICU library...................................................................................... 469
Editing the ICU User Guide ............................................................................................473
ICU FAQs........................................................................................................................ 480
Glossary........................................................................................................................... 487

3 ICU v3.8 User Guide



Introduction to ICU
As companies integrate e-commerce on a global scale into their fundamental business 
processes, their prospective customers, established customers, and active partners can 
take advantage of increased revenue and decreased expenses through software 
internationalization. They also can improve customer communications and increase 
savings.

Meeting the Challenge of Globalization

Internationalized software results in an increase in: 

In today's business climate of globalization, companies must compete in a new Internet-
enabled business climate of constant change and compressed time frames. Their 
customers expect reliable service and support.

Taking Advantage of Internationalized Software

Companies need to establish a better linkage between their global business processes and 
the underlying supportive IT processes. If they want to deliver this new flexibility and 
agility, they must depend on the software internationalization process.

The software internationalization development process uses libraries (such as the 
International Components for Unicode (ICU) libraries), to enable one single program to 
work with text in any language for any place in the world. For example, instead of having 
separate software versions for ten different countries, the ICU services can create one 
version that works seamlessly and transparently in all of them.

The ICU components are an integral part of software development because they hide the 
cultural nuances and technical complexities of locale-specific software requirements. 
These complexities provide critical functionality for applications, but the application 
developer does not need to exert a huge effort or incur high costs to build them.

Justifying the Investment

The business case needed to justify the investment in software internationalization is 
compelling when the investment is amortized over a number of projects. In the fast-paced 
and rapidly-evolving world of traditional and evolving e-businesses, these international 
components provide a firm ground on which companies, partners and suppliers can build 
their business transactions. They can share competitive information to help gain a 
significant economic advantage.

The ICU services deliver proven value by lowering the cost required to integrate with 
disparate applications, systems and data sources on a regional and global scale. It 
provides value to a company's IT investment by lowering IT complexity, risk, 
maintenance costs and training costs. It also enhances organizational flexibility, leverages 

4 ICU v3.8 User Guide



existing assets, and improves planning and decision-making. It enables organizational 
learning, process-driven synchronization, event-driven evaluation and decision-making.

Background and History of ICU

ICU was originally developed by the Taligent company. The Taligent team later became 
the Unicode group at the IBM® Globalization Center of Competency in Cupertino. The 
team has received significant input from the open source community worldwide.

Java™ classes developed at Taligent were incorporated into the Java Development Kit 
(JDK) 1.1 developed by Sun® Microsystems. The classes were then ported to C++ and 
later some classes were also ported to C. The classes provide internationalization utilities 
for writing global applications in C, C++, or Java programming languages.

ICU for Java (ICU4J) includes enhanced versions of some of these classes, plus 
additional classes that complement the classes in the JDK. C and C++ versions of the 
same international functionality are available in ICU for C (ICU4C). The APIs differ 
slightly due to language differences and new functionality. For example, ICU4C includes 
a character converter API.

ICU4J and ICU4C keep the same development goals. They both track additions to the 
Java internationalization APIs and implement the latest released Unicode standard. They 
also maintain a single, portable source code base.

All of us in the ICU and open source group appreciate the time you are taking to 
understand our technology. We have put our best collective effort into these open 
components, and look forward to your questions, comments and suggestions.

Downloading ICU

Download ICU in one of the following ways:

1. From the down load page, http://www.icu-project.org/download/, for packaged stable 
releases of ICU.

2. From the source code repository, http://www.icu-project.org/repository/, for the latest 
development versions.

After downloading, see the included README file for information on what is included, 
building, installing, etc.

ICU License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2006 International Business Machines Corporation and others. All 
rights reserved.

5 ICU v3.8 User Guide

http://www.icu-project.org/download/
http://www.icu-project.org/repository/


Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the  "Software"), to deal in the Software 
without restriction, including without limitation the rights to use, copy, modify, merge, 
publish, distribute, and/or sell copies of the Software, and to permit persons to whom the 
Software is furnished to do so, provided that the above copyright notice(s) and this 
permission notice appear in all copies of the Software and that both the above copyright 
notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES 
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE 
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE 
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL 
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF 
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, 
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN 
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in 
advertising or otherwise to promote the sale, use or other dealings in this Software 
without prior written authorization of the copyright holder.

All trademarks and registered trademarks mentioned herein are the property of their 
respective owners.

6 ICU v3.8 User Guide



Software Internationalization
Overview of Software Internationalization

Developing globalized software is a continuous balancing act as software developers and 
project managers inadvertently underestimate the level of effort and detail required to 
create foreign-language software releases.

Software developers must understand the ICU services to design and deploy successful 
software releases. The services can save ICU users time in dealing with the kinds of 
problems that typically arise during critical stages of the software life cycle.

In general, the standard process for creating globalized software includes 
"internationalization," which covers generic coding and design issues, and "localization," 
which involves translating and customizing a product for a specific market.

Software developers must understand the intricacies of internationalization since they 
write the actual underlying code. How well they use established services to achieve 
mission objectives determines the overall success of the project. At a fundamental level, 
code and feature design affect how a product is translated and customized. Therefore, 
software developers need to understand key localization concepts.

From a geographic perspective, a locale is a place. From a software perspective, a locale 
is an ID used to select information associated with a a language and/or a place. ICU 
locale information includes the name and identifier of the spoken language, sorting and 
collating requirements, currency usage, numeric display preferences, and text direction 
(left-to-right or right-to-left, horizontal or vertical).

General locale-sensitive standards include keyboard layouts, default paper and envelope 
sizes, common printers and monitor resolutions, character sets or encoding ranges, and 
input methods. 

ICU Services Overview

The ICU services support all major locales with language and sub-language pairs. The 
sub-language generally corresponds to a country. One way to think of this is in terms of 
the phrase "X language as spoken in Y country." The way people speak or write a 
particular language might not change dramatically from one country to the next (for 
example, German is spoken in Austria, Germany, and Switzerland). However, cultural 
conventions and national standards often differ a great deal.

A key advantage to using the ICU services is the net result in reduced time to market. The 
translation of the display strings is bundled in separate text files for translation. A 
programmer team with translators no longer needs to search the source code in order to 
rewrite the software for each country and language.

7 ICU v3.8 User Guide



Internationalization and Unicode

Unicode enables a program to use a standard encoding scheme for all textual data within 
the program's environment. Conversion has to be done with incoming and outgoing data 
only. Operations on the text (while it is in the environment) are simplified since you do 
not have to keep track of the encoding of a particular text.

Unicode supports multilingual data since it encodes characters for all world languages. 
You do not have to tag pieces of data with their encoding to enable the right characters, 
and you can mix languages within a single piece of text.

Some of the advantages of using ICU to internationalize your program include the 
following:

• It can handle text in any language or combination of languages.

• The source code can be written so that the program can work for many locales.

• Configurable, pluggable localization is enabled.

• Multiple locales are supported at the same time.

• Non-technical people can be given access to information and you don't have to open 
the source code to them.

• Software can be developed so that the same code can be ported to various platforms.

Project Management Tips for Internationalizing Software

The following two processes are key when managing, developing and designing a 
successful internationalization software deliverable:

1. Separate the program's executable code from its UI elements.

2. Avoid making cultural assumptions.

Keep static information (such as pictures, window layouts) separate from the program 
code. Also ensure that the text which the program generates on the fly (such as numbers 
and dates) comes out in the right language. The text must be formatted correctly for the 
targeted user community.

Make sure that the analysis and manipulation of both text and kinds of data (such as 
dates), is done in a manner that can be easily adapted for different languages and user 
communities. This includes tasks such as alphabetizing lists and looking for line-break 
positions.

Characters must display on the screen correctly (the text's storage format must be 
translated to the proper visual images). They must also be accepted as input (translated 
from keystrokes, voice input or another kind of input into the text's storage format). These 
processes are relatively easy for English, but quite challenging for other languages.

8 ICU v3.8 User Guide



Separating Executable Code from UI Elements

Good software design requires that the programming code implementing the user 
interface (UI) be kept separate from code implementing the underlying functionality. The 
description of the UI must also be kept separate from the code implementing it.

The description of the UI contains items that the user sees, including the various 
messages, buttons, and menu commands. It also contains information about how dialog 
boxes are to be laid out, and how icons, colors or other visual elements are to be used. For 
example, German words tend to be longer since they contains grammatical suffixes that 
English has lost in the last 800 years. The following table shows how word lengths can 
differ among languages.

English German Cyrillic-Serbian
cut ausschneiden исеци
copy kopieren копирај
paste einfügen залепи

The description of the UI, especially user-visible pieces of text, must be kept together and 
not embedded in the program's executable code. ICU provides the ResourceBundle 
services for this purpose.

Avoiding Cultural/Hidden Assumptions

Another difficulty encountered when designing and implementing code is to make it 
flexible enough to handle different ways of doing things in other countries and cultures. 
Most programmers make unconscious assumptions about their user's language and 
customs when they design their programs. For example, in Thailand, the official calendar 
is the Buddhist calendar and not the Gregorian calendar.

These assumptions make it difficult to translate the user interface portion of the code for 
some user communities without rewriting the underlying program. The ICU libraries 
provide flexible APIs that can be used to perform the most common and important tasks. 
They contain pre-built supporting data that enables them to work correctly in 75 
languages and more than 200 locales. The key is understanding when, where, why, or 
how to use the APIs effectively.

The remainder of this section provides an overview of some cultural and hidden 
assumptions components:

• Numbers and Dates  

• Messages  

• Measuring Units  

• Alphabetical Order of Characters  

9 ICU v3.8 User Guide



• Character Format  

• Text Input and Layout  

• Text Manipulation  

• Date/Time Formatting  

• Distributed Locale Support  

• LayoutEngine  

Numbers and Dates

Numbers and dates are represented in different languages. Do not implement routines for 
converting numbers into strings, and do not call low-level system interfaces like 
sprintf() that do not produce language-sensitive results. Instead, see how ICU's 
NumberFormat and DateFormat services can be used more effectively.

Messages

Be careful when formulating assumptions about how individual pieces of text are used 
together to create a complete sentence (for example, when error messages are generated) . 
The elements might go together in a different order if the message is translated into a new 
language. ICU provides MessageFormat and ChoiceFormat to help with these 
occurrences.

There also might be situations where parts of the sentence change when other 
parts of the sentence also change (selecting between singular and plural nouns 
that go after a number is the most common example). 

Measuring Units

Numerical representations can change with regard to measurement units and currency 
values. Currency values can vary by country. A good example of this is the representation 
of $1,000 dollars. This amount can represent either U.S. or Canadian dollar values. US 
dollars can be displayed as USD while Canadian dollars can be displayed as CAD, 
depending on the locale. In this case, the displayed numerical quantity might change, and 
the number itself might also change. NumberFormat provides some support for this. 

Alphabetical Order of Characters

10 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatNumbers.sxw#NumberFormat
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatMessages.sxw#CF
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatMessages.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatDateTime.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatNumbers.sxw


All languages (even those using the same alphabet) do not necessarily have the same 
concept of alphabetical order. Do not assume that alphabetical order is the same as the 
numerical order of the character's code-point values. In practice, 'a' is distinct from 'A' and 
'b' is distinct from 'B'. Each has a different codepoint. This means that you can not use a 
bit-wise lexical comparison (such as what strcmp() provides), to sort user-visible lists. 

Not all languages interpret the same characters as equivalent. If a character's case is 
changed it is not always a one-to-one mapping. Accent differences, the presence or 
absence of certain characters, and even spelling differences might be insignificant when 
determining whether two strings are equal. The Collator services provide significant help 
in this area.

Characters

A character does not necessarily correspond to a single code-point position in the backing 
store. All languages might not have the same definition of a word, and might not find that 
any group of characters separated by a white space is an acceptable approximation for the 
definition of a word. ICU provides the BreakIterator services to help locate boundaries or 
when counting units of text.

When checking characters for membership in a particular class, do not list the specific 
characters you are interested in, and do not assume they come in any particular order in 
the encoding scheme. For example, /A-Za-z/ does not mean all letters in most European 
languages, and /0-9/ does not mean all digits in many writing systems. This also holds 
true when using C interfaces such as isupper() and islower. ICU provides a large 
group of utility functions for testing character properties, such as u_isupper and 
u_islower().

Text Input and Layout

Do not assume anything about how a piece of text might be drawn on the screen, 
including how much room it takes up, the direction it flows, or where on the screen it 
should start. All of these text elements vary according to language. As a result, there 
might not be a one-to-one relationship between characters and keystrokes. One-to-many, 
many-to-one, and many-to-many relationships between characters and keystrokes all 
occur in real text in some languages.

Text Manipulation

Do not assume that all textual data, which the program stores and manipulates, is in any 
particular language or writing system. ICU provides many methods that help with text 

11 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/boundaryAnalysis.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/Collate_Intro.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/conversion.sxw


storage. The UnicodeString class and u_strxxx functions are provided for Unicode-based 
character manipulation. For example, when appending an existing Unicode character 
buffer, characters can be removed or extracted out of the buffer.

A good example of text manipulation is the Rosetta stone. The same text is written on it 
in Hieroglyphic, Greek and Demotic. ICU provides the services to correctly process 
multi-lingual text such as this correctly.

Date/Time Formatting

Time can be determined in many units, such as the lengths of months or years, which day 
is the first day of the week, or the allowable range of values like month and year (with 
DateFormat). It can also determine the time zone you are in (with TimeZone), or when 
daylight-savings time starts. ICU provides the Calendar services needed to handle these 
issues.

This example shows how a user interface element can be used to 
increment or decrement the time field value.

Distributed Locale Support

In most server applications, do not assume that all clients connected to the server interact 
with their users in the same language. Also do not assume that a session stops and restarts 
whenever a user speaking one language replaces another user speaking a different 
language. ICU provides sufficient flexibility for a program to handle multiple locales at 
the same time. 

For example, a Web server needs to serve pages to different users, languages, and date 
formats at the same time.

LayoutEngine

The ICU LayoutEngine is an Open Source library that provides a uniform, easy to use 
interface for preparing complex scripts or text for display. The Latin script, which is the 
most commonly used script among software developers, is also the least complex script to 
display especially when it is used to write English. Using the Latin script, characters can 
be displayed from left to right in the order that they are stored in memory. Some scripts 
require rendering behavior that is more complicated than the Latin script. We refer to 
these scripts as "complex scripts" and to text written in these scripts as "complex text."

12 ICU v3.8 User Guide

, 09/26/04
html image name: ClockUI.gif



Unicode Basics
Introduction to Unicode

Unicode is a standard that precisely defines a character set as well as a small number of 
encodings for it. It enables you to handle text in any language efficiently. It allows a 
single application executable to work for a global audience. ICU, like Java™, Microsoft® 
Windows NT™, Windows™ 2000 and other modern systems, provides 
Internationalization solutions based on Unicode.

This chapter is intended as an introduction to codepages in general and Unicode in 
particular. For further information, see:

• The Web site of the Unicode consortium  

• What is Unicode?  

• IBM® Globalization  

Go to the online ICU demos to see how a Unicode-based server application can handle 
text in many languages and many encodings.

Traditional Character Sets and Unicode

Representing text-format data in computers is a matter of defining a set of characters and 
assigning each of them a number and a bit representation. Underlying this basic idea are 
three related concepts:

1. A character set or repertoire is an unordered collection of characters that can be 
represented by numeric values.

2. A coded character set maps characters from a character set or repertoire to numeric 
values.

3. A character encoding scheme defines the representation of numeric values from one or 
more coded character sets in bits and bytes.

For simple encodings such as ASCII, the last two concepts are basically the same: ASCII 
assigns 128 characters and control codes to consecutive numbers from 0 to 127. These 
characters and control codes are encoded as simple, unsigned, binary integers. Therefore, 
ASCII is both a coded character set and a character encoding scheme.

ASCII only encodes 128 characters, 33 of which are control codes rather than graphic, 
displayable characters. It was designed to represent English-language text for an 
American user base, and is therefore insufficient for representing text in almost any 
language other than American English. In fact, most traditional encodings were limited to 
one or few languages and scripts. 

ASCII offered a natural way to extend it: Designed in the 1960's to work in systems with 
7-bit bytes while most computers and Internet protocols since the 1970's use 8-bit bytes, 

13 ICU v3.8 User Guide

http://demo.icu-project.org/icu-bin/icudemos
http://www.ibm.com/software/globalization/
http://www.unicode.org/unicode/standard/WhatIsUnicode.html
http://www.unicode.org/


the extra bit allowed another 128 byte values to represent more characters. Various 
encodings were developed that supported different languages. Some of these were based 
on ASCII, others were not.

Languages such as Japanese need to encode considerably more than 256 characters. 
Various encoding schemes enable large character sets with thousands or tens of thousands 
of characters to be represented. Most of those encodings are still byte-based, which means 
that many characters require two or more bytes of storage space. A process must be 
developed to interpret some byte values.

Various character sets and encoding schemes have been developed independently, cover 
only one or few languages each, and are incompatible. This makes it very difficult for a 
single system to handle text in more than one language at a time, and especially difficult 
to do so in a way that is interoperable across different systems.

Generally, the minimum requirement for the interoperable exchange of text data is that 
the encoding (character set & encoding scheme) must be properly specified in the 
document and in the protocol. For example, email/SMTP and HTML/HTTP provide the 
means to specify the "charset", as it is called in Internet standards. However, very often 
the encoding is not specified, specified incorrectly, or the sender and receiver disagree on 
its implementation.

The ISO 2022 encoding scheme was created to store text in many different languages. It 
allows other encodings to be embedded by first announcing them and then switching 
between them. Full support for all features and possible encodings with ISO 2022 
requires complicated processing and the need to support many encodings. For East Asian 
languages, subsets were developed that cover only one language or a few at a time, but 
they are much more manageable. ISO 2022 is not well-suited for use in internal 
processing. It is designed for data exchange.

Glyphs versus Characters

Programmers often need to distinguish between characters and glyphs. A character is the 
smallest semantic unit in a writing system. It is an abstract concept such as the letter A or 
the exclamation point. A glyph is the visual presentation of one or more characters, and is 
often dependent on adjacent characters.

There is not always a one-to-one mapping between characters and glyphs. In many 
languages (Arabic is a prime example), the way a character looks depends heavily on the 
surrounding characters. Standard printed Arabic has as many as four different printed 
representations (glyphs) for every letter of the alphabet. In many languages, two or more 
letters may combine together into a single glyph (called a ligature), or a single character 
might be displayed with more than one glyph.

Despite the different visual variants of a particular letter, it still retains its identity. For 
example, the Arabic letter heh has four different visual representations in common use. 
Whichever one is used, it still keeps its identity as the letter heh. It is this identity that 
Unicode encodes, not the visual representation. This also cuts down on the number of 

14 ICU v3.8 User Guide



independent character values required.

Overview of Unicode

Unicode was developed as a single-coded character set that contains support for all 
languages in the world. The first version of Unicode used 16-bit numbers, which allowed 
for encoding 65,536 characters without complicated multibyte schemes. With the 
inclusion of more characters, and following implementation needs of many different 
platforms, Unicode was extended to allow more than one million characters. Several 
other encoding schemes were added. This introduced more complexity into the Unicode 
standard, but far less than managing a large number of different encodings.

Starting with Unicode 2.0 (published in 1996), the Unicode standard began assigning 
numbers from 0 to 10ffff16, which requires 21 bits but does not use them completely. This 
gives more than enough room for all written languages in the world. The original 
repertoire covered all major languages commonly used in computing. Unicode continues 
to grow, and it includes more scripts.

The design of Unicode differs in several ways from traditional character sets and 
encoding schemes:

• Its repertoire enables users to include text efficiently in almost all languages within a 
single document.

• It can be encoded in a byte-based way with one or more bytes per character, but the 
default encoding scheme uses 16-bit units that allow much simpler processing for all 
common characters.

• Many characters, such as letters with accents and umlauts, can be combined from the 
base character and accent or umlaut modifiers. This combining reduces the number of 
different characters that need to be encoded separately. "Precomposed" variants for 
characters that existed in common character sets at the time were included for 
compatibility.

• Characters and their usage are well-defined and described. While traditional character 
sets typically only provide the name or a picture of a character and its number and byte 
encoding, Unicode has a comprehensive database of properties available for download. 
It also defines a number of processes and algorithms for dealing with many aspects of 
text processing to make it more interoperable.

The early inclusion of all characters of commonly used character sets makes Unicode a 
useful "pivot" point for converting between traditional character sets, and makes it 
feasible to process non-Unicode text by first converting into Unicode, process the text, 
and convert it back to the original encoding without loss of data.

15 ICU v3.8 User Guide



The first 128 Unicode code point values are assigned to the same characters as in 
US-ASCII. For example, the same number is assigned to the same character. The 
same is true for the first 256 code point values of Unicode compared to ISO 8859-
1 (Latin-1) which itself is a direct superset of US-ASCII. This makes it easy to 
adapt many applications to Unicode because the numbers for many syntactically 
important characters are the same.

Character Encoding Forms and Schemes for Unicode

Unicode assigns characters a number from 0 to 10FFFF16, giving enough elbow room to 
allow for unambiguous encoding of every character in common use. Such a character 
number is called a "code point".

Unicode code points are just non-negative integer numbers in a certain range.  
They do not have an implicit binary representation or a width of 21 or 32 bits.  
Binary representation and unit widths are defined for encoding forms.

For internal processing, the standard defines three encoding forms, and for file storage 
and protocols, some of these encoding forms have encoding schemes that differ in their 
byte ordering. The difference between an encoding form and an encoding scheme is that 
an encoding form maps the character set codes to values that fit into internal data types 
(like a short in C), while an encoding scheme maps to bits and bytes. For traditional 
encodings, they are the same since the encoding forms already map to bytes

. The different Unicode encoding forms are optimized for a variety of different uses:

• UTF-16, the default encoding form, maps a character code point to either one or two 
16-bit integers.

• UTF-8 is a byte-based encoding that offers backwards compatibility with ASCII-
based, byte-oriented APIs and protocols. A character is stored with 1, 2, 3, or 4 bytes.

• UTF-32 is the simplest but most memory-intensive encoding form: It uses one 32-bit 
integer per Unicode character.

• SCSU is an encoding scheme that provides a simple compression of Unicode text. It is 
designed only for input and output, not for internal use.

ICU uses UTF-16 internally. ICU 2.0 fully supports supplementary characters (with code 
points 1000016..10FFFF16. Older versions of ICU provided only partial support for 
supplementary characters.

For input/output, character encoding schemes define a byte serialization of text. UTF-8 is 
itself both an encoding form and an encoding scheme because it is byte-based. For each 
of UTF-16 and UTF-32, there are two variants defined: one that serializes the code units 
in big-endian byte order (most significant byte first), and one that serializes the code units 
in little-endian byte order (least significant byte first). The corresponding encoding 
schemes are called UTF-16BE, UTF-16LE, UTF-32BE, and UTF-32LE.

16 ICU v3.8 User Guide



The names "UTF-16" and "UTF-32" are ambiguous. Depending on context, they 
refer either to character encoding forms where 16/32-bit words are processed 
and are naturally stored in the platform endianness, or they refer to the IANA-
registered charset names, i.e., to character encoding schemes or byte 
serializations. In addition to simple byte serialization, the charsets with these 
names also use optional Byte Order Marks (see Serialized Formats below).

Overview of UTF-16

The default encoding form of the Unicode Standard uses 16-bit code units. Code point 
values for the most common characters are in the range of 0 to FFFF16 and are encoded 
with just one 16-bit unit of the same value. Code points from 1000016 to 10FFFF16 are 
encoded with two code units that are often called "surrogates", and they are called a 
"surrogate pair" when, together, they correctly encode one Unicode character. The first 
surrogate in a pair must be in the range D80016 to DBFF16, and the second one must be in 
the range DC0016 to DFFF16. Every Unicode code point has only one possible UTF-16 
encoding with either one code unit that is not a surrogate or with a correct pair of 
surrogates. The code point values D80016 to DFFF16 are set aside just for this mechanism 
and will never, by themselves, be assigned any characters.

Most commonly used characters have code points below FFFF16, but Unicode 3.1 assigns 
more than 40,000 supplementary characters that make use of surrogate pairs in UTF-16.

Note that comparing UTF-16 strings lexically based on their 16-bit code units does not 
result in the same order as comparing the code points. This is not usually an issue since 
only rarely-used characters are affected. Most processes do not rely on the same results in 
such comparisons. Where necessary, a simple modification to a string comparison can be 
performed that still allows efficient code unit-based comparisons and makes them 
compatible with code point comparisons. ICU has C and C++ API functions for this.

Overview of UTF-8

To meet the requirements of byte-oriented, ASCII-based systems, the Unicode Standard 
defines UTF-8. UTF-8 is a variable-length, byte-based encoding that preserves ASCII 
transparency.

UTF-8 maintains transparency for all of the ASCII code values (0..127). These values do 
not appear in any byte of a transformed result except as the direct representation of the 
ASCII values. Thus, ASCII text is also UTF-8 text.

Characteristics of UTF-8 include:

• Unicode code points 0 to 7F16 are each encoded with a single byte of the same value. 
Therefore, ASCII characters take up 50% less space with UTF-8 encoding than with 
UTF-16.

• All other code points are encoded with multibyte sequences, with the first byte (lead 
byte) indicating the number of bytes that follow (trail bytes). This results in very 

17 ICU v3.8 User Guide



efficient parsing. The lead bytes are in the range c016 to fd16, the trail bytes are in the 
range 8016 to bf16. The byte values fe16 and FF16 are never used.

• UTF-8 is relatively compact and resource conservative in its use of the bytes required 
for encoding text in European scripts, but uses 50% more space than UTF-16 for East 
Asian text. Code points up to 7FF16 take up two bytes, code points up to FFFF16 take 
up three (50% more memory than UTF-16), and all others four.

• Binary comparisons of UTF-8 strings based on their bytes result in the same order as 
comparing code point values.

Overview of UTF-32

The UTF-32 encoding form always uses one single 32-bit integer per Unicode code point. 
This results in a very simple encoding.

The drawback is its memory consumption: Since code point values use only 21 bits, one-
third of the memory is always unused, and since most commonly used characters have 
code point values of up to FFFF16, they take up only one 16-bit unit in UTF-16 (50% less) 
and up to three bytes in UTF-8 (25% less).

UTF-32 is mainly used in APIs that are defined with the same data type for both code 
points and code units. Modern versions of the C standard library that support Unicode use 
a 32-bit wchar_t with UTF-32 semantics. 

Overview of SCSU

SCSU (Standard Compression Scheme for Unicode) is designed to reduce the size of 
Unicode text for both input and output. It is a simple compression that transforms the text 
into a byte stream. It typically uses one byte per character in small scripts, and two bytes 
per character in large, East Asian scripts.

It is usually shorter than any of the UTFs. However, SCSU is stateful, which makes it 
unsuitable for internal processing. It also uses all possible byte values, which might 
require additional processing for protocols such as SMTP (email).

See also http://www.unicode.org/unicode/reports/tr6/.

Other Unicode Encodings

Other Unicode encodings have been developed over time for various purposes. Most of 
them are implemented in ICU, see source/data/mappings/convrtrs.txt

• BOCU-1: Binary-Ordered Compression of Unicode
 An encoding of Unicode that is about as compact as SCSU but has a much smaller 
amount of state. Unlike SCSU, it preserves code point order and can be used in 8bit 
emails without a transfer encoding. BOCU-1 does not preserve ASCII characters in 
ASCII-readable form. See Unicode Technical Note #6.

18 ICU v3.8 User Guide

http://www.unicode.org/notes/tn6/
http://source.icu-project.org/repos/icu/icu/trunk/source/data/mappings/convrtrs.txt
http://www.unicode.org/unicode/reports/tr6/


• UTF-7: Designed for 7bit emails; simple and not very compact. Since email systems 
have been 8-bit safe for several years, UTF-7 is not necessary any more and not 
recommended. Most ASCII characters are readable, others are base64-encoded. See 
RFC 2152.

• IMAP-mailbox-name: A variant of UTF-7 that is suitable for expressing Unicode 
strings as ASCII characters for Unix filenames.
 The name "IMAP-mailbox-name" is specific to ICU!
 See RFC 2060 INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1 
section 5.1.3. Mailbox International Naming Convention.

• UTF-EBCDIC: An EBCDIC-friendly encoding that is similar to UTF-8. See Unicode 
Technical Report #16. As of ICU 2.6, UTF-EBCDIC is not implemented in ICU.

• CESU-8: Compatibility Encoding Scheme for UTF-16: 8-Bit
 An incompatible variant of UTF-8 that preserves 16-bit-Unicode (UTF-16) string 
order instead of code point order. Not for open interchange. See Unicode Technical 
Report #26.

Programming using UTFs

Programming using any of the UTFs is much more straightforward than with traditional 
multi-byte character encodings, even though UTF-8 and UTF-16 are also variable-width 
encodings.

Within each Unicode encoding form, the code unit values for singletons (code units that 
alone encode characters), lead units, and for trailing units are all disjointed. This has 
crucial implications for implementations. The following lists these implications:

• Determines the number of units for one code point using the lead unit. This is 
especially important for UTF-8, where there can be up to 4 bytes per character.

• Determines boundaries. If ICU users randomly access text, you can always determine 
the nearest code-point boundaries with a small number of machine instructions. 

• Does not have any overlap. If ICU users search for string A in string B, you never get a 
false match on code points. Users do not need to convert to code points for string 
searching. False matches never occurs since the end of one sequence is never the same 
as the start of another sequence. Overlap is one of the biggest problems with common 
multi-byte encodings like Shift-JIS. All of the UTFs avoid this problem. 

• Uses simple iteration. Getting the next or previous code point is straightforward, and 
only takes a small number of machine instructions.

• Can use UTF-16 encoding, which is actually fully symmetric. ICU users can determine 
from any single code unit whether it is the first, last, or only one for a code point. 
Moving (iterating) in either direction through UTF-16 text is equally fast and efficient.

• Uses slow indexing by code points. This indexing procedure is a disadvantage of all 
variable-width encodings. Except in UTF-32, it is inefficient to find code unit 

19 ICU v3.8 User Guide

http://www.unicode.org/reports/tr26/
http://www.unicode.org/reports/tr26/
http://www.unicode.org/reports/tr16/
http://www.unicode.org/reports/tr16/
http://www.ietf.org/rfc/rfc2060.txt
http://www.ietf.org/rfc/rfc2152.txt


boundaries corresponding to the nth code point or to find the code point offset 
containing the nth code unit. Both involve scanning from the start of the text or from a 
last known boundary. ICU, like most common APIs, always indexes by code units. It 
counts code units and not code points.

Conversion between different UTFs is very fast. Unlike converting to and from legacy 
encodings like Latin-2, conversion between UTFs does not require table look-ups.

ICU provides two basic data type definitions for Unicode. UChar32 is a 32-bit type for 
code points, and used for single Unicode characters. It may be signed or unsigned. It is 
the same as wchar_t if it is 32 bits wide. UChar is an unsigned 16-bit integer for UTF-16 
code units. It is the base type for strings (UChar *), and it is the same as wchar_t if it is 16 
bits wide.

Some higher-level APIs, used especially for formatting, use characters closer to a 
representation for a glyph. Such "user characters" are also called "graphemes" or 
"grapheme clusters" and require strings so that combining sequences can be included.

Serialized Formats

In files, input, output, and network protocols, text must be accompanied by the 
specification of its character encoding scheme for a client to be able to interpret it 
correctly. (This is called a "charset" in Internet protocols.) However, an encoding scheme 
specification is not necessary if the text is only used within a single platform, protocol, or 
application where it is otherwise clear what the encoding is. (The language and text 
directionality should usually be specified to enable spell checking, text-to-speech 
transformation, etc.)

The discussion of encoding specifications in this section applies to standard 
Internet protocols where charset name strings are used. Other protocols may use 
numeric encoding identifiers and assign different semantics to those identifiers 
than Internet protocols.

Typically, the encoding specification is done in a protocol- and document format-
dependent way. However, the Unicode standard offers a mechanism for tagging text files 
with a "signature" for cases where protocols do not identify character encoding schemes.

The character ZERO WIDTH NO-BREAK SPACE (FEFF16) can be used as a signature 
by prepending it to a file or stream. The alternative function of U+FEFF as a format 
control character has been copied to U+2060 WORD JOINER, and U+FEFF should only 
be used for Unicode signatures.

The different character encoding schemes generate different, distinct byte sequences for 
U+FEFF:

• UTF-8: EF BB BF

• UTF-16BE: FE FF

20 ICU v3.8 User Guide



• UTF-16LE: FF FE

• UTF-32BE: 00 00 FE FF

• UTF-32LE: FF FE 00 00

• SCSU: 0E FE FF

• BOCU-1: FB EE 28

• UTF-7: 2B 2F 76 ( 38 | 39 | 2B | 2F )

• UTF-EBCDIC: DD 73 66 73

ICU provides the function ucnv_detectUnicodeSignature() for Unicode signature 
detection.

There is no signature for CESU-8 separate from the one for UTF-8. UTF-8 and 
CESU-8 encode U+FEFF and in fact all BMP code points with the same bytes.  
The opportunity for misidentification of one as the other is one of the reasons why 
CESU-8 should only be used in limited, closed, specific environments.

In UTF-16 and UTF-32, where the signature also distinguishes between big-endian and 
little-endian byte orders, it is also called a byte order mark (BOM). The signature works 
for UTF-16 since the code point that has the byte-swapped encoding, FFFE16, will never 
be a valid Unicode character. (It is a "non-character" code point.) In Internet protocols, if 
an encoding specification of "UTF-16" or "UTF-32" is used, it is expected that there is a 
signature byte sequence (BOM) that identifies the byte ordering, which is not the case for 
the encoding scheme/charset names with "BE" or "LE".

If text is specified to be encoded in the UTF-16 or UTF-32 charset and does not  
begin with a BOM, then it must be interpreted as UTF-16BE or UTF-32BE,  
respectively.

A signature is not part of the content, and must be stripped when processing. For 
example, blindly concatenating two files will give an incorrect result.

If a signature was detected, then the signature "character" U+FEFF should be removed 
from the Unicode stream after conversion. Removing the signature bytes before 
conversion could cause the conversion to fail for stateful encodings like BOCU-1 and 
UTF-7.

Whether a signature is to be recognized or not depends on the protocol or application.

• If a protocol specifies a charset name, then the byte stream must be interpreted 
according to how that name is defined. Only the "UTF-16" and "UTF-32" names 
include recognition of the byte order marks that are specific to them (and the ICU 
converters for these names do this automatically). None of the other Unicode charsets 
are defined to include any signature/BOM handling.

• If no charset name is provided, for example for text files in most filesystems, then 
applications must usually rely on heuristics to determine the file encoding. Many 
document formats contain an embedded or implicit encoding declaration, but for plain 

21 ICU v3.8 User Guide



text files it is reasonable to use Unicode signatures as simple and reliable heuristics. 
This is especially common on Windows systems. However, some tools for plain text 
file handling (e.g., many Unix command line tools) are not prepared for Unicode 
signatures.

The Unicode Standard Is An Industry Standard 

The Unicode standard is an industry standard and parallels ISO 10646-1. Around 1993, 
these two standards were effectively merged into the same character set standard. Both 
standards have the same character repertoire and the same encoding forms and schemes.

One difference used to be that the ISO standard defined code point values to be from 0 to 
7FFFFFFF16, not just up to 10FFFF16. The ISO work group decided to add an amendment 
to the standard. The amendment removes this difference by declaring that no characters 
will ever be assigned code points above 10FFFF16. The main reason for the ISO work 
group's decision is interoperability between the UTFs. UTF-16 can not encode any code 
points above this limit.

This means that the code point space for both Unicode and ISO 10646 is now the same! 
These changes to ISO 10646 have been made recently and should be complete in the 
edition ISO 10646:2003 which also combines all parts of the standard into one.
The former, larger code space is the reason why the ISO definition of UTF-8 specifies 
sequences of five and six bytes to cover that whole range.

Another difference is that the ISO standard defines encoding forms "UCS-4" and "UCS-
2". UCS-4 is essentially UTF-32 with a theoretical upper limit of 7FFFFFFF16, using 31 
out of the 32 bits. However, in practice, the ISO committee has accepted that the 
characters above 10FFFF will not be encoded, so there is essentially no difference 
between the forms. The "4" stands for "four-byte form".

UCS-2 is a subset of UTF-16 that is limited to code points from 0 to FFFF, excluding the 
surrogate code points. Thus, it cannot represent the characters with code points above 
FFFF (called supplementary characters).

There is no conversion necessary between UCS-2 and UTF-16. The difference is  
only in the interpretation of surrogates.

The standards differ in what kind of information they provide: The Unicode standard 
provides more character properties and describes algorithms etc., while the ISO standard 
defines collections, subsets and similar.

The standards are synchronized and the respective committees work together to add new 
characters and assign code point values. 

22 ICU v3.8 User Guide



ICU Services
Overview of the ICU Services

ICU enables you to write language-independent C and C++ code that is used on separate, 
localized resources to get language-specific results. ICU supports many features, 
including language-sensitive text, dates, time, numbers, currency, message sorting, and 
searching. ICU provides language-specific results for a broad range of languages. The set 
of services provided by ICU includes:

• Strings, Properties and CharacterIterator  

• Conversion Basics  

• Locale and Resource Management Support  

• Date and Time Support  

• Format and Parse  

• Formatting Numbers  

• Transformations  

• Searching and Sorting  

• Text Analysis  

• Text Layout   

• Search String  

Strings, Properties and CharacterIterator

ICU provides basic Unicode support for the following:

• Unicode string   
ICU includes type definitions for UTF-16 strings and code points. It also contains 
many C u_string functions and the C++ UnicodeString class with many additional 
string functions.

• Unicode properties   
ICU includes the C definitions and functions found in uchar.h as well as some macros 
found in utf.h. It also includes the C++ Unicode class.

• Unicode string iteration   
In C, ICU uses the macros in utf.h for the iteration of strings. In C++, ICU uses the 
characterIterator and its subclasses.

23 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/characterIterator.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/unicodeBasics.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/strings.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/searchString.sxw


Conversion Basics

A converter is used to transform text from one encoding type to another. In the case of 
Unicode, ICU transforms text from one encoding codepage to Unicode and back. An 
encoding is a mapping from a given character set definition to the actual bits used to 
represent the data.

Locale and Resources

The ICU package contains the locale and resource bundles as well as the classes that 
implement them. Also, the ICU package contains the locale data (plain text resource 
bundles) and provides APIs to access and make use of that data in various services. Users 
need to understand these terms and the relationship between them.

A locale identifies a group of users who have similar cultural and linguistic expectations 
for how their computers interact with them and process data. This is an abstract concept 
that is typically expressed by one of the following:  

A locale ID specifies a language and region enabling the software to support culturally 
and linguistically appropriate information for each user. A locale object represents a 
specific geographical, political, or cultural region. As a programmatic expression of 
locale IDs, ICU provides the C++ locale class. In C, Application Programming Interfaces 
(APIs) use simple C strings for locale IDs.

ICU stores locale-specific data in resource bundles, which provide a general mechanism 
to access strings and other objects for ICU services to perform according to locale 
conventions. ICU contains data for its services to support many locales. Resource bundles 
contain the locale data of applications that use ICU. In C++, the ResourceBundle 
implements the locale data. In C, this feature is provided by the ures_ interface.

In addition to storing system-level data in ICU's resource bundles, applications typically 
also need to use resource bundles of their own to store locale-dependent application data. 
ICU provides the generic resource bundle APIs to access these bundles and also provides 
the tools to build them.

Display strings, which are displayed to a user of a program, are bundled in a 
separate file instead of being embedded in the lines of the program.

Locales and Services

The interaction between locales and services is fundamental to ICU. Please refer to the 
Locales and Services section of the Locale chapter.

24 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/locale.sxw#services


Transliteration

Transliteration was originally designed to convert characters from one script to another 
(for example, from Greek to Latin, or Japanese Katakana to Latin). Now, transliteration is 
a more flexible mechanism that has pre-built transformations for case conversions, 
normalization conversions, the removal of given characters, and also for a variety of 
language and script transliterations. Transliterations can be chained together to perform a 
series of operations and each step of the process can use a UnicodeSet to restrict the 
characters that are affected. There are two basic types of transliterators:  

Most natural language transliterators (such as Greek-Latin) are written a rule-based 
transliterators. Transliterators can be written as text files using a simple language that is 
similar to regular expression syntax.

Date and Time Classes

Date and time routines manage independent date and time functions in milliseconds since 
January 1, 1970 (0:00:00.000 UTC). Points in time before then are represented as 
negative numbers. 

ICU provides the following classes to support calendars and time zones:

• Calendar   
The abstract superclass for extracting calendar-related attributes from a Date value.

• Gregorian Calendar   
A concrete class for representing a Gregorian calendar.

• TimeZone   
An abstract superclass for representing a time zone.

• SimpleTimeZone   
A concrete class for representing a time zone for use with a Gregorian calendar.

C classes provide the same functionality as the C++ classes with the exception of  
subclassing.

Format and Parse

Formatters translate between non-text data values and textual representations of those 
values. The result is a string of text that represents the internal value. A formatter can 
parse a string and convert a textual representation of some value (if it finds one it 
understands) back into its internal representation. For example, when the formatter reads 
the characters 1, 0, and 3 followed by something other than a digit, it produces the value 
103 in its internal binary representation.

25 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/dateTimezone.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/dateTimezone.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/dateCalendar.sxw#gc
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/dateCalendar.sxw#cal
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/dateTime.sxw


A formatter takes a value and produces a user-readable string that represents that value or 
takes a string and parses it to produce a value.

ICU provides the following areas and classes for general formatting, formatting numbers, 
formatting dates and times, and formatting messages:

General Formatting

• Format   
Format is the abstract superclass of all format classes. It provides the basic methods 
for formatting and parsing numbers, dates, strings, and other objects.

• FieldPosition   
FieldPosition is a concrete class for holding the field constant and the beginning and 
ending indices for the number and date fields.

• ParsePosition  
ParsePosition is a concrete class for holding the parse position in a string during 
parsing.

• Formattable   
Objects that must be formatted can be passed to the Format class or its subclasses for 
formatting. The class encapsulates a polymorphic piece of data to be formatted and 
uses the MessageFormat class. Some formatting operations use the Formattable class 
to produce a single "type" that encompasses all formattable values such as a number, 
date, string, and so on.

Formatting Numbers

• NumberFormat   
NumberFormat provides the basic fields and methods to format number objects and 
number primitives into localized strings and parse localized strings to number objects.

• DecimalFormat  
DecimalFormat provides the methods used to format number objects and number 
primitives into localized strings and parse localized strings into number objects in base 
10.

• DecimalFormatSymbols   
DecimalFormatSymbols is a concrete class used by DecimalFormat to access localized 
number strings such as the grouping separators, the decimal separator, and the percent 
sign.

Formatting Dates and Times

• DateFormat   

26 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatDateTime.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatNumbers.sxw#DFS
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatNumbers.sxw#DF
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatNumbers.sxw#NumberFormat
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatParse.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatParse.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatParse.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatParse.sxw


DateFormat provides the basic fields and methods for formatting date objects to 
localized strings and parsing date and time strings to date objects.

• SimpleDateFormat   
SimpleDateFormat is a concrete class used to format date objects to localized strings 
and to parse date and time strings to date objects using a GregorianCalendar.

• DateFormatSymbols   
DateFormatSymbols is a concrete class used to access localized date and time 
formatting strings, such as names of the months, days of the week, and the time zone.

Formatting Messages

• MessageFormat   
MessageFormat is a concrete class used to produce a language-specific user message 
that contains numbers, currency, percentages, date, time, and string variables.

• ChoiceFormat   
ChoiceFormat is a concrete class used to map strings to ranges of numbers and to 
handle plural words and name series in user messages.

C classes provide the same functionality as the C++ classes with the exception of  
subclassing.

Searching and Sorting

Sorting and searching non-English text presents a number of challenges that many 
English speakers are unaware of. The primary source of difficulty is accents, which have 
very different meanings in different languages, and sometimes even within the same 
language: 

• Many accented letters, such as the é in café, are treated as minor variants on the letter 
that is accented.

• Sometimes the accented form of a letter is treated as a distinct letter for the purposes of 
comparison. For example, Å in Danish is treated as a separate letter that sorts just after 
Z.

• In some cases, an accented letter is treated as if it were two letters. In traditional 
German, for example, ä is compared as if it were ae.

Searching and sorting is done through collation using the Collator class and its sub-
classes RuleBasedCollator and CollationElementIterator as well as the CollationKey 
object. Collation determines the proper sort sequence for two or more natural language 
strings. It also can determine if two strings are equivalent for the purpose of searching.

27 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatMessages.sxw#CF
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatMessages.sxw#MF
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatDateTime.sxw#dfs
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatDateTime.sxw#sdf


The Collator class and its sub-class RuleBasedCollator perform locale-sensitive string 
comparisons to create sorting and searching routines for natural language text. Collator 
and RuleBasedCollator can distinguish between characters associated with base 
characters (such as 'a' and 'b'), accent marks (such as 'ò', 'ó'), and uppercase or lowercase 
properties (such as 'a' and 'A').

ICU provides the following collation classes for sorting and searching natural language 
text according to locale-specific rules:

• Collator  
Collator is the abstract base class of all classes that compare strings.

• CollationElementIterator  
CollationElementIterator is a concrete iterator class that provides an iterator for 
stepping through each character of a locale-specific string according to the rules of a 
specific collator object. 

• RuleBasedCollator  
RuleBasedCollator is the only built-in implementation of the collator. It provides a 
sophisticated mechanism for comparing strings in a language-specific manner, and an 
interface that allows the user to specifically customize the sorting order.

• CollationKey  
CollationKey is an object that enables the fast sorting of strings by representing a 
string as a sort key under the rules of a specific collator object.

C classes provide the same functionality as the C++ classes with the exception of  
subclassing.

Text Analysis

The BreakIterator services can be used for formatting and handling text; locating the 
beginning and ending points of a word; counting words, sentences, and paragraphs; and 
listing unique words. Specifically, text operations can be done to locate the following 
linguistic boundaries:

• Display text on the screen and locate places in the text where the BreakIterator can 
perform word-wrapping to fit the text within the margins

• Locate the beginning and end of a word that the user has selected

• Count graphemes (or characters), words, sentences, or paragraphs

• Determine how far to move in the text store when the user hits an arrow key to move 
forward or backward one grapheme

• Make a list of all the unique words in a document 

• Figure out whether or not a range of text contains only whole words

28 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/Collate_ServiceArchitecture.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/Collate_ServiceArchitecture.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/Collate_ServiceArchitecture.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/Collate_ServiceArchitecture.sxw


• Capitalize the first letter of each word

• Extract a particular unit from the text such as "find me the third grapheme in this 
document"

The BreakIterator services were designed and developed around an "iterator" or 
"cursor" style of interface. The object points to a particular place in the text. You can 
move the pointer forward or backward to search the text for boundaries.

The BreakIterator class makes it possible to iterate over user characters. A 
BreakIterator can find the location of a character, word, sentence or potential line-
break boundary. This makes it possible for a software program to properly select 
characters for text operations such as highlighting a character, cutting a word, moving to 
the next sentence, or wrapping words at a line ending. BreakIterator performs these 
operations in a locale-sensitive manner, meaning that it recognizes text boundaries 
according to the particular locale ID.

ICU provides the following classes for iterating over locale-specific text:

• BreakIterator  
The abstract base class that defines the operations for finding and getting the positions 
of logical breaks in a string of text: characters, words, sentences, and potential line 
breaks.

• CharacterIterator   
The abstract base class for forward and backward iteration over a string of Unicode 
characters.

• StringCharacterIterator   
A concrete class for forward and backward iteration over a string of Unicode 
characters. StringCharacterIterator inherits from CharacterIterator.

Text Layout

Some scripts require rendering behavior that is more complicated than the Latin script. 
These scripts are called as "complex scripts" and while their text is called "complex text." 
Examples of complex scripts are the Indic scripts (Devanagari, Tamil, Telugu, and 
Gujarati), Thai scripts, and Arabic scripts.

Complex text has the following main characteristics:  

In most cases, the contextual and ligature forms of characters have not been assigned 
Unicode codepoints and thus cannot be displayed directly using codepoints.

The ICU LayoutEngine provides a uniform interface for preparing complex text for 
display. The LayoutEngine code is independent of the font and rendering architecture of 
the underlying platform. All access to the LayoutEngine code is through an abstract base 
class. A concrete instance of this base class must be implemented for each platform.

29 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/strings.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/characterIterator.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/boundaryAnalysis.sxw


The ICU LayoutEngine prepares complex text using the following procedures:  

Locale-Dependent Operations

Many of the ICU classes are locale-sensitive, meaning that you have to create a different 
one for each locale. 

C API C++ Class Description
ubrk_ BreakIterator The BreakIterator class implements methods to 

find the location of boundaries in the text.
ucal_ Calendar The Calendar class is an abstract base class that 

converts between a UDate object and a set of 
integer fields such as YEAR, MONTH, DAY, 
HOUR, and so on.

umsg.h ChoiceFormat A ChoiceFormat class enables you to attach a 
format to a range of numbers.

ucol_ CollationElementIterator The CollationElementIterator class is used as an 
iterator to walk through each character of an 
international string.

ucol_ CollationKey The Collator class generates the Collation keys.
ucol_ Collator The Collator class performs locale-sensitive 

string comparison.
udat_ DateFormat DateFormat is an abstract class for a family of 

classes. DateFormat converts dates and times 
from their internal representations to a textual 
form that is language-independent, and then 
back to their internal representations.

udat_ DateFormatSymbols DateFormatSymbols is a public class that 
encapsulates localized date and time formatting 
data. This information includes time zone 
information.

unum_ DecimalFormatSymbols This class represents the set of symbols needed 
by DecimalFormat to format numbers.

umsg.h Format The Format class is the base class for all 
formats. 

ucal_ GregorianCalendar GregorianCalendar is a concrete class that 
provides the standard calendar used in many 
locations.

30 ICU v3.8 User Guide



C API C++ Class Description
uloc_ Locale A Locale object represents a specific 

geographical, political, or cultural region.
umsg.h MessageFormat MessageFormat provides a means to produce 

concatenated messages in language-neutral way.
unum_ NumberFormat NumberFormat is an abstract base class for all 

number formats.
ures_ ResourceBundle ResourceBundle provides a means to access a 

collection of locale-specific information.
ucol_ RuleBasedCollator The RuleBasedCollator provides the 

implementation of the Collator class using data-
driven tables.

udat_ SimpleDateFormat SimpleDateFormat is a concrete class used to 
format and parse dates in a language-
independent way.

ucal_ SimpleTimeZone SimpleTimeZone is a concrete subclass of 
TimeZone that represents a time zone for use 
with a Gregorian calendar. 

usearch_ StringSearch StringSearch provides a way to search text in a 
locale sensitive manner.

ucal_ TimeZone TimeZone represents a time zone offset, and 
also determines daylight savings time settings.

Locale-Independent Operations

The following ICU services can be used in all locales as they provide locale-independent 
services and users do not need to specify a locale ID:

C API C++ Class Description
ubidi_  UBiDi is used for implementing the Unicode 

BiDi algorithm.
utf.h CharacterIterator CharacterIterator is an abstract class that defines 

an API for iteration on text objects. It is an 
interface for forward and backward iteration and 
for the random access of a text object. Also, it 
provides backward compatibility to the Java and 
older ICU CharacterIterator classes.

31 ICU v3.8 User Guide



C API C++ Class Description
n/a Formattable Formattable is a thin wrapper class that converts 

between the primitive numeric types (double, 
long, and so on) and the UDate and 
UnicodeString classes. Formattable objects can 
be passed to the Format class or its subclasses 
for formatting.

unorm_ Normalizer Normalizer transforms Unicode text into an 
equivalent composed or decomposed form to 
allow for easier sorting and searching of text. 

n/a ParsePosition ParsePosition is a simple class used by the 
Format class and its subclasses to keep track of 
the current position during parsing.

uidna_  An implementation of the IDNA protocol as 
defined in RFC 3490.

utf.h StringCharacterIterator A concrete subclass of CharacterIterator that 
iterates over the characters (code units or code 
points) in a UnicodeString.

utf.h UCharCharacterIterator A concrete subclass of CharacterIterator that 
iterates over the characters (code units or code 
points) in a UChar array.

uchar.h  The Unicode character properties API allows 
you to query the properties associated with 
individual Unicode character values. 

uregex_ RegexMatcher RegexMatcher is a regular expressions 
implementation. This allows you to perform 
string matching based upon a pattern.

utrans_ Transliterator Transliterator is an abstract class that 
transliterates text from one format to another. 
The most common type of transliterator is a 
script, or an alphabet.

uset_ UnicodeSet Objects of the UnicodeSet class represent 
character classes used in regular expressions. 
These classes specify a subset of the set of all 
Unicode characters. This is a mutable set of 
Unicode characters.

ustring.h UnicodeString UnicodeString is a string class that stores 
Unicode characters directly. This class is a 
concrete implementation of the abstract class 
Replaceable.

32 ICU v3.8 User Guide



C API C++ Class Description
ushape.h  Provides operations to transform (shape) 

between Arabic characters and their 
presentation forms.

ucnv_  The Unicode conversion API allows you to 
convert data written in one codepage/encoding 
to and from UTF-16.

33 ICU v3.8 User Guide



ICU Architectural Design
This chapter discusses the ICU design structure, the ICU versioning support, and the 
introduction of namespace in C++.

• Java and ICU Basic Design Structure  

• Locales  

• Data-driven Services  

• ICU Threading Model and Open and Close Model  

• ICU Initialization and Termination  

• Error Handling  

• Extensibility  

• Resource Bundle Inheritance Model  

• Version Numbers in ICU  

• API Dependencies  

• ICU API categories  

• ICU API compatibility  

• ICU Binary Compatibility  

• ICU Data Compatibility  

Java and ICU Basic Design Structure

The JDK internationalization components and ICU components both share the same 
common basic architectures with regard to the following:

• locales

• data-driven services

• ICU threading models and the open and close model

• cloning customization

• error handling

• extensibility

• resource bundle inheritance model

There are design features in ICU4C that are not in the Java Development Kit (JDK) due 

34 ICU v3.8 User Guide



to programming language restrictions. These features include the following:  

Locales

Locale IDs are composed of language, country, and variant information. The following 
links provide additional useful information regarding ISO standards: ISO-639 , and an 
ISO Country Code, ISO-3166 . For example, Italian, Italy, and Euro are designated as: 
it_IT_EURO.

Data-driven Services

Data-driven services often use resource bundles for locale data. These services map a key 
to data. The resources are designed not only to manage system locale information but also 
to manage application-specific or general services data. ICU supports string, numeric, and 
binary data types and can be structured into nested arrays and tables.

This results in the following:

• Data used by the services can be built at compile time or run time.

• For efficient loading, system data is pre-compiled to .dll files or files that can be 
mapped into memory.

• Data for services can be added and modified without source code changes.

ICU Threading Model and Open and Close Model

The "open and close" model supports multi-threading. It enables ICU users to use the 
same kind of service for different locales, either in the same thread or in different threads.

For example, a thread can open many collators for different languages, and different 
threads can use different collators for the same locale simultaneously. Constant data can 
be shared so that only the current state is allocated for each editor.

The ICU threading model is designed to avoid contention for resources, and enable you to 
use the services for multiple locales simultaneously within the same thread. The ICU 
threading model, like the rest of the ICU architecture, is the same model used for the 
international services in Java™.

 

35 ICU v3.8 User Guide

, 09/26/04
html image name: mini-ICUThreadingModel.gif

http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html
http://lcweb.loc.gov/standards/iso639-2/englangn.html


When you use a service such as collation, the client opens the service using an ID, 
typically a locale. This service allocates a small chunk of memory used for the state of the 
service, with pointers to shared, read-only data in support of that service. (In Java or C++, 
you call getInstance() to create an object. ICU uses the open and close metaphor in C 
because it is more familiar to C programmers.)

If no locale is supplied when a service is opened, ICU uses the default locale. Once a 
service is open, changing the default locale has no effect. Thus, there can not be any 
thread synchronization between the default locales and open services.

When you open a second service for the same locale, another small chunk of memory is 
used for the state of the service, with pointers to the same shared, read-only data. Thus, 
the majority of the memory usage is shared. When any service is closed, then the chunk 
of memory is deallocated. Other connections that point to the same shared data stay valid.

Any number of services, for the same locale or different locales, can be open within the 
same thread or in different threads. However, you cannot use a reference to an open 
service in two threads at the same time. An individual open service is not thread-safe. 
Rather, you must use the clone function to create a copy of the service you want and then 
pass this copy to the second thread. This procedure allows you to use the same service in 
different threads, but avoids any thread synchronization or deadlock problems.

Clone operations are designed to be much faster than reopening the service with initial 
parameters and copying the source's state. (With objects in C++ and Java, the clone 
function is also much safer than trying to recreate a service, since you get the proper 
subclass.) Once a service is cloned, changes will not affect the original source service, or 
vice-versa. 

Thus, the normal mode of operation is to:

• Open a service with a given locale.

• Use the service as long as needed. However, do not keep opening and closing a service 
within a tight loop.

• Clone a service if it needs to be used in parallel in another thread.

• Close any clones that you open as well as any instances of the services that are owned.

36 ICU v3.8 User Guide



These service instances may be closed in any sequence. The preceding steps are 
given as an example.

Cloning Customization

Typically, the services supplied with ICU cover the vast majority of usages. However, 
there are circumstances where the service needs to be customized for a new locale. ICU 
(and Java) enable you to create customized services. For example, you can create a 
RuleBasedCollator by merging the rules for French and Arabic to get a custom French-
Arabic collation sequence. By merging these rules, the pointer does not point to a read-
only table that is shared between threads. Instead, the pointer refers to a table that is 
specific to your particular open service. If you clone the open service, the table is copied. 
When you close the service, the table is destroyed.

For some services, ICU supplies registration. You can register a customized open service 
under an ID; keeping a copy of that service even after you close the original. A client in 
that thread or in other threads can recreate a copy of the service by opening with that ID. 
These registrations are not persistent; once your program finishes, ICU flushes all the 
registrations. While you still might have multiple copies of data tables, it is faster to 
create a service from a registered ID than it is to create a service from rules.

To work around the lack of persistent registration, query the service for the 
parameters used to create it and then store those parameters in a file on a disk.

For services whose IDs are locales, such as collation, the registered IDs must also be 
locales. For those services (like Transliteration or Timezones) that are cross-locale, the 
IDs can be any string.

Prospective future enhancements for this model are:

• Having custom services share data tables, by making those tables reference counted. 
This will reduce memory consumption and speed clone operations (a performance 
enhancement chiefly useful for multiple threads using the same customized service).

• Expanding registration for all the international services.

• Allowing persistent registration of services.

ICU Memory Usage

ICU4C APIs are designed to allow separate heaps for its libraries vs. the application. This 
is achieved by providing functions to allocate and release objects owned by ICU4C using 
only ICU4C library functions. For more details see the Memory Usage section in the 
Coding Guidelines .

ICU Initialization and Termination

The ICU library does not normally require any explicit initialization prior to use. An 

37 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/conventions.sxw


application begins use simply by calling any ICU API in the usual way. (There is one 
exception to this, described below.)

In C++ programs, ICU objects and APIs may safely be used during static initialization of 
other application-defined classes or objects. There are no order-of-initialization problems 
between ICU and static objects from other libraries because ICU does not rely on C++ 
static object initialization for its normal operation.

When an application is terminating, it may optionally call the function u_cleanup(void) 
, which will free any heap storage that has been allocated and held by the ICU library. The 
main benefit of u_cleanup() occurs when using memory leak checking tools while 
debugging or testing an application. Without u_cleanup(), memory being held by the ICU 
library will be reported as leaks.

Initializing ICU in Multithreaded Environments

There is one specialized case where extra care is needed to safely initialize ICU. This 
situation will arise only when ALL of the following conditions occur:

• The application main program is written in plain C, not C++.

• The application is multithreaded, with the first use of ICU within the process possibly 
occurring simultaneously in more than one thread.

• The application will be run on a platform that does not handle C++ static constructors 
from libraries when the main program is not in C++. Platforms known to exhibit this 
behavior are Mac OS X and HP/UX. Platforms that handle C++ libraries correctly 
include Windows, Linux and Solaris.

To safely initialize the ICU library when all of the above conditions apply, the application 
must explicitly arrange for a first-use of ICU from a single thread before the multi-
threaded use of ICU begins. A convenient ICU operation for this purpose is 
uloc_getDefault() , declared in the header file "unicode/uloc.h".

Error Handling

In order for ICU to maximize portability, this version includes only the subset of the C++ 
language that compile correctly on older C++ compilers and provide a usable C interface. 
Thus, there is no use of the C++ exception mechanism in the code or Application 
Programming Interface (API).

To communicate errors reliably and support multi-threading, this version uses an error 
code parameter mechanism. Every function that can fail takes an error-code parameter by 
reference. This parameter is always the last parameter listed for the function.

The UErrorCode parameter is defined as an enumerated type. Zero represents no error, 
positive values represent errors, and negative values represent non-error status codes. 
Macros (U_SUCCESS and U_FAILURE) are provided to check the error code.

38 ICU v3.8 User Guide



The UErrorCode parameter is an input-output function. Every function tests the error 
code before performing any other task and immediately exits if it produces a FAILURE 
error code. If the function fails later on, it sets the error code appropriately and exits 
without performing any other work, except for any cleanup it needs to do. If the function 
encounters a non-error condition that it wants to signal, such as "encountered an 
unmapped character" in conversion, the function sets the error code appropriately and 
continues. Otherwise, the function leaves the error code unchanged.

Generally, only the functions that do not take a UErrorCode parameter, but call functions 
that do, must declare a variable. Almost all functions that take a UErrorCode parameter, 
and also call other functions that do, merely have to propagate the error code that they 
were passed to the functions they call. Functions that declare a new UErrorCode 
parameter must initialize it to U_ZERO_ERROR before calling any other functions.

ICU enables you to call several functions (that take error codes) successively without 
having to check the error code after each function. Each function usually must check the 
error code before doing any other processing, since it is supposed to stop immediately 
after receiving an error code. Propagating the error-code parameter down the call chain 
saves the programmer from having to declare the parameter in every instance and also 
mimics the C++ exception protocol more closely.

Extensibility

There are 3 major extensibility elements in ICU:

1. Data Extensibility 
 The user installs new locales or conversion data to enhance the existing ICU support. 
For more details, refer to the package tool chapter for more information.

2. Code Extensibility 
 The classes, data, and design are fully extensible. Examples of this extensibility 
include the BreakIterator , RuleBasedBreakIterator and 
DictionaryBasedBreakIterator classes.

3. Error Handling Extensibility 
 There are mechanisms available to enhance the built-in error handling when it is 
necessary. For example, you can design and create your own conversion callback 
functions when an error occurs. Refer to the Conversion chapter callback section for 
more information.

Resource Bundle Inheritance Model

A resource bundle is a set of <key,value> pairs that provide a mapping from key to value. 
A given program can have different sets of resource bundles; one set for error messages, 
one for menus, and so on. However, the program may be organized to combine all of its 
resource bundles into a single related set.

39 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/conversion.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/framework.sxw


The set is organized into a tree with "root" at the top, the language at the first level, the 
country at the second level, and additional variants below these levels. The set must 
contain a root that has all keys that can be used by the program accessing the resource 
bundles.

Except for the root, each resource bundle has an immediate parent. For example, if there 
is a resource bundle "X_Y_Z", then there must be the resource bundles: "X_Y", and "X". 
Each child resource bundle can omit any <key,value> pair that is identical to its parent's 
pair. (Such omission is strongly encouraged as it reduces data size and maintenance 
effort). It must override any <key,value> pair that is different from its parent's pair. If you 
have a resource bundle for the locale ID "language_country_variant", you must also have 
a bundle for the ID "language_country" and one for the ID "language."

If a program doesn't find a key in a child resource bundle, it can be assumed that it has the 
same key as the parent. The default locale has no effect on this. The particular language 
used for the root is commonly English, but it depends on the developer's preference. 
Ideally, the language should contain values that minimize the need for its children to 
override it.

The default locale is used only when there is not a resource bundle for a given language. 
For example, there may not be an Italian resource bundle. (This is very different than the 
case where there is an Italian resource bundle that is missing a particular key.) When a 
resource bundle is missing, ICU uses the parent unless that parent is the root. The root is 
an exception because the root language may be completely different than its children. In 
this case, ICU uses a modified lookup and the default locale. The following are different 
lookup methods available:

Lookup chain : Searching for a resource bundle. 
 en_US_some-variant 
 en_US 
 en 
 defaultLang_defaultCountry 
 defaultLang 
 root 
 

Lookup chain : Searching for a <key, value> pair after en_US_some-variant has ben 
loaded. ICU does not use the default locale in this case. 
 en_US_some-variant 
 en_US 
 en 
 root 
 

Other ICU Design Principles

ICU supports extensive version code and data changes and introduces namespace usage.

40 ICU v3.8 User Guide



Version Numbers in ICU

Version changes show clients when parts of ICU change. ICU; its components (such as 
Collator); each resource bundle, including all the locale data resource bundles; and 
individual tagged items within a resource bundle, have their own version numbers. 
Version numbers numerically and lexically increase as changes are made. All version 
numbers are used in Application Programming Interfaces (APIs) with a UVersionInfo 
structure. The UVersionInfo structure is an array of four unsigned bytes. These bytes are:

• 0: Major version number

• 1: Minor version number

• 2: Milli version number

• 3: Micro version number

Two UVersionInfo structures may be compared using binary comparison (memcmp) to 
see which is larger or newer. Version numbers may be different for different services. For 
instance, do not compare the ICU library version number to the ICU collator version 
number.

UVersionNumber structures can be converted to and from string representations as dotted 
integers (such as "1.4.5.0") using the u_versionToString() and u_versionFromString() 
functions. String representations may omit trailing zeros.

The interpretation of version numbers depends on what is being described.

ICU Release Version Number

For ICU releases and the library (code) versions, a change in the minor version number 
indicates releases that may have feature additions or may break binary compatibility, such 
as between version 2.0 and 2.2.  A change only in milli (or micro) version numbers 
indicates a maintenance release that is binary compatible. For example, ICU 2.6.2 was a 
maintenance release which was binary compatible with ICU 2.6 and ICU 2.6.1. (See 
below for more information on ICU Binary Compatibility.)

ICU reference releases are denoted by even minor version numbers (like ICU 1.6 or 3.4). 
Previously, odd minor version numbers (like ICU 1.7) were used for “enhancement” 
releases. Currently, odd numbers are used only for unreleased unstable snapshot versions. 

Resource Bundles and Elements

The data stored in resource bundles is tagged with version numbers. A resource bundle 
can contain a tagged string named "Version" that declares the version number in dotted-
integer format. For example,

en {

41 ICU v3.8 User Guide



    Version { "1.0.3.5" }
    ...
}

A resource bundle may omit the "version" element and thus, will inherit a version along 
the usual chain. For example, if the resource bundle en_US contained no "version" 
element, it would inherit "1.0.3.5" from the parent en element. If inheritance passes all the 
way to the root resource bundle and it contains no "version" resource, then the resource 
bundle receives the default version number 0.

Elements within a resource bundle may also contain version numbers. For example:
be {
    CollationElements {
        Version { "1.0.0.0" }
        ...
    }
}

In this example, the CollationElements data is version 1.0.0.0. This element version is not 
related to the version of the bundle.

Internal version numbers

Internally, data files carry format and other version numbers. These version numbers 
ensure that ICU can use the data file. The interpretation depends entirely on the data file 
type. Often, the major number in the format version stays the same for backwards-
compatible changes to a data file format. The minor format version number is 
incremented for additions that do not violate the backwards compatibility of the data file.

Component Version Numbers

ICU component version numbers may be found using:

• u_getVersion() returns the version number of ICU as a whole in C++. In C, 
ucol_getVersion() returns the version number of ICU as a whole.

• ures_getVersion() and ResourceBundle::getVersion() return the version 
number of a ResourceBundle. This is a data version number for the bundle as a whole 
and subject to inheritance.

• u_getUnicodeVersion() and Unicode::getUnicodeVersion() return the version 
number of the Unicode character data that underlies ICU. This version reflects the 
numbering of the Unicode releases. See http://www.unicode.org/ for more 
information.

• Collator::getVersion() in C++ and ucol_getVersion() in C return the version 
number of the Collator. This is a code version number for the collation code and 
algorithm. It is a combination of version numbers for the collation implementation, the 
Unicode Collation Algorithm data (which is the data that is used for characters that are 
not mentioned in a locale's specific collation elements), and the collation elements.

Configuration and Management

42 ICU v3.8 User Guide

http://www.unicode.org/


A major new feature in ICU 2.0 is the ability to link to different versions of ICU with the 
same program. Using this new feature, a program can keep using ICU 1.8 collation, for 
example, while using ICU 2.0 for other services. ICU now can also be unloaded if 
needed, to free up resources, and then reloaded when it is needed.

Namespace in C++

ICU 2.0 introduces the use of namespace to avoid naming collision between ICU 
exported symbols and other libraries. All the public ICU C++ classes will be appended to 
the "icu_MajorVersionNumber_MinorVersionNumber::" namespace variable. ICU 2.0 
includes the "using namespace icu_MajorVersionNumber_MinorVersionNumber" in the 
public header clause so there is no need to change the user programs with this update.

API Dependencies

It is sometimes useful to see a dependency chart between the public ICU APIs and ICU 
libraries. This chart can be useful to people that are new to ICU or to people that want 
only certain ICU libraries.

Here are some things to realize about the chart.

• It gives a general overview of the ICU library dependencies.

• Internal dependencies, like the mutex API, are left out for clarity.

• Similar APIs were lumped together for clarity (e.g. Formatting). Some of these 
dependency details can be viewed from the ICU API reference.

• The descriptions of each API can be found in our ICU API reference

43 ICU v3.8 User Guide

, 09/26/04
html image name: API_dependency.gif

http://icu-project.org/apiref/


44 ICU v3.8 User Guide

ICU 2.4 Library 
Dependency Chart C++ API only

C/C++ API

C API only

A→B: A depends on B

Key

String Search

Collation

Transliterator

Formatting

Calendar

TimeZone

Regular 
Expressions

I18N library

utypes.h

utf.h

Converters

ustring

UnicodeString

Locale

ResourceBundle

CharacterIterator

Normalization

uchar

BiDi

Shaping

uscript

Common library

UnicodeSet

BreakIterator

Layout library

LETypes.h

LayoutEngine

Data library

Ustdio library
(unsupported)

Scanf/printf

Ustream



ICU API categories

ICU APIs, as defined in header and class files, are either "external" or "internal". External 
APIs are meant to be used by applications, while internal APIs should be used only within 
ICU. APIs are marked to indicate whether they are external or internal, as follows. Every 
external API has a lifecycle label, see below.

External ICU4C APIs

External ICU4C APIs are

• declared in header files in unicode folders and exported at build/install time to an 
include/unicode folder 

• when C++ class members, are public or protected 

• do not have an "@internal" label 

Exception: Layout engine header files are not in a unicode folder, although the public 
ones are still copied to the include/unicode folder at build/install time. External layout 
engine APIs are the ones that have lifecycle labels and not an "@internal" label.

External ICU4J APIs

External ICU4J APIs are

• declared in one of the ICU4J core packages (com.ibm.icu.lang, com.ibm.icu.math, 
com.ibm.icu.text, or com.ibm.icu.util) or one of the RichText packages 
(com.ibm.richtext) 

• public or protected class members 

• public or protected contained classes 

• do not have an "@internal" label 

"System" APIs

"System" APIs are external APIs that are intended only for special uses for system-level 
code, for example u_cleanup(). Normal users should not use them, although they are 
public and supported. System APIs have a "@system" label in addition to the lifecycle 

45 ICU v3.8 User Guide



label that all external APIs have (see below).

Internal APIs

All APIs that do not fit any of the descriptions above are internal, which means that they 
are for ICU internal use only and may change at any time without notice. Some of them 
are member functions of public C++ or Java classes, and are "technically public but 
logistically internal" for implementation reasons; typically because programming 
languages don't provide sufficiently access control (without clumsy mechanisms). In this 
case, such APIs have an "@internal" label.

ICU API compatibility

As ICU develops, it adds external APIs - functions, classes, constants, and so on. 
Occasionally it is also necessary to remove or change external APIs. In order to make this 
work, we use the following process:

For all API changes (and for significant/controversial/difficult implementation changes), 
we use proposals to announce and discuss them. A proposal is simply an email to the icu-
design mailing list that details what is proposed to be changed, with an expiration date of 
typically a week. This gives all mailing list members a chance to review upcoming 
changes, and to discuss them. A proposal often changes significantly as a result of 
discussion. Most proposals will eventually find consensus among list members; 
otherwise, the PMC decides what to do. If the addition or change of APIs would affect 
you, please subscribe to the main icu-design mailing list.

Once a new API is added to ICU, it is marked as draft with a "@draft ICU x.y" label in 
the API documentation, where x.y is the ICU version when the API was introduced or last 
changed. A draft API is not guaranteed to be stable! Although we will not make 
gratuitous changes, sometimes the draft APIs turns out to be unsatisfactory in actual 
practice and may need to be changed or even removed. Changes of "draft" API are subject 
to the proposal process described above.

In ICU4J 3.4.2 and earlier, @draft APIs were also marked with Java's @deprecated tag, 
so that uses of draft APIs in client code would be flagged by the compiler.  These uses of 
the @deprecated tag were indicated with the comment “This is a draft API and might 
change in a future release of ICU.”  Many clients found this confusing and/or 
undesireable, so ICU4J 3.4.3 no longer marks draft APIs with the @deprecated tag by 
default.  For clients who prefer the earlier behavior, ICU4J provides an ant build target, 
'restoreDeprecated', which will update the source files to use the @deprecated tag.  Then 
clients can just rebuild the ICU4J jar as usual.

When an API is judged to be stable and has not been changed for at least one ICU release, 
it is relabeled as stable with a "@stable ICU x.y" label in the API documentation. The 

46 ICU v3.8 User Guide

http://icu-project.org/contacts.html


ICU version x.y indicates the last time the API was introduced or changed. A stable API 
is expected to be available in this form for a long time.

Even a stable API may eventually need to become deprecated or obsolete. Such APIs are 
strongly discouraged from use. Typically, an improved API is introduced at the time of 
deprecation/obsolescence of the old one. 

• Use of deprecated APIs is strongly discouraged, but they are retained for backward 
compatibility. These are marked with labels like "@deprecated ICU x.y. Use u_abc() 
instead.". The ICU version x.y shows the ICU release in which the API was first 
declared "deprecated".

• Obsolete APIs are are those whose continued retention will cause severe conflicts or 
user error, or whose continued support would be a very significant maintenance 
burden. We make every effort to keep these to a minimum. Obsolete APIs are marked 
with labels like "@obsolete ICU x.y. Use u_abc() instead since this API will be 
removed in that release.". The x.y indicates that we plan to remove it in ICU version 
x.y. 

Stable C or Java APIs will not be obsoleted because doing so would break forward 
binary compatibility of the ICU library.  Stable APIs may be deprecated, but they will 
be retained in the library.

An "obsolete" API will remain unchanged until it is removed in the indicated ICU 
release, which will be usually one year after the API was declared obsolete. Sometimes 
we still keep it available for some time via a compile-time switch but stop maintaining 
it. In rare occasions, an API must be replaced right away because of naming conflicts 
or severe defects; in such cases we provide compile-time switches (#ifdef or other 
mechanisms) to select the old API. 

ICU Binary Compatibility

ICU4C may be configured for use as a system library in an environment where 
applications that are built with one version of ICU must continue to run without change 
with later versions of the ICU shared library.

Here are the requirements for enabling binary compatibility for ICU4C:

• Applications must use only APIs that are marked as stable.

• Applications must use only plain C APIs, never C++.

• ICU must be built with function renaming disabled.

• Applications must be built using an ICU that was configured for binary compatibility.

• Use ICU version 3.0 or later.

47 ICU v3.8 User Guide



Stable APIs Only.   APIs in the ICU library that are tagged as being stable will be 
maintained  in future versions of the library.  Stable functions will continue to exist with 
the same signature and the same meaning, allowing applications to continue to work 
without change.

Stable APIs do not guarantee that the results from every function will always be 
completely identical between ICU versions.  Bugs may be fixed.  The Unicode character 
data may change with new versions of the Unicode standard.  Locale data may be updated 
or changed, yielding different results for operations like formatting or collation. 
Applications that require exact bit-for-bit, bug-for-bug compatibility of ICU results 
should not rely on ICU release-to-release binary compatibility, but should instead link 
against a specific version of ICU.

To verify that an application uses only stable APIs, build it with the C preprocessor 
symbols U_HIDE_DRAFT_API and U_HIDE_DEPRECATED_API defined.  This will 
produce build errors if any draft, deprecated or obsolete APIs are used.

C APIs only.  Only plain C APIs remain compatible across ICU releases.  The reason 
C++ binary compatibility is not supported is primarily because the design of  C++ 
language and runtime environments  present extreme technical difficulties to doing so. 
Stable C++ APIs are source compatible, but applications using them must be recompiled 
when moving between ICU releases.

Function renaming disabled.  Function renaming is an ICU feature that allows an 
application to explicitly link against a specific version of the ICU library, and to continue 
to use that version even when other  ICU versions exist in the runtime environment.  This 
is the exact opposite of release-to-release binary compatibility – instead of being able to 
transparently change ICU versions, an application is explicitly tied to one specific 
version.

Function renaming is enabled by default, and must be disabled at ICU build time to 
enable release to release binary compatibility.  To disable renaming, use the configure 
option
      configure -–disable-renaming  [other configure options]
(Configure options may also be passed to the runConfigureICU script.)

To enable release-to-release binary compatibility, ICU must be built with --disable-
renaming, and applications must be built using the headers and libraries that resulted 
from the –-disable-renaming ICU build

ICU Version 3.0 or Later.  Binary compatibility of ICU releases is supported beginning 
with ICU version 3.0.  Older versions of ICU (2.8 and earlier) do not provide for binary 
compatibility between versions.

ICU Data Compatibility

48 ICU v3.8 User Guide



Starting in ICU 3.8 and later, the data library that comes with ICU is binary compatible 
and structurally compatible with versions of ICU with the same major and minor version, 
or a maintenance release. This allows multiple maintenance releases of ICU to share the 
same data, but generally the latest maintenance release of the data should be used. 

The binary compatibility of the data refers to the resource bundle binary format that is 
contains the locale data, charset conversion tables and other file formats supported by 
ICU. These binary formats are readable by many versions of ICU. For example, resource 
bundles written with ICU 3.6 are readable by ICU 3.8.

The structural compatibility of the data refers to the structural contents of the ICU data. 
The structure of the locale data may change between reference releases, but the keys to 
reference specific types of data will be the same between maintenance releases. This 
means that resource keys to access data within resource bundles will work between 
maintenance releases of a specific reference release. For example, an ICU 3.8 calendar 
will be able to use ICU 3.8.1 data, and vis versa; however ICU 3.6 may not be able to 
read ICU 3.8 locale data. Generally, these keys are not accessible by ICU users because 
only the ICU implementation uses these resource keys.

The contents of the data library may change between ICU maintenance releases and give 
you different results due to important updates and bug fixes. An example of an important 
update would be a timezone rule update for when a country changes when daylight saving 
time occurs. So the results may be different between maintenance releases.

49 ICU v3.8 User Guide



C/POSIX Migration
Migration from Standard C and POSIX APIs

The ISO C and POSIX standards define a number of APIs for string handling and 
internationalization in C. They do not support Unicode well because they were initially 
designed before Unicode/ISO 10646 were developed, and the POSIX APIs are also 
problematic for other internationalization aspects. 

This chapter discusses C/POSIX APIs with their problems, and shows which ICU APIs to 
use instead.

We use the term "POSIX" to mean the POSIX.1 standard (IEEE Std 1003.1) 
which defines system interfaces and headers with relevance for string handling 
and internationalization. The XPG3, XPG4, Single Unix Specification (SUS) and 
other standards include POSIX.1 as a subset, adding other specifications that are 
irrelevant for this topic.

This chapter is not complete yet – more POSIX APIs are expected to be discussed in the 
future.

• Strings and Characters   

• Character Sets and Encodings  

• Case Mappings  

• Character Classes  

• Formatting and Parsing   

• Currency Formatting  

Strings and Characters

Character Sets and Encodings

ISO C

The ISO C standard provides two basic character types (char and wchar_t) and defines 
strings as arrays of units of these types. The standard allows nearly arbitrary character and 
string character sets and encodings, which was necessary when there was no single 
character set that worked everywhere.

For portable C programs, characters and strings are opaque, i.e., a program cannot assume 

50 ICU v3.8 User Guide



that any particular character is represented by any particular code or sequence of codes. 
Programs use standard library functions to handle characters and strings. Only a small set 
of characters — usually the set of graphic characters available in US-ASCII — can be 
reliably accessed via character and string literals.

Problems

• Many different encodings are used on each platform, making it difficult for multiple 
programs and libraries to process the same text.

• Programs often need to know the codes of special characters. For example, code that 
parses a filename needs to know how the path and file separators are encoded; this is 
commonly possible because filenames deliberately use US-ASCII characters, but any 
software that uses non-ASCII characters becomes platform-dependent. It is practically 
impossible to provide sophisticated text processing without knowledge of the character 
set, its string encoding, and other detailed features.

• The C/POSIX standards only provide a very limited set of useful functions for 
character and string handling; many functions that are provided do not work for non-
trivial cases.

• While the size of the char type is in practice fixed to 8 bits in modern compilers, and 
its common encodings are reasonably well documented, the size of wchar_t varies 
between 8/16/32 bits depending on the compiler, and only few of the string encodings 
used with it are documented.

• See also What size wchar_t do I need for Unicode?.

• A program based on this model must be recompiled for each platform. Usually, it must 
be recompiled for each supported language or family of languages.

• The ISO C standard basically requires, by how its standard functions are defined, that 
the data type for a single character code in a large character set is the same as the string 
base unit type (wchar_t). This has led to C standard library implementations using 
Unicode encodings which are either limited for single-character functions to only part 
of Unicode, or suffer from reduced interoperability with most Unicode-aware software.

ICU

ICU always processes Unicode text. Unicode covers all languages and allows safe hard 
coding of character codes, in addition to providing many standard or recommended 
algorithms and a lot of useful character property data. See the chapters about Unicode 
Basics and Strings and others.

ICU uses the 16-bit encoding form of Unicode (UTF-16) for processing, making it fully 
interoperable with most Unicode-aware software. (See UTF-16 for Processing.) In the 
case of ICU4J, this is naturally the case because the Java language and the JDK use UTF-
16.

51 ICU v3.8 User Guide

http://www.unicode.org/notes/tn12/
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/strings.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/unicodeBasics.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/unicodeBasics.sxw
http://icu-project.org/docs/papers/unicode_wchar_t.html


ICU uses and/or provides direct access to all of the Unicode properties which provide a 
much finer-grained classification of characters than C/POSIX character classes.

In C/C++ source code character and string literals, ICU uses only "invariant" characters. 
They are the subset of graphic ASCII characters that are almost always encoded with the 
same byte values on all systems. (One set of byte values for ASCII-based systems, and 
another such set of byte values for EBCDIC systems.) See utypes.h for the set of 
"invariant" characters.

With the use of Unicode, the implementation of many of the Unicode standard 
algorithms, and its cross-platform availability, ICU provides for consistent, portable, and 
reliable text processing.

Case Mappings

ISO C

The standard C functions tolower(), towupper(), etc. take and return one character 
code each.

Problems

• This does not work for German, where the character "ß" (sharp s) uppercases to the 
two characters "SS". (It "expands".)

• It does not work for Greek, where the character "Σ" (capital sigma) lowercases to 
either "ς" (small final sigma) or "σ" (small sigma) depending on whether the capital 
sigma is the last letter in a word. (It is context-dependent.)

• It does not work for Lithuanian and Turkic languages where a "combining dot above" 
character may need to be removed in certain cases. (It "contracts" and is language- and 
context-dependent.)

• There are a number of other such cases.

• There are no standard functions for title-casing strings.

• There are no standard functions for case-folding strings. (Case-folding is used for case-
insensitive comparisons; there are C/POSIX functions for direct, case-insensitive 
comparisons of pairs of strings. Case-folding is useful when one string is compared to 
many others, or as part of a chain of transformations of a string.)

ICU

Case mappings are operations taking and returning strings, to support length changes and 
context dependencies. Unicode provides algorithms and data for proper case mappings, 
and ICU provides APIs for them. (See the API references for various string functions and 

52 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icu/trunk/source/common/unicode/utypes.h
http://source.icu-project.org/repos/icu/icuhtml/trunk/design/posix_classes.html
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/properties.sxw


for Transforms/Transliteration.)

Character Classes

ISO C

The standard C functions isalpha(), isdigit(), etc. take a character code each and 
return boolean values for whether the character belongs to the current locale's respective 
character class.

Problems

• Character classes are bound to locales, instead of providing consistent classifications 
for characters.

• The same character may have different classifications depending on the locale and the 
platform.

• There are only very few POSIX character classes, and they are not well defined. For 
example, there is a class for punctuation characters but not one for symbols.

• For example, the dollar symbol (“$”) may or may not belong to the punct class 
depending on the locale, even on the same system.

• The standard allows at most two sets of decimal digits: The digits of the “portable 
character set” (i.e., those in the ASCII repertoire) and one more. Some 
implementations only recognize ASCII digits in the isdigit() function. However, 
there are many sets of decimal digits in a multilingual character set like Unicode.

• The POSIX standard assumes that each locale definition file carries the character class 
data for all relevant characters. With many locales using overlapping character 
repertoires, this can lead to a lot of duplication. For efficiency, many UTF-8 locales 
define character classes only for very few characters instead of for all of Unicode. For 
example, some de_DE.utf-8 locales only define character classes for characters used in 
German, or for the repertoire of ISO 8859-1 – in other words, for only a tiny fraction 
of the representable Unicode repertoire. Processing of text using more than this 
repertoire is not possible with such an implementation.

• For more about the problems with POSIX character classes in a Unicode context see 
Annex C: Compatibility Properties in Unicode Technical Standard #18: Unicode 
Regular Expressions and see the mailing list archives for the unicode list (on 
unicode.org). See also the ICU design document about C/POSIX character classes.

ICU

ICU provides locale-independent access to all Unicode properties (except Unihan.txt 

53 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/properties.sxw
http://source.icu-project.org/repos/icu/icuhtml/trunk/design/posix_classes.html
http://www.unicode.org/reports/tr18/#Compatibility_Properties
http://www.unicode.org/reports/tr18/#Compatibility_Properties


properties), as well as to the POSIX character classes, via functions defined in uchar.h 
and in ICU4J's UCharacter class (see API references) as well as via UnicodeSet. The 
POSIX character classes are implemented according to the recommendations in UTS #18.

The Unicode Character Database defines more than 70 character properties, their values 
are designed for the large character set as well as for real text processing, and they are 
updated with each version of Unicode. The UCD is available online, facilitating industry-
wide consistency in the implementation of Unicode properties.

Formatting and Parsing

Currency Formatting

POSIX

The strfmon() function is used to format monetary values. The default format and the 
currency display symbol or display name are selected by the LC_MONETARY locale ID. The 
number formatting can also be controlled with a formatting string resembling what 
printf() uses.

Problems

• Selection of the currency via a locale ID is unreliable: Countries change currencies 
over time, and the locale data for a particular country may not be available. This 
results in using the wrong currency. For example, an application may assume that a 
country has switched from a previous currency to the Euro, but it may run on an OS 
that predates the switch.

• Using a single locale ID for the whole format makes it very difficult to format values 
for multiple currencies with the same number format (for example, for an exchange 
rate list or for showing the price of an item adjusted for several currencies). 
strfmon() allows to specify the number format fully, but then the application cannot 
use a country's default number format.

• The set of formattable currencies is limited to those that are available via locale IDs on 
a particular system.

• There does not appear to be a function to parse currency values.

ICU

ICU number formatting APIs have separate, orthogonal settings for the number format, 
which can be selected with a locale ID, and the currency, which is specified with an ISO 

54 ICU v3.8 User Guide



code. See the Formatting Numbers chapter for details.

55 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatNumbers.sxw


Strings
Overview

This section explains how to handle Unicode strings with ICU in C and C++. 
Subsections:

• Text Access Overview  

• Strings in ICU  

• Handling Lengths, Indexes, and Offsets in Strings  

• Using C Strings: NUL-Terminated vs. Length Parameters  

• Using Unicode Strings in C  

• Using Unicode Strings in C++  

• Using C++ Strings in C APIs  

• Using C Strings in C++ APIs  

• Maximizing Performance with the UnicodeString Storage Model  

• Using UTF-8 strings with ICU  

• Using UTF-32 strings with ICU  

• Changes in ICU 2.0  

Sample code is available in the ICU source code library at 
icu/source/samples/ustring/ustring.cpp.

Text Access Overview

Strings are the most common and fundamental form of handling text in software. 
Logically, and often physically, they contain contiguous arrays (vectors) of basic units. 
Most of the ICU API functions work directly with simple strings, and where possible, this 
is preferred.

Sometimes, text needs to be accessed via more powerful and complicated methods. For 
example, text may be stored in discontiguous chunks in order to deal with frequent 
modification (like typing) and large amounts, or it may not be stored in the internal 
encoding, or it may have associated attributes like bold or italic styles.

Guidance

ICU provides multiple text access interfaces which were added over time. If simple 
strings cannot be used, then consider the following:

• UText  : Added in ICU4C 3.4 as a technology preview. Intended to be the strategic text 

56 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/utext.sxw
http://source.icu-project.org/repos/icu/icu/trunk/source/samples/ustring/ustring.cpp


access API for use with ICU. C API, high performance, writable, supports native 
indexes for efficient non-UTF-16 text storage. So far (3.4) only supported in 
BreakIterator. Some API changes are anticipated for ICU 3.6.

• Replaceable (Java & C++) and UReplaceable (C): Writable, designed for use with 
Transliterator.

• CharacterIterator (Java JDK & C++): Read-only, used in many APIs. Large differences 
between the JDK and C++ versions.

• UCharacterIterator (Java): Back-port of the C++ CharacterIterator to ICU4J for 
support of supplementary code points and post-increment iteration.

• UCharIterator (C): Read-only, C interface used mostly in incremental normalization 
and collation.

The following provides some historical perspective and comparison between the 
interfaces.

CharacterIterator

ICU has long provided the CharacterIterator interface for some services. It allows for 
abstract text access, but has limitations:

• It has a per-character function call overhead.

• Originally, it was designed for UCS-2 operation and did not support direct handling of 
supplementary Unicode code points. Such support was later added.

• Its pre-increment iteration semantics are uncommon, and are inefficient when used 
with a variable-width encoding form (UTF-16). Functions for post-increment iteration 
were added later.

• The C++ version added iteration start/limit boundaries only because the C++ 
UnicodeString copies string contents during substringing; the Java CharacterIterator 
does not have these extra boundaries – substringing is more efficient in Java.

• CharacterIterator is not available for use in C.

• CharacterIterator is a read-only interface.

• It uses UTF-16 indexes into the text, which is not efficient for other encoding forms.

• With the additions to the API over time, the number of methods that have to be 
overridden by subclasses has become rather large.

The core Java adopted an early version of CharacterIterator; later functionality, like 
support for supplementary code points, was back-ported from ICU4C to ICU4J to form 
the UCharacterIterator class.

The UCharIterator C interface was added to allow for incremental normalization and 
collation in C. It is entirely code unit (UChar)-oriented, uses only post-increment iteration 
and has a smaller number of overridable methods.

57 ICU v3.8 User Guide



Replaceable

The Replaceable (Java & C++) and UReplaceable (C) interfaces are designed for, and 
used in, Transliterator. They do not provide iteration methods.

UText

The UText text access interface was designed as a possible replacement for all previous 
interfaces listed above, with additional functionality. It allows for high-performance 
operation through the use of storage-native indexes (for efficient use of non-UTF-16 text) 
and through accessing multiple characters per function call. Code point iteration is 
available with functions as well as with C macros, for maximum performance. UText is 
also writable, mostly patterned after Replaceable. For details see the UText chaper.

Strings in ICU

Strings in Java

In Java, ICU uses the standard String and StringBuffer classes, char[], etc. See the Java 
documentation for details.

Strings in C/C++

Strings in C and C++ are, at the lowest level, arrays of some particular base type. In most 
cases, the base type is a char, which is an 8-bit byte in modern compilers. Some APIs use 
a "wide character" type wchar_t that is typically 8, 16, or 32 bits wide and upwards 
compatible with char. C code passes char * or wchar_t pointers to the first element of 
an array. C++ enables you to create a class for encapsulating these kinds of character 
arrays in handy and safe objects.

The interpretation of the byte or wchar_t values depends on the platform, the compiler, 
the signed state of both char and wchar_t, and the width of wchar_t. These 
characteristics are not specified in the language standards. When using internationalized 
text, the encoding often uses multiple chars for most characters and a wchar_t that is 
wide enough to hold exactly one character code point value each. Some APIs, especially 
in the standard library (stdlib), assume that wchar_t strings use a fixed-width encoding 
with exactly one character code point per wchar_t.

ICU: 16-bit Unicode strings

In order to take advantage of Unicode with its large character repertoire and its well-
defined properties, there must be types with consistent definitions and semantics. The 
Unicode standard defines a default encoding based on 16-bit code units. This is supported 
in ICU by the definition of the UChar to be an unsigned 16-bit integer type. This is the 

58 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/utext.sxw


base type for character arrays for strings in ICU.

Endianness is not an issue on this level because the interpretation of an integer is 
fixed within any given platform.

With the UTF-16 encoding form, a single Unicode code point is encoded with either one 
or two 16-bit UChar code units (unambiguously). "Supplementary" code points, which are 
encoded with pairs of code units, are rare in most texts. The two code units are called 
"surrogates", and their unit value ranges are distinct from each other and from single-unit 
value ranges. Code should be generally optimized for the common, single-unit case.

16-bit Unicode strings in internal processing contain sequences of 16-bit code units that 
may not always be well-formed UTF-16. ICU treats single, unpaired surrogates as 
surrogate code points, i.e., they are returned in per-code point iteration, they are included 
in the number of code points of a string, and they are generally treated much like normal, 
unassigned code points in most APIs. Surrogate code points have Unicode properties 
although they cannot be assigned an actual character.

ICU string handling functions (including append, substring, etc.) do not automatically 
protect against producing malformed UTF-16 strings. Most of the time, indexes into 
strings are naturally at code point boundaries because they result from other functions that 
always produce such indexes. If necessary, the user can test for proper boundaries by 
checking the code unit values, or adjust arbitrary indexes to code point boundaries by 
using the C macros U16_SET_CP_START() and U16_SET_CP_LIMIT() (see utf.h) and the 
UnicodeString functions getChar32Start() and getChar32Limit().

UTF-8 and UTF-32 are supported with converters (ucnv.h), macros (utf.h), and 
convenience functions (ustring.h), but not directly as string encoding forms for most 
APIs.

Separate type for single code points

A Unicode code point is an integer with a value from 0 to 0x10FFFF. ICU 2.4 and later 
defines the UChar32 type for single code point values as a 32 bits wide signed integer 
(int32_t). This allows the use of easily testable negative values as sentinels, to indicate 
errors, exceptions or "done" conditions. All negative values and positive values greater 
than 0x10FFFF are illegal as Unicode code points.

ICU 2.2 and earlier defined UChar32 depending on the platform: If the compiler's 
wchar_t was 32 bits wide, then UChar32 was defined to be the same as wchar_t. 
Otherwise, it was defined to be an unsigned 32-bit integer. This means that UChar32 was 
either a signed or unsigned integer type depending on the compiler. This was meant for 
better interoperability with existing libraries, but was of little use because ICU does not 
process 32-bit strings — UChar32 is only used for single code points. The platform 
dependence of UChar32 could cause problems with C++ function overloading.

Compiler-dependent definitions

59 ICU v3.8 User Guide



The compiler's and the runtime character set's codepage encodings are not specified by 
the C/C++ language standards and are usually not a Unicode encoding form. They 
typically depend on the settings of the individual system, process, or thread. Therefore, it 
is not possible to instantiate a Unicode character or string variable directly with C/C++ 
character or string literals. The only safe way is to use numeric values. It is not an issue 
for User Interface (UI) strings that are translated. These UI strings are loaded from a 
resource bundle, which is generated from a text file that can be in Unicode or in any other 
ICU-provided codepage. The binary form of the genrb tool generates UTF-16 strings that 
are ready for direct use.

There is a useful exception to this for program-internal strings and test strings. Within 
each "family" of character encodings, there is a set of characters that have the same 
numeric code values. Such characters include Latin letters, the basic digits, the space, and 
some punctuation. Most of the ASCII graphic characters are invariant characters. The 
same set, with different but again consistent numeric values, is invariant among almost all 
EBCDIC codepages. For details, see icu/source/common/unicode/utypes.h. With 
strings that contain only these invariant characters, it is possible to use efficient ICU 
constructs to write a C/C++ string literal and use it to initialize Unicode strings.

In some APIs, ICU uses char * strings. This is either for file system paths or for strings 
that contain invariant characters only (such as locale identifiers). These strings are in the 
platform-specific encoding of either ASCII or EBCDIC. All other codepage differences 
do not matter for invariant characters and are manipulated by the C stdlib functions like 
strcpy().

In some APIs where identifiers are used, ICU uses char * strings with invariant 
characters. Such strings do not require the full Unicode repertoire and are easier to handle 
in C and C++ with char * string literals and standard C library functions. Their useful 
character repertoire is actually smaller than the set of graphic ASCII characters; for 
details, see utypes.h. Examples of char * identifier uses are converter names, locale 
IDs, and resource bundle table keys.

There is another, less efficient way to have human-readable Unicode string literals in C 
and C++ code. ICU provides a small number of functions that allow any Unicode 
characters to be inserted into a string with escape sequences similar to the one that is used 
in the C and C++ language. In addition to the familiar \n and \xhh etc., ICU also 
provides the \uhhhh syntax with four hex digits and the \Uhhhhhhhh syntax with eight 
hex digits for hexadecimal Unicode code point values. This is very similar to the newer 
escape sequences used in Java and defined in the latest C and C++ standards. Since ICU 
is not a compiler extension, the "unescaping" is done at runtime and the backslash itself 
must be escaped (duplicated) so that the compiler does not attempt to "unescape" the 
sequence itself.

60 ICU v3.8 User Guide

http://icu-project.org/apiref/icu4c/utypes_8h.html
http://icu-project.org/apiref/icu4c/utypes_8h.html


Handling Lengths, Indexes, and Offsets in Strings

The length of a string and all indexes and offsets related to the string are always counted 
in terms of UChar code units, not in terms of UChar32 code points. (This is the same as in 
common C library functions that use char * strings with multi-byte encodings.)

Often, a user thinks of a "character" as a complete unit in a language, like an 'Ä', while it 
may be represented with multiple Unicode code points including a base character and 
combining marks. (See the Unicode standard for details.) This often requires users to 
index and pass strings (UnicodeString or UChar *) with multiple code units or code 
points. It cannot be done with single-integer character types. Indexing of such 
"characters" is done with the BreakIterator class (in C: ubrk_ functions).

Even with such "higher-level" indexing functions, the actual index values will be 
expressed in terms of UChar code units. When more than one code unit is used at a time, 
the index value changes by more than one at a time.

ICU uses signed 32-bit integers (int32_t) for lengths and offsets. Because of internal 
computations, strings (and arrays in general) are limited to 1G base units or 2G bytes, 
whichever is smaller.

Using C Strings: NUL-Terminated vs. Length Parameters

Strings are either terminated with a NUL character (code point 0, U+0000) or their length 
is specified. In the latter case, it is possible to have one or more NUL characters inside the 
string.

Input string arguments are typically passed with two parameters: The (const) UChar * 
pointer and an int32_t length argument. If the length is -1 then the string must be NUL-
terminated and the ICU function will call the u_strlen() method or treat it equivalently. 
If the input string contains embedded NUL characters, then the length must be specified.

Output string arguments are typically passed with a destination UChar * pointer and an 
int32_t capacity argument and the function returns the length of the output as an int32_t. 
There is also almost always a UErrorCode argument. Essentially, a UChar[] array is 
passed in with its start and the number of available UChars. The array is filled with the 
output and if space permits the output will be NUL-terminated. The length of the output 
string is returned. In all cases the length of the output string does not include the 
terminating NUL. This is the same behavior found in most ICU and non-ICU string APIs, 
for example u_strlen(). The output string may contain NUL characters as part of its 
actual contents, depending on the input and the operation. Note that the UErrorCode 
parameter is used to indicate both errors and warnings (non-errors). The following 
describes some of the situations in which the UErrorCode will be set to a non-zero value:

• If the output length is greater than the output array capacity, then the UErrorCode will 
be set to U_BUFFER_OVERFLOW_ERROR and the contents of the output array is 

61 ICU v3.8 User Guide



undefined.

• If the output length is equal to the capacity, then the output has been completely 
written minus the terminating NUL. This is also indicated by setting the UErrorCode 
to U_STRING_NOT_TERMINATED_WARNING.
 Note that U_STRING_NOT_TERMINATED_WARNING does not indicate failure (it passes 
the U_SUCCESS() macro).
 Note also that it is more reliable to check the output length against the capacity, rather 
than checking for the warning code, because warning codes do not cause the early 
termination of a function and may subsequently be overwritten.

• If neither of these two conditions apply, the error code will indicate success and not a 
U_STRING_NOT_TERMINATED_WARNING. (If a U_STRING_NOT_TERMINATED_WARNING 
code had been set in the UErrorCode parameter before the function call, then it is reset 
to a U_ZERO_ERROR.)

Preflighting: The returned length is always the full output length even if the output 
buffer is too small. It is possible to pass in a capacity of 0 (and an output array pointer of 
NUL) for "pure preflighting" to determine the necessary output buffer size. Add one to 
make the output string NUL-terminated.

Note that — whether the caller intends to "preflight" or not — if the output length is 
equal to or greater than the capacity, then the UErrorCode is set to 
U_STRING_NOT_TERMINATED_WARNING or U_BUFFER_OVERFLOW_ERROR respectively, as 
described above.

However, "pure preflighting" is very expensive because the operation has to be processed 
twice — once for calculating the output length, and a second time to actually generate the 
output. It is much more efficient to always provide an output buffer that is expected to be 
large enough for most cases, and to reallocate and repeat the operation only when an 
overflow occurred. (Remember to reset the UErrorCode to U_ZERO_ERROR before calling 
the function again.) In C/C++, the initial output buffer can be a stack buffer. In case of a 
reallocation, it may be possible and useful to cache and reuse the new, larger buffer.

The exception to these rules are the ANSI-C-style functions like u_strcpy(),  
which generally require NUL-terminated strings, forbid embedded NULs, and do 
not take capacity arguments for buffer overflow checking.

Using Unicode Strings in C

In C, Unicode strings are similar to standard char * strings. Unicode strings are arrays of 
UChar and most APIs take a UChar * pointer to the first element and an input length 
and/or output capacity, see above. ICU has a number of functions that provide the 
Unicode equivalent of the stdlib functions such as strcpy(), strstr(), etc. Compared 
with their C standard counterparts, their function names begin with u_. Otherwise, their 
semantics are equivalent. These functions are defined in 

62 ICU v3.8 User Guide



icu/source/common/unicode/ustring.h.

Code Point Access

Sometimes, Unicode code points need to be accessed in C for iteration, movement 
forward, or movement backward in a string. A string might also need to be written from 
code points values. ICU provides a number of macros that are defined in the 
icu/source/common/unicode/utf.h and utf8.h/utf16.h headers that it includes 
(utf.h is in turn included with utypes.h).

Macros for 16-bit Unicode strings have a U16_ prefix. For example:

U16_NEXT(s, i, length, c)
U16_PREV(s, start, i, c)
U16_APPEND(s, i, length, c, isError) 
    

There are also macros with a U_ prefix for code point range checks (e.g., test for non-
character code point), and U8_ macros for 8-bit (UTF-8) strings. See the header files and 
the API References for more details.

UTF Macros before ICU 2.4

In ICU 2.4, the utf*.h macros have been revamped, improved, simplified, and renamed. 
The old macros continue to be available. They are in utf_old.h, together with an 
explanation of the change. utf.h, utf8.h and utf16.h contain the new macros instead. 
The new macros are intended to be more consistent, more useful, and less confusing. 
Some macros were simply renamed for consistency with a new naming scheme.

This subsection contains a brief introduction into the pre-ICU 2.4 utf*.h macros. Most 
users can skip this and continue with "C Unicode String Literals".

The commonly used macros for 16-bit Unicode strings have a UTF_ prefix (without a 
number in the prefix). For example: 

UTF_NEXT_CHAR(s, i, length, c)
UTF_PREV_CHAR(s, start, i, c)
UTF_APPEND_CHAR(s, i, length, c)
      

In certain cases, it can be useful to select one of the other macros.

Internally, the macros are organized by:

1. Encoding form: There are sets of macros for 8/16/32-bit Unicode strings, with prefixes 
UTF8_, UTF16_, and UTF32_ respectively.

2. "Safety": There are three levels of increasing "safety" and decreasing performance. 
Many macros are available in the following versions: 

• The _UNSAFE macros do not perform error checking and are the fastest. For 
example, in forward iteration, if there is a lead surrogate code unit, then the 
_UNSAFE macros assume that there is a trail surrogate after it. If this is not the case, 

63 ICU v3.8 User Guide



then for example a lead surrogate is be combined with an arbitrary following code 
unit, resulting in bad output.

• The _SAFE macros (with the strict parameter set to FALSE) check for well-formed 
UTF sequences. For example, if a lead surrogate is not followed by a trail surrogate, 
then the macro will return just the lead surrogate as a code point. _SAFE macros 
also check that the current index into the UChar array is within the bounds of the 
array once the index is incremented or decremented by the macro. The initial index 
value that is passed to the macro is assumed to be within the bounds so that the 
typical range checks in iteration loop heads are not duplicated by the macros.

• In addition, the strict flag of the _SAFE macros can be set to TRUE to effectively 
modify them so that they also check for non-character code points. This is 
equivalent to using the UTF_IS_UNICODE_CHAR() test macro. Non-characters are 
useful and valid in internal processing but should not be exchanged with external 
systems.

Summary: For example, there are 3 _SAFE and 3 _UNSAFE implementation macros for 
forward iteration that read code points from Unicode strings. The 3 _SAFE versions each 
have a strict parameter, which effectively results in 9 implementations — 3 UTFs times 
3 "safety levels".

The UTF_ default macros are "safe but not strict": They are aliases to UTF16_..._SAFE 
macros with strict=FALSE. For example, UTF_NEXT_CHAR(s, i, length, c) is the 
same as UTF16_NEXT_CHAR_SAFE(s, i, length, c, FALSE).

C Unicode String Literals

There is a pair of macros that together enable users to instantiate a Unicode string in C — 
a UChar [] array — from a C string literal:

    /*
     * In C, we need two macros: one to declare the UChar[] array, and 
     * one to populate it; the second one is a noop on platforms where
     * wchar_t is compatible with UChar and ASCII-based.
     * The length of the string literal must be counted for both macros.
     */
    /* declare the invString array for the string */
    U_STRING_DECL(invString, "such characters are safe 123 %-.", 32);
    /* populate it with the characters */
    U_STRING_INIT(invString, "such characters are safe 123 %-.", 32);
    

With invariant characters, it is also possible to efficiently convert char * strings to and 
from UChar * strings:

    static const char *cs1="such characters are safe 123 %-.";
    static UChar us1[40];
    static char cs2[40];
    u_charsToUChars(cs1, us1, 33); /* include the terminating NUL */
    u_UCharsToChars(us1, cs2, 33);
    

64 ICU v3.8 User Guide



Using Unicode Strings in C++

UnicodeString is a C++ string class that wraps a UChar array and associated 
bookkeeping. It provides a rich set of string handling functions.

UnicodeString combines elements of both the Java String and StringBuffer classes. 
Many UnicodeString functions are named and work similar to Java String methods but 
modify the object (UnicodeString is "mutable").

UnicodeString provides functions for random access and use (insert/append/find etc.) of 
both code units and code points. For each non-iterative string/code point macro in utf.h 
there is at least one UnicodeString member function. The names of most of these 
functions contain "32" to indicate the use of a UChar32.

Code point and code unit iteration is provided by the CharacterIterator abstract class 
and its subclasses. There are concrete iterator implementations for UnicodeString 
objects and plain UChar [] arrays.

Most UnicodeString constructors and functions do not have a UErrorCode parameter. 
Instead, if the construction of a UnicodeString fails, for example when it is constructed 
from a NULL UChar * pointer, then the UnicodeString object becomes "bogus". This can 
be tested with the isBogus() function. A UnicodeString can be put into the "bogus" 
state explicitly with the setToBogus() function. This is different from an empty string 
(although a "bogus" string also returns TRUE from isEmpty()) and may be used 
equivalently to NULL in UChar * C APIs (or null references in Java, or NULL values in 
SQL). A string remains "bogus" until a non-bogus string value is assigned to it. For 
complete details of the behavior of "bogus" strings see the description of the 
setToBogus() function.

Some APIs work with the Replaceable abstract class. It defines a simple interface for 
random access and text modification and is useful for operations on text that may have 
associated meta-data (e.g., styled text), especially in the Transliterator API. 
UnicodeString implements Replaceable.

C++ Unicode String Literals

Like in C, there are macros that enable users to instantiate a UnicodeString from a C 
string literal. One macro requires the length of the string as in the C macros, the other one 
implies a strlen().

    UnicodeString s1=UNICODE_STRING("such characters are safe 123 %-.", 32);
    UnicodeString s1=UNICODE_STRING_SIMPLE("such characters are safe 123 %-.");
    

It is possible to efficiently convert between invariant-character strings and 
UnicodeStrings by using constructor, setTo() or extract() overloads that take 
codepage data (const char *) and specifying an empty string ("") as the codepage 

65 ICU v3.8 User Guide

http://icu-project.org//apiref/icu4c/classReplaceable.html
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/characterIterator.sxw
http://icu-project.org/apiref/icu4c/classUnicodeString.html


name.

Using C++ Strings in C APIs

The internal buffer of UnicodeString objects is available for direct handling in C (or C-
style) APIs that take UChar * arguments. It is possible but usually not necessary to copy 
the string contents with one of the extract functions. The following describes several 
direct buffer access methods.

The UnicodeString function getBuffer() const returns a readonly const UChar *. 
The length of the string is indicated by UnicodeString's length() function. Generally, 
UnicodeString does not NUL-terminate the contents of its internal buffer. However, it is 
possible to check for a NUL character if the length of the string is less than the capacity 
of the buffer. The following code is an example of how to check the capacity of the 
buffer: (s.length()<s.getCapacity() && buffer[s.length()]==0)
An easier way to NUL-terminate the buffer and get a const UChar * pointer to it is the 
getTerminatedBuffer() function. Unlike getBuffer() const, 
getTerminatedBuffer() is not a const function because it may have to (reallocate and) 
modify the buffer to append a terminating NUL. Therefore, use getBuffer() const if 
you do not need a NUL-terminated buffer.

There is also a pair of functions that allow controlled write access to the buffer of a 
UnicodeString: UChar *getBuffer(int32_t minCapacity) and 
releaseBuffer(int32_t newLength). UChar *getBuffer(int32_t minCapacity) 
provides a writeable buffer of at least the requested capacity and returns a pointer to it. 
The actual capacity of the buffer after the getBuffer(minCapacity) call may be larger 
than the requested capacity and can be determined with getCapacity().

Once the buffer contents are modified, the buffer must be released with the 
releaseBuffer(int32_t newLength) function, which sets the new length of the 
UnicodeString (newLength=-1 can be passed to determine the length of NUL-
terminated contents like u_strlen()).

Between the getBuffer(minCapacity) and releaseBuffer(newLength) function 
calls, the contents of the UnicodeString is unknown and the object behaves like it 
contains an empty string. A nested getBuffer(minCapacity), getBuffer() const or 
getTerminatedBuffer() will fail (return NULL) and modifications of the string via 
UnicodeString member functions will have no effect.

See the UnicodeString API documentation for more information.

Using C Strings in C++ APIs

There are efficient ways to wrap C-style strings in C++ UnicodeString objects without 

66 ICU v3.8 User Guide



copying the string contents. In order to use C strings in C++ APIs, the UChar * pointer 
and length need to be wrapped into a UnicodeString. This can be done efficiently in two 
ways: With a readonly alias and a writable alias. The UnicodeString object that is 
constructed actually uses the UChar * pointer as its internal buffer pointer instead of 
allocating a new buffer and copying the string contents.

If the original string is a readonly const UChar *, then the UnicodeString must be 
constructed with a read only alias. If the original string is a writable (non-const) UChar * 
and is to be modified (e.g., if the UChar * buffer is an output buffer) then the 
UnicodeString should be constructed with a writeable alias. For more details see the 
section "Maximizing Performance with the UnicodeString Storage Model" and search the 
unistr.h header file for "alias".

Maximizing Performance with the UnicodeString Storage Model

UnicodeString uses four storage methods to maximize performance and minimize 
memory consumption:

1. Short strings are normally stored inside the UnicodeString object. The object has 
fields for the "bookkeeping" and a small UChar array. When the object is copied, the 
internal characters are copied into the destination object.

2. Longer strings are normally stored in allocated memory. The allocated UChar array is 
preceded by a reference counter. When the string object is copied, the allocated buffer 
is shared by incrementing the reference counter. If any of the objects that share the 
same string buffer are modified, they receive their own copy of the buffer and 
decrement the reference counter of the previously co-used buffer.

3. A UnicodeString can be constructed (or set with a setTo() function) so that it 
aliases a readonly buffer instead of copying the characters. In this case, the string 
object uses this aliased buffer for as long as the object is not modified and it will never 
attempt to modify or release the buffer. This model has copy-on-write semantics. For 
example, when the string object is modified, the buffer contents are first copied into 
writable memory (inside the object for short strings or the allocated buffer for longer 
strings). When a UnicodeString with a readonly setting is copied to another 
UnicodeString using the fastCopyFrom() function, then both string objects share 
the same readonly setting and point to the same storage. Copying a string with the 
normal assignment operator or copy constructor will copy the buffer. This prevents 
accidental misuse of readonly-aliased strings. (This is new in ICU 2.4; earlier, the 
assignment operator and copy constructor behaved like the new fastCopyFrom() does 
now.)
 Important: The aliased buffer must remain valid for as long as any UnicodeString 
object aliases it. This includes unmodified fastCopyFrom() copies of the object. It is 
an error to readonly-alias temporary buffers and then pass the resulting 
UnicodeString objects to APIs (for example, UnicodeSet::add(const 

67 ICU v3.8 User Guide



UnicodeString& s)) that store them for longer than the buffers are valid. If it is 
necessary to make sure that a string is not a readonly alias, then use any modifying 
function without actually changing the contents (for example, s.setCharAt(0, 
s.charAt(0))). In ICU 2.4 and later, a simple assignment or copy construction will 
also copy the buffer.

4. A UnicodeString can be constructed (or set with a setTo() function) so that it 
aliases a writable buffer instead of copying the characters. The difference from the 
above is that the string object writes through to this aliased buffer for write operations. 
A new buffer is allocated and the contents are copied only when the capacity of the 
buffer is not sufficient. An efficient way to get the string contents into the original 
buffer is to use the extract(..., UChar *dst, ...) function. The extract(..., 
UChar *dst, ...) function copies the string contents if the dst buffer is different 
from the buffer of the string object itself. If a string grows and shrinks during a 
sequence of operations, then it will not use the same buffer, even if the string would 
fit. When a UnicodeString with a writeable alias is assigned to another 
UnicodeString, the contents are always copied. The destination string will not point 
to the buffer that the source string aliases point to.

In general, UnicodeString objects have "copy-on-write" semantics. Several objects may 
share the same string buffer, but a modification only affects the object that is modified 
itself. This is achieved by copying the string contents if it is not owned exclusively by this 
one object. Only after that is the object modified.

Even though it is fairly efficient to copy UnicodeString objects, it is even more 
efficient, if possible, to work with references or pointers. Functions that output strings can 
be faster by appending their results to a UnicodeString that is passed in by reference, 
compared with returning a UnicodeString object or just setting the local results alone 
into a string reference.

UnicodeStrings can be copied in a thread-safe manner by just using their 
standard copy constructors and assignment operators. fastCopyFrom() is also 
thread-safe, but if the original string is a readonly alias, then the copy shares the 
same aliased buffer.

Using UTF-8 strings with ICU

As mentioned in the overview of this chapter, ICU and most other Unicode-supporting 
software uses 16-bit Unicode for internal processing. However, there are circumstances 
where UTF-8 is used instead. This is usually the case for software that does little or no 
processing of non-ASCII characters, and/or for APIs that predate Unicode, use byte-based 
strings, and cannot be changed or replaced for various reasons.

A common perception is that UTF-8 has an advantage because it was designed for 
compatibility with byte-based, ASCII-based systems, although it was designed for string 
storage (of Unicode characters in Unix file names) rather than for processing 

68 ICU v3.8 User Guide



performance.

While ICU does not natively use UTF-8 strings, there are many ways to work with UTF-8 
strings and ICU. The following list is probably incomplete.

• Conversion of whole strings: u_strFromUTF8() and u_strToUTF8() in ustring.h.

• Access to code points: U8_NEXT() and U8_APPEND() macros in utf8.h.

• Using a UTF-8 converter with all of the ICU conversion APIs in ucnv.h, including 
ones with an "Algorithmic" suffix.

• UnicodeString has constructors, setTo() and extract() methods which take either 
a converter object or a charset name. APIs with a charset name are the most 
convenient but internally open and close a converter; ones with a converter object 
parameter avoid this.

• For conversion directly between UTF-8 and another charset use ucnv_convertEx().

• Some ICU APIs work with a CharacterIterator or a UCharIterator instead of 
directly with a C/C++ string parameter. ICU provides an implementation of a 
UCharIterator which reads UTF-8 strings. Use uiter_setUTF8(). There is currently 
no ICU CharacterIterator instance that reads UTF-8, although an application could 
provide one.

Using UTF-32 strings with ICU

It is even rarer to use UTF-32 for string processing than UTF-8. While 32-bit Unicode is 
convenient because it is the only fixed-width UTF, there are few or no legacy systems 
with 32-bit string processing that would benefit from a compatible format, and the 
memory bandwidth requirements of UTF-32 diminish the performance and handling 
advantage of the fixed-width format.

In recent years, the wchar_t type of some C/C++ compilers became a 32-bit integer, and 
some C libraries do use it for Unicode processing. However, application software with 
good Unicode support tends to have little use for the rudimentary Unicode and 
Internationalization support of the standard C/C++ libraries and often uses custom types 
(like ICU's) and 16-bit Unicode strings.

For those systems where 32-bit Unicode strings are used, ICU offers similar convenience 
functions as for UTF-8.

• Conversion of whole strings: u_strFromUTF32() and u_strFromUTF32() in 
ustring.h.

• Access to code points is trivial and does not require any macros.

• Using a UTF-32 converter with all of the ICU conversion APIs in ucnv.h, including 
ones with an "Algorithmic" suffix.

69 ICU v3.8 User Guide



• UnicodeString has constructors, setTo() and extract() methods which take either 
a converter object or a charset name. APIs with a charset name are the most 
convenient but internally open and close a converter; ones with a converter object 
parameter avoid this.

• For conversion directly between UTF-32 and another charset use ucnv_convertEx().

• Some ICU APIs work with a CharacterIterator or a UCharIterator instead of 
directly with a C/C++ string parameter. There is currently no ICU 
CharacterIterator or UCharIterator instance that reads UTF-32, although an 
application could provide one.

ICU converters work with byte streams in external charsets on the non-"Unicode"  
side. In order to work with the internal UTF-32 character encoding form, the 
correct converter must be used (UTF-32BE or UTF-32LE according to the 
platform endianness [U_IS_BIG_ENDIAN]), and the strings must be cast to/from 
char * and counted in bytes instead of 32-bit units. For the difference between 
internal encoding forms and external encoding schemes see the Unicode 
Standard.

Changes in ICU 2.0

Beginning with ICU release 2.0, there are a few changes to the ICU string facilities.

Some of the NUL-termination behavior was inconsistent across the ICU API functions. In 
particular, the following functions used to count the terminating NUL character in their 
output length (counted one more before ICU 2.0 than now): ucnv_toUChars, 
ucnv_fromUChars, uloc_getLanguage, uloc_getCountry, uloc_getVariant, 
uloc_getName, uloc_getDisplayLanguage, uloc_getDisplayCountry, 
uloc_getDisplayVariant, uloc_getDisplayName
Some functions used to set an overflow error code even when only the terminating NUL 
did not fit into the output buffer. These functions now set UErrorCode to 
U_STRING_NOT_TERMINATED_WARNING rather than to U_BUFFER_OVERFLOW_ERROR.

The aliasing UnicodeString constructors and most extract functions have existed for 
several releases prior to ICU 2.0. There is now an additional extract function with a 
UErrorCode parameter. Also, the getBuffer, releaseBuffer and getCapacity 
functions are new to ICU 2.0.

For more information about these changes, please consult the old and new API 
documentation.

70 ICU v3.8 User Guide



Properties
Overview

Text processing requires that a program treat text appropriately. If text is exchanged 
between several systems, it is important for them to process the text consistently. This is 
done by assigning each character, or a range of characters, attributes or properties used for 
text processing, and by defining standard algorithms for at least the basic text operations.

Traditionally, such attributes and algorithms have not been well-defined for most 
character sets, and text processing had to rely on ad-hoc solutions. Over time, standards 
were created for querying properties of the system codepage. However, the set of these 
properties was limited. Their data was not coordinated among implementations, and 
standard algorithms were not available.

It is one of the strengths of Unicode that it not only defines a very large character set, but 
also assigns a comprehensive set of properties and usage notes to all characters. It defines 
standard algorithms for critical text processing, and the data is publicly provided and kept 
up-to-date. See http://www.unicode.org/ for more information.

Sample code is available in the ICU source code library at 
icu/source/samples/props/props.cpp. See also the source code for the Unicode browser 
demo application, which can be used online to browse Unicode characters with their 
properties.

Unicode Character Database properties in ICU APIs

The following table shows all Unicode Character Database properties (except for purely 
"extracted" ones and Unihan properties) and the corresponding ICU APIs. Most of the 
time, ICU4C provides functions in icu/source/common/unicode/uchar.h and ICU4J 
provides parallel functions in the com.ibm.icu.lang.UCharacter class. Properties of a 
single Unicode character are accessed by its 21-bit code point value (type: 
UChar32=int32_t in C/C++, int in Java). Most properties are also available via 
UnicodeSet APIs and patterns.

See the Unicode Character Database itself for comparison. PropertyAliases.txt lists all 
properties by name and type.

Most properties that use binary, integer, or enumerated values are available via functions 
u_hasBinaryProperty and u_getIntPropertyValue which take UProperty enum 
constants to select the property. (ICU4J UCharacter member functions do not have the 
"u_" prefix.) The constant names include the long property name according to 
PropertyAliases.txt, e.g., UCHAR_LINE_BREAK. Corresponding property value enum 
constant names often contain the short property name and the long value name, e.g., 
U_LB_LINE_FEED. For enumeration/integer type properties, the enumeration result type is 
also listed here.

71 ICU v3.8 User Guide

http://www.unicode.org/unicode/onlinedat/online.html
http://demo.icu-project.org/icu-bin/ubrowse
http://source.icu-project.org/repos/icu/icuapps/trunk/ubrowse/
http://source.icu-project.org/repos/icu/icu/trunk/source/samples/props/props.cpp
http://www.unicode.org/unicode/onlinedat/online.html


Some UnicodeSet APIs use the same UProperty constants. Other UnicodeSet APIs and 
UnicodeSet and regular expression patterns use the long or short property aliases and 
property value aliases (see PropertyAliases.txt and PropertyValueAliases.txt).

There is one pseudo-property, UCHAR_GENERAL_CATEGORY_MASK for which the APIs do 
not use a single value but a bit-set (a mask) of zero or more values, with each bit 
corresponding to one UCHAR_GENERAL_CATEGORY value. This allows ICU to represent 
property value aliases for multiple general categories, like "Letters" (which stands for 
"Uppercase Letters", "Lowercase Letters", etc.). In other words, there are two ICU 
properties for the same Unicode property, one delivering single values (for per-code point 
lookup) and the other delivering sets of values (for use with value aliases and 
UnicodeSet).

UCD Name
(see 

PropertyAliases
.txt)

Type  ICU4C uchar.h
ICU4J UCharacter

UCD File (.txt)

Age Unicode version (U) C: u_charAge fills in 
UVersionInfo
Java: getAge returns a 
VersionInfo reference

DerivedAge

Alphabetic binary (U) u_isUAlphabetic, 
UCHAR_ALPHABETIC

DerivedCorePro
perties

ASCII_Hex_Dig
it

binary (U) UCHAR_ASCII_HEX_D
IGIT

PropList

Bidi_Class enum 
UCharDirection

(U) u_charDirection, 
UCHAR_BIDI_CLASS

UnicodeData

Bidi_Control binary (U) UCHAR_BIDI_CONTR
OL

PropList

Bidi_Mirrored binary (U) u_isMirrored, 
UCHAR_BIDI_MIRROR
ED

UnicodeData

Bidi_Mirroring_
Glyph

code point  u_charMirror BidiMirroring

Block enum 
UBlockCode 
(growing)

(U) ublock_getCode, 
UCHAR_BLOCK

Blocks

Canonical_Com
bining_Class

0..255 (U) u_getCombiningClass, 
UCHAR_CANONICAL_
COMBINING_CLASS

UnicodeData

Case_Folding Unicode string  u_strFoldCase (ustring.h) CaseFolding

72 ICU v3.8 User Guide



UCD Name
(see 

PropertyAliases
.txt)

Type  ICU4C uchar.h
ICU4J UCharacter

UCD File (.txt)

Composition_E
xclusion

binary (c) contributes to 
Full_Composition_Exclus
ion

CompositionEx
clusions

Dash binary (U) UCHAR_DASH PropList
Decomposition_
Mapping

Unicode string  available via 
normalization API

UnicodeData

Decomposition_
Type

enum 
UDecompositio
nType

(U) UCHAR_DECOMPOSIT
ION_TYPE

UnicodeData

Default_Ignorab
le_Code_Point

binary (U) UCHAR_DEFAULT
_IGNORABLE_CODE_P
OINT

DerivedCorePro
perties

Deprecated binary (U) UCHAR_DEPRECATED PropList
Diacritic binary (U) UCHAR_DIACRITIC PropList
East_Asian_Wi
dth

enum 
UEastAsianWid
th

(U) UCHAR_EAST_ASIAN
_WIDTH

EastAsianWidth

Expands_On_N
F*

binary  available via 
normalization API 
(unorm.h)

DerivedNormal-
izationProps

Extender binary (U) UCHAR_EXTENDER PropList
FC_NFKC_Clos
ure

Unicode string  u_getFC_NFKC_Closure DerivedNormal-
izationProps

Full_Compositi
on_Exclusion

binary (U) UCHAR_FULL
_COMPOSITION_EXCL
USION

DerivedNormal-
izationProps

General_Catego
ry

enum (<= 32 
values)

(U) u_charType, 
UCHAR_GENERAL_C
ATEGORY, 
UCHAR_GENERAL_C
ATEGORY_MASK, 
UCharCategory

UnicodeData

Grapheme_Base binary (U) UCHAR_GRAPHEME_
BASE

DerivedCorePro
perties

73 ICU v3.8 User Guide



UCD Name
(see 

PropertyAliases
.txt)

Type  ICU4C uchar.h
ICU4J UCharacter

UCD File (.txt)

Grapheme_Clus
ter_Break

enum 
UGraphemeClus
terBreak

(U) UCHAR_GRAPHEME_
CLUSTER_BREAK

GraphemeBreak
Property

Grapheme_Exte
nd

binary (U) UCHAR_GRAPHEME_
EXTEND

DerivedCorePro
perties

Grapheme_Link binary (U) UCHAR_GRAPHEME_
LINK

DerivedCorePro
perties

Hangul_Syllable
_Type

enum 
UHangulSyllabl
eType

(U) UCHAR_HANGUL_SY
LLABLE_TYPE

HangulSyllable
Type

Hex_Digit binary (U) UCHAR_HEX_DIGIT PropList
Hyphen binary (U) UCHAR_HYPHEN PropList
ID_Continue binary (U) UCHAR_ID_CONTINU

E
DerivedCorePro
perties

ID_Start binary (U) UCHAR_ID_START DerivedCorePro
perties

Ideographic binary (U) UCHAR_IDEOGRAPHI
C

PropList

IDS_Binary_Op
erator

binary (U) UCHAR_IDS_BINARY_
OPERATOR

PropList

IDS_Triary_Ope
rator

binary (U) UCHAR_IDS_TRINARY
_OPERATOR

PropList

ISO_Comment ASCII string  u_getISOComment UnicodeData
Jamo_Short_Na
me

ASCII string (c) contributes to Name Jamo

Join_Control binary (U) UCHAR_JOIN_CONTR
OL

PropList

Joining_Group enum 
UJoiningGroup

(U) UCHAR_JOINING_GRO
UP

ArabicShaping

Joining_Type enum 
UJoiningType

(U) UCHAR_JOINING_TYP
E

ArabicShaping

Line_Break enum 
ULineBreak

(U) UCHAR_LINE_BREAK LineBreak

74 ICU v3.8 User Guide



UCD Name
(see 

PropertyAliases
.txt)

Type  ICU4C uchar.h
ICU4J UCharacter

UCD File (.txt)

Logical_Order_
Exception

binary (U) UCHAR_LOGICAL_OR
DER_EXCEPTION

PropList

Lowercase binary (U) u_isULowercase, 
UCHAR_LOWERCASE

DerivedCorePro
perties

Lowercase_Map
ping

Unicode string + 
conditions

 available via 
u_strToLower (ustring.h)

UnicodeData + 
SpecialCasing

Math binary (U) UCHAR_MATH DerivedCorePro
perties

Name ASCII string (U) u_charName(U_UNICOD
E_CHAR_NAME or 
U_EXTENDED_CHAR_
NAME)

UnicodeData

NF*_QuickChe
ck

enum 
UNormalization
CheckResult 
(no/maybe/yes)

 (U) UCHAR_NF*_QUICK_
CHECK and available via 
unorm_quickCheck 
(unorm.h)

DerivedNormal-
izationProps

Noncharacter_C
ode_Point

binary (U) UCHAR_NONCHARAC
TER_CODE_POINT, 
U_IS_UNICODE_NONC
HAR (utf.h)

PropList

Numeric_Type enum 
UNumericType

(U) UCHAR_NUMERIC_TY
PE

UnicodeData

Numeric_Value double (U) u_getNumericValue
Java/UnicodeSet: only 
non-negative integers, no 
fractions

UnicodeData

Other_Alphabeti
c

binary (c) contributes to Alphabetic PropList

Other_Default_I
gnorable
_Code_Point

binary (c) contributes to 
Default_Ignorable
_Code_Point

PropList

Other_Graphem
e_Extend

binary (c) contributes to 
Grapheme_Extend

PropList

Other_Lowercas
e

binary (c) contributes to Lowercase PropList

75 ICU v3.8 User Guide



UCD Name
(see 

PropertyAliases
.txt)

Type  ICU4C uchar.h
ICU4J UCharacter

UCD File (.txt)

Other_Math binary (c) contributes to Math PropList
Other_Uppercas
e

binary (c) contributes to Uppercase PropList

Pattern_Syntax binary (U) UCHAR_PATTERN_SY
NTAX

PropList

Pattern_White_
Space

binary (U) UCHAR_PATTERN_W
HITE_SPACE

PropList

Quotation_Mark binary (U) UCHAR_QUOTATION_
MARK

PropList

Radical binary (U) UCHAR_RADICAL PropList
Script enum 

UScriptCode 
(growing)

(U) uscript_getCode 
(uscript.h), 
UCHAR_SCRIPT

Scripts

Sentence_Break enum 
USentenceBreak

(U) UCHAR_SENTENCE_B
REAK

SentenceBreakP
roperty

Simple_Case_F
olding

code point  u_foldCase CaseFolding

Simple_Lowerc
ase_ Mapping

code point  u_tolower UnicodeData

Simple_Titlecas
e_ Mapping

code point  u_totitle UnicodeData

Simple_Upperca
se_ Mapping

code point  u_toupper UnicodeData

Soft_Dotted binary (U) UCHAR_SOFT_DOTTE
D

PropList

Special_Case_C
ondition

conditions  available via 
u_strToLower etc. 
(ustring.h)

SpecialCasing

STerm binary (U) UCHAR_S_TERM PropList
Terminal_Punct
uation

binary (U) UCHAR_TERMINAL_P
UNCTUATION

PropList

Titlecase_Mappi
ng

Unicode string + 
conditions

 u_strToTitle (ustring.h) UnicodeData + 
SpecialCasing

76 ICU v3.8 User Guide



UCD Name
(see 

PropertyAliases
.txt)

Type  ICU4C uchar.h
ICU4J UCharacter

UCD File (.txt)

Unicode_1_Na
me

ASCII string (U) u_charName(U_UNICOD
E_10_CHAR_NAME or 
U_EXTENDED_CHAR_
NAME)

UnicodeData

Unified_Ideogra
ph

binary (U) UCHAR_UNIFIED_IDE
OGRAPH

PropList

Uppercase binary (U) u_isUUppercase, 
UCHAR_UPPERCASE

DerivedCorePro
perties

Uppercase_Map
ping

Unicode string + 
conditions

 u_strToUpper (ustring.h) UnicodeData + 
SpecialCasing

White_Space binary (U) u_isUWhiteSpace, 
UCHAR_WHITE_SPAC
E

PropList

Word_Break enum 
UWordBreakVa
lues

(U) UCHAR_WORD_BREA
K

WordBreakProp
erty

XID_Continue binary (U) UCHAR_XID_CONTIN
UE

DerivedCorePro
perties

XID_Start binary (U) UCHAR_XID_START DerivedCorePro
perties

Notes:

• (c) - This property only contributes to "real" properties (mostly "Other_..." 
properties), so there is no direct support for this property in ICU.

• (U) - This property is available via the UnicodeSet APIs and patterns. Any property 
available in UnicodeSet is also available in regular expressions. Properties which are 
not available in UnicodeSet are generally those that are not available through a 
UProperty selector.

Customization

ICU does not provide the means to modify properties at runtime. The properties are 
provided exactly as specified by a recent version of the Unicode Standard (as published in 
the Character Database). However, if an application requires custom properties (for 
example, for Private Use characters), then it is possible to change or add them at build-
time. This is done by modifying the Character Database files copied into the ICU source 
tree at icu/source/data/unidata. For the most common properties, the file to modify 

77 ICU v3.8 User Guide

http://www.unicode.org/glossary/
http://www.unicode.org/unicode/onlinedat/online.html


is UnicodeData.txt.

To add a character to such a file, a line must be inserted into the file with the format used 
in that file (see the online documentation on the Unicode site for more information). 
These files are processed by ICU tools at build time. For example, the genprops tool reads 
several of the files and writes the binary file uprops.dat, which is then packaged into the 
common ICU data file. It is important for the operation of those tools that the Unicode 
character code points of the entries are in ascending order (gaps are allowed). Any 
available Unicode code point (0 to 10ffff16) can be used. Code point values should be 
written with either 4, 5, or 6 hex digits. The minimum number of digits possible should 
be used (but no fewer than 4). Note that the Unicode Standard specifies that the 32 code 
point U+fdd0..U+fdef and the 34 code points U+...fffe and U+...ffff are not characters, 
therefore they should not be added to any of the character database files.

After modifying one of these files, the ICU data needs to be rebuilt. The makefiles should 
detect the modifications and run the necessary tools automatically.

78 ICU v3.8 User Guide

http://www.unicode.org/Public/UNIDATA/UnicodeCharacterDatabase.html


CharacterIterator Class
Overview

CharacterIterator is the abstract base class that defines a protocol for accessing 
characters in a text-storage object. This class has methods for iterating forward and 
backward over Unicode characters to return either the individual Unicode characters or 
their corresponding index values.

Using CharacterIterator ICU iterates over text that is independent of its storage 
method. The text can be stored locally or remotely in a string, file, database, or other 
method. The CharacterIterator methods make the text appear as if it is local.

The CharacterIterator keeps track of its current position and index in the text and can 
do the following

• Move forward or backward one Unicode character at a time

• Jump to a new location using absolute or relative positioning

• Move to the beginning or end of its range

• Return a character or the index to a character

The information can be restricted to a sub-range of characters, can contain a large block 
of text that can be iterated as a whole, or can be broken into smaller blocks for the 
purpose of iteration.

CharacterIterator is different from Normalizer in that Normalizer walks 
through the Unicode characters without interpretation.

Prior to ICU release 1.6, the CharacterIterator class allowed access to a single UChar 
at a time and did not support variable-width encoding. Single UChar support makes it 
difficult when supplementary support is expected in UTF16 encodings. Beginning with 
ICU release 1.6, the CharacterIterator class now efficiently supports UTF-16 
encodings and provides new APIs for UTF32 return values. The API names for the 
UTF16 and UTF32 encodings differ because the UTF32 APIs include "32" within their 
naming structure. For example, CharacterIterator::current() returns the code unit 
and Character::current32() returns a code point.

Base class inherited by CharacterIterator

The class, ForwardCharacterIterator, is a superclass of the CharacterIterator class. 
This superclass provides methods for forward iteration only for both UTF16 and UTF32 
access, and is and based on a efficient forward iteration mechanism. In some situations, 
where you need to iterate over text that does not allow random-access, the 
ForwardCharacterIterator superclass is the most efficient method. For example, 

79 ICU v3.8 User Guide

http://icu-project.org/apiref/icu4c/classForwardCharacterIterator.html
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/normalization.sxw


iterate a UChar string using a character converter with the ucnv_getNextUChar() function. 

Subclasses of CharacterIterator provided by ICU

ICU provides the following concrete subclasses of the CharacterIteratorclass:

• UCharCharacterIterator   subclass iterates over a UChar[] array. 

• StringCharacterIterator   subclass extends from UCharCharacterIterator and 
iterates over the contents of a UnicodeString. 

Usage

To use the methods specified in CharacterIterator class, do one of the following:

• Make a subclass that inherits from the CharacterIterator class

• Use the StringCharacterIterator subclass

• Use the UCharCharacterIterator subclass

CharacterIterator objects keep track of its current position within the text that is 
iterated over. The CharacterIterator class uses an object similar to a cursor that gets 
initialized to the beginning of the text and advances according to the operations that are 
used on the object. The current index can move between two positions (a start and a limit) 
that are set with the text. The limit position is one character greater than the position of 
the last UChar character that is used.

Forward iteration

For efficiency, ICU can iterate over text using post-increment semantics or Forward 
Iteration. Forward Iteration is an access method that reads a character from the current 
index position and moves the index forward. It leaves the index behind the character it 
read and returns the character read. ICU can use nextPostInc() or next32PostInc() 
calls with hasNext() to perform Forward Iteration. These calls are the only character 
access methods provided by the ForwardCharacterIterator. An iteration loop can be 
started with the setToStart(), firstPostInc() or first32PostInc()calls . (The 
setToStart() call is implied after instantiating the iterator or setting the text.)

The less efficient forward iteration mechanism that is available for compatibility with 
Java™ provides pre-increment semantics. With these methods, the current character is 
skipped, and then the following character is read and returned. This is a less efficient 
method for a variable-width encoding because the width of each character is determined 
twice; once to read it and once to skip it the next time ICU calls the method. The methods 
used for Forward Iteration are the next() or next32() calls. An iteration loop must start 
with first() or first32() calls to get the first character.

80 ICU v3.8 User Guide

http://icu-project.org/apiref/icu4c/classStringCharacterIterator.html
http://icu-project.org/apiref/icu4c/classUCharCharacterIterator.html
http://icu-project.org/apiref/icu4c/ucnv_8h.html


Backward iteration

Backward Iteration has pre-decrement semantics, which are the exact opposite of the 
post-increment Forward Iteration. The current index reads the character that precedes the 
index, the character is returned, and the index is left at the beginning of this character. 
The methods used for Backward Iteration are the previous() or previous32() calls 
with the hasPrevious() call . An iteration loop can be started with setToEnd(), 
last(), or last32() calls.

Direct index manipulation

The index can be set and moved directly without iteration to start iterating at an arbitrary 
position, skip some characters, or reset the index to an earlier position. It is possible to set 
the index to one after the last text code unit for backward iteration.

The setIndex() and setIndex32() calls set the index to a new position and return the 
character at that new position. The setIndex32() call ensures that the new position is at 
the beginning of the character (on its first code unit). Since the character at the new 
position is returned, these functions can be used for both pre-increment and post-
increment iteration semantics.
Similarly, the current() and current32() calls return the character at the current index 
without modifying the index. The current32() call retrieves the complete character 
whether the index is on the first code unit or not.

The index and the iteration boundaries can be retrieved using separate functions. The 
following syntax is used by ICU: startIndex() <= getIndex() <= endIndex().

Without accessing the text, the setToStart() and setToEnd() calls set the index to the 
start or to the end of the text. Therefore, these calls are efficient in starting a forward 
(post-increment) or backward iteration.

The most general functions for manipulating the index position are the move() and 
move32() calls. These calls allow you to move the index forward or backward relative to 
its current position, start the index, or move to the end of the index. The move() and 
move32() calls do not access the text and are best used for skipping part of it. The 
move32() call skips complete code points like next32PostInc() call and other 
UChar32-access methods.

Access to the iteration text

The CharacterIterator class provides the following access methods for the entire text 
under iteration: 

• getText() sets a UnicodeString with the text

• getLength() returns just the length of the text. 

This text (and the length) may include more than the actual iteration area because the start 

81 ICU v3.8 User Guide



and end indexes may not be the start and end of the entire text. The text and the iteration 
range are set in the implementing subclasses.

Additional Sample Code

C/C++: See icu/source/samples/citer/ in the ICU source distribution for code samples.

82 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icu/trunk/source/samples/citer/


UText
Overview

UText is a text abstraction facility for ICU

The intent is to make it possible to extend ICU to work with text data that is in formats 
above and beyond those that are native to ICU.  

UText makes it possible to extend ICU to work with text that

• Is stored in UTF-8 or UTF-32 format.

• Is in strings that are stored in discontiguous chunks in memory, or in application-
specific representations.

• Is in a non-Unicode code page

If ICU does not directly support a desired text format, it is possible for application 
developers themselves to extend UText, and in that way gain the ability to use their text 
with ICU.

Using UText

There are three fairly distinct  classes of use of UText.  These are

• Simple wrapping of existing text.  Application text data exists in a format that is 
already supported by UText (such as UTF-8).  The application opens a UText on the 
data, and then passes the UText to an ICU service for analysis/processing. Most use of 
UText from applications will follow this simple pattern.  Only a very few UText APIs 
and only a few lines of code are required.

• Accessing the underlying text.  UText provides APIs for iterating over the text in 
various ways, and for fetching individual code points from the text.  These functions 
will probably be used primarily from within ICU, in the implementation of services 
that can accept input in the form of a UText.  While applications are certainly free to 
use these text access functions if necessary, there may often be no need. 

• UText support for new text storage formats.  If an application has text data stored in 
a format that is not directly supported by ICU, extending UText to support that format 
will provide the ability to conveniently use all ICU services that support UText.

 Extending UText to a new format is accomplished by implementing a well defined set 
of Text Provider Functions   for that format.  

83 ICU v3.8 User Guide



UText compared with CharacterIterator

CharacterIterator is an abstract base class that defines a protocol for accessing characters 
in a text-storage object. This class has methods for iterating forward and backward over 
Unicode characters to return either the individual Unicode characters or their 
corresponding index values.

UText and CharacterIterator both provide an abstraction for accessing text while 
hiding details of the actual storage format.  UText is the more flexible of the two, 
however, with these advantages:

• UText can conveniently operate on text stored in formats other than UTF-16.  

• UText includes functions for modifying or editing the text.

• UText is more efficient.  When iterating over a range of text using the 
CharacterIterator API, a function call is required for every character.  With UText, 
iterating to the next character is usually done with small amount of inline code.

At this time, more ICU services support CharacterIterator than UText, but this is situation 
will improve over time.  ICU services that can operate on text represented by a 
CharacterIterator are

• Normalizer

• Break Iteration

• String Search

• Collation Element Iteration

Example: Counting the Words in a UTF-8 String

Here is a function that uses UText and an ICU break iterator to count the number of 
words in a nul-terminated UTF-8 string.  The use of UText only adds two lines of code 
over what a similar function operating on normal UTF-16 strings would require.

int  countWords(const char *utf8String) {
    UText          *ut        = NULL;
    UBreakIterator *bi        = NULL;
    int             wordCount = 0;
    UErrorCode      status    = U_ZERO_ERROR;
    ut = utext_openUTF8(ut, utf8String, -1, &status);
    bi = ubrk_open(UBRK_WORD, "en_us", NULL, 0, &status);
    ubrk_setUText(bi, ut, &status);
    while (ubrk_next(bi) != UBRK_DONE) {
        if (ubrk_getRuleStatus(bi) != UBRK_WORD_NONE) {
            /* Count only words and numbers, not spaces or punctuation */
            wordCount++;

84 ICU v3.8 User Guide



        }
    }
    utext_close(ut);
    ubrk_close(ut);
    assert(U_SUCCESS(status));
    return wordCount;
}

UText API Functions

Opening and Closing.

Normal usage of UText by an application consists of opening a UText to wrap some 
existing text, then passing the UText to ICU functions for processing.  For this kind of 
usage, all that is needed is the appropriate utext_open and close functions.

function description
uext_openUChars() Open a UText over a standard ICU (UChar *) string. 

The string consists of a UTF-16 array in memory, 
either nul terminated or with an explicit length.

utext_openUnicodeString() Open a UText over an instance of an ICU C++ 
UnicodeString.

Utext_
openConstUnicodeString() Open a UText over a read-only UnicodeString. 

Disallows UText APIs that modify the text.
utext_openReplaceable() Open a UText over an instance of an ICU C++ 

Replaceable.
utext_openUTF8() Open a UText over a UTF-8 encoded C string.  May be 

either Nul terminated or have an explicit length.
utext_close Close an open UText.  Frees any allocated memory; 

required to prevent memory leaks.

Here are some suggestions and techniques for efficient use of UText.

Minimizing Heap Usage

Utext's open functions include features to allow applications to minimize the number of 
heap memory allocations that will be needed.  Specifically,

• UText structs may declared as local variables, that is, they may be stack allocated 
rather than heap allocated.

• Existing UText structs may be reused to refer to new text, avoiding the need to allocate 

85 ICU v3.8 User Guide



and initialize a new UText instance.

Minimizing heap allocations is important in code that has critical performance 
requirements, and is doubly important for code that must scale well in multithreaded, 
multiprocessor environments.  

Stack Allocation

Here is code for stack-allocating a UText:
    UText   mytext = UTEXT_INITIALIZER;
    utext_openUChars(&myText, ...

The first parameter to all utext_open functions is a pointer to a UText.  If it is non-null, 
the supplied UText will be used; if it is null, a new UText will be heap allocated.

Stack allocated UText objects must be initialized with  UTEXT_INITIALIZER.  An 
uninitialized instance will fail to open.

Heap Allocation

Here is code for creating a heap allocated UText:
   UText *mytext = utext_openUChars(NULL, ...

This is slightly smaller and more convenient to write than the stack allocated code, and 
there is no reason not to use heap allocated UText objects in the vast majority of code that 
does not have extreme performance constraints.

Reuse 

To reuse an existing UText, simply pass it as the first parameter to any of the UText open 
functions.  There is no need to close the UText first, and it may actually be more efficient 
not to close it first.

Here is an example of a function that iterates over an array of UTF-8 strings, wrapping 
each in a UText and passing it off to another function.  On the first time through the loop 
the utext open function will heap allocate a UText.  On each subsequent iterations the 
existing UText will be reused. 

void  f(char **strings, int numStrings) {
    UText  *ut = NULL;
    UerrorCode status;
    
    for (int i=0; i<numStrings; i++) {
        status = U_ZERO_ERROR;
        ut = utext_openUTF8(ut, strings[i], -1, &status);
       assert(U_SUCCESS(status));
       do_something(ut);
    }
    utext_close(ut);

86 ICU v3.8 User Guide



close

Closing a  UText frees any storage associated with it, including the UText itself for those 
that are heap allocated.  Stack allocated UTexts should also be closed because in some 
cases there may be additional heap allocated storage associated with them, depending on 
the type of the underlying text storage.

Accessing the Text

For accessing the underlying text, UText provides functions both for iterating over the 
characters, and for direct random access by index.  Here are the conventions that apply for 
all of the access functions:

• access to individual characters is always by code points, that is, 32 bit Unicode values 
are always returned.   UTF-16 surrogate values from a surrogate pair, like bytes from a 
UTF-8 sequence, are not separately visible.

• Indexing always uses the index values from the original underlying text storage, in 
whatever form it has.  If the underlying storage is UTF-8, the indexes will be UTF-8 
byte indexes, not UTF-16 offsets.

• Indexes always refer to the first position of a character.  This is equivalent to saying 
that indexes always lie at the boundary between characters.  If an index supplied to a 
UText function  refers to the 2nd through the Nth  positions of a multi byte or multi-
code-unit character, the index will be normalized back to the first or lowest index.

• An input index that is greater than the length of the text will be set to refer to the end 
of the string, and will not generate out of bounds error.  This is similar to the indexing 
behavior in the UnicodeString class.

• Iteration uses post-increment and pre-decrement conventions.  That is, utext_next32() 
fetches the code point at the current index, then leaves the index pointing at the next 
character.

Here are the functions for accessing the actual text data represented by a UText.  The 
primary use of these functions will be in the implementation of ICU services that accept 
input in the form of a UText, although application code may also use them if the need 
arises.

For more detailed descriptions of each, see the API reference.

Function Description

87 ICU v3.8 User Guide



Function Description
utext_nativeLength Get the length of the text string in terms of the 

underlying native storage – bytes for UTF-8, for 
example

utext_isLengthExpensive Indicate whether determining the length of the string 
would require scanning the string.

utext_char32At Get the code point at the specified index.
utext_current32 Get the code point at the current iteration position. 

Does not advance the position.
utext_next32 Get the next code point, iterating forwards.
utext_previous32 Get the previous code point, iterating backwards.
utext_next32From Begin a forwards iteration at a specified index.
utext_previous32From Begin a reverse iteration at a specified index.
utext_getNativeIndex Get the current iteration index.
utext_setNativeIndex Set the iteration index.
utext_moveIndex32 Move the current index forwards or backwards by the 

specified number of code points.  
utext_extract Retrieve a range of text, placing it into a UTF-16 buffer.
UTEXT_NEXT32 inline (high performance) version of utext_next32
UTEXT_PREVIOUS32 inline (high performance) version of utext_previous32

Modifying the Text

UText provides API for modifying or editing the text.  

Function Description
utext_replace() Replace a range of the original text with a replacement 

string.
utext_copy() Copy or Move a range of the text to a new position.
utext_isWritable() Test whether a UText supports writing operations.
utext_hasMetaData() Test whether the text includes metadata.  See class 

Replaceable for more information on meta data..

Certain conventions must be followed when modifying text using these functions:

• Not all types of UText can support modifying the data.  Code working with UText 

88 ICU v3.8 User Guide



instances of unknown origin should check utext_isWritable() first,  and be prepared to 
deal with failures.

• There must be only one UText open onto the underlying string that is being modified. 
(Strings that are not being modified can be the target of any number of UTexts at the 
same time)  The existence of a second UText that refers to a string that is being 
modified is not a situation that is detected by the implementation.  The application 
code must be structured to avoid the situation.

Cloning 

UText instances may be cloned.  The clone function,
uUText * utext_clone(UText *dest, 
                    const UText *src, 
                    UBool deep, 
                    UErrorCode *status)

behaves very much like a UText open functions, with the source of the text being another 
UText rather than some other form of a string.

A shallow clone creates a new UText  that maintains its own iteration state, but does not 
clone the underlying text itself.

A deep clone copies the underlying text in addition to the UText state.  This would be 
appropriate if you wished to modify the text without the changes being reflected back to 
the original source string.  Not all text providers support deep clone, so checking for error 
status returns from utext_clone() is importatnt.

Thread Safety

UText follows the usual ICU conventions for thread safety: concurrent calls to functions 
accessing the same non-const UText is not supported.  If concurrent access to the text is 
required, the UText can be cloned, allowing each thread access via a separate UText.  So 
long as the underlying text is not being modified, a shallow clone is sufficient.

Text Providers

A text provider is a set of functions that let UText  support a specific text storage format.

ICU includes several UText text provider implementations, and applications can provide 
additional ones if needed.

To implement a new UText text provider, it is necessary to have an understanding of how 

89 ICU v3.8 User Guide



UText is designed.  Underneath the covers, UText is a struct that includes

• a pointer to a Text Chunk, which is a UTF-16 buffer containing a section (or all) of the 
text being referenced.  For text sources whose native format is UTF-16, the chunk 
description can refer directly to the original text data.  For non-UTF-16 sources, the 
chunk will refer to a side buffer containing some range of the text that has been 
converted to UTF-16 format.

• The iteration position, as a UTF-16 offset within the chunk.

If a text access function (one of those described above, in the previous section) can do its 
thing based on the information maintained in the UText struct, it will.  If not, it will call 
out to one of the provider functions (below) to do the work, or to update the UText.

The best way to really understand what is required of a UText provider is to study the 
implementations that are included with ICU, and to borrow as much as possible.

Here is the list of text provider functions. 

Function Description
UTextAccess Set up the Text Chunk associated with this UText 

so that it includes a requested index position.
UTextNativeLength Return the full length of the text.
UTextClone Clone the UText. 
UTextExtract Extract a range of text into a caller-supplied buffer
UTextReplace Replace a range of text with a caller-supplied 

replacement.  May expand or shrink the overall 
text.

UTextCopy Move or copy a range of text to a new position.
UTextMapOffsetToNative Within the current text chunk, translate a UTF-16 

buffer offset to an absolute native index.  
UTextMapNativeIndexToUTF16 Translate an absolute native index to a UTF-16 

buffer offset within the current text.
UTextClose Provider specific close.  Free storage as required.
Not every provider type requires all of the functions.  If the text type is read-only, no 
implementation for Replace or Copy is required.  If the text is in UTF-16 format, no 
implementation of the native to UTF-16 index conversions is required.

To fully understand what is required to support a new string type with UText, it will be 
necessary to study both the provider function declarations from utext.h and the existing 
text provider implementations in utext.cpp.

90 ICU v3.8 User Guide



UnicodeSet
Overview

A UnicodeSet is an object that represents a set of Unicode characters or character strings. 
The contents of that object can be specified either by patterns or by building them 
programmatically.

Here are a few examples of sets:

Pattern Description
[a-z] The lower case letters a through z
[abc123] The six  characters a,b,c,1,2 and 3
[\p{Letter}] All characters with the Unicode General Category of Letter.

String Values   In addition to being a set of characters (of Unicode code points), a 
UnicodeSet may also contain string values.  Conceptually, the UnicodeSet is always a set 
of strings, not a set of characters, although in most of the common use cases, such as with 
regular expressions, the strings are all of length one, which reduces to being a set of 
characters.

This concept can be confusing when first encountered, probably because sets from other 
environments (regular expressions) can only contain characters.

UnicodeSet Patterns

Patterns are a series of characters bounded by square brackets that contain lists of 
characters and Unicode property sets. Lists are a sequence of characters that may have 
ranges indicated by a '-' between two characters, as in "a-z". The sequence specifies the 
range of all characters from the left to the right, in Unicode order. For example, [a c d-f 
m] is equivalent to [a c d e f m]. Whitespace can be freely used for clarity as [a c d-f m] 
means the same as [acd-fm]. 

Unicode property sets are specified by a Unicode property, such as [:Letter:]. ICU 
version 2.0 supports General Category, Script, and Numeric Value properties (ICU will 
support additional properties in the future). For a list of the property names, see the end of 
this section. The syntax for specifying the property names is an extension of either POSIX 
or Perl syntax with the addition of "=value". For example, you can match letters by using 
the POSIX syntax [:Letter:], or by using the Perl-style syntax \u005cp{Letter}. The 
type can be omitted for the Category and Script properties, but is required for other 
properties.

The table below shows the two kinds of syntax: POSIX and Perl style. Also, the table 
shows the "Negative", which is a property that excludes all characters of a given kind. For 

91 ICU v3.8 User Guide



example, [:^Letter:] matches all characters that are not [:Letter:]. 

Positive Negative
POSIX-style Syntax [:type=value:] [:^type=value:]

Perl-style Syntax \p{type=value} \P{type=value}

These following low-level lists or properties then can be freely combined with the normal 
set operations (union, inverse, difference, and intersection):

• To union two sets, simply concatenate them. For example, [[:letter:] 
[:number:]]

• To intersect two sets, use the '&' operator. For example, [[:letter:] & [a-z]]
• To take the set-difference of two sets, use the '-' operator. For example, [[:letter:] 

- [a-z]]
• To invert a set, place a '^' immediately after the opening '['. For example, [^a-z]. In 

any other location, the '^' does not have a special meaning.

The binary operators '&' and '-' have equal precedence and bind left-to-right. Thus 
[[:letter:]-[a-z]-[\u0100-\u01FF]] is equivalent to [[[:letter:]-[a-z]]-
[\u0100-\u01FF]]. Another example is the set [[ace][bdf] - [abc][def]] is not the 
empty set, but instead the set [def]. This only really matters for the difference operation, 
as the intersection operation is commutative.

Another caveat with the '&' and '-' operators is that they operate between sets. That is, 
they must be immediately preceded and immediately followed by a set. For example, the 
pattern [[:Lu:]-A] is illegal, since it is interpreted as the set [:Lu:] followed by the 
incomplete range -A. To specify the set of uppercase letters except for 'A', enclose the 'A' 
in a set: [[:Lu:]-[A]].
[a] The set containing 'a'
[a-z] The set containing 'a' through 'z' and all 

letters in between, in Unicode order
[^a-z] The set containing all characters but 'a' 

through 'z', that is, U+0000 through 'a'-1 
and 'z'+1 through U+FFFF

[[pat1][pat2]] The union of sets specified by pat1 and 
pat2

[[pat1]&[pat2]] The intersection of sets specified by pat1 
and pat2

[[pat1]-[pat2]] The asymmetric difference of sets specified 
by pat1 and pat2

92 ICU v3.8 User Guide



[a] The set containing 'a'
[:Lu:] The set of characters belonging to the given 

Unicode category, as defined by 
Character.getType(); in this case, 
Unicode uppercase letters. The long form 
for this is [:UppercaseLetter:].

[:L:] The set of characters belonging to all 
Unicode categories starting with 'L', that is, 
[[:Lu:][:Ll:][:Lt:][:Lm:][:Lo:]]. 
The long form for this is [:Letter:].

String Values in Sets
String values are enclosed in {curly brackets}.  

Set expression Description
[abc{def}] A set containing four members, the single 

characters a, b and c, and the string “def”
[{abc}{def}] A set containing two members, the string 

“abc” and the string “def”.  
[{a}{b}{c}]

[abc]

These two sets are equivalent.  Each 
contains three items, the three individual 
characters a, b and c.  A {string} containing 
a single character is equivalent to that same 
character specified in any other way.

Character Quoting and Escaping in Unicode Set Patterns

SINGLE QUOTE
Two single quotes represents a single quote, either inside or outside single quotes.

Text within single quotes is not interpreted in any way (except for two adjacent single 
quotes). It is taken as literal text (special characters become non-special).

These quoting conventions for ICU sets differ from those of Perl or Java for character sets 
appearing within regular expressions.  In those environments, single quotes have no 
special meaning, and are treated like any other literal character.

 

BACKSLASH ESCAPES
Outside of single quotes, certain backslashed characters have special meaning:

93 ICU v3.8 User Guide



\uhhhh Exactly 4 hex digits; h in [0-9A-Fa-f]
\Uhhhhhhhh Exactly 8 hex digits
\xhh 1-2 hex digits
\ooo 1-3 octal digits; o in [0-7] 
\a U+0007 (BELL)
\b U+0008 (BACKSPACE)
\t U+0009 (HORIZONTAL TAB)
\n U+000A (LINE FEED)
\v U+000B (VERTICAL TAB)
\f U+000C (FORM FEED)
\r U+000D (CARRIAGE RETURN)
\\ U+005C (BACKSLASH)

Anything else following a backslash is mapped to itself, except in an environment where 
it is defined to have some special meaning. For example, \p{Lu} is the set of uppercase 
letters in UnicodeSet.

Any character formed as the result of a backslash escape loses any special meaning and is 
treated as a literal. In particular, note that \u and \U escapes create literal characters. (In 
contrast, the Java compiler treats Unicode escapes as just a way to represent arbitrary 
characters in an ASCII source file, and any resulting characters are not tagged as literals.)

WHITESPACE
Whitespace (as defined by our API) is ignored unless it is quoted or backslashed. 

The rules for quoting and white space handling are common to most ICU APIs 
that process rule or expression strings, including UnicodeSet, Transliteration and 
Break Iterators.

Programmatically Building UnicodeSets

ICU users can programmatically build a UnicodeSet by adding or removing ranges of 
characters or by using the retain (intersection), remove (difference), and add (union) 
operations. The following shows some examples:      

Property Values

The following property value variants are recognized:

94 ICU v3.8 User Guide



short omits the type (used to prevent ambiguity 
and only allowed with the Category and 
Script properties) 

medium uses an abbreviated type and value 
long uses a full type and value 
If the type or value is omitted, then the equals sign is also omitted. The short style is only 
used for Category and Script properties because these properties are very common and 
their omission is unambiguous.

In actual practice, you can mix type names and values that are omitted, abbreviated, or 
full. For example, if Category=Unassigned you could use what is in the table explicitly, 
\p{gc=Unassigned}, \p{Category=Cn}, or \p{Unassigned}.

When these are processed, case and whitespace are ignored so you may use them for 
clarity, if desired. For example, \p{Category = Uppercase Letter} or \p{Category 
= uppercase letter}.

The Category property is already supported by UnicodeSet in ICU 1.6, but only  
in the short form. There are also the following special values in the Category: 

For a list of supported properties, see the Properties section.

95 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/properties.sxw


Regular Expressions
Overview

ICU's Regular Expressions package provides applications with the ability to apply regular 
expression matching to Unicode string data. The regular expression patterns and behavior 
are based on Perl's regular expressions. The C++ programming API for using ICU regular 
expressions is loosely based on the JDK 1.4 package java.util.regex, with some 
extensions to adapt it for use in a C++ environment.  A plain C API is also provided.

The ICU Regular expression API supports operations including testing for a pattern 
match, searching for a pattern match, and replacing matched text. Capture groups allow 
subranges within an overall match to be identified, and to appear within replacement text. 

A Perl-inspired split() function that breaks a string into fields based on a delimiter pattern 
is also included. 

A detailed description of regular expression patterns and pattern matching behavior is not 
included in this user guide. The best reference for this topic is the book "Mastering 
Regular Expressions, Second Edition" by Jeffrey E. F. Friedl, O'Reilly & Associates; 2nd 
edition (July 15, 2002). Matching behavior can sometimes be surprising, and this book is 
highly recommended for anyone doing significant work with regular expressions. 

Using ICU Regular Expressions

The ICU C++ Regular Expression API includes two classes, RegexPattern and 
RegexMatcher, that parallel the classes from the Java JDK package java.util.regex.    A 
RegexPattern represents a compiled regular expression while RegexMatcher associates 
a RegexPattern and an input string to be matched, and provides API for the various find, 
match and replace operations.  In most cases, however, only the class RegexMatcher is 
needed, and the existence of class RegexPattern can safely be ignored. 

The first step in using a regular expression is typically the creation of a RegexMatcher 
object from the source (string) form of the regular expression.

RegexMatcher holds a  pre-processed (compiled) pattern and a reference to an input 
string to be matched, and provides API for the various find, match and replace operations. 
RegexMatchers can be reset and reused with new input, thus avoiding object creation 
overhead when performing the same matching operation repeatedly on different strings.

The following code will create a RegexMatcher from  a string containing a regular 
expression, and then perform a simple find() operation.

#include <unicode/regex.h>

96 ICU v3.8 User Guide



UErrorCode        status    = U_ZERO_ERROR;
  ...
RegexMatcher *matcher = new RegexMatcher("abc+", 0, status);
if (U_FAILURE(status)) {
    // Handle any syntax errors in the regular expression here
    ...
}

UnicodeString    stringToTest = “Find the abc in this string”;
matcher->reset(stringToTest);
if (matcher->find(status)) {
   // We found a match.
   int startOfMatch = matcher->start();   // string index of start of match.
   ...
}

Several types of matching tests are available

Function Description
matches() True if the pattern matches the entire string. from the start through to 

the last character.
lookingAt() True if the pattern matches at the start of the string. The match need 

not include the entire string. 
find() True if the pattern matches somewhere within the string. Successive 

calls to find() will find additional matches, until the string is 
exhausted. 

If additional text is to be checked for a match with the same pattern, there is no need to 
create a new matcher object; just reuse the existing one. 

myMatcher->reset(anotherString);
if (myMatcher->matches(status)) {
   // We have a with the new string.
}

Note that matching happens directly in the string supplied by the application.  This 
reduces the overhead when resetting a matcher to an absolute minimum – the matcher 
need only store a reference to the new string – but it does mean that the application must 
be careful not to modify or delete the string while the matcher is holding a reference to 
the string.

After finding a match, additional information is available about the range of the input 
matched, and the contents of any capture groups. Note that, for simplicity, any error 
parameters have been omitted. See the API reference for complete a complete description 

97 ICU v3.8 User Guide

http://icu-project.org/apiref/icu4c/classRegexMatcher.html


of the API. 

Function Description
start() Return the index of the start of the matched region in the input string 

. 
end() Return the index of the first character following the match. 
group() Return a UnicodeString containing the text that was matched. 
start(n) Return the index of the start of the text matched by the nth capture 

group. 
end(n) Return the index of the first character following the text matched by 

the nth capture group. 
group(n) Return a UnicodeString containing the text that was matched by the 

nth capture group.. 

Regular Expression Metacharacters

Character Description
\a Match a BELL, \u0007
\A Match at the beginning of the input. Differs from ^ in 

that \A will not match after a new line within the input.
\b, outside of a [Set] Match if the current position is a word boundary. 

Boundaries occur at the transitions between word (\w) 
and non-word (\W) characters, with combining marks 
ignored. For better word boundaries, see ICU Boundary 
Analysis. 

\b, within a [Set] Match a BACKSPACE, \u0008.
\B Match if the current position is not a word boundary.
\cX Match a control-X character.
\d Match any character with the Unicode General 

Category of Nd (Number, Decimal Digit.)
\D Match any character that is not a decimal digit.
\e Match an ESCAPE, \u001B.
\E Terminates a \Q ... \E quoted sequence.
\f Match a FORM FEED, \u000C.

98 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/boundaryAnalysis.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/boundaryAnalysis.sxw


Character Description
\G Match if the current position is at the end of the 

previous match.
\n Match a LINE FEED, \u000A.
\N{UNICODE CHARACTER 
NAME} Match the named character.

\p{UNICODE PROPERTY NAME} Match any character with the specified Unicode 
Property.

\P{UNICODE PROPERTY NAME} Match any character not having the specified Unicode 
Property.

\Q Quotes all following characters until \E.
\r Match a CARRIAGE RETURN, \u000D.
\s Match a white space character. White space is defined 

as [\t\n\f\r\p{Z}].
\S Match a non-white space character.
\t Match a HORIZONTAL TABULATION, \u0009.
\uhhhh Match the character with the hex value hhhh.
\Uhhhhhhhh Match the character with the hex value hhhhhhhh. 

Exactly eight hex digits must be provided, even though 
the largest Unicode code point is \U0010ffff.

\w Match a word character. Word characters are 
[\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}].

\W Match a non-word character.
\x{hhhh} Match the character with hex value hhhh. From one to 

six hex digits may be supplied.
\xhh Match the character with two digit hex value hh
\X Match a Grapheme Cluster. 
\Z Match if the current position is at the end of input, but 

before the final line terminator, if one exists.
\z Match if the current position is at the end of input.
\n Back Reference. Match whatever the nth capturing 

group matched. n must be a number > 1 and < total 
number of capture groups in the pattern. Note: Octal 
escapes, such as \012, are not supported in ICU regular 
expressions

99 ICU v3.8 User Guide

http://www.unicode.org/unicode/reports/tr29/#Grapheme_Cluster_Boundaries


Character Description
[pattern] Match any one character from the set. See UnicodeSet 

for a full description of what may appear in the pattern
. Match any character.
^ Match at the beginning of a line. 
$ Match at the end of a line. 
\ Quotes the following character. Characters that must be 

quoted to be treated as literals are * ? + [ ( ) { } ^ 
$ | \ . /

Regular Expression Operators

Operator Description
| Alternation. A|B matches either A or B.
* Match 0 or more times. Match as many times as 

possible.
+ Match 1 or more times. Match as many times as 

possible.
? Match zero or one times. Prefer one.
{n} Match exactly n times
{n,} Match at least n times. Match as many times as 

possible.
{n,m} Match between n and m times. Match as many times as 

possible, but not more than m.
*? Match 0 or more times. Match as few times as possible.
+? Match 1 or more times. Match as few times as possible.
?? Match zero or one times. Prefer zero.
{n}? Match exactly n times
{n,}? Match at least n times, but no more than required for an 

overall pattern match
{n,m}? Match between n and m times. Match as few times as 

possible, but not less than n.

100 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/unicodeSet.sxw


Operator Description
*+ Match 0 or more times. Match as many times as 

possible when first encountered, do not retry with fewer 
even if overall match fails (Possessive Match)

++ Match 1 or more times. Possessive match.
?+ Match zero or one times. Possessive match.
{n}+ Match exactly n times
{n,}+ Match at least n times. Possessive Match.
{n,m}+ Match between n and m times. Possessive Match.
( ... ) Capturing parentheses. Range of input that matched the 

parenthesized subexpression is available after the 
match.

(?: ... ) Non-capturing parentheses. Groups the included 
pattern, but does not provide capturing of matching 
text. Somewhat more efficient than capturing 
parentheses.

(?> ... ) Atomic-match parentheses. First match of the 
parenthesized subexpression is the only one tried; if it 
does not lead to an overall pattern match, back up the 
search for a match to a position before the "(?>"

(?# ... ) Free-format comment (?# comment ).
(?= ... ) Look-ahead assertion. True if the parenthesized pattern 

matches at the current input position, but does not 
advance the input position. 

(?! ... ) Negative look-ahead assertion. True if the 
parenthesized pattern does not match at the current 
input position. Does not advance the input position. 

(?<= ... ) Look-behind assertion. True if the parenthesized 
pattern matches text preceding the current input 
position, with the last character of the match being the 
input character just before the current position. Does 
not alter the input position. The length of possible 
strings matched by the look-behind pattern must not be 
unbounded (no * or + operators.) 

101 ICU v3.8 User Guide



Operator Description
(?<! ... ) Negative Look-behind assertion. True if the 

parenthesized pattern does not match text preceding the 
current input position, with the last character of the 
match being the input character just before the current 
position. Does not alter the input position. The length 
of possible strings matched by the look-behind pattern 
must not be unbounded (no * or + operators.) 

(?ismwx-ismwx: ... ) Flag settings. Evaluate the parenthesized expression 
with the specified flags enabled or -disabled. 

(?ismwx-ismwx) Flag settings. Change the flag settings. Changes apply 
to the portion of the pattern following the setting. For 
example, (?i) changes to a case insensitive match. 

Replacement Text

The replacement text for find-and-replace operations may contain references to capture-
group text from the find. References are of the form $n, where n is the number of the 
capture group. 

Character Descriptions
$n The text of capture group n will be substituted for $n. n 

must be >= 0 and not greater than the number of 
capture groups. A $ not followed by a digit has no 
special meaning, and will appear in the substitution text 
as itself, a $. 

\ Treat the following character as a literal, suppressing 
any special meaning. Backslash escaping in substitution 
text is only required for '$' and '\', but may be used on 
any other character without bad effects. 

Flag Options

The following flags control various aspects of regular expression matching. The flag 
values may be specified at the time that an expression is compiled into a RegexPattern 
object, or they may be specified within the pattern itself using the (?ismx-ismx) pattern 
options. 

The UREGEX_CANON_EQ option is not yet available. 

102 ICU v3.8 User Guide



Flag 
(pattern)

Flag (API Constant) Description

UREGEX_CANON_EQ If set, matching will take the canonical 
equivalence of characters into account. 
NOTE: this flag is not yet implemented.

i UREGEX_CASE_INSENSITIVE If set, matching will take place in a case-
insensitive manner.

x UREGEX_COMMENTS If set, allow use of white space and 
#comments within patterns

s UREGEX_DOTALL If set, a "." in a pattern will match a line 
terminator in the input text. By default, it 
will not. Note that a carriage-return / 
line-feed pair in text behave as a single 
line terminator, and will match a single 
"." in a RE pattern 

m UREGEX_MULTILINE Control the behavior of "^" and "$" in a 
pattern. By default these will only match 
at the start and end, respectively, of the 
input text. If this flag is set, "^" and "$" 
will also match at the start and end of 
each line within the input text. 

w UREGEX_UWORD Controls the behavior of \b in a pattern. 
If set, word boundaries are found 
according to the definitions of word 
found in Unicode UAX 29, Text 
Boundaries.  By default, word boundaries 
are identified by means of a simple 
classification of characters as either 
“word” or “non-word”, which 
approximates traditional regular 
expression behavior.  The results 
obtained with the two options can be 
quite different in runs of spaces and other 
non-word characters.

Using split()

ICU's split() function is similar in concept to Perl's – it will split a string into fields, with 
a regular expression match defining the field delimiters and the text between the 

103 ICU v3.8 User Guide



delimiters being the field content itself.

Suppose you have a string of words separated by spaces
    UnicodeString s = “dog cat   giraffe”;

This code will extract the individual words from the string.
    UErrorCode status = U_ZERO_ERROR;
    RegexMatcher m(“\\s+”, 0, status); 
    const int maxWords = 10;
    UnicodeString words[maxWords];    
    int numWords = m.split(s, words,  maxWords, status);

After the split(),

Variable value
numWords 3
words[0] “dog”
words[1] “cat”
words[2] “giraffe”
words[3 to 9] “”

The field delimiters, the spaces from the original string, do not appear in the output 
strings.

Note that, in this example, “words” is a local, or stack array of actual UnicodeString 
objects.  No heap allocation is involved in initializing this array of empty strings (C++ is 
not Java!).  Local UnicodeString arrays like this are a very good fit for use with split(); 
after extracting the fields, any values that need to be kept in some more permanent way 
can be copied to their ultimate destination.

If the number if fields in a string being split exceeds the capacity of the destination array, 
the last destination string will contain all of the input string data that could not be split, 
including any embedded field delimiters.  This is similar to split() in Perl.

If the pattern expression contains capturing parentheses, the captured data ($1, $2, etc.) 
will also be saved in the destination array, interspersed with the fields themselves.  

If, in the “dog cat giraffe” example, the pattern had been “(\s+)” instead of  “\s+”, split() 
would have produced five output strings instead of three.  Words[1] and words[3] would 
have been the spaces. 

104 ICU v3.8 User Guide



Find and Replace

Description of AppendReplacement() and AppendTail().  To be added.

105 ICU v3.8 User Guide



StringPrep
Overview

Comparing strings in a consistent manner becomes imperative when a large repertoire of 
characters such as Unicode is used in network protocols. StringPrep provides sets of rules 
for use of Unicode and syntax for prevention of spoofing. The implementation of 
StringPrep and IDNA services and their usage in ICU is described below.

StringPrep

StringPrep, the process of preparing Unicode strings for use in network protocols is 
defined in RFC 3454 (http://www.rfc-editor.org/rfc/rfc3454.txt). The RFC defines a 
broad framework and rules for processing the strings. 

Protocols that prescribe use of StringPrep must define a profile of StringPrep, whose 
applicability is limited to the protocol. Profiles are a set of rules and data tables which 
describe the how the strings should be prepare. The profiles can choose to turn on or turn 
off normalization, checking for bidirectional characters. They can also choose to add or 
remove mappings, unassigned and prohibited code points from the tables provided.

StringPrep uses Unicode Version 3.2 and defines a set of tables for use by the profiles. 
The profiles can chose to include or exclude tables or code points from the tables defined 
by the RFC. 

StringPrep defines tables that can be broadly classified into 

• Unassigned Table: Contains code points that are unassigned in Unicode Version 3.2. 
Unassigned code points may be allowed or disallowed in the output string depending 
on the application. The table in Appendix A.1 of the RFC contains the code points.

• Mapping Tables: Code points that are commonly deleted from the output and code 
points that are case mapped are included in this table. There are two mapping tables in 
the Appendix namely B.1 and B.2

• Prohibited Tables: Contains code points that are prohibited from the output string. 
Control codes, private use area code points, non-character code points, surrogate code 
points, tagging and deprecated code points are included in this table. There are nine 
mapping tables in Appendix which include the prohibited code points namely C.1, 
C.2, C.3, C.4, C.5, C.6, C.7, C.8 and C.9. 

The procedure for preparing strings for use can be described in the following steps:

1. Map: For each code point in the input check if it has a mapping defined in the mapping 
table, if so, replace it with the mapping in the output.

2. Normalize: Normalize the output of step 1 using Unicode Normalization Form NFKC, 
it the option is set. Normalization algorithm must conform to UAX 15.

106 ICU v3.8 User Guide

http://www.rfc-editor.org/rfc/rfc3454.txt


3. Prohibit: For each code point in the output of step 2 check if the code point is present 
in the prohibited table, if so, fail returning an error.

4. Check BiDi: Check for code points with strong right-to-left directionality in the output 
of step 3. If present, check if the string satisfies the rules for bidirectional strings as 
specified.

NamePrep

NamePrep is a profile of StringPrep for use in IDNA. This profile in defined in RFC 
3491(http://www.rfc-editor.org/rfc/rfc3491.txt). 

The profile specifies the following rules:

1. Map : Include all code point mappings specified in the StringPrep.

2. Normalize: Normalize the output of step 1 according to NFKC.

3. Prohibit: Prohibit all code points specified as prohibited in StringPrep except for the 
space ( U+0020) code point from the output of step 2.

4. Check BiDi: Check for bidirectional code points and process according to the rules 
specified in StringPrep.

Punycode

Punycode is an encoding scheme for Unicode for use in IDNA. Punycode converts 
Unicode text to unique sequence of ASCII text and back to Unicode. It is an ASCII 
Compatible Encoding (ACE).  Punycode is described in RFC 3492 (http://www.rfc-
editor.org/rfc/rfc3492.txt).  

The Punycode algorithm is a form of a general Bootstring algorithm which allows strings 
composed of smaller set of code points to uniquely represent any string of code points 
from a larger set. Punycode represents Unicode code points from U+0000 to U+10FFFF 
by using the smaller ASCII set U+0000 to U+0007F. The algorithm can also  preserve 
case information of the code points in the lager set while and encoding and decoding. 
This feature, however, is not used in IDNA.  

Internationalizing Domain Names in Applications (IDNA)

The Domain Name Service (DNS) protocol defines the procedure for matching of ASCII 
strings case insensitively to the names in the lookup tables containing mapping of IP 
(Internet Protocol) addresses to server names. When Unicode is used instead of ASCII in 
server names then two problems arise which need to be dealt with differently. When the 
server name is displayed to the user then Unicode text should be displayed. When 
Unicode text is stored in lookup tables, for compatibility with older DNS protocol and the 
resolver libraries, the text should be the ASCII equivalent. The IDNA protocol, defined 
by RFC 3490 (http://www.rfc-editor.org/rfc/rfc3490.txt),  satisfies the above 

107 ICU v3.8 User Guide

http://www.rfc-editor.org/rfc/rfc3490.txt
http://www.rfc-editor.org/rfc/rfc3492.txt
http://www.rfc-editor.org/rfc/rfc3492.txt
http://www.rfc-editor.org/rfc/rfc3491.txt


requirements.

Server names stored in the DNS lookup tables are usually formed by concatenating 
domain labels with a label separator, for example:

The protocol defines operations to be performed on domain labels before the names are 
stored in the lookup tables and before the names fetched from lookup tables are displayed 
to the user. The operations are :

1. ToASCII: This operation is performed on domain labels before sending the name to a 
resolver and before storing the name in the DNS lookup table. The domain labels are 
processed by StringPrep algorithm by  using the rules specified by NamePrep profile. 
The output of this step is then encoded by using Punycode and an ACE prefix is added 
to denote that the text is encoded using Punycode. IDNA uses  “xn--” before the 
encoded label.

108 ICU v3.8 User Guide

  www    ibm    com .  .  www    ibm    com .  .

Domain Label Label Separator

www . यहल�गहहन�	कय�नह
ब�लसकत�ह�  .  com

www .  xn—i1baa7eci9glrd9b2ae1bj0hfcgg6iyaf8o0a1dig0cd . com

ToASCII

, 08/11/05
 html image name: domain-name-2.gif

, 08/11/05
 html image name: domain-name-1.gif



2. ToUnicode: This operation is performed on domain labels before displaying the names 
to to users.  If the domain label is prefixed with the ACE prefix for IDNA, then the 
label excluding the prefix is decoded using Punycode. The output of Punycode decoder 
is verified by applying ToASCII operation and comparing the output with the input to 
the ToUnicode operation.

Unicode contains code points that are glyphically similar to the ASCII Full Stop 
(U+002E). These code points must be treated as label separators when performing 
ToASCII operation. These code points are : 

• Ideographic Full Stop (U+3002)

• Full Width Full Stop  (U+FF0E)

• Half Width Ideographic Full Stop (U+FF61)

Unassigned code points in Unicode Version 3.2 as given in StringPrep tables are treated 
differently depending on how the processed string is used. For query operations, where a 
registrar is requested for information regarding availability of a certain domain name, 
unassigned code points are allowed to be present in the string. For storing the string in 
DNS lookup tables, unassigned code points are prohibited from the input.

IDNA specifies that the ToUnicode and ToASCII have options to check for Letter-Digit-
Hyphen code points and adhere to the STD3 ASCII Rules.

IDNA specifies that domain labels are equivalent if and only if the output of ToASCII 
operation on the labels match using case insensitive ASCII comparison.

StringPrep Service in ICU

The StringPrep service in ICU is data driven. The service is based on Open-Use-Close 
pattern. A StringPrep profile is opened, the strings are processed according to the rules 
specified in the profile and the profile is closed once the profile is ready to be disposed. 

109 ICU v3.8 User Guide

www . यहल�गहहन�	कय�नह
ब�लसकत�ह�  .  com

www .  xn—i1baa7eci9glrd9b2ae1bj0hfcgg6iyaf8o0a1dig0cd . com

ToUnicode

, 08/11/05
 html image name: domain-name-3.gif



Tools for filtering RFC 3454 and producing a rule file that can be compiled into a binary 
format containing all the information required by the service are provided.

The procedure for producing a StringPrep profile data file are as given below:

1. Run filterRFC3454.pl Perl tool, to filter the RFC file and produce a rule file. The text 
file produced can be edited by the clients to add/delete mappings or add/delete 
prohibited code points.

2. Run the gensprep tool to compile the rule file into a binary format. The options to turn 
on normalization of strings and checking of bidirectional code points are passed as 
command line options to the tool. This tool produces a binary profile file with the 
extension “spp”.

3. Open the StringPrep profile with path to the binary and name of the binary profile file 
as the options to the open call. The profile data files are memory mapped and cached 
for optimum performance.

Code Snippets

Note: The code snippets demonstrate the usage of the APIs. Applications should 
keep the profile object around for reuse, instead of opening and closing the 
profile each time.

C++

    UErrorCode status = U_ZERO_ERROR;
    UParseError parseError;
    /* open the StringPrep profile */
    UStringPrepProfile* nameprep = usprep_open(“/usr/joe/mydata”,             
                                               “nfscsi”, &status);
    if(U_FAILURE(status)){
      /* handle the error */
    }
    /* prepare the string for use according 
     * to the rules specified in the profile 
     */
    int32_t retLen = usprep_prepare(src, srcLength, dest,  
                                    destCapacity, USPREP_ALLOW_UNASSIGNED, 
                                    nameprep, &parseError,&status); 
    /* close the profile*/
    usprep_close(nameprep);

110 ICU v3.8 User Guide



Java

private static final StringPrep nfscsi = null;
//singleton instance
private static final NFSCSIStringPrep prep=new NFSCSIStringPrep();
private  NFSCSIStringPrep (){
  try{
      InputStream  nfscsiFile = TestUtil.getDataStream("nfscsi.spp");
      nfscsi = new StringPrep(nfscsiFile);
      nfscsiFile.close();
  }catch(IOException e){
      throw new RuntimeException(e.toString());
  }
}
private static byte[] prepare(byte[] src, StringPrep prep)
            throws StringPrepParseException,    
                          UnsupportedEncodingException{
    String s = new String(src, "UTF-8");
    UCharacterIterator iter =  UCharacterIterator.getInstance(s);
    StringBuffer out = prep.prepare(iter,StringPrep.DEFAULT);
    return out.toString().getBytes("UTF-8");
}

IDNA API in ICU

ICU provides APIs for performing the ToASCII,  ToUnicode and compare operations as 
defined by the RFC 3490. Convenience methods for comparing IDNs are also provided. 
These APIs follow ICU policies for string manipulation and coding guidelines.

Code Snippets

Note: The code snippets demonstrate the usage of the APIs. Applications should 
keep the profile object around for reuse, instead of opening and closing the 
profile each time.

ToASCII operation

 C 
    UChar* dest = (UChar*) malloc(destCapcaity* U_SIZEOF_UCHAR);
    destLen = uidna_toASCII(src, srcLen, dest,  destCapacity, 
                         UIDNA_DEFAULT, &parseError, &status);
    if(status == U_BUFFER_OVERFLOW_ERROR){
        status = U_ZERO_ERROR;
        destCapacity= destLen + 1/* for the terminating Null */;
        free(dest);   /* free the memory */
        dest = (UChar*) malloc( destLen * U_SIZEOF_UCHAR);
       destLen = uidna_toASCII(src, srcLen, dest, destCapacity, 
                         UIDNA_DEFAULT, &parseError, &status);
    }
    if(U_FAILURE(status)){
        /* handle the error */
    }
    /* do interesting stuff with output*/

111 ICU v3.8 User Guide



 Java 
    try{
        StringBuffer out= IDNA.convertToASCII(inBuf,IDNA.DEFAULT);
    }catch(StringPrepParseException ex){
        /*handle the exception*/
    }

toUnicode operation

 C 
    UChar* dest = (UChar*) malloc(destCapacity* U_SIZEOF_UCHAR);    
   
    destLen = uidna_toUnicode(src, srcLen, dest,  destCapacity , 
                       UIDNA_DEFAULT 
                          &parseError, &status);
    if(status == U_BUFFER_OVERFLOW_ERROR){
        status = U_ZERO_ERROR;
        destCapacity= destLen + 1/* for the terminating Null */;
         /* free the memory */
         free(dest);
        dest = (UChar*) malloc( destLen * U_SIZEOF_UCHAR);
        destLen = uidna_toUnicode(src, srcLen, dest, destCapacity, 
                         UIDNA_DEFAULT, &parseError,  &status);
    }
    if(U_FAILURE(status)){
        /* handle the error */
    }
    /* do interesting stuff with output*/

 Java 
        try{
            StringBuffer out= IDNA.convertToUnicode(inBuf,IDNA.DEFAULT);
        }catch(StringPrepParseException ex){
              // handle the exception
        }

compare operation

 C 
    int32_t rc = uidna_compare(source1, length1, 
                               source2, length2, 
                               UIDNA_DEFAULT, 
                               &status);
  
    if(rc==0){
        /* the IDNs are same  ... do something interesting */
    }else{
        /* the IDNs are different ... do something */
    }

 

112 ICU v3.8 User Guide



 Java 

        try{
            int retVal = IDNA.compare(s1,s2,IDNA.DEFAULT);
            // do something interesting with retVal
        }catch(StringPrepParseException e){
           // handle the exception
        }

Design Considerations

StringPrep profiles exhibit the following characteristics:

• The profiles contain information about code points. StringPrep allows profiles to 
add/delete code points or mappings.

• Options such as turning normalization and checking for bidirectional code points on or 
off are the properties of the profiles.

• The StringPrep algorithm is not overridden by the profile.

• Once defined, the profiles do not change. 

The StringPrep profiles are used in network protocols so runtime performance is 
important.

Many profiles have been and are being defined, so applications should be able to plug-in 
arbitrary profiles and get the desired result out of the framework.

ICU is designed for this usage by providing build-time tools for arbitrary StringPrep 
profile definitions, and loading them from application-supplied data in binary form with 
data structures optimized for runtime use.

Demo

A web application at http://demo.icu-project.org/icu-bin/idnbrowser illustrates the use of 
IDNA API. The source code for the application is available at  http://source.icu-
project.org/repos/icu/icuapps/trunk/idnbrowser/.

Appendix

NFS Version 4 Profiles

Network File System Version 4 defined by RFC 3530 
(http://www.rfc-editor.org/rfc/rfc3530.txt) defines use of Unicode text in the protocol. 
ICU provides the requisite profiles as part of test suite and code for processing the strings 
according the profiles as a part of samples.

113 ICU v3.8 User Guide

http://www.rfc-editor.org/rfc/rfc3530.txt
http://source.icu-project.org/repos/icu/icuapps/trunk/idnbrowser/
http://source.icu-project.org/repos/icu/icuapps/trunk/idnbrowser/
http://demo.icu-project.org/icu-bin/idnbrowser


The RFC defines three profiles :

1. nfs4_cs_prep Profile: This profile is used for preparing file and path name strings. 
Normalization of code points and checking for bidirectional code points are turned off. 
Case mappings are included if the NFS implementation supports case insensitive file 
and path names.

2. nfs4_cis_prep Profile: This profile is used for preparing NFS server names. 
Normalization of code points and checking for bidirectional code points are turned on. 
This profile is equivalent to NamePrep profile.

3. nfs4_mixed_prep Profile: This profile is used for preparing strings in the Access 
Control Entries of NFS servers. These strings consist of two parts, prefix and suffix, 
separated by '@' (U+0040).  The prefix is processed with case mappings turned off and 
the suffix is processed with case mappings turned on. Normalization of code points 
and checking for bidirectional code points are turned on.

XMPP Profiles

Extensible Messaging and Presence Protocol (XMPP) is an XML based protocol for near 
real-time extensible messaging and presence. This protocol defines use of two StringPrep 
profiles:

1. ResourcePrep Profile: This profile is used for processing the resource identifiers 
within XMPP.  Normalization of code points and checking of bidirectional code points 
are turned on. Case mappings are excluded. The space code point (U+0020) is 
excluded from the prohibited code points set.

2. NodePrep Profile: This profile is used for processing the node identifiers within 
XMPP.  Normalization of code points and checking of bidirectional code points are 
turned on. Case mappings are included. All code points specified as prohibited in 
StringPrep are prohibited. Additional code points are added to the prohibited set.

114 ICU v3.8 User Guide



Conversion Basics
• Overview  

• Recommendations  

Conversion Overview

A converter is used to convert from one character encoding to another. In the case of ICU, 
the conversion is always between Unicode and another encoding, or vice-versa. A text 
encoding is a particular mapping from a given character set definition to the actual bits 
used to represent the data.

Unicode provides a single character set that covers the major languages of the world, and 
a small number of machine-friendly encoding forms and schemes to fit the needs of 
existing applications and protocols. It is designed for best interoperability with both 
ASCII and ISO-8859-1 (the most widely used character sets) to make it easier for 
Unicode to be used in almost all applications and protocols.

Hundreds of encodings have been developed over the years, each for small groups of 
languages and for special purposes. As a result, the interpretation of text, input, sorting, 
display, and storage depends on the knowledge of all the different types of character sets 
and their encodings. Programs have been written to handle either one single encoding at a 
time and switch between them, or to convert between external and internal encodings.

There is no single, authoritative source of precise definitions of many of the encodings 
and their names. However, IANA is the best source for names, and our Character Set 
repository is a good source of encoding definitions for each platform.

The transferring of text from one machine to another one often causes some loss of 
information. Some platforms have a different interpretation of the text than the other 
platforms. For example, Shift-JIS can be interpreted differently on Windows™ compared 
to UNIX®. Windows maps byte value 0x5C to the backslash symbol, while some UNIX 
machines map that byte value to the Yen symbol. Another problem arises when a 
character in the codepage looks like the Unicode Greek letter Mu or the Unicode micro 
symbol. Some platforms map this codepage byte sequence to one Unicode character, 
while another platform maps it to the other Unicode character. Fallbacks can partially fix 
this problem by mapping both Unicode characters to the same codepage byte sequence. 
Even though some character information is lost, the text is still readable.

ICU's converter API has the following main features:

• Unicode surrogate support

• Support for all major encodings

• Consistent text conversion across all computer platforms

115 ICU v3.8 User Guide

http://www.iana.org/assignments/character-sets


• Text data can be streamed (buffered) through the API

• Fast text conversion

• Supports fallbacks to the codepage

• Supports reverse fallbacks to Unicode

• Allows callbacks for handling and substituting invalid or unmapped byte sequences

• Allows a user to add support for unsupported encodings

This section deals with the processes of converting encodings to and from Unicode.

Recommendations

1. Use Unicode encodings whenever possible. Together with Unicode for internal 
processing, it makes completely globalized systems possible and avoids the many 
problems with non-algorithmic conversions. (For a discussion of such problems, see 
for example "Character Conversions and Mapping Tables" on http://icu-
project.org/docs/ and the XML Japanese Profile.) 

1. Use UTF-8 and UTF-16.

2. Use UTF-16BE, SCSU and BOCU-1 as appropriate.

3. In special environments, other Unicode encodings may be used as well, such as 
UTF-16LE, UTF-32, UTF-32BE, UTF-32LE, UTF-7, UTF-EBCDIC, and CESU-8. 
(For turning Unicode filenames into ASCII-only filename strings, the IMAP-
mailbox-name encoding can be used.)

4. Do not exchange text with single/unpaired surrogates.

2. Use legacy charsets only when absolutely necessary. For best data fidelity: 

1. ISO-8859-1 is relatively unproblematic — if its limited character repertoire is 
sufficient — because it is converted trivially (1:1) to Unicode, avoiding conversion 
table problems for its small set of characters. (By contrast, proper conversion from 
US-ASCII requires a check for illegal byte values 0x80..0xff, which is an 
unnecessary complication for modern systems with 8-bit bytes. ISO-8859-1 is 
nearly as ubiquitous for modern systems as US-ASCII was for 7-bit systems.)

2. If you need to communicate with a certain platform, then use the same conversion 
tables as that platform itself, or at least ones that are very, very close.

3. ICU's conversion table repository contains hundreds of Unicode conversion tables 
from a number of common vendors and platforms as well as comparisons between 
these conversion tables: http://icu-project.org/charts/charset/.

4. Do not trust codepage documentation that is not machine-readable, for example 

116 ICU v3.8 User Guide

http://icu-project.org/charts/charset/
http://www.w3.org/TR/japanese-xml/
http://icu-project.org/docs/
http://icu-project.org/docs/
http://icu-project.org/docs/papers/conversions_and_mappings_iuc19.ppt


nice-looking charts: They are usually incomplete and out of date.

5. ICU's default build includes about 200 conversion tables. See the ICU Data chapter 
for how to add or remove conversion tables and other data.

6. In ICU, you can (and should) also use APIs that map a charset name together with a 
standard/platform name. This allows you to get different converters for the same 
ambiguous charset name (like "Shift-JIS"), depending on the standard or platform 
specified. See the convrtrs.txt alias table, the Using Converters chapter and API 
references.

7. For data exchange (rather than pure display), turn off fallback mappings: 
ucnv_setFallback(cnv, FALSE);

8. For some text formats, especially XML and HTML, it is possible to set an "escape 
callback" function that turns unmappable Unicode code points into corresponding 
escape sequences, preventing data loss. See the API references and the ucnv sample 
code.

9. Never modify a conversion table. Instead, use existing ones that match precisely 
those in systems with which you communicate. "Modifying" a conversion table in 
reality just creates a new one, which makes the whole situation even less 
manageable.

117 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icu/trunk/source/samples/ucnv/
http://source.icu-project.org/repos/icu/icu/trunk/source/samples/ucnv/
http://icu-project.org/apiref/icu4c/ucnv_8h.html
http://icu-project.org/apiref/icu4c/ucnv_8h.html
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/codepageConverters.sxw
http://source.icu-project.org/repos/icu/icu/trunk/source/data/mappings/convrtrs.txt
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/icudata.sxw


Using Converters
Overview

When designing applications around Unicode characters, it is sometimes required to 
convert between Unicode encodings or between Unicode and legacy text data. The vast 
majority of modern Operating Systems support Unicode to some degree, but sometimes 
the legacy text data from older systems need to be converted to and from Unicode. This 
conversion process can be done with an ICU converter.

ICU converters

ICU provides comprehensive character set conversion services, mapping tables, and 
implementations for many encodings. Since ICU uses Unicode (UTF-16) internally, all 
converters convert between UTF-16 (with the endianness according to the current 
platform) and another encoding. This includes Unicode encodings. In other words, 
internal text is 16-bit Unicode, while "external text" used as source or target for a 
conversion is always treated as a byte stream.

ICU converters are available for a wide range of encoding schemes. Most of them are 
based on mapping table data that is handled by few generic implementations. Some 
encodings are implemented algorithmically in addition to (or instead of) using mapping 
tables, especially Unicode encodings. The partly or entirely table-based encoding schemes 
include:  All ICU converters map only single Unicode character code points to and from 
single codepage character code points. ICU converters do not deal directly with 
combining characters, bidirectional reordering, or Arabic shaping, for example. Such 
processes, if required, must be handled separately. For example, while in Unicode, the 
ICU BiDi APIs can be used for bidirectional reordering after a conversion to Unicode or 
before a conversion from Unicode.

ICU converters are not designed to perform any encoding autodetection. This means that 
the converters do not autodetect "endianness", the 6 Unicode encoding signatures, or the 
Shift-JIS vs. EUC-JP, etc. There are two exceptions: The UTF-16 and UTF-32 converters 
work according to Unicode's specification of their Character Encoding Schemes, that is, 
they read the BOM to figure out the actual "endianness".

The ICU mapping tables mostly come from an IBM® codepage repository. For non-IBM 
codepages, there is typically an equivalent codepage registered with this repository. 
However, the textual data format (.ucm files) is generic, and data for other codepage 
mapping tables can also be added.

Using the Default Codepage

ICU has code to determine the default codepage of the system or process. This default 
codepage can be used to convert char * strings to and from Unicode.

118 ICU v3.8 User Guide



Depending on system design, setup and APIs, it may not always be possible to find a 
default codepage that fully works as expected. For example,

• On Windows there are three encodings in use at the same time. Unicode (UTF-16) is 
always used inside of Windows, while for char * encodings there are two classes, 
called "ANSI" and "OEM" codepages. ICU will use the ANSI codepage. Note that the 
OEM codepage is used by default for console window output.

• On some UNIX-type systems, non-standard names are used for encodings, or non-
standard encodings are used altogether. Although ICU supports over 200 encodings in 
its standard build and many more aliases for them, it will not be able to recognize such 
non-standard names.

• Some systems do not have a notion of a system or process codepage, and may not have 
APIs for that.

If you have means of detecting a default codepage name that are more appropriate for 
your application, then you should set that name with ucnv_setDefaultName() as the 
first ICU function call. This makes sure that the internally cached default converter will 
be instantiated from your preferred name.

Starting in ICU 2.0, when a converter for the default codepage cannot be opened, a 
fallback default codepage name and converter will be used. On most platforms, this will 
be US-ASCII. For z/OS (OS/390), ibm-1047,swaplfnl is the default fallback codepage. 
For AS/400 (iSeries), ibm-37 is the default fallback codepage. This default fallback 
codepage is used when the operating system is using a non-standard name for a default 
codepage, or the converter was not packaged with ICU. The feature allows ICU to run in 
unusual computing environments without completely failing.

Usage Model

A "Converter" refers to the C structure "UConverter". Converters are cheap to create. 
Any data that is shared between converters of the same kind (such as the mappings, the 
name and the properties) are automatically cached and shared in memory.

Converter Names

Codepages with encoding schemes have been given many names by various vendors and 
platforms over the years. Vendors have different ways specify which codepage and 
encoding are being used. IBM uses a CCSID (Coded Character Set IDentifier). Windows 
uses a CPID (CodePage IDentifier). Macintosh has a TextEncoding. Many Unix vendors 
use IANA character set names. Many of these names are aliases to converters within ICU.

In order to help identify which names are recognized by certain platforms, ICU provides 
several converter alias functions. The complete description of these functions can be 
found in the ICU API Reference.

119 ICU v3.8 User Guide

http://icu-project.org/apiref/icu4c/ucnv_8h.html
http://www.iana.org/assignments/character-sets


Function Names Short Description
ucnv_countAvailable 
ucnv_getAvailableName 

Get a list of available converter names that 
can be opened.

ucnv_openAllNames Get a list of all known converter names.
ucnv_getName Get the name of an open converter.
ucnv_countAliases ucnv_getAlias Get the list of aliases for the specified 

converter.
ucnv_countStandards 
ucnv_getStandard 

Get the list of known standards.

ucnv_openStandardNames Get a filtered list of aliases for a converter 
that is known by the specified standard.

ucnv_getStandardName Get the preferred alias name specified by a 
given standard.

ucnv_getCanonicalName Get the converter name from the alias that 
is recognized by the specified standard.

ucnv_getDefaultName Get the default converter name that is 
currently used by ICU and the operating 
system.

ucnv_setDefaultName Use this function to override the default 
converter name.

Even though IANA specifies a list of aliases, it usually does not specify the mappings or 
the actual character set for the aliases. Sometimes vendors will map similar glyph variants 
to different Unicode code points or sometimes they will assign completely different 
glyphs for the same codepage code point. Because of these ambiguities, you can 
sometimes get U_AMBIGUOUS_ALIAS_WARNING for the returned UErrorCode when more 
than one converter uses the requested alias. This is only a warning, and the results can 
still be used. This UErrorCode value is just a reminder that you may not get what you 
expected. The above functions can help you to determine which converter you actually 
wanted.

EBCDIC based converters do have the option to swap the newline and linefeed character 
mappings. This can be useful when transferring EBCDIC documents between z/OS 
(MVS, os/390 and the rest of the zSeries family) and another EBCDIC machine like 
OS/400 on iSeries. The ",swaplnlf" or UCNV_SWAP_LFNL_OPTION_STRING from ucnv.h 
can be appended to a converter alias in order to achieve this behavior. You can view other 
available options in ucnv.h.

You can always skip many of these aliasing and mapping problems by just using 
Unicode.

120 ICU v3.8 User Guide



Creating a Converter

There are four ways to create a converter:

1. By name: Converters can be created using different types of names. No distinction is 
made when the converter is created, as to which name is being employed. There are 
many types of aliases possible. Among these are IANA ("shift_jis", "koi8-r", or "iso-
8859-3"), host specific names ("cp1252" which is the name for a Microsoft® 
Windows™ or a similar IBM® codepage). Finally, ICU's own internal canonical 
names for a converter can be used. These include "UTF-8" or "ISO-8859-1" for built-
in conversion types, and names such as "ibm-949_P110-2000" (Shift-JIS with '\' <-> '¥' 
mapping) or "ibm-949_P11A-2000" (Shift-JIS with '\' <-> '\' mapping) for data-file 
based conversions.

UConverter *conv = ucnv_open("shift_jis", &myError);
 
As a convenience, converter names can be passed in as Unicode. (for example, if a 
user passed in the string from a Unicode-based user interface). However, the actual 
names are restricted to an invariant ASCII/EBCDIC subset. 
UChar *name = ...; UConverter *conv = ucnv_openU(name, &myError); 

Converter names are case-insensitive. In addition, beginning with ICU 3.6, leading 
zeroes are ignored in sequences of digits (if further digits follow), and all non-
alphanumeric characters are ignored. Thus the strings "UTF-8", "utf_8", "u*T@f08" 
and "Utf 8" are equivalent. (Before ICU 3.6, leading zeroes were not ignored, and only 
spaces, dashes and underscores were ignored.) The ucnv_compareNames() function 
provides such string comparisons.
 
Unlike the names of resources or other types of ICU data, converter names can not be 
qualified with a path that indicates the directory or common data file containing the 
corresponding converter data. The requested converter's data must be present either in 
the main ICU data library or as a separate file located in the ICU data directory. 
However, you can always create a package of converters with pkgdata and open a 
converter from the package with ucnv_openPackage() 

    UConverter *conv = ucnv_openPackage("./myPackage.dat",
                          "customConverter", &myError); 
 

2. By number: The design of the ICU is to accommodate codepages provided by 
different vendors. For example, the IBM CDRA (Character Data Representation 
Architecture which is an IBM architecture that defines a set of identifiers) has an ID 
type called the CCSID (Coded Character Set Identifier). The ICU API for opening a 
codepage by number must be given a vendor along with the number. Currently, only 
IBM (UCNV_IBM) is supported. For example, the US EBCDIC codepage (IBM #37) 
can be opened with the following code: 

121 ICU v3.8 User Guide

http://www.iana.org/assignments/character-sets


    ucnv_openCCSID( 37, UCNV_IBM, &myErr); 
 

3. By iteration: An application might not know ahead of time which codepage to use, 
and thus might need to query ICU to determine the entire list of installed converters. 
The ICU returns a list of its canonical (internal) names. From each names, the standard 
IANA name can be determined, and also a list of aliases which point to that name can 
be determined. For example, ICU might return among the canonical names "ibm-367". 
That name itself may or may not provide the application or its users with the 
information needed. (367 is actually the decimal form of a number that is calculated by 
appending certain hex digits together.) However, the IANA name can be requested 
from this canonical name, which should return something like "us-ascii". The alias list 
for ibm-367 can be iterated over as well, which returns additional names like "ascii", 
"646", "ansi_x3.4-1968" etc. If this is not sufficient information, once a converter is 
opened, it can be queried for its type, min and max char size, etc. This information is 
not available without actually opening the converter (a fairly lightweight process.) 

    /* Returns count of the number of available names */
   int count = ucnv_countAvailable();
 
   /* get the canonical name of the 36th available converter */
   const char *convName1 = ucnv_getAvailableName(36);
 
   /* get the 3rd alias for a given codepage. */
   const char *asciiAlias = ucnv_getAlias("ibm-367", 3, &myError);
 
   /* Get the IANA name of the converter */
   const char *ascii = ucnv_getStandardName("ibm-367", "IANA");
 
   /* Get the one of the non preferred IANA name of the converter. */
   UEnumeration *asciiEnum = 
        ucnv_openStandardNames("ibm-367", "IANA", &myError);
   uenum_next(asciiEnum, &myError); /* skip preferred IANA alias */
   /* get one of the non-preferred IANA aliases */
   const char *ascii2 = uenum_next(asciiEnum, &myError); 
   uenum_close(asciiEnum);
 
 

4. By using the default converter: The default converter can be opened by passing a 
NULL as the name of the converter. 

    ucnv_open(NULL, &myErr); 
 

122 ICU v3.8 User Guide



ICU chooses this converter based on the best information available to it. The 
purpose of this converter is to interface with the OS using a codepage (i.e. char*).  
Do not use it as a way of determining the best overall converter to use. Usually 
any Unicode encoding form is the best way to store and send text data so that 
important data does not get lost in the conversion. 
 Also, if the OS supports Unicode-based API's (such as Win32), it is better to use 
only those Unicode API's. As an example, the new Windows 2000 locales (such as 
Hindi) do not define the default codepage to something that supports Hindi. The 
default converter is used in expressions such as: UnicodeString text("abc"); .. to 
convert 'abc', and in the u_uastrcpy() C functions. 
 Code operating at the OS level MAY choose to change the default converter with  
ucnv_setDefaultName(). However, be aware that this change has inconsistent 
results if it is done after ICU components are initialized. 
 

Closing a Converter

Closing a converter frees memory occupied by that instance of the converter. However it 
does not release the larger shared data tables the converter might use. OS-level code may 
call ucnv_flushCache() to explicitly free memory occupied by unused tables.

ucnv_close(conv)

Converter Life Cycle

Note that a Converter is created with a certain type (for instance, ISO-8859-3) which does 
not change over the life of that object. Converters should be allocated one per thread. 
They are cheap to create, as the shared data doesn't need to be reallocated.

This is the typical life cycle of a converter, as shown step-by-step:

1. First, open up the converter with a specified name [or alias name]. 

     UConverter *conv = ucnv_open("shift_jis", &status);
 

2. Target here is the char s[] to write into, and targetSize is how big the target buffer is. 
Source is the UChars that are being converted. 
 
     int32_t len = ucnv_fromUChars(conv, target, targetSize, source,
                                   u_strlen(source), &status); 

3. Clean up the converter. 

     ucnv_close(conv); 

123 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/design.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/design.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/design.sxw


Sharing Converters Between Threads

A converter cannot be shared between threads at the same time. However, if it is reset it 
can be used for unrelated chunks of data. For example, use the same converter for 
converting data from Unicode to ISO-8859-3, and then reset it. Use the same converter 
for converting data from ISO-8859-3 back into Unicode.

Converting Large Quantities of Data

If it is necessary to convert a large quantity of data in smaller buffers, use the same 
converter to convert each buffer. This will make sure any state is preserved from one 
chunk to the next. Doing this conversion is known as streaming or buffering, and is 
mentioned later in this chapter.

Cloning a Converter

Cloning a converter returns a clone of the converter object along with any internal state 
that the converter might be storing. Cloning routines must be used with extreme care 
when using converters for stateful or multibyte encodings. If the converter object is 
carrying an internal state, and the newly-created clone is used to convert a new chunk of 
text, the converter produces incorrect results. Also note that the caller owns the cloned 
object and has to call ucnv_close() to dispose of the object. Calling ucnv_reset() before 
cloning will reset the converter to its original state.

UConverter* newCnv = ucnv_safeClone(oldCnv, 0, &bufferSize, &err)

Converter Behavior

Conversion

• The converters always consume the source buffer as far as possible, and advance the 
source pointer.

• The converters write to the target all converted output as far as possible, and then write 
any remaining output to the internal services buffer. When the conversion routines are 
called again, the internal buffer is flushed out and written to the target buffer before 
proceeding with any further conversion.

• In conversions to Unicode from Multi-byte encodings or conversions from Unicode 
involving surrogates, if only a part of byte unit is retrieved from the source buffer, 
"flush" parameter is set to "TRUE" and end of source is reached. Callback routines are 
not called, and error is set to U_TRUNCATED_CHAR_FOUND.

Reset

124 ICU v3.8 User Guide



Converters can be reset explicitly or implicitly. Explicit reset is done by calling:

• ucnv_reset(): Resets the converter to initial state in both directions.

• ucnv_resetToUnicode(): Resets the converter to initial state to Unicode direction.

• ucnv_resetFromUnicode(): Resets the converter to initial state from Unicode 
direction.

The converters are reset implicitly when the conversion functions are called with the 
"flush" parameter set to "TRUE" and the source is consumed.

Error

Not all characters can be converted between Unicode and other codepages or vice versa. 
In most cases, Unicode is a superset of the characters supported by any given codepage.

The default behavior of ICU in this case is to substitute the missing sequence, with the 
appropriate substitution sequence for that codepage. For example, ISO-8859-1, along 
with most ASCII based codepages, has the character 0x1A (Control-Z) as the substitution 
sequence. When converting from Unicode to ISO-8859-1, any characters which cannot be 
converted would be replaced by 0x1A's. In the other direction, if a codepage has a 
character which cannot be converted into Unicode, that sequence is replaced by the 
Unicode substitution character (U+FFFD). SubChar1 is sometimes used as substitution 
character in MBCS conversions. For more information on SubChar1 please see the 
Conversion Details section. In stateful converters like ISO-2022-JP, if a substitution 
character has to be written to the target, then an escape/shift sequence to change the state 
to single byte mode followed by a substitution character is written to the target.

The substitution character can be changed by calling the ucnv_setSubstChars() 
function with the desired codepage byte sequence. However, this has some limitations: It 
only allows setting a single character (although the character can consist of multiple 
bytes), and it may not work properly for some stateful converters (like HZ or ISO 2022 
variants) when setting a multi-byte substitution character. (It will work for 
EBCDIC_STATEFUL ones.) Moreover, for setting a particular character, the caller needs 
to know the correct byte sequence for that character in the converter's codepage. (For 
example, a space [U+0020] is encoded as 0x20 in ASCII-based codepages, 0x40 in 
EBCDIC-based ones, 0x00 0x20 or 0x20 0x00 in UTF-16 depending on the stream's 
endianness, etc.)

The ucnv_setSubstString() function (new in ICU 3.6) lifts these limitations. It takes a 
Unicode string and verifies that it can be converted to the codepage without error and that 
it is not too long (32 bytes as of ICU 3.6). The string can contain zero, one or more 
characters. An empty string has the effect of using the skip callback. See the Error 
Callbacks below. Stateful converters are fully supported. The same Unicode string will 
give equivalent results with all converters that support its conversion.

Internally, ucnv_setSubstString() stores the byte sequence from the test conversion if 
the converter is stateless, or the Unicode string itself if the converter is stateful. If the 

125 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/conversion-data.sxw


Unicode string is stored, then it is converted on the fly during substitution, handling all 
state transitions.

The function ucnv_getSubstChars() can be used to retrieve the substitution byte 
sequence if it is the default one, set by ucnv_setSubstChars(), or if 
ucnv_setSubstString() stored the byte sequence for a stateless converter. The Unicode 
string set for a stateful converter cannot be retrieved.

Error Codes

Here are some of the error codes which have significant meaning for conversion:

UErrorCode Meaning
U_INDEX_OUTOFBOUNDS_ERROR in getNextUChar() - all source data has been 

consumed without producing a Unicode character
U_INVALID_CHAR_FOUND No mapping was found from the source to the target 

encoding. For example, U+0398 [Capital Theta] has 
no mapping into ISO-8859-1, and so 
U_INVALID_CHAR_FOUND will result.

U_TRUNCATED_CHAR_FOUND All of the source data was read, and a character 
sequence was incomplete. For example, only half of a 
double-byte sequence may have been encountered. 
When converting FROM Unicode, this error would 
occur when a conversion ends with a low surrogate 
(U+D800) at the end of the source, with no 
corresponding high surrogate.

U_ILLEGAL_CHAR_FOUND A character sequence was found in the source which is 
disallowed in the source encoding scheme. For 
example, many MBCS encodings have only certain 
byte sequences which are allowed as lead bytes. When 
converting from Unicode, if a low surrogate is NOT 
followed immediately by a high surrogate, or a high 
surrogate without its preceding low surrogate, an 
illegal sequence results.

U_INVALID_TABLE_FORMAT An error occurred trying to read the backing data for 
the converter. The data could be corrupt, or the wrong 
version.

U_BUFFER_OVERFLOW_ERROR More output (target) characters were produced than fit 
in the target buffer. If in to/fromUnicode() , then 
process the target buffer and call the function again to 
retrieve the overflowed characters.

126 ICU v3.8 User Guide



Error Callbacks

What actually happens is that an "error callback function" is called at the point where the 
conversion failure occurred. The function can deal with the failed characters as it sees fit. 
Possible options at the callback's disposal include ignoring the bad sequence, converting 
it to a different sequence, and returning an error to the caller. The callback can also 
consume any data past where the error occurred, whether or not that data would have 
caused an error. Only one callback is installed at a time, per direction (to or from 
unicode).

A number of canned functions are provided by ICU, and an application can write new 
ones. The "callbacks" are either From Unicode (to codepage), or To Unicode (from 
codepage). Here is a list of the canned callbacks in ICU:

• UCNV_FROM_U_CALLBACK_SUBSTITUTE, UCNV_TO_U_CALLBACK_SUBSTITUTE: This 
callback is installed by default. It will write the codepage's substitute sequence or a 
user-set substitute sequence (in the FromU case), or U+FFFD in the toUnicode case.

• UCNV_FROM_U_CALLBACK_SKIP, UCNV_TO_U_CALLBACK_SKIP: Simply ignores any 
invalid characters in the input, no error is returned.

• UCNV_FROM_U_CALLBACK_STOP, UCNV_TO_U_CALLBACK_STOP: Stop at the error. 
Return the error to the caller. (When using the 'BUFFER' mode of conversion, the 
source and target pointers returned can be examined to determine where the error 
occurred. ucnv_getInvalidUChars() and ucnv_getInvalidChars() return the 
actual text which failed).

• UCNV_FROM_U_CALLBACK_ESCAPE, UCNV_TO_U_CALLBACK_ESCAPE: This callback is 
especially useful for debugging. Missing codepage characters are replaced by strings 
such as '%U094D' with the Unicode value, and missing Unicode chars are replaced 
with text of the form '%X0A' where the codepage had the unconvertible byte hex 0A.

When a callback is set, a "context" pointer is also provided. How this pointer is created 
depends on the specific callback. There is usually a createContext() function for 
that specific callback, where the caller can set certain options for the callback. Consult 
the documentation for the specific callback you are using. For ICU's canned callbacks, 
this pointer may be set to NULL. The functions for setting a different callback also 
return the old callback, and the old context pointer. These may be stored so that the old 
callback is re-installed when an operation is finished. 

Additionally the following options can be passed as the context parameter to 
UCNV_FROM_U_CALLBACK_ESCAPE callback function to produce different 
outputs. 

UCNV_ESCAPE_ICU      %U12345
UCNV_ESCAPE_JAVA     \u1234
UCNV_ESCAPE_C        \udbc9\udd36  for Plane 1 and 
                      \u1234        for Plane 0 codepoints.
UCNV_ESCAPE_XML_DEC  &#4460;       number expressed in Decimal

127 ICU v3.8 User Guide



UCNV_ESCAPE_XML_HEX  &#x1234;      number expressed in Hexadecimal.
 

Here are some examples of how to use callbacks.
UConverter              *u;
void                    *oldContext, *newContext;
UConverterFromUCallback  oldAction, newAction;
u = ucnv_open("shift_jis", &myError);
... /* do some conversion with u from unicode.. */
ucnv_setFromUCallBack(
    u, MY_FROMU_CALLBACK, newContext, &oldAction, &oldContext, &myError);
... /* do some other conversion from unicode */
/* Now, set the callback back */
ucnv_setFromUCallBack(
    u, oldAction, oldContext, &newAction, &newContext, &myError);

Writing a callback is somewhat involved, and will be covered more completely in a future 
version of this document. One might look at the source to the provided callbacks as a 
starting point, and address any further questions to the mailing list.

Basically, callback, unlike other ICU functions which expect to be called with 
U_ZERO_ERROR as the input, is called in an exceptional error condition. The callback is a 
kind of 'last ditch effort' to rectify the error which occurred, before it is returned back to 
the caller. This is why the implementation of STOP is very simple:

void UCNV_FROM_U_CALLBACK_STOP(...) { }

The error code such as U_INVALID_CHAR_FOUND is returned to the user. If the callback 
determines that no error should be returned to the user, then the callback must set the 
error code to U_ZERO_ERROR. Note that this is a departure from most ICU functions, 
which are supposed to check the error code and return immediately if it is set.

See the functions ucnv_cb_write...() for functions which a callback may use to 
perform its task.

Modes of Conversion

When a converter is instantiated, it can be used to convert both in the Unicode to 
Codepage direction, and also in the Codepage to Unicode direction. There are three ways 
to use the converters, as well as a convenience function which does not require the 
instantiation of a converter.

1. Single-String: Simplest type of conversion to or from Unicode. The data is entirely 
contained within a single string.

2. Character: Converting from the codepage to a single Unicode codepoint, one at a 
time.

3. Buffer: Convert data which may not fit entirely within a single buffer. Usually the 

128 ICU v3.8 User Guide



most efficient and flexible.

4. Convenience: Convert a single buffer from one codepage to another through Unicode, 
without requiring the instantiation of a converter.

1. Single-String

Data must be contained entirely within a single string or buffer.
conv = ucnv_open("shift_jis", &status);
/* Convert from Unicode to Shift JIS */
len = ucnv_fromUChars(conv, target, targetLen, source, sourceLen, &status);
ucnv_close(conv);
conv = ucnv_open("iso-8859-3", &status);
/* Convert from ISO-8859-3 to Unicode */
len = ucnv_toUChars(conv, target, targetSize, source, sourceLen, &status);
ucnv_close(conv);

2. Character

In this type, the input data is in the specified codepage. With each function call, only the 
next Unicode codepoint is converted at a time. This might be the most efficient way to 
scan for a certain character, or other processing of a single character at a time, because 
converters are stateful. This works even for multibyte charsets, and for stateful ones such 
as iso-2022-jp.

conv = ucnv_open("Big-5", &status);
UChar32 target;
while(source < sourceLimit) {
    target = ucnv_getNextUChar(conv, &source, sourceLimit, &status);
    ASSERT(status);
    processChar(target);
}

3. Buffered or Streamed

This is used in situations where a large document may be read in off of disk and 
processed. Also, many codepages take multiple bytes to encode a character, or have state. 
These factors make it impossible to convert arbitrary chunks of data without maintaining 
state across chunks. Even conversion from Unicode may encounter a leading surrogate at 
the end of one buffer, which needs to be paired with the trailing surrogate in the next 
buffer.

A basic API principle of the ICU to/from Unicode functions is that they will ALWAYS 
attempt to consume all of the input (source) data, unless the output buffer is full or some 
other error occurs. In other words, there is no need to ever test whether all of the source 
data has been consumed.

129 ICU v3.8 User Guide



The basic loop that is used with the ICU buffer conversion routines is the same in the to 
and from Unicode directions. In the following pseudocode, either 'source' (for 
fromUnicode) or 'target' (for toUnicode) are UTF-16 UChars.

UErrorCode err = U_ZERO_ERROR;
while (... /*input data available*/ ) {
    ... /* read input data into buffer */
    
    source = ... /* beginning of read data */;
    sourceLimit = source + readLength; // end + 1
    UBool flush = (further input data still available) // (i.e. feof())
    /* loop until all source has been processed */
    do {
        /* set up target pointers */
        target = ... /* beginning of output buffer */;
        targetLimit = target + sizeOfOutput;
        err = U_ZERO_ERROR; /* so that the to/from does not fail */
        ucnv_to/fromUnicode(converter, &target, targetLimit,
                    &source, sourceLimit, NULL, flush, &err);
        ... /* write (target-beginningOfOutputBuffer) items
               starting at beginning of output buffer */
    } while (err == U_BUFFER_OVERFLOW_ERROR);
    if(U_FAILURE(error)) {
        ... /* process error */
        break; /* out of the 'do' loop */
    }
}
/* loop to read input data */
if(U_FAILURE(error)) {
    ... /* process error further */
}

The above code optimizes for processing entire chunks of input data. An efficient size for 
the output buffer can be calculated as follows. (in bytes):

ucnv_getMinCharSize() * inputBufferSize * sizeof(UChar)
ucnv_getMaxCharSize() * inputBufferSize

There are two loops used, an outer and an inner. The outer loop fetches input data to keep 
the source buffer full, and the inner loop 'writes' out data to keep the output buffer empty.

Note that while this efficiently handles data on the input side, there are some cases where 
the size of the output buffer is fixed. For instance, in network applications it is sometimes 
desirable to fill every output packet completely (not including the last packet in the 
sequence). The above loop does not ensure that every output buffer is completely full. For 
example, if a 4 UChar input buffer was used, and a 3 byte output buffer with 
fromUnicode(), the loop would typically write 3 bytes, then 1, then 3, and so on. If, 
instead of efficient use of the input data, the goal is filling output buffers, a slightly 
different loop can be used.

In such a scenario, the inner write does not occur unless a buffer overflow occurs OR 
'flush' is true. So, the 'write' and resetting of the target and targetLimit pointers would 
only happen if(err == U_BUFFER_OVERFLOW_ERROR || flush == TRUE) 

130 ICU v3.8 User Guide



The flush parameter on each conversion call should be set to FALSE, until the conversion 
call is called for the last time for the buffer. This is because the conversion is stateful. On 
the last conversion call, the flush parameter should be set to TRUE. More details are 
mentioned in the API reference in ucnv.h.

4. Pre-flighting

Preflighting is the process of asking the conversion API for the size of target buffer 
required. This is accomplished by calling the ucnv_fromUChars and ucnv_toUChars 
functions.

UChar uchar2;
char input_char_buffer = "This is some text";

targetsize = ucnv_toUChars(myConverter, NULL, targetcapacity,
                           input_char_buffer, sizeof(input_char_buffer), &err);
if(err==U_BUFFER_OVERFLOW_ERROR) {
    err=U_ZERO_ERROR;
    uchar2=(UChar*)malloc((targetsize) * sizeof(UChar));
    targetsize = ucnv_toUChars(myConverter, uchar2, targetsize,
                               input_char_buffer, sizeof(input_char_buffer), &err);
    if(U_FAILURE(err)) {
        printf("ucnv_toUChars() FAILED %s\n", myErrorName(err));
    }
    else {
        printf("ucnv_toUChars() o.k.\n");
    }
}

This is inefficient since the conversion is performed twice, once for finding the 
size of target and once for writing to the target.

5. Convenience

ICU provides some convenience functions for conversions:
ucnv_toUChars(myConverter, target_uchars, targetsize,
                           input_char_buffer, sizeof(input_char_buffer), &err);
ucnv_fromUChars(cnv, cTarget, (cTargetLimit-cTarget),
                     uSource, (uSourceLimit-uSource), &errorCode);
char target[100];
UnicodeString str("ABCDEF", "iso-8859-1");
int32_t targetsize = str.extract(0, str.length(), target, sizeof(target), "SJIS");
target[targetsize] = 0; /* NULL termination */

Conversion Examples

See the ICU Conversion Examples for more information.

131 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icu/trunk/source/samples/ucnv/convsamp.cpp
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/strings.sxw#preflight
http://icu-project.org/apiref/icu4c/ucnv_8h.html


Conversion Data
Introduction

Algorithmic vs. Data-based

In a comprehensive conversion library, there are three kinds of codepage converter 
implementations: converters that use algorithms, mapping data, or those converters that 
use both.

• Most codepages have a simple and straightforward structure but have an arbitrary 
relationship between input and output character codes. Mapping tables are necessary to 
define the conversion. If the codepage characters use more than one byte each, then the 
mapping table must also define the structure of the codepage.

• Algorithmic converters work by transforming the input stream with built-in algorithms 
and possibly small, hard coded tables. The conversion can be complex, but the actual 
mapping of a character code is done numerically if the converter is purely algorithmic.

• In some cases, a converter needs to be algorithmic for its basic operations but also 
relies on mapping data.

ICU provides converter implementations for all three groups of codepages. Since ICU 
always converts, to or from Unicode, the purely algorithmic converters are the ones for 
Unicode encodings (such as UTF-8, UTF-16BE, UTF-16LE, UTF-32BE, UTF-32LE, 
SCSU, BOCU-1 and UTF-7). Since Unicode is based on US-ASCII and ISO-8859-1 
("ISO Latin-1"), these encodings also use algorithmic converters for performance reasons.

Most other codepages use simple byte sequences but are not encodings of Unicode. They 
are converted with generic code using mapping data tables. ICU also supports a few 
encodings, like ISO-2022 and its variants, that employ an algorithmic structure to switch 
between a set of codepages. The converters for these encodings are algorithmic but use 
mapping tables for the embedded codepages.

Stateful vs. Stateless

Character encodings are either stateful or stateless:

• Stateless encodings define a byte sequence for each character. Complete character byte 
sequences can be used in any order, and the same complete character byte sequences 
always encodes the same characters. It is preferable to always encode one character 
using the same byte sequence.

• Stateful encodings define byte sequences that change the state of the text stream. 
Depending on the current state, the same byte sequence may encode a different 
character and the same character may be encoded with different byte sequences.

132 ICU v3.8 User Guide



This distinction between stateless and stateful encodings is important, because it 
determines if any available ICU converter implementation is used. The following are 
some more important considerations related to stateless versus stateful encodings:

• A runtime converter object is always stateful, even for "stateless" encodings. They are 
always stateful because an input buffer may end with a partial byte sequence that is to 
be continued in the next input buffer in the following conversion call. The information 
about this is stored in the converter object. Similarly, if the input is Unicode text, then 
an input buffer may end with the first of a pair of surrogates. The converter object also 
stores overflow bytes or code units if the result of a character mapping did not fit 
entirely into the output buffer.

• Stateless encodings are stateful in our converter implementation to interpret "complete 
byte sequences". They are "stateful" because many encodings can have the same byte 
value used in different positions of byte sequences for different characters; a specific 
byte value may be a lead byte or a trail byte. For instance, the lead and trail byte values 
overlap in codepages like Shift-JIS. If a program does not start reading at a character 
boundary, it may instead interpret the byte sequences from two or more separate 
characters as one character. Often, character boundaries can be detected reliably only 
by reading the non-Unicode text linearly from the beginning. This can be a problem 
for non-Unicode text processing, where text insertion, deletion, and searching are 
common. The UTF-8/16/32 encodings do not have this problem because the single, 
lead, or trail units have disjoint values and character boundary can be easily found.

• Some stateful encodings only switch between two states: one with one byte per 
character and one with two bytes per character. This type of encoding is very common 
in mainframe systems based on Extended Binary Coded Decimal Interchange Code 
(EBCDIC) and is actually handled in ICU with almost the same code and type of 
mapping tables as stateless codepages.

• The classifications of algorithmic vs. data-based converters and of stateless vs. stateful 
encodings are independent of each other: UTF-8, UTF-16, and UTF-32 encodings are 
algorithmic but stateless; UTF-7 and SCSU encodings are algorithmic and stateful; 
Windows-1252 and Shift-JIS encodings are data-based and stateless; ISO-2022-JP 
encoding is algorithmic, data-based, and stateful.

Scope of this chapter

The following sections in this chapter discuss the mapping data tables that are used in 
ICU. For related material, please see:  

• ICU character set collection  

• Unicode Technical Report 22  

• "Cross Mapping Tables" in Unicode Online Data

133 ICU v3.8 User Guide

http://www.unicode.org/unicode/onlinedat/online.html
http://www.unicode.org/unicode/reports/tr22/
http://icu-project.org/charts/charset/


ICU Mapping Table Data Files

• .ucm File Format  

• State table syntax in .ucm files  

• Extension and delta tables  

• Examples for codepage state tables  

Overview

As stated above, most ICU converters rely on character mapping tables. ICU 1.8 has one 
single data structure for all character mapping tables, which is used by a generic Multi-
Byte Character Set (MBCS) converter implementation. The implementation is flexible 
enough to handle stateless encodings with the following parameters:

• Support for variable-length, byte-based encodings with 1 to 4 bytes per character.

• Support for all Unicode characters (code points 0..0x10ffff). Since ICU 1.8 uses the 
UTF-16 encoding as its Unicode encoding form, surrogate pairs are completely 
supported.

• Efficient distinction between unassigned (unmappable) and illegal byte sequences.

• It is not possible to convert from Unicode to byte sequences with leading zero bytes.

• Simple stateful encodings are also handled using only Shift-In and Shift-Out (SI/SO) 
codes and one single-byte and one double-byte state.

In the context of conversion tables, "unassigned" code points or codepage byte 
sequences are valid but do not have a mapping. This is different from 
"unassigned" code points in a character set like Unicode or Shift-JIS which are 
codes that do not have assigned characters.

Prior to version 1.8, ICU used more specific, more limited, converter implementations for 
Single Byte Character Set (SBCS), Double Byte Character Set (DBCS), and the stateful 
Extended Binary Coded Decimal Interchange Code (EBCDIC) codepages. Mapping table 
data is provided in text files. ICU comes with several dozen .ucm files (UniCode 
Mapping, in icu/source/data/mappings/) that are translated at build time by its 
makeconv tool (source code in icu/source/tools/makeconv). The makeconv tool 
writes one binary, memory-mappable .cnv file per .ucm file. The resulting .cnv files are 
included by default in the common data file for use at runtime.

The format of the .ucm files is similar to the format of the UPMAP files as provided by 
IBM® in the codepage repository and as used in the uconvdef tool on AIX. UPMAP is a 
text file that specifies the mapping of a codepage character to and from Unicode.

The format of the .cnv files is ICU-specific. The .cnv file format may change between 

134 ICU v3.8 User Guide



ICU versions even for the same .ucm files. The .ucm file format may be extended to 
include more features.

The following sections concentrate on the .ucm file format. The .cnv file format is 
described in the source code in the icu/source/common/ucnvmbcs.c directory and is 
updated using the MBCS converter implementation.

These conversion tables can have more than one name. ICU allows multiple names 
("aliases") for the same encoding. It matches a requested encoding name against a list of 
names in icu/source/data/mappings/convrtrs.txt and when it finds a match, ICU 
opens a converter with the name in the leftmost position in the matching line. The name 
matching is not case-sensitive and ICU ignores spaces, dashes, and underscores. At build 
time, the gencnval tool located in the icu/source/tools/gencnval directory, 
generates a binary form of the convrtrs.txt file as a data file for runtime for the 
cnvalias.icu file ("Converter Aliases data file").

.ucm File Format

.ucm files are line-oriented text files. Empty lines and comments starting with '#' are 
ignored.  

A .ucm file contains two sections:

• a header with general specifications of the codepage

• a mapping table section between the "CHARMAP" and "END CHARMAP" lines.

For example:
<code_set_name>               "IBM-943"
<char_name_mask>              "AXXXX"
<mb_cur_min>                  1
<mb_cur_max>                  2
<uconv_class>                 "MBCS"
<subchar>                     \xFC\xFC
<subchar1>                    \x7F
<icu:state>                   0-7f, 81-9f:1, a0-df, e0-fc:1
<icu:state>                   40-7e, 80-fc
#
CHARMAP
#
#
#ISO 10646      IBM-943
#_________      _________
<U0000> \x00 |0
<U0001> \x01 |0
<U0002> \x02 |0
<U0003> \x03 |0
...
<UFFE4> \xFA\x55 |1
<UFFE5> \x81\x8F |0
<UFFFD> \xFC\xFC |2
END CHARMAP

The header fields are:    

135 ICU v3.8 User Guide



• code_set_name - The name of the codepage. The makeconv tool generates the .cnv file 
name from the .ucm  filename but uses this header field for the converter name that it 
writes into the .cnv file for ucnv_getName. The makeconv tool prints a warning 
message if this header field does not match the file name. The file name is not case-
sensitive.

• char_name_mask - This is ignored by makeconv tool. "AXXXX" specifies that the 
POSIX-style character "name" consists of one letter (Alpha) followed by 4 
hexadecimal digits. Since ICU only uses Unicode character "names" (for example, 
code points) the format is fixed (see below).

• mb_cur_min - The minimum number of bytes per character.

• mb_cur_max - The maximum number of bytes per character.

• uconv_class - This can be either "SBCS", "DBCS", "MBCS", or 
"EBCDIC_STATEFUL"

The most general converter class/type/category is MBCS, which requires that the 
codepage structure has the following <icu:state> lines. The other types of converters 
are subsets of MBCS. The makeconv tool uses predefined state tables for these other 
converters when their structure is not explicitly specified. The following describes how 
the converter types are interpreted:

• MBCS: Generic ICU converter type, requires a state table

• SBCS: Single-byte, 8-bit codepages

• DBCS: Double-byte EBCDIC codepages

• EBCDIC_STATEFUL: Mixed Single-Byte or Double-Byte EBCDIC codepages 
(stateful, using SI/SO)

The following shows the exact implied state tables for non-MBCS types. A state table 
may need to be overwritten in order to allow supplementary characters (U+10000 and 
up).

• subchar - The substitution character byte sequence for this codepage. This sequence 
must be a valid byte sequence according to the codepage structure.

• subchar1 - This is the single byte substitution character when subchar is defined. Some 
IBM converter libraries use different substitution characters for "narrow" and "wide" 
characters (single-byte and double-byte). ICU uses only one substitution character per 
codepage because it is common industry practice.

• icu:state - See the "State Table Syntax in .ucm Files" section for a detailed description 
of how to specify a codepage structure.

• icu:charsetFamily - This specifies if the codepage is ASCII or EBCDIC based.

136 ICU v3.8 User Guide



The subchar and subchar1 fields have been known to cause some confusion. The 
following conditions outline when each are used:

• Conversion from Unicode to a codepage occurs and an unassigned code point is found

• If a subchar1 byte is defined and a subchar1 mapping is defined for the code point 
(with a |2 precision indicator), output the subchar1

• Otherwise output the regular subchar

• Conversion from a codepage to Unicode occurs and an unassigned codepoint is found

• If the input sequence is of length 1 and a subchar1 byte is specified for the 
codepage, output U+001A

• Otherwise output U+FFFD

In the CHARMAP section of a .ucm file, each line contains a Unicode code point (like 
<U(1-6 hexadecimal digits for the code point)> ), a codepage character byte sequence 
(each byte like \xhh  (2 hexadecimal digits} ), and an optional "precision" or "fallback" 
indicator.

The precision indicator either must be present in all mappings or in none of them. The 
indicator is a pipe symbol followed by a 0, 1, 2, or 3 that has the following meaning:

• 0 - A "normal", roundtrip mapping from a Unicode code point and back.

• 1 - A "fallback" mapping only from Unicode to the codepage, but not back.

• 2 – A subchar1 mapping. The code point is unmappable, and if a substitution is 
performed, then the subchar1 should be used rather than the subchar. Otherwise, such 
mappings are ignored.

• 3 - A "reverse fallback" mapping only from the codepage to Unicode, but not back to 
the codepage

Fallback mappings from Unicode typically do not map codes for the same character, but 
for "similar" ones. This mapping is sometimes done if a character exists in Unicode but 
not in the codepage. To replace it, ICU maps a codepage code to a similar-looking code 
for human-readable output. This mapping feature is not useful for text data transmission 
especially in markup languages where a Unicode code point can be escaped with its code 
point value. The ICU application programming interface (API) ucnv_setFallback() 
controls this fallback behavior.

"Reverse fallbacks" are technically similar, but the same Unicode character can be 

137 ICU v3.8 User Guide



encoded twice in the codepage. ICU always uses reverse fallbacks at runtime.

A subset of the fallback mappings from Unicode is always used at runtime: Those that 
map private-use Unicode code points. Fallbacks from private-use code points are often 
introduced as replacements for previous roundtrip mappings for the same pair of codes. 
These replacements are used when a Unicode version assigns a new character that was 
previously mapped to that private-use code point. The mapping table is then changed to 
map the same codepage byte sequence to the new Unicode code point (as a new 
roundtrip) and the mapping from the old private-use code point to the same codepage 
code is preserved as a fallback.

State table syntax in .ucm files

The conversion to Unicode uses a state machine to achieve the above capabilities with 
reasonable data file sizes. The state machine information itself is loaded with the 
conversion data and defines the structure of the codepage, including which byte 
sequences are valid, unassigned, and illegal. This data cannot (or not easily) be computed 
from the pure mapping data. Instead, the .ucm files for MBCS encodings have additional 
entries that are specific to the ICU makeconv tool. The state tables for SBCS, DBCS, and 
EBCDIC_STATEFUL are implied, but they can be overridden (see the examples below). 
These state tables are specified in the header section of the .ucm file that contains the 
<icu:state> element. Each line defines one aspect of the state machine. The state 
machine uses a table of as many rows as there are states (= as many as there are 
<icu:state> lines). Each row has 256 entries; one for each possible byte value.

The state table lines in the .ucm header conform to the following Extended Backus-Naur 
Form (EBNF)-like grammar (whitespace is allowed between all tokens):    

row=[[firstentry ','] entry (',' entry)*]
firstentry="initial" | "surrogates"
           (initial state (default for state 0), output is all surrogate pairs)

Each state table row description (that follows the <icu:state>) begins with an optional 
initial or surrogates keyword and is followed by one or more column entries. For the 
purpose of codepage state tables, the states=rows in the table are numbered beginning at 0 
for the first line in the .ucm file header. The numbers are assigned implicitly by the 
makeconv tool in order of the <icu:state> lines.

A row may be empty (nothing following the <icu:state>) — that is equivalent to "all 
illegal" or 0-ff.i and is useful for trail byte states for all-illegal byte sequences.

entry=range [':' nextstate] ['.' [action]]
range     = number ['-' number]
nextstate = number (0..7f)
action    = 'u' | 's' | 'p' | 'i'
                (unassigned, state change only, surrogate pair, illegal)
number    = (1- or 2-digit hexadecimal number)

138 ICU v3.8 User Guide



Each column entry contains at least one hexadecimal byte value or value range and is 
separated by a comma. The column entry specifies how to interpret an input byte in the 
row's state. If neither a next state nor an action is explicitly specified (only the byte range 
is given) then the byte value terminates the byte sequence, results in a valid mapping to a 
Unicode BMP character, and resets the state number to 0. The first line with 
<icu:state> is called state 0.

The next state can be explicitly specified with a separating colon ( : ) followed by the 
number of the state (=number/index of the row, starting at 0). This specification is mostly 
used for intermediate byte values (such as bytes that are not the last ones in a sequence). 
The state machine needs to proceed to the next state and read another byte. In this case, 
no other action is specified.

If the byte value(s) terminate(s) a byte sequence, then the byte sequence results in the 
following depending on the action that is announced with a period ( . ) followed by a 
letter:  

letter meaning
u Unassigned. The byte sequence is valid but does not encode a character.
none (no letter) - Valid. If no action letter is specified, then the byte sequence is 

valid and encodes a Unicode character up to U+ffff
p Surrogate Pair. The byte sequence is valid and the result may map to a UTF-

16 encoded surrogate pair
i Illegal. The byte sequence is illegal. This is the default for all byte values in a 

row that are not otherwise specified with column entries
s State change only. The byte sequence does not encode any character but may 

change the state number. This may be used with simple, stateful encodings 
(for example, SI/SO codes), but currently it is not used by ICU.

If an action is specified without a next state, then the next state number defaults to 0. In 
other words, a byte value (range) terminates a sequence if there is an action specified for 
it, or when there is neither an action nor a next state. In this case, the byte value defaults 
to "valid, next state is 0" (equivalent to :0.).

If a byte value is not specified in any column entry row, then it is illegal in the current 
state. If a byte value is specified in more than one column entry of the same row, then 
ICU uses the last state. These specifications allow you to assign common properties for a 
wide byte value range followed by a few exceptions. This is easier than having to specify 
mutually exclusive ranges, especially if many of them have the same properties.

The optional keyword at the beginning of a state line has the following effect:  

139 ICU v3.8 User Guide



keyword effect
initial The state machine can start reading byte sequences in this state. State 0 

is always an initial state. Only initial states can be next states for final 
byte values. In an initial state, the Unicode mappings for all final bytes 
are also stored directly in the state table.

surrogates All Unicode mappings for final bytes in non-initial states are stored in a 
separate table of 16-bit Unicode (UTF-16) code units. Since most legacy 
codepages map only to Unicode code points up to U+ffff (the Basic 
Multilingual Plane, BMP), the default allocation per mapping result is 
one 16-bit unit. Individual byte values can be specified to map to 
surrogate pairs (= two 16-bit units) with action letter p. The surrogates 
keyword specifies the values for the entire state (row). Surrogate pair 
mapping entries can still hold single units depending on the actual 
mapping data, but single-unit mapping entries cannot hold a pair of 
units. Mapping to single-unit entries is the default because the mapping 
is faster, uses half as much memory in the code units table, and is 
sufficient for most legacy codepages.

When converting to Unicode, the state machine starts in state number 0. In each iteration, 
the state machine reads one input (codepage) byte and either proceeds to the next state as 
specified, or treats it as a final byte with the specified action and an optional non-0 next 
(initial) state. This means that a state table needs to have at least as many state rows as the 
maximum number of bytes per character, which is the maximum length of any byte 
sequence.

Exception: For EBCDIC_STATEFUL codepages, double-byte sequences start in state 1, 
with the SI/SO bytes switching from state 0 to state 1 or from state 1 to state 0. See the 
default state table below.

Extension and delta tables

ICU 2.8 adds an additional "extension" data structure to its conversion tables. The new 
data structure supports a number of new features. When any of the following features are 
used, then all mappings must use a precision indicator.

Converting multiple characters as a unit

Before ICU 2.8, only one Unicode code point could be converted to or from one complete 
codepage byte sequence. The new data structure supports the conversion between 
multiple Unicode code points and multiple complete codepage byte sequences. (A 

140 ICU v3.8 User Guide



"complete codepage byte sequence" is a sequence of bytes which is valid according to the 
state table.)

Syntax: Simply write more than one Unicode code point on a mapping line, and/or more 
than one complete codepage byte sequence. Plus signs (+) are optional between code 
points and between bytes. For example, 
ibm-1390_P110-2003.ucm contains  
    <U304B><U309A> \xEC\xB5 |0
and test3.ucm contains
    <U101234>+<U50005>+<U60006> \x07+\x00+\x01\x02\x0f+\x09 |0

 For more examples see the ICU conversion data and the 
icu/source/test/testdata/test*.ucm test data files.

ICU 2.8 supports up to 19 UChars on the Unicode side of a mapping and up to 31 bytes 
on the codepage side.

The longest match possible is converted in order to properly handle tables where the 
source sides of some mappings are prefixes of the source sides of other mappings.

As a side effect, if conversion offsets are written and a potential match crosses buffer 
boundaries, then some of the initial offsets for the following output may be unknown (-1) 
because their input was stored in the converter from a previous buffer while looking for a 
longer match.

Conversion tables for SI/SO-stateful (usually EBCDIC_STATEFUL) codepages cannot 
include mappings with SI or SO bytes or where there are SBCS characters in a multi-
character byte sequence. In other words, for these tables there must be exactly one byte in 
a mapping or else a sequence of one or more DBCS characters.

Delta (extension-only) conversion table files

Physically, a binary conversion table (.cnv) file automatically contains both a traditional 
"base table" data structure for the 1:1 mappings and a new "extension table" for the m:n 
mappings if any are encountered in the .ucm file. An extension table can also be 
requested manually by splitting the CHARMAP into two. The first CHARMAP section will be 
used for the base table, and the second only for the extension table. M:n mappings in the 
first CHARMAP will be moved to the extension table.

In order to save space for very similar conversion tables, it is possible to create delta .cnv 
files that contain only an extension table and the name of another .cnv file with a base 
table. The base file must be split into two CHARMAPs such that the base file's base table 
does not contain any mappings that contradict any of the delta file's mappings.

The delta (extension-only) file uses only a single CHARMAP section. In addition, it nees a 
line in the header that both causes building just a delta file and specifies the name of the 
base file. For example, windows-936-2000.ucm contains 

141 ICU v3.8 User Guide



    <icu:base>         “ibm-1386_P100-2002”

makeconv ignores all mappings for the delta file that are also in the base file's base table. 
If the two conversion tables are sufficiently similar, then the delta file will contain only a 
relatively small set of mappings, which results in a small .cnv file. At runtime, both the 
delta file and its base file are loaded, and the base file's base table is used together with 
the extension file. The base file works as a standalone file, using its own extension table 
for its full set of mappings. The base file must be in the same ICU data package as the 
delta file.

The hard part is to split the base file's mappings into base and extension CHARMAPs such 
that the base table does not overlap with any delta file, while all shared mappings should 
be in the base table. (The base table data structure is more compact than the extension 
table data structure.)

ICU provides the ucmkbase tool in the ucmtools collection to do this.

For example, the following illustrates how to use ucmkbase to make a base .ucm file for 
three Shift-JIS conversion table variants. (ibm-943_P15A-2003.ucm becomes the base.)

C:\tmp\icu\ucm>ren ibm-943_P15A-2003.ucm ibm-943_P15A-2003.orig
C:\tmp\icu\ucm>ucmkbase ibm-943_P15A-2003.orig ibm-943_P130-1999.ucm ibm-942_P12A-
1999.ucm > ibm-943_P15A-2003.ucm

 

After this, the two delta .ucm files only need to get the following line added before the 
start of their CHARMAPs: 

<icu:base>                    "ibm-943_P15A-2003"

The ICU tools and runtime code handle DBCS-only conversion tables specially, allowing 
them to be built into delta files with MBCS or EBCDIC_STATEFUL base files without 
using their single-byte mappings, and without ucmkbase moving the single-byte 
mappings of the base file into the base file's extension table. See for example ibm-
16684_P110-2003.ucm and ibm-1390_P110-2003.ucm.

Other enhancements

ICU 2.8 adds support for the specification of which unassigned Unicode code points 
should be mapped to subchar1 rather than the default subchar. See the discussion of 
subchar1 above for more details.

The extension table data structure also removes one minor limitation on ICU conversion 
tables: Fallback mappings to a single byte 00 are now allowed and handled properly. ICU 
versions before 2.8 could only handle roundtrips to/from 00.

142 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/data/trunk/charset/source/ucmtools/


Examples for codepage state tables

The following shows the exact implied state tables for non-MBCS types, A state table 
may need to be overwritten in order to allow supplementary characters (U+10000 and 
up).

US-ASCII
0-7f

This single-row state table describes US-ASCII. Byte values from 0 to 0x7f are valid and 
map to Unicode characters up to U+ffff. Byte values from 0x80 to 0xff are illegal.

Shift-JIS
0-7f, 81-9f:1, a0-df, e0-fc:1
40-7e, 80-fc

This two-row state table describes the Shift-JIS structure which encodes some characters 
with one byte each and others with two bytes each. Bytes 0 to 0x7f and 0xa0 to 0xdf are 
valid single-byte encodings. Bytes 0x81 to 0x9f and 0xe0 to 0xfc are lead bytes. (For 
example, they are followed by one of the bytes that is specified as valid in state 1). A byte 
sequence of 0x85 0x61 is valid while a single byte of 0x80 or 0xff is illegal. Similarly, a 
byte sequence of 0x85 0x31 is illegal.

EUC-JP
0-8d, 8e:2, 8f:3, 90-9f, a1-fe:1
a1-fe
a1-e4
a1-fe:1, a1:4, a3-af:4, b6:4, d6:4, da-db:4, ed-f2:4
a1-fe.u

This fairly complicated state table describes EUC-JP. Valid byte sequences are one, two, 
or three bytes long. Two-byte sequences have a lead byte of 0x8e and end in state 2, or 
have lead bytes 0xa1 to 0xfe and end in state 1. Three-byte sequences have a lead byte of 
0x8f and continue in state 3. Some final byte value ranges are entirely unassigned, 
therefore they end in state 4 with an action letter of u for "unassigned" to save significant 
memory for the code units table. Assigned three-byte sequences end in state 1 like most 
two-byte sequences.

SBCS default state table: 
0-ff

SBCS by default implies the structure for single-byte, 8-bit codepages.

143 ICU v3.8 User Guide



DBCS default state table: 
0-3f:3, 40:2, 41-fe:1, ff:3
41-fe
40

Important:
These are four states — the fourth has an empty line (equivalent to 0-ff.i)! DBCS 
codepages, by default, are defined with the EBCDIC double-byte structure. Valid 
sequences are pairs of bytes from 0x41 to 0xfe and the one pair 0x40/0x40 for the double-
byte space. The structure is defined such that all illegal byte sequences are always two in 
length. Therefore, every byte in the initial state is a lead byte.

EBCDIC_STATEFUL default state table: 
0-ff, e:1.s, f:0.s
initial, 0-3f:4, e:1.s, f:0.s, 40:3, 41-fe:2, ff:4
0-40:1.i, 41-fe:1., ff:1.i
0-ff:1.i, 40:1.
0-ff:1.i

This is the structure of Mixed Single-byte and Double-byte EBCDIC codepages, which 
are stateful and use the Shift-In/Shift-Out (SI/SO) bytes 0x0f/0x0e. The initial state 0 is 
almost the same as for SBCS except for SI and SO. State 1 is also an initial state and is 
the basis for a state-shifted version of the DBCS structure above. All double-byte 
sequences return to state 1 and SI switches back to state 0. SI and SO are also allowed in 
their own states with no effect.

If a DBCS or EBCDIC_STATEFUL codepage maps supplementary (non-BMP) 
Unicode characters, then a modified state table needs to be specified in the .ucm 
file. The state table needs to use the surrogates designation for a table row or 
.p for some entries.

The reuse of a final or intermediate state (shown for EUC-JP) is valid for as long 
as there is no circle in the state chain. The mappings will be unique because of  
the different path to the shared state (sharing a state saves some memory; each 
state table row occupies 1kB in the .cnv file). This table also shows the 
redefinition of byte value ranges within one state row (State number 3)as 
shorthand. State 3 defines bytes a1-fe to go to state 1, but the following entries 
redefine and override certain bytes to go to state 4.

An initial state never needs a surrogates designation or .p because Unicode mapping 
results in initial states that are stored directly in the state table, providing enough room in 
each cell. The size of a generated .cnv mapping table file depends primarily on the 

144 ICU v3.8 User Guide



number and distribution of the mappings and on the number of valid, multi-byte 
sequences that the state table allows. Each state table row takes up one kilobyte.

For single-byte codepages, the state table cells contain all two-Unicode mappings. Code 
point results for multi-byte sequences are stored in an array with enough room for all 
valid byte sequences. For all byte sequences that end in a surrogates or .p state, 
Unicode allocates two code units.

If possible, valid state table entries may be changed to .u to reduce the number of valid, 
assignable sequences and to make the .cnv file smaller. If additional states are necessary, 
then each additional state itself adds 1kB to the file size, diminishing the file size savings. 
See the EUC-JP example above.

For codepages with up to two bytes per character, the makeconv tool automatically 
compacts the bytes, if possible, by introducing one more trail byte state. This state 
replaces valid entries in the original trail state with unassigned entries and changes each 
lead byte entry to work with the new state if there are no mappings with that lead byte.

For codepages with up to three or four bytes per character, compaction must be done 
manually. However, if the verbose option is set on the command line, the makeconv tool 
will print useful information about unassigned byte sequences.

145 ICU v3.8 User Guide



Character Set Detection
Overview

Character set detection is the process of determining the character set, or encoding, of 
character data in an unknown format. This is, at best, an imprecise operation using 
statistics and heuristics. Because of this, detection works best if you supply at least a few 
hundred bytes of character data that's mostly in a single language. In some cases, the 
language can be determined along with the encoding.

Several different techniques are used for character set detection. For multi-byte 
encodings, the sequence of bytes is checked for legal patterns. The detected characters are 
also check against a list of frequently used characters in that encoding. For single byte 
encodings, the data is checked against a list of the most commonly occurring three letter 
groups for each language that can be written using that encoding. The detection process 
can be configured to optionally ignore html or xml style markup, which can interfere with 
the detection process by changing the statistics.

The input data can either be a Java input stream, or an array of bytes. The output of the 
detection process is a list of possible character sets, with the most likely one first. For 
simplicity, you can also ask for a Java Reader that will read the data in the detected 
encoding.

CharsetMatch

The CharsetMatch class holds the result of comparing the input data to a particular 
encoding. You can use an instance of this class to get the name of the character set, the 
language, and how good the match is. You can also use this class to decode the input 
data.

To find out how good the match is, you use the getConfidence() method to get a 
confidence value. This is an integer from 0 to 100. The higher the value, the more 
confidence there is in the match For example:

    CharsetMatch match = ...;
    int confidence;
    confidence = match.getConfidence();
    
    if (confidence < 50 ) {
        // handle a poor match...
    } else {
        // handle a good match...
    }

To get the name of the character set, which can be used as an encoding name in Java, you 
use the getName() method:

    CharsetMatch match = ...;
    byte characterData[] = ...;

146 ICU v3.8 User Guide



    String charsetName;
    String unicodeData;
    charsetName = match.getName();
    unicodeData = new String(characterData, charsetName);

To get the three letter ISO code for the detected language, you use the getLanguage() 
method. If the language could not be determined, getLanguage() will return null:

    CharsetMatch match = ...;
    String languageCode;
    languageCode = match.geLanguae();
    
    if (languageCode != null) {
        // handle the language code...
    }

If you want to get a Java String containing the converted data you can use the 
getString() method:

    CharsetMatch match = ...;
    String unicodeData;
    unicodeData = match.getString();

If you want to limit the number of characters in the string, pass the maximum number of 
characters you want to the getString() method:

    CharsetMatch match = ...;
    String unicodeData;
    unicodeData = match.getString(1024);

To get a java.io.Reader to read the converted data, use the getReader() method:
    CharsetMatch match = ...;
    Reader reader;
    StringBuffer sb = new StringBuffer();
    char[] buffer = new char[1024];
    int bytesRead = 0;

    reader = match.getReader();
            
    while ((bytesRead = reader.read(buffer, 0, 1024)) >= 0) {
        sb.append(buffer, 0, bytesRead);
    }
            
    reader.close();

CharsetDetector

The CharsetDetector class does the actual detection. It matches the input data against 
all character sets, and computes a list of CharsetMatch objects to hold the results. The 
input data can be supplied as an array of bytes, or as a java.io.InputStream.

To use a CharsetDetector object, first you construct it, and then you set the input data, 

147 ICU v3.8 User Guide



using the setText() method. Because setting the input data is separate from the 
construction, it is easy to reuse a CharsetDetector object:

    CharsetDetector detector;
    byte[] byteData = ...;
    InputStream streamData = ...;
    detector = new CharsetDetector();
    detector.setText(byteData);
    // use detector with byte data...
    detector.setText(streamData);
    // use detector with stream data...

If you want to know which character set matches your input data with the highest 
confidence, you can use the detect() method, which will return a CharsetMatch object 
for the match with the highest confidence:

    CharsetDetector detector;
    CharsetMatch match;
    byte[] byteData = ...;
    detector = new CharsetDetector();
    detector.setText(byteData);
    match = detector.detect();

If you want to know all of the character sets that could match your input data with a non-
zero confidence, you can use the detectAll() method, which will return an array of 
CharsetMatch objects sorted by confidence, from highest to lowest.:

    CharsetDetector detector;
    CharsetMatch matches[];
    byte[] byteData = ...;
    detector = new CharsetDetector();
    detector.setText(byteData);
    matches = detector.detectAll();
    for (int m = 0; m < matches.length; m += 1) {
        // process this match...
    }

The CharsetDetector class also implements a crude input filter that can strip out html 
and xml style tags. If you want to enable the input filter, which is disabled when you 
construct a CharsetDetector, you use the enableInputFilter() method, which takes 
a boolean. Pass in true if you want to enable the input filter, and false if you want to 
disable it:

    CharsetDetector detector;
    CharsetMatch match;
    byte[] byteDataWithTags = ...;
    detector = new CharsetDetector();
    detector.setText(byteDataWithTags);
    detector.enableInputFilter(true);
    match = detector.detect();

148 ICU v3.8 User Guide



If you have more detailed knowledge about the structure of the input data, it is better to 
filter the data yourself before you pass it to CharsetDetector. For example, you might 
know that the data is from an html page that contains CSS styles, which will not be 
stripped by the input filter.

You can use the inputFilterEnabled() method to see if the input filter is enabled:
    CharsetDetector detector;
    
    detector = new CharsetDetector();
    // do a bunch of stuff with detector
    // which may or may not enable the input filter...
    if (detector.inputFilterEnabled()) {
        // handle enabled input filter
    } else {
        // handle disabled input filter
    }

The CharsetDetector class also has two convenience methods that let you detect and 
convert the input data in one step: the getReader() and getString() methods:

    CharsetDetector detector;
    byte[] byteData = ...;
    InputStream streamData = ...;
    String unicodeData;
    Reader unicodeReader;
    detector = new CharsetDetector();
    unicodeData = detector.getString(byteData, null);
    unicodeReader = detector.getReader(streamData, null);

Note: the second argument to the getReader() and getString() methods is a String 
called declaredEncoding, which is not currently used. There is also a 
setDeclaredEncoding() method, which is also not currently used.

The following code is equivalent to using the convenience methods:
    CharsetDetector detector;
    CharsetMatch match;
    byte[] byteData = ...;
    InputStream streamData = ...;
    String unicodeData;
    Reader unicodeReader;
    detector = new CharsetDetector();
    detector.setText(byteData);
    match = detector.detect();
    unicodeData = match.getString();
    detector.setText(streamData);
    match = detector.detect();
    unicodeReader = match.getReader();CharsetDetector

149 ICU v3.8 User Guide



Detected Encodings

The following table shows all the encodings that can be detected. You can get this list 
(without the languages) by calling the getAllDetectableCharsets() method:

Character Set Languages
UTF-8
UTF-16BE
UTF-16LE
UTF-32BE
UTF-32LE
Shift_JIS Japanese
ISO-2022-JP Japanese
ISO-2022-CN Simplified Chinese
ISO-2022-KR Korean
GB18030
Big5 Traditional Chinese
EUC-JP Japanese
EUC-KR Korean
ISO-8859-1 Danish, Dutch, English, French, German, Italian, Norwegian, Portuguese, Swedish
ISO-8859-2 Czech, Hungarian, Polish, Romanian
ISO-8859-5 Russian
ISO-8859-6 Arabic
ISO-8859-7 Greek
ISO-8859-8 Hebrew
windows-1251 Russian
windows-1256 Arabic
KOI8-R Russian
ISO-8859-9 Turkish

150 ICU v3.8 User Guide



Compression
Overview of SCSU

Compressing Unicode text for transmission or storage results in minimal bandwidth 
usage and fewer storage devices. The compression scheme compresses Unicode text into 
a sequence of bytes by using characteristics of Unicode text. The compressed sequence 
can be used on its own or as further input to a general purpose file or disk-block based 
compression scheme. Note that the combination of the Unicode compression algorithm 
plus disk-block based compression produces better results than either method alone.

Strings in languages using small alphabets contain runs of characters that are coded close 
together in Unicode. These runs are typically interrupted only by punctuation characters, 
which are themselves coded in proximity to each other in Unicode (usually in the Basic 
Latin range).

For additional detail about the compression algorithm, which has been approved by the 
Unicode Consortium, please refer to Unicode Technical Report #6 (A Standard 
Compression Scheme for Unicode). 

The Standard Compression Scheme for Unicode (SCSU) is used to:

• express all code points in Unicode

• approximate the storage size of traditional character sets

• facilitate the use of short strings

• provide transparency for characters between U+0020-U+00FF, as well as CR, LF and 
TAB

• support very simple decoders

• support simple as well as sophisticated encoders

It does not attempt to avoid the use of control bytes (including NUL) in the compressed 
stream.

The compression scheme is mainly intended for use with short to medium length Unicode 
strings. The resulting compressed format is intended for storage or transmission in 
bandwidth limited environments. It can be used stand-alone or as input to traditional 
general purpose data compression schemes. It is not intended as processing format or as 
general purpose interchange format.

BOCU-1

A MIME compatible encoding called BOCU-1 is also available in ICU. Details about this 
encoding can be found in the Unicode Technical Note #6. Both SCSU and BOCU-1 are 
IANA registered names.

151 ICU v3.8 User Guide

http://www.unicode.org/notes/tn6/
http://www.unicode.org/unicode/reports/tr6/
http://www.unicode.org/unicode/reports/tr6/


Usage

The compression service in ICU is a part of Conversion framework, and follows the 
semantics of converters. For more information on how to use ICU's conversion service, 
please refer to Usage Model in the Using Converters Section. 

uint16_t germanUTF16[]={
     0x00d6, 0x006c, 0x0020, 0x0066, 0x006c, 0x0069, 0x0065, 0x00df, 0x0074
};
uint8_t germanSCSU[]={
    0xd6, 0x6c, 0x20, 0x66, 0x6c, 0x69, 0x65, 0xdf, 0x74
};
char target[100];
UChar uTarget[100];
UErrorCode status = U_ZERO_ERROR;
UConverter *conv;
int32_t     len;
/* set up the SCSU converter */
conv = ucnv_open("SCSU", &status);
assert(U_SUCCESS(status));
/* compress the string using SCSU */
len = ucnv_fromUChars(conv, target, 100, germanUTF16, -1, &status);
assert(U_SUCCESS(status));
len = ucnv_toUChars(conv, uTarget,100, germanSCSU, -1, &status);
/* close the converter */
ucnv_close(conv);

152 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/codepageConverters.sxw


Locale Class
Overview

This chapter explains locales, a fundamental concept in ICU. ICU services are 
parameterized by locale, to allow client code to be written in a locale-independent way, 
but to deliver culturally correct results.

Contents:

• The Locale Concept  

• Locales and Services  

• Canonicalization  

• Usage: Creating Locales  

• Usage: Retrieving Locales  

• Programming in C vs. C++  

The Locale Concept

A locale identifies a specific user community - a group of users who have similar culture 
and language expectations for human-computer interaction (and the kinds of data they 
process). 

A community is usually understood as the intersection of all users speaking the same 
language and living in the same country. Furthermore, a community can use more specific 
conventions. For example, an English/United States/Military locale is separate from the 
regular English/United States locale since the US military writes times and dates 
differently than most of the civilian community.

A program should be localized according to the rules specific for the target locale. Many 
ICU services rely on the proper locale identification in their function.

The locale object in ICU is an identifier that specifies a particular locale and has fields for 
language, country, and an optional code to specify further variants or subdivisions. These 
fields also can be represented as a string with the fields separated by an underscore.

In C++ API, locale is represented by the locale class, which provides methods for finding 
language, country and variant components. In C API the locale is defined simply by a 
character string. All the locale-sensitive ICU services use the locale information to 
determine language and other locale specific parameters of their function. The list of 
locale-sensitive services can be found in the Introduction to ICU section. Other parts of 
the library use the locale as an indicator to customize their behavior. 

For example, when the locale-sensitive date format service needs to format a date, it uses 

153 ICU v3.8 User Guide



the convention appropriate to the current locale. If the locale is English, it uses the word 
"Monday" and if it is French, it uses the word "Lundi".

The locale object also defines the concept of a default locale. The default locale is the 
locale, used by many programs, that regulates the rest of the computer's behavior by 
default and is usually controlled by the user in a control panel window. The locale 
mechanism does not require a program to know which locale the user is using and thus 
makes most programming simpler.

Since locale objects can be passed as parameters or stored in variables, the program does 
not have to know specifically which locales they identify. Many applications enable a 
user to select a locale. The resulting locale object is passed as a parameter, which then 
produces the customized behavior for that locale.

A locale provides a means of identifying a specific region for the purposes of 
internationalization and localization. 

An ICU locale is frequently confused with a Portable Operating System Interface 
(POSIX) locale ID. An ICU locale ID is not a POSIX locale ID. ICU locales do 
not specify the encoding and specify variant locales differently.

A locale consists of one or more pieces of ordered information:

Language code

The languages are specified using a two- or three-letter lowercase code for a particular 
language. For example, Spanish is "es", English is "en" and French is "fr". The two-letter 
language code uses the ISO-639 standard.

Script code

The optional four-letter script code follows the language code. If specified, it should be a 
valid script code as listed on the Unicode ISO 15924 Registry.

Country code

There are often different language conventions within the same language. For example, 
Spanish is spoken in many countries in Central and South America but the currencies are 
different in each country. To allow for these differences among specific geographical, 
political, or cultural regions, locales are specified by two-letter, uppercase codes. For 
example, "ES" represents Spain and "MX" represents Mexico. The two letter country 
code uses the ISO-3166 standard.

Variant code

Differences may also appear in language conventions used within the same country. For 

154 ICU v3.8 User Guide

http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html
http://www.unicode.org/iso15924/iso15924-codes.html
http://www.loc.gov/standards/iso639-2/


example, the Euro currency is used in several European countries while the individual 
country's currency is still in circulation. Variations inside a language and country pair are 
handled by adding a third code, the variant code. The variant code is arbitrary and 
completely application-specific. ICU adds "_EURO" to its locale designations for locales 
that support the Euro currency. Variants can have any number of underscored key words. 
For example, "EURO_WIN" is a variant for the Euro currency on a Windows computer.

Another use of the variant code is to designate the Collation (sorting order) of a locale. 
For instance, the "es__TRADITIONAL" locale uses the traditional sorting order which is 
different from the default modern sorting of Spanish.

Collation order and currency can be more flexibly specified using keywords instead of 
variants; see below.

Keywords

The final element of a locale is an optional list of keywords together with their values. 
Keywords must be unique. Their order is not significant. Unknown keywords are ignored. 
The handling of keywords depends on the specific services that utilize them. Currently, 
the following keywords are recognized:

Keyword Possible Values Description
calendar A calendar specifier such as 

"gregorian", "arabic", "chinese", 
"civil-arabic", "hebrew", "japanese", 
or "thai-buddhist". See the Key/Type 
Definitions table in the Locale Data 
Markup Language for a list of 
recognized values.

If present, the calendar keyword 
specifies the calendar type that the 
Calendar factor methods create. See 
the calendar locale and keyword 
handling section of the Calendar 
Class chapter for details.

collation A collation specifier such as 
"phonebook", "pinyin", "traditional", 
"stroke", "direct", or "posix". See the 
Key/Type Definitions table in the 
Locale Data Markup Language for a 
list of recognized values.

If present, the collation keyword 
modifies how the collation service 
searches through the locale data 
when instantiating a collator. See the 
collation locale and keyword 
handling section of the Collation 
Services Architecture chapter for 
details.

currency Any standard three-letter currency 
code, such as "USD" or "JPY". See 
the LocaleExplorer currency list for a 
list of currently recognized currency 
codes.

If present, the currency keyword is 
used by NumberFormat to determine 
the currency to use to format a 
currency value, and by 
ucurr_forLocale() to specify a 
currency.

155 ICU v3.8 User Guide

http://demo.icu-project.org/icu-bin/locexp?_=en&SHOWCurrencies=1#Currencies
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/dateCalendar.sxw#keyword
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/dateCalendar.sxw#keyword
http://www.unicode.org/reports/tr35/
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/dateCalendar.sxw#keyword
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/dateCalendar.sxw#keyword
http://www.unicode.org/reports/tr35/
http://www.unicode.org/reports/tr35/


If any of these keywords is absent, the service requesting it will typically use the rest of 
the locale specifier in order to determine the appropriate behavior for the locale. The 
keywords allow a locale specifier to override or refine this default behavior.

Examples

Locale ID Lang
uage

Scri
pt

Coun
try

Variant Keywords Definition

en_US en US English, United 
States of America. 
Browse in 
LocaleExplorer.

en_IE_PREEURO en IE English, Ireland. 
Browse in 
LocaleExplorer.

en_IE@currency=IEP en IE currency=
IEP

English, Ireland 
with Irish Pound. 
Browse in 
LocaleExplorer.

eo eo Esperanto. 
Browse in 
LocaleExplorer.

fr@collation=phonebo
ok;calendar=islamic-
civil

fr collation=p
honebook
calendar=
islamic-
civil

French 
(Calendar=Islamic
-Civil Calendar, 
Collation=Phoneb
ook Order). 
Browse in 
LocaleExplorer.

sr_Latn_RS_REVISE
D@currency=USD

sr Latn RS REVISED currency=
USD

Serbian (Latin, 
Yugoslavia, 
Revised 
Orthography, 
Currency=US 
Dollar) Browse in 
LocaleExplorer.

Default Locales

Default locales are available to all the objects in a program. If you set a new default locale 
for one section of code, it can affect the entire program. Application programs should not 

156 ICU v3.8 User Guide

http://demo.icu-project.org/icu-bin/locexp?d_=en&_=sr_Latn_RS_REVISED@currency=USD
http://demo.icu-project.org/icu-bin/locexp?_=fr@collation=phonebook;calendar=islamic-civil
http://demo.icu-project.org/icu-bin/locexp?_=eo
http://demo.icu-project.org/icu-bin/locexp?_=en_IE@currency=IEP
http://demo.icu-project.org/icu-bin/locexp?_=en_IE_PREEURO
http://demo.icu-project.org/icu-bin/locexp?_=en_US


set the default locale as a way to request an international object. The default locale is set 
to be the system locale on that platform.

For example, when you set the default locale, the change affects the default behavior of 
the Collator and NumberFormat instances. When the default locale is not wanted, you 
can set the desired locale using a factory method supplied with the classes such as 
Collator::createInstance().

Using the ICU C functions, NULL can be passed for a locale parameter to specify the 
default locale.

Locales and Services

ICU is implemented as a set of services. One example of a service is the formatting of a 
numeric value into a string. Another is the sorting of a list of strings. When client code 
wants to use a service, the first thing it does is request a service object for a given locale. 
The resulting object is then expected to perform the its operations in a way that is 
culturally correct for the requested locale.

Requested Locale

The requested locale is the one specified by the client code when the service object is 
requested.

Valid Locale

A populated locale is one for which ICU has data, or one in which client code has 
registered a service. If the requested locale is not populated, then ICU will fallback until it 
reaches a populated locale. The first populated locale it reaches is the valid locale. The 
valid locale is reachable from the requested locale via zero or more fallback steps.

Fallback

Locale fallback proceeds as follows:

1. The variant is removed, if there is one.

2. The country is removed, if there is one.

3. The script is removed, if there is one.

4. The ICU default locale is examined. The same set of steps is performed for the default 
locale.

At any point, if the desired data is found, then the fallback procedure stops. Keywords are 
not altered during fallback until the default locale is reached, at which point all keywords 

157 ICU v3.8 User Guide



are replaced by those assigned to the default locale.

Actual Locale

Services request specific resources within the valid locale. If the valid locale directly 
contains the requested resource, then it is the actual locale. If not, then ICU will fallback 
until it reaches a locale that does directly contain the requested resource. The first such 
locale is the actual locale. The actual locale is reachable from the valid locale via zero or 
more fallback steps.

getLocale()

Client code may wish to know what the valid and actual locales are for a given service 
object. To support this, ICU services provide the method getLocale(). getLocale() 
takes an argument specifying whether the actual or valid locale is to be returned.

Some service object will have an empty or null return from getLocale(). This indicates 
that the given service object was not created from locale data, or that it has since been 
modified so that it no longer reflects locale data, typically through alteration of the pattern 
(but not localized symbol changes -- such changes do not reset the actual and valid locale 
settings).

Currently, the services that support the getLocale() API are the following classes and 
their subclasses: 

Functional Equivalence

Various services provide the API getFunctionalEquivalent to allow callers determine 
the functionally equivalent locale for a requested locale. For example, when 
instantiating a collator for the locale en_US_CALIFORNIA, the functionally equivalent 
locale may be en.

The purpose of this is to allow applications to do intelligent caching. If an application 
opens a service object for locale A with a functional equivalent Q and caches it, then later 
when it requires a service object for locale B, it can first check if locale B has the same 
functional equivalent as locale A; if so, it can reuse the cached A object for the B locale, 
and be guaranteed the same results as if it has instantiated a service object for B. In other 
words, 
Service.getFunctionalEquivalent(A) == Service.getFunctionalEquivalent(B)
 implies that the object returned by Service.getInstance(A) will behave equivalently 
to the object returned by Service.getInstance(B).

Here is a pseudo-code example:         

The functional equivalent locale returned by a service has no meaning beyond what is 
stated above. For example, if the functional equivalent of Greek is Hebrew for collation, 

158 ICU v3.8 User Guide



that makes no statement about the linguistic relation of the languages -- it only means that 
the two collators are functionally equivalent.

While two locales with the same functional equivalent are guaranteed to be equivalent, 
the converse is not true: If two locales are in fact equivalent, they may not return the 
same result from getFunctionalEquivalent. That is, if the object returned by 
Service.getInstance(A) behaves equivalently to the object returned by 
Service.getInstance(B), Service.getFunctionalEquivalent(A) may or may not 
be equal to Service.getFunctionalEquivalent(B). Take again the example of Greek 
and Hebrew, with respect to collation. These locales may happen to be functional 
equivalents (since they each just turn on full normalization), but it may or may not be the 
case that they return the same functionally equivalent locale. This depends on how the 
data is structured internally.

The functional equivalent for a locale may change over time. Suppose that Greek were 
enhanced to change sorting of additional ancient Greek characters. In that case, it would 
diverge; the functional equivalent of Greek would no longer be Hebrew.

Canonicalization

ICU works with ICU format locale IDs. These are strings that obey the following 
character set and syntax restrictions: 

• The only permitted characters are ASCII letters, hyphen ('-'), underscore ('_'), at-sign 
('@'), equals sign ('='), and semicolon (';'). 

• IDs consist of either a base name, keyword list, or both. If a keyword list is present it 
must be preceded by an at-sign. 

• The base name must precede the keyword list, if both are present. 

• The base name defines the language, script, country, and variant, and can contain only 
ASCII letters, hyphen, or underscore. 

• The keyword list consists of keyword/value pairs. Each keyword or value consists of 
one or more ASCII letters, hyphen, or underscore. Keywords and values are separated 
by a single equals sign. Multiple keyword/value pairs, if present, are separated by a 
single semicolon. A keyword may not appear without a value. The same keyword may 
not appear twice. 

ICU performs two kinds of canonicalizing operations on 'ICU format' locale IDs. Level 1 
canonicalization is performed routinely and automatically by ICU API. The 
recommended procedure for client code using locale IDs from outside sources (e.g., 
POSIX, user input, etc.) is to pass such "foreign IDs" through level 2 canonicalization 
before use. 

Level 1 canonicalization. This operation performs minor, isolated changes, such as 
changing "en-us" to "en_US". Level 1 canonicalization is not designed to handle 

159 ICU v3.8 User Guide



"foreign" locale IDs (POSIX, .NET) but rather IDs that are in ICU format, but which do 
not have normalized case and delimiters. Level 1 canonicalization is accomplished by the 
ICU functions uloc_getName, Locale::createFromName, and Locale::Locale. The 
latter two API exist in both C++ and Java. 

1. Level 1 canonicalization is defined only on ICU format locale IDs as defined above. 
Behavior with any other kind of input is unspecified. 

2. Case is normalized. Elements interpreted as language strings will be converted to 
lowercase. Country and variant elements will be converted to uppercase. Script 
elements will be titlecased. Keywords will be converted to lowercase. Keyword 
values will remain unchanged. 

3. Hyphens are converted to underscores. 

4. All 3-letter country codes are converted to 2-letter equivalents. 

5. Any 3-letter language codes are converted to 2-letter equivalents if possible. 3-letter 
language codes with no 2-letter equivalent are kept as 3-letter codes. 

6. Keywords are sorted. 

Level 2 canonicalization. This operation may make major changes to the ID, possibly 
replacing entire elements of the ID. An example is changing "fr-fr@EURO" to 
"fr_FR@currency=EUR". Level 2 canonicalization is designed to translate POSIX and 
.NET IDs, as well as nonstandard ICU locale IDs. Level 2 is a superset of level 1; every 
operation performed by level 1 is also performed by level 2. Level 2 canonicalization is 
performed by uloc_canonicalize and Locale::createCanonical. The latter API 
exists in both C++ and Java. 

1. Level 2 canonicalization operates on ICU format locale IDs with the following 
additions: 

1. The period ('.') is also a valid input character. 

2. An at-sign may be followed by text that is not a keyword/value pair. If present, such 
text is added to the variant. 

2. POSIX variants are normalized, e.g., "en_US@VARIANT" => "en_US_VARIANT". 

3. POSIX charset specifiers are deleted, e.g. "en_US.utf8" => "en_US". 

4. The variant "EURO" is converted to the keyword specifier "currency=EUR". This 
conversion applies to both "fr_FR_EURO" and "fr_FR@EURO" style IDs. 

5. The variant "PREEURO" is converted to the keyword specifier "currency=K", where 
K is the 3-letter currency code for the country's national currency in effect at the time 
of the euro transitiion. This conversion applies to both "fr_FR_PREURO" and 
"fr_FR@PREURO" style IDs. This mapping is only performed for the following 
locales: ca_ES (ESP), de_AT (ATS), de_DE (DEM), de_LU (EUR), el_GR (GRD), 
en_BE (BEF), en_IE (IEP), es_ES (ESP), eu_ES (ESP), fi_FI (FIM), fr_BE (BEF), 
fr_FR (FRF), fr_LU (LUF), ga_IE (IEP), gl_ES (ESP), it_IT (ITL), nl_BE (BEF), 

160 ICU v3.8 User Guide



nl_NL (NLG), pt_PT (PTE). 

6. The following IANA registered ISO 3066 names are remapped: art_LOJBAN => jbo, 
cel_GAULISH => cel__GAULISH, de_1901 => de__1901, de_1906 => de__1906, 
en_BOONT => en__BOONT, en_SCOUSE => en__SCOUSE, sl_ROZAJ => sl__ROZAJ, 
zh_GAN => zh__GAN, zh_GUOYU => zh, zh_HAKKA => zh__HAKKA, zh_MIN => zh__MIN, 
zh_MIN_NAN => zh__MINNAN, zh_WUU => zh__WUU, zh_XIANG => zh__XIANG, zh_YUE 
=> zh__YUE. 

7. The following .NET identifiers are remapped: "" (empty string) => en_US_POSIX, 
az_AZ_CYRL => az_Cyrl_AZ, az_AZ_LATN => az_Latn_AZ, sr_SP_CYRL => 
sr_Cyrl_SP, sr_SP_LATN => sr_Latn_SP, uz_UZ_CYRL => uz_Cyrl_UZ, uz_UZ_LATN 
=> uz_Latn_UZ, zh_CHS => zh_Hans, zh_CHT => zh_Hant. The empty string is not 
remapped if a keyword list is present. 

8. Variants specifying collation are remapped to collation keyword specifiers, as follows: 
de__PHONEBOOK => de@collation=phonebook, es__TRADITIONAL => 
es@collation=traditional, hi__DIRECT => hi@collation=direct, 
zh_TW_STROKE => zh_TW@collation=stroke, zh__PINYIN => 
zh@collation=pinyin. 

9. Variants specifying a calendar are remapped to calendar keyword specifiers, as 
follows: ja_JP_TRADITIONAL => ja_JP@calendar=japanese, th_TH_TRADITIONAL 
=> th_TH@calendar=buddhist. 

10.Special case: C => en_US_POSIX. 

Certain other operations are not performed by either level 1 or level 2 canonicalization. 
These are listed here for completeness. 

1. Language identifiers that have been superseded will not be remapped. In particular, the 
following transformations are not performed: 

1. no => nb 

2. iw => he 

3. id => in 

4. nb_no_NY => nn_NO 

2. The behavior of level 2 canonicalization when presented with a remapped ID 
combined together with keywords is not defined. For example, 
fr_FR_EURO@currency=FRF has an undefined level 2 canonicalization. 

All API (with a few exceptions) in ICU4C that take a const char* locale parameter 
can be assumed to automatically peform level 1 canonicalization before using the locale 
ID to do resource lookup, keyword interpretation, etc. Specifically, the static API 
getLanguage, getScript, getCountry, and getVariant behave exactly like their non-
static counterparts in the class Locale. That is, for any locale ID loc, new 
Locale(loc).getFoo() == Locale::getFoo(loc), where Foo is one of Language, 
Script, Country, or Variant. 

161 ICU v3.8 User Guide



The Locale constructor (in C++ and Java) taking multiple strings behaves exactly as if 
those strings were concatenated, with the '_' separator inserted between two adjacent non-
empty strings, and the result passed to uloc_getName. 

Note: Throughout this discussion Locale refers to both the C++ Locale class and the 
ICU4J com.ibm.icu.util.ULocale class. Although C++ notation is used, all statements 
made regarding Locale apply equally to com.ibm.icu.util.ULocale. 

Usage: Creating Locales

If you are localizing an application to a locale that is not already supported, you need to 
create your own Locale object. New Locale objects are created using one of the three 
constructors in this class:

Locale( const char * newLanguage);
Locale( const char * language,
        const char * country);
Locale( const char * language,
        const char * country,
        const char * variant);

Because a locale object is just an identifier for a region, no validity check is performed. If 
you want to verify that the particular resources are available for the locale you construct, 
you must query those resources. For example, you can query the NumberFormat object 
for the locales it supports using its getAvailableLocales() method. 

In C++, the Locale class provides a number of convenient constants that you can use to 
create locales. For example, the following refers to aNumberFormat object for the United 
States:

Locale::getUS()

In C, a string with the language country and variant concatenated together with an 
underscore '_' describe a locale. For example, "en_US" is a locale that is based on the 
English language in the United States. The following can be used as equivalents to the 
locale constants:

ULOC_US

Usage: Retrieving Locales

Locale-sensitive classes have a getAvailableLocales() method that returns all of the 
locales supported by that class. This method also shows the other methods that get locale 
information from the resource bundle. For example, the following shows that the 
NumberFormat class provides three convenience methods for creating a default 

162 ICU v3.8 User Guide



NumberFormat object::
NumberFormat::createInstance();
NumberFormat::createCurrencyInstance();
NumberFormat::createPercentInstance();

Displayable Names

Once you've created a Locale you can perform a query of the locale for information 
about itself. The following shows the information you can receive from a locale:

Method Description
getCountryRetrieves Retrieves the ISO Country Code
getLanguage() Retrieves the ISO Language
getDisplayCountry() Shows the name of the country suitable for 

displaying information to the user
getDisplayLanguage() Shows the name of the language suitable for 

displaying to the user
The getDisplayXXX methods are themselves locale-sensitive and have two 
versions: one that uses the default locale and one that takes a locale as an 
argument and displays the name or country in a language appropriate to that  
locale.

Each class that performs locale-sensitive operations allows you to get all the available 
objects of that type. You can sift through these objects by language, country, or variant, 
and use the display names to present a menu to the user. For example, you can create a 
menu of all the collation objects suitable for a given language.

HTTP Accept-Language

ICU provides functions to negotiate the best locale to use for an operation, given a user's 
list of acceptable locales, and the application's list of available locales. For example, a 
browser sends the web server the HTTP “Accept-Language” header indicating which 
locales, with a ranking, are acceptable to the user. The server must determine which 
locale to use when returning content to the user.

Here is an example of selecting an acceptable locale within a CGI application:
char resultLocale[200];
UAcceptResult outResult;
available = ures_openAvailableLocales(“myBundle”, &status);
int32_t len = uloc_acceptLanguageFromHTTP(resultLocale, 200, &outResult, 

getenv(“HTTP_ACCEPT_LANGUAGE”), available, &status);
if(U_SUCCESS(status)) {

printf(“Using locale %s\n”, outResult);
}

163 ICU v3.8 User Guide



Note: As of this writing, this functionality is only available in C and not Java.  
Please read the following two linked documents for important considerations and 
recommendations when using this header in a web application.
For further information about the Accept-Language HTTP header:
 http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4
Notes and cautions about the use of this header:
 http://www.w3.org/International/questions/qa-accept-lang-locales

Programming in C vs. C++

See Programming for Locale in C and C++ for more information.

164 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/locale-ex.sxw
http://www.w3.org/International/questions/qa-accept-lang-locales
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4


Locale Examples
Locale Currency Conventions

Application programs should not reset the default locale as a way of requesting an 
international object, because resetting default locale affects the other programs running in 
the same process. Use one of the factory methods instead, e.g. 
Collator::createInstance(Locale). 

In general, a locale object or locale string is used for specifying the locale. Here is an 
example to specify the Belgium French with Euro currency locale:

C++

Locale loc("fr", "BE");
Locale loc2("fr_BE");

C
const char *loc = "fr_BE";

 Java does not support the form Locale("xx_yy_ZZ"), instead use the form 
Locale("xx","yy","ZZ") 

Locale Constants

A Locale is the mechanism for identifying the kind of object (NumberFormat) that you 
would like to get. The locale is just a mechanism for identifying objects, not a container 
for the objects themselves. For example, the following creates various number formatters 
for the "Germany" locale:

C++
UErrorCode status = U_ZERO_ERROR;
NumberFormat *nf;
nf = NumberFormat::createInstance(Locale::getGermany(), status);
delete nf;
nf = NumberFormat::createCurrencyInstance(Locale::getGermany(), status);
delete nf;
nf = NumberFormat::createPercentInstance(Locale::getGermany(), status);
delete nf;

C
UErrorCode status = U_ZERO_ERROR;
UNumberFormat *nf;
nf = unum_open(UNUM_DEFAULT, "de_DE", &status);
unum_close(nf);
nf = unum_open(UNUM_CURRENCY, "de_DE", &status);

165 ICU v3.8 User Guide



unum_close(nf);
nf = unum_open(UNUM_PERCENT, "de_DE", &status);
unum_close(nf);

Querying Locale

Each class that performs locale-sensitive operations allows you to get all the available 
objects of that type. You can sift through these objects by language, country, or variant, 
and use the display names to present a menu to the user. For example, you can create a 
menu of all the collation objects suitable for a given language. For example, the following 
shows the display name of all available locales in English (US):

C++
int32_t count;
const Locale* list = 0;
UnicodeString result;
list = Locale::getAvailable(count);
for (int i = 0; i < count; i++)
{
    list[i].getDisplayName(Locale::getUS(), result);
    /* print result */
}

C
int32_t count;
UChar result[100];
int i = 0;
UErrorCode status = U_ZERO_ERROR;
count = uloc_countAvailable();
for (i = 0; i < count; i++)
{
    uloc_getDisplayname(uloc_getAvailable(i), "en_US", result, 100, &status);
    /* print result */
}

166 ICU v3.8 User Guide



Resource Management
Overview

A software product that needs to be localized wins or loses depending on how easy is to 
change the data that affects users. From the simplest point of view, that data is the 
information presented to the user as well as the region specific ways of doing things - for 
example, sorting. The process of localization will eventually involve translators and it 
would be very convenient if the process of localizing could be done only by translators 
and experts in the target culture. There are several points to keep in mind when designing 
such a software product.

Keeping Data Separate

Obviously, one does not want to make translators wade through the source code and make 
changes there. That would be a recipe for a disaster. Instead, the translatable data should 
be kept separately, in a format that allows translators easy access. A separate resource 
managing mechanism is hence required. Application access data through API calls, which 
pick the appropriate entries from the resources. Resources are kept in human 
readable/editable format with optional tools for content editing.

The data should contain all the elements to be localized, including, but no limited to, GUI 
messages, icons, formatting patterns, and collation rules. A convenient way for keeping 
binary data should also be provided - often icons for different cultures should be different.

Keeping Data Small

It is not unlikely that the data will be same for several regions - take for example Spanish 
speaking countries - names of the days and month will be the same in both Mexico and 
Spain. It would be very beneficial if we can prevent the duplication of data. This can be 
achieved by structuring resources in such a way so that an unsuccessful query into a more 
specific resource triggers the same query in a more general resource. A convenient way to 
do this is to use a tree like structure.

Another way to reduce the data size is to allow linking of the resources that are same for 
the regions that are not in general-specific relation.

Find the Best Available Data

Sometimes, the exact data for a region is still not available. However, if the data is 
structured correctly, the user can be presented with similar data. For example, a Spanish 
speaking user in Mexico would probably be happier with Spanish than with English 
captions, even if some of the details for Mexico are not there.

167 ICU v3.8 User Guide



If the data is grouped correctly, the program can automatically find the most suitable data 
for the situation.

The previous points all lead to a separate mechanism that stores data separately from the 
code. Software is able to access the data through the API calls. Data is structured in a tree 
like structure, with the most general region in the root (most commonly, the root region is 
the native language of the development team). Branches lead to more specialized regions, 
usually through languages, countries and country regions. Data that is already the same on 
the more general level is not repeated.

The path through languages, countries and country region could be different. One 
may decide to go through countries and then through languages spoken in the 
particular country. In either case, some data must be duplicated - if you go 
through languages, the currency data for different speaking parts of the same 
country will be duplicated (consider French and English languages in Canada) -  
on the other side, when you go through countries, you will need to duplicate day 
names and similar information.

Here is an example of a such a resource tree structure:

             root                         Root
              |
  +-------+---+---+---+---+
  |       |       |   |   |
  en      de      ja  ru  zh             Language
  |       |       |   |   |
  +---+   +---+   |   |   +-----+
  |   |   |   |   |   |   |     |
  |   |   |   |   |   |   Hans  Hant     Script
  |   |   |   |   |   |   |     |
  |   |   |   |   |   |   |     +---+
  |   |   |   |   |   |   |     |   |
  US  IE  DE  AT  JP  RU  CN    HK  TW   Country or Region
  |    
  POSIX                                  Variant

Let us assume that the root resource contains data written by the original implementors 
and that this data is in English and conforms to the conventions used in the United States. 
Therefore, resources for English and English in United States would be empty and would 
take its data from the root resource. If a version for Ireland is required, appropriate 
overriding changes can be made to the data for English in Ireland. Special variant 
information could be put into en_US_POSIX if specific legacy formatting were required, 
or specific sub-region information were required. When making the version for the 
German speaking region, all the German data would be in that resource, with the 
differences in the Germany and Austria resources.

It is important to note that some locales have the optional script tag. This is important for 
multiscript locales, like Uzbek, Azerbaijani, Serbian or Chinese.  Even though Chinese 
uses Han characters, the characters are usually identified as either traditional Chinese 
(Hant) characters, or simplified Chinese (Hans).

Even if all the data that would go to a certain resource comes from the more general 

168 ICU v3.8 User Guide



resources, it should be made clear that the particular region is supported by application. 
This can be done by having completely empty resources.

The ICU Model

ICU bases its resource management model on the ideas presented above. All the resource 
APIs are concentrated in the resource bundle framework. This framework is closely tied 
in its functioning to the ICU Locale naming scheme.

ICU provides and relies on a set of locale specific data in the resource bundle format. If 
we think that we have correct data for a requested locale, even if all its data comes from a 
more general locales, we will provide an empty resource bundle. This is reflected in our 
return informational codes (see the section on APIs). A lot of ICU frameworks (collation, 
formatting etc.) relies on the data stored in resource bundles.

Resource bundles rely on the ICU data framework. For more information on the 
functioning of ICU data, see the appropriate section.

Users of the ICU library can also use the resource bundle framework to store and retrieve 
localizable data in their projects.

Resource bundles are collections of resources. Individual resources can contain data or 
other resources.

ICU4J relies on the resource bundle mechanism already provided by JDK for its  
functioning. Therefore, most of the discussion here pertains only to ICU4C

Fallback Mechanism

Essential part ICU's resource management framework is the fallback mechanism. It 
ensures that if the data for the requested locale is missing, an effort will be made to obtain 
the most usable data. Fallback can happen in two situations:

1. When a resource bundle for a locale is requested. If it doesn't exist, a more general 
resource bundle will be used. If there are no such resource bundles, a resource bundle 
for default locale will be used. If this fails, the root resource bundle will be used. 
When using ICU locale data, not finding the requested resource bundle means that we 
don't know what the data should be for that particular locale, so you might want to 
consider this situation an error. Custom packages of resource bundles may or may not 
adhere to this contract. A special care should be taken in remote server situations, 
when the data from the default locale might not mean anything to the remote user 
(imagine a situation where a server in Japan responds to a Spanish speaking client by 
using default Japanese data.

2. When a resource inside a resource bundle is requested. If the resource is not present, it 
will be sought after in more general resources. If at initial opening of a resource bundle 
we went through the default locale, the search for a resource will also go through it. 
For example, if a resource bundle for zh_Hans_CN is opened, a missing resource will 

169 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/icudata.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/locale.sxw


be looked for in zh_Hans, zh and finally root. This is usually harmless, except when a 
resource is only located in the default locale or in the root resource bundle.

Data Packaging

ICU allows and requires that the application specific data be stored apart from the ICU 
internal data (locale, converter, transformation data etc.). Application data should be 
stored in packages. ICU uses the default package (NULL) for its data. All the ICU's build 
tools provide means to specify the package for your data. More about how to package 
application data can be found below. 

Resource Bundle APIs

ICU4C provides both C and C++ APIs for using resource bundles. The core 
implementation is in C, while the C++ APIs are only a thin wrapper around it. Therefore, 
the code using C APIs will generally be faster.

Resource bundles use ICU's "open use close" paradigm. In C all the resource bundle 
operations are done using the UResourceBundle* handle. UResourceBundle* allows 
access to both resource bundles and individual resources. In C++, class ResourceBundle 
should be used for both resource bundles and individual resources.

To use the resource bundle framework, you need to include the appropriate header file, 
unicode/ures.h for C and unicode/resbund.h for C++.

Error Checking

If an operation with resource bundle fails, an error code will be set. It is important to 
check for the value of the error code. In C you should frequently use the following 
construct:

if(U_SUCCESS(status)) {
    /* everything is fine */
} else {
    /* there was an error */
}

Opening of Resource Bundles

The most common C resource bundle opening API is UResourceBundle* 
ures_open(const char* package, const char* locale, UErrorCode* status). 
The first argument specifies the package name or NULL for the default ICU package. The 
second argument is the locale for which you want the resource bundle. Special values for 
the locale are NULL for the default locale and "" (empty string) for the root locale. The 
third argument should be set to U_ZERO_ERROR before calling the function. It will return 
the status of operation. Apart from returning regular errors, it can return two 

170 ICU v3.8 User Guide



informational/warning codes: U_USING_FALLBACK_WARNING and 
U_USING_DEFAULT_WARNING. The first informational code means that the requested 
resource bundle was not found and that a more general bundle was returned. If you are 
opening ICU resource bundles, do note that this means that we do not guarantee that the 
contents of opened resource bundle will be correct for the requested locale. The situation 
might be different for application packages. However, U_USING_DEFAULT_WARNING 
means that there were no more general resource bundles found and that you were returned 
either a resource bundle that is the default for the system or the root resource bundle. This 
will almost certainly contain wrong data.

There is a couple of other opening APIs: ures_openDirect takes the same arguments as 
the ures_open but will fail if the requested locale is not found. Also, if opening is 
successful, no fallback will be performed if an individual resource is not found. The 
second one, ures_openU takes a UChar* for package name instead of char*.

In C++, opening is done through a constructor. There are several constructors. Most 
notable difference from C APIs is that the package should be given as a UnicodeString 
and the locale is passed as a Locale object. There is also a copy constructor and a 
constructor that takes a C UResourceBundle* handle. The result is a ResourceBundle 
object. Remarks about informational codes are also valid for the C++ APIs.

All the data accessing examples in the following sections use the ICU's root 
resource bundle.

      
UErrorCode status = U_ZERO_ERROR;
UResourceBundle* icuRoot = ures_open(NULL, "root", &status);
if(U_SUCCESS(status)) {
    /* everything is fine */
    ...
    /* do some interesting stuff here - see below */
    ...
    /* and close the bundle afterwards */
    ures_close(icuRoot); /* discussed later */
} else {
    /* there was an error */
    /* report and exit */
}

In C++, opening would look like this:

UErrorCode status = U_ZERO_ERROR;
// we rely on automatic construction of Locale object from a char *
ResourceBundle myResource("myPackage", "de_AT", status); 
if(U_SUCCESS(status)) {
    /* everything is fine */
    ...
    /* do some interesting stuff here */
    ...
    /* the bundle will be closed when going out of scope  */
} else {
    /* there was an error */
    /* report and exit */
}

171 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icu/trunk/source/data/locales/root.txt


Closing of Resource Bundles

After using, resource bundles need to be closed to prevent memory leaks. In C, you 
should call the void ures_close(UResourceBundle* resB) API. In C++, if you have 
just used the ResourceBundle objects, going out of scope will close the bundles. When 
using allocated objects, make sure that you call the appropriate delete function.

As already mentioned, resource bundles and resources share the same type. You can close 
bundles and resources in any order you like. You can invoke ures_close on NULL 
resource bundles. Therefore, you can always this API regardless of the success of 
previous operations.

Accessing Resources

Once you are in the possession of a valid resource bundle, you can access the resources 
and data that it holds. The result of accessing operations will be a new resource bundle 
object. In C, UResourceBundle* handles can be reused by using the fill-in parameter. 
That saves you from frequent closing and reallocating of resource bundle structures, 
which can dramatically improve the performance. C++ APIs do not provide means for 
object reuse. All the C examples in the following sections will use a fill-in parameter.

Types of Resources

Resource bundles can contain two main types of resources: complex and simple 
resources. Complex resources store other resources and can have named or unnamed 
elements. Tables store named elements, while arrays store unnamed ones. Simple 
resources contain data which can be string, binary, integer array or a single integer.

There are several ways for accessing data stored in the complex resources. Tables can be 
accessed using keys, indexes and by iteration. Arrays can be accessed using indexes and 
by iteration. 

In order to be able to distinguish between resources, one needs to know the type of the 
resource at hand. To find this out, use the UResType ures_getType(UResourceBundle 
*resourceBundle) API, or the C++ analog UResType getType(void). UResType is an 
enumeration defined in unicode/ures.h header file.

Indexes of resources in tables do not necessarily correspond to the order of items 
in a table. Due to the way binary structure is organized, items in a table are 
sorted according to the binary ordering of the keys, therefore, the index of an 
item in a table will be the index of its key in the binary order. Furthermore, the 
ordering of the keys are different on ASCII and EBCDIC platforms.

Accessing by Key

To access resources using a key, you can use the UResourceBundle* 

172 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icu/trunk/source/common/unicode/ures.h


ures_getByKey(const UResourceBundle *resourceBundle, const char* key, 
UResourceBundle *fillIn, UErrorCode *status) API. First argument is the parent 
resource bundle, which can be either a resource bundle opened using ures_open or 
similar APIs or a table resource. The key is always specified using invariant characters. 
The fill-in parameter can be either NULL or a valid resource bundle handle. If it is 
NULL, a new resource bundle will be constructed. If you pass an already existing 
resource bundle, it will be closed and the memory will be reused for the new resource 
bundle. Status indicator can return U_MISSING_RESOURCE_ERROR which indicates that no 
resources with that key exist, or one of the above mentioned informational codes 
(U_USING_FALLBACK_WARNING and U_USING_DEFAULT_WARNING) which do not affect the 
validity of data in the case of resource retrieval.

   ...
   /* we already got zones resource from the opening example */
   UResourceBundle *zones = ures_getByKey(icuRoot, "zoneStrings", NULL, &status);
   if(U_SUCCESS(status)) {
     /* ... do interesting stuff - see below ... */
   }
   ures_close(zones);
   /* clean up the rest */
   ...

In C++, the analogous API is ResourceBundle get(const char* key, UErrorCode& 
status) const.

Trying to retrieve resources by key on any other type of resource than tables will produce 
a U_RESOURCE_TYPE_MISMATCH error.

Accessing by Index

Accessing by index requires you to supply an index of the resource that you want to 
retrieve. Appropriate API is UResourceBundle* ures_getByIndex(const 
UResourceBundle *resourceBundle, int32_t indexR, UResourceBundle 
*fillIn, UErrorCode *status). The arguments have the same semantics as for the 
ures_getByKey API. The only difference is the second argument, which is the index of 
the resource that you want to retrieve. Indexes start at zero. If an index out of range is 
specified, U_MISSING_RESOURCE_ERROR is returned. To find the size of a resource, you 
can use int32_t ures_getSize(UResourceBundle *resourceBundle). The 
maximum index is the result of this API minus 1.

       ...
       /* we already got zones resource from the accessing by key example */
       UResourceBundle *currentZone = NULL;
       int32_t index = 0;
       for(index = 0; index < ures_getSize(zones); index++) {
         currentZone = ures_getByIndex(zones, index, currentZone, &status);
         ... do interesting stuff  here ...
       }
       ures_close(currentZone);
       /* cleanup the rest */
       ...

173 ICU v3.8 User Guide



Accessing simple resource with an index 0 will return themselves. This is useful for 
iterating over all the resources regardless of type.

C++ overloads the get API with ResourceBundle get(int32_t index, UErrorCode& 
status) const.

Iterating Over Resources

If you don't care about the order of the resources and want simple code, you can use the 
iteration mechanism. To set up iteration over a complex resource, you can simply start 
iterating using the UResourceBundle* ures_getNextResource(UResourceBundle 
*resourceBundle, UResourceBundle *fillIn, UErrorCode *status). It is 
advisable though to reset the iterator for a resource before starting, in order to ensure that 
the iteration will indeed start from the beggining - just in case somebody else has already 
been playing with this resource. To reset the iterator use void 
ures_resetIterator(UResourceBundle *resourceBundle) API. To check whether 
there are more resources, call UBool ures_hasNext(UResourceBundle 
*resourceBundle). If you have iterated through the whole resource, NULL will be 
returned.

       ...
       /* we already got zones resource from the accessing by key example */
       UResourceBundle *currentZone = NULL;
       ures_resetIterator(zones);
       while(ures_hasNext(zones)) {
         currentZone = ures_getNextResource(zones, currentZone, &status);
         ... do interesting stuff  here ...
       }
       ures_close(currentZone);
       /* cleanup the rest */
       ...

C++ provides analogous APIs: ResourceBundle getNext(UErrorCode& status), 
void resetIterator(void) and UBool hasNext(void).

Accessing Data in the Simple Resources

In order to get to the data in the simple resources, you need to use appropriate APIs 
according to the type of a simple resource. They are summarized in the tables below. All 
the pointers returned should be considered pointers to read only data. Using an API on a 
resource of a wrong type will result in an error.

Strings:

C const UChar* ures_getString(const 
UResourceBundle* resourceBundle, 
int32_t* len, UErrorCode* status)

C++ UnicodeString getString(UErrorCode& 
status) const

174 ICU v3.8 User Guide



Example:

...
UResourceBundle *version = ures_getByKey(icuRoot, "Version", NULL, &status); 
if(U_SUCCESS(status)) {
  int32_t versionStringLen = 0;
  const UChar *versionString = ures_getString(version, &versionStringLen, &status);
}
ures_close(version);
...

Binaries:

C const uint8_t* ures_getBinary(const UResourceBundle* 
resourceBundle, int32_t* len, UErrorCode* status)

C++ const uint8_t* getBinary(int32_t& len, UErrorCode& 
status) const

Integers, signed and unsigned:

C int32_t ures_getInt(const UResourceBundle* 
resourceBundle, UErrorCode *status)
uint32_t ures_getUInt(const UResourceBundle* 
resourceBundle, UErrorCode *status)

C++ int32_t getInt(UErrorCode& status) const
uint32_t getUInt(UErrorCode& status) const

Integer Arrays:

C const int32_t* ures_getIntVector(const UResourceBundle* 
resourceBundle, int32_t* len, UErrorCode* status)

C++ const int32_t* getIntVector(int32_t& len, UErrorCode& 
status) const

Convenience APIs

Since the vast majority of data stored in resource bundles are strings, ICU's resource 
bundle framework provides a number of different convenience APIs that directly access 
strings stored in resources. They are analogous to APIs already discussed, with the 
difference that they return const UChar* or UnicodeString objects.

The C APIs that allow returning of UnicodeStrings only work if used in a C++ 
file. Trying to use them in a C file will produce a compiler error.

APIs that allow retrieving strings by specifying a key:

175 ICU v3.8 User Guide



C (UChar*) const UChar* ures_getStringByKey(const UResourceBundle 
*resB, const char* key, int32_t* len, UErrorCode 
*status)

C 
(UnicodeString)

UnicodeString ures_getUnicodeStringByKey(const 
UResourceBundle *resB, const char* key, UErrorCode* 
status)

C++ UnicodeString getStringEx(const char* key, UErrorCode& 
status) const

APIs that allow retrieving strings by specifying an index:

C (UChar*) const UChar* ures_getStringByIndex(const UResourceBundle 
*resB, int32_t indexS, int32_t* len, UErrorCode *status)

C 
(UnicodeString)

UnicodeString ures_getUnicodeStringByIndex(const 
UResourceBundle *resB, int32_t indexS, UErrorCode* 
status)

C++ UnicodeString getStringEx(int32_t index, UErrorCode& 
status) const;

APIs for retrieving strings through iteration:

C (UChar*) const UChar* ures_getNextString(UResourceBundle 
*resourceBundle, int32_t* len, const char ** key, 
UErrorCode *status)

C 
(UnicodeString)

UnicodeString ures_getNextUnicodeString(UResourceBundle 
*resB, const char ** key, UErrorCode* status)

C++ UnicodeString getNextString(UErrorCode& status)

Other APIs

Resource bundle framework provides a number of additional APIs that allow you to get 
more information on the resources you are using. They are summarized in the following 
tables.

C int32_t ures_getSize(UResourceBundle *resourceBundle)

C++ int32_t getSize(void) const

Gets the number of items in a resource. Simple resources always return size 1.

C UResType ures_getType(UResourceBundle *resourceBundle)

C++ UResType getType(void)

Gets the type of the resource. For a list of resource types, see: unicode/ures.h

C const char *ures_getKey(UResourceBundle *resB)

C++ const char *getKey(void)

176 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icu/trunk/source/common/unicode/ures.h


Gets the key of a named resource or NULL if this resource is a member of an array.

C void ures_getVersion(const UResourceBundle* resB, 
UVersionInfo versionInfo)

C++ void getVersion(UVersionInfo versionInfo) const

Fills out the version structure for this resource.

C const char* ures_getLocale(const UResourceBundle* 
resourceBundle, UErrorCode* status)

C++ const Locale& getLocale(void) const

Returns the locale this resource is from. This API is going to change, so stay tuned.

Format of Resource Bundles

Resource bundles are written in its source format. Before using them, they must be 
compiled to the binary format using the genrb utility. Currently supported source format 
is a text file. The format is defined in formal definition file.

This is an example of a resource bundle source file:

// Comments start with a '//' and extend to the end of the line 
// first, a locale name for the bundle is defined. The whole bundle is a table
// every resource, including the whole bundle has its name.
// The name consists of invariant characters, digits and following symbols: -, _. 
root {
    menu {
        id { "mainmenu" }
        items {
            {
                id { "file" }
                name { "&File" }
                items {
                    {
                        id { "open" }
                        name { "&Open" }
                    }
                    {
                        id { "save" }
                        name { "&Save" }
                    }
                    {
                        id { "exit" }
                        name { "&Exit" }
                    }
                }
            }
            {
                id { "edit" }
                name { "&Edit" }
                items {
                    {
                        id { "copy" }
                        name { "&Copy" }
                    }
                    {

177 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icuhtml/trunk/design/bnf_rb.txt


                        id { "cut" }
                        name { "&Cut" }
                    }
                    {
                        id { "paste" }
                        name { "&Paste" }
                    }
                }
           }
            ...
        }
    }
    // This resource is a table, thus accessible only through iteration and 
indexes...
    errors {
        "Invalid Command",
        "Bad Value",
        // Add more strings here...
        "Read the Manual"
    }
    splash:import { "splash_root.gif" } // This is a binary imported file
    pgpkey:bin { a1b2c3d4e5f67890 } // a binary value
    versionInfo { // a table
        major:int { 1 } // of integers
        minor:int { 4 }
        patch:int { 7 }
    }
    buttonSize:intvector { 10, 20, 10, 20 } // an array of 32-bit integers
    // will pick up data from zoneStrings resource in en bundle in the ICU package
    simpleAlias:alias { "/ICUDATA/en/zoneStrings" }
    // will pick up data from CollationElements resource in en bundle
    // in the ICU package
    CollationElements:alias { "/ICUDATA/en" }   
}

Binary format is described in the uresdata.h header file.

Resources Syntax

Syntax of the resources that can be stored in resource bundles is specified in the following 
table:

Data Type Format Description
Tables [name][:table] 

{ subname1 { subresource1 }
...
subnameN { subresourceN } }

Tables are a complex resource that 
holds named resources. If it is a part of 
an array, it does not have a name. At 
this point, a resource bundle is a table. 
Access is allowed by key, index, and 
iteration.

178 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icu/trunk/source/common/uresdata.h


Data Type Format Description
Arrays [name][:array] 

{subresource1, 
...
 subresourceN }

Arrays are a complex resource that 
holds unnamed resources. If it is a part 
of an array, it does not have a name. 
Arrays require less memory than 
tables (since they don't store the name 
of subresources) but the index and 
iteration access are as fast as with 
tables.

Strings [name][:string] 
{ ["]UnicodeText["] }

Strings are simple resources that hold 
a chunk of Unicode encoded data. If it 
is a part of an array, it does not have a 
name.

Binaries name:bin { binarydata } 
name:import 
{ "fileNameToImport" }

Binaries are used for storing binary 
information (processed data, images 
etc). Information is stored on a byte 
level.

Integers name:int 
{ integervalue }

Integers are used for storing a 32 bit 
integer value.

Integer 
Vectors

name:intvector 
{ integervalue,
...
integervalueN }

Integer vectors are used for storing 32 
bit integer values.

Aliases name:alias 
{ locale and path to aliased 
resource }

Aliases point to other resources. They 
are useful for preventing duplication 
of data in resources that are not on the 
same branch of the fallback chain. 
Alias can also have an empty path. In 
that case the position of the alias 
resource is used to find the aliased 
resource.

Although specifying type for some resources can be omitted for backward compatibility 
reasons, you are strongly encouraged to always specify the type of the resources. As 
structure gets more complicated, some combinations of resources that are not typed might 
produce unexpected results.

The way to write your resource is to start with a table that has your locale name. The 
contents of a table are between the curly brackets:

root:table {
}

179 ICU v3.8 User Guide



Then you can start adding resources to your bundle. Resources on the first level must be 
named and we suggest that you specify the type:

root:table {
  usage:string { "Usage: genrb [Options] files" }
  version:int  { 122 }
  errorcodes:array {
    :string { "Invalid argument" }
    :string { "File not found" }
  }
}

The resource bundle format doesn't care about indentation and line breaks. You can 
continue one string over many lines - you need to have the line break outside of the 
string:

aVeryLongString:string {
  "This string is quite long "
  "and therefore should be "
  "broken into several lines."
}

For more examples on syntax, take a look at our resource files for locales and test data, 
especially at the testtypes resource bundle.

Making Your Own Resource Bundles

In order to make your own resource bundle package, you need to perform several steps: 

1. Create your root resource bundle. This bundle should contain all the data for your 
program. You are probably best off if you fill it with data in your native language.

2. Create a chain of empty resource bundles for your native language and region. For 
example, if your region is sr_CS, create all the entries in root in Serbian and leave 
bundles for sr and sr_CS locales empty. This way, users of your package will know 
whether you support a certain locale or not.

3. If you already have some data to localize, create more bundles with localized data.

4. Decide on the name of your package. You will use the package name to access your 
resources.

5. Compile the resource bundles using the genrb tool. The command line format is 
genrb [options] list-of-input-files. Genrb expects that source files are in 
invariant encoding and \uXXXX characters or UTF-8/UTF-16 with BOM. If you need 
to use a different encoding, specify it using the --encoding option. You also need to 
specify the destination directory name for your resources using the --destdir option. 
This destination name needs to be the same as the package name. Full list of options 
can be retrieved by invoking genrb --help. 

180 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icu/trunk/source/test/testdata/testtypes.txt
http://source.icu-project.org/repos/icu/icu/trunk/source/test/testdata/
http://source.icu-project.org/repos/icu/icu/trunk/source/data/locales/


 You can also output Java class files. You will need to specify the --write-java 
option, followed by an optional encoding for the resulting .java file. Default encoding 
is ASCII + \uXXXX. You will also have to specify the resource bundle name using the 
--bundle-name argument. You can also specify the package name using the --
package-name option. It specifies the Java package name for this bundle and defaults 
to com.ibm.icu.impl.data.
 After using genrb, you will end up with files of name 
packagename_localename.res. For example, if you had root.txt, en.txt, 
en_US.txt, es.txt and you invoked genrb using the following command line: 
genrb -d myapplication root.txt en.txt en_US.txt es.txt, you will end up 
with myapplication/root.res, myapplication/en.res etc. The forward slash can 
be a back slash on some platforms, like Windows. These files are now ready to use and 
you can open them using ures_open("myapplication", "en_US", err);. 

6. However, you might want to have only one file containing all the data. In that case you 
need to use the package data tool. It can produce either a memory mapped file or a 
dynamically linked library. For more information on how to use package data tool, see 
the appropriate section.

Rolling out your own data takes some practice, especially if you want to package it all 
together. You might want to take a look at how we package data. Good places to start 
(except of course ICU's own data) are source/test/testdata/ and 
source/samples/ufortune/resources/ directories.

Also, here is a sample Windows batch file that does compiling and packing of several 
resources:

genrb -d myapplication root.txt en.txt en_GB.txt fr.txt es.txt es_ES.txt
echo root.txt en.txt en_GB.txt fr.txt es.txt es_ES.txt > packagelist.txt
pkgdata -p myapplication -m common packagelist.txt

It is also possible to use the icupkg tool instead of pkgdata to generate .dat data archives. 
The icupkg tool became available in ICU4C 3.6. If you need the data in a shared or static 
library, you still need to use the pkgdata tool. For easier maintenance, packaging, 
installation and application patching, it's recommended that you use .dat data archives.

Using XLIFF for Localization

ICU provides tool that allow for converting resource bundles to and from XLIFF format. 
Files in XLIFF format can contain translations of resources. In that case, more than one 
resulting resource bundle will be constructed.

To produce a XLIFF file from a resource bundle, use the -x option of genrb tool from 
ICU4C. Assume that we want to convert a simple resource bundle to the XLIFF format:

root {

181 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icu/trunk/source/samples/ufortune/resources/
http://source.icu-project.org/repos/icu/icu/trunk/source/test/testdata/
http://source.icu-project.org/repos/icu/icu/trunk/source/data/
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/icudata.sxw


   usage           {"usage: ufortune [-v]  [-l locale]"}
   optionMessage   {"unrecognized command line option:"} 
}

To get a XLIFF file, we need to call genrb like this: genrb -x -l en root.txt. Option 
-x tells genrb to produce XLIFF file, option -l specifies the language of the resource. If 
the language is not specified, genrb will try to deduce the language from the resource 
name (en, zh, sh). If the resource name is not an ISO language code (root), default 
language for the platform will be used. Language will be a source attribute for all the 
translation units. XLIFF file produced from the resource above will be named root.xlf 
and will look like this:

<?xml version="1.0" encoding="utf-8"?>
<xliff version = "1.1 "xmlns = 'urn:oasis:names:tc:xliff:document:1.1'
xmlns:xsi = 'http://www.w3.org/2001/XMLSchema-instance'
xsi:schemaLocation='urn:oasis:names:tc:xliff:document:1.1
http://www.oasis-open.org/committees/xliff/documents/xliff-core-1.1.xsd'>
    <file xml:space = "preserve" source-language = "en”
         datatype = "x-icu-resource-bundle" original = "root.txt"
         date = "2007-08-17T21:17:08Z">
        <header>
            <tool tool-id = "genrb-3.3-icu-3.8" tool-name = "genrb"/>
        </header>
        <body>
            <group id = "root" restype = "x-icu-table">
                <trans-unit id = "optionMessage" resname = "optionMessage">
                    <source>unrecognized command line option:</source>
                </trans-unit>
                <trans-unit id = "usage" resname = "usage">
                    <source>usage: ufortune [-v] [-l locale]</source>
                </trans-unit>
            </group>
        </body>
    </file>
</xliff>

This file can be sent to translators. Using translation tools that support XLIFF, translators 
will produce one or more translations for this resource. Processed file might look a bit 
like this:

<<?xml version="1.0" encoding="utf-8"?>
<xliff version = "1.1" xmlns='urn:oasis:names:tc:xliff:document:1.1'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
    xsi:schemaLocation='urn:oasis:names:tc:xliff:document:1.1
http://www.oasis-open.org/committees/xliff/documents/xliff-core-1.1.xsd'>
    <file xml:space = "preserve" source-language = "en" target-language = "sh"
          datatype = "x-icu-resource-bundle" original = "root.txt"
          date = "2007-08-17T21:17:08Z">
        <header>
            <tool tool-id = "genrb-3.3-icu-3.8" tool-name = "genrb"/>
        </header>
        <body>
            <group id = "root" restype = "x-icu-table">
                <trans-unit id = "optionMessage" resname = "optionMessage">
                    <source>unrecognized command line option:</source>
                    <target>nepoznata opcija na komandnoj liniji:</target>
                </trans-unit>
                <trans-unit id = "usage" resname = "usage">
                    <source>usage: ufortune [-v] [-l locale]</source>
                    <target>upotreba: ufortune [-v] [-l lokal]</target>
                </trans-unit>
            </group>
        </body>
    </file>
</xliff>

182 ICU v3.8 User Guide



In order to convert this file to a set of resource bundle files, we need to use ICU4J's 
com.ibm.icu.dev.tool.localeconverter.XLIFF2ICUConverter class.

XLIFF2ICUConverter class relies on XML parser being available. JDK 1.4 and 
newer provide a XML parser out of box. For earlier versions, you will need to 
install xerces.

Command line for running XLIFF2ICUConverter should specify the file than needs to be 
converted, sh.xlf in this case. Optionally, you can specify input and output directories as 
well as the package name. After running this tool, two files will be produced: en.txt and 
sh.txt. This is how they would look like:

// ***************************************************************************
// *
// * Tool: com.ibm.icu.dev.tool.localeconverter.XLIFF2ICUConverter.java
// * Date & Time: 08/17/2007 11:33:54 AM HST
// * Source File: C:\trunk\icuhtml\userguide\xliff\sh.xlf
// *
// ***************************************************************************
en:table{
    optionMessage:string{"unrecognized command line option:"}
    usage:string{"usage: ufortune [-v] [-l locale]"}
}

and
// ***************************************************************************
// *
// * Tool: com.ibm.icu.dev.tool.localeconverter.XLIFF2ICUConverter.java
// * Date & Time: 08/17/2007 11:33:54 AM HST
// * Source File: C:\trunk\icuhtml\userguide\xliff\sh.xlf
// *
// ***************************************************************************
sh:table{
    optionMessage:string{"nepoznata opcija na komandnoj liniji:"}
    usage:string{"upotreba: ufortune [-v] [-l lokal]"}
}

These files can be then used as all the other resource bundle files.

183 ICU v3.8 User Guide



Localizing with ICU
Overview

There are many different formats for software localization, i.e., for resource bundles. The 
most important file format feature for translation of text elements is to represent key-
value pairs where the values are strings.

Each format was designed for a certain purpose. Many but not all formats are recognized 
by translation tools. For localization it is best to use a source format that is optimized for 
translation, and to convert from it to the platform-specific formats at build time.

This overview concentrates on the formats that are relevant for working with ICU. The 
examples below show only lists of strings, which is the lowest common denominator for 
resource bundles.

Recommendation

The most promising long-term approach is to author localizable data in XLIFF format and 
to convert it to native, platform/tool-specific formats at build time.

Short-term, due to the lack of ICU tools for XLIFF, either custom tools must be used to 
convert from some authoring/translation format to Java/ICU formats, or one of the 
Java/ICU formats needs to be used for authoring and translation.

Contents

• Java and ICU4J  

• ICU4C  

• XLIFF  

• DITA  

• Linux/gettext  

• POSIX/catgets  

• Windows  

• ICU tools  

• Further information  

Java and ICU4J

.properties files

184 ICU v3.8 User Guide



Java PropertyResourceBundle uses runtime-parsed .properties files. They contain key-
value pairs where both keys and values are Unicode strings. No other native data types 
(e.g., integers or binaries) are supported. There is no way to specify a charset, therefore 
.properties files must be in ISO 8859-1 with \u escape sequences (see the Java 
native2ascii tool).

Defined at: http://java.sun.com/j2se/1.4/docs/api/java/util/PropertyResourceBundle.html

Example: (example_de.properties)
key1=Deutsche Sprache schwere Sprache
key2=Düsseldorf

.java ListResourceBundle files

Java ListResourceBundle files provide implementation subclasses of the 
ListResourceBundle abstract base class. They are Java code! Source files are .java 
files that are compiled as usual with the javac compiler. Syntactic rules of Java apply. As 
Java source code, they can contain arbitrary Java objects and can be nested.

Although the Java compiler allows to specify a charset on the command line, this is 
uncommon, and .java resource bundle files are therefore usually encoded in ISO 8859-1 
with \u escapes like .properties files.

Defined at: http://java.sun.com/j2se/1.4/docs/api/java/util/ListResourceBundle.html

Example: (example_de.java)
public class example_de extends ListResourceBundle {
  public Object[][] getContents() {
    return contents;
  }
  static final Object[][] contents={
    { "key1", "Deutsche Sprache " +
              "schwere Sprache" },
    { "key2", "Düsseldorf" }
  };
}

ICU4C

.txt resource bundles

ICU4C natively uses a plain text source format with a nested structure that was derived 
from Java ListResourceBundle .java files when the original ICU Java class files were 
ported to C++. The ICU4C bundle format can of course contain only data, not code, 
unlike .java files. Resource bundle source files are compiled with the genrb tool into a 
binary runtime form (.res files) that is portable among platforms with the same charset 
family (ASCII vs. EBCDIC) and endianness.

Features:

185 ICU v3.8 User Guide

http://java.sun.com/j2se/1.4/docs/api/java/util/ListResourceBundle.html
http://java.sun.com/j2se/1.4/docs/api/java/util/PropertyResourceBundle.html


• Key-value pairs. Keys are strings of "invariant characters" - a portable subset of the 
ASCII graphic character repertoire. About "invariant characters" see the definition of 
the .txt file format (URL below) or icu/source/common/unicode/utypes.h

• Values can be Unicode strings, integers, binaries (BLOBs), integer arrays (vectors), 
and nested structures. Nested structures are either arrays (position-indexed vectors) of 
values or "tables" of key-value pairs.

• Values inside nested structures can be all of the ones as on the top level, arbitrarily 
deeply nested via arrays and tables.

• Long strings can be split across lines: Adjacent strings separated only by whitespace 
(including line breaks) are automatically concatenated at build time.

• At runtime, when a top-level item is not found, then ICU looks up the same key in the 
parent bundle as determined by the locale ID.

• A value can also be an "alias", which is simply a reference to another bundle's item. 
This is to save space by storing large data pieces only once when they cannot be 
inherited along the locale ID hierarchy (e.g., collation data in ICU shared among 
zh_HK and zh_TW).

• Source files can be in any charset. Unicode signature byte sequences are recognized 
automatically (UTF-8/16, SCSU, ...), otherwise the tool takes a charset name on the 
command line.

Defined at: icuhtml/design/bnf_rb.txt

Example: (de.txt)
de {
  key1 { "Deutsche Sprache "
         "schwere Sprache" }
  key2 { "Düsseldorf" }
}

ICU4C XML resource bundles

The ICU4C XML resource bundle format was defined simply to express the same 
capabilities of the .txt and binary ICU4C resource bundles in XML form. However, we 
have decided to drop the format for lack of use and instead adopt standard XLIFF format 
for localization. For more information on XLIFF format, see the following section. For 
examples on using ICU tools to produce and read XLIFF format see the resource 
management chapter. 

XLIFF

The XML Localization Interchange File Format (XLIFF) is an emerging industry standard 
"for the interchange of localization information". Version 1.1 is available (2003-Oct-31), 
and 1.2 is almost complete (2007-Jan-20).

186 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/ResourceManagement.sxw#XLIFF_usage
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/ResourceManagement.sxw#XLIFF_usage
http://source.icu-project.org/repos/icu/icuhtml/trunk/design/bnf_rb.txt
http://icu-project.org/apiref/icu4c/utypes_8h.html


This is the result of a quick review of XLIFF and may need to be improved.
Features:

• Multiple resource bundles per XLIFF file are supported.

• Multiple languages per XLIFF file are supported.

• XLIFF provides a rich set of ways to communicate intent, types of items, etc. all the 
way from content creation to all stages and phases of translation.

• Nesting of values appears to not be supported.

• XLIFF is independent of actual build-time or runtime resource bundle formats. .xlf 
files must be converted to native formats at build time.

Defined at: http://www.oasis-open.org/committees/xliff/

Example: (example.xlf)
<<?xml version="1.0" encoding="utf-8"?>
<xliff version = "1.1" xmlns='urn:oasis:names:tc:xliff:document:1.1'
       xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
       xsi:schemaLocation='urn:oasis:names:tc:xliff:document:1.1
       http://www.oasis-open.org/committees/xliff/documents/xliff-core-1.1.xsd'>
    <file xml:space = "preserve" source-language = "en" target-language = "sh"
          datatype = "x-icu-resource-bundle" original = "root.txt"
          date = "2007-08-17T21:17:08Z">
        <header>
            <tool tool-id = "genrb-3.3-icu-3.8" tool-name = "genrb"/>
        </header>
        <body>
            <group id = "root" restype = "x-icu-table">
                <trans-unit id = "optionMessage" resname = "optionMessage">
                    <source>unrecognized command line option:</source>
                    <target>nepoznata opcija na komandnoj liniji:</target>
                </trans-unit>
                <trans-unit id = "usage" resname = "usage">
                    <source>usage: ufortune [-v] [-l locale]</source>
                    <target>upotreba: ufortune [-v] [-l lokal]</target>
                </trans-unit>
            </group>
        </body>
    </file>
</xliff>

For examples on using ICU tools to produce and read XLIFF format see the resource 
management chapter.

DITA

The Darwin Information Typing Architecture (DITA) is "IBM's XML architecture for 
topic-oriented information". It is a family of XML formats for several types of 
publications including manuals and resource bundles. It is extensible. For example, 
subformats can be defined by refining DTDs. One design feature is to provide cross-
document references for reuse of existing contents. For more information see 
http://www.ibm.com/developerworks/xml/library/x-dita4/index.html

While it is certainly possible to define resource bundle formats via DTDs in the DITA 

187 ICU v3.8 User Guide

http://www.ibm.com/developerworks/xml/library/x-dita4/index.html
http://www.oasis-open.org/committees/xliff/


framework, there currently (2002-Nov-27) do not appear to be resource bundle formats 
actually defined, or tools available specifically for them.

Linux/gettext

The OpenI18N specification requires support for message handling functions (mostly 
variants of gettext()) as defined in libintl.h. See Tables 3-5 and 3-6 and Annex C in 
http://www.openi18n.org/docs/html/LI18NUX-2000-amd4.htm

Resource bundles ("portable object files", extension .po) are plain text files with key-
value pairs for string values. The format and functions support a simple selection of 
plural forms by associating integer values (via C language expressions) with indexes of 
strings.

The msgfmt utility compiles .po files into "message object files" (extension .mo). The 
charset is determined from the locale ID in LC_CTYPE. There are additional supporting 
tools for .po files.

Note: The OpenI18N specification also requires POSIX gencat/catgets 
support.

Defined at: Annex C of the Li18nux-2000 specification, see above.

Example: (example.po)
domain "example_domain"
msgid "key1"
msgstr "Deutsche Sprache schwere Sprache"
msgid "key2"
msgstr "Düsseldorf"

POSIX/catgets

POSIX (The Open Group specification) defines message catalogs with the catgets() C 
function and the gencat build-time tool. Message catalogs contain key-value pairs where 
the keys are integers 1..NL_MSGMAX (see limits.h), and the values are strings. Strings 
can span multiple lines. The charset is determined from the locale ID in LC_CTYPE.

Defined at: http://www.opengroup.org/onlinepubs/009695399/utilities/gencat.html and 
http://www.opengroup.org/onlinepubs/009695399/functions/catgets.html

Example: (example.txt)
1 Deutsche Sprache \
schwere Sprache
2 Düsseldorf

188 ICU v3.8 User Guide

http://www.opengroup.org/onlinepubs/009695399/functions/catgets.html
http://www.opengroup.org/onlinepubs/009695399/utilities/gencat.html
http://www.openi18n.org/docs/html/LI18NUX-2000-amd4.htm


Windows

Windows uses a number of file formats depending on the language environment -- 
MSVC 6, Visual Basic, or Visual Studio .NET. The most well-known source formats are 
the .rc Resource and .mc Message file formats. They both get compiled into .res files that 
are linked into special sections of executables. Source formats can be UTF-16, while 
compiled strings are (almost) always UTF-16 from .rc files (except for predefined 
ComboBox strings) and can optionally be UTF-16 from .mc files.

.rc files carry key-value pairs where the keys are usually numeric but can be strings. 
Values can be strings, string tables, or one of many Windows GUI-specific structured 
types that compile directly into binary formats that the GUI system interprets at runtime. 
.rc files can include C #include files for #defined numeric keys. .mc files contain string 
values preceded by per-message headers similar to the Linux/gettext() format. There is a 
special format of messages with positional arguments, with printf-style formatting per 
argument. In both .rc and .mc formats, Windows LCID values are defined to be set on the 
compiled resources.

Developers and translators usually overlook the fact that binary resources are included, 
and include them into each translation. This despite Windows, like Java and ICU, using 
locale ID fallback at runtime.

.rc and .mc files are tightly integrated with Microsoft C/C++, Visual Studio and the 
Windows platform, but are not used on any other platforms.

A sample Windows .rc file is at the end of this document.

ICU tools

ICU 2.4 provides tools for conversion between resource bundle formats:

• ICU4C .txt -> ICU4C .res: Default operation of genrb (ICU 2.0 and before).

• ICU4C .txt -> ICU4C .xml: Option with genrb (ICU 2.4).

• ICU4C .txt -> Java ListResourceBundle .java format: Option with genrb (ICU 2.2).
 Generates subclasses of ICUListResourceBundle to support non-string types.

• Java ListResourceBundle .java format -> ICU4C .txt: Use ICU4J 2.4's 
src/com/ibm/icu/dev/tools/localeconverter

• ICU4C .xml -> ICU4C .txt: There is a tool for this conversion, but it is not fully tested 
or documented. Please see the XLIFF2ICUConverter tool.

There are currently no ICU tools for XLIFF.

Converting de.txt to a ListResourceBundle

189 ICU v3.8 User Guide

http://icu-project.org/download/xliff2icuconverter.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/message_compiler.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore98/HTML/_core_working_with_resource_files.asp


The following genrb invocation generates a ListResourceBundle from de.txt (see the 
example file de.txt above):
genrb -j -b TestName -p com.example de.txt
The -j option causes .java output, -b is an arbitrary bundle name prefix, and -p is an 
arbitrary package name. "Arbitrary" means "depends on your product" and may be truly 
arbitrary if the generated .java files are not actually used in a Java application. genrb 
auto-detects .txt files encoded in Unicode charsets like UTF-8 or UTF-16 if they have a 
signature byte sequence ("BOM"). The .java output file is in native2ascii format, i.e., it 
is encoded in US-ASCII with \u escapes.

The output of the above genrb invocation is TestName_de.java:
package com.example;
import java.util.ListResourceBundle;
import com.ibm.icu.impl.ICUListResourceBundle;
public class TestName_de extends ICUListResourceBundle {
    public TestName_de  () {
          super.contents = data;
    }
    static final Object[][] data = new Object[][] {
                {
                    "key1",
                    "Deutsche Sprache schwere Sprache",
                },
                {
                    "key2",
                    "D\u00FCsseldorf",
                },
    };
}

Converting a ListResourceBundle back to .txt

An ICUListResourceBundle .java file as generated in the previous example can be 
converted to an ICU4C .txt file with the following steps:

1. Compile the .java file, e.g. with javac -d . TestName_de.java. ICU4J needs to be 
on the classpath (or use the -classpath option). If the .java file is not in native2ascii 
format, then use the -encoding option (e.g. -encoding UTF-8). The -d option 
(specifying an output directory, in this example the current folder) is required. Without 
it, the Java compiler would not generate the com/example folder hierarchy that is 
required in the next step.

2. You now have a .class file com/example/TestName_de.class.

3. Invoke the ICU4J locale converter tool to generate ICU4C .txt format output for this 
.class file:
 
 java -cp ;(folder to ICU4J)/icu4j.jar;(working folder for the 
previous steps); 
com.ibm.icu.dev.tool.localeconverter.ConvertICUListResourceBundle 
-icu -package com.example -bundle-name TestName de > de.txt

190 ICU v3.8 User Guide



 
 Note that the classpath must include the working folder for the previous steps (the 
folder that contains "com"). The package name (com.example), bundle name 
(TestName) and locale ID (de) must match the .java/.class files. Note also that the 
locale converter writes to the standard output; the command line above includes a 
redirection to de.txt.

The last step generates a new de.txt in native2ascii format:
de {
  key2{"D\u00FCsseldorf"}
  key1{"Deutsche Sprache schwere Sprache"}
}

Further information

• TMX: "The purpose of TMX is to allow easier exchange of translation memory data 
between tools and/or translation vendors with little or no loss of critical data during the 
process."
 http://www.lisa.org/tmx/

• LISA: Localisation Industry Standards Association
 http://www.lisa.org/

Sample Windows .rc file

This file (winrc.rc) was generated with MSVC 6, using the New Project wizard to 
generate a simple "Hello World!" application, changing the LCIDs to German, then 
adding the two example strings as above.

//Microsoft Developer Studio generated resource script.
//
#include "resource.h"
#define APSTUDIO_READONLY_SYMBOLS
/////////////////////////////////////////////////////////////////////////////
//
// Generated from the TEXTINCLUDE 2 resource.
//
#define APSTUDIO_HIDDEN_SYMBOLS
#include "windows.h"
#undef APSTUDIO_HIDDEN_SYMBOLS
#include "resource.h"
/////////////////////////////////////////////////////////////////////////////
#undef APSTUDIO_READONLY_SYMBOLS
/////////////////////////////////////////////////////////////////////////////
// German (Germany) resources
#if !defined(AFX_RESOURCE_DLL) || defined(AFX_TARG_DEU)
#ifdef _WIN32
LANGUAGE LANG_GERMAN, SUBLANG_GERMAN
#pragma code_page(1252)
#endif //_WIN32

191 ICU v3.8 User Guide

http://www.lisa.org/
http://www.lisa.org/tmx/


/////////////////////////////////////////////////////////////////////////////
//
// Icon
//
// Icon with lowest ID value placed first to ensure application icon
// remains consistent on all systems.
IDI_WINRC               ICON    DISCARDABLE     "winrc.ICO"
IDI_SMALL               ICON    DISCARDABLE     "SMALL.ICO"
/////////////////////////////////////////////////////////////////////////////
//
// Menu
//
IDC_WINRC MENU DISCARDABLE
BEGIN
    POPUP "&File"
    BEGIN
        MENUITEM "E&xit",                       IDM_EXIT
    END
    POPUP "&Help"
    BEGIN
        MENUITEM "&About ...",                  IDM_ABOUT
    END
END

/////////////////////////////////////////////////////////////////////////////
//
// Accelerator
//
IDC_WINRC ACCELERATORS MOVEABLE PURE
BEGIN
    "?",            IDM_ABOUT,              ASCII,  ALT
    "/",            IDM_ABOUT,              ASCII,  ALT
END

/////////////////////////////////////////////////////////////////////////////
//
// Dialog
//
IDD_ABOUTBOX DIALOG DISCARDABLE  22, 17, 230, 75
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "About"
FONT 8, "System"
BEGIN
    ICON            IDI_WINRC,IDC_MYICON,14,9,16,16
    LTEXT           "winrc Version 1.0",IDC_STATIC,49,10,119,8,SS_NOPREFIX
    LTEXT           "Copyright (C) 2002",IDC_STATIC,49,20,119,8
    DEFPUSHBUTTON   "OK",IDOK,195,6,30,11,WS_GROUP
END

/////////////////////////////////////////////////////////////////////////////
//
// String Table
//
STRINGTABLE DISCARDABLE
BEGIN
    IDS_APP_TITLE           "winrc"
    IDS_HELLO               "Hello World!"
    IDC_WINRC               "WINRC"
    IDS_SENTENCE            "Deutsche Sprache schwere Sprache"
    IDS_CITY                "Düsseldorf"
END

192 ICU v3.8 User Guide



#endif    // German (Germany) resources
/////////////////////////////////////////////////////////////////////////////

/////////////////////////////////////////////////////////////////////////////
// English (U.S.) resources
#if !defined(AFX_RESOURCE_DLL) || defined(AFX_TARG_ENU)
#ifdef _WIN32
LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US
#pragma code_page(1252)
#endif //_WIN32
#ifdef APSTUDIO_INVOKED
/////////////////////////////////////////////////////////////////////////////
//
// TEXTINCLUDE
//
2 TEXTINCLUDE DISCARDABLE
BEGIN
    "#define APSTUDIO_HIDDEN_SYMBOLS\r\n"
    "#include ""windows.h""\r\n"
    "#undef APSTUDIO_HIDDEN_SYMBOLS\r\n"
    "#include ""resource.h""\r\n"
    "\0"
END
3 TEXTINCLUDE DISCARDABLE
BEGIN
    "\r\n"
    "\0"
END
1 TEXTINCLUDE DISCARDABLE
BEGIN
    "resource.h\0"
END
#endif    // APSTUDIO_INVOKED
#endif    // English (U.S.) resources
/////////////////////////////////////////////////////////////////////////////

#ifndef APSTUDIO_INVOKED
/////////////////////////////////////////////////////////////////////////////
//
// Generated from the TEXTINCLUDE 3 resource.
//

/////////////////////////////////////////////////////////////////////////////
#endif    // not APSTUDIO_INVOKED

193 ICU v3.8 User Guide



Date/Time Services
Overview of ICU System Time Zones

A time zone represents an offset applied to Greenwich Mean Time (GMT) to obtain local 
time. The offset might vary throughout the year, if daylight savings time (DST) is used, or 
might be the same all year long. Typically, regions closer to the equator do not use DST. 
If DST is in use, then specific rules define the point at which the offset changes and the 
amount by which it changes. Thus, a time zone is described by the following information: 

• An identifying string, or ID. This consists only of invariant characters (see the file 
utypes.h). It typically has the format continent / city. The city chosen is not the only 
city in which the zone applies, but rather a representative city for the region. Some IDs 
consist of three or four uppercase letters; these are legacy zone names that are aliases 
to standard zone names.

• An offset from GMT, either positive or negative. Offsets range from approximately 
minus half a day to plus half a day.

If DST is observed, then three additional pieces of information are needed:

1. The precise date and time during the year when DST begins. In the first half of the year 
it's in the northern hemisphere, and in the second half of the year it's in the southern 
hemisphere.

2. The precise date and time during the year when DST ends. In the first half of the year 
it's in the southern hemisphere, and in the second half of the year it's in the northern 
hemisphere.

3. The amount by which the GMT offset changes when DST is in effect. This is almost 
always one hour.

System and User Time Zones

ICU supports local time zones through the classes TimeZone and SimpleTimeZone in the 
C++ API. In the C API, time zones are designated by their ID strings.

Users can construct their own time zone objects by specifying the above information to 
the C++ API. However, it is more typical for users to use a pre-existing system time zone 
since these represent all current international time zones in use. This document lists the 
system time zones, both in order of GMT offset and in alphabetical order of ID.

Since this list changes one or more times a year, this document only represents a 
snapshot. For the most current list of ICU system zones, use the method 
TimeZone::getAvailableIDs().

194 ICU v3.8 User Guide



The zones are listed in binary sort order (that is, 'A' through 'Z' come before 'a'  
through 'z'). This is the same order in which the zones are stored internally, and 
the same order in which they are returned by TimeZone::getAvailableIDs().  
The reason for this is that ICU locates zones using a binary search, and the 
binary search relies on this sort order.
You might notice that zones such as Etc/GMT+1 appear to have the wrong sign 
for their GMT offset. In fact, their sign is inverted since the the Etc zones follow 
the POSIX sign conventions. This is the way the original Olson data is set up, and 
ICU reproduces the Olson data faithfully. See the Olson files for more details.

References

The ICU system time zones are derived from the tz database (also known as the “Olson” 
database) at ftp://elsie.nci.nih.gov/pub. This is the data used across much of the industry, 
including by UNIX systems, and is usually updated several times each year. ICU (since 
version 2.8) and base Java (since Java 1.4) contain code and tz data supporting both 
current and historic time zone usage.

How ICU Represents Dates/Times

ICU represents dates and times using UDates. A UDate is a scalar value that indicates a 
specific point in time, independent of calendar system and local time zone. It is stored as 
the number of milliseconds from a reference point known as the epoch. The epoch is 
midnight Universal Time Coordinated (UTC) January 1, 1970 A.D. Negative UDate 
values indicate times before the epoch. 

These classes have the same architecture as the Java classes.
Most people only need to use the DateFormat classes for parsing and formatting dates and 
times. However, for those who need to convert dates and times or perform numeric 
calculations, the services described in this section can be very useful.

To translate a UDate to a useful form, a calendar system and local time zone must be 
specified. These are specified in the form of objects of the Calendar and TimeZone 
classes. Once these two objects are specified, they can be used to convert the UDate to 
and from its corresponding calendar fields. The different fields are defined in the 
Calendar class and include the year, month, day, hour, minute, second, and so on.

Specific Calendar objects correspond to calendar systems (such as Gregorian) and 
conventions (such as the first day of the week) in use in different parts of the world. To 
obtain a Calendar object for France, for example, call 
Calendar::createInstance(Locale::getFrance(), status).

The TimeZone class defines the conversion between universal coordinated time (UTC),, 
and local time, according to real-world rules. Different TimeZone objects correspond to 
different real-world time zones. For example, call 
TimeZone::createTimeZone("America/Los_Angeles") to obtain an object that 

195 ICU v3.8 User Guide

ftp://elsie.nci.nih.gov/pub


implements the U.S. Pacific time zone, both Pacific Standard Time (PST) and Pacific 
Daylight Time (PDT).

As previously mentioned, the Calendar and TimeZone objects must be specified correctly 
together. One way of doing so is to create each independently, then use the 
Calendar::setTimeZone() method to associate the time zone with the calendar. 
Another is to use the Calendar::createInstance() method that takes a TimeZone 
object. For example, call Calendar::createInstance( TimeZone::createInstance( 
"America/Los_Angeles"), Locale:getUS(), status) to obtain a Calendar 
appropriate for use in the U.S. Pacific time zone.

ICU has four classes pertaining to calendars and timezones:

• Calendar   
Calendar is an abstract base class that represents a calendar system. Calendar objects 
map UDate values to and from the individual fields used in a particular calendar 
system. Calendar also performs field computations such as advancing a date by two 
months. 

• Gregorian Calendar   
GregorianCalendar is a concrete subclass of Calendar that implements the rules of the 
Julian calendar and the Gregorian calendar, which is the common calendar in use 
internationally today. 

• TimeZone   
TimeZone is an abstract base class that represents a time zone. TimeZone objects map 
between universal coordinated time (UTC) and local time. 

• SimpleTimeZone   
SimpleTimeZone is a concrete subclass of TimeZone that implements standard time 
and daylight savings time according to real-world rules. Individual SimpleTimeZone 
objects correspond to real-world time zones. 

196 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/dateTimezone.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/dateTimezone.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/dateCalendar.sxw#gc
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/dateCalendar.sxw#cal


Calendar Class
Overview

ICU has two specific calendar classes used for parsing and formatting Calendar 
information correctly:

• Calendar  
An abstract base class that defines the calendar API. This API supports UDate to fields 
conversion and field arithmetic. 

• GregorianCalendar  
A concrete subclass of Calendar that implements the standard calendar used today 
internationally. 

The Calendar class is designed to support other calendar systems in the future, such as the 
Islamic, Persian, Hebrew, Chinese, and Japanese calendars. If these calendar systems are 
introduced, the current code automatically accepts them (where appropriate), so long as 
the factory methods are used.

Calendar classes are related to UDate, the TimeZone classes, and the 
DateFormat classes.

Calendar locale and keyword handling

When a calendar object is created, via either Calendar::create(), or ucal_open(), or 
indirectly within a date formatter, ICU looks up the 'default' calendar type for that locale. 
At present, all locales default to a Gregorian calendar, except for the compatibility locales 
th_TH_TRADITIONAL and ja_JP_TRADITIONAL. If the "calendar" keyword is supplied, 
this value will override the default for that locale.

For instance, Calendar::createInstance("fr_FR", status) will create a Gregorian 
calendar, but Calendar::createInstance("fr_FR@calendar=buddhist") will create 
a Buddhist calendar.

It is an error to use an invalid calendar type. It will produce a missing resource error.

As of ICU 2.8, the above description applies to ICU4J only. ICU4J will have this  
behavior in 3.0

Usage

This section discusses how to use the Calendar class and the GregorianCalendar subclass.

197 ICU v3.8 User Guide



Calendar

Calendar is an abstract base class. It defines common protocols for a hierarchy of classes. 
Concrete subclasses of Calendar, for example the GregorianCalendar class, define 
specific operations that correspond to a real-world calendar system. Calendar objects 
(instantiations of concrete subclasses of Calendar), embody state that represents a specific 
context. They correspond to a real-world locale. They also contain state that specifies a 
moment in time.

The API defined by Calendar encompasses multiple functions:

• Representation of a specific time as a UDate

• Representation of a specific time as a set of integer fields, such as YEAR, MONTH, 
HOUR, etc. 

• Conversion from UDate to fields

• Conversion from fields to UDate

• Field arithmetic, including adding, rolling, and field difference

• Context management

• Factory methods

• Miscellaneous: field meta-information, time comparison

Representation and Conversion

The basic function of the Calendar class is to convert between a UDate value and a set of 
integer fields. A UDate value is stored as UTC time in milliseconds, which means it is 
calendar and time zone independent. UDate is the most compact and portable way to store 
and transmit a date and time. Integer field values, on the other hand, depend on the 
calendar system (that is, the concrete subclass of Calendar) and the calendar object's 
context state. 

Integer field values are needed when implementing a human interface that must  
display or input a date and/or time.

At any given time, a calendar object uses (when DateFormat is not sufficient) either its 
internal UDate or its integer fields (depending on which has been set most recently via 
setTime() or set()), to represent a specific date and time. Whatever the current internal 
representation, when the caller requests a UDate or an integer field it is computed if 
necessary. The caller need never trigger the conversion explicitly. The caller must 
perform a conversion to set either the UDate or the integer fields, and then retrieve the 
desired data. This also applies in situations where the caller has some integer fields and 
wants to obtain others. 

Field Arithmetic

198 ICU v3.8 User Guide



Arithmetic with UDate values is straightforward. Since the values are millisecond scalar 
values, direct addition and subtraction is all that is required. Arithmetic with integer fields 
is more complicated. For example, what is the date June 4, 1999 plus 300 days? Calendar 
defines three basic methods (in several variants) that perform field arithmetic: add(), 
roll(), and fieldDifference().

The add() method adds positive or negative values to a specified field. For example, 
calling add(Calendar::MONTH, 2) on a GregorianCalendar object set to March 15, 1999 
sets the calendar to May 15, 1999. The roll() method is similar, but does not modify 
fields that are larger. For example, calling roll(Calendar::HOUR, n) changes the hour 
that a calendar is set to without changing the day. Calling roll(Calendar::MONTH, n) 
changes the month without changing the year.

The fieldDifference() method is the inverse of the add() method. It computes the 
difference between a calendar's currently set time and a specified UDate in terms of a 
specified field. Repeated calls to fieldDifference() compute the difference between 
two UDates in terms of whatever fields the caller specifies (for example, years, months, 
days, and hours). If the add() method is called with the results of 
fieldDifference(when, n) , then the calendar is moved toward field by field.

This is demonstrated in the following example:
Calendar cal = Calendar.getInstance();
cal.set(2000, Calendar.MARCH, 15);
Date date = new Date(2000-1900, Calendar.JULY, 4);
int yearDiff = cal.fieldDifference(date, Calendar.YEAR); // yearDiff <= 0
int monthDiff = cal.fieldDifference(date, Calendar.MONTH); // monthDiff ;<= 3
// At this point cal has been advanced 3 months to June 15, 2000.
int dayDiff = cal.fieldDifference(date, Calendar.DAY_OF_MONTH); // dayDiff ;<=19
// At this point cal has been advanced 19 days to July 4, 2000.

Context Management

A calendar object performs its computations within a specific context. The context affects 
the results of conversions and arithmetic computations. When a calendar object is created, 
it establishes its context using either default values or values specified by the caller:

• Locale-specific week data, including the first day of the week and the minimal days in 
the first week. Initially, this is retrieved from the locale resource data for the specified 
locale, or if none is specified, for the default locale. 

• A TimeZone object. Initially, this is set to the specified zone object, or if none is 
specified, the default TimeZone. 

The context of a calendar object can be queried after the calendar is created using calls 
such as getMinimalDaysInFirstWeek(), getFirstDayOfWeek(), and getTimeZone(). 
The context can be changed using calls such as setMinimalDaysInFirstWeek(), 
setFirstDayOfWeek(), and setTimeZone().

Factory Methods

199 ICU v3.8 User Guide



Like other format classes, the best way to create a calendar object is by using one of the 
factory methods. These are static methods on the Calendar class that create and return an 
instance of a concrete subclass. Factory methods should be used to enable the code to 
obtain the correct calendar for a locale without having to know specific details. The 
factory methods on Calendar are named createInstance().

MONTH field
 Calendar numbers months starting from zero, so calling cal.set(1998, 3, 5) 
sets cal to April 15, 1998, not March 15, 1998. This follows the Java convention.  
To avoid mistakes, use the constants defined in the Calendar class for the months 
and days of the week. For example, cal.set(1998, Calendar::APRIL, 15). 

Gregorian Calendar

The GregorianCalendar class implements two calendar systems, the Gregorian calendar 
and the Julian calendar. These calendar systems are closely related, differing mainly in 
their definition of the leap year. The Julian calendar has leap years every four years; the 
Gregorian calendar refines this by excluding century years that are not divisible by 400. 
GregorianCalendar defines two eras, BC (B.C.E.) and AD (C.E.).

Historically, most western countries used the Julian calendar until the 16th to 20th 
century, depending on the country. They then switched to the Gregorian calendar. The 
GregorianCalendar class mirrors this behavior by defining a cut-over date. Before this 
date, the Julian calendar algorithms are used. After it, the Gregorian calendar algorithms 
are used. By default, the cut-over date is set to October 4, 1582 C.E., which reflects the 
time when countries first began adopting the Gregorian calendar. The GregorianCalendar 
class does not attempt historical accuracy beyond this behavior, and does not vary its cut-
over date by locale. However, users can modify the cut-over date by using the 
setGregorianChange() method.

Code that is written correctly instantiates calendar objects using the Calendar factory 
methods, and therefore holds a Calendar* pointer, Such code can not directly access the 
GregorianCalendar-specific methods not present in Calendar. The correct way to handle 
this is to perform a dynamic cast, after testing the type of the object using 
getDynamicClassID(). For example:

void setCutover(Calendar *cal, UDate myCutover) {
  if (cal->getDynamicClassID() ==
      GregorianCalendar::getStaticClassID()) {
    GregorianCalendar *gc = (GregorianCalendar*)cal;
    gc->setGregorianChange(myCutover, status);
  }
}

This is a general technique that should be used throughout ICU in conjunction 
with the factory methods.

Disambiguation

200 ICU v3.8 User Guide



When computing a UDate from fields, two special circumstances can arise. There might 
be insufficient information to compute the UDate (such as only year and month but no 
day in the month), or there might be inconsistent information (such as "Tuesday, July 15, 
1996" -— July 15, 1996, is actually a Monday).

• Insufficient Information
 GregorianCalendar uses the default field values to specify missing fields. The default 
for a field is the same as that of the start of the epoch (that is, YEAR = 1970, MONTH 
= JANUARY, DAY_OF_MONTH = 1).

• Inconsistent Information
 If fields conflict, the calendar gives preference to fields set more recently. For 
example, when determining the day, the calendar looks for one of the following 
combinations of fields:
 MONTH + DAY_OF_MONTH
 MONTH + WEEK_OF_MONTH + DAY_OF_WEEK
 MONTH + DAY_OF_WEEK_IN_MONTH + DAY_OF_WEEK
 DAY_OF_YEAR
 DAY_OF_WEEK + WEEK_OF_YEAR

 For the time of day, the calendar looks for one of the following combinations of 
fields:
 HOUR_OF_DAY
 AM_PM + HOUR

WEEK_OF_YEAR field
Values calculated for the WEEK_OF_YEAR field range from 1 to 53. Week 1 for  
a year is the first week that contains at least getMinimalDaysInFirstWeek() days 
from that year. It depends on the values of getMinimalDaysInFirstWeek(), 
getFirstDayOfWeek(), and the day of the week of January 1. Weeks between week 
1 of one year and week 1 of the following year are numbered sequentially from 2 
to 52 or 53 (if needed).
For example, January 1, 1998 was a Thursday. If getFirstDayOfWeek() is  
MONDAY and getMinimalDaysInFirstWeek() is 4 (these are the values 
reflecting ISO 8601 and many national standards), then week 1 of 1998 starts on 
December 29, 1997, and ends on January 4, 1998. However, if 
getFirstDayOfWeek() is SUNDAY, then week 1 of 1998 starts on January 4,  
1998, and ends on January 10, 1998. The first three days of 1998 are then part of  
week 53 of 1997. 

Programming Examples

Programming for calendar examples in C and C++.

201 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/dateCalendar-ex.sxw


Calendar Examples
Calendar for Default Time Zone

These C++ and C examples get a Calendar based on the default time zone and add days to 
a date. 

C++

UErrorCode status = U_ZERO_ERROR;
GregorianCalendar* gc = new GregorianCalendar(status);
if (U_FAILURE(status)) {
      puts("Couldn't create GregorianCalendar");
      return;
      }
      // set up the date
      gc->set(2000, Calendar::FEBRUARY, 26);
      gc->set(Calendar::HOUR_OF_DAY, 23);
      gc->set(Calendar::MINUTE, 0);
      gc->set(Calendar::SECOND, 0);
      gc->set(Calendar::MILLISECOND, 0);
      // Iterate through the days and print it out.
      for (int32_t i = 0; i < 30; i++) {
          // print out the date.
          // You should use the DateFormat to properly format it
          printf("year: %d, month: %d (%d in the implementation), day: %d\n",
                  gc->get(Calendar::YEAR, status),
                  gc->get(Calendar::MONTH, status) + 1,
                  gc->get(Calendar::MONTH, status),
                  gc->get(Calendar::DATE, status));
          if (U_FAILURE(status))
          {
              puts("Calendar::get failed");
              return;
          }
          // Add a day to the date
          gc->add(Calendar::DATE, 1, status);
          if (U_FAILURE(status)) {
              puts("Calendar::add failed");
              return;
          }
      }
      delete gc;

C

UErrorCode status = U_ZERO_ERROR;
int32_t i;
UCalendar *cal = ucal_open(NULL, -1, NULL, UCAL_GREGORIAN, &status);
if (U_FAILURE(status)) {
      puts("Couldn't create GregorianCalendar");
      return;
      }
      // set up the date
      ucal_set(cal, UCAL_YEAR, 2000);
      ucal_set(cal, UCAL_MONTH, UCAL_FEBRUARY);   /* FEBRUARY */
      ucal_set(cal, UCAL_DATE, 26);
      ucal_set(cal, UCAL_HOUR_OF_DAY, 23);

202 ICU v3.8 User Guide



      ucal_set(cal, UCAL_MINUTE, 0);
      ucal_set(cal, UCAL_SECOND, 0);
      ucal_set(cal, UCAL_MILLISECOND, 0);
      // Iterate through the days and print it out.
      for (i = 0; i < 30; i++) {
          // print out the date.
          // You should use the udat_* API to properly format it
          printf("year: %d, month: %d (%d in the implementation), day: %d\n",
              ucal_get(cal, UCAL_YEAR, &status),
              ucal_get(cal, UCAL_MONTH, &status) + 1,
              ucal_get(cal, UCAL_MONTH, &status),
              ucal_get(cal, UCAL_DATE, &status));
          if (U_FAILURE(status)) {
          puts("Calendar::get failed");
          return;
          }
          // Add a day to the date
          ucal_add(cal, UCAL_DATE, 1, &status);
          if (U_FAILURE(status))
          {
              puts("Calendar::add failed");
              return;
          }
      }
      ucal_close(cal);

203 ICU v3.8 User Guide



ICU TimeZone Classes
Overview

A time zone is a system that is used for relating local times in different geographical areas 
to one another. For example, in the United States, Pacific Time is three hours earlier than 
Eastern Time; when it's 6 P.M. in San Francisco, it's 9 P.M. in Brooklyn. To make things 
simple, instead of relating time zones to one another, all time zones are related to a 
common reference point.

For historical reasons, the reference point is Greenwich, England. Local time in 
Greenwich is referred to as Greenwich Mean Time, or GMT. (This is similar, but not 
precisely identical, to Universal Coordinated Time, or UTC. We use the two terms 
interchangeably in ICU since ICU does not concern itself with either leap seconds or 
historical behavior.) Using this system, Pacific Time is expressed as GMT-8:00, or GMT-
7:00 in the summer. The offset -8:00 indicates that Pacific Time is obtained from GMT 
by adding -8:00, that is, by subtracting 8 hours.

The offset differs in the summer because of daylight savings time, or DST. At this point it 
is useful to define three different flavors of local time:

• Standard Time
 Standard Time is local time without a daylight savings time offset. For example, in 
California, standard time is GMT-8:00; that is, 8 hours before GMT. 

• Daylight Savings Time
 Daylight savings time is local time with a daylight savings time offset. This offset is 
typically one hour, but is sometimes less. In California, daylight savings time is GMT-
7:00. Daylight savings time is observed in most non-equatorial areas.

• Wall Time
Wall time is what a local clock on the wall reads. In areas that observe daylight 
savings time for part of the year, wall time is either standard time or daylight savings 
time, depending on the date. In areas that do not observe daylight savings time, wall 
time is equivalent to standard time. 

Time Zones in ICU

ICU supports time zones through two classes:

• TimeZone
 TimeZone is an abstract base class that defines the time zone API. This API supports 
conversion between GMT and local time. 

• SimpleTimeZone
 SimpleTimeZone is a concrete subclass of TimeZone that implements the standard 
time zones used today internationally.

204 ICU v3.8 User Guide



Timezone classes are related to UDate, the Calendar classes, and the DateFormat classes.

Timezone Class in ICU

TimeZone is an abstract base class. It defines common protocol for a hierarchy of classes. 
This protocol includes:

• A programmatic ID, for example, "America/Los_Angeles". This ID is used to call up a 
specific real-world time zone. It corresponds to the IDs defined in the standard Olson 
data used by UNIX systems, and has the format continent/city or ocean/city.

• A raw offset. This is the difference, in milliseconds, between a time zone's standard 
time and GMT. Positive raw offsets are east of Greenwich.

• Factory methods and methods for handling the default time zone.

• Display name methods.

• An API to compute the difference between local wall time and GMT.

Factory Methods and the Default Timezone

The TimeZone factory method createTimeZone() creates and returns a TimeZone object 
given a programmatic ID. The user does not know what the class of the returned object is, 
other than that it is a subclass of TimeZone.

The createAvailableIDs() methods return lists of the programmatic IDs of all zones 
known to the system. These IDs may then be passed to createTimeZone() to create the 
actual time zone objects. ICU maintains a comprehensive list of current international time 
zones, as derived from the Olson data.

TimeZone maintains a static time zone object known as the default time zone. This is the 
time zone that is used implicitly when the user does not specify one. ICU attempts to 
match this to the host OS time zone. The user may obtain a clone of the default time zone 
by calling createDefault() and may change the default time zone by calling 
setDefault() or adoptDefault(). 

Display Name

When displaying the name of a time zone to the user, use the display name, not the 
programmatic ID. The display name is returned by the getDisplayName() method. A 
time zone may have three display names:

• Generic name, such as "Pacific Time". Currently, this is not supported by ICU. 

• Standard name, such as "Pacific Standard Time". 

• Daylight savings name, such as "Pacific Daylight Time". 

205 ICU v3.8 User Guide



Furthermore, each of these names may be LONG or SHORT. The SHORT form is 
typically an abbreviation, e.g., "PST", "PDT".

In addition to being available directly from the TimeZone API, the display name is used 
by the date format classes to format and parse time zones.

getOffset() API

TimeZone defines the API getOffset() by which the caller can determine the difference 
between local time and GMT. This is a pure virtual API, so it is implemented in the 
concrete subclasses of TimeZone.

Note: Users should not call getOffset() directly. This API is intended for use by 
the Calendar classes. To convert between local and GMT time, create an 
appropriate Calendar object, link it to the desired TimeZone object, and use the 
Calendar API.

Updating the Time Zone Data

Time zone data changes often in response to governments around the world changing 
their local rules and the areas where they apply. The ICU time zone data is updated for 
each release, and the easiest way to stay up to date may be to upgrade to the latest ICU 
release, which also provides bug fixes, code improvements and additional features.

If an ICU upgrade is not practical, then an old ICU installation needs to be updated. As 
with other systems (and very similar to with currency changes), it is only possible to 
update a system either after the new rules are already in effect, or if the system supports 
historical time zones, that is, for a given time zone ID it supports different rules for 
different years. For example, if a system is updated in 2006 with time zone data that 
includes the 2007 changes to US daylight savings time rules, then it needs to apply the 
old rules in 2006 and earlier years and the new rules in 2007 and later. Please use the 
following table to figure out whether time zone data can be updated for the version of 
ICU that you are using.

ICU4C 2.8 and newer

ICU4J 3.4.1 and newer

Time zone data can be updated.  Updates 
may include changes that do not take effect 
until a date in the future.

ICU4J 2.8 to 3.4.1 ICU reflects Java JRE time zone data. 
Updates to ICU are not possible. Updates 
to the JRE show through to ICU.

ICU4C 2.6 and earlier

ICU4J 2.6 and earlier

Time zone data cannot be updated in these 
versions

206 ICU v3.8 User Guide



We are providing ICU4C 3.4.1 and ICU4J 3.4.3 maintenance releases with the updated 
version 2006a of Olson time zone data and bug fixes. Please see the download page for 
more details at http://www.icu-project.org/download/.

The time zone data in ICU is generated from the industry-standard TZ database using the 
tzcode (nhttp://source.icu-project.org/vc/icu/trunk/source/tools/tzcode/) tool. The  ICU 
data files with recent time zone data can be downloaded from  http://source.icu-
project.org/repos/icu/data/trunk/tzdata/.

Update the time zone data for ICU4C

If the ICU-using application sets an ICU data path (or can be changed to set one), then the 
time zone .res file can be placed there. (It needs to have the proper platform endianness.) 

Otherwise, if the ICU data is installed as a .dat package file, the .res file can be integrated 
using the new icupkg tool.

Otherwise - if the data is packaged into a DLL and the data path is not set - the .txt source 
data file can be used to rebuild the data DLL.

Note: The example in the procedure below shows icudt32 - replace as 
appropriate

1. Download ICU4C binaries for latest release of  from  http://www.icu-
project.org/download/.

2. Unzip the binaries and run decmn.

Unix 

Note: Try running “icu-config –invoke” for the command to invoke decmn

mkdir icu
cd icu 
tar -xzvf icu-3.4.1-RHEL3-gcc3.2.3.tgz
cd ..
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/icu/usr/local/lib
export PATH=$PATH:~/icu/usr/local/bin
cd <the directory where icudt32.dat is located>
decmn icudt32l.dat

Windows 
mkdir c:\work\icu
cd icu 
unzip icu-3.4.1-Win32-msvc7.1.zip
cd ..
SET PATH=$PATH;c:\work\icu\lib;c:\work\icu\bin
cd <the directory where icudt32.dat is located>

207 ICU v3.8 User Guide

http://www.icu-project.org/download/
http://www.icu-project.org/download/
http://source.icu-project.org/repos/icu/data/trunk/tzdata/
http://source.icu-project.org/repos/icu/data/trunk/tzdata/
http://source.icu-project.org/vc/icu/trunk/source/tools/tzcode/
http://www.icu-project.org/download/


decmn icudt32l.dat > icudt32l.lst

This will produce a directory, for example, "icudt32b".

3. Download the appropriate zoneinfo.res from http://source.icu-
project.org/repos/icu/data/trunk/tzdata/. The directories under directory named “icu” are 
named with the version of the timezone database, e.g.: data for 2006a will be in directory 
2006a. Now traverse to the directory under version directory that is appropriate to your 
system, e.g.: download http://source.icu-
project.org/repos/icu/data/trunk/tzdata/icu/2006a/le/zoneinfo.res for little endian systems, 
http://source.icu-project.org/repos/icu/data/trunk/tzdata/icu/2006a/be/zoneinfo.res for big 
endian systems and  http://source.icu-
project.org/repos/icu/data/trunk/tzdata/icu/2006a/ee/zoneinfo.res for EBCIDIC systems. 

4. Replace the file zoneinfo.res in "icudt32(endian/codepage)/" directory with the 
downloaded zoneinfo.res. 

Unix 
cd icudt32l
cp /temp/le/zoneinfo.res .

Windows 
cd icudt32l
copy c:\work\temp\le\zoneinfo.res .

5. Create a list file. 
Unix 

 find icudt32l -type f  > icudt32l.lst

Windows 

Edit the icudt32l.lst file that was created in step 4 by decmn and replace 
“.\icudt32l/” with “icudt32l/” and make sure that it only contains lines such as 
“icudt32l/<names of files>”.

6. Rebuild the dat file.
 gencmn -v -n icudt32l 0 < icudt32l.lst

Note: “0” after the data file name is the digit zero and is an argument to gencm. 
This command will generate a new dat file. Make sure you back up your old dat  
file.

7. Download testtz.zip file from 
ftp://ftp.software.ibm.com/software/globalization/icu/tzdata and unzip.

208 ICU v3.8 User Guide

ftp://@ftp.software.ibm.com/software/globalization/icu/tzdata
http://source.icu-project.org/repos/icu/data/trunk/tzdata/icu/2006a/ee/zoneinfo.res
http://source.icu-project.org/repos/icu/data/trunk/tzdata/icu/2006a/ee/zoneinfo.res
http://source.icu-project.org/repos/icu/data/trunk/tzdata/icu/2006a/be/zoneinfo.res
http://source.icu-project.org/repos/icu/data/trunk/tzdata/icu/2006a/le/zoneinfo.res
http://source.icu-project.org/repos/icu/data/trunk/tzdata/icu/2006a/le/zoneinfo.res
http://source.icu-project.org/repos/icu/data/trunk/tzdata/
http://source.icu-project.org/repos/icu/data/trunk/tzdata/


8. Compile and run the test program to verify that the data file works.

There will probably be failures of tests that are run against the updated dat file due to 
change in rules for Daylight Saving Time. 

Update the time zone data for ICU4J 3.4.2 and later

Follow the procedure below:

1. Extract the contents of ICU4J .jar file into a temporary directory.

Unix 
mkdir ~/bin
cd ~/bin
/java/bin/jar -xvf <dir>/icu4j.jar 

Windows 
mkdir c:\work\bin
cd c:\work\bin
c:\java\bin\jar -xvf <dir>\icu4j.jar

2. Download the appropriate zoneinfo.res from http://source.icu-
project.org/repos/icu/data/trunk/tzdata/. The directories under directory named “icu” are 
named with the version of the timezone database, e.g.: data for 2006a will be in directory 
2006a. Note that ICU4J can only load big endian version o the zoneinfo.res file. Now 
traverse to the directory under version directory that is appropriate to ICU4J, e.g.: 
download  http://source.icu-
project.org/repos/icu/data/trunk/tzdata/icu/2006a/be/zoneinfo.res for 2006a version.

3. Replace the zoneinfo.res file in com/ibm/icu/impl/data/icudt<icu_version>b/ 
directory with the downloaded zoneinfo.res. 

Unix 
cd ~/bin/com/ibm/icu/impl/data/icudt32b/
cp /temp/be/zoneinfo.res .

Windows 
cd c:\work\bin\com\ibm\icu\impl\data\icudt32b\
copy c:\temp\be\zoneinfo.res .

4. Repackage icu4j.jar 
jar cvf icu4j.jar mymanifest .

209 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/data/trunk/tzdata/icu/2006a/be/zoneinfo.res
http://source.icu-project.org/repos/icu/data/trunk/tzdata/icu/2006a/be/zoneinfo.res
http://source.icu-project.org/repos/icu/data/trunk/tzdata/
http://source.icu-project.org/repos/icu/data/trunk/tzdata/


Date and Time Zone Examples
Calendar for Default Time Zone

This sample code is used to get a Calendar, which is based on the specified time zone ID 
in C++ and C. 

C++

// get the supported ids for GMT-08:00 (Pacific Standard Time)
int32_t idsCount;
UErrorCode status = ZERO_ERROR;
const UnicodeString** ids = TimeZone::createAvailableIDs(-8 * 60 * 60 * 1000,
idsCount);
// if no ids were returned, something is wrong. get out.
if (idsCount == 0) {
   return;
}
// begin output
cout << "Current Time" << '\n';
// create a Pacific Standard Time time zone
SimpleTimeZone* pdt = new SimpleTimeZone(-8 * 60 * 60 * 1000, *(ids[0]));
// create a GregorianCalendar with the Pacific Daylight time zone
// and the current date and time
Calendar* calendar = new GregorianCalendar( pdt, status );
delete pdt;
delete[] ids;
delete calendar;

C

/* get the supported ids for GMT-08:00 (Pacific Standard Time) */
UErrorCode status = U_ZERO_ERROR;
UCalendar *calendar = 0;
int32_t idsCount = ucal_countAvailableTZIDs(-8 * 60 * 60 * 1000);
const Char* tz = ucal_getAvailableTZIDs( -8 * 60 * 60 * 1000, 0, &status);
/* if no ids were returned, something is wrong. get out. */
if (idsCount == 0) {
   return;
}
/* begin output */
printf( "Current Time\n");
/* create a Calendar with the Pacific Daylight time zone */
/* and the current date and time */
status = U_ZERO_ERROR;
calendar = ucal_open(  tz , u_strlen(tz), NULL, UCAL_GREGORIAN, &status)
ucal_close( calendar );

210 ICU v3.8 User Guide



Universal Time Scale
Overview

There are quite a few different conventions for binary datetime, depending on the 
platform or protocol. Some of these have severe drawbacks. For example, people using 
Unix time (seconds since Jan 1, 1970, usually in a 32-bit integer) think that they are safe 
until near the year 2038. But cases can and do arise where arithmetic manipulations 
causes serious problems. Consider the computation of the average of two datetimes, for 
example: if one calculates them with averageTime = (time1 + time2)/2, there will be 
overflow even with dates beginning in 2004. Moreover, even if these problems don't 
occur, there is the issue of conversion back and forth between different systems.

Binary datetimes differ in a number of ways: the data type, the unit, and the epoch 
(origin). We'll refer to these as time scales. For example: (Sorted by epoch and unit, 
descending. In Java, int64_t=long and int32_t=int.)

Source Data Type Epoch Unit
MacOS X double (1.0=1s but fractional 

seconds are used as well; 
imprecise for 0.1s etc.)

2001-Jan-01 seconds 

Unix time_t int32_t or int64_t (signed 
int32_t limited to 1970..2038)

1970-Jan-01 seconds 

Java Date int64_t 1970-Jan-01 milliseconds 
Joda DateTime int64_t 1970-Jan-01 milliseconds
ICU4C UDate double (does not use fractional 

milliseconds)
1970-Jan-01 milliseconds 

JavaScript Date double (does not use fractional 
milliseconds; JavaScript 
Number stores a double)

1970-Jan-01 milliseconds

Extended Unix time struct (time_t+µs) 1970-Jan-01 microseconds
MacOS (old) uint32_t (1904..2040) 1904-Jan-01 seconds 
Excel ? 1899-Dec-31 days 
DB2 ? 1899-Dec-31 days 
Windows FILETIME int64_t 1601-Jan-01 ticks (100 

nanoseconds; 
finest granularity 
in industry) 

211 ICU v3.8 User Guide



Source Data Type Epoch Unit
.NET DateTime uint62 (only 0001-9999; only 

62 bits; also 2-bit field for 
UTC/local)

0001-Jan-01 ticks (100 
nanoseconds; 
finest granularity 
in industry)

ICU Universal Time 
Scale

int64_t 0001-Jan-01 same as .Net but 
allows 
29000BC..29000
AD

All of the epochs start at 00:00 am (the earliest possible time on the day in question), and 
are usually assumed to be UTC.

The ranges, in years, for different data types are given in the following table. The range 
for integer types includes the entire range expressible with positive and negative values of 
the data type. The range for double is the range that would be allowed without losing 
precision to the corresponding unit.

Units 64-bit integer Double 32-bit integer
1 second 5.84542x1011 285,420,920.94 136.10 
1 millisecond 584,542,046.09 285,420.92 0.14 
1 microsecond 584,542.05 285.42 0.00 
100 nanoseconds (tick) 58,454.20 28.54 0.00 
1 nanosecond 584.5420461 0.2854 0.00 

ICU implements a universal time scale that is similar to the .NET framework's 
System.DateTime. The universal time scale is a 64-bit integer that holds ticks since 
midnight, January 1st, 0001. Negative values are supported. This has enough range to 
guarantee that calculations involving dates around the present are safe.

The universal time scale always measures time according to the proleptic Gregorian 
calendar. That is, the Gregorian calendar's leap year rules are used for all times, even 
before 1582 when it was introduced. (This is different from the default ICU calendar 
which switches from the Julian to the Gregorian calendar in 1582. See 
GregorianCalendar::setGregorianChange() and ucal_setGregorianChange().)

ICU provides conversion functions to and from all other major time scales, allowing 
datetimes in any time scale to be converted to the universal time scale, safely 
manipulated, and converted back to any other datetime time scale.

212 ICU v3.8 User Guide

http://msdn2.microsoft.com/en-us/library/03ybds8y.aspx
http://msdn2.microsoft.com/en-us/library/03ybds8y.aspx


Background

So how did we decide what to use for the universal time scale? Java time has plenty of 
range, but cannot represent a .NET System.DateTime value without severe loss of 
precision. ICU4C time addresses this by using a double that is otherwise equivalent to 
the Java time. However, there are disadvantages with doubles. They provide for much 
more graceful degradation in arithmetic operations. But they only have 53 bits of 
accuracy, which means that they will lose precision when converting back and forth to 
ticks. What would really be nice would be a long double (80 bits -- 64 bit mantissa), but 
that is not supported on most systems.

The Unix extended time uses a structure with two components: time in seconds and a 
fractional field (microseconds). However, this is clumsy, slow, and prone to error (you 
always have to keep track of overflow and underflow in the fractional field). BigDecimal 
would allow for arbitrary precision and arbitrary range, but we did not want to use this as 
the normal type, because it is slow and does not have a fixed size.

Because of these issues, we concluded that the .NET System.DateTime is the best 
timescale to use. However, we use the full range allowed by the data type, allowing for 
datetimes back to 29,000 BC and up to 29,000 AD. (System.DateTime uses only 62 bits 
and only supports dates from 0001 AD to 9999 AD.) This time scale is very fine grained, 
does not lose precision, and covers a range that will meet almost all requirements. It will 
not handle the range that Java times do, but frankly, being able to handle dates before 
29,000 BC or after 29,000 AD is of very limited interest. 

Constants

ICU provides routines to convert from other timescales to the universal time scale, to 
convert from the universal time scale to other timescales, and to get information about a 
particular timescale. In all of these routines, the timescales are referenced using an integer 
constant, according to the following table:

213 ICU v3.8 User Guide



Source ICU4C ICU4J
Java UDTS_JAVA_TIME JAVA_TIME
Unix UDTS_UNIX_TIME UNIX_TIME
ICU4C UDTS_ICU4C_TIME ICU4C_TIME
Windows FILETIME UDTS_WINDOWS_FILE_TIME WINDOWS_FILE_TIME
.NET DateTime UDTS_DOTNET_DATE_TIME DOTNET_DATE_TIME
Macintosh (old) UDTS_MAC_OLD_TIME MAC_OLD_TIME
Macintosh UDTS_MAC_TIME MAC_TIME
Excel UDTS_EXCEL_TIME EXCEL_TIME
DB2 UDTS_DB2_TIME DB2_TIME
Unix with microseconds UDTS_UNIX_MICROSECONDS_TIME UNIX_MICROSECONDS_TIME

The routine that gets a particular piece of information about a timescale takes an integer 
constant that identifies the particular piece of information, according to the following 
table:

Value ICU4C ICU4J
Precision UTSV_UNITS_VALUE UNITS_VALUE
Epoch offet UTSV_EPOCH_OFFSET_VALUE EPOCH_OFFSET_VALUE
Minimum “from” value UTSV_FROM_MIN_VALUE FROM_MIN_VALUE
Maximum “from” value UTSV_FROM_MAX_VALUE FROM_MAX_VALUE
Minimum “to” value UTSV_TO_MIN_VALUE TO_MIN_VALUE
Maximum “to” value UTSV_TO_MAX_VALUE TO_MAX_VALUE

Here is what the values mean:

Precision - the precision of the timescale, in ticks.

Epoch offset – the distance from the universal timescale's epoch to the timescale's epoch, 
in the timescale's precision.

Minimum “from” value – the minimum timescale value that can  safely be converted to 
the universal timescale.

Maximum “from” value – the maximum timescale value that can safely be converted to 
the universal timescale.

Minimum “to” value – the minimum universal timescale value that can safely be 
converted to the timescale.

Maximum “to” value – the maximum universal timescale value that can safely be 
converted to the timescale.

214 ICU v3.8 User Guide



Converting

You can convert from other timescale values to the universal timescale using the “from” 
methods. In ICU4C, you use utmscale_fromInt64:

    UErrorCode err = U_ZERO_ERROR;
    int64_t unixTime = ...;
    int64_t universalTime;
    universalTime = utmscale_fromInt64(unixTime, UDTS_UNIX_TIME, &err);

In ICU4J, you use UniversalTimeScale.from:
    long javaTime = ...;
    long universalTime;
    universalTime = UniversalTimeScale.from(javaTime, UniversalTimeScale.JAVA_TIME);

You can convert values in the universal timescale to other timescales using the “to” 
methods. In ICU4C, you use utmscale_toInt64:

    UErrorCode err = U_ZERO_ERROR;
    int64_t universalTime = ...;
    int64_t unixTime;
    unixTime = utmscale_toInt64(universalTime, UDTS_UNIX_TIME, &err);

In ICU4J, you use UniversalTimeScale.to:
    long universalTime = ...;
    long javaTime;
    javaTime = UniversalTimeScale.to(universalTime, UniversalTimeScale.JAVA_TIME);

That's all there is to it! If the conversion is out of range, the ICU4C routines will set the 
error code to U_ILLEGAL_ARGUMENT_ERROR, and the ICU4J methods will throw 
IllegalArgumentException. In ICU4J, you can avoid out of range conversions by using 
the BigDecimal methods:

    long fileTime = ...;
    double icu4cTime = ...;
    BigDecimal utICU4C, utFile, utUnix, unixTime, macTime;

    utFile   = UniversalTimeScale.bigDecimalFrom(fileTime,
                                                 UniversalTime.WINDOWS_FILE_TIME);
    utICU4C  = UniversalTimeScale.bigDecimalFrom(icu4cTime,
                                                 UniversalTimeScale.ICU4C_TIME);
    unixTime = UniversalTimeScale.toBigDecimal(utFile,  UniversalTime.UNIX_TIME);
    macTime  = UniversalTimeScale.toBigDecimal(utICU4C, UniversalTime.MAC_TIME);
    utUnix   = UniversalTimeScale.bigDecimalFrom(unixTime, UniversalTime.UNIX_TIME);

215 ICU v3.8 User Guide



Note: because the Universal Time Scale has a finer resolution than some other 
time scales, time values that can be represented exactly in the Universal Time 
Scale will be rounded when converting to these time scales, and resolution will be 
lost. If you convert these values back to the Universal Time Scale, you will not get  
the same time value that you started with. If the time scale to which you are 
converting uses a double to represent the time value, you may loose precision 
even though the double supports a range that is larger than the range supported 
by the Universal Time Scale.

Formatting and Parsing

Currently, ICU does not support direct formatting or parsing of Universal Time Scale 
values. If you want to format a Universal Time Scale value, you will need to convert it to 
an ICU time scale value first. Use UTDS_ICU4C_TIME with ICU4C, and 
UniversalTimeScale.JAVA_TIME with ICU4J.

When you parse a datetime string, the result will be an ICU time scale value. You can 
convert this value to a Universal Time Scale value using UDTS_ICU4C_TIME with ICU4C, 
and UniversalTime.JAVA_TIME for ICU4J.

See the previous section, Converting, for details of how to do the conversion.

Getting Timescale Information

To get information about a particular timescale in ICU4C, use 
utmscale_getTimeScaleValue:

    UErrorCode err = U_ZERO_ERROR;
    int64_t unixEpochOffset =
        utmscale_getTimeScaleValue(UDTS_UNIX_TIME, UTSV_EPOCH_OFFSET_VALUE, &err);

In ICU4J, use UniversalTimeScale.getTimeScaleValue:
    long javaEpochOffset =
        UniversalTimeScale.getTimeScaleValue(UniversalTimeScale.JAVA_TIME,
                                              UniversalTimeScale.EPOCH_OFFSET_VALUE);

If the integer constants for selecting the timescale or the timescale value are out of range, 
the ICU4C routines will set the error code to U_ILLEGAL_ARGUMENT_ERROR, and the 
ICU4J methods will throw IllegalArgumentException. 

216 ICU v3.8 User Guide



Formatting and Parsing
Overview

Formatters translate between binary data and human-readable textual representations of 
these values. For example, you cannot display the computer representation of the number 
103. You can only display the numeral 103 as a textual representation (using three text 
characters). The result from a formatter is a string that contains text that the user will 
recognize as representing the internal value. A formatter can also parse a string by 
converting a textual representation of some value back into its internal representation. For 
example, it reads the characters 1, 0 and 3 followed by something other than a digit, and 
produces the value 103 as an internal binary representation.

These classes encapsulate information about the display of localized times, days, 
numbers, currencies, and messages. Formatting classes do both formatting and parsing 
and allow the separation of the data that the end-user sees from the code. Separating the 
program code from the data allows a program to be more easily localized. Formatting is 
converting a date, time, number, message or other object from its internal representation 
into a string. Parsing is the reverse operation. It is the process of converting a string to an 
internal representation of the date, time, number, message or other object.

Using the formatting classes is an important step in internationalizing your software 
because the format() and parse() methods in each of the classes make your software 
language neutral, by replacing implicit conversions with explicit formatting calls.

Internationalization Formatting Tips

This section discusses some of the ways you can format and parse numbers, currencies, 
dates, times and text messages in your program so that the data is separate from the code 
and can be easily localized. This is the information your users see on their computer 
screens, so it needs to be in a language and format that conforms to their local 
conventions.

Some things you need to keep in mind while you are creating your code are the following:

• Keep your code and your data separate

• Format the data in a locale-sensitive manner

• Keep your code locale-independent

• Avoid writing special routines to handle specific locales

• String objects formatted by format() are parseable by the parse() method

Numbers and Currencies

Programs store and operate on numbers using a locale-independent binary representation. 

217 ICU v3.8 User Guide



When displaying or printing a number it is converted to a locale-specific string. For 
example, the number 12345.67 is "12,345.67" in the US, "12 345,67" in France and 
"12.345,67" in Germany. 

By invoking the methods provided by the NumberFormat class, you can format numbers, 
currencies, and percentages according to the specified or default locale. NumberFormat is 
locale-sensitive so you need to create a new NumberFormat for each locale. 
NumberFormat methods format primitive-type numbers, such as double and output the 
number as a locale-specific string. 

For currencies you call getCurrencyInstance to create a formatter that returns a string 
with the formatted number and the appropriate currency sign. Of course, the 
NumberFormat class is unaware of exchange rates so, the number output is the same 
regardless of the specified currency. This means that the same number has different 
monetary values depending on the currency locale. If the number is 9988776.65 the 
results will be:

• 9 988 776,65 € in France 

• 9.988.776,65 € in Germany 

• $9,988,776.65 in the United States 

In order to format percentages, create a locale-specific formatter and call the 
getPercentInstance method. With this formatter, a decimal fraction such as 0.75 is 
displayed as 75%.

Customizing Number Formats

If you need to customize a number format you can use the DecimalFormat and the 
DecimalFormatSymbols classes. This not usually necessary and it makes your code much 
more complex, but it is available for those rare instances where you need it. In general, 
you would do this by explicitly specifying the number format pattern.

If you need to format or parse spelled-out numbers, you can use the 
RuleBasedNumberFormat class. You can instantiate a default formatter for a locale, or by 
using the RuleBasedNumberFormat rule syntax, specify your own.

Using NumberFormat class methods with a predefined locale is the easiest and the most 
accurate way to format numbers, and currencies. 

Date and Times

You display or print a Date by first converting it to a locale-specific string that conforms 
to the conventions of the end user's Locale. For example, Germans recognize 20.4.98 as a 
valid date, and Americans recognize 4/20/98.

218 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatNumbers.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatNumbers.sxw#RBNF
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatNumbers.sxw#DFS
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatNumbers.sxw#DF


The appropriate Calendar support is required for different locales. For example,  
the Buddhist calendar is the official calendar in Thailand so the typical  
assumption of Gregorian Calendar usage should not be used. ICU will pick the 
appropriate Calendar based on the locale you supply when opening a Calendar 
or DateFormat.

Messages

Message format helps make the order of display elements localizable. It helps address 
problems of grammatical differences in languages. For example, consider the sentence, "I 
go to work by car everyday." In Japanese, the grammar equivalent can be "Everyday, I to 
work by car go." Another example will be the plurals in text, for example, "no space for 
rent, one room for rent and many rooms for rent," where "for rent" is the only constant 
text among the three.

Formatting and Parsing Classes

ICU provides four major areas and twelve classes for formatting numbers, dates and 
messages:

General Formatting 

• Format
The abstract superclass of all format classes. It provides the basic methods for 
formatting and parsing numbers, dates, strings and other objects.

• FieldPosition
A concrete class for holding the field constant and the begin and end indices for 
number and date fields.

• ParsePosition
A concrete class for holding the parse position in a string during parsing.

• Formattable
Formattable objects can be passed to the Format class or its subclasses for 
formatting. It encapsulates a polymorphic piece of data to be formatted and is 
used with MessageFormat. Formattable is used by some formatting operations 
to provide a single "type" that encompasses all formattable values (e.g., it can 
hold a number, a date, or a string, and so on). 

• UParseError
UParseError is used to returned detailed information about parsing errors. It is 
used by the ICU parsing engines that parse long rules, patterns, or programs. 
This is helpful when the text being parsed is long enough that more 
information than a UErrorCode is needed to localize the error. 

Formatting Numbers 

• NumberFormat   

219 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatNumbers.sxw#NumberFormat


The abstract superclass that provides the basic fields and methods for 
formatting Number objects and number primitives to localized strings and 
parsing localized strings to Number objects.

• DecimalFormat   
A concrete class for formatting Number objects and number primitives to 
localized strings and parsing localized strings to Number objects, in base 10.

• RuleBasedNumberFormat   
A concrete class for formatting Number objects and number primitives to 
localized text, especially spelled-out format such as found in check writing 
(e.g. "two hundred and thirty-four"), and parsing text into Number objects.

• DecimalFormatSymbols   
A concrete class for accessing localized number strings, such as the grouping 
separators, decimal separator, and percent sign. Used by DecimalFormat.

Formatting Dates and Times 

• DateFormat   
The abstract superclass that provides the basic fields and methods for 
formatting Date objects to localized strings and parsing date and time strings to 
Date objects.

• SimpleDateFormat   
A concrete class for formatting Date objects to localized strings and parsing 
date and time strings to Date objects, using a GregorianCalendar.

• DateFormatSymbols   
A concrete class for accessing localized date-time formatting strings, such as 
names of the months, days of the week and the time zone.

Formatting Messages 

• MessageFormat   
A concrete class for producing a language-specific user message that contains 
numbers, currency, percentages, date, time and string variables.

• ChoiceFormat   
A concrete class for mapping strings to ranges of numbers and for handling 
plurals and names series in user messages.

220 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatMessages.sxw#CF
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatMessages.sxw#MF
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatDateTime.sxw#dfs
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatDateTime.sxw#sdf
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatDateTime.sxw#df
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatNumbers.sxw#DFS
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatNumbers.sxw#RBNF
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatNumbers.sxw#DF


Formatting Numbers
Overview

ICU has five classes for formatting numbers:

• NumberFormat   

• Currency Formatting  

• DecimalFormat  

• DecimalFormatSymbols  

• RuleBasedNumberFormat  

• ChoiceFormat. This subclass of NumberFormat maps ranges of numbers to and from 
strings. It is listed here, but it is not described in detail. See the chapter on formatting 
messages for further information.

NumberFormat

NumberFormat is the abstract base class for all number formats. It provides an interface 
for formatting and parsing numbers. It also provides methods to determine which locales 
have number formats, and what their names are. NumberFormat helps format and parse 
numbers for any locale. Your program can be written to be completely independent of the 
locale conventions for decimal points or thousands-separators. It can also be written to be 
independent of the particular decimal digits used or whether the number format is a 
decimal. A normal decimal number can also be displayed as a currency or as a 
percentage.

1234.5       //Decimal number
$1234.50     //U.S. currency
1.234,57€    //German currency
123457%      //Percent

Usage

Formatting for a Locale

To format a number for the current Locale, use one of the static factory methods to create 
a format, then call a format method to format it. To format a number for a different 
Locale, specify the Locale in the call to createInstance().

If you are formatting multiple numbers, save processing time by constructing the 
formatter once and then using it several times.

221 ICU v3.8 User Guide

http://icu-project.org/apiref/icu4c/classNumberFormat.html
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatMessages.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatMessages.sxw


Instantiating a NumberFormat

The following methods are used for instantiating NumberFormat objects:

• createInstance() 
Returns the normal number format for the current locale or for a specified locale.

• createCurrencyInstance() 
Returns the currency format for the current locale or for a specified locale.

• createPercentInstance() 
Returns the percentage format for the current locale or for a specified locale.

• createScientificInstance() 
Returns the scientific number format for the current locale or for a specified locale.

To create a format for spelled-out numbers, use a constructor on 
RuleBasedNumberFormat (see below).

Currency Formatting

Currency formatting, i.e., the formatting of monetary values, combines a number with a 
suitable display symbol or name for a currency. By default, the currency is set from the 
locale data from when the currency format instance is created, based on the country code 
in the locale ID. However, for all but trivial uses, this is fragile because countries change 
currencies over time, and the locale data for a particular country may not be available.

For proper currency formatting, both the number and the currency must be specified. 
Aside from achieving reliably correct results, this also allows to format monetary values 
in any currency with the format of any locale, like in exchange rate lists. If the locale data 
does not contain display symbols or names for a currency, then the 3-letter ISO code itself 
is displayed.

The locale ID and the currency code are effectively independent: The locale ID defines 
the general format for the numbers, and whether the currency symbol or name is 
displayed before or after the number, while the currency code selects the actual currency 
with its symbol, name, number of digits, and rounding mode.

In ICU and Java, the currency is specified in the form of a 3-letter ISO 4217 code. For 
example, the code "USD" represents the US Dollar and "EUR" represents the Euro 
currency.

In terms of APIs, the currency code is set as an attribute on a number format object (on a 
currency instance), while the number value is passed into each format() call or returned 
from parse() as usual.

• ICU4C (C++) NumberFormat.setCurrency() takes a Unicode string (const UChar 
*) with the 3-letter code.

222 ICU v3.8 User Guide



• ICU4C (C API) allows to set the currency code via unum_setTextAttribute() using 
the UNUM_CURRENCY_CODE selector.

• ICU4J NumberFormat.setCurrency() takes an ICU Currency object which 
encapsulates the 3-letter code.

• The base JDK's NumberFormat.setCurrency() takes a JDK Currency object which 
encapsulates the 3-letter code.

The functionality of Currency and setCurrency() is more advanced in ICU than in the 
base JDK. When using ICU, setting the currency automatically adjusts the number format 
object appropriately, i.e., it sets not only the currency symbol and display name, but also 
the correct number of fraction digits and the correct rounding mode. This is not the case 
with the base JDK. See the API references for more details.

There is ICU4C sample code at icu/source/samples/numfmt/main.cpp which illustrates 
the use of NumberFormat.setCurrency().

Displaying Numbers

You can also control the display of numbers with methods such as 
getMinimumFractionDigits. If you want even more control over the format or parsing, 
or want to give your users more control, cast the NumberFormat returned from the factory 
methods to a DecimalNumberFormat. This works for the vast majority of countries.

Working with Positions

You can also use forms of the parse and format methods with ParsePosition and 
UFieldPosition to enable you to: 

• progressively parse through pieces of a string.

• align the decimal point and other areas.

For example, you can align numbers in two ways: 

• If you are using a mono-spaced font with spacing for alignment, pass the FieldPosition 
in your format call with field = INTEGER_FIELD. On output, getEndIndex is set to 
the offset between the last character of the integer and the decimal. Add 
(desiredSpaceCount - getEndIndex) spaces at the front of the string. You can also use 
the space padding feature available in DecimalFormat.

• If you are using proportional fonts, instead of padding with spaces, measure the width 
of the string in pixels from the start to getEndIndex. Then move the pen by 
(desiredPixelWidth - widthToAlignmentPoint) before drawing the text. It also works 
where there is no decimal, but additional characters at the end (that is, with 
parentheses in negative numbers: "(12)" for -12).

Emulating printf

223 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icu/trunk/source/samples/numfmt/main.cpp


NumberFormat can produce many of the same formats as printf.

printf ICU
Width specifier, e.g., "%5d" has a width of 
5.

Use DecimalFormat. Either specify the 
padding, with can pad with any character, 
or specify a minimum integer count and a 
minimum fraction count, which will emit a 
specific number of digits, with zero padded 
to the left and right.

Precision specifier for %f and %e, e.g. 
"%.6f" or "%.6e". This defines the number 
of digits to the right of the decimal point.

Use DecimalFormat. Specify the maximum 
fraction digits.

General scientific notation, %g. This 
format uses either %f or %e, depending on 
the magnitude of the number being 
displayed.

Use ChoiceFormat with DecimalFormat. 
For example, for a typical %g, which has 6 
significant digits, use a ChoiceFormat with 
thresholds of 1e-4 and 1e6. For values 
between the two thresholds, use a fixed 
DecimalFormat with the pattern "@#####". 
For values outside the thresholds, use a 
DecimalFormat with the pattern 
"@#####E0".

DecimalFormat

DecimalFormat is a NumberFormat that converts numbers into strings using the decimal 
numbering system. This is the formatter that provides standard number formatting and 
parsing services for most usage scenarios in most locales. In order to access features of 
DecimalFormat not exposed in the NumberFormat API, you may need to cast your 
NumberFormat object to a DecimalFormat. You may also construct a DecimalFormat 
directly, but this is not recommended because it can hinder proper localization.

For a complete description of DecimalFormat, including the pattern syntax, formatting 
and parsing behavior, and available API, see the ICU4J DecimalFormat API or ICU4C 
DecimalFormat API documentation. 

DecimalFormatSymbols

DecimalFormatSymbols specifies the exact characters a DecimalFormat uses for various 
parts of a number (such as the characters to use for the digits, the character to use as the 
decimal point, or the character to use as the minus sign).

224 ICU v3.8 User Guide

http://icu-project.org/apiref/icu4c/classDecimalFormatSymbols.html
http://icu-project.org/apiref/icu4c/classDecimalFormat.html
http://icu-project.org/apiref/icu4c/classDecimalFormat.html
http://icu-project.org/apiref/icu4j/com/ibm/icu/text/DecimalFormat.html


This class represents the set of symbols needed by DecimalFormat to format numbers. 
DecimalFormat creates its own instance of DecimalFormatSymbols from its locale data. 
The DecimalFormatSymbols can be adopted by a DecimalFormat instance, or it can be 
specified when a DecimalFormat is created. If you need to change any of these symbols, 
can get the DecimalFormatSymbols object from your DecimalFormat and then modify it.

RuleBasedNumberFormat

RuleBasedNumberFormat can format and parse numbers in spelled-out format, e.g. "one 
hundred and thirty-four". For example:

"one hundred and thirty-four"  // 134 using en_US spellout
"one hundred and thirty-fourth" // 134 using en_US ordinal
"hundertvierunddreissig" // 134 using de_DE spellout
"MCMLVIII" // custom, 1958 in roman numerals

RuleBasedNumberFormat is based on rules describing how to format a number. The rule 
syntax is designed primarily for formatting and parsing numbers as spelled-out text, 
though other kinds of formatting are possible. As a convenience, custom API is provided 
to allow selection from three predefined rule definitions, when available: SPELLOUT, 
ORDINAL, and DURATION. Users can request formatters either by providing a locale and 
one of these predefined rule selectors, or by specifying the rule definitions directly.

ICU provides number spellout rules for several locales, but not for all of the 
locales that ICU supports, and not all of the predefined rule types. Also, as of  
release 2.6, some of the provided rules are known to be incomplete.

Instantiation

Unlike the other standard number formats, there is no corresponding factory method on 
NumberFormat. Instead, RuleBasedNumberFormat objects are instantiated via 
constructors. Constructors come in two flavors, ones that take rule text, and ones that take 
one of the predefined selectors. Constructors that do not take a Locale parameter use the 
current default locale.

The following constructors are available:

• RuleBasedNumberFormat(int) 
Returns a format using predefined rules of the selected type from the current locale.

• RuleBasedNumberFormat(Locale, int)
As above, but specifies locale.

• RuleBasedNumberFormat(String)
Returns a format using the provided rules, and symbols (if required) from the current 
locale.

225 ICU v3.8 User Guide

http://icu-project.org/apiref/icu4c/classRuleBasedNumberFormat.html


• RuleBasedNumberFormat(String, Locale)
As above, but specifies locale.

Usage

RuleBasedNumberFormat can be used like other NumberFormats. For example, in Java:
double num = 2718.28;
NumberFormat formatter = 
    new RuleBasedNumberFormat(RuleBasedNumberFormat.SPELLOUT);
String result = formatter.format(num);
System.out.println(result);
// output (in en_US locale):
// two thousand seven hundred and eighteen point two eight

Rule Sets

Rule descriptions can provide multiple named rule sets, for example, the rules for en_US 
spellout provides a '%simplified' rule set that displays text without commas or the word 
'and'. Rule sets can be queried and set on a RuleBasedNumberFormat. This lets you 
customize a RuleBasedNumberFormat for use through its inherited NumberFormat API. 
For example, in Java:

               

You can also format a number specifying the ruleset directly, using an additional overload 
of format provided by RuleBasedNumberFormat. For example, in Java:

      

There is no standardization of rule set names, so you must either query the 
names, as in the first example above, or know the names that are defined in the 
rules for that formatter.

Rules

The following example provides a quick look at the RuleBasedNumberFormat rule 
syntax.

These rules format a number using standard decimal place-value notation, but using 
words instead of digits, e.g. 123.4 formats as 'one two three point four':

"-x: minus >>;\n"
+ "x.x: << point >>;\n"
+ "zero; one; two; three; four; five; six;\n"
+ "    seven; eight; nine;\n"
+ "10: << >>;\n"
+ "100: << >>>;\n"
+ "1000: <<, >>>;\n"
+ "1,000,000: <<, >>>;\n"
+ "1,000,000,000: <<, >>>;\n"
+ "1,000,000,000,000: <<, >>>;\n"
+ "1,000,000,000,000,000: =#,##0=;\n";

226 ICU v3.8 User Guide



Rulesets are invoked by first applying negative and fractional rules, and then using a 
recursive process. It starts by finding the rule whose range includes the current value and 
applying that rule. If the rule so directs, it emits text, including text obtained by recursing 
on new values as directed by the rule. As you can see, the rules are designed to 
accomodate recursive processing of numbers, and so are best suited for formatting 
numbers in ways that are inherently recursive.

A full explanation of this example can be found in the RuleBasedNumberFormat 
examples. A complete description of the rule syntax can be found in the 
RuleBasedNumberFormat API Documentation.

Additional Sample Code

C/C++: See icu/source/samples/numfmt/ in the ICU source distribution for code samples 
showing the use of ICU number formatting. 

227 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icu/trunk/source/samples/numfmt/
http://icu-project.org/apiref/icu4c/classRuleBasedNumberFormat.html
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatNumbers-rbnf.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatNumbers-rbnf.sxw


RBNF Rules Examples
Annotated RuleBasedNumberFormat Example

The following example provides a quick idea of how the rules work. The 
RuleBasedNumberFormat API documentation describes the rule syntax in more detail.

This ruleset formats a number using standard decimal place-value notation, but using 
words instead of digits, e.g. 123.4 formats as 'one two three point four': 

"-x: minus >>;\n"
+ "x.x: << point >>;\n"
+ "zero; one; two; three; four; five; six;\n"
+ "    seven; eight; nine;\n"
+ "10: << >>;\n"
+ "100: << >>>;\n"
+ "1000: <<, >>>;\n"
+ "1,000,000: <<, >>>;\n"
+ "1,000,000,000: <<, >>>;\n"
+ "1,000,000,000,000: <<, >>>;\n"
+ "1,000,000,000,000,000: =#,##0=;\n";

In this example, the rules consist of one (unnamed) ruleset. It lists nineteen rules, each 
terminated by a semicolon. It starts with two special rules for handling negative numbers 
and non-integers. (This is true of most rulesets.) Following are rules for increasing integer 
ranges, up to 10e15. The portion of the rule before a colon, if any, provides information 
about the range and some additional information about how to apply the rule. Most rule 
bodies (following the colon) consist of recursion instructions and/or plain text 
substitutions. The rules in this example work as follows:

• -x: minus >>;
If the number is negative, output the string 'minus ' and recurse using the absolute 
value.

• x.x: << point >>;
If the number is not an integer, recurse using the integral part, emit the string ' point ', 
and process the ruleset in 'fractional mode' for the fractional part. Generally, this emits 
single digits.

• zero; one; ... nine;
Each of these ten rules applies to a range. By default, the first range starts at zero, and 
succeeding ranges start at the previous start + 1. These ranges all default, so each of 
these ten rules has a 'range' of a single integer, 0 to 9. When the current value is in one 
of these ranges, the rules emit the corresponding text (e.g. 'one', 'two', and so on).

• 10: << >>;
This starts a new range at 10 (not default) and sets the limit of the range for the 
previous rule. Divide the number by the divisor (which defaults to the highest power 
of 10 lower or equal to range start value, e.g. 10), recurse using the integral part, emit 

228 ICU v3.8 User Guide

http://icu-project.org/apiref/icu4c/classRuleBasedNumberFormat.html


the string ' ' (space), then recurse using the remainder.

• 100: << >>>;
This starts a new range at 100 (again, limiting the previous rule's range). It is similar to 
the previous rule, except for the use of '>>>'. '>>' means to recurse by matching the 
value against all the ranges to find the rule, '>>>' means to recurse using the previous 
rule. We must force the previous rule in order to get the rule for 'ten' invoked in order 
to emit '0' when processing numbers like 105.

• 1000: <<, >>>; 1,000,000: ...
These start new ranges at intervals of 1000. They are all similar to the rule for 100 
except they output ', ' (comma space) to delimit thousands. Note that the range value 
can include commas for readability.

• 1,000... =#,##0=;
This last rule in the ruleset applies to all values at or over 10e15. The pattern '==' 
means to use the current unmodified value, and text within in the pattern (this works 
for '<<' and similar patterns as well) describes the ruleset or decimal format to use. If 
this text starts with '0' or '#', it is presumed to be a decimal format pattern. So this rule 
means to format the unmodified number using a decimal format constructed with the 
pattern '#,##0'.

Rulesets are invoked by first applying negative and fractional rules, then by finding the 
rule whose range includes the current value and applying that rule, recursing as directed 
by the rule. Again, a complete description of the rule syntax can be found in the API 
Documentation.

More rule examples can be found in the RuleBasedNumberFormat demo source.

229 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icu4j/trunk/src/com/ibm/icu/dev/demo/rbnf/RbnfSampleRuleSets.java
http://icu-project.org/apiref/icu4c/classRuleBasedNumberFormat.html
http://icu-project.org/apiref/icu4c/classRuleBasedNumberFormat.html


Formatting Dates and Times

Formatting Dates and Times Overview

Date and time formatters are used to convert dates and times from their internal 
representations to textual form and back again in a language-independent manner. The 
date and time formatters use UDate, which is the internal representation. Converting from 
the internal representation (milliseconds since midnight, January 1, 1970) to text is 
known as "formatting," and converting from text to milliseconds is known as "parsing."

ICU has three formatting classes for creating dates and times that are easily localizable:

• DateFormat  

• SimpleDateFormat  

• DateFormatSymbols  

WARNING - in ICU 3.8, the behavior of date formatting and parsing has 
changed significantly, perhaps requiring recoding on your part depending on 
your usage. The goal of making the change was to return more understandable 
results from formatting timezones, but a byproduct is that the result from 
formatting with strings z, zzzz, v or vvvv are no longer unique, and thus no longer 
roundtrips. That is, if you use a date format with one of these strings, producing a 
certain output, you can no longer parse that output and expect to recover the 
original timezone.
What you will be able to get is a related, "best fit" mapping for the name, based 
on the region associated with the current locale and the mappings found in 
CLDR's supplemental data: for example, if you format the time zone 
"America/Denver", getting "Heure des Rocheuses" in French, and then parse, the 
resulting time zone would be "America/Denver". However, if the locale in use has 
the region "CA" (such as en-CA or fr-CA), the zone "America/Edmonton" would 
be retrieved.
If you require roundtripping, you will need to change your code to use "VVVV" 
instead. If you are working with date patterns based on a locale, then the 
workaround is to use the DateTimePatternGenerator to convert the format you 
get for a locale to using "VVVV". See date and time formatting examples.

DateFormat

DateFormat helps format and parse dates for any locale. Your code can be completely 
independent of the locale conventions for months, days of the week, or calendar format.

230 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatDateTime-ex.sxw#DateTimeExamples
http://icu-project.org/apiref/icu4c/classDateFormatSymbols.html
http://icu-project.org/apiref/icu4c/classSimpleDateFormat.html
http://icu-project.org/apiref/icu4c/classDateFormat.html


Formatting Dates

The DateFormat interface in ICU enables you to format a Date in milliseconds into a 
string representation of the date. It also parses the string back to the internal Date 
representation in milliseconds.

DateFormat* df = DateFormat::createDateInstance();
UnicodeString myString;
UDate myDateArr[] = { 0.0, 100000000.0, 2000000000.0 };
for (int32_t i = 0; i < 3; ++i) {
  myString.remove();
  cout << df->format( myDateArr[i], myString ) << endl;
}

To format a date for a different Locale, specify it in the call to:
 DateFormat* df = DateFormat::createDateInstance
   ( DateFormat::SHORT, Locale::getFrance());

Parsing Dates

Use a DateFormat to parse also:
UErrorCode status = ZERO_ERROR;
UDate myDate = df->parse(myString, status);

Producing Normal Date Formats for a Locale

Use createDateInstance to produce the normal date format for that country. There are 
other static factory methods available. Use createTimeInstance to produce the normal 
time format for that country. Use createDateTimeInstance to produce a DateFormat that 
formats both date and time. You can pass different options to these factory methods to 
control the length of the result; from SHORT to MEDIUM to LONG to FULL. The exact 
result depends on the locale, but generally:

• SHORT is numeric, such as 12/13/52 or 3:30pm

• MEDIUM is longer, such as Jan. 12, 1952

• LONG is longer, such as January 12, 1952 or 3:30:32pm

• FULL is completely specified, such as Tuesday, April 12, 1952 AD or 3:30:42pm PST

Setting Time Zones

You can set the time zone on the format. If you want more control over the format or 
parsing, cast the DateFormat you get from the factory methods to a SimpleDateFormat. 
This works for the majority of countries. 

Remember to check getDynamicClassID() before carrying out the cast.

231 ICU v3.8 User Guide



Working with Positions

You can also use forms of the parse and format methods with ParsePosition and 
FieldPosition to enable you to:

• Progressively parse through pieces of a string.

• Align any particular field, or find out where it is for selection on the screen.

SimpleDateFormat

SimpleDateFormat is a concrete class used for formatting and parsing dates in a 
language-independent manner. It allows for formatting, parsing, and normalization. It 
formats or parses a date or time, which is the standard milliseconds since 24:00 GMT, 
Jan. 1, 1970. 

SimpleDateFormat is the only built-in implementation of DateFormat. It provides a 
programmable interface that can be used to produce formatted dates and times in a wide 
variety of formats. The formats include almost all of the most common ones.

Create a date-time formatter using the following methods rather than constructing an 
instance of SimpleDateFormat. In this way, the program is guaranteed to get an 
appropriate formatting pattern of the locale.

• DateFormat::getInstance()

• getDateInstance()

• getDateTimeInstance()

If you need a more unusual pattern, construct a SimpleDateFormat directly and give it an 
appropriate pattern.

Date/Time Format Syntax

A date pattern is a string of characters, where specific strings of characters are replaced 
with date and time data from a calendar when formatting or used to generate data for a 
calendar when parsing.

The Date Field Symbol Table below contains the characters used in patterns to show the 
appropriate formats for a given locale, such as yyyy for the year. Characters may be used 
multiple times. For example, if y is used for the year, 'yy' might produce '99', whereas 
'yyyy' produces '1999'. For most numerical fields, the number of characters specifies the 
field width. For example, if h is the hour, 'h' might produce '5', but 'hh' produces '05'. For 
some characters, the count specifies whether an abbreviated or full form should be used, 
but may have other choices, as given below.

Two single quotes represents a literal single quote, either inside or outside single quotes. 

232 ICU v3.8 User Guide



Text within single quotes is not interpreted in any way (except for two adjacent single 
quotes). Otherwise all ASCII letter from a to z and A to Z are reserved as syntax 
characters, and require quoting if they are to represent literal characters. In addition, 
certain ASCII punctuation characters may become variable in the future (eg ":" being 
interpreted as the time separator and '/' as a date separator, and replaced by respective 
locale-sensitive characters in display).

"Stand Alone" values refer to those designed to stand on their own, as opposed to being 
with other formatted values. "2nd quarter" would use the stand alone format (QQQQ), 
whereas "2nd quarter 2007" would use the regular format (qqqq yyyy).

Symbol Meaning Example
G era designator G AD
y year yy

yyyy  or y
96
1996

Y year of "Week of Year" Y 1997
u extended year u 4601
Q quarter Q or QQ

QQQ
QQQQ

02
Q2
2nd quarter

q Stand Alone quarter q or qq
qqq

qqqq

02
Q2
2nd quarter

M month in year M or MM
MMM

MMMM
MMMMM

09
Sept
September
S

L Stand Alone month in year L or LL
LLL

LLLL
LLLLL

09
Sept
September
S

w week of year w or ww 27
W week of month W 2
d day in month d

dd
2
02

D day of year D 189
F day of week in month 2 (2nd Wed in July)
g modified julian day g 2451334

233 ICU v3.8 User Guide



Symbol Meaning Example
E day of week E, EE, or EEE

EEEE
EEEEE

Tues
Tuesday
T

e local day of  week
 example: if Monday is 1st day, 
Tuesday is 2nd ) 

e  or ee
eee

eeee
eeeee

2
Tues
Tuesday
T

c Stand Alone local day of week e  or ee
eee

eeee
eeeee

2
Tues
Tuesday
T

a am/pm marker a pm
h hour in am/pm (1~12) h

hh
7
07

H hour in day (0~23) H
HH

0
00

k hour in day (1~24) k
kk

24
24

K hour in am/pm (0~11) K
KK

0
00

m minute in hour m
mm

4
04

s second in minute s
ss

5
05

S millisecond
rounds to count of letters)

S
SS

SSS
SSSS

2
24
235
2350

A milliseconds in day A 61201235
z Time Zone: Names if available, 

otherwise the "location format" 
for generic times,
and the localized GMT format 
for standard or daylight times.

z, zz, or zzz
zzzz

PDT
Pacific Daylight Time

Z Time Zone: RFC 822
Time Zone: GMT offset

Z, ZZ, or ZZZ
ZZZZ

-0800
GMT-08:00

234 ICU v3.8 User Guide



Symbol Meaning Example
v Time Zone: Generic Time. 

Abbreviation or short name if 
available.

v
vvvv

PT
Pacific Time or United States (Los 
Angeles)

V Time Zone: Abbreviation V PT
VVVV Time Zone: Location format VVVV United States (Los Angeles)
W week in month 2
' escape for text ' (nothing)
' ' two single quotes produce one ' ' '

Any characters in the pattern that are not in the ranges of ['a'..'z'] and ['A'..'Z']  
will be treated as quoted text. For instance, characters like ':', '.', ' ', '#' and '@'  
will appear in the resulting time text even they are not enclosed within single  
quotes.The single quote is used to 'escape' letters. Two single quotes in a row,  
whether inside or outside a quoted sequence, represent a 'real' single quote.
A pattern containing any invalid pattern letter results in a failing UErrorCode 
result during formatting or parsing.

Format Pattern Result
yyyy.MM.dd G 'at' HH:mm:ss zzz 1996.07.10 AD at 15:08:56 PDT
EEE, MMM d, ''yy Wed, July 10, '96
h:mm a 12:08 PM
hh 'o''clock' a, zzzz 12 o'clock PM, Pacific Daylight 

Time
K:mm a, z 0:00 PM, PST
yyyyy.MMMM.dd GGG hh:mm 
aaa

01996.July.10 AD 12:08 PM

DateFormatSymbols

DateFormatSymbols is a public class for encapsulating localizable date-time formatting 
data, including time zone data. DateFormatSymbols is used by DateFormat and 
SimpleDateFormat.

DateFormatSymbols specifies the exact character strings to use for various parts of a date 
or time For example, the names of the months and days of the week, the strings for AM 
and PM and the day of the week considered to be the first day of the week (used in 
drawing calendar grids) are controlled by DateFormatSymbols.

235 ICU v3.8 User Guide



Create a date-time formatter using the createTimeInstance, createDateInstance, or 
createDateTimeInstance methods in DateFormat. Each of these methods can return a 
date/time formatter initialized with a default format pattern, along with the date-time 
formatting data for a given or default locale. After a formatter is created, modify the 
format pattern using applyPattern.

If you want to create a date-time formatter with a particular format pattern and locale, use 
one of the SimpleDateFormat constructors:

UnicodeString aPattern("GyyyyMMddHHmmssSSZ", "");
new SimpleDateFormat(aPattern, new DateFormatSymbols(Locale::getUS())

This loads the appropriate date-time formatting data from the locale.s

Programming Examples

See date and time formatting examples.

236 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatDateTime-ex.sxw#DateTimeExamples


Format Date and Time Examples
Overview

The ICU DateFormat interface enables you to format a date in milliseconds into a string 
representation of the date. Also, the interface enables you to parse the string back to the 
internal date representation in milliseconds. 

C++
DateFormat* df = DateFormat::createDateInstance();
UnicodeString myString;
UDate myDateArr[] = { 0.0, 100000000.0, 2000000000.0 }; 
for (int32_t i = 0; i < 3; ++i) {
  myString.remove();
  cout << df->format( myDateArr[i], myString ) << endl;
}

C
 /* 1st example: format the dates in millis 100000000 and
2000000000 */
UErrorCode status=U_ZERO_ERROR;
int32_t i, myStrlen=0;
UChar* myString;
UDate myDateArr[] = { 0.0, 100000000.0, 2000000000.0 }; // test values
UDateFormat* df = udat_open(UCAL_DEFAULT, UCAL_DEFAULT, NULL, "GMT", &status);
for (i = 0; i < 3; ++i) {
  myStrlen = udat_format(df, myDateArr[i], NULL, myStrlen, NULL, &status);
  if(status==U_BUFFER_OVERFLOW_ERROR){
    status=U_ZERO_ERROR;
    myString=(UChar*)malloc(sizeof(UChar) * (myStrlen+1) );
    udat_format(df, myDateArr[i], myString, myStrlen+1, NULL, &status);
    printf("%s\n", austrdup(myString) ); 
    /* austrdup( a function used to convert UChar* to char*) */
    free(myString);
  }
}

To parse a date for a different locale, specify it in the locale call. This call creates a 
formatting object.

C++

DateFormat* df = DateFormat::createDateInstance
  ( DateFormat::SHORT, Locale::getFrance());

C
/* 2nd example: parse a date with short French date/time
formatter */
UDateFormat* df = udat_open(UDAT_SHORT, UDAT_SHORT, "fr_FR", "GMT", &status);
UErrorCode status = U_ZERO_ERROR;
int32_t parsepos=0;     
UDate myDate = udat_parse(df, myString, u_strlen(myString), &parsepos,
&status);

237 ICU v3.8 User Guide



To get specific fields of a date, you can use the FieldPosition function for C++ or 
UFieldPosition function for C. 

C++
UErrorCode status = U_ZERO_ERROR;
FieldPosition pos(DateFormat::YEAR_FIELD)
UDate myDate = Calendar::getNow();
UnicodeString str;
DateFormat* df = DateFormat::createDateInstance
  ( DateFormat::LONG, Locale::getFrance());
df->format(myDate, str, pos, status);
cout << pos.getBeginIndex() << "," << pos. getEndIndex() << endl;

C
UErrorCode status = U_ZERO_ERROR;
  UFieldPosition pos;
  UChar *myString;
  int32_t myStrlen = 0;
  char buffer[1024];

  pos.field = 1;  /* Same as the DateFormat::EField enum */
  UDateFormat* dfmt = udat_open(UCAL_DEFAULT, UCAL_DEFAULT, NULL, "PST",
&status);
  myStrlen = udat_format(dfmt, myDate, NULL, myStrlen, &pos, &status);
  if (status==U_BUFFER_OVERFLOW_ERROR){
      status=U_ZERO_ERROR;
      myString=(UChar*)malloc(sizeof(UChar) * (myStrlen+1) );
      udat_format(dfmt, myDate, myString, myStrlen+1, &pos, &status);
  }
  printf("date format: %s\n", u_austrcpy(buffer, myString));
  buffer[pos.endIndex] = 0;   // NULL terminate the string.
  printf("UFieldPosition position equals %s\n", &buffer[pos.beginIndex]);

DateTimePatternGenerator
This class lets you get a different variety of patterns, such as month+day. The following 
illustrates this in Java.

        // set up the generator
        DateTimePatternGenerator generator
          = DateTimePatternGenerator.getInstance(locale);
        
        // get a pattern for an abbreviated month and day
        final String pattern = generator.getBestPattern("MMMd");
        SimpleDateFormat formatter = new SimpleDateFormat(pattern, locale);
        
        // use it to format (or parse)
        String formatted = formatter.format(new Date());
        // for French, the result is "13 sept."

It also contains some helper functions for parsing patterns. Here's an example of replacing 
the kind of timezone used in a pattern.
    /**
     * Replace the zone string with a different type, eg v's for z's, etc.
     * <p>Called with a pattern, such as one gotten from 
     * <pre>

238 ICU v3.8 User Guide



     * String pattern = ((SimpleDateFormat)
     *  DateFormat.getTimeInstance(style, locale)).toPattern();
     * </pre>
     * @param pattern original pattern to change, such as "HH:mm zzzz"
     * @param newZone Must be: z, zzzz, Z, ZZZZ, v, vvvv, V, or VVVV
     * @return
     */
    public String replaceZoneString(String pattern, String newZone) {
        final List itemList = formatParser.set(pattern).getItems();
        boolean found = false;
        for (int i = 0; i < itemList.size(); ++i) {
            Object item = itemList.get(i);
            if (item instanceof VariableField) {
                // the first character of the variable field determines the type,
                // according to CLDR.
                String variableField = item.toString();
                switch (variableField.charAt(0)) {
                case 'z': case 'Z': case 'v': case 'V':
                    if (!variableField.equals(newZone)) {
                        found = true;
                        itemList.set(i, new VariableField(newZone));
                    }
                    break;
                }
            }
        }
        return found ? formatParser.toString() : pattern;
    }

239 ICU v3.8 User Guide



Formatting Messages

Overview

Messages are a concatenation of strings, numbers, and dates that present a complex 
formatting challenge——how to put together the sequences of strings, numbers, dates, 
and other formats to create language-neutral messages. Localization is facilitated because 
there is no required hard coding message strings or concatenation sequences. ICU has two 
classes used to create language-neutral messages:

• MessageFormat  

• ChoiceFormat  

The MessageFormat class facilitates localization by preventing the concatenation of 
message strings. This class enables localizers to create more natural messages and avoid 
phrases like "3 file(s)". While the MessageFormat class formats message strings, the 
ChoiceFormat class enables users to attach a format to a range of numbers. The two 
classes enable localizers to change the content, format, and order of any text, as 
appropriate, for any language. Both of these classes parse as well as format. However, 
formatting is their main purpose. 

MessageFormat

MessageFormat is a concrete class that enables users to produce concatenated, language-
neutral messages. The methods supplied in this class are used to build all the messages 
that are seen by end users. 

The MessageFormat class assembles messages from various fragments (such as text 
fragments, numbers, and dates) supplied by the program using ICU. Because of the 
MessageFormat class, the program does not need to know the order of the fragments. The 
class uses the formatting specifications for the fragments to assemble them into a 
message that is contained in a single string within a resource bundle. For example, 
MessageFormat enables you to print the phrase "Finished printing x out of y files..." in a 
manner that still allows for flexibility in translation.

Previously, an end user message was created as a sentence and handled as a string. This 
procedure created problems for localizers because the sentence structure, word order, 
number format and so on are very different from language to language. The language-
neutral way to create messages keeps each part of the message separate and provides keys 
to the data. These keys are stored in ResourceBundles. Using these keys, the 
MessageFormat class can concatenate the parts of the message, localize them, and display 
a well-formed string to the end user.

240 ICU v3.8 User Guide

http://icu-project.org/apiref/icu4c/classChoiceFormat.html
http://icu-project.org/apiref/icu4c/classMessageFormat.html


MessageFormat takes a set of objects, formats them, and then inserts the formatted strings 
into the pattern at the appropriate places. ChoiceFormat, a class that inherits from 
NumberFormat, can be used in conjunction with MessageFormat to handle plurals, match 
numbers, and select from an array of items. Typically, the message format will come from 
resources and the arguments will be dynamically set at runtime. The following code 
fragment created this output: "At 4:34:20 PM on 23-Mar-98, there was a disturbance in 
the Force on planet 7."

    UErrorCode err = U_ZERO_ERROR;
    Formattable arguments[] = {
       (int32_t)7,
       Formattable(Calendar.getNow(), Formattable::kIsDate),
       "a disturbance in the Force"
    };
    UnicodeString result;
    result = MessageFormat::format(
       "At {1,time} on {1,date}, there was {2} on planet{0,number,integer}.",
       arguments,
       3,
       result,
       err);

ChoiceFormat 

The ChoiceFormat class returns a fixed string based on a numeric value. The class can be 
used in conjunction with the MessageFormat class to handle plurals in messages.

ChoiceFormat enables users to attach a format to a range of numbers. The choice is 
specified with an ascending list of doubles, where each item specifies a half-open interval 
up to the next item as in the following:

X matches j if and only if limit[j] <= X < limit[j+1]

If there is no match, then either the first or last index is used. The first or last index is 
used depending on whether the number is too low or too high. The length of the format 
array must be the same as the length of the limits array. For example:

 
double limits[]  = {1,2,3,4,5,6,7};
UnicodeString fmts[] = {"Sun","Mon","Tue","Wed","Thur","Fri","Sat"};
double limits2[]  = {0, 1, 1};
UBool closures2[] = { T, T, F };
UnicodeString fmts2[] = {"no files", "one file", "many files"};

ChoiceFormat objects also may be converted to and from patterns. The conversion can be 
done programmatically, as in the above example, or by using a pattern like the following: 

"1#Sun|2#Mon|3#Tue|4#Wed|5#Thur|6#Fri|7#Sat"
"0#are no files|1#is one file|1<are many files"

241 ICU v3.8 User Guide



where:
 
<number> "≤"  Specifies an inclusive limit value (“≤” is U+2264)
<number> "#"  Specifies an inclusive limit value
<number> "<"  Specifies an exclusive limit value

 Each limit value is followed by a string and is terminated by a vertical bar 
character ("|"). The last string, however, is terminated by the end of the string.

Programming Examples 

There are several programming examples for the MessageFormat and ChoiceFormat 
classes in C and C++.

242 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/formatMessages-ex.sxw


Message Format Examples
MessageFormat Class

ICU's MessageFormat class can be used to format messages in a locale-independent 
manner to localize the user interface (UI) strings.  

C++
/* The strings below can be isolated into a resource
bundle
* and retrieved dynamically
*/
#define LANGUAGE_NAMES  "{0}<{1}languages {2}>\n"
#define LANG_ATTRIB   "{0}<language id=\"{1}\" >{2}</language>\n"
#define MONTH_NAMES  "{0}<monthNames>\n"
#define END_MONTH_NAMES "{0}</monthNames>\n"
#define MONTH   "{0}<month id=\"{1}\">{2}</month>\n"
#define MONTH_ABBR  "{0}<monthAbbr>\n"
#define END_MONTH_ABBR "{0}</monthAbbr>\n"
UnicodeString CXMLGenerator::formatString(UnicodeString& str,UnicodeString&
argument){
Formattable args[] ={ argument};
UnicodeString result;
MessageFormat format(str,mError);
FieldPosition fpos=0;
format.format(args,1, result,fpos,mError);
if(U_FAILURE(mError)) {
  return UnicodeString("Illegal argument");
}
return result;
}
void CXMLGenerator::writeLanguage(UnicodeString& xmlString){
UnicodeString *itemTags, *items;
char* key="Languages";
int32_t numItems;
if(U_FAILURE(mError)) {
  return;
}
mRBundle.getTaggedArray(key,itemTags, items, numItems, mError);
if(mError!=U_USING_DEFAULT_ERROR && U_SUCCESS(mError) &&
mError!=U_ERROR_INFO_START){
  Formattable args[]={indentOffset,"",""};
  xmlString= formatString(UnicodeString(LANGUAGE_NAMES),args,3);
  indentOffset.append("\t");
  for(int32_t i=0;i<numItems;i++){
    args[0] = indentOffset;
    args[1] =itemTags[i] ;
    args[2] = items[i] ;
    xmlString.append(formatString(UnicodeString(LANG_ATTRIB),args,3));
  }
  chopIndent();
  args[0]=indentOffset;
  args[1] =(UnicodeString(XML_END_SLASH));
  args[2] = "";
  xmlString.append(formatString(UnicodeString(LANGUAGE_NAMES),args,3));

243 ICU v3.8 User Guide



  return;
}
mError=U_ZERO_ERROR;
xmlString.remove();
}

void CXMLGenerator::writeMonthNames(UnicodeString& xmlString){
int32_t lNum;
const UnicodeString* longMonths=
mRBundle.getStringArray("MonthNames",lNum,mError);
if(mError!=U_USING_DEFAULT_ERROR && mError!=U_ERROR_INFO_START && mError !=
U_MISSING_RESOURCE_ERROR){
  xmlString.append(formatString(UnicodeString(MONTH_NAMES),indentOffset));
  indentOffset.append("\t");
  for(int i=0;i<lNum;i++){
   char c;
   itoa(i+1,&c,10);
   Formattable args[]={indentOffset,UnicodeString(&c),longMonths[i]};
   xmlString.append(formatString(UnicodeString(MONTH),args,3));
  }
  chopIndent();
  xmlString.append(formatString(UnicodeString(END_MONTH_NAMES),indentOffset));
  mError=U_ZERO_ERROR;
  return;
}
xmlString.remove();
mError= U_ZERO_ERROR;
}

C
 void msgSample1(){
    UChar *result, *tzID, *str;
    UChar pattern[100];
    int32_t resultLengthOut, resultlength;
    UCalendar *cal;
    UDate d1;
    UErrorCode status = U_ZERO_ERROR;
    str=(UChar*)malloc(sizeof(UChar) * (strlen("disturbance in force") +1));
    u_uastrcpy(str, "disturbance in force");
    tzID=(UChar*)malloc(sizeof(UChar) * 4);
     u_uastrcpy(tzID, "PST");
     cal=ucal_open(tzID, u_strlen(tzID), "en_US", UCAL_TRADITIONAL, &status);
     ucal_setDateTime(cal, 1999, UCAL_MARCH, 18, 0, 0, 0, &status);
     d1=ucal_getMillis(cal, &status);
     u_uastrcpy(pattern, "On {0, date, long}, there was a {1} on planet
{2,number,integer}");
     resultlength=0;
     resultLengthOut=u_formatMessage( "en_US", pattern, u_strlen(pattern),
NULL,
resultlength, &status, d1, str, 7);
     if(status==U_BUFFER_OVERFLOW_ERROR){
         status=U_ZERO_ERROR;
         resultlength=resultLengthOut+1;
         result=(UChar*)realloc(result, sizeof(UChar) * resultlength);
         u_formatMessage( "en_US", pattern, u_strlen(pattern), result,
resultlength, &status, d1, str, 7);
     }
     printf("%s\n",austrdup(result) );  //austrdup( a function used to convert
UChar* to char*)
     free(tzID);
     free(str);
     free(result);
}

244 ICU v3.8 User Guide



char *austrdup(const UChar* unichars)
{
    int   length;
    char *newString;
    length    = u_strlen ( unichars );
    newString = (char*)malloc  ( sizeof( char ) * 4 * ( length + 1 ) );
    if ( newString == NULL )
        return NULL;
    u_austrcpy ( newString, unichars );
    return newString;
}
This is a more practical sample which retrieves data from a resource bundle
and
feeds the data
to u_formatMessage to produce a formatted string
void msgSample3(){
char* key="Languages";
int32_t numItems;
    /* This constant string can also be in the resouce bundle and retrieved at
the time
     * of formatting
     * eg:
     * UResouceBundle*  myResB = ures_open("myResources",currentLocale,&err);
     * UChar*  Lang_Attrib = ures_getString(myResb,"LANG_ATTRIB",&err);
     */
    UChar* LANG_ATTRIB   =(UChar*) "{0}<language id=\"{1}\"
>{2}</language>\n";
    UChar *result;
    UResourceBundle* pResB,*pDeltaResB=NULL;
    UErrorCode err=U_ZERO_ERROR;
    UChar* indentOffset = (UChar*)"\t\t\t";
    pResB = ures_open("","en",&err);
if(U_FAILURE(err)) {
  return;
}
    ures_getByKey(pResB, key, pDeltaResB, &err);
    if(U_SUCCESS(err)) {
        const UChar *value = 0;
        const char *key = 0;
        int32_t len = 0;
        int16_t indexR = -1;
        int32_t resultLength=0,resultLengthOut=0;
        numItems = ures_getSize(pDeltaResB);
        for(;numItems-->0;){
            key= ures_getKey(pDeltaResB);
            value = ures_get(pDeltaResB,key,&err);
            resultLength=0;
            resultLengthOut=u_formatMessage( "en_US", LANG_ATTRIB,
u_strlen(LANG_ATTRIB),
                                                NULL, resultLength, &err,
indentOffset, value, key);
            if(err==U_BUFFER_OVERFLOW_ERROR){
                 err=U_ZERO_ERROR;
                 resultLength=resultLengthOut+1;
                 result=(UChar*)realloc(result, sizeof(UChar) * resultLength);
                 u_formatMessage("en_US",LANG_ATTRIB,u_strlen(LANG_ATTRIB),
                                result,resultLength,&err,indentOffset,
                                value,key);
                 printf("%s\n", austrdup(result) );
            }
        }

245 ICU v3.8 User Guide



  return;
}
err=U_ZERO_ERROR;
}

ChoiceFormat Class

ICU's ChoiceFormat class provides more flexibility than the printf() and scanf() style 
functions for formatting UI strings. This interface can be useful if you would like a 
message to change according to the number of items you are displaying. Note: Some 
Asian languages do not have plural words or phrases. 

C++
 void msgSample1(){
    UChar *result, *tzID, *str;
    UChar pattern[100];
    int32_t resultLengthOut, resultlength;
    UCalendar *cal;
    UDate d1;
    UErrorCode status = U_ZERO_ERROR;
    str=(UChar*)malloc(sizeof(UChar) * (strlen("disturbance in force") +1));
    u_uastrcpy(str, "disturbance in force");
    tzID=(UChar*)malloc(sizeof(UChar) * 4);
     u_uastrcpy(tzID, "PST");
     cal=ucal_open(tzID, u_strlen(tzID), "en_US", UCAL_TRADITIONAL, &status);
     ucal_setDateTime(cal, 1999, UCAL_MARCH, 18, 0, 0, 0, &status);
     d1=ucal_getMillis(cal, &status);
     u_uastrcpy(pattern, "On {0, date, long}, there was a {1} on planet
{2,number,integer}");
     resultlength=0;
     resultLengthOut=u_formatMessage( "en_US", pattern, u_strlen(pattern),
NULL,
resultlength, &status, d1, str, 7);
     if(status==U_BUFFER_OVERFLOW_ERROR){
         status=U_ZERO_ERROR;
         resultlength=resultLengthOut+1;
         result=(UChar*)realloc(result, sizeof(UChar) * resultlength);
         u_formatMessage( "en_US", pattern, u_strlen(pattern), result,
resultlength, &status, d1, str, 7);
     }
     printf("%s\n",austrdup(result) );  //austrdup( a function used to convert
UChar* to char*)
     free(tzID);
     free(str);
double filelimits[] = {0,1,2};
UErrorCode err;
UnicodeString filepart[] = {"are no files","is one file","are {2} files"};
ChoiceFormat fileform(filelimits, filepart,err);
Format testFormats[] = {fileform, null, NumberFormat.getInstance()};
MessageFormat pattform("There {0} on {1}",err);
pattform.setFormats(testFormats);
Formattable testArgs[] = {null, "ADisk", null};
for (int i = 0; i < 4; ++i) {
     testArgs[0] = i;
     testArgs[2] = testArgs[0];
     FieldPosition fpos=0;
     format.format(args,1, result,fpos,mError);
     UnicodeString result = pattform.format(testArgs);
} 

246 ICU v3.8 User Guide



C
void msgSample2(){
     UChar* str;
     UErrorCode status = U_ZERO_ERROR;
     UChar *result;
     UChar pattern[100];
     int32_t resultlength,resultLengthOut, i;
     double testArgs[3]= { 100.0, 1.0, 0.0};
     str=(UChar*)malloc(sizeof(UChar) * 10);
     u_uastrcpy(str, "MyDisk");
     u_uastrcpy(pattern, "The disk {1} contains {0,choice,0#no files|1#one
file|1<{0,number,integer} files}");
     for(i=0; i<3; i++){
         resultlength=0;
         resultLengthOut=u_formatMessage( "en_US", pattern, u_strlen(pattern),
NULL, resultlength, &status, testArgs[i], str);
         if(status==U_BUFFER_OVERFLOW_ERROR){
             status=U_ZERO_ERROR;
             resultlength=resultLengthOut+1;
             result=(UChar*)malloc(sizeof(UChar) * resultlength);
             u_formatMessage( "en_US", pattern, u_strlen(pattern), result,
resultlength, &status, testArgs[i], str);
         }
     }
     printf("%s\n", austrdup(result) );  //austrdup( a function used to
convert
UChar* to char*)
     free(result);
}

247 ICU v3.8 User Guide



Transformations
Overview

Transformations are used to process Unicode text in many different ways. Some include 
case mapping, normalization, transliteration and bidirectional text handling.

Case Mappings

Case mapping is used to handle mappings of upper- and lower-case characters from one 
language to another language, and writing systems that use letters of the same alphabet to 
handle titlecase mappings that are particular to some class. They provide for certain 
language-specific mappings as well.

Normalization

Normalization is used to convert text to a unique, equivalent form. Systems can 
normalize Unicode-encoded text to one particular sequence, such as a normalizing 
composite character sequences into precomposed characters. While Normalization Forms 
are specified for Unicode text, they can also be extended to non-Unicode (legacy) 
character encodings. This is based on mapping the legacy character set strings to and from 
Unicode. 

Transforms

Transforms provide a general-purpose package for processing Unicode text. They are a 
powerful and flexible mechanism for handling a variety of different tasks, including:

• Uppercase, Lowercase, Titlecase, Full/Halfwidth conversions

• Normalization

• Hex and Character Name conversions

• Script to Script conversion

Bidirectional Algorithm

The Bidirectional Algorithm was developed to specify the direction of text in a text flow. 

248 ICU v3.8 User Guide



Case Mappings
Overview

Case mapping is used to handle the mapping of upper-case, lower-case, and title case 
characters for a given language. Case is a normative property of characters in specific 
alphabets (e.g. Latin, Greek, Cyrillic, Armenian, and archaic Georgian) whereby 
characters are considered to be variants of a single letter. ICU refers to these variants, 
which may differ markedly in shape and size, as uppercase letters (also known as capital 
or majuscule) and lower-case letters (also known as small or minuscule). Alphabets with 
case differences are called bicameral and alphabets without case differences are called 
unicameral.

Due to the inclusion of certain composite characters for compatibility, such as the Latin 
capital letter 'DZ' (\u01F1 'DZ'), there is a third case called title case. Title case is used to 
capitalize the first character of a word such as the Latin capital letter 'D' with small letter 
'z' ( \u01F2 'Dz'). The term "title case" can also be used to refer to words whose first letter 
is an uppercase or title case letter and the rest are lowercase letters. However, not all 
words in the title of a document or first words in a sentence will be title case. The use of 
title case words is language dependent. For example, in English, "Taming of the Shrew" 
would be the appropriate capitalization and not "Taming Of The Shrew".

 Although the archaic Georgian script contained upper- and lowercase pairs,  
they are rarely used in modern Georgian.

ICU provides three types of case mapping APIs:

• General Character Case Mapping  

• Language-Specific Case Mapping  

• Case Folding  

Sample code is available in the ICU source code library at 
icu/source/samples/ustring/ustring.cpp.

Please refer to Unicode Technical Report #21 (Case Mappings) for more information 
about case mapping.

General Character Case Mapping

The general case mapping in ICU is non-language based and a 1 to 1 generic character 
map.

A character is considered to have a lowercase, uppercase, or title case equivalent if there 
is a respective mapping specified for the character in the Unicode Character Database 
(UnicodeData.txt) attribute table. If a character has no mapping equivalent, the result is 
the character itself.

249 ICU v3.8 User Guide

http://www.unicode.org/unicode/reports/tr21/
http://source.icu-project.org/repos/icu/icu/trunk/source/samples/ustring/ustring.cpp


The APIs provided for the general case mapping, located in uchar.h file, handles only 
single characters of type UChar32 and returns only single characters. To convert a string 
to a non-language based specific case, use the APIs in either the unistr.h or ustring.h 
files with a NULL argument locale. 

Language-specific Case Mapping

There are different case mappings for different locales. For instance, unlike English, the 
character Latin small letter 'i' in Turkish has an equivalent Latin capital letter 'I' with dot 
above ( \u0130 'İ').

Similar to the general case mapping API, a character is considered to have a lowercase, 
uppercase or title case equivalent if there is a respective mapping specified for the 
character in the Unicode Character database (UnicodeData.txt) attribute table. In the case 
where a character has no mapping equivalent, the result is the character itself. 

To convert a string to a language based specific case, use the APIs in ustring.h and 
unistr.h with an intended argument locale. 

Case Folding

Case folding maps strings to a canonical form where case differences are erased. Using 
the case folding API, ICU makes fast matches without regard to case in lookups, since 
only binary comparison is required. Also, case folding uses cases such as the Latin 
uppercase character dotted I (\u0130 'İ'), so that "'İSTANBUL" and "istanbul" will match 
correctly. 

The CaseFolding.txt file in the Unicode Character Database is used for performing locale-
independent case folding. This text file is generated from the case mappings in the 
Unicode Character Database, using both the single-character and the multi-character 
mappings. The CaseFolding.txt file transforms all characters having different case forms 
into a common form. To compare two strings for non-case-sensitive matching, you can 
transform each string and then use a binary comparison. 

Character case folding APIs implementations are located in: 

• uchar.h for single character folding

• ustring.h and unistr.h for character string folding. 

250 ICU v3.8 User Guide



The Bidi Algorithm
Overview

Bidirectional text consists of mainly right-to-left text with some left-to-right nested 
segments (such as an Arabic text with some information in English), or vice versa (such 
as an English letter with a Hebrew address nested within it.) The predominant direction is 
called the global orientation.

Languages involving bidirectional text are used mainly in the Middle East. They include 
Arabic, Urdu, Farsi, Hebrew, and Yiddish.

In such a language, the general flow of text proceeds horizontally from right to left, but 
numbers are written from left to right, the same way as they are written in English. In 
addition, if some text (addresses, acronyms, or quotations) in English or another left-to-
right language is embedded, it is also written from left to right. 

 Libraries that perform a bidirectional algorithm and reorder strings accordingly  
are sometimes called "Storage Layout Engines". ICU's BiDi (ubidi.h) and 
shaping (ushape.h) APIs can be used at the core of such "Storage Layout  
Engines". 

Countries with Languages that Require Bidirectional Scripting

There are over 300 million people who depend on bidirectional scripts, including Farsi 
and Urdu which share the same script as Arabic, but have additional characters.

Language Number of Countries
Arabic 18 
Farsi 1 (Iran) 
Urdu 2 (India, Pakistan)
Hebrew 1 (Israel)
Yiddish Israel, North America, South America, 

Russia, Europe

Logical Order versus Visual Order

When reading bidirectional text, whenever the eye of the experienced reader encounters 
an embedded segment, it "automatically" jumps to the other end of the segment and reads 
it in the opposite direction. The sequence in which the characters are pronounced is thus a 
logical sequence which differs from the visual sequence in which they are presented on 
the screen or page.

The logical order of bidirectional text is also the order in which it is usually keyed, and in 

251 ICU v3.8 User Guide



which it is stored in memory.

Consider the following example, where Arabic or Hebrew letters are represented by 
uppercase English letters and English text is represented by lowercase letters:

english CIBARA text

The English letter h is visually followed by the Arabic letter C, but logically h is followed 
by the rightmost letter A. The next letter, in logical order, will be R. In other words, the 
logical and storage order of the same text would be:

english ARABIC text

Text is stored and processed in logical order to make processing feasible: A contiguous 
substring of logical-order text (e.g., from a copy&paste operation) contains a logically 
contiguous piece of the text. For example, "ish ARA" is a logically contiguous piece of 
the sample text above. By contrast, a contiguous substring of visual-order text may 
contain pieces of the text from distant parts of a paragraph. ("ish" and "CIB" from the 
sample text above are not logically adjacent.) Sorting and searching in text (establishing 
lexical order among strings) as well as any other kind of context-sensitive text analysis 
also rely on the storage of text in logical order because such processing must match user 
expectations.

When text is displayed or printed, it must be "reordered" into visual order with some parts 
of the text laid out left-to-right, and other parts laid out right-to-left. The Unicode 
standard specifies an algorithm for this logical-to-visual reordering. It always works on a 
paragraph as a whole; the actual positioning of the text on the screen or paper must then 
take line breaks into account, based on the output of the bidirectional algorithm. The 
reordering output is also used for cursor movement and selection.

Legacy systems frequently stored text in visual order to avoid reordering for display. 
When exchanging data with such systems for processing in Unicode it is necessary to 
reorder the data from visual order to logical order and back. Such not-for-display 
transformations are sometimes referred to as "storage layout" transformations.

The are two problems with an "inverse reordering" from visual to logical order: There 
may be more than one logical order of text that results in the same display (logical-to-
visual reordering is a many-to-one function), and there is no standard algorithm for it. 
ICU's BiDi API provides a setting for "inverse" operation that modifies the standard 
Unicode Bidi algorithm. However, it may not always produce the expected results. 
Bidirectional data should be converted to Unicode and reordered to logical order only 
once to avoid roundtrip losses. Just as it is best to never convert to non-Unicode charsets, 
data should not be reordered from logical to visual order except for display and printing.

References

ICU provides an implementation of the Unicode BiDi algorithm, as well as simple 

252 ICU v3.8 User Guide



functions to write a reordered version of the string using the generated meta-data. An 
"inverse" flag can be set to approximate visual-to-logical reordering. See the ubidi.h 
header file and the BiDi API References.

See Unicode Standard Annex #9: The Bidirectional Algorithm.

Programming Examples in C and C++

See the BiDi API reference for more information.

253 ICU v3.8 User Guide

http://icu-project.org/apiref/icu4c/ubidi_8h.html
http://www.unicode.org/unicode/reports/tr9/
http://icu-project.org/apiref/icu4c/ubidi_8h.html


Normalization
Overview

Normalization is used to convert text to a unique, equivalent form. Systems can 
normalize Unicode-encoded text to one particular sequence, such as normalizing 
composite character sequences into pre-composed characters. 

Normalizer allows for easier sorting and searching of text. Normalizer supports the 
standard normalization forms and are described in great detail in Unicode Technical 
Report #15 (Unicode Normalization Forms) and Section 5.7 of the Unicode Standard.

Usage

Normalizer transforms text into the canonical composed and decomposed forms. In 
addition, you can have it perform compatibility decompositions so that you can treat 
compatibility characters the same as their equivalents. 

Normalizer adds one optional behavior, IGNORE_HANGUL, that differs from the standard 
Unicode Normalization Forms in not normalizing Korean syllables. This option can be 
passed to the Normalizer constructors} and to the static compose and decompose 
methods. This option will be turned off by default.

There are three common usage models for Normalizer:

1. You can use normalize() to process an entire input string at once. 

• For example, if you have a string in Unicode that you want to convert to a Latin 1 
character set, ISO-8859-1: "a´bc" is normalized to "ábc".

2. You can create a Normalizer object and use it to iterate through the normalized form 
of a string by calling first() and next(). 

• For example, when you are comparing two strings you want to stop the comparison 
as soon as a significant difference is found. This way, you do not have the overhead 
of converting an entire string if only the first characters are important.

3. You can use setIndex() and getIndex() to perform a random-access iteration. 

• For example, when you want to do a fast language sensitive searching, such as 
Boyer-Moore.

Transformation Methods

• normalize() 
Normalizes a string using the given normalization operation.

• compose() 
Composes a string forming the separate Unicode characters into their corresponding 

254 ICU v3.8 User Guide

http://www.unicode.org/unicode/reports/tr15/
http://www.unicode.org/unicode/reports/tr15/


user characters. 

• decompose() 
Decomposes a string into its separate Unicode characters.

Movement Methods

• Return characters: 
• current() 

Return the current character in the normalized text. 

• first() 
Return the first character in the normalized text. 

• last() 
Return the last character in the normalized text. 

• next() 
Return the next character in the normalized text and advance the iteration position 
by one. 

• previous() 
Return the previous character in the normalized text and decrement the iteration 
position by one. 

• setIndex 
Set the iteration position in the input text that is being normalized and return the 
first normalized character at that position. 

• Return character index values: 
• endIndex() 

Retrieve the index of the end of the input text. 

• getIndex() 
Retrieve the current iteration position in the input text that is being normalized. 

• startIndex() 
Retrieve the index of the start of the input text. 

Normalizer objects behave like iterators and have methods such as setIndex(),  
next(), previous(), etc. You should note that while the setIndex() and 
getIndex() refer to indices in the underlying Unicode input text, the next() and 
previous() methods iterate through characters in the normalized output. This  
means that there is not necessarily a one-to-one correspondence between 
characters returned by next() and previous() and the indices passed to and 
returned from setIndex() and getIndex(). It is for this reason that  
Normalizer does not implement the CharacterIterator interface.

255 ICU v3.8 User Guide



Programming Examples in C and C++

Programming example for normalizing a string.

256 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/normalization-ex.sxw


Normalization Examples
Normalize a String

The following examples normalize a string, based on the mode, using the canonical 
decomposition with the option compatibility decomposition and ignoring the hangul 
syllable options. 

C++
UnicodeString source("This is a test.");
UnicodeString result;
UErrorCode status = U_ZERO_ERROR;
Normalize::normalize(source, COMPOSE_COMPAT, IGNORE_HANGUL, result, status);

C
UChar source[50];
int32_t resultLength = 0;
UChar *result = 0;
UErrorCode status = U_ZERO_ERROR;
u_uastrcpy(source, "This is a test.");
resultLength = u_normalize(source, u_strlen(source), 
   UCOL_DECOMP_COMPAT, UCOL_IGNORE_HANGUL, NULL, NULL, status);
result = (UChar*)malloc(sizeof(UChar)*resultLength+1);
u_normalize(source, u_strlen(source), 
   UCOL_DECOMP_COMPAT, UCOL_IGNORE_HANGUL, result, resultLength, status);
result[resultLength] = 0;

257 ICU v3.8 User Guide



Transforms
Overview

Transforms provide a general-purpose package for processing Unicode text. They are a 
powerful and flexible mechanism for handling a variety of different tasks, including:

• Uppercase, Lowercase, Titlecase, Full/Halfwidth conversions

• Normalization

• Hex and Character Name conversions

• Script to Script conversion

Originally, Transforms were designed to convert characters from one script to another 
(for example, from Greek to Latin, or Japanese Katakana to Latin). This is still reflected 
in the class name, which remains Transliterator. However, the services performed by 
that class now represent a much more general mechanism capable of handling a much 
broader range of tasks. In particular, the Transforms include pre-built transformations for 
case conversions, for normalization conversions, for the removal of given characters, and 
also for a variety of language and script transliterations. Transforms can be chained 
together to perform a series of operations and each step of the process can use a 
UnicodeSet to restrict the characters that are affected. 

For example, to remove accents from characters, use the following transform:

 NFD; [:Nonspacing Mark:] Remove; NFC.

This transform separates accents from their base characters, removes the accents, and 
then puts the remaining text into an unaccented form. 

A transliteration either can be applied to a complete string of text or can be used 
incrementally for typing or buffering input. In the latter case, the transform provides the 
correct time delay to process characters when there is an unambiguous mapping. 
Transliterators can also be used with more complex text, such as styled text, to maintain 
the style information where possible. For example, "Αλφaβητικός" will retain the two 
fonts in transliterating to "Alphabētikós".

The transliteration process not only retains font size, but also other 
characteristics such as font type and color.

For an online demonstration of ICU transliteration, see http://demo.icu-project.org/icu-
bin/translit.

Script Transliteration

Script Transliteration is the general process of converting characters from one script to 
another. For example, it can convert characters from Greek to Latin, or Japanese katakana 

258 ICU v3.8 User Guide

http://demo.icu-project.org/icu-bin/translit
http://demo.icu-project.org/icu-bin/translit


to Latin. The user must understand that script transliteration is not translation. Rather, 
script transliteration it is the conversion of letters from one script to another without 
translating the underlying words. The following shows a sample of script transliteration: 

Source Transliteration
キャンパス kyanpasu
Αλφαβητικός Κατάλογος Alphabētikós Katálogos
биологическом biologichyeskom 

 Some of the characters may not be visible on the screen unless you have a 
Unicode font with all the Greek letters. If you have a licensed copy of Microsoft® 
Office, you can use the "Arial Unicode MS" font, or you can download the 
CODE2000 font for free. For more information, see Display Problems? on the 
Unicode web site.

While the user may not recognize that the Japanese word "kyanpasu" is equivalent to the 
English word "campus," it is easier to recognize and interpret the word in text than if the 
letters were left in the original script. There are several situations where this 
transliteration is especially useful. For example, when a user views names that are entered 
in a world-wide database, it is extremely helpful to view and refer to the names in the 
user's native script. It is also useful for product support. For example, if a service engineer 
is sent a program dump that is filled with characters from foreign scripts, it is much easier 
to diagnose the problem when the text is transliterated and the service engineer can 
recognize the characters. Also, when the user performs searching and indexing tasks, 
transliteration can retrieve information in a different script. The following shows these 
retrieval capabilities:  

Source Transliteration
김, 국삼 Gim, Gugsam 

김, 명희 Gim, Myeonghyi 

정, 병호 Jeong, Byeongho 
... ...
たけだ, まさゆき Takeda, Masayuki 

ますだ, よしひこ Masuda, Yoshihiko 

やまもと, のぼる Yamamoto, Noboru 
... ...
Ρούτση, Άννα Roútsē, Ánna
Καλούδης, Χρήστος Kaloúdēs, Chr stosḗ
Θεοδωράτου, Ελένη Theodōrátou, Elénē

259 ICU v3.8 User Guide

, 09/26/04
html image name: comments_on_translit2.gif

http://www.unicode.org/help/display_problems.html
http://www.code2000.net/


Transliteration can also be used to convert unfamiliar letters within the same script, such 
as converting Icelandic THORN (þ) to th. 

Transliterator Identifiers

Transliterators are not created directly using C++ or Java constructors. Instead, the are 
created by giving an identifier—a name string in a specific format—to one of the 
Transliterator factory methods, such as Transliterator.getInstance() (Java) or 
Transliterator::createInstance(). The following are some examples of identifiers:

• Latin-Cyrillic

• [:Lu:] Latin-Greek (Greek-Latin/UNGEGN)

• [A-Za-z]; Lower(); Latin-Katakana; Katakana-Hiragana; ([:Hiragana:])

It is important to understand identifiers and their syntax, since it is through the use of 
identifiers that one creates transforms, restricts their effective range, and combines them 
together. This section describes transform identifiers in detail. Throughout this section, it 
is important to distinguish between identifiers and the actual transforms that they refer 
to. All actual transforms are named by well-formed identifiers, but not all well-formed 
identifiers refer to actual transforms. An analogy is C++ method names. I can write the 
syntactially well-formed method name "void Cursor::getPosition(Position& pos)", but 
whether or not this refers to an actual method in an actual class is a different matter.

Basic IDs

The simplest identifier is a 'basic ID'. Examples of basic IDs are:

• Katakana-Latin

• Null

• Hex-Any/Perl

• Latin-el

• Greek-en_US/UNGEGN

A basic ID typically names a source and target. In "Katakana-Latin", "Katakana" is the 
source and "Latin" is the target. The source specifier describes the characters or strings 
that the transform will modify. The target specifier describes the result of the 
modification. If the source is not given, then the source is "Any", the set of all characters.

Some basic IDs contain a further specifier following a forward slash. This is the variant, 
and it further specifies the transform when several versions of a single transformation are 
possible. For example, ICU provides several transforms that convert from Unicode 
characters to escaped representations. These include standard Unicode syntax "U+4E01", 
Perl syntax "\x{4E01}", XML syntax "&#x4E01;", and others. The transforms for these 

260 ICU v3.8 User Guide



operations are named "Any-Hex/Unicode", "Any-Hex/Perl", and "Any-Hex/XML", 
respectively. If no variant is specified, then the default variant is selected. In the example 
of "Any-Hex", this is the Java variant (for historical reasons), so "Any-Hex" is equivalent 
to "Any-Hex/Java".

Filtered IDs

A filtered IDs is a basic IDs constrained by a filter. For example, to specify a transform 
that converts only ASCII vowels to uppercase, use the ID:
[aeiou] Upper
The filter is a valid UnicodeSet pattern prefixed to the basic ID. Only characters within 
the set will be modified by the transform. Some transforms are only useful with filters, for 
example, the Remove transform, which deletes all input characters. Specifying 
"[:Nonspacing Mark:] Remove" gives a transform that removes non-spacing marks from 
input text.

As of ICU 2.0, the filter pattern must be enclosed in brackets. Perl-syntax 
patterns of the form "\p{Lu}" cannot be used directly; instead they must be 
enclosed, e.g. "[\p{Lu}]".

Inverses

Any transform ID can be modified to form an "inverse" ID. This is the ID of a related 
transform that performs an inverse operation. For basic IDs, this is done by exchanging 
the source and target names. For example, the inverse of "Latin-Greek/UNGEGN" is 
"Greek-Latin/UNGEGN", and vice versa. The variant, if any, is unaffected.

If there is no named source, the same rule still applies, using the implicit source "Any". 
So the inverse of "Hex/Perl" is "Hex-Any/Perl", since the former is really shorthand for 
"Any-Hex/Perl".

The notion of inverses carries two important caveats. The first involves the semantics of 
inverses. Consider a transform "A-B". Its inverse, "B-A", is thought of as reversing the 
transformation accomplished by "A-B". The degree and completeness of the reversal, 
however, is not guaranteed.

For example, consider the "Lower" transform. It has an inverse of "Upper" (this is a 
special, non-standard inverse relationship that the transliteration service knows about). 
Applying "Lower" to the string "Hello There" yields the string "hello there". Applying 
"Upper" to this result then yields "HELLO THERE", which is not the same as the original 
string.

Complete and exact reversal is possible if the transform has been explicitly designed to 
support this. Examples of transforms that support this are "Any-Hex" and "SCRIPT-
Latin", where SCRIPT is a supported transliteration script. The "SCRIPT-Latin" 
transforms support exact reversal of well-formed text in SCRIPT to Latin (via "SCRIPT-

261 ICU v3.8 User Guide



Latin") and back to SCRIPT (via "Latin-SCRIPT"). This is called round-trip integrity. 
They do not, however, support round-trip integrity from Latin to SCRIPT and back to 
Latin.

Do not assume that a transform's inverse will provide a complete or exact  
reversal.

The second caveat with inverses has to do with existence. Although any ID can be 
inverted, this does not guarantee that the inverse ID actually exists. For example, if I 
create a custom translitertor Latin-Antarean and register it with the system, I can then 
pass the string "Latin-Antarean" to createInstance() or getInstance() to get that 
transform. If I then ask for its inverse, however, the request will fail, since I have not 
created and registered "Antarean-Latin" with the system.

Any transform ID can be inverted, but the inverse ID may not name an actual  
registered transform.

Custom Inverses

Consider the transforms "Any-Lower" and "Any-Upper": It is convenient to associate 
these as inverses of one another. However, using the standard procedure for ID inversion 
on "Any-Lower" yields "Lower-Any", which is not what we want. To override the 
standard ID inversion, the inverse ID can be explicitly stated within the ID string as 
follows:

"Any-Lower (Any-Upper)" or equivalently "Lower (Upper)"
When this ID is inverted, the result is "Any-Upper (Any-Lower)". Using this mechanism, 
the user can form arbitrary inverse relations when necessary.

When using custom inverses of the form "A-B (C-D)", either "A-B" or "C-D" may be 
empty. An empty element is the same as "Null". That is, "A-B ( )" is the same as "A-B 
(Null)", and it inverts to the null transform (which does nothing). The null transform it 
inverts to has the ID "(A-B)", also written "Null (A-B)", and inverts back to "A-B ( )". 
Note that "A-B ( )" is very different from both "A-B" and "(A-B)":

ID Inverse of ID
A-B B-A
A-B ( ) (A-B)
(A-B) A-B ( )

For some system transforms, special inverse mappings exists automatically. These 
mappings are symmetrical, that is, the right column is the inverse of the left column, and 
vice versa. The mappings are:

262 ICU v3.8 User Guide



Any-Null Any-Null
Any-NFD Any-NFC
Any-NFKD Any-NFKC
Any-Lower Any-Upper

In other words, writing "Any-NFD" is exactly equivalent to writing "Any-NFD (Any-
NFC)" since the system maps the former to the latter internally. However, one can still 
alter the mapping of these transforms by specifying an explicit custom inverse, e.g. "NFD 
(Lower)".

Compound IDs

Transliterators are often combined in sequence to achieve a desired transformation. This 
is analogous to the composition of mathematical functions. For example, given a script 
that converts lowercase ASCII characters from Latin script to Katakana script, it is 
convenient to first (1) separate input base characters and accents, and then (2) convert 
uppercase to lowercase. (Katakana is caseless, so it is best to write rules that operate only 
on the lowercase Latin base characters and produce corresponding Katakana.) To achieve 
this, a compound transform can be specified as follows:
NFKD; Lower; Latin-Katakana;
(In real life, we would probably use "NFD", but we use "NFKD" for explanatory purposes 
here.) It is also desirable to modify only Latin script characters. To do so, a filter may be 
prefixed to the entire compound transform. This is called a global filter to distinguish it 
from filters on the individual transforms within the compound:
[:Latin:]; NFKD; Lower; Latin-Katakana;
The inverse of such a transform is formed by reversing the list and inverting each 
element. In this example, this would be:
Katkana-Latin; Upper; NFKC; ([:Latin:]);
Note that two special mappings take effect: "Lower" to "Upper" and "NFKD" to "NFKC". 
Note also that the global filter is enclosed in parentheses, rendering it inoperative in the 
reverse direction.

In this example we probably don't really want to map Latin characters to uppercase in the 
reverse direction, so we need to modify the original transform as follows:
[:Latin:]; NFKD; Lower(); Latin-Katakana;
Recall that the empty parentheses in "Lower ( )" are shorthand for "Lower (Null)" where 
"Null" is the null transform, that is, the transform that leaves text unchanged. The inverse 
of this is "Null (Lower)", also written "(Lower)". Now the inverse of the entire compound 
is:
Katakana-Latin; (Lower); NFKC; ([:Latin:]);

263 ICU v3.8 User Guide



This still isn't quite right, since we really want to recompose our output, in both 
directions. We also want to only touch Katakana characters in the reverse direction. Our 
final example, modified to address these two concerns, is as follows:
[:Latin:]; NFKD; Lower(); Latin-Katakana; NFC; ([:Katakana:]);
This inverts to:
[:Katakana:]; NFD; Katakana-Latin; (Lower); NFKC; ([:Latin:]);
(In real life, we would probably use only "NFD" and "NFC", but we use the compatibility 
normalizers in this example so they can be distinguished.)

Compound IDs are the most complex identifiers that can be formed. Many system 
transforms are actually compound transforms that have been aliased to basic IDs. It is 
also possible to write a transform rule with embedded instructions for generating a 
compound transform; system transforms use this approach as well.

Formal ID Syntax

Here is a formal description of the identifier syntax. The 'ID' entity can be passed to 
getInstance() or createInstance().

ID := Single_ID | Compound_ID
Single_ID := filter? Basic_ID ( '(' Basic_ID? ')' )? | filter? '(' Basic_ID ')'
Compound_ID := ( filter ';' )? ( Single_ID ';' )+ ( '(' filter ');' )?
Basic_ID := Spec | Spec '-' Spec | Spec '/' Identifier | Spec '-' Spec '/' Identifier
Spec := script-name | locale-name | Identifier
Identifier := identifier-start identifier-part*

Elements enclosed in single quotes are literals. Parentheses group elements. Vertical bars 
represent exclusive alternatives. The '?' suffix repeats the preceding element zero or one 
times. The '+' suffix repeats the preceding element one or more times.

A 'script-name' is a string acceptable to the UScript API that specifies a script. It may be a 
full script name such as "Latin" or a script abbreviation such as "Latn". A 'locale-name' is 
a standard locale name such as "hi_IN". The 'identifier-start' and 'identifier-part' elements 
are characters defined by the UCharacter API to start and continue identifier names. 
Finally, 'filter' is a valid UnicodeSet pattern.

As of ICU 2.0, the filter must be enclosed in brackets. Top-level Perl-style 
patterns are unsupported in 2.0.

264 ICU v3.8 User Guide



ICU Transliterators

Currently, there are a number of basic transliterations supplied with ICU. The following 
table shows these basic transforms:

General

→ Any-Null Has no effect; leaves input text unchanged.
→ Any-Remove Deletes input characters. This is useful 

when combined with a filter that restricts 
the characters to be deleted.

→ Any-Lower, Any-Upper, Any-Title Converts to the specified case. See Case 
Mappings for more information.

→ Any-NFD, Any-NFC, Any-NFKD, Any-
NFKC

Converts to the specified normalized form. 
See Normalization for more information.

Any-Name Converts between characters and their 
Unicode names in curly braces. For 
example: 
.,  {FULL STOP}{COMMA}

Any-Hex Converts between characters and their 
Unicode code point values. For example: 
., \u002E\u002C 
Any-Hex/XML uses the &#xXXXX; 
format. For example: 
.,  &#x2E;&#x2C; 
Variants include Any-Hex/C, Any-
Hex/Java, Any-Hex/Perl, Any-Hex/XML, 
and Any-Hex/XML10. Any-Hex, with no 
variant, is equivalent to Any-Hex/Java, for 
historical reasons. 

→ Any-Accents Lets you type e- for e-macron, etc. For 
example:
 o'  ó 

Any-Publishing Converts between real punctuation and 
typewriter punctuation. For example: 
“a” — ‘b’  "a" -- 'b' 

Fullwidth-Halfwidth Converts between narrow or half-width 
characters and full-width. For example: 

 ｱﾙｱﾉﾘｳ tech  アルアノリウ　ｔｅｃｈ

265 ICU v3.8 User Guide

, 09/26/04
html image name: comments_on_translit2.gif

, 09/26/04
html image name: comments_on_translit2.gif

, 09/26/04
html image name: comments_on_translit2.gif

, 09/26/04
html image name: comments_on_translit2.gif

, 09/26/04
html image name: comments_on_translit2.gif

, 09/26/04
html image name: comments_on_translit2.gif

, 09/26/04
html image name: comments_on_translit2.gif

, 09/26/04
html image name: comments_on_translit2.gif

, 09/26/04
html image name: comments_on_translit2.gif

, 09/26/04
html image name: comments_on_translit2.gif

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/normalization.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/caseMappings.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/caseMappings.sxw


Script/Language

The ICU script/language transforms are based on common standards for the particular 
scripts, where possible. In some cases, the transforms are augmented to support 
reversibility.

Standard transliteration methods often do not follow the pronunciation rules of  
any particular language in the target script. For more information on the design 
of transliterations, see the Guidelines. 

The built-in script transforms are: 

Latin  Greek, Cyrillic, Hangul, Hiragana, 
Katakana, Indic 

Indic  Indic
Indic includes Devanagari, Gujarati, Gurmukhi, Kannada, Malayalam, Oriya, Tamil, and 
Telegu. ICU can transliterate from Latin to any of these dialects and back, and from Indic 
script to any other Indic script. For example, you can transliterate from Kannada to 
Gujarati, or from Latin to Oriya. 

In addition, ICU may supply transliterations that are specific to language pairs, or 
between a language and a script. For example, ICU could have a ru-en (Russian-English) 
transform. 

As with locales, there is a fallback mechanism. If the Russian-English transform is 
requested and is not available, then ICU will search for a Russian-Latin transform. If the 
Russian-Latin transform is not available, ICU will search for a Cyrillic-Latin transform. 

For information on the precise makeup of each of the script transforms, see Script 
Transform Sources.

Guidelines for Script/Language Transliterations

There are a number of generally desirable guidelines for script transliterations. These 
guidelines are rarely satisfied simultaneously, so constructing a reasonable transliteration 
is always a process of balancing different requirements. These requirements are most 
important for people who are building transliterations, but are also useful as background 
information for users. The following lists the general guidelines for transliterations: 

• complete: every well-formed sequence of characters in the source script should 
transliterate to a sequence of characters from the target script. 

• predictable: the letters themselves (without any knowledge of the languages written in 
that script) should be sufficient for the transliteration, based on a relatively small 
number of rules. This allows the transliteration to be performed mechanically. 

• pronounceable: transliteration is not as useful if the process simply maps the characters 

266 ICU v3.8 User Guide

, 09/26/04
html image name: comments_on_translit2.gif

, 09/26/04
html image name: comments_on_translit2.gif



without any regard to their pronunciation. Simply mapping "αβγδεζηθ..." to 
"abcdefgh..." would yield strings that might be complete and unambiguous, but cannot 
be pronounced.

• unambiguous: it is always possible to recover the text in the source script from the 
transliteration in the target script. Someone that knows the transliteration rules will be 
able to recover the precise spelling of the original source text (for example, it is 
possible to go from Elláda back to the original Ελλάδα). It is possible to define an 
reverse (or inverse) mapping. Thus, this property is sometimes called reversibility (or 
invertibility). 

Ambiguity

In transliteration, multiple characters may produce ambiguities unless the rules are 
carefully designed. For example, the Greek character PSI (ψ) maps to ps, but ps could 
also (theoretically) result from the sequence PI, SIGMA (πσ) since PI (π) maps to p and 
SIGMA (σ) maps to s. 

The Japanese transliteration standards provide a good mechanism for handling similar 
ambiguities. Using the Japanese transliteration standards, whenever an ambiguous 
sequence in the target script does not result from a single letter, the transform uses an 
apostrophe to disambiguate it. For example, it uses that procedure to distinguish between 
man'ichi and manichi. Using this procedure, the Greek character PI SIGMA (πσ) maps to 
p's. This method is recommended for all script transliteration methods. 

Some characters in a target script are not normally found outside of certain 
contexts. For example, the small Japanese "ya" character, as in "kya" (キャ), is  
not normally found in isolation. To handle such characters, ICU uses a tilde. For 
example, to display an isolated small "ya", type "~ya". To represent a non-final  
Greek sigma (ασ) at the end of a word, use "a~s". To represent a final sigma in a 
non-final position (ςα), type "~sa". 

For the general script transforms, a common technique for reversibility is to use extra 
accents to distinguish between letters that may not be otherwise distinguished. For 
example, the following shows Greek text that is mapped to fully reversible Latin: 

Greek-Latin
τί φ ς; γραφ ν σέ τις, ς οικε, γέγραπται:ῄ ὴ ὡ ἔ  
ο  γ ρ κε νό γε καταγνώσομαι, ς σὐ ὰ ἐ ῖ ὡ ὺ 
τερον.ἕ

tí ph is; graph n sé tis, hōs éoike,ḗ ḕ  
gégraptai: ou gàr ekeînó ge katagn somai,ṓ  
hōs sỳ héteron.

If the user wants a version without certain accents, then a transform can be used to 
remove the accents. For example, the following transliterates to Latin but removes the 
macron accents on the long vowels. 

267 ICU v3.8 User Guide



Greek-Latin; nfd; [\u0304] remove; nfc
τί φ ς; γραφ ν σέ τις, ς οικε, γέγραπται:ῄ ὴ ὡ ἔ  
ο  γ ρ κε νό γε καταγνώσομαι, ς σὐ ὰ ἐ ῖ ὡ ὺ 
τερον.ἕ

tí phéis; graphèn sé tis, hos éoike, 
gégraptai: ou gàr ekeînó ge katagnósomai, 
hos sỳ héteron.

The following transliterates to Latin but removes all accents: 

Greek-Latin; nfd; [:nonspacing marks:]  
remove; nfc

τί φ ς; γραφ ν σέ τις, ς οικε, γέγραπται:ῄ ὴ ὡ ἔ  
ο  γ ρ κε νό γε καταγνώσομαι, ς σὐ ὰ ἐ ῖ ὡ ὺ 
τερον.ἕ

ti pheis; graphen se tis, hos eoike, 
gegraptai: ou gar ekeino ge katagnosomai, 
hos sy heteron.

Pronunciation

Standard transliteration methods often do not follow the pronunciation rules of any 
particular language in the target script. For example, the Japanese Hepburn system uses a 
"j" that has the English phonetic value (as opposed to French, German, or Spanish), but 
uses vowels that do not have the standard English sounds. A transliteration method might 
also require some special knowledge to have the correct pronunciation. For example, in 
the Japanese kunrei-siki system, "tu" is pronounced as "tsu". This is similar to situations 
where there are different languages within the same script. For example, knowing that the 
word Gewalt comes from German allows a knowledgeable reader to pronounce the "w" 
as a "v". 

In some cases, transliteration may be heavily influenced by tradition. For example, the 
modern Greek letter beta (β) sounds like a "v", but a transform may continue to use a b 
(as in biology). In that case, the user would need to know that a "b" in the transliterated 
word corresponded to beta (β) and is to be pronounced as a "v" in modern Greek. Letters 
may also be transliterated differently according to their context to make the pronunciation 
more predictable. For example, since the Greek sequence GAMMA GAMMA (γγ) is 
pronounced as "ng", the first GAMMA can be transcribed as an "n". 

In general, predictability means that when transliterating Latin script to other 
scripts, English text will not produce phonetic results. This is because the 
pronunciation of English cannot be predicted easily from the letters in a word: 
e.g. grove, move, and love all end with "ove", but are pronounced very differently.  

Cautions

Reversibility may require modifications of traditional transcription methods. For 
example, there are two standard methods for transliterating Japanese katakana and 
hiragana into Latin letters. The kunrei-siki method is unambiguous. The Hepburn method 
can be more easily pronounced by foreigners but is ambiguous. In the Hepburn method, 
both ZI (ジ) and DI (ヂ) are represented by "ji" and both ZU (ズ) and DU (ヅ) are 

268 ICU v3.8 User Guide



represented by "zu". A slightly amended version of Hepburn, that uses "dji" for DI and 
"dzu" for DU, is unambiguous. 

When a sequence of two letters map to one, case mappings (uppercase and lowercase) 
must be handled carefully to ensure reversibility. For cased scripts, the two letters may 
need to have different cases, depending on the next letter. For example, the Greek letter 
PHI (Φ) maps to PH in Latin, but Φο maps to Pho, and not to PHo. 

Some scripts have characters that take on different shapes depending on their context. 
Usually, this is done at the display level (such as with Arabic) and does not require 
special transliteration support. However, in a few cases this is represented with different 
character codes, such as in Greek and Hebrew. For example, a Greek SIGMA is written in 
a final form (ς) at the end of words, and a non-final form (σ) in other locations. This 
requires the transform to map different characters based on the context. 

It is useful for the reverse mapping to be complete so that arbitrary strings in the 
target script can be reasonably mapped back to the source script. Complete 
reverse mapping makes it much easier to do mechanical quality checks and so on.  
For example, even though the letter "q" might not be necessary in a 
transliteration of Greek, it can be mapped to a KAPPA (κ). Such reverse 
mappings will not, in general, be unambiguous. 

Using Transliterators

Transliterators have APIs in C, C++, and Java™. Only the C++ APIs are listed here. For 
more information on the C, Java, and other APIs, see the relevant API docs. 

To list the available Transliterators, use code like the following: 
count = Transliterator:: countAvailableIDs();
myID =Transliterator::getAvailableID(n);   

The ID should not be displayed to users as it is for internal use only. A separate string, 
one that can be localized to different languages, is obtained with a static method. (This 
method is static to allow the translated names to be augmented without changing the 
code.) To get a localized name for use in a GUI, use the following: 

 Transliterator::getDisplayName(myID, france, nameForUser); 
To create a Transliterator, use the following: 

UErrorCode status = U_ZERO_ERROR;
Transliterator *myTrans = Transliterator::createInstance("Latin-Greek", 
UTRANS_FORWARD, status); 
To get a pre-made compound transform, use a series of IDs separated by ";". For 
example: 

myTrans = Transliterator::createInstance(
     "any-NFD;  [:nonspacing mark:] any-remove; any-NFC", UTRANS_FORWARD, status);

269 ICU v3.8 User Guide



To convert an entire string, use the following: 

myTrans.transliterate(myString);
For more complex cases, such a keyboard input, the following full method provides more 
control: 

 myTrans.transliterate(replaceable, positions, complete);
The Replaceable interface (or abstract class in C++) allows more complex text to be used 
with Transliterators, such as styled text. In ICU4J, a wrapper is supplied for StringBuffer. 
A wrapper is an interface to text that handles a very few operations. For example, the 
interface can access characters and replace one substring with another. By using this 
interface, replacement text can take on the same style as the text it is replacing, so that 
style information is not lost. With a replaceable interface to HTML or XML, even higher 
level structure can be preserved.

The positions parameter contains information about the range of text that should be 
transliterated, plus the possibly larger range of text that can serve as context.

The complete parameter indicates whether or not you are to consider the text up to the 
limit to be complete or not. For keyboard input, the complete parameter should normally 
be false. Only when the conversion is complete is that parameter set to true. For example, 
suppose that a transform converts "sh" to X, and "s" in other cases to Y. If the complete 
parameter is true, then a dangling "s" converts to Y; when the complete parameter is 
false, then the dangling "s" should not be converted, since there is more text to come. 

In keyboard input, normally start/cursor and limit/end are set to the selection at the time 
the transform is chosen. The following shows how the selection is chosen:

positions.start = positions.cursor = selection.getStart();
positions.limit = positions.end = selection.getEnd();

270 ICU v3.8 User Guide

, 09/26/04
html image name: user_g1.gif



As the user types or insertsinputChars, call the following:
replacable.replace(positions.limit, positions.limit, inputChars); // update the text
positions.limit += inputChars.length(); // update the positions
myTrans.transliterate(replaceable, positions, false); 

If the user performs an action that indicates he or she is done with the text, then 
transliterate is called one last time using the following:

 myTrans.transliterate(replaceable, positions, false);

Transliterator objects are stateless. They retain no information between calls to 
transliterate(). However, this does not mean that threads may share transforms 
without synchronizing them. Transliterators are not immutable, so they must be 
synchronized when shared between threads.

The statelessness might seem to limit the complexity of the operations that can be 
performed. In practice, complex transliterations happen by delaying the replacement of 
text until it is known that no other replacements are possible. In other words, although the 
Transliterator objects are stateless, the source text itself embodies all the needed 
information and delayed operation allows arbitrary complexity.

Designing Transliterators

Many people use the supplied transforms. However, there are two different ways of 
designing transforms. Many transforms can be produced without subclassing, simply by 
designing rules for a RuleBasedTransliterator. If conversions can be done algorithmically 
much more compactly than with a long list of rules, then consider subclassing 
Transliterator directly. For example, ICU itself supplies specialized subclasses for the 
following:

• Hangul   Jamo

• Any  Hex

• Wrapping the string functions for normalization, case mapping, etc. 

Subclassing Transliterators

Subclassers must override handleTransliterate(Replaceable text, Positions 
positions, boolean complete). They can override some of the other methods for 
efficiency, but ensure that the results are identical. In handleTransliterate convert the 
text from positions.cursor up to positions.limit. The context from 
positions.start to positions.end may be taken into account as context when doing 
this conversion, but should not be converted themselves. Never look at any characters 
before positions.start or after positions.end.

The complete parameter indicates whether or not the text up to limit is complete. For 

271 ICU v3.8 User Guide

, 09/26/04
html image name: comments_on_translit2.gif

, 09/26/04
html image name: comments_on_translit2.gif



example, suppose that you would convert "sh" to X, and "s" in other cases to Y. If the 
complete parameter is true, then a dangling "s" converts to Y; when the complete 
parameter is false, then the dangling "s" should not be converted. When you return from 
the method, positions.cursor should be set to the furthest position you processed. 
Typically this will be up to limit; in case there was an incomplete sequence at the end, 
cursor should be set to the position just before that sequence.

Rule-Based Transliterators

ICU supplies the foundation for producing well-behaved transliterations and supplies a 
number of typing transliterations for different scripts. The simplest mechanism for 
producing transliterations is called a RuleBasedTransliterator. The 
RuleBasedTransliterator is a data-based class that allows transliterations to be built up 
with a series of rules. These rules provide a specialized set of context-sensitive matching 
operations. The operations are similar to regular-expression rules, but adapted to the 
specific domain of transliterations.

The simplest rule is a conversion rule, which replaces one string of characters with 
another. The conversion rule takes the following form: 

xy > z ;
This converts any substring "xy" into "z". Rules are executed in order, so: 

sch > sh ;
ss > z ;

This conversion rule transforms "bass school" into "baz shool". The transform walks 
through the string from start to finish. Thus given the rules above "bassch" will convert to 
"bazch", because the "ss" rule is found before the "sch" rule in the string (later, we'll see a 
way to override this behavior). If two rules can both apply at a given point in the string, 
then the transform applies the first rule in the list.

All of the ASCII characters except numbers and letters are reserved for use in the rule 
syntax. Normally, these characters do not need to be converted. However, to convert them 
use either a pair of single quotes or a slash. The pair of single quotes can be used to 
surround a whole string of text. The slash affects only the character immediately after it. 
For example, to convert from two less-than signs to the word "much less than", use one of 
the following rules: 

\<\<   >  much\ less\ than ;
'<<'   >   'much less than' ;
'<<'   >   much' 'less\ than ;

272 ICU v3.8 User Guide



 Spaces may be inserted anywhere without any effect on the rules. Use extra 
space to separate items out for clarity without worrying about the effects. This  
feature is particularly useful with combining marks; it is handy to put some 
spaces around it to separate it from the surrounding text. The following is an 
example: 

> i ; # an iota-subscript diacritic turns into an i. ͅ

 For a real space in the rules, place quotes around it. For a real backslash, either 
double it \\, or quote it '\'. For a real single quote, double it '', or place a 
backslash before it \'. Each of the following means the same thing: 

'can''t go'
'can\'t go'
can\'t\ go
can''t' 'go

Any text that starts with a hash mark and concludes a line is a comment.  
Comments help document how the rules work. The following shows a comment in 
a rule: 

x > ks ; # change every x into ks 

We can use "\u" notation instead of any letter. For instance, instead of using the Greek πp, 
we could write:

\u03C0 > p ; 
We can also define and use variables, such as:

$pi = \u03C0 ; $pi > p ; 

Dual Rules

Rules can also specify what happens when an inverse transform is formed. To do this, we 
reverse the direction of the "<" sign. Thus the above example becomes:

$pi < p ; 
With the inverse transform, "p" will convert to the Greek p. These two directions can be 
combined together into a dual conversion rule by using the "<>" operator, yielding:

$pi <> p ; 

273 ICU v3.8 User Guide

, 09/26/04
html image name: comments_on_translit2.gif

, 09/26/04
html image name: comments_on_translit2.gif



Context

Context can be used to have the results of a transformation be different depending on the 
characters before or after. The following means "Remove hyphens, but only when they 
follow lowercase letters":

[:lowercase letter:] } '-' > '' ;
The context itself ([:lowercase letter:]) is unaffected by the replacement; only the 
text between the curly braces is changed. 

Revisiting

If the resulting text contains a vertical bar "|", then that means that processing will 
proceed from that point and that the transform will revisit part of the resulting text. For 
example, if we have:

x > y | z ;
z a > w; 

then the string "xa" will convert to "w". First, "xa" is converted to "yza". Then the 
processing will continue from after the character "y", pick up the "za", and convert it. Had 
we not had the "|", the result would have been simply "yza".

Example

The following shows how these features are combined together in the Transliterator 
"Any-Publishing". This transform converts the ASCII typewriter conventions into text 
more suitable for desktop publishing (in English). It turns straight quotation marks or 
UNIX style quotation marks into curly quotation marks, fixes multiple spaces, and 
converts double-hyphens into a dash.

# Variables
$single = \' ;
$space = ' ' ;
$double = \" ;
$back = \` ;
$tab = '\u0008' ;
# the following is for spaces, line ends, (, [, {, ...
$makeRight = [[:separator:][:start punctuation:][:initial punctuation:]] ;
# fix UNIX quotes
$back $back > “ ; # generate right d.q.m. (double quotation mark)
$back > ‘ ;
# fix typewriter quotes, by context
$makeRight { $double <> “ ; # convert a double to right d.q.m. after certain chars
^ { $double > “ ; # convert a double at the start of the line.
$double <> ” ; # otherwise convert to a left q.m.
$makeRight {$single} <> ‘ ; # do the same for s.q.m.s

274 ICU v3.8 User Guide



^ {$single} > ‘ ;
$single <> ’;
# fix multiple spaces and hyphens
$space {$space} > ; # collapse multiple spaces
'--' <> — ; # convert fake dash into real one

Rule Syntax

The following describes the full format of the list of rules used to create a 
RuleBasedTransliterator. Each rule in the list is terminated by a semicolon. The list 
consists of the following: 

• an optional filter rule

• zero or more transform rules

• zero or more variable-definition rules 

• zer or more conversion rules

• an optional inverse filter rule

The filter rule, if present, must appear at the beginning of the list, before any of the other 
rules.  The inverse filter rule, if present, must appear at the end of the list, after all of the 
other rules.  The other rules may occur in any order and be freely intermixed.

The rule list can also generate the inverse of the transform. In that case, the inverse of 
each of the rules is used, as described below. 

Transform Rules
Each transform rule consists of two colons followed by a transform name. For example: 

 :: NFD ;
The inverse of a transform rule follows the same conventions as when we create a 
transform by name. For example:

:: lower () ; # only executed for the normal
:: (lower) ; # only executed for the inverse
:: lower ; # executed for both the normal and the inverse

Variable Definition Rules
Each variable definition is of the following form: 

$variableName = contents ;
The variable name can contain letters and digits, but must start with a letter. More 
precisely, the variable names use Unicode identifiers as defined by the identifier 
properties in ICU. The identifier properties allow for the use of foreign letters and 

275 ICU v3.8 User Guide



numbers. See the Unicode class for C++ and the UCharacter class for Java.

The contents of a variable definition is any sequence of Unicode sets and characters or 
characters. For example:

$mac = M [aA] [cC] ; 
Variables are only replaced within other variable definition rules and within conversion 
rules. They have no effect on transliteration rules.

Filter Rules
A filter rule consists of two colons followed by a UnicodeSet. This filter is global in that 
only the characters matching the filter will be affected by any transform rules or 
conversion rules. The inverse filter rule consists of two colons followed by a UnicodeSet 
in parentheses. This filter is also global for the inverse transform.

For example, the Hiragana-Latin transform can be implemented by "pivoting" through the 
Katakana converter, as follows:

:: [:^Katakana:] ; # don't touch any katakana that was in the text!
:: Hiragana-Katakana;
:: Katakana-Latin;
:: ([:^Katakana:]) ; # don't touchany katakana that was in the text 
                     # for the inverse either!

The filters keep the transform from mistakenly converting any of the "pivot" characters. 
Note that this is a case where a rule list contains no conversion rules at all, just transform 
rules and filters.

Conversion Rules
Conversion rules can be forward, backward, or double. The complete conversion rule 
syntax is described below: 

Forward
A forward conversion rule is of the following form: 

before_context { text_to_replace } after_context > completed_result | 
result_to_revisit ;
If there is no before_context, then the "{" can be omitted. If there is no after_context, then 
the "}" can be omitted. If there is no result_to_revisit, then the "|" can be omitted. A 
forward conversion rule is only executed for the normal transform and is ignored when 
generating the inverse transform. 

Backward
A backward conversion rule is of the following form: 

completed_result | result_to_revisit < before_context { text_to_replace 
} after_context ;
The same omission rules apply as in the case of forward conversion rules. A backward 
conversion rule is only executed for the inverse transform and is ignored when generating 

276 ICU v3.8 User Guide



the normal transform. 

Dual

A dual conversion rule combines a forward conversion rule and a backward conversion 
rule into one, as discussed above. It is of the form: 

a { b | c } d <> e { f | g } h ; 
When generating the normal transform and the inverse, the revisit mark "|" and the before 
and after contexts are ignored on the sides where they don't belong. Thus, the above is 
exactly equivalent to the sequence of the following two rules:

a { b c } d  >  f | g  ;
b | c  <  e { f g } h ;  

Intermixing Transform Rules and Conversion Rules

Starting in ICU 3.4, transform rules and conversion rules may be freely intermixed.  (In 
earlier versions of ICU, transform rules were only allowed at the beginning or end of the 
rule set, immediately after the global filter or immediately before the reverse global 
filter.)  Inserting a transform rule into the middle of a set of conversion rules has an 
important side effect.

Normally, conversion rules are considered together as a group.  The only time their order 
in the rule set is important is when more than one rule matches at the same point in the 
string.  In that case, the one that occurs earlier in the rule set wins.  In all other situations, 
when multiple rules match overlapping parts of the string, the one that matches earlier 
wins.

Transform rules apply to the whole string.  If you have several transform rules in a row, 
the first one is applied to the whole string, then the second one is applied to the whole 
string, and so on.  To reconcile this behavior with the behavior of conversion rules, 
transform rules have the side effect of breaking a surrounding set of conversion rules into 
two groups: First all of the conversion rules before the transform rule are applied as a 
group to the whole string in the usual way, then the transform rule is applied to the whole 
string, and then the conversion rules after the transform rule are applied as a group to the 
whole string.  For example, consider the following rules:

abc > xyz;
xyz > def;
::Upper;

If you apply these rules to “abcxyz”, you get “XYZDEF”.  If you move the “::Upper;” to 
the middle of the rule set and change the cases accordingly...

abc > xyz;
::Upper;
XYZ > DEF;

277 ICU v3.8 User Guide



...applying this to “abcxyz” produces “DEFDEF”.  This is because “::Upper;” causes the 
transliterator to reset to the beginning of the string: The first rule turns the string into 
“xyzxyz”, the second rule uppercases the whole thing to “XYZXYZ”, and the third rule 
turns this into “DEFDEF”.

This can be useful when a transform naturally occurs in multiple “passes.”  Consider this 
rule set:

[:Separator:]* > ' ';
'high school' > 'H.S.';
'middle school' > 'M.S.';
'elementary school' > 'E.S.';

If you apply this rule to “high school”, you get “H.S.”, but if you apply it to “high 
school” (with two spaces), you just get “high school” (with one space).  To have “high 
school” (with two spaces) turn into “H.S.”, you'd either have to have the first rule back up 
some arbitrary distance (far enough to see “elementary”, if you want all the rules to 
work), or you have to include the whole left-hand side of the first rule in the other rules, 
which can make them hard to read and maintain:

$space = [:Separator:]*;
high $space school > 'H.S.';
middle $space school > 'M.S.';
elementary $space school > 'E.S.';

Instead, you can simply insert “::Null;” in order to get things to work right:
[:Separator:]* > ' ';
::Null;
'high school' > 'H.S.';
'middle school' > 'M.S.';
'elementary school' > 'E.S.';

The “::Null;” has no effect of its own (the null transliterator, by definition, doesn't do 
anything), but it splits the other rules into two “passes”: The first rule is applied to the 
whole string, normalizing all runs of whitespace into single spaces, and then we start over 
at the beginning of the string to look for the phrases.  “high    school” (with four spaces) 
gets correctly converted to “H.S.”.

This can also sometimes be useful with rules that have overlapping domains.  Consider 
this rule set from before:

sch > sh ;
ss > z ;

Apply this rule to “bassch” results in “bazch” because “ss” matches earlier in the string 
than “sch”.  If you really wanted “bassh”-- that is, if you wanted the first rule to win even 
when the second rule matches earlier in the string, you'd either have to add another rule 
for this special case...

sch > sh ;
ssch > ssh;

278 ICU v3.8 User Guide



ss > z ;

...or you could use a transform rule to apply the conversions in two passes:
sch > sh ;
::Null;
ss > z ;

Masking

When transforms are built, a warning is returned if rules are masked. This happens when 
a rule could not be executed because the earlier one would always match.

a > b ;
ac > d ; # masked! 

In this case, for example, every string that could have a match for "ac" will already match 
"a", because the rules are executed in order. However, the transform compiler will not 
currently catch cases that would be masked because of the use of UnicodeSets or regular 
expression operators, such as the following:

a } [:L:] > b ;
ac > d ; # masked, but not caught by the compiler

Inverse Summary

The following table shows how the same rule list generates two different transforms, 
where the inverse is restated in terms of forward rules (this is a contrived example, simply 
to show the reordering): 

Original Rules Forward Inverse
:: [:Uppercase Letter:] ;
:: latin-greek ;
:: greek-japanese ;
x <> y ;
z > w ;
r < m ; 
:: upper;
a > b ;
c <> d ;
:: any-publishing ;
:: ([:Number:]) ;

:: [:Uppercase Letter:] ;
:: latin-greek ;
:: greek-japanese ;
x > y ;
z > w ;
:: upper ;
a > b ;
c > d ;
:: any-publishing ;

:: [:Number:] ;
:: publishing-any ;
d > c ;
:: lower ;
y > x ;
m > r ;
:: japanese-greek ;
:: greek-latin ;

279 ICU v3.8 User Guide



Note how the irrelevant rules (the inverse filter rule and the rules containing <) 
are omitted (ignored, actually) in the forward direction, and notice how things 
are reversed: the transform rules are inverted and happen in the opposite order,  
and the groups of conversion rules are also executed in the opposite relative 
order (although the rules within each group are executed in the same order). 

Function Calls

As of ICU 2.1, rule-based transforms can invoke other transforms. The transform being 
invoked must be registered with the system before it can be used in a rule. The syntax for 
a function call resembles a Perl subroutine call:

( [a-zA-Z] ) ( [a-zA-Z]* ) > &Any-Upper($1) &Any-Lower($2) ;

This example transforms strings of ASCII letters to have an initial uppercase letter 
followed by lowercase letters. (In practice, you would use the Any-Title to do proper 
titlecasing.)

The formal syntax is:
'&' Basic-id '(' Text-arg ')'
Elements in single quotes are literals. Basic-id is a basic ID, as described earlier. It 
specifies a source, target, and optional variant, but does not include a filter, explicit 
reverse, or compound elements. Text-arg is any text that may appear on the output side 
of a rule. This means nested function calls are supported.

For more information on the use of rules, and more examples of the syntax in use, see the 
tutorial. 

Regular Expression

The rules are similar to Regular Expressions in offering: Variables, Property matches, 
Contextual matches, Rearrangement ($1, $2…), and Quantifiers (*, +, ?). They are more 
powerful in offering: Ordered Rules, Cursor Backup, Buffered/Keyboard support. They 
are less powerful in that they have only greedy quantifiers, no backup (so no X | Y), and 
no input-side back references.

Here is a simple example that shows the difference between a set of Transliterator rules, 
and successively applying regular expression replacements.

280 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/TransformRule.sxw


Since the transform processes each of its rules at each point, it catches the yx before the 
xy in the second case. Since each of the regular expressions is evaluated over the whole 
string, that isn't possible. Simply using multiple regular expressions can't account for the 
interaction and ordering of characters and rules.  (You can, however, simulate the regex 
behavior with transform rules by using a transform rule to split the conversion rules into 
passes.)

For more details on constructing rules, see the Transliterator Rule Tutorial.

Script Transliterator Sources

Currently ICU offers script transliterations between Latin and certain other scripts (such 
script transliterations are called romanizations), plus transliterations between the Indic 
scripts (excluding Urdu). Additional romanizations and other script transliterations will 
be added in the future. In general, ICU follows the UNGEGN: Working Group on 
Romanization Systems where possible. The following describes the sources used. 

Except where otherwise noted, all of these systems are designed to be reversible. For 
bicameral scripts (those with upper and lower case), case may not be completely 
preserved. The transliterations are also designed to be complete for the letters a-z. A 
fallback is used for a letter that is not used in the transliteration. 

281 ICU v3.8 User Guide

, 09/26/04
html image name: user_g2.gif

http://www.eki.ee/wgrs/
http://www.eki.ee/wgrs/
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/TransformRule.sxw


Korean

There are many romanizations of Korean. The default transliteration follows the Korean 
Ministry of Culture & Tourism Transliteration regulations with the clause 8 variant for 
reversibility:

8. When it is necessary to convert Romanized Korean back to Hangul in special cases 
such as in academic articles, Romanization is done according to Hangul spelling and not 
pronunciation. Each Hangul letter is Romanized as explained in section 2 except that ㄱ, 
ㄷ, ㅂ, ㄹ are always written as g, d, b, l. When ㅇ has no sound value, it is replaced by 
a hyphen may also be used when it is necessary to distinguish between syllables. 

There is one other variation: an apostrophe is used instead of a hyphen, since it has better 
title casing behavior. To change this, see Modifications. 

Japanese

The default transliteration for Japanese uses the a slight variant of the Hepburn system. 
With Hepburn system, both ZI (ジ) and DI (ヂ) are represented by "ji" and both ZU (ズ) 
and DU (ヅ) are represented by "zu". This is amended slightly for reversibility by using 
"dji" for DI and "dzu" for DU. 

The Katakana transliteration is reversible. Hiragana-Katakana transliteration is not 
completely reversible since there are several Katakana letters that do not have 
corresponding Hiragana equivalents. Also, the length mark is not used with Hiragana. 
The Hiragana-Latin transliteration is also not reversible since internally it is a 
combination of Katakana-Hiragana and Hiragana-Latin.

Greek

The default transliteration uses a standard transcription for Greek. The transliterations is 
one that is aimed at preserving etymology. The ISO 843 variant has the following 
differences: 

Greek Default ISO 843
β b v
γ* n g
η ē ī
̔ h (omitted)
̀ ̀ (omitted)
~ ~ (omitted)
* before γ, κ, ξ, χ 

282 ICU v3.8 User Guide

http://www.korea.net/korea/kor_loca.asp?code=A020303
http://www.korea.net/korea/kor_loca.asp?code=A020303


Cyrillic

Cyrillic generally follows ISO 9 for the base Cyrillic set. There are tentative plans to add 
extended Cyrillic characters in the future, plus variants for GOST and other national 
standards.

Indic

The default romanization uses the ISCII standard with some minor modifications for 
reversibility. Internally, all Indic scripts are transliterated by converting first to an internal 
form, called Interindic, then from Interindic to the target script. 

Transliteration of Indic scripts in ICU follows the ISO 15919 standard for Romanization 
of Indic scripts using diacritics. Internally, all Indic scripts are transliterated by converting 
first to an internal form, called Inter-Indic, then from Inter-Indic to the target script. ISO 
15919 differs from ISCII 91 in application of diacritics for certain characters. These 
differences are shown in the following example (illustrated with Devanagari, although the 
same principles apply to the other Indic scripts): 

Devanagari ISCII 91 ISO 15919
ऋ ṛ r ̥
ऌ ḻ l ̥
ॠ ṛ̱ r ̥̄
ॡ l ̄ l ̥̄
ढ़ dhâ ṛha

ड़ dâ ṛa
With some fonts the diacritics will not be correctly placed on the base letters. The 
macron on a lowercase L may look particularly bad.

Transliteration rules in Indic are reversible with the exception of the ZWJ and ZWNJ 
used to request explicit rendering effects. For example:

Devanagari Romanization Note
क kṣa normal

‍ kṣa explicit halant requested

‍ kṣa half-consonant requested

There are two particular instances where transliterations may produce unexpected results: 
(1) where a halant after a consonant is implied by the romanization (in such cases the 
vowel needs to be explicitly written out), and (2) with the transliteration of 'c'. 

283 ICU v3.8 User Guide



For example:

Devanagari Romanization
स�नग5प Sēngupta

स�नग5प Sēnagupta

म�हनच Monica

म�हनक Monika

Modifications

It is easy using transforms to create variants of the defaults. For example, to create a 
variant of Korean that uses hyphens instead of apostrophes, use the following rules:

:: Latin-Hangul ;
'' <> '-' ;

More Information

For more information, see:

• UNGEGN: Working Group on Romanization Systems  

• Transliteration of Non-Roman Alphabets and Scripts (Søren Binks)  

• Standards for Archival Description: Romanization  

• ISO-15915 (Hindi)  

• ISO-15915 (Gujarati)  

• ISO-15915 (Kannada)  

• ISCII-91  

284 ICU v3.8 User Guide

http://www.cdacindia.com/html/gist/down/iscii_d.asp
http://transliteration.eki.ee/pdf/Kannada.pdf
http://transliteration.eki.ee/pdf/Gujarati.pdf
http://transliteration.eki.ee/pdf/Hindi-Marathi-Nepali.pdf
http://www.archivists.org/catalog/stds99/chapter8.html
http://transliteration.eki.ee/
http://www.eki.ee/wgrs/


Transform Rule Tutorial
This tutorial describes the process of building a custom transform based on a set of rules. 
The tutorial does not describe, in detail, the features of transform; instead, it explains the 
process of building rules and describes the features needed to perform different tasks. The 
focus is on building a script transform since this process provides concrete examples that 
incorporates most of the rules.

Script Transliterators

The first task in building a script transform is to determine which system of transliteration 
to use as a model. There are dozens of different systems for each language and script. 

The International Organization for Standardization (ISO) uses a strict definition of 
transliteration, which requires it to be reversible. Although the goal for ICU script 
transforms is to be reversible, they do not have to adhere to this definition. In general, 
most transliteration systems in use are not reversible. This tutorial will describe the 
process for building a reversible transform since it illustrates more of the issues involved 
in the rules. (For guidelines in building transforms, see "Guidelines for Designing Script 
Transliterations" in the ICU User Guide. For external sources for script transforms, see 
Script Transliterator Sources) 

In this example, we start with a set of rules for Greek since they provide a real example 
based on mathematics. We will use the rules that do not involve the pronunciation of 
Modern Greek; instead, we will use rules that correspond to the way that Greek words 
were incorporated into the English language. For example, we will transliterate 
"Βιολογία-Φυσιολογία" as "Biología-Physiología", not as "Violohía-Fisiolohía". To 
illustrate some of the trickier cases, we will also transliterate the Greek accents that are no 
longer in use in modern Greek. 

Some of the characters may not be visible on the screen unless you have a 
Unicode font with all the Greek letters. If you have a licensed copy of Microsoft® 
Office, you can use the "Arial Unicode MS" font, or you can download the 
CODE2000 font for free. For more information, see Display Problems? on the 
Unicode web site.

We will also verify that every Latin letter maps to a Greek letter. This insures that when 
we reverse the transliteration that the process can handle all the Latin letters. 

This direction is not reversible. The following table illustrates this situation:

Source→Target Reversible φ → ph → φ
Target→Source Not (Necessarily) 

Reversible 
f → φ → ph 

285 ICU v3.8 User Guide

http://www.unicode.org/help/display_problems.html
http://www.code2000.net/
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/Transform.sxw#sctr_sources
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/Transform.sxw#guidelines
http://www.elot.gr/tc46sc2/


Basics

In non-complex cases, we have a one-to-one relationship between letters in both Greek 
and Latin. These rules map between a source string and a target string. The following 
shows this relationship:
π <> p;
This rule states that when you transliterate from Greek to Latin, convert π to p and when 
you transliterate from Latin to Greek, convert p to π. The syntax is
string1 <> string2 ;
We will start by adding a whole batch of simple mappings. These mappings will not work 
yet, but we will start with them. For now, we will not use the uppercase versions of 
characters.

One to One Mappings
α <> a;
β <> b;
γ <> g;
δ <> d;
ε <> e;
We will also add rules for completeness. These provide fallback mappings for Latin 
characters that do not normally result from transliterating Greek characters.

Completeness Mappings
κ < c;
κ < q; 

Context and Range

We have completed the simple one-to-one mappings and the rules for completeness. The 
next step is to look at the characters in context. In Greek, for example, the transform 
converts a "γ" to an "n" if it is before any of the following characters: γ, κ, ξ, or χ. 
Otherwise the transform converts it to a "g". The following list a all of the possibilities:

γγ > ng;
γκ > nk;
γξ > nx;
γχ > nch;
γ > g;

All the rules are evaluated in the order they are listed. The transform will first try to 
match the first four rules. If all of these rules fail, it will use the last one.

However, this method quickly becomes tiresome when you consider all the possible 
uppercase and lowercase combinations. An alternative is to use two additional features: 
context and range.

286 ICU v3.8 User Guide



Context

First, we will consider the impact of context on a transform. We already have rules for 
converting γ, κ, ξ, and χ. We must consider how to convert the Î³ character when it is 
followed by ³, Îº, Î¾, and Ï‡. Otherwise we must permit those characters to be converted 
using their specific rules. This is done with the following:

γ } γ > n;
γ } κ > n;
γ } ξ > n;
γ } χ > n;
γ > g;

A left curly brace marks the start of a context rule. The context rule will be followed 
when the transform matches the rules against the source text, but itself will not be 
converted. For example, if we had the sequence γγ, the transform converts the first γ into 
an "n" using the first rule, then the second γ is unaffected by that rule. The "γ" matches a 
"k" rule and is converts it into a "k". The result is "nk".

Range

Using context, we have the same number of rules. But, by using range, we can collapse 
the first four rules into one. The following shows how we can use range: 
 

{γ}[γκξχ] > n;
γ > g;

Any list of characters within square braces will match any one of the characters. We can 
then add the uppercase variants for completeness, to get:
 

γ } [ΓΚΞΧγκξχ] > n;
γ > g; 

Remember that we can use spaces for clarity. We can also write this rule as the following:
 

γ } [ Γ Κ Ξ Χ   γ κ ξ χ ] > n ;
γ > g ;

If a range of characters happens to have adjacent code numbers, we can just use a hyphen 
to abbreviate it. For example, instead of writing [a b c d e f g m n o], we can simplify the 
range by writing [a-g m-o].

Styled Text

Another reason to use context is that transforms will convert styled text. When transforms 
convert styled text, they copy the style source text to the target text. However, the 
transforms are limited in that they can only convert whole replacements since it is 
impossible to know how any boundaries within the source text will correspond to the 
target text. Thus the following shows the effects of the two types of rules on some sample 

287 ICU v3.8 User Guide



text:

For example, suppose that we were to convert "γγ" to "ng". By using context, if there is a 
different style on the first gamma than on the second (such as font, size, color, etc), then 
that style difference is preserved in the resulting two characters. That is, the "n" will have 
the style of the first gamma, while the "g" will have the style of the second gamma. 

Contexts preserve the styles at a much finer granularity.

Case

When converting from Greek to Latin, we can just convert "θ" to and from "th". But what 
happens with the uppercase theta (Θ)? Sometimes we need to convert it to uppercase 
"TH", and sometimes to uppercase "T" and lowercase "h". We can choose between these 
based on the letters before and afterwards. If there is a lowercase letter after an uppercase 
letter, we can choose "Th", otherwise we will use "TH".

We could manually list all the lowercase letters, but we also can use ranges. Ranges not 
only list characters explicitly, but they also give you access to all the characters that have 
a given Unicode property. Although the abbreviations are a bit arcane, we can specify 
common sets of characters such as all the uppercase letters. The following example shows 
how case and range can be used together:
 

Θ } [:LowercaseLetter:] <> Th;
Θ <> TH;

The example allows words like Θεολογικές‚ to map to Theologikés and not THeologikés

You either can specify properties with the POSIX-style syntax, such as 
[:LowercaseLetter:], or with the Perl-style syntax, such as \p{LowercaseLetter}.

Properties and Values

A Greek sigma is written as "ς" if it is at the end of a word (but not completely separate) 
and as "σ" otherwise. When we convert characters from Greek to Latin, this is not a 
problem. However, it is a problem when we convert the character back to Greek from 
Latin. We need to convert an s depending on the context. While we could list all the 
possible letters in a range, we can also use a character property. Although the range 
[:Letter:] stands for all letters, we really want all the characters that aren't letters. To 
accomplish this, we can use a negated range: [:^Letter:]. The following shows a negated 
range:
 

σ < [:^Letter:] { s } [:^Letter:] ;
ς < s } [:^Letter:] ;
σ < s ;

These rules state that if an "s" is surrounded by non-letters, convert it to "σ". Otherwise, if 
the "s" is followed by a non-letter, convert it to "ς". If all else fails, convert it to "σ"

288 ICU v3.8 User Guide



Negated ranges [^...] will match at the beginning and the end of a string. This 
makes the rules much easier to write. 

To make the rules clearer, you can use variables. Instead of the example above, we can 
write the following:
 

$nonletter = [:^Letter:] ;
σ < $nonletter { s } $nonletter ;
ς < s } $nonletter ;
σ < s ;

There are many more properties available that can be used in combination. For following 
table lists some examples:

Combination Example Description: All code 
points that are:

Union [[:Greek:] [:letter:]] either in the Greek script, or 
are letters 

Intersection [[:Greek:] & [:letter:]] are both Greek and letters
Set Difference [[:Greek:] - [:letter:]] are Greek but not letters
Complement [^[:Greek:] [:letter:]] are neither Greek nor letters
For more on properties, see the UnicodeSet Properties.

Repetition

Elements in a rule can also repeat. For example, in the following rules, the transform 
converts an iota-subscript into a capital I if the preceding base letter is an uppercase 
character. Otherwise, the transform converts the iota-subscript into a lowercase character.
 

[:Uppercase Letter:] {   } > I;ͅ
 > i;ͅ

However, this is not sufficient, since the base letter may be optionally followed by non-
spacing marks. To capture that, we can use the * syntax, which means repeat zero or more 
times. The following shows this syntax:
 

[:Uppercase Letter:] [:Nonspacing M ark:] * {   } > I ;ͅ
 > i ;ͅ

The following operators can be used for repetition:

Repetition Operators
X* zero or more X's
X+ one or more X's
X? Zero or one X
We can also use these operators as sequences with parentheses for grouping. For 

289 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/unicodeSet.sxw#UnicodeSet_Properties


example, "a ( b c ) * d" will match against "ad" or "abcd" or "abcbcd".

Currently, any repetition will cause the sequence to match as many times as 
allowed even if that causes the rest of the rule to fail. For example, suppose we 
have the following (contrived) rules:
   
The intent was to transform a sequence like "able blue" into "ablæ blué". The 
rule does not work as it produces "ablé blué". The problem is that when the left  
side is matched against the text in the first rule, the [:Letter:]* matches all the 
way back through the "al" characters. Then there is no "a" left to match. To have 
it match properly, we must subtract the 'a' as in the following example:
   

Æther

The start and end of a string are treated specially. Essentially, characters off the end of the 
string are handled as if they were the noncharacter \uFFFF, which is called "æther". (The 
code point \uFFFF will never occur in any valid Unicode text). In particular, a negative 
Unicode set will generally also match against the start/end of a string. For example, the 
following rule will execute on the first a in a string, as well as an a that is actually 
preceded by a non-letter.

Rule [:^L:] } a > b ;
Source a xa a
Results b xa b

This is because \uFFFF is an element of [:^L:], which includes all codepoints that do not 
represent letters. To refer explicitly to æther, you can use a $ at the end of a range, such as 
in the following rules:

Rules [0-9$] { a > b ;
a } [0-9$] > b ;

Source a 5a a
Results b 5b a

In these rules, an a before or after a number -- or at the start or end of a string -- will be 
matched. (You could also use \uFFFF explicitly, but the $ is recommended).

Thus to disallow a match against æther in a negation, you need to add the $ to the list of 
negated items. For example, the first rule and results from above would change to the 
following (notice that the first a is not replaced):

Rule [^[:L:]$] } a > b ;
Source a xa a
Results a xa b

290 ICU v3.8 User Guide



Characters that are outside the context limits -- contextStart to contextEnd -- are 
also treated as æther.

The property [:any:] can be used to match all code points, including æther. Thus the 
following are equivalent:

Rule1 [\u0000-\U0010FFFF] } a > A ;
Rule2 [:any:] } a > A ;

However, since the transform is always greedy with no backup, this property is not very 
useful in practice. What is more often required is dealing with the end of lines. If you 
want to match the start or end of a line, then you can define a variable that includes all the 
line separator characters, and then use it in the context of your rules. For example:

Rules $break = [[:Zp:][:Zl:] \u000A-\u000D 
\u0085 $] ;
 $break } a > A ;

Source a a
a a

Results A a
A a

There is also a special character, the period (.), that is equivalent to the negation of the 
$break variable we defined above. It can be used to match any characters excluding those 
for linebreaks or æther. However, it cannot be used within a range: you can't have [[.] - 
\u000A], for example. If you want to have different behavior you can define your own 
variables and use them instead of the period.

There are a few other special escapes, that can be used in ranges. These are 
listed in the table below. However, instead of the latter two it is safest to use the 
above $break definition since it works for line endings across different platforms.

Escape Meaning Code
\t Tab \u0009
\n Linefeed \u000A
\r Carriage Return \u000D

Accents

We could handle each accented character by itself with rules such as the following:
 

ά > á;
έ > é;
...

This procedure is very complicated when we consider all the possible combinations of 
accents and the fact that the text might not be normalized. In ICU 1.8, we can add other 

291 ICU v3.8 User Guide



transforms as rules either before or after all the other rules. We then can modify the rules 
to the following:
 

:: NFD (NFC) ;
α <> a;
...
ω <> ō;
:: NFC (NFD);

These modified rules first separate accents from their base characters and then put them 
in a canonical order. We can then deal with the individual components, as desired. We 
can use NFC (NFC) at the end to put the entire result into standard canonical form. The 
inverse uses the transform rules in reverse order, so the (NFD) goes at the bottom and 
(NFC) at the top.

A global filter can also be used with the transform rules. The following example shows a 
filter used in the rules:
 

:: [[:Greek:][:Inherited:]];
:: NFD (NFC) ;
α <> a;
...
ω <> ō;
:: NFC (NFD);
:: ([[:Latin:][:Inherited:]]);

The global filter will cause any other characters to be unaffected. In particular, the NFD 
then only applies to Greek characters and accents, leaving all other characters

Disambiguation

If the transliteration is to be completely reversible, what would happen if we happened to 
have the Greek combination νγ? Because ν converts to n, both νγ and γγ convert to "ng" 
and we have an ambiguity. Normally, this sequence does not occur in the Greek language. 
However, for consistency -- and especially to aid in mechanical testing– we must consider 
this situation. (There are other cases in this and other languages where both sequences 
occur.)

To resolve this ambiguity, use the mechanism recommended by the Japanese and Korean 
transliteration standards by inserting an apostrophe or hyphen to disambiguate the results. 
We can add a rule like the following that inserts an apostrophe after an "n" if we need to 
reverse the transliteration process:
 ν } [ΓΚΞΧγκξχ] > n\';
In ICU, there are several of these mechanisms for the Greek rules. The ICU rules undergo 
some fairly rigorous mechanical testing to ensure reversibility. Adding these 
disambiguation rules ensure that the rules can pass these tests and handle all possible 
sequences of characters correctly. 

There are some character forms that never occur in normal context. By convention, we 

292 ICU v3.8 User Guide



use tilde (~) for such cases to allow for reverse transliteration. Thus, if you had the text 
"Θεολογικές (ς)", it would transliterate to "Theologikés (~s)". Using the tilde allows the 
reverse transliteration to detect the character and convert correctly back to the original: 
"Θεολογικές (ς)". Similarly, if we had the phrase "Θεολογικέσ", it would transliterate to 
"Theologiké~s". These are called anomalous characters.

Revisiting

Rules allow for characters to be revisited after they are replaced. For example, the 
following converts "C" back "S" in front of "E", "I" or "Y". The vertical bar means that 
the character will be revisited, so that the "S" or "K" in a Greek transform will be applied 
to the result and will eventually produce a sigma (Σ, σ, or ς) or kappa (Κ or κ).
 

$softener = [eiyEIY] ;
| S < C } $softener ;
| K < C ;
| s < c } $softener ;
| k < c ;

The ability to revisit is particularly useful in reducing the number of rules required for a 
given language. For example, in Japanese there are a large number of cases that follow 
the same pattern: "kyo" maps to a large hiragana for "ki" (き) followed by a small 
hiragana for "yo" (ょ). This can be done with a small number of rules with the following 
pattern:

First, the ASCII punctuation mark, tilde "~", represents characters that never normally 
occur in isolation. This is a general convention for anomalous characters within the ICU 
rules in any event.
 

'~yu' > ゅ;

'~ye' > ぇ;

'~yo' > ょ;

Second, any syllables that use this pattern are broken into the first hiragana and are 
followed by letters that will form the small hiragana.
 

by > び|'~y';

ch > ち|'~y';

dj > ぢ|'~y';

gy > ぎ|'~y';

j > じ|'~y';

ky > き|'~y';

my > み|'~y';

ny > に|'~y';

py > ぴ|'~y';

ry > り|'~y';

293 ICU v3.8 User Guide



sh > し|'~y';

Using these rules, "kyo" is first converted into "き~yo". Since the "~yo" is then revisited, 
this produces the desired final result, "きょ". Thus, a small number of rules (3 + 11 = 14) 
provide for a large number of cases. If all of the combinations of rules were used instead, 
it would require 3 x 11 = 33 rules.

You can set the new revisit point (called the cursor) anywhere in the replacement text. 
You can even set the revisit point before or after the target text. The at-sign, as in the 
following example, is used as a filler to indicate the position, for those cases:
 

[aeiou] { x > | @ ks ;
ak > ack ;

The first rule will convert "x", when preceded by a vowel, into "ks". The transform will 
then backup to the position before the vowel and continue. In the next pass, the "ak" will 
match and be invoked. Thus, if the source text is "ax", the result will be "ack".

Although you can move the cursor forward or backward, it is limited in two ways: 
(a) to the text that is matched, (b) within the original substring that is to be 
converted. For example, if we have the rule "a b* {x} > |@@@@@y" and it  
matches in the text "mabbx", the result will be "m|abby" (| represents the cursor 
position). Even though there are five @ signs, the cursor will only backup to the 
first character that is matched.

Copying

We can copy part of the matched string to the target text. Use parenthesis to group the 
text to copy and use "$n" (where n is a number from 1 to 99) to indicate which group. For 
example, in Korean, any vowel that does not have a consonant before it gets the null 
consonant (?) inserted before it. The following example shows this rule:

 ([aeiouwy]) > ?| $1 ; 
To revisit the vowel again, insert the null consonant, insert the vowel, and then backup 
before the vowel to reconsider it. Similarly, we have a following rule that inserts a null 
vowel (?), if no real vowel is found after a consonant:

 ([b-dg-hj-km-npr-t]) > | $1 eu; 
In this case, since we are going to reconsider the text again, we put in the Latin equivalent 
of the Korean null vowel, which is "eu".

294 ICU v3.8 User Guide



Order Matters

Two rules overlap when there is a string that both rules could match at the start. For 
example, the first part of the following rule does not overlap, but the last two parts do 
overlap:
 

β > b;
γ } [ Γ Κ Ξ Χ   γ κ ξ χ ] > n ;
γ > g ;

When rules do not overlap, they will produce the same result no matter what order they 
are in. It does not matter whether we have either of the following:
 

β > b;
γ > g ;
or

γ > g ;
β > b;

When rules do overlap, order is important. In fact, a rule could be rendered completely 
useless. Suppose we have:
 

β } [aeiou] > b;
β } [^aeiou] > v;
β > p;

In this case, the last rule is masked as none of the text that will match the rule will already 
be matched by previous rules. If a rule is masked, then a warning will be issued when you 
attempt to build a transform with the rules.

Combinations

In Greek, a rough breathing mark on one of the first two vowels in a word represents an 
"H". This mark is invalid anywhere else in the language. In the normalize (NFD) form, 
the rough-breathing mark will be first accent after the vowel (with perhaps other accents 
following). So, we will start with the following variables and rule. The rule transforms a 
rough breathing mark into an "H", and moves it to before the vowels.
 

$gvowel = [ΑΕΗΙΟΥΩαεηιουω];
($gvowel + )  > H | $1;̔

A word like ΤΑΝ" is transformed into "HOTAN". This transformation does not workὍ  
with a lowercase word like " ταν". To handle lowercase words, we insert another ruleὅ  
that moves the "H" over lowercase vowels and changes it to lowercase. The following 
shows this rule:
 

$gvowel = [ΑΕΗΙΟΥΩαεηιουω];
$lcgvowel = [αεηιουω];
($lcgvowel +)  > h | $1;  # fix lowercase̔

295 ICU v3.8 User Guide



($gvowel + )  > H | $1;̔

This rule provides the correct results as the lowercase word " ταν" is transformed intoὅ  
"hotan".

There are also titlecase words such as " ταν". For this situation, we need to lowercaseὍ  
the uppercase letters as the transform passes over them. We need to do that in two 
circumstances: (a) the breathing mark is on a capital letter followed by a lowercase, or (b) 
the breathing mark is on a lowercase vowel. The following shows how to write a rule for 
this situation: 
 

$gvowel = [ΑΕΗΙΟΥΩαεηιουω];
$lcgvowel = [αεηιουω];
{Ο      } [:Nonspacing M ark:]* [:Ll:] > H | ο;  # fix Titlecase̔
{Ο ( $lcgvowel * )      } > H | ο $1;  # fix Titlecase̔

( $lcgvowel + )     > h | $1 ;  # fix lowercase̔
($gvowel + )     > H | $1 ;̔

This rule gives the correct results for lowercase as " ταν" is transformed into "Hotan".Ὅ  
We must copy the above insertion and modify it for each of the vowels since each has a 
different lowercase.

We must also write a rule to handle a single letter word like " ". In that case, we wouldὃ  
need to look beyond the word, either forward or backward, to know whether to transform 
it to "HO" or to transform it to "Ho". Unlike the case of a capital theta (Θ), there are cases 
in the Greek language where single-vowel words have rough breathing marks. In this 
case, we would use several rules to match either before or after the word and ignore 
certain characters like punctuation and space (watch out for combining marks).

Pitfalls

1. Case  When executing script conversions, if the source script has uppercase and 
lowercase characters, and the target is lowercase, then lowercase everything before 
your first rule. For example:

 :: [:Latin:] lower (); # lowercase target before applying forward 
rules

 This will allow the rules to work even when they are given a mixture of upper and 
lower case character. This procedure is done in the following ICU transforms:

• Latin-Hangul 

• Latin-Greek

• Latin-Cyrillic

• Latin-Devanagari 

• Latin-Gujarati

• etc

296 ICU v3.8 User Guide



2. Punctuation.  When executing script conversions, remember that scripts have 
different punctuation conventions. For example, in the Greek language, the ";" means a 
question mark. Generally, these punctuation marks also should be converted when 
transliterating scripts.

3. Normalization  Always design transform rules so that they work no matter whether 
the source is normalized or not. (This is also true for the target, in the case of 
backwards rules.) Generally, the best way to do this is to have :: NFD (NFC); as the 
first line of the rules, and :: NFC (NFD); as the last line. To supply filters, as 
described above, break each of these lines into two separate lines. Then, apply the 
filter to either the normal or inverse direction. Each of the accents then can be 
manipulated as separate items that are always in a canonical order. If we are not using 
any accent manipulation, we could use :: NFC (NFC) ; at the top of the rules instead.

4. Ignorable Characters   Letters may have following accents such as the following 
example:

 [:lowercase letter:] } z > s ; # convert z after letters into s

 Normally, we want to ignore any accents that are on the z in performing the rule. To 
do that, restate the rule as:

 [:lowercase letter:] [:mark:]* } z > s ; # convert z after letters 
into s 

 Even if we are not using NFD, this is still a good idea since some languages use 
separate accents that cannot be combined. 
Moreover, some languages may have embedded format codes, such as a Left-Right 
Mark, or a Non-Joiner. Because of that, it is even safer to use the following: 

 

TODO:  this code should be part of the preceding list item #4.
$ignore = [ [:mark:] [:format:] ] * ; # define at the top of your file
...
[:letter:] $ignore } z > s ; # convert z after letters into sh

Remember that the rules themselves must be in the same normalization format.  
Otherwise, nothing will match. To do this, run NFD on the rules themselves. In 
some cases, we must rearrange the order of the rules because of masking. For 
example, consider the following rules:    
If these rules are put in normalized form, then the second rule will mask the first.  
To avoid this, exchange the order because the NFD representation has the 
accents separate from the base character. We will not be able to see this on the 
screen if accents are rendered correctly. The following shows the NFD 
representation:
   

297 ICU v3.8 User Guide



Collation Introduction
Overview

Traditionally, information is displayed in sorted order to enable users to easily find the 
items they are looking for. However, users of different languages might have very 
different expectations of what a "sorted" list should look like. Not only does the 
alphabetical order vary from one language to another, but it also can vary from document 
to document within the same language. For example, phonebook ordering might be 
different than dictionary ordering. String comparison is one of the basic functions most 
applications require, and yet implementations often do not match local conventions. The 
ICU Collation Service provides string comparison capability with support for appropriate 
sort orderings for each of the locales you need. In the event that you have a very unusual 
requirement, you are also provided the facilities to customize orderings.

Starting in release 1.8, the ICU Collation Service is updated to be fully compliant to the 
Unicode Collation Algorithm (UCA) (http://www.unicode.org/unicode/reports/tr10/) and 
conforms to ISO 14651. There are several benefits to using the collation algorithms 
defined in these standards. Some of the more significant benefits include: 

• Unicode contains a large set of characters. This can make it difficult for collation to be 
a fast operation or require collation to use significant memory or disk resources. The 
ICU collation implementation is designed to be fast, have a small memory footprint 
and be highly customizable. 

• The algorithms have been designed and reviewed by experts in multilingual collation, 
and therefore are robust and comprehensive. 

• Applications that share sorted data but do not agree on how the data should be ordered 
fail to perform correctly. By conforming to the UCA/14651 standard for collation, 
independently developed applications, such as those used for e-business, sort data 
identically and perform properly. 

The ICU Collation Service also contains several enhancements that are not available in 
UCA. For example: 

• Additional case handling: ICU allows case differences to be ignored or flipped. 
Uppercase letters can be sorted before lowercase letters, or vice-versa. 

• Easy customization: Services can be easily tailored to address a wide range of 
collation requirements. 

• Flexibility: ICU offers both sort key generation and fast incremental string 
comparison. It also provides low-level access to collation data through the collation 
element iterator

There are many challenges when accommodating the world's languages and writing 
systems and the different orderings that are used. However, the ICU Collation Service 

298 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/Collate_ServiceArchitecture.sxw#Collation_Element_Iterator
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/Collate_ServiceArchitecture.sxw#Collation_Element_Iterator
http://www.unicode.org/unicode/reports/tr10/


provides an excellent means for comparing strings in a locale-sensitive fashion.

For example, here are some of the ways languages vary in ordering strings:

• The letters A-Z can be sorted in a different order than in English. For example, in 
Lithuanian, "y" is sorted between "i" and "k".

• Combinations of letters can be treated as if they were one letter. For example, in 
traditional Spanish "ch" is treated as a single letter, and sorted between "c" and "d".

• Accented letters can be treated as minor variants of the unaccented letter. For example, 
"é" can be treated equivalent to "e". 

• Accented letters can be treated as distinct letters. For example, "Å" in Danish is treated 
as a separate letter that sorts just after "Z".

• Unaccented letters that are considered distinct in one language can be indistinct in 
another. For example, the letters "v" and "w" are two different letters according to 
English. However, "v" and "w" are considered variant forms of the same letter in 
Swedish.

• A letter can be treated as if it were two letters. For example, in traditional German "ä" 
is compared as if it were "ae". 

• Thai requires that the order of certain letters be reversed.

• French requires that letters sorted with accents at the end of the string be sorted ahead 
of accents in the beginning of the string. For example, the word "côte" sorts before 
"coté" because the acute accent on the final "e" is more significant than the circumflex 
on the "o".

• Sometimes lowercase letters sort before uppercase letters. The reverse is required in 
other situations. For example, lowercase letters are usually sorted before uppercase 
letters in English. Latvian letters are the exact opposite.

• Even in the same language, different applications might require different sorting 
orders. For example, in German dictionaries, "öf" would come before "of". In phone 
books the situation is the exact opposite.

• Sorting orders can change over time due to government regulations or new 
characters/scripts in Unicode.

To accommodate the many languages and differing requirements, ICU collation supports 
customizing sort orderings - also known as tailoring. More details regarding tailoring are 
discussed in a later chapter.

The basic ICU Collation Service is provided by two main categories of APIs:

• String comparison - used when two strings are to be compared once: APIs return result 
of comparison (greater than, equal or less than). An example usage of this function is a 
string search.

• Sort key generation - used when a set of strings are compared repeatedly: APIs return a 
zero-terminated array of bytes per string known as a sort key. The keys can be 

299 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/Collate_Customization.sxw


compared directly using strcmp or memcmp standard library functions, saving repeated 
computation of each string's relative weights. Typically, database applications use sort 
keys to index strings that are compared multiple times.

Programming Examples

Here are some API usage conventions for the ICU Collation Service APIs. 

300 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/Collate_API.sxw


API Details
This section describes some of the usage conventions for the ICU Collation Service API.

Collator Instantiation

To use the ICU Collation Service, you must instantiate an ICU Collator. The Collator 
defines the properties and behavior of the sort ordering. The Collator can be repeatedly 
referenced until all collation activities have been performed. The Collator can then be 
closed and removed.

Instantiating the Predefined Collators

ICU comes with a large set of already predefined collators that are suited for specific 
locales. Most of the ICU locales have a predefined collator. In worst case, the default set 
of rules, which is equivalent to the UCA ordering, is used.

To instantiate a predefined collator, use the APIs ucol_open, createInstance and 
getInstance for C, C++ and Java codes respectively. All three APIs takes a Locale 
object as an argument.

This example demonstrates the instantiation of a collator.

C: 
UErrorCode status = U_ZERO_ERROR; 
UCollator *coll = ucol_open("en_US", &status); 
if(U_SUCCESS(status)) {
    /* close the collator*/
    ucol_close(coll); 
}

C++: 
UErrorCode status = U_ZERO_ERROR; 
Collator *coll = Collator::createInstance(Locale("en", "US"), status); 
if(U_SUCCESS(status)) {
    //close the collator
    delete coll; 
}

Java: 
 
Collator col = null;
try {
    col = Collator.getInstance(Locale.US);
} catch (Exception e) {
    System.err.println("English collation creation failed.");
    e.printStackTrace();
}
            

Instantiating Collators Using Custom Rules

If the ICU predefined collators are not appropriate for your intended usage, you can 

301 ICU v3.8 User Guide



define your own set of rules and instantiate a collator that uses them. For more details, 
please see the section on collation customization.

This example demonstrates the instantiation of a collator.

C: 
UErrorCode status = U_ZERO_ERROR;
U_STRING_DECL(rules, "&9 < a, A < b, B < c, C; ch, cH, Ch, CH < d, D, e, E", 52);
UCollator *coll;
U_STRING_INIT(rules, "&9 < a, A < b, B < c, C; ch, cH, Ch, CH < d, D, e, E", 52);
coll = ucol_openRules(rules, -1, UCOL_ON, UCOL_DEFAULT_STRENGTH, NULL, &status); 
if(U_SUCCESS(status)) {
    /* close the collator*/
    ucol_close(coll); 
}

C++: 
UErrorCode status = U_ZERO_ERROR;
UnicodeString rules("&9 < a, A < b, B < c, C; ch, cH, Ch, CH < d, D, e, E");
Collator *coll = new RuleBasedCollator(rules, status); 
if(U_SUCCESS(status)) {
    //close the collator
    delete coll; 
}

Java:

RuleBasedCollator coll = null;
String ruleset = "&9 < a, A < b, B < c, C; ch, cH, Ch, CH < d, D, e, E";
try {
    coll = new RuleBasedCollator(ruleset);
} catch (Exception e) {
    System.err.println("Customized collation creation failed.");
    e.printStackTrace();
}
            

Compare

Two of the most used functions in ICU collation API, ucol_strcoll and ucol_ 
getSortKey have their counterparts in both Win32 and ANSI APIs:

ICU C ICU C++ ICU Java ANSI/POSIX WIN32 
ucol_strcoll Collator::

compare 
Collator.compare strcoll CompareString 

ucol_getSortKey Collator::
getCollati
onKey 

Collator.getColl
ationKey 

strxfrm LCMapString 

For more sophisticated usage, such as user-controlled language-sensitive text searching, 
an iterating interface to collation is provided. Please refer to the section below on 
CollationElementIterator for more detail. 

The ucol_compare function is useful for one-time comparisons. Comparing two strings 
is much faster than calculating sort keys for both of them. However, if comparisons 
should be done repeatedly on a large number of strings, generating and storing sort keys 
can improve performance. In all other cases (such as quick sort or bubble sort of a 

302 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/Collate_Customization.sxw


moderately-sized list of strings), comparing strings works very well.

The C API used for comparing two strings is ucol_strcoll. It requires two UChar * 
strings and their lengths as parameters, as well as a pointer to a valid UCollator instance. 
The result is a UCollationResult constant, which can be one of UCOL_LESS, 
UCOL_EQUAL or UCOL_GREATER. 

The C++ API offers the method Collator::compare with several overloads. Acceptable 
input arguments are UChar * with length of strings or UnicodeString instances. The 
result is a member of the EComparisonResult enum. 

The Java API provides the method Collator.compare with one overload. Acceptable 
input arguments are Strings or Objects. The result is an int value, which is less than 
zero if source is less than target, zero if source and target are equal, or greater than zero if 
source is greater than target.

There are also several convenience functions and methods returning a boolean value, such 
as ucol_greater, ucol_greaterOrEqual, ucol_equal (in C) Collator::greater, 
Collator::greaterOrEqual, Collator::equal (in C++) and Collator.equals (in 
Java). 

Examples

C:
UChar *s [] = { /* list of Unicode strings */ };
uint32_t listSize = sizeof(s)/sizeof(s[0]); 
UErrorCode status = U_ZERO_ERROR; 
UCollator *coll = ucol_open("en_US", &status); 
uint32_t i, j; 
if(U_SUCCESS(status)) {
  for(i=listSize-1; i>=1; i--) {
    for(j=0; j<i; j++) {
      if(ucol_strcoll(s[j], -1, s[j+1], -1) == UCOL_LESS) {
        swap(s[j], s[j+1]);
     }
   }
} 
ucol_close(coll); 
}

C++: 
UnicodeString s [] = { /* list of Unicode strings */ };
uint32_t listSize = sizeof(s)/sizeof(s[0]); 
UErrorCode status = U_ZERO_ERROR; 
Collator *coll = Collator::createInstance(Locale("en", "US"), status); 
uint32_t i, j; 
if(U_SUCCESS(status)) {
  for(i=listSize-1; i>=1; i--) {
    for(j=0; j<i; j++) {
      if(coll->compare(s[j], s[j+1]) == UCOL_LESS) {
        swap(s[j], s[j+1]);
     }
   }
}
delete coll; 
}

Java: 

303 ICU v3.8 User Guide



String s [] = { /* list of Unicode strings */ };
try {
    Collator coll = Collator.getInstance(Locale.US); 
    for (int i = s.length - 1; i > = 1; i --) {
        for (j=0; j<i; j++) {
            if (coll.compare(s[j], s[j+1]) == -1) {
                swap(s[j], s[j+1]);
            }
        }
    }
} catch (Exception e) {
    System.err.println("English collation creation failed.");
    e.printStackTrace();
}
            

The C API provides the ucol_getSortKey function, which requires (apart from a pointer 
to a valid UCollator instance), an original UCharpointer, together with its length. It also 
requires a pointer to a receiving buffer and its length. 

The C++ API provides the Collator::getSortKey method with similar parameters as 
the C version. It also provides Collator::getCollationKey, which produces a 
CollationKey object instance (a wrapper around a sort key).

The Java API provides only the Collator.getCollationKey method, which produces a 
CollationKey object instance (a wrapper around a sort key).

ucol_getSortKey() can operate in 'preflighting' mode, which returns the amount of 
memory needed to store the resulting sort key. This mode is automatically activated if the 
output buffer size passed is set to zero. Should the sort key become longer than the buffer 
provided, function again slips into preflighting mode. The overall performance is poorer 
than if the function is called with a zero output buffer . If the size of the sort key returned 
is greater than the size of the buffer provided, the content of the result buffer is undefined. 
In that case, the result buffer could be reallocated to its proper size and the sort key 
generator function can be used again. 

The best way to generate a series of sort keys is to do the following:

1. Create a big temporary buffer on the stack. Typically, this buffer is allocated only 
once, and reused with every sort key generated. There is no need to keep it as small as 
possible. A recommended size for the temporary buffer is four times the length of the 
longest string processed.

2. Start the loop. Call ucol_getSortKey()to find out how big the sort key buffer should 
be, and fill in the temporary buffer at the same time. 

3. If the temporary buffer is too small, allocate or reallocate more space for in an 
overflow buffer to handle the overflow situations. Fill in the sort key values in the 
overflow buffer.

4. Allocate the sort key buffer with the size returned by ucol_getSortKey() and call 
memcpy to copy the sort key content from the temp buffer to the sort key buffer. 

5. Loop back to step 1 until you are done.

6. Delete the overflow buffer if you created one.

304 ICU v3.8 User Guide



Example

void GetSortKeys(const Ucollator* coll, const UChar*
const *source, uint32_t arrayLength) 
{ 
  char[1000] buffer; // allocate stack buffer 
  char* currBuffer = buffer; 
  int32_t bufferLen = sizeof(buffer);
  int32_t expectedLen = 0; 
  UErrorCode err = U_ZERO_ERROR;
  for (int i = 0; i < arrayLength; ++i) {
    expectedLen = ucol_getSortKey(coll, source[i], -1, currBuffer, bufferLen);
    if (expectedLen > bufferLen) {
      if (currBuffer == buffer) {
        currBuffer = (char*)malloc(expectedLen);
      } else {
        currBuffer = (char*)realloc(currBuffer, expectedLen);
      }
    }
    bufferLen = ucol_getSortKey(coll, source[i], -1, currBuffer, expectedLen);
  }
  processSortKey(i, currBuffer, bufferLen);

  if (currBuffer != buffer && currBuffer != NULL) {
    free(currBuffer);
  } 
}

Although the API allows you to call ucol_getsortkey with NULL to see what  
the sort key length is, it is strongly recommended that you NOT determine the 
length first, then allocate and fill the sort key buffer. If you do, it requires twice 
the processing since computing the length has to do the same calculation as 
actually getting the sort key. Instead, the example shown above uses a stack 
buffer.

Using Iterators for String Comparison

ICU4C's ucol_strcollIter API allows for comparing two strings that are supplied as 
character iterators (UCharIterator). This is useful when you need to compare differently 
encoded strings using strcoll. In that case, converting the strings first would be 
probably be wasteful, since strcoll usually gives the result before whole strings are 
processed. This API is implemented only as a C function in ICU4C. There are no 
equivalent C++ or ICU4J functions.

...
/* we are arriving with two char*: utf8Source and utf8Target, with their 
* lengths in utf8SourceLen and utf8TargetLen
*/
    UCharIterator sIter, tIter;
    uiter_setUTF8(&sIter, utf8Source, utf8SourceLen);
    uiter_setUTF8(&tIter, utf8Target, utf8TargetLen);
    compareResultUTF8 = ucol_strcollIter(myCollation, &sIter, &tIter, &status);
...

Obtaining Partial Sort Keys

305 ICU v3.8 User Guide



When using different sort algorithms, such as radix sort, sometimes it is useful to process 
strings only as much as needed to feed into the sorting algorithm. For that purpose, ICU 
provides ucol_nextSortKeyPart API, which also takes character iterators. This API 
allows for iterating over subsequent pieces of an uncompressed sort key. Between calls to 
the API you need to save a 64-bit state. Following is an example of simulating a string 
compare function using partial sort key API. Your usage model is bound to look much 
different.

static UCollationResult compareUsingPartials(UCollator *coll, 
                                             const UChar source[], int32_t sLen, 
                                             const UChar target[], int32_t tLen, 
                                             int32_t pieceSize, UErrorCode *status) {
  int32_t partialSKResult = 0;
  UCharIterator sIter, tIter;
  uint32_t sState[2], tState[2];
  int32_t sSize = pieceSize, tSize = pieceSize;
  int32_t i = 0;
  uint8_t sBuf[16384], tBuf[16384];
  if(pieceSize > 16384) {
    *status = U_BUFFER_OVERFLOW_ERROR;
    return UCOL_EQUAL;
  }
  *status = U_ZERO_ERROR;
  sState[0] = 0; sState[1] = 0;
  tState[0] = 0; tState[1] = 0;
  while(sSize == pieceSize && tSize == pieceSize && partialSKResult == 0) {
    uiter_setString(&sIter, source, sLen);
    uiter_setString(&tIter, target, tLen);
    sSize = ucol_nextSortKeyPart(coll, &sIter, sState, sBuf, pieceSize, status);
    tSize = ucol_nextSortKeyPart(coll, &tIter, tState, tBuf, pieceSize, status);
    partialSKResult = memcmp(sBuf, tBuf, pieceSize);
  }
  if(partialSKResult < 0) {
      return UCOL_LESS;
  } else if(partialSKResult > 0) {
    return UCOL_GREATER;
  } else {
    return UCOL_EQUAL;
  }
}

Other Examples

A longer example is presented in the 'Examples' section. Here is an illustration of the 
usage model.

C: 
#define MAX_KEY_SIZE 100
#define MAX_BUFFER_SIZE 10000 
#define MAX_LIST_LENGTH 5 
const char text[] = {
   "Quick",
   "fox",
   "Moving",
   "trucks",
   "riddle"
};
const UChar s [5][20];
int i;
int32_t length, expectedLen; 
uint8_t temp[MAX_BUFFER _SIZE];

306 ICU v3.8 User Guide



uint8_t *temp2 = NULL; 
uint8_t keys [MAX_LIST_LENGTH][MAX_KEY_SIZE]; 
UErrorCode status = U_ZERO_ERROR;
  
temp2 = temp;
length = MAX_BUFFER_SIZE; 
for( i = 0; i < 5; i++) 
{
   u_uastrcpy(s[i], text[i]); 
} 
UCollator *coll = ucol_open("en_US",&status); 
uint32_t length; 
if(U_SUCCESS(status)) {
  for(i=0; i<MAX_LIST_LENGTH; i++) {
    expectedLen = ucol_getSortKey(coll, s[i], -1,temp2,length );
    if (expectedLen > length) { 
      if (temp2 == temp) { 
        temp2 =(char*)malloc(expectedLen); 
      } else
        temp2 =(char*)realloc(temp2, expectedLen); 
      }
        length =ucol_getSortKey(coll, s[i], -1, temp2, expectedLen);
    }
    memcpy(key[i], temp2, length);
  }
} 
qsort(keys, MAX_LIST_LENGTH,MAX_KEY_SIZE*sizeof(uint8_t), strcmp); 
for (i = 0; i < MAX_LIST_LENGTH; i++) {
  free(key[i]); 
} 
ucol_close(coll);

C++: 
#define MAX_LIST_LENGTH 5 
const UnicodeString s [] = {
  "Quick",
  "fox",
  "Moving",
  "trucks",
  "riddle"
};
CollationKey *keys[MAX_LIST_LENGTH]; 
UErrorCode status = U_ZERO_ERROR; 
Collator *coll = Collator::createInstance(Locale("en_US"), status);
uint32_t i; 
if(U_SUCCESS(status)) {
  for(i=0; i<listSize; i++) {
    keys[i] = coll->getCollationKey(s[i], -1);
  }
  qsort(keys, MAX_LIST_LENGTH, sizeof(CollationKey),compareKeys); 
  delete[] keys; 
  delete coll; 
}

Java: 

String s [] = {
  "Quick",
  "fox",
  "Moving",
  "trucks",
  "riddle"
};
CollationKey keys[] = new CollationKey[s.length]; 
try {
    Collator coll = Collator.getInstance(Locale.US);
    for (int i = 0; i < s.length; i ++) {
        keys[i] = coll.getCollationKey(s[i]);

307 ICU v3.8 User Guide



    }
    Arrays.sort(keys); 
}
catch (Exception e) {
    System.err.println("Error creating English collator");
    e.printStackTrace();
}
                

Collation ElementIterator

A collation element iterator can only be used in one direction. This is established at the 
time of the first call to retrieve a collation element. Once ucol_next (C), 
CollationElementIterator::next (C++) or CollationElementIterator.next 
(Java)are invoked, ucol_previous (C), CollationElementIterator::previous (C++) 
or CollationElementIterator.previous (Java) should not be used (and vice versa). 
The direction can be changed immediately after ucol_first , ucol_last, ucol_reset 
(in C), CollationElementIterator::first, CollationElementIterator::last, 
CollationElementIterator::reset (in C++) or 
CollationElementIterator.first, CollationElementIterator.last, 
CollationElementIterator.reset (in Java) is called, or when it reaches the end of 
string while traversing the string. 

When ucol_next is called at the end of the string buffer, UCOL_NULLORDER is always 
returned with any subsequent calls to ucol_next. The same applies to ucol_previous.

An example of how iterators are used is the Boyer-Moore search implementation, which 
can be found in the samples section. 

API Example

C:
UCollator         *coll  = ucol_open("en_US",status); 
UErrorCode         status = U_ZERO_ERROR; 
UChar              text[20]; 
UCollationElements *collelemitr; 
uint32_t           collelem; 

u_uastrcpy(text, "text"); 
collelemitr = ucol_openElements(coll, text, -1, &status); 
collelem = 0; 
do {
  collelem = ucol_next(collelemitr, &status); 
} while (collelem != UCOL_NULLORDER);
ucol_closeElements(collelemitr); 
ucol_close(coll);

C++:

UErrorCode    status = U_ZERO_ERROR; 
Collator      *coll = Collator::createInstance(Locale::getUS(), status); 
UnicodeString text("text"); 
CollationElementIterator *collelemitr = coll->createCollationElementIterator(text);
uint32_t      collelem = 0; 
do { 
  collelem = collelemitr->next(status); 

308 ICU v3.8 User Guide



} while (collelem != CollationElementIterator::NULLORDER); 
delete collelemitr; 
delete coll;

Java:

try {
    RuleBasedCollator coll = (RuleBasedCollator)Collator.getInstance(Locale.US); 
    String text = "text"; 
    CollationElementIterator collelemitr = coll.getCollationElementIterator(text);
    int collelem = 0; 
    do { 
        collelem = collelemitr.next(); 
    } while (collelem != CollationElementIterator.NULLORDER); 
} catch (Exception e) {
    System.err.println("Error in collation iteration");
    e.printStackTrace();
}
                

Setting and Getting Attributes

The general attribute setting APIs are ucol_setAttribute (in C) and 
Collator::setAttribute (in C++). These APIs take an attribute name and an attribute 
value. If the name and the value pass a syntax and range check, the property of the 
collator is changed. If the name and value do not pass a syntax and range check, however, 
the state is not changed and the error code variable is set to an error condition. The Java 
version does not provide general attribute setting APIs, instead, each attribute will have 
its own setter API of the form RuleBasedCollator.setATTRIBUTE_NAME(arguments).

The attribute getting APIs are ucol_getAttribute (C) and Collator::getAttribute 
(C++). Both APIs require an attribute name as an argument and return an attribute value 
if a valid attribute name was supplied. If a valid attribute name was not supplied, 
however, they return an undefined result and set the error code. Similarly to the setter 
APIs for the Java version, no generic getter API is provided. Each attribute will have its 
own setter API of the form RuleBasedCollator.getATTRIBUTE_NAME() in the Java 
version.

References:

• Mark Davis, Ken Whistler: "Unicode Technical Standard #10, Unicode Collation 
Algorithm" (http://www.unicode.org/unicode/reports/tr10/) 

• Mark Davis: "ICU Collation Design Document" (http://source.icu-
project.org/repos/icu/icuhtml/trunk/design/collation/ICU_collation_design.htm) 

• The Unicode Standard 3.0, chapter 5, "Implementation guidelines" 
(http://www.unicode.org/unicode/uni2book/ch05.pdf) 

• Laura Werner: "Efficient text searching in Java: Finding the right string in any 
language" (http://icu-project.org/docs/papers/efficient_text_searching_in_java.html) 

• Mark Davis, Martin Dürst: "Unicode Standard Annex #15: Unicode Normalization 
Forms" (http://www.unicode.org/unicode/reports/tr15/). 

309 ICU v3.8 User Guide

http://www.unicode.org/unicode/reports/tr15/
http://icu-project.org/docs/papers/efficient_text_searching_in_java.html
http://www.unicode.org/unicode/uni2book/ch05.pdf
http://source.icu-project.org/repos/icu/icuhtml/trunk/design/collation/ICU_collation_design.htm
http://source.icu-project.org/repos/icu/icuhtml/trunk/design/collation/ICU_collation_design.htm
http://www.unicode.org/unicode/reports/tr10/


Collation Concepts
The previous section demonstrated many of the requirements imposed on string 
comparison routines that try to correctly collate strings according to conventions of more 
than a hundred different languages, written in many different scripts. This section 
describes the principles and architecture behind the ICU Collation Service.

The following topics are discussed:

• Comparison Levels  

• French secondary sorting  

• Contractions  

• Expansions  

• Contractions Producing Expansions  

• Normalization  

• Punctuation  

• Case Ordering  

• Sorting of Japanese Text (JIS X 4061)  

• Thai/Lao reordering  

• Collator naming scheme  

Comparison Levels

In general, when comparing and sorting objects, some properties can take precedence 
over others. For example, in geometry, you might consider first the number of sides a 
shape has, followed by the number of sides of equal length. This causes triangles to be 
sorted together, then rectangles, then pentagons, etc. Within each category, the shapes 
would be ordered according to whether they had 0, 2, 3 or more sides of the same length. 
However, this is not the only way the shapes can be sorted. For example, it might be 
preferable to sort shapes by color first, so that all red shapes are grouped together, then 
blue, etc. Another approach would be to sort the shapes by the amount of area they 
enclose.

Similarly, character strings have properties, some of which can take precedence over 
others. There is more than one way to prioritize the properties.

For example, a common approach is to distinguish characters first by their unadorned 
base letter (for example, without accents, vowels or tone marks), then by accents, and 
then by the case of the letter (upper vs. lower). Ideographic characters might be sorted by 
their component radicals and then by the number of strokes it takes to draw the character. 

310 ICU v3.8 User Guide



An alternative ordering would be to sort these characters by strokes first and then by their 
radicals.

The ICU Collation Service supports many levels of comparison (named "Levels", but also 
known as "Strengths"). Having these categories enables ICU to sort strings precisely 
according to local conventions. However, by allowing the levels to be selectively 
employed, searching for a string in text can be performed with various matching 
conditions. 

Performance optimizations have been made for ICU collation with the default level 
settings. Performance specific impacts are discussed in the Performance section below. 

Following is a list of the names for each level and an example usage:

• Primary Level: Typically, this is used to denote differences between base characters 
(for example, "a" < "b"). It is the strongest difference. For example, dictionaries are 
divided into different sections by base character. This is also called the level-1 
strength. 

• Secondary Level: Accents in the characters are considered secondary differences (for 
example, "as" < "às" < "at"). Other differences between letters can also be considered 
secondary differences, depending on the language. A secondary difference is ignored 
when there is a primary difference anywhere in the strings. This is also called the 
level-2 strength.
 Note: In some languages (such as Danish), certain accented letters are considered to 
be separate base characters. In most languages, however, an accented letter only has a 
secondary difference from the unaccented version of that letter. 

• Tertiary Level: Upper and lower case differences in characters are distinguished at the 
tertiary level (for example, "ao" < "Ao" < "aò"). In addition, a variant of a letter differs 
from the base form on the tertiary level (such as "A" and " "). Another example is theⒶ  
difference between large and small Kana. A tertiary difference is ignored when there is 
a primary or secondary difference anywhere in the strings. This is also called the level-
3 strength.

• Quaternary Level: When punctuation is ignored (see Ignoring Punctuations ) at level 1-
3, an additional level can be used to distinguish words with and without punctuation 
(for example, "ab" < "a-b" < "aB"). This difference is ignored when there is a primary, 
secondary or tertiary difference. This is also known as the level-4 strength. The 
quaternary level should only be used if ignoring punctuation is required or when 
processing Japanese text (see Hiragana processing). 

• Identical Level: When all other levels are equal, the identical level is used as a 
tiebreaker. The Unicode code point values of the NFD form of each string are 
compared at this level, just in case there is no difference at levels 1-4 . For example, 
Hebrew cantillation marks are only distinguished at this level. This level should be 
used sparingly, as only code point values differences between two strings is an 
extremely rare occurrence. Using this level substantially decreases the performance for 

311 ICU v3.8 User Guide



both incremental comparison and sort key generation (as well as increasing the sort 
key length). It is also known as level 5 strength.

French Secondary Sorting

Some languages, particularly French, require words to be ordered on the secondary level 
according to the last accent difference, as opposed to the first accent difference. This 
behavior is called French secondary sorting or French accent ordering.

Example: 

English 
 

French 
 

cote
 coté
 côte
 côté
 

cote
 côte
 coté
 côté
 

Contractions

A contraction is a sequence consisting of two or more letters. It is considered a single 
letter in sorting. 

For example, in the traditional Spanish sorting order, "ch" is considered a single letter. 
All words that begin with "ch" sort after all other words beginning with "c", but before 
words starting with "d".

Other examples of contractions are "ch" in Czech, which sorts after "h", and "lj" and "nj" 
in Croatian and Latin Serbian, which sort after "l" and "n" respectively.

Example:

Order without 
contraction 
 

Order with contraction "lj" 
sorting after letter "l" 
 

la
 li
 lj
 lja
 ljz
 lk
 lz
 ma

la
 li
 lk
 lz
 lj
 lja
 ljz
 ma

312 ICU v3.8 User Guide



Contracting sequences such as the above are not very common in most languages. They 
are very important, however, since they are also used in the ordering of accented letters. 
This is because the implementation of ICU treats tailored precomposed characters (such 
as Ã in Spanish) as contracting sequence (e.g. N + ~). 

Since ICU 2.2, and as required by the UCA, if a completely ignorable code point  
appears in text in the middle of contraction, it will not break the contraction. For 
example, in Czech sorting, cU+0000h will sort as it were ch

Expansions

If a letter sorts as if it were a sequence of more than one letter, it is called an expansion. 

For example, in traditional German sorting, "ä" sorts as though it were equivalent to the 
sequence "ae." All words starting with "ä" will sort between words starting with "ad" and 
words starting with "af".

In the case of Unicode encoding, characters can often be represented either as pre-
composed characters or in decomposed form. For example, the letter "à" can be 
represented in its decomposed (a+`) and pre-composed (à) form. Most applications do not 
want to distinguish text by the way it is encoded. A search for "à" should find all 
instances of the letter, regardless of whether the instance is in pre-composed or 
decomposed form. Therefore, either form of the letter must result in the same sort 
ordering. The architecture of the ICU Collation Service supports this.

Contractions Producing Expansions

It is possible to have contractions that produce expansions. 

One example occurs in Japanese, where the vowel with a prolonged sound mark is treated 
to be equivalent to the long vowel version: 

カアー<<< カイ  ー and 
 キイー<<< キイ  ー

Since ICU 2.0 Japanese tailoring uses prefix analysis instead of contraction 
producing expansions.

Normalization

In the section on expansions, we discussed that text in Unicode can often be represented 
in either pre-composed or decomposed forms. There are other types of equivalences 
possible with Unicode, including Canonical and Compatibility. The process of 

313 ICU v3.8 User Guide



Normalization ensures that text is written in a predictable way so that searches are not 
made unnecessarily complicated by having to match on equivalences. Not all text is 
normalized, however, so it is useful to have a collation service that can address text that is 
not normalized, but do so with efficiency.

The ICU Collation Service handles un-normalized text properly, producing the same 
results as if the text were normalized. 

In practice, most data that is encountered is in normalized or semi-normalized form 
already. The ICU Collation Service is designed so that it can process a wide range of 
normalized or un-normalized text without a need for normalization processing. When a 
case is encountered that requires normalization, the ICU Collation Service drops into 
code specific to this purpose. This maximizes performance for the majority of text that 
does not require normalization. 

In addition, if the text is known with certainty not to contain un-normalized text, then 
even the overhead of checking for normalization can be eliminated. The ICU Collation 
Service has the ability to turn Normalization Checking either on or off. If Normalization 
Checking is turned off, it is the user's responsibility to insure that all text is already in the 
appropriate form. This is true in a great majority of the world languages, so normalization 
checking is turned off by default for most locales.

If the text requires normalization processing, Normalization Checking should be on. Any 
language that uses multiple combining characters such as Arabic, ancient Greek, Hebrew, 
Hindi, Thai or Vietnamese either requires Normalization Checking to be on, or the text to 
go through a normalization process before collation.

ICU supports two modes of normalization: on and off. Java.text.* classes offer 
compatibility decomposition mode, which is not supported in ICU.

Ignoring Punctuation

In some cases, punctuation can be ignored while searching or sorting data. For example, 
this enables a search for "biweekly" to also return instances of "bi-weekly". In other cases, 
it is desirable for punctuated text to be distinguished from text without punctuation, but to 
have the text sort close together. 

These two behaviors can be accomplished if there is a way for a character to be ignored 
on all levels except for the quaternary level. If this is the case, then two strings which 
compare as identical on the first three levels (base letter, accents, and case) are then 
distinguished at the fourth level based on their punctuation (if any). If the comparison 
function ignores differences at the fourth level, then strings that differ by punctuation 
only are compared as equal.

The following table shows the results of sorting a list of terms in 3 different ways. In the 
first column, punctuation characters (space " ", and hyphen "-") are not ignored (" " < "-" 
< "b"). In the second column, punctuation characters are ignored in the first 3 levels and 

314 ICU v3.8 User Guide



compared only in the fourth level. In the third column, punctuation characters are ignored 
in the first 3 levels and the fourth level is not considered. In the last column, punctuated 
terms are equivalent to the identical terms without punctuation.

Example: 

Non-ignorable 
 

Ignorable and Quaternary 
strength 
 

Ignorable and Tertiary 
strength 
 

black bird
 black Bird
 black birds
 black-bird
 black-Bird
 black-birds
 blackbird
 blackBird
 blackbirds 

black bird
 black-bird
 blackbird
 black Bird
 black-Bird
 blackBird
 black birds
 black-birds
 blackbirds

black bird 
 black-bird 
 blackbird 
 black Bird 
 black-Bird 
 blackBird 
 black birds 
 black-birds 
 blackbirds

The strings with the same font format in the last column are compared as equal  
by ICU Collator. 
Since ICU 2.2 and as prescribed by the UCA, primary ignorable code points that 
follow shifted code points will be completely ignored. This means that an accent  
following a space will compare as if it was a space alone.

Case Ordering

The tertiary level is used to distinguish text by case, by small versus large Kana, and other 
letter variants as noted above.

Some applications prefer to emphasize case differences so that words starting with the 
same case sort together. Some Japanese applications require the difference between small 
and large Kana be emphasized over other tertiary differences.

The UCA does not provide means to separate out either case or Kana differences from the 
remaining tertiary differences. However, the ICU Collation Service has two options that 
help in customize case and/or Kana differences. Both options are turned off by default.

CaseFirst

The Case-first option makes case the most significant part of the tertiary level. Primary 
and secondary levels are unaffected. With this option, words starting with the same case 
sort together. The Case-first option can be set to make either lowercase sort before 
uppercase or uppercase sort before lowercase.

315 ICU v3.8 User Guide



Note: The case-first option does not constitute a separate level; it is simply a reordering of 
the tertiary level. 

ICU makes use of the following three case categories for sorting 

• uppercase: "ABC" 

• mixed case: "Abc", "aBc" 

• normal (lowercase or no case): "abc", "123" 

Mixed case is always sorted between uppercase and normal case when the "case-first" 
option is set. 

CaseLevel

The Case Level option makes a separate level for case differences. This is an extra level 
positioned between secondary and tertiary. The case level is used in Japanese to make the 
difference between small and large Kana more important than the other tertiary 
differences. It also can be used to ignore other tertiary differences, or even secondary 
differences. This is especially useful in matching. For example, if the strength is set to 
primary only (level-1) and the case level is turned on, the comparison ignores accents and 
tertiary differences except for case. The contents of the case level are affected by the case-
first option.

The case level is independent from the strength of comparison. It is possible to have a 
collator set to primary strength with the case level turned on. This provides for 
comparison that takes into account the case differences, while at the same time ignoring 
accents and tertiary differences other than case. This may be used in searching.

Example: 

Case-first off 
 Case level off 

Lowercase-first 
 Case level off 

Uppercase-first 
 Case level off 

Lowercase-first 
 Case level on 

Uppercase-first 
 Case level on 

apple 
 ⓐⓟⓟⓛⓔ 
 Abernathy 
 ⒶⒷⒺⓇⓃⒶ

 ⓉⒽⓎ
 ähnlich 
 Ähnlichkeit 

apple 
 ⓐⓟⓟⓛⓔ 
 ähnlich 
 Abernathy 
 ⒶⒷⒺⓇⓃⒶ

 ⓉⒽⓎ
 Ähnlichkeit 

Abernathy 
 ⒶⒷⒺⓇⓃⒶ

 ⓉⒽⓎ
 Ähnlichkeit 
 apple 
 ⓐⓟⓟⓛⓔ 
 ähnlich 

apple 
 Abernathy 
ⓐⓟⓟⓛⓔ
 ⒶⒷⒺⓇⓃⒶ
ⓉⒽⓎ
 ähnlich 
 Ähnlichkeit 

Abernathy 
 apple 
 ⒶⒷⒺⓇⓃⒶ

 ⓉⒽⓎ
 ⓐⓟⓟⓛⓔ
 Ähnlichkeit 
 ähnlich 

Sorting of Japanese Text (JIS X 4061)

Japanese standard JIS X 4061 requires two changes to the collation procedures: special 
processing of Hiragana characters and (for performance reasons) prefix analysis of text.

316 ICU v3.8 User Guide



Hiragana Processing

JIS X 4061 standard requires more levels than provided by the UCA. To offer conformant 
sorting order, ICU uses the quaternary level to distinguish between Hiragana and 
Katakana. Hiragana symbols are given smaller values than Katakana symbols on 
quaternary level, thus causing Hiragana sequences to sort before corresponding Katakana 
sequences.

Prefix Analysis

Another characteristics of sorting according to the JIS X 4061 is a large number of 
contractions followed by expansions (see Contractions Producing Expansions). This 
causes all the Hiragana and Katakana codepoints to be treated as contractions, which 
reduces performance. The solution we adopted introduces the prefix concept which 
allows us to improve the performance of Japanese sorting. More about this can be found 
in the customization section.

Thai/Lao reordering

UCA requires that certain Thai and Lao prevowels be reordered with a code point 
following them. This option is always on in the ICU implementation, as prescribed by the 
UCA.

There is a difference between java.text.* classes and ICU in regard to Thai  
reordering. Java.text.* classes allow tailorings to turn off reordering by using the 
'!' modifier. ICU ignores the '!' modifier and always reorders Thai prevowels. 

Collator naming scheme

When collating or matching text, a number of attributes can be used to affect the desired 
result. The following describes the attributes, their values, their effects, their normal 
usage, and the string comparison performance and sort key length implications. It also 
includes single-letter abbreviations for both the attributes and their values. These 
abbreviations allow a 'short-form' specification of a set of collation options, such as 
"UCA4.0.0_AS_LSV_S", which can be used to specific that the desired options are: UCA 
version 4.0.0; ignore spaces, punctuation and symbols; use Swedish linguistic 
conventions; compare case-insensitively.

A number of attribute values are common across different attributes; these include 

317 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/Collate_Customization.sxw


Default (abbreviated as D), On (O), and Off (X). Unless otherwise stated, the examples 
use the UCA alone with default settings.

In order to achieve uniqueness, collator name always has the attribute  
abbreviations sorted.

Main References

• For a full list of supported locales in ICU, see Locale Explorer, which also contains an 
on-line demo showing sorting for each locale. The demo allows you to try different 
attribute values, to see how they affect sorting.

• To see tabular results for the UCA table itself, see the Unicode Collation Charts.

• For the UCA specification, see UTS #10: Unicode Collation Algorithm.

• For more detail on the precise effects of these options, see Collation Customization.

318 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/Collate_Customization.sxw
http://www.unicode.org/reports/tr10/
http://www.unicode.org/charts/collation/
http://demo.icu-project.org/icu-bin/locexp


Attribute Ab
.

Possible  
Values

Description

Locale
Script
Region 
Variant 
Keyword

L
Z
R
V
K

<language>
<script>
<region> 
<variant> 
<keyword>

The Locale attribute is typically the most important 
attribute for correct sorting and matching, according 
to the user expectations in different countries and 
regions. The default UCA ordering will only sort a 
few languages such as Dutch and Portuguese 
correctly ("correctly" meaning according to the 
normal expectations for users of the languages). 
Otherwise, you need to supply the locale to UCA in 
order to properly collate text for a given language. 
Thus a locale needs to be supplied so as to choose a 
collator that is correctly tailored for that locale. The 
choice of a locale will automatically preset the 
values for all of the attributes to something that is 
reasonable for that locale. Thus most of the time the 
other attributes do not need to be explicitly set. In 
some cases, the choice of locale will make a 
difference in string comparison performance and/or 
sort key length.
 In short attribute names, 
<language>_<script>_<region>_<keyword> is 
represented by: 
L<language>_Z<script>_R<region>_V<variant>
_K<keyword>. Not all the elements are required. 
Valid values for locale elements are general valid 
values for RFC 3066 locale naming.
  Example:
 Locale="sv" (Swedish) "Kypper" < "Köpfe"
 Locale="de" (German) "Köpfe" < "Kypper"
 

319 ICU v3.8 User Guide



Attribute Ab
.

Possible  
Values

Description

Strength S 1, 2, 3, 4, I, D The Strength attribute determines whether accents or 
case are taken into account when collating or 
matching text. ( (In writing systems without case or 
accents, it controls similarly important features).  
The default strength setting usually does not need to 
be changed for collating (sorting), but often needs to 
be changed when matching (e.g. SELECT). The 
possible values include Default (D), Primary (1), 
Secondary (2), Tertiary (3), Quaternary (4), and 
Identical (I).
 For example, people may choose to ignore accents 
or ignore accents and case when searching for text.
  Almost all characters are distinguished by the first 
three levels, and in most locales the default value is 
thus Tertiary. However, if Alternate is set to be 
Shifted, then the Quaternary strength (4) can be used 
to break ties among whitespace, punctuation, and 
symbols that would otherwise be ignored. If very 
fine distinctions among characters are required, then 
the Identical strength (I) can be used (for example, 
Identical Strength distinguishes between the 
Mathematical Bold Small A and the Mathematical 
Italic Small A. For more examples, look at the cells 
with white backgrounds in the collation charts). 
However, using levels higher than Tertiary - the 
Identical strength - result in significantly longer sort 
keys, and slower string comparison performance for 
equal strings.
 Example:
 S=1 role = Role = rôle
 S=2 role = Role < rôle
 S=3 role < Role < rôle
 

320 ICU v3.8 User Guide



Attribute Ab
.

Possible  
Values

Description

Case_Level E X, O, D The Case_Level attribute is used when ignoring 
accents but not case. In such a situation, set Strength 
to be Primary, and Case_Level to be On. In most 
locales, this setting is Off by default. There is a small 
string comparison performance and sort key impact 
if this attribute is set to be On.
 Example:
 S=1, E=X role = Role = rôle
 S=1, E=O role = rôle <  Role
 

Case_First C X, L, U, D The Case_First attribute is used to control whether 
uppercase letters come before lowercase letters or 
vice versa, in the absence of other differences in the 
strings. The possible values are Uppercase_First (U) 
and Lowercase_First (L), plus the standard Default 
and Off. There is almost no difference between the 
Off and Lowercase_First options in terms of results, 
so typically users will not use Lowercase_First: only 
Off or Uppercase_First. (People interested in the 
detailed differences between X and L should consult 
the Collation Customization).
 Specifying either L or U won't affect string 
comparison performance, but will affect the sort key 
length.
 Example: 
 C=X or C=L "china" < "China" < "denmark" < 
"Denmark"
 C=U "China" < "china" < "Denmark" < "denmark"
 

321 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/Collate_Customization.sxw


Attribute Ab
.

Possible  
Values

Description

Alternate A N, S, D The Alternate attribute is used to control the 
handling of the so-called variable characters in the 
UCA: whitespace, punctuation and symbols. If 
Alternate is set to Non-Ignorable (N), then 
differences among these characters are of the same 
importance as differences among letters. If Alternate 
is set to Shifted (S), then these characters are of only 
minor importance. The Shifted value is often used in 
combination with Strength set to Quaternary. In such 
a case, white-space, punctuation, and symbols are 
considered when comparing strings, but only if all 
other aspects of the strings (base letters, accents, and 
case) are identical. If Alternate is not set to Shifted, 
then there is no difference between a Strength of 3 
and a Strength of 4.
 For more information and examples, see 
Variable_Weighting in the UCA. The reason the 
Alternate values are not simply On and Off is that 
additional Alternate values may be added in the 
future. The UCA option Blanked is expressed with 
Strength set to 3, and Alternate set to Shifted.
 The default for most locales is Non-Ignorable. If 
Shifted is selected, it may be slower if there are 
many strings that are the same except for 
punctuation; sort key length will not be affected 
unless the strength level is also increased.
 Example:
 S=3, A=N di Silva < Di Silva < diSilva < U.S.A. < 
USA
 S=3, A=S di Silva = diSilva < Di Silva  < U.S.A. = 
USA
 S=4, A=S di Silva < diSilva < Di Silva < U.S.A. < 
USA
 

322 ICU v3.8 User Guide

http://www.unicode.org/reports/tr10/#Variable_Weighting


Attribute Ab
.

Possible  
Values

Description

Variable_Top T <hex digits> The Variable_Top attribute is only meaningful if the 
Alternate attribute is not set to Non-Ignorable. In 
such a case, it controls which characters count as 
ignorable. The string value specifies the "highest" 
character (in UCA order) weight that is to be 
considered ignorable.
 Thus, for example, if a user wanted white-space to 
be ignorable, but not any visible characters, then s/he 
would use the value Variable_Top="\u0020" (space). 
The string should only be a single character. All 
characters of the same primary weight are equivalent, 
so Variable_Top="\u3000" (ideographic space) has 
the same effect as Variable_Top="\u0020".
 This setting (alone) has little impact on string 
comparison performance; setting it lower or higher 
will make sort keys slightly shorter or longer 
respectively
 Example:
 S=3, A=S di Silva = diSilva < U.S.A. = USA
 S=3, A=S, T=0020 di Silva = diSilva < U.S.A. < 
USA
 

323 ICU v3.8 User Guide



Attribute Ab
.

Possible  
Values

Description

Normalization 
Checking

N X, O, D The Normalization setting determines whether text is 
thoroughly normalized or not in comparison. Even if 
the setting is off (which is the default for many 
locales), text as represented in common usage will 
compare correctly (for details, see UTN #5). Only if 
the accent marks are in non-canonical order will 
there be a problem. If the setting is On, then the best 
results are guaranteed for all possible text input.

There is a medium string comparison performance 
cost if this attribute is On, depending on the 
frequency of sequences that require normalization. 
There is no significant effect on sort key length.

If the input text is known to be in NFD or NFKD 
normalization forms, there is no need to enable this 
Normalization option.
 Example:
 N=X ä  = a  +  < ä  +  ̣< ạ  + ◌̈ ◌ ◌̈
 N=O ä  = a  +  < ä  + ̣ = ạ  + ◌̈ ◌ ◌̈
 

French F X, O, D The French sort strings with different accents from 
the back of the string. This attribute is automatically 
set to On for the French locales and a few others. 
Users normally would not need to explicitly set this 
attribute. There is a string comparison performance 
cost when it is set On, but sort key length is 
unaffected.
 Example:
 F=X cote < coté < côte < côté
 F=O cote < côte < coté < côté
 

324 ICU v3.8 User Guide

http://www.unicode.org/notes/tn5/


Attribute Ab
.

Possible  
Values

Description

Hiragana H X, O, D Compatibility with JIS x 4061 requires the 
introduction of an additional level to distinguish 
Hiragana and Katakana characters. If compatibility 
with that standard is required, then this attribute 
should be set On, and the strength set to Quaternary. 
This will affect sort key length and string 
comparison string comparison performance.
 Example:
 H=X, S=4 きゅう = キュウ < きゆう = キユウ
 H=O, S=4 きゅう < キュウ < きゆう < キユウ
 

If attributes in collator name are not overridden, it is assumed that they are the 
same as for the given locale. For example, a collator opened with an empty string 
has the same attribute settings as AN_CX_EX_FX_HX_KX_NX_S3_T0000.

Summary of Value Abbreviations:

Value Abbreviation
Default D
On O
Off X
Primary 1
Secondary 2
Tertiary 3
Quaternary 4
Identical I
Shifted S
Non-Ignorable N
Lower-First L
Upper-First U

Space Padding

In many database products, fields are padded with null. To get correct results, the input to 
a Collator should omit any superfluous trailing padding spaces. The problem arises with 
contractions, expansions, or normalization. Suppose that there are two fields, one 

325 ICU v3.8 User Guide



containing "aed" and the other with "äd". A traditional German sort will compare "ä" as if 
it were "ae" (on a primary level), so the order will be "äd" < "aed". But if both fields are 
padded with spaces to a length of 3, then this will reverse the order, since the first will 
compare as if it were one character longer. In other words, when you start with strings 1 
and 2

1. a e d <space>
2. ä d <space> <space>
they end up being compared on a primary level as if they were 1' and 2'

1'. a e d <space>  
2'. a e d <space> <space>

Since 2' has an extra character (the extra space), it counts as having a primary difference 
when it shouldn't. The correct result occurs when the trailing padding spaces are removed, 
as in 1" and 2"

1". a e d
2". a e d

326 ICU v3.8 User Guide



ICU Collation Service Architecture
This section describes the design principles, architecture and coding conventions of the 
ICU Collation Service.

The following topics are discussed:

• Collator instantiation  

• Input values for collation  

• Collation elements  

• Sort keys  

• Collation element iterators  

• Collation attributes  

• Collation performance  

• Collation versioning  

• Programming examples  

ICU Collator

To use the ICU Collation Service, an ICU Collator must first be instantiated. An ICU 
Collator is a data structure or object that maintains all of the property and state 
information necessary to define and support the specific collation behavior provided. 
Examples of properties described in the ICU Collator are the locale, whether 
normalization is to be performed, and how many levels of collation are to be evaluated. 
Examples of the state information described in the ICU Collator include the direction of a 
Collation Element Iterator (forward or backward) and the status of the last API executed.

The ICU Collator is instantiated either by referencing a locale or by defining a custom set 
of rules (a tailoring).

The ICU Collation Service uses the paradigm:

1. Open an ICU Collator,

2. Use while necessary,

3. Close the ICU Collator. 

ICU Collator instances cannot be shared among threads. You should open them instead, 
and use a different collator for each separate thread. The safe clone function is supported 
for cloning collators in a thread-safe fashion.

327 ICU v3.8 User Guide



The ICU Collation Service follows the ICU conventions for locale designation when 
opening collators: 

• NULL means the machine default locale. 

• The empty locale name ("") means the root locale.
 
The ICU Collation Service adheres to the ICU conventions described in the "ICU 
Architectural Design" section of the users guide.
 
In particular:

• The standard error code convention is usually followed. (Functions that do not 
take an error code parameter do so for backward compatibility.)

• The string length convention is followed: when passing an UChar *, the length 
is required in a separate argument. If -1 is passed for the length, it is assumed 
that the string is zero terminated.

Collation locale and keyword handling

When a collator is created from a locale, the collation service (like all ICU services) must 
map the requested locale to the localized collation data available to ICU at the time. It 
does so using the standard ICU locale fallback mechanism. See the locale chapter for 
more details.

If you pass a regular locale in, like "en_US", the collation service first searches with 
fallback for "collations/default" key. The first such key it finds will have an associated 
string value; this is the keyword name for the collation that is default for this locale. If the 
search falls all the way back to the root locale, the collation service will us the 
"collations/default" key there, which has the value "standard".

If there is a locale with a keyword, like "de@collation=phonebook", the collation service 
searches with fallback for "collations/phonebook". If the search is successful, the 
collation service uses the string value it finds to instantiate a collator. If the search fails 
because no such key is present in any of ICU's locale data (e.g., "de@collation=funky"), 
the service returns a collator implementing UCA and the return UErrorCode is 
U_USING_DEFAULT_WARNING.

Input values for collation

Collation deals with processing strings. ICU generally requires that all the strings should 
be in UTF-16 format, and that all the required conversion should done before ICU 
functions are used. In the case of collation, there are APIs that can also take instances of 
character iterators (UCharIterator). Theoretically, character iterators can iterate strings 

328 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/locale.sxw#fallback
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/design.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/design.sxw


in any encoding. ICU currently provides character iterator implementations for UTF-8 
and UTF-16BE (useful when processing data from a big endian platform on an little 
endian machine). It should be noted, however, that using iterators for collation APIs has a 
performance impact. It should be used in situations when it is not desirable to convert 
whole strings before the operation - such as when using string compare function. 

CollationElement

As discussed in the introduction, there are many possible orderings for sorted text, 
depending on language and other factors. Ideally, there is a way to describe each ordering 
as a set of rules for calculating numeric values for each string of text. The collation 
process then becomes one of simply comparing these numeric values.

This essentially describes the way the ICU Collation Service works. To implement a 
particular sort ordering, first the relationship between each character or character 
sequence is derived. For example, a Spanish ordering defines the letter sequence "CH" to 
be between the letters "C" and "D". As also discussed in the introduction, to order strings 
properly requires that comparison of base letters must be considered separately from 
comparison of accents. Letter case must also be considered separately from either base 
letters or accents. Any ordering specification language must provide a way to define the 
relationships between characters or character sequences on multiple levels. ICU supports 
this by using "<" to describe a relationship at the primary level, using "<<" to describe a 
relationship at the secondary level, and using "<<<" to describe a relationship at the 
tertiary level. Here are some example usages:

Symbol Example Description 
< c < ch Make a primary (base letter) difference between "c" 

and the character sequence "ch" 
<< a << ä Make a secondary (accent) difference between "a" 

and "ä" 
<<< a<<<A Make a tertiary difference between "a" and "A" 

A more complete description of the ordering specification symbols and their meanings is 
provided in the section on Collation Tailoring.

Once a sort ordering is defined by specifying the desired relationships between characters 
and character sequences, ICU can convert these relationships to a series of numerical 
values (one for each level) that satisfy these same relationships.

This series of numeric values, representing the relative weighting of a character or 
character sequence, is called a Collation Element (CE). A Collation Element is a 32-bit 
value, consisting of a 16-bit primary, 8-bit secondary, 6-bit tertiary weight and 2 case bits. 

329 ICU v3.8 User Guide



16b primary weight 8b secondary weight 2b case bits 6b tertiary weight 

The sort weight of a string is represented by the collation elements of its component 
characters and character sequences. For example, the sort weight of the string "apple" 
would consist of its component Collation Elements, as shown here: 

"Apple" "Apple" Collation Elements 
a [1900.05.05] 
p [3700.05.05] 
p 
l 
e 

[3700.05.05] 
[2F00.05.05] 
[2100.05.05] 

In this example, the letter "a" has a 16-bit primary weight of 1900 (hex), an 8-bit 
secondary weight of 05 (hex), and a combined 8-bit case-tertiary weight of 05 (hex). 

String comparison is performed by comparing the collation elements of each string. Each 
of the primary weights are compared. If a difference is found, that difference determines 
the relationship between the two strings. If no differences are found, the secondary 
weights are compared and so forth. 

With ICU it is possible to specify how many levels should be compared. For some 
applications, it can be desirable to compare only primary levels or to compare only 
primary and secondary levels.

SortKey

If a string is to be compared repeatedly, it can be more efficient to use sort keys. Sort keys 
are useful in situations where a large amount of data is indexed and frequently searched. 
The sort key is generated once and used in subsequent comparisons, rather than 
repeatedly generating the string's Collation Elements. The key comparison is a very 
efficient and simple binary compare of strings of unsigned bytes.

An important property of ICU sort keys is that you can obtain the same results by 
comparing 2 strings as you do by comparing the sort keys of the 2 strings (provided that 
the same ordering and related collation attributes are used).

ICU sort key is a pre-processed sequence of bytes generated from a Unicode string. The 
weights for each comparison level are concatenated, separated by a "0x01" byte. The 
entire sequence is terminated with a 0x00 byte for convenience in C APIs. 

330 ICU v3.8 User Guide



The diagram below represents an uncompressed sort key in ICU for ease of 
understanding. ICU actually compresses the sort keys so that they take the minimum 
storage in memory and in databases.

 

Sort key size

One of the more important issues when considering using sort keys is the sort key size. 
Unfortunately, it is very hard to give a fast exact answer to the following question: "What 
is the maximum size for sort keys generated for strings of size X". This problem is 
twofold:

1. the maximum size of the sort key depends on the size of the collation elements that are 
used to build it. Size of collation elements vary greatly and depends both on the 
alphabet in question and on the locale used.

2. compression is used in building sort keys. Most 'regular' sequences of characters 
produce very compact sort keys.

If one is to assume the worst case and use too big buffers, a lot of space will be wasted. 
However, if you use too small buffers, you will lose performance if generated sort keys 
are longer than supplied buffers too often. A good strategy for this problem would be to 
manually manage a large buffer for storing sortkeys and keep a list of indices to sort keys 
in this buffer (see samples for more details).

Here are some rules of a thumb, please do not rely on them. If you are looking at the East 
Asian locales, you probably want to go with 5 bytes per code unit. For Thai, 3 bytes per 
code unit should be sufficient. For all the other locales (mostly Latin and Cyrillic), you 
should be fine with 2 bytes per code unit. These values are based on average lengths of 
sortkeys generated with tertiary strength - if you need quaternary and identical strength 
(you should not), add 3 bytes per code unit to each of these.

331 ICU v3.8 User Guide

, 09/26/04
html image name: Collate_SA-sortkey.gif



Partial sort keys

In some cases, most notably when implementing radix sorting, it is useful to produce only 
parts of sort keys at a time. ICU4C 2.6 provides a new API that allows producing parts of 
sort keys (ucol_nextSortKeyPart API). These sort keys are not compressed. Therefore, 
this API could be used if non-compressed sort keys are required.

Merging sort keys

Sometimes, it is useful to be able to merge sort keys. One example is having separate sort 
keys for first and last names. If you need to perform an operation that requires a sort key 
generated on the whole name, instead of concatenating strings and regenerating sort keys, 
you should merge the sort keys. The merging is done by merging the corresponding levels 
while inserting a terminator between merged parts. Reserved value for the merge 
terminator is 0x02.

Generating bounds for a sort key (prefix matching)

Having sort keys for strings allows for easy creation of bounds - sort keys that are 
guaranteed to be smaller or larger than any sort key from a give range. For example, if 
bounds are produced for a sortkey of string "smith", strings between upper and lower 
bounds with one level would include "Smith", "SMITH", "sMiTh". Two kinds of upper 
bounds can be generated - the first one will match only strings of equal length, while the 
second one will match all the strings with the same initial prefix.

CollationElement Iterator

The collation element iterator is used for traversing Unicode string collation elements one 
at a time. It can be used to implement language-sensitive text search algorithms like 
Boyer-Moore.

For most applications, the two API categories, compare and sort key, are sufficient. Most 
people do not need to manipulate collation elements directly.

Example: 
Consider iterating over "apple" and "äpple". Here are sequences of collation elements:

String 1 String 1 Collation Elements 
a [1900.05.05] 
p [3700.05.05] 

332 ICU v3.8 User Guide



String 1 String 1 Collation Elements 
p 
 l 
 e 

[3700.05.05] 
 [2F00.05.05] 
 [2100.05.05] 

String 2 String 2 Collation Elements 
a [1900.05.05] 
\u0308 [0000.9D.05] 
p [3700.05.05] 
p 
 l 
 e 

[3700.05.05] 
 [2F00.05.05] 
 [2100.05.05] 

The resulting CEs are typically masked according to the desired strength, and zero CEs 
are discarded. In the above example, masking with 0xFFFF0000 produces the results of 
NULL secondary and tertiary differences. The collator then ignores the NULL differences 
and declares a match. For more details see the paper "Efficient text searching in Java™: 
Finding the right string in any language" by Laura Werner ( http://icu-
project.org/docs/papers/efficient_text_searching_in_java.html ). 

Collation Attributes

The ICU Collation Service has a number of attributes whose values can be changed 
during run time. These attributes affect both the functionality and the performance of the 
ICU Collation Service. This section describes these attributes and, where possible, their 
performance impact. Performance indications are only approximate and timings may vary 
significantly depending on the CPU, compiler, etc.

Although string comparison by ICU and comparison of each string's sort key give the 
same results, attribute settings can impact the execution time of each method differently. 
To be precise in the discussion of performance, this section refers to the API employed in 
the measurement. The ucol_strcoll function is the API for string comparison. The 
ucol_getSortKey function is used to create sort keys. 

There is a special attribute value, UCOL_DEFAULT, that can be used to set any 
attribute to its default value (which is inherited from the UCA and the tailoring). 

Attribute Types

Strength level 

333 ICU v3.8 User Guide

http://icu-project.org/docs/papers/efficient_text_searching_in_java.html
http://icu-project.org/docs/papers/efficient_text_searching_in_java.html


Collation strength, or the maximum collation level used for comparison, is set by using 
the UCOL_STRENGTH attribute. Valid values are: 

• UCOL_PRIMARY 

• UCOL_SECONDARY 

• UCOL_TERTIARY (default) 

• UCOL_QUATERNARY 

• UCOL_IDENTICAL 

French collation 

The UCOL_FRENCH_COLLATION attribute determines whether to sort the secondary 
differences in reverse order. Valid values are: 

• UCOL_OFF (default): compares secondary differences in the order they appear 
in the string. 

• UCOL_ON: causes secondary differences to be considered in reverse order, as 
it is done in the French language.

Normalization mode 

The UCOL_NORMALIZATION_MODE attribute, or its alias UCOL_DECOMPOSITION_MODE, 
controls whether text normalization is performed on the input strings. Valid values are: 

• UCOL_OFF (default): turns off normalization check 

• UCOL_ON : normalization is checked and the collator performs normalization 
if it is needed. 

X FCD NFC NFD 
A- ring Y Y 

 
Angstrom Y 

  
A + ring Y 

 
Y 

A + grave Y 
 

Y 

A-ring + grave Y 
  

334 ICU v3.8 User Guide



X FCD NFC NFD 
A + cedilla + 
ring 

Y 
 

Y 

A + ring + 
cedilla    
A-ring + cedilla 

 
Y 

 

With normalization mode turned on, the ucol_strcoll function slows down by 10%. In 
addition, the time to generate a sort key also increases by about 25%. 

 This attribute allows shifting of the variable (usually punctuation and symbols) 
characters from the primary to the quaternary strength level. This is set by using the 
UCOL_ALTERNATE_HANDLING attribute. 

• UCOL_NON_IGNORABLE (default): variable characters are treated as all the other 
characters 

• UCOL_SHIFTED : all the variable characters will be ignored at the primary, 
secondary and tertiary levels and their primary strengths will be shifted to the 
quaternary level. 

Case Ordering 

Some conventions require uppercase letters to sort before lowercase ones, while others 
require the opposite. This attribute is controlled by the value of the UCOL_CASE_FIRST. 
The case difference in the UCA is contained in the tertiary weights along with other 
appearance characteristics (like circling of letters). 

The case-first attribute allows for emphasizing of the case property of the letters by 
reordering the tertiary weights with either upper-first, and/or lowercase-first. This 
difference gets the most significant bit in the weight. 

Valid values for this attribute are: 

• UCOL_OFF (default): leave tertiary weights unaffected 

• UCOL_LOWER_FIRST: causes lowercase letters and uncased characters to sort 
before uppercase 

• UCOL_UPPER_FIRST : causes uppercase letters to sort first 

The case-first attribute does not affect the performance substantially.

335 ICU v3.8 User Guide



Case level 

When this attribute is set, an additional level is formed between the secondary and tertiary 
levels, known as the Case Level. The case level is used to distinguish large and small 
Japanese Kana characters. Case level could also be used in other situations. for example 
to distinguish certain Pinyin characters. 

Case level is controlled by UCOL_CASE_LEVEL attribute. Valid values for this attribute are 

• UCOL_OFF (default): no additional case level 

• UCOL_ON : adds a case level 

Hiragana Quaternary

Hiragana Quaternary can be set to UCOL_ON, in which case Hiragana code points will sort 
before everything else on the quaternary level. If set to UCOL_OFF Hiragana letters are 
treated the same as all the other code points. This setting can be changed on run-time 
using the UCOL_HIRAGANA_QUATERNARY_MODE attribute. You probably won't need to use 
it.

Variable Top

Variable Top is a boundary which decides whether the code points will be treated as 
variable (shifted to quaternary level in the shifted mode) or non-ignorable. Special APIs 
are used for setting of variable top. It can basically be set either to a codepoint or a 
primary strength value. 

Performance

ICU collation is designed to be fast, small and customizable. Several techniques are used 
to enhance the performance:

1. Providing optimized processing for Latin characters.

2. Comparing strings incrementally and stop at the first significant difference.

3. Tuning to eliminate unnecessary file access or memory allocation.

4. Providing efficient preflight functions that allows fast sort key size generation.

5. Using a single, shared copy of UCA in memory for the read-only default sort order. 
Only small tailoring tables are kept in memory for locale-specific customization.

6. Compressing sort keys efficiently. 

7. Making the sort order to be data-driven.

336 ICU v3.8 User Guide



In general, the best performance from the ICU Collation Service is expected by doing the 
following:

• After opening a collator, keep and reuse it until done. Do not open new collators for 
the same sort order. (Note the restriction on multi-threading.)

• Follow the best practice guidelines for generating sort key. Do not call 
ucol_getSortKey twice to first size the key and then allocate the sort key buffer and 
repeat the call to the function to fill in the buffer. 

• Use ucol_strcol when comparing two strings one time. If it is necessary to compare 
strings more than once, create the sort key first and compare the sort keys instead. 
Generating the sort keys of two strings is about 5-10 times slower than just comparing 
them directly.

Performance and Storage Implications of Attributes

Most people use the default attributes when comparing strings or when creating sort keys. 
When they do want to customize the ordering, the most common options are the 
following :

Attributes Description 
UCOL_ALTERNATE_HANDLING == 
UCOL_SHIFTED 

Used to ignore space and punctuation 
characters 

UCOL_ALTERNATE_HANDLING == 
UCOL_SHIFTED and 
UCOL_STRENGTH == 
UCOL_QUATERNARY 

Used to ignore the space and punctuation 
characters except when there are no 
previous letter, accent, or case/variable 
differences. 

UCOL_CASE_FIRST == 
UCOL_LOWER_FIRST or 
UCOL_CASE_FIRST == 
UCOL_UPPER_FIRST 

Used to change the ordering of upper vs. 
lower case letters (as well as small vs. large 
kana) 

UCOL_CASE_LEVEL == UCOL_ON and 
UCOL_STRENGTH == 
UCOL_PRIMARY 

Used to ignore only the accent differences. 

UCOL_NORMALIZATION_MODE == 
UCOL_ON 

Force to always check for normalization. 
This is used if the input text may not be in 
FCD form. 

UCOL_FRENCH_COLLATION == 
UCOL_OFF 

This is only useful for languages like 
French and Catalan that turn this attribute 
on by default. 

337 ICU v3.8 User Guide



In String Comparison, most of these options have little or no effect on performance. The 
only noticeable one is normalization, which can cost 10%-40% in performance.

For Sort Keys, most of these options either leave the storage alone or reduce it. Shifting 
can reduce the storage by about 10%-20%; case level + primary-only can decrease it 
about 20% to 40%. Using no French accents can reduce the storage by about 38% , but 
only for languages like French and Catalan that turn it on by default. On the other hand, 
using Shift + Quad can increase the storage by 10%-15%. (The Identical Level also 
increases the length, but this option is not recommended).

 All of the above numbers are based on tests run on a particular machine, with a 
particular set of data. (The data for each language is a large number of names in 
that language in the format <first_name>, <last name>.) The performance and 
storage may vary, depending on the particular computer, operating system, and 
data.

Versioning

Sort keys are often stored on disk for later reuse. A common example is the use of keys to 
build indexes in databases. When comparing keys, it is important to know that both keys 
were generated by the same algorithms and weightings. Otherwise, identical strings with 
keys generated on two different dates, for example, might compare as unequal. Sort keys 
can be affected by new versions of ICU or its data tables, new sort key formats, or 
changes to the Collator. Starting with release 1.8.1, ICU provides a versioning 
mechanism to identify the version information of the following (but not limited to),

1. The run-time executable

2. The collation element content

3. The Unicode/UCA database

4. The tailoring table

The version information of Collator is a 32-bit integer. If a new version of ICU has 
changes affecting the content of collation elements, the version information will be 
changed. In that case, to use the new version of ICU collator will require regenerating any 
saved or stored sort keys. However, since ICU 1.8.1. it is possible to build your program 
so that it uses more than one version of ICU. Therefore, you could use the current version 
for the features you need and use the older version for collation.

Programming Examples

See the following for an example of how to compare and create sort keys with default 
locale in C and C++.

338 ICU v3.8 User Guide



Collation Examples
Simple Collation Sample Customization 

The following program demonstrates how to compare and create sort keys with default 
locale.

In C:
       #include <stdio.h>
       #include <memory.h>
       #include <string.h>
       #include "unicode/ustring.h"
       #include "unicode/utypes.h"
       #include "unicode/uloc.h"
       #include "unicode/ucol.h"
       #define MAXBUFFERSIZE 100
       #define BIGBUFFERSIZE 5000
       UBool collateWithLocaleInC(const char* locale, UErrorCode *status)
       {
           UChar         dispName    [MAXBUFFERSIZE]; 
           int32_t       bufferLen   = 0;
           UChar         source            [MAXBUFFERSIZE];
           UChar         target            [MAXBUFFERSIZE];
           UCollationResult result   = UCOL_EQUAL;
           uint8_t             sourceKeyArray    [MAXBUFFERSIZE];
           uint8_t             targetKeyArray    [MAXBUFFERSIZE]; 
           int32_t       sourceKeyOut      = 0, 
                       targetKeyOut = 0;
           UCollator     *myCollator = 0;
           if (U_FAILURE(*status))
           {
               return FALSE;
           }
           u_uastrcpy(source, "This is a test.");
           u_uastrcpy(target, "THIS IS A TEST.");
           myCollator = ucol_open(locale, status);
           if (U_FAILURE(*status)){
               bufferLen = uloc_getDisplayName(locale, 0, dispName, MAXBUFFERSIZE, 
status);
               /*Report the error with display name... */
               fprintf(stderr,
               "Failed to create the collator for : \"%s\"\n", dispName);
               return FALSE;
           }
           result = ucol_strcoll(myCollator, source, u_strlen(source), target, 
u_strlen(target));
           /* result is 1, secondary differences only for ignorable space 
characters*/
           if (result != UCOL_LESS)
           {
               fprintf(stderr,
               "Comparing two strings with only secondary differences in C 
failed.\n");
               return FALSE;
           }
           /* To compare them with just primary differences */
           ucol_setStrength(myCollator, UCOL_PRIMARY);
           result = ucol_strcoll(myCollator, source, u_strlen(source), target, 
u_strlen(target));
           /* result is 0 */
           if (result != 0)
           {
               fprintf(stderr,
               "Comparing two strings with no differences in C failed.\n");
               return FALSE;

339 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/Collate_Samples.sxw


           }
           /* Now, do the same comparison with keys */
           sourceKeyOut = ucol_getSortKey(myCollator, source, -1, sourceKeyArray, 
MAXBUFFERSIZE);
           targetKeyOut = ucol_getSortKey(myCollator, target, -1, targetKeyArray, 
MAXBUFFERSIZE);
           result = 0;
           result = strcmp(sourceKeyArray, targetKeyArray);
           if (result != 0)
           {
               fprintf(stderr,
               "Comparing two strings with sort keys in C failed.\n");
               return FALSE;
           }
           ucol_close(myCollator);
           return TRUE;
       }

In C++:
       #include <stdio.h>
       #include "unicode/unistr.h"
       #include "unicode/utypes.h"
       #include "unicode/locid.h"
       #include "unicode/coll.h"
       #include "unicode/tblcoll.h"
       #include "unicode/coleitr.h"
       #include "unicode/sortkey.h"
       UBool collateWithLocaleInCPP(const Locale& locale, UErrorCode& status)
       {
           UnicodeString dispName; 
           UnicodeString source("This is a test.");
           UnicodeString target("THIS IS A TEST.");
           Collator::EComparisonResult result    = Collator::EQUAL;
           CollationKey sourceKey;
           CollationKey targetKey; 
           Collator      *myCollator = 0;
           if (U_FAILURE(status))
           {
               return FALSE;
           }
           myCollator = Collator::createInstance(locale, status);
           if (U_FAILURE(status)){
               locale.getDisplayName(dispName);
               /*Report the error with display name... */
               fprintf(stderr,
               "%s: Failed to create the collator for : \"%s\"\n", dispName);
               return FALSE;
           }
           result = myCollator->compare(source, target);
           /* result is 1, secondary differences only for ignorable space 
characters*/
           if (result != UCOL_LESS)
           {
               fprintf(stderr,
               "Comparing two strings with only secondary differences in C 
failed.\n");
               return FALSE;
           }
           /* To compare them with just primary differences */
           myCollator->setStrength(Collator::PRIMARY);
           result = myCollator->compare(source, target);
           /* result is 0 */
           if (result != 0)
           {
               fprintf(stderr,
               "Comparing two strings with no differences in C failed.\n");
               return FALSE;
           }
           /* Now, do the same comparison with keys */
           myCollator->getCollationKey(source, sourceKey, status);
           myCollator->getCollationKey(target, targetKey, status);

340 ICU v3.8 User Guide



           result = Collator::EQUAL;
           result = sourceKey.compareTo(targetKey);
           if (result != 0)
           {
               fprintf(stderr,
               "%s: Comparing two strings with sort keys in C failed.\n");
               return FALSE;
           }
           delete myCollator;
           return TRUE;
       }

Main Function:
       extern "C" UBool collateWithLocaleInC(const char* locale, UErrorCode *status);
       int main()
       {
          UErrorCode status = U_ZERO_ERROR;
          fprintf(stdout, "\n");
          if (collateWithLocaleInCPP(Locale("en", "US"), status) != TRUE)
          {
               fprintf(stderr,
               "Collate with locale in C++ failed.\n");
          } else 
          {
              fprintf(stdout, "Collate with Locale C++ example worked!!\n");
          }
          status = U_ZERO_ERROR;
          fprintf(stdout, "\n");
          if (collateWithLocaleInC("en_US", &status) != TRUE)
          {
               fprintf(stderr,
               "%s: Collate with locale in C failed.\n");
          } else 
          {
              fprintf(stdout, "Collate with Locale C example worked!!\n");
          }
          return 0;
       } 

In Java:
       
            import com.ibm.icu.text.Collator;
            import com.ibm.icu.text.CollationElementIterator;
            import com.ibm.icu.text.CollationKey;
            import java.util.Locale;
            public class CollateExample
            {
           
                public static void main(String arg[]) 
                {
                    CollateExample example = new CollateExample();
                    try {
                        if (!example.collateWithLocale(Locale.US)) {
                            System.err.println("Collate with locale example 
failed.");
                        } 
                        else {
                            System.out.println("Collate with Locale example 
worked!!");
                        }
                    } catch (Exception e) {
                        System.err.println("Collating with locale failed");
                        e.printStackTrace();
                    }
                }
       
                public boolean collateWithLocale(Locale locale) throws Exception
                {
                    String source = "This is a test.";

341 ICU v3.8 User Guide



                    String target = "THIS IS A TEST.";
                    Collator myCollator = Collator.getInstance(locale);
                    int result = myCollator.compare(source, target);
                    // result is 1, secondary differences only for ignorable space 
characters
                    if (result >= 0) {
                        System.err.println(
                            "Comparing two strings with only secondary differences 
failed.");
                        return false;
                    }
                    // To compare them with just primary differences
                    myCollator.setStrength(Collator.PRIMARY);
                    result = myCollator.compare(source, target);
                    // result is 0
                    if (result != 0) {
                        System.err.println(
                                       "Comparing two strings with no differences 
failed.");
                        return false;
                    }
                    // Now, do the same comparison with keys
                    CollationKey sourceKey = myCollator.getCollationKey(source);
                    CollationKey targetKey = myCollator.getCollationKey(target);
                    result = sourceKey.compareTo(targetKey);
                    if (result != 0) {
                        System.err.println("Comparing two strings with sort keys 
failed.");
                        return false;
                    }
                    return true;
                }   
           }    
       

Language-sensitive searching

String searching is a well-researched area, and there are algorithms that can optimize the 
searching process. Perhaps the best is the Boyer-Moore method. For full textual 
description of concept behind the sample programs, please see Laura Werner's text 
searching article for more details (http://icu-
project.org/docs/papers/efficient_text_searching_in_java.html).

The source of the language-sensitive text searching based on ICU Collation Service can 
be found on the Internet at http://source.icu-
project.org/repos/icu/icu/trunk/source/i18n/usearch.cpp.

Using large buffers to manage sort keys

A good solution for the problem of not knowing the sort key size in advance is to allocate 
a large buffer and store all the sort keys there, while keeping a list of indexes or pointers 
to that buffer.

Following is sample code that will take a pointer to an array of UChar pointer, an array of 
key indexes. It will allocate and fill a buffer with sort keys and return the maximum size 
for a sort key. Once you have done this to your string, you just need to allocate a field of 
maximum size and copy your sortkeys from the buffer to fields.

342 ICU v3.8 User Guide



uint32_t 
fillBufferWithKeys(UCollator *coll, UChar **source, uint32_t *keys, uint32_t 
sourceSize, 
                            uint8_t **buffer, uint32_t *maxSize, UErrorCode *status) 
{
  if(status == NULL || U_FAILURE(*status)) {
    return 0;
  }
  uint32_t bufferSize = 16384;
  uint32_t increment = 16384;
  uint32_t currentOffset = 0;
  uint32_t keySize = 0;
  uint32_t i = 0;
  *maxSize = 0;
  *buffer = (uint8_t *)malloc(bufferSize * sizeof(uint8_t));
  if(buffer == NULL) {
    *status = U_MEMORY_ALLOCATION_ERROR;
    return 0;
  }
  for(i = 0; i < sourceSize; i++) {
    keys[i] = currentOffset;
    keySize = ucol_getSortKey(coll, source[i], -1, *buffer+currentOffset, bufferSize-
currentOffset);
    if(keySize > bufferSize-currentOffset) {
      *buffer = (uint8_t *)realloc(*buffer, bufferSize+increment);
      if(buffer == NULL) {
        *status = U_MEMORY_ALLOCATION_ERROR;
        return 0;
      }
      bufferSize += increment;
      keySize = ucol_getSortKey(coll, source[i], -1, *buffer+currentOffset, 
bufferSize-currentOffset);
    }
    /* here you can hook code that does something interesting with the keySize - 
     * remembers the maximum or similar...
     */
    if(keySize > *maxSize) {
      *maxSize = keySize;
    }
    currentOffset += keySize;
  }
  return currentOffset;
}

343 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icu/trunk/source/i18n/usearch.cpp
http://source.icu-project.org/repos/icu/icu/trunk/source/i18n/usearch.cpp
http://icu-project.org/docs/papers/efficient_text_searching_in_java.html
http://icu-project.org/docs/papers/efficient_text_searching_in_java.html


Collation Customization
ICU uses UCA as a default starting point for ordering. Not all languages have sorting 
sequences that correspond with the UCA because UCA cannot simultaneously encompass 
the specifics of all the languages currently in use. 

Therefore, ICU provides a data-driven, flexible, and run-time customizable mechanism 
called "tailoring". Tailoring overrides the default order of code points and the values of 
the ICU Collation Service attributes. 

Collation Rule

A tailoring is a set of rules. Each rule contains a string of ordered characters that starts 
with an anchor point or a reset value.

The reset value is an absolute point that determines the order of other characters. For 
example, "&a < g", places "g" after "a" and the "a" does not change place. This rule has 
the following sorting consequences:

Without rule With rule 
apple
 Abernathy
 bird
 Boston
 green
 Graham 

apple
 Abernathy
 green
 bird
 Boston
 Graham 

Note that only the word that starts with "g" has changed place. All the words sorted after 
"a" and "A" are sorted after "g".

This is a non-complex example of a tailoring rule. Tailoring rules consist of zero or more 
rules and zero or more options. There must be at least one rule or at least one option. The 
rule syntax is discussed in more detail in the following sections.

Note that the tailoring rules override the UCA ordering. In addition, if a character is 
reordered, it automatically reorders any other equivalent characters. For example, if the 
rule "&e<a" is used to reorder "a" in the list, "á" is also greater than "é". 

Syntax

The following table summarizes the basic syntax necessary for most usages:

Symbol Example Description 
< a < b Identifies a primary (base 

letter) difference between 
"a" and "b" 

344 ICU v3.8 User Guide



Symbol Example Description 
<< a << ä Signifies a secondary 

(accent) difference between 
"a" and "ä" 

<<< a<<<A Identifies a tertiary 
difference between "a" and 
"A" 

= x = y Signifies no difference 
between "x" and "y". 

& &Z Instructs ICU to reset at this 
letter. These rules will be 
relative to this letter from 
here on, but will not affect 
the position of Z itself. 

In releases prior to 1.8, ICU uses the notations ';' to represent secondary 
relations and ',' to represent tertiary relations. Starting in release 1.8, use '<<' 
symbols to represent secondary relations and '<<<' symbols to represent tertiary 
relation. Rules that use the ';' and ',' notations are still processed by ICU for 
compatibility; also, some of the data used for tailoring to particular locales has 
not yet been updated to the new syntax. However, one should consider these 
symbols deprecated.

Escaping Rules

Most of the characters can be used as parts of rules. However, whitespace characters will 
be skipped over, and all ASCII characters that are not digits or letters are considered to be 
part of syntax. In order to use these characters in rules, they need to be escaped. Escaping 
can be done in several ways:

• Single characters can be escaped using backslash \ (U+005C).

• Strings can be escaped by putting them between single quotes 'like this'.
• Single quote can be quoted using two single quotes ''.
The following examples are other tailorings: 

Serbian (Latin) or Croatian: & C < č <<< Č < ć <<< Ć

This rule is needed because UCA usually considers accents to have secondary differences 
in order to base character. This ensures that 'ć' 'č' are treated as base letters. 

345 ICU v3.8 User Guide



UCA Tailoring: & C < č <<< Č < ć <<< Ć
CUKIĆ RADOJICA
 ČUKIĆ SLOBODAN
 CUKIĆ SVETOZAR
 ČUKIĆ ZORAN
 CURIĆ MILOŠ
 ĆURIĆ MILOŠ
 CVRKALJ ÐURO 

CUKIĆ RADOJICA
 CUKIĆ SVETOZAR
 CURIĆ MILOŠ
 CVRKALJ ÐURO
 ČUKIĆ SLOBODAN
 ČUKIĆ ZORAN
 ĆURIĆ MILOŠ 

Serbian (Latin) or Croatian: & Ð < dž <<< Dž <<< DŽ 

This rule is an example of a contraction. "D" alone is sorted after "C" and "Ž" is sorted 
after "Z", but "DŽ", due to the tailoring rule, is treated as a single letter that gets sorted 
after "Đ" and before "E" ("Đ" sorts as a base letter after "D" in the UCA). Another thing 
to note in this example is capitalization of the letter "DŽ". There are three versions, since 
all three can legally appear in text. The fourth version "dŽ" is omitted since it does not 
occur.

UCA Tailoring: 
& Ð < dž <<< Dž <<< DŽ 

dan
dubok
džabe
džin
Džin
DŽIN
đak
Evropa 

dan
dubok
đak
džabe
džin
Džin
DŽIN
Evropa 

Danish: &V <<< w <<< W 

The letter 'W' is sorted after 'V', but is treated as a tertiary difference similar to the 
difference between 'v' and 'V'. 

346 ICU v3.8 User Guide



UCA &V <<< w <<< W 
va
Va
VA
vb
Vb
VB
vz
Vz
VZ
wa
Wa
WA
wb 
Wb 
WB 
wz 
Wz 
WZ 

va
Va
VA
wa
Wa
WA
vb
Vb
VB
wb 
Wb 
WB 
vz 
Vz 
VZ 
wz 
Wz 
WZ 

Default Options

The tailoring inherits all the attribute values from the UCA unless they are explicitly 
redefined in the tailoring. The following table summarizes the option settings. UCA 
default options are in emphasis.

Option Example Description 
alternate [alternate non-ignorable] 

[alternate shifted] 
Sets the default value of the 
UCOL_ALTERNATE_HANDLING 
attribute. If set to shifted, variable 
code points will be ignored on the 
primary level. 

backwards [backwards 2] Sets the default value of the 
UCOL_FRENCH_COLLATION 
attribute. If set to on, secondary level 
will be reversed. 

variable top & X < [variable top] Sets the default value for the variable 
top. All the code points with primary 
strengths less than variable top will be 
considered variable. 

347 ICU v3.8 User Guide



Option Example Description 
normalization [normalization off]

[normalization on] 
Turns on or off the 
UCOL_NORMALIZATION_MODE 
attribute. If set to on, a quick check 
and neccessary normalization will be 
performed.

caseLevel [caseLevel off] 
 [caseLevel on] 

Turns on or off the 
UCOL_CASE_LEVEL attribute. If set 
to on a level consisting only of case 
characteristics will be inserted in front 
of tertiary level. To ignore accents but 
take cases into account, set strength to 
primary and case level to on.

caseFirst [caseFirst off] 
 [caseFirst upper] 
 [caseFirst lower] 

Sets the value for the 
UCOL_CASE_FIRST attribute. If set 
to upper, causes upper case to sort 
before lower case. If set to lower, 
lower case will sort before upper case. 
Useful for locales that have already 
supported ordering but require 
different order of cases. Affects case 
and tertiary levels. 

strength [strength 1]
[strength 2]
[strength 3]
[strength 4]
[strength I]

Sets the default strength for the 
colator.

hiraganaQ [hiraganaQ off]
[hiraganaQ on]

Controls special treatment of Hiragana 
code points on quaternary level. If 
turned on, Hiragana codepoints will 
get lower values than all the other 
non-variable code points. Strength 
must be greater or equal than 
quaternary if you want this attribute to 
take effect

A tailoring that consists only of options is also valid tailoring and has the same basic 
ordering as the UCA. The options that modify this tailoring are described in the following 
examples:

The Greek tailoring has option settings only : [normalization on] 

The Latvian tailoring reorders uppercase and lowercase and uses backward French 
ordering: 

348 ICU v3.8 User Guide



[casefirst upper]
[backwards 2] 
& C < c , C 
& G < g , G 
& I < y, Y
& K < k , K 
& L < l , L 
& N < n , N 
& S < s , S 
& Z < z , Z

Advanced Syntactical Elements

Several other syntactical elements are needed in more specific situations. These elements 
are summarized in the following table:

Element Example Description 
[before 1|2|3] &[before 1] a<?<à<?<á Enables users to order characters before a 

given character. In UCA 3.0, the example 
is equivalent to & ?<?<à<?<á ( ?= \u3029, 
Hangzhou numeral nine) * and makes 
accented 'a' letters sort before 'a'. Accents 
are often used to indicate the intonations in 
Pinyin. In this case, the non-accented 
letters sort after the accented letters. 

/ æ/e Expansion. Add the collation element for 
'e' to the collation element for æ. 
 After a reset "&ae << æ" is equivalent to 
"&a << æ/e." See the example below.

| a|b Prefix processing. If 'b' is encountered and 
it follows 'a', output the appropriate 
collation element. If 'b' follows any other 
letter, output the normal collation element 
for 'b'. Collation element for 'a' is not 
affected. This element is used to speed up 
sorting under JIS X 4061. See the example 
below. 

349 ICU v3.8 User Guide



Element Example Description 
[top] &[top] < a < b < c … Deprecated, use indirect positioning 

instead Reorders a set of characters 'above' 
the UCA. [top] is a virtual code point 
having the biggest primary weight value 
that will ever be assigned in the UCA. 
Above top, there is a large number of 
unassigned primary weights that can be 
used for a 'large' tailoring, such as the 
reordering of the CJK characters according 
to a Far Eastern code page. The first 
difference after the top is always primary. 

The first base character (primary difference) in UCA occurs after the Hangzhou 
numeric 9.

Indirect Positioning of Collation Elements

Since version 2.0 ICU allows for indirect positioning of collation elements. Similar to the 
option top, these options allow for positioning of the tailoring relative to significant 
sections of the UCA table. You can use [before] option to position before these sections.

Name Current CE value Note
first tertiary ignorable [,,] Start of the UCA table. This value 

will never change unless CEs are 
extended with higher level values

last tertiary ignorable [,,] This value will never change unless 
CEs are extended with higher level 
values

first secondary ignorable [,, 05] Currently there are no secondary 
ignorable in the UCA table.

last secondary ignorable [,, 05] Currently there are no secondary 
ignorable in the UCA table.

first primary ignorable [, 87, 05] Current code point is ̲ 
(U+0332).

last primary ignorable [, E1 B1, 05] Currently this value points to a non-
existing code point, used to facilitate 
sorting of compatibility characters.

350 ICU v3.8 User Guide



Name Current CE value Note
first variable [05 07, 05, 05] Current code point is U+0009. This 

is the start of the variable section. 
These are characters that will be 
ignored on primary level when 
shifted option is on.

last variable [17 9B, 05, 05] End of variable section.
first regular [1A 20, 05, 05] Current code point is  (U+02D0).ː  

This is the first regular code point. 
The majority of code points are 
regular.

last regular [78 AA B2, 05, 05] Current code point is (U+10425). 
Use instead of [top]. This will 
effectively position your tailoring 
between regular code points and CJK 
ideographs and unassigned code 
points. If you want to rearrange a 
large number of codepoints 
(rearranging CJKs for example), this 
is a right place to reset to.

first implicit [E0 03 03, 05, 05] Section of implicitly generated 
collation elements. CJK ideographs 
and unassigned code points get 
implicit values.

last implicit [E3 DC 70 C0, 05, 05] End of implicit section.
first trailing [E5, 05, 05] Start of trailing section. This section 

is reserved for future, most probably 
for non starting Jamos.

last trailing [E5, 05, 05] End of trailing collation elements 
section. Tailoring that starts here is 
guaranteed to sort after all other non-
tailored code points.

Not all of indirect positioning anchors are useful. Most of the 'first' elements should be 
used with the [before] directive, in order to make sure that your tailoring will sort before 
an interesting section.

Following are several fragments of real tailorings, illustrating some of the advanced 
syntactical elements: 

Expansion Example:

351 ICU v3.8 User Guide



French: & A << æ/e <<< Æ/E 

Letter 'Æ' is treated as a separate letter between 'A' and 'B'. However, the French language 
requires 'Æ' to be treated as a combination of letters 'A' and 'E' and to sort as an accent 
variation of this combination. This is an example of an expansion.

UCA &A << æ/e <<< Æ/E 
aa
 Aa
 AA
 ab
 Ab
 AB
 ae
 Ae
 AE
 az
 Az
 AZ
 æ
 Æ
 

Aa
 Aa
 AA
 ab
 Ab
 AB
 ae
 Ae
 æ
 AE
 Æ 
 az
 Az
 AZ
 

Prefix Example:

Prefixes are used in Japanese tailoring to reduce the number of contractions. A big 
number of contractions is a performance burden, as their processing is much more 
complicated than the processing of regular elements. Prefixes should be used only to 
replace contractions followed by expansions and only if the expansion part is less 
frequent than the start of the contraction.

&[before 3]ァ <<< ァ|ー = ｧ|ー = ぁ|ー

This could have been written as a series of contractions followed by expansion:

&[before 3]ァー <<< ァー = ｧー = ぁー

However, in that case ァ, ｧ and ぁ would be treated as contractions. Since the 
prolonged sound mark (ー) occurs much less frequently than the other letters of Japanese 
Katakana and Hiragana, it is much more prudent to put the extra processing on it by using 
prefixes.

Example:

352 ICU v3.8 User Guide



"Reset" always use only the base character as the insertion point even if there is an 
expansion. So the following rule,

& J <<< K / B & K <<< M
is equivalent to

& J <<< K / B <<< M
Which produces the following sort order:

"JA"

"MA"

"KA"

"KC"

"JC"

"MC"

Assuming the letters "J", "K" and "M" have equal primary weights, the second 
letter contains the differences among these strings. However, the letter "K" is  
treated as if it always has a letter "B" following it while the letters "J" and "M" 
do not.

The following is the collation elements for these strings with the specified rules:

Strings Collation Elements 
"JA"
 

[005C.00.01]
 

[0052.00.01]
 

"MA"
 

[005C.00.03]
 

[0052.00.01]
 

"KA"
 

[005C.00.02]
 

[0053.00.01]
 

[0052.00.01]
 

"KC"
 

[005C.00.02]
 

[0053.00.01]
 

[0054.00.01]
 

"JC"
 

[005C.00.01]
 

[0054.00.01]
 

"MC"
 

[005C.00.03]
 

[0054.00.01]
 

Tailoring Issues

ICU uses canonical closure. This means that for each code point in Unicode, if the 
canonically composed form of a tailored string produces different collation elements than 
the canonically decomposed form, then the canonically composed form is effectively 
added to the ordering. If 'a' is tailored, for example, all of the accented 'a' characters are 

353 ICU v3.8 User Guide



also tailored. Canonical closure allows collators to process Unicode strings in the FCD 
form as well as in NFD. 

However, compatibility equivalents are NOT automatically added. If the rule "&b < a" is 
in tailoring, and the order of  (circled a)ⓐ  is important, it should be explicitly tailored.

Redundant tailoring rules are removed, with later rules "winning". The strengths around 
the removed rules are also fixed. 

Example:

The following table summarizes effects of different redundant rules.

Original Equivalent 
1. & a < b < c < d

 & r < c 
& a < b < d 
 & r < c 

2. & a < b < c < d 
 & c < m 

& a < b < c < m < d 

3. & a < b < c < d 
 & a < m 

& a < m < b < c < d 

4. & a <<< b << c < d 
 & a < m 

& a <<< b << c < m < d 

5. & a < b < c < d 
 & [before 1] c < m 

& a < b < m < c < d 

6. & a < b <<< c << d <<< e 
 & [before 3] e <<< x 

& a < b <<< c << d <<< x <<< e 

7. & a < b <<< c << d <<< e 
 & [before 2] e <<< x 

& a < b <<< c <<< x << d <<< e 

8. & a < b <<< c << d <<< e 
 & [before 1] e <<< x 

& a <<< x < b <<< c << d <<< e 

9. & a < b <<< c << d <<< e <<< f 
< g 
 & [before 1] g < x 

& a < b <<< c << d <<< e <<< f < x < g 

If two different reset lists use the same character it is removed from the first one (see 1 in 
the table above). If the second character is a reset, the second list is inserted in the first 
(see 2). If both are resets, then the same thing happens (see 3). Whenever such an 
insertion occurs, the second strength "postpones" the position (see 4).

If there is a "[before N]" on the reset, then the reset character is effectively replaced by 
the item that would be before it, either in a previous tailoring (if the letter occurs in one - 
see 5) or in the UCA. The N determines the 'distance' before, based on the strength of the 

354 ICU v3.8 User Guide



difference (see 6-8). However, this is subject to postponement (see 9), so be careful!

Reset semantics

The reset semantic in ICU 1.8 is different from the previous ICU releases. Prior to version 
1.8, the reset relation modifier was applicable only to the entry immediately following the 
reset entry. Also, the relation modifier applied to all entries that occurred until the next 
reset or primary relation. 

For example,  was equivalent to

Starting with ICU version 1.8, the modifier is equivalent to,

The new semantic produces more intuitive results, especially when the character after the 
reset is decomposable. Since all rules are converted to NFD before they are interpreted, 
this can result in contractions that the rule-writer might not be aware of. Expansion 
propagates only until the next reset or primary relation occurs.

For example, with the following rule: was equivalent to the following prior to ICU 1.8 
and in Java, 

Starting with 1.8, it is equivalent to,

& a = c / b <<< d / b << e / b <<< f / b < g <<< h

Known Limitations

The following are known limitations of the ICU collation implementation. These are 
theoretical limitations, however, since there are no known languages for which these 
limitations are an issue. However, for completeness they should be fixed in a future 
version after 1.8.1. The examples given are designed for simplicity in testing, and do not 
match any real languages.

Expansion

The goal of expansion is to sort as if the expansion text were inserted right after the 
character. For example, with the rule

The text "...c..." should sort as if it were right after "...ae..." with a tertiary difference. 
There are a few cases where this is not currently true. 

Recursive Expansion

Given the rules  

Expansion should sort the text "...c..." as if it were just after "...ae...", and that should also 
sort as if it were just after "...agi...". This requires that the compilation of expansions be 
recursive (and check for loops as well!). ICU currently does not do this. 

355 ICU v3.8 User Guide



Rules Desired Order Current Order 
& a = b / c 
 & d = c / e 

add 
 b 
 adf 

b 
 add 
 adf 

Contractions Spanning Expansions

ICU currently always pre-compiles the expansion into an internal format (a list of one or 
more collation elements) when the rule is compiled. If there is contraction that spanned 
the end of the expanded text and the start of the original text, however, that contraction 
will not match. A text case that illustrates this is: 

Rules Desired Order Current Order 
& a <<< c / e 
 & g <<< eh 

ad 
 c 
 af 
 g 
 ch 
 h 

ad 
 c 
 ch 
 af 
 g 
 h 

Since the pre-compiled expansions are a huge performance gain, we will probably keep 
the implementation the way it is, but in the future allow additional syntax to indicate 
those few expansions that need to behave as if the text were inserted because of the 
existence of another contraction. Note that such expansions need to be recursively 
expanded (as in #1), but rather than at pre-compile time, these need to be done at runtime.

While it is possible to automatically detect these cases, it would be better to allow explicit 
control in case spanning is not desired. An example of such syntax might be something 
like: 

Notes: ICU does handle the case where there is a contraction that is completely inside the 
expansion. 

Suppose that someone had the rules:  

These do not cause c to sort as if it were ae, nor should they. 

Normalization

The goal of normalization is to have all text sort as if it were first normalized (converted 
into NFD). For performance reasons, the rules are pre-processed so there is no need to 
perform normalization on strings that are already in the FCD format. The vast majority of 
strings are in FCD.

Nulls in Contractions

356 ICU v3.8 User Guide



Nulls should not be used in contractions that could invoke normalization. 

Rules Desired Order Current Order 
& a <<< '\u0000'^ a 

 '\u0000'^ 
'\u0000'^ 
 a 

Contractions Spanning Normalization

The following rule specifies that a grave accent followed by a b is a contraction, and sorts 
as if it were an e.  

On this basis, "...àb..." should sort as if it were just after "...ae...". Because of the 
preprocessing, however, the contraction will not match if this text is represented with the 
pre-composed character à, but will match if given the decomposed sequence a + grave 
accent. The same thing happens if the contraction spans the start of a normalized 
sequence. 

Rules Desired Order Current Order 
& e <<< ` b 
 

à 
 ad 
 àb 
 af 
 

à 
 àb 
 ad 
 af 
 

& g <<< ca f 
 ca 
 cà 
 h 

cà 
 f 
 ca 
 h 

Variable Top

ICU lets you set the top of the variable range. This can be done, for example, to allow you 
to ignore just SPACES, and not punctuation.

Variable Top Exclusion

There is currently a limitation that causes variable top to (perhaps) exclude more 
characters than it should. This happens if you not only set variable top, but also tailor a 
number of characters around it with primary differences. The exact number that you can 
tailor depends on the internal "gaps" between the characters in the pre-compiled UCA 
table. Normally there is a gap of one. There are larger gaps between scripts (such as 
between Latin and Greek), and after certain other special characters. For example, if 
variable top is set to be at SPACE ('\u0020'), then it works correctly with up to 70 
characters also tailored after space. However, if variable top is set to be equal to 
HYPHEN ('\u2010'), only one other value can be accommodated. 

357 ICU v3.8 User Guide



Rules Desired Order
 SHIFTED = ON 

Current Order Comment 

& \u2010 
 < x 
 < [variable top]
< z 
 

-
z
zb 
 a 
 b 
 -b 
 xb 
 c 

-
z
zb 
xb
 a 
 b 
 -b 
 c 

The goal is for x to 
be ignored and z not 
to be ignored. 

 With ICU 1.8.1, the user is advised not to tailor the variable top to customize 
more than two primary relations (for example, "& x < y < [variable top]).  
Starting in ICU 2.0, a new API will be added to allow the user to set the variable  
top programmatically to a legal single character or a valid contracting sequence.  
In addition, the string that variable top is set to should not be treated as either 
inclusive or exclusive in the rules.

Case Level/First/Second

In ICU, it is possible to override the tertiary settings programmatically. This is used to 
change the default case behavior to be all upper first or all lower first. It can also be used 
for a separate case level, or to ignore all other tertiary differences (such as between 
circled and non-circled letters, or between half-width and full-width katakana). The case 
values are derived directly from the Unicode character properties, and not set by the rules.

Mixed Case Contractions

There is currently a limitation that all contractions of multiple characters can only have 
three special case values: upper, lower, and mixed. All mixed-case contractions are 
grouped together, and are not affected by the upper first vs. lower first flag. 

Rules Desired Order
 UPPER_FIRST 

Current Order 

& c < ch 
<<< cH 
<<< Ch 
<<< CH 

C 
CH 
Ch 
cH 
ch 

c 
CH 
cH 
Ch 
ch 

Cautions

The following are not known rule limitations, but rather cautions.

358 ICU v3.8 User Guide



Resets

Since resets always work on the existing state, the user is required to make sure that the 
rule entries are in the proper order. 

Rules Order Comment 
& a < b 
 & a < c 

a 
 c 
 b 

The rules mean: put b after a, then put 
c after a (inserting before the b. 

Postpone Insertion

When using a reset to insert a value X with a certain strength difference after a value Y, it 
actually is inserted just before the next item of the same strength or higher following Y. 
Thus, the following are equivalent:   

... m < a = c <<< d << e <<< f < g <<< h & a << x> 

... m < a = c <<< d << x << e <<< f < g <<< h

This is different from the Java semantics. In Java, the value is inserted 
immediately after the reset character. 

Jamo Tailoring

If Jamo characters are tailored, that causes the code to go through a slow path, which will 
have a significant effect on performance. 

Compatibility Decompositions

When tailoring a letter, the customization affects all of its canonical equivalents. That is, 
if tailoring rule sorts an 'a' after'e ', for example, then ""à", "á", ... are also sorted after 
'e'.his is not true for compatibility equivalents. If the desired sorting order is for a 
superscript-a ("ª") to be after "e", it is necessary to specify the rule for that. 

Case Differences

Similarly, when tailoring an "a" to be sorted after "e", including "A" to be after "e" as 
well, it is required to have a specific rule for that sorting sequence. 

359 ICU v3.8 User Guide



Automatic Expansions

ICU will automatically form expansions whenever a reset is to a multi-character value 
that is not a contraction. For example, & ab <<< c is equivalent to & a <<< c / b. The 
user may be unaware of this happening, since it may not be obvious that the reset is to a 
multi-character value. For example, & à<<< d is equivalent to & a <<< d / `

360 ICU v3.8 User Guide



ICU Search String Service
Caution

A number of defects have been found in the ICU string search functions. affecting ICU 
3.6 and earlier versions.  Until these are fixed, caution is advisable in deploying ICU 
string search.  See ICU tickets #5024, #5382,  #5420.  

String searching, also known as string matching, is a very important subject in the wider 
domain of text processing and analysis. Many software applications use the basic string 
search algorithm in the implementations on most operating systems. With the popularity 
of Internet, the quantity of available data from different parts of the world has increased 
dramatically within a short time. Therefore, a string search algorithm that is language-
aware has become more important. A bitwise match that uses the u_strstr (C), 
UnicodeString::indexOf (C++) or String.indexOf (Java) APIs will not yield the 
correct result specific to a particular language's requirements. The APIs will not yield the 
correct result because all the issues that are important to language-sensitive collation are 
also applicable to text searching. The following lists those issues which are applicable to 
text searching: 

• The accented letters 
In English, accents are treated as minor variations of a letter. In French, accented 
letters have much more significance as they can actually change the meaning of a 
word. Very often, an accented letter is actually a distinct letter. For example, letter 'Å' 
(\u00c5) may be just a letter 'A' followed by an accent symbol to English speakers. 
However, it is actually a distinct letter in Danish. In some cases, such as in traditional 
German, an accented letter is short-hand for something longer. In sorting, an 'ä' 
(\u00e4) is treated as 'ae'. 

• The conjoined letters 
Special handling is required when a single letter is treated equivalent to two distinct 
letters and vice versa. For example, in German, the letter 'ß' (\u00df) is treated as 'ss' in 
sorting. Also, in most languages, 'æ' (\u00e6) is considered equivalent to the letter 'a' 
followed by the letter 'e'. Also, the ligatures are often treated as distinct letters by 
themselves. For example, 'ch' is treated as a distinct letter between the letter 'c' and the 
letter 'd' in Spanish. 

• Ignorable punctuation 
As in collation, it is important that the user is able to choose to ignore punctuation 
symbols while the user searches for a pattern in the string. For example, a user may 
search for "blackbird" and want to include entries such as "black-bird". 

Though the brute force algorithm works well in locating a match without error, many 
improvements can be made to provide better performance. A new set of APIs is available 
that provides a language-sensitive string search service. The ICU string search service 

361 ICU v3.8 User Guide



uses the Boyer-Moore searching algorithm based on automata or combinatorial properties 
of strings and pre-processes the pattern. 

ICU String Search Model

The ICU string search service provides similar APIs to the other text iterating services. 
Allowing users to specify the starting position and direction within the text string to be 
searched. For more information, please see BreakIterator. The user can locate one or all 
occurrences of a pattern in a string. For a given collator, a pattern match is located at the 
offsets <start, end> in a string if the collator finds that the sub-string between the start and 
end is equal. 

The string search service provides two options to handle accent matching as described 
below: 

Let S' be the sub-string of a text string S between the offsets start and end <start, end>.  
A pattern string P matches a text string S at the offsets <start, end> if

• option 1. P matches some canonical equivalent string of S'. Suppose the collator used 
for searching has a tertiary collation strength, all accents are non-ignorable. If the 
pattern "a\u0300" is searched in the target text "a\u0325\u0300", a match will be 
found, since the target text is canonically equivalent to "a\u0300\u0325"

• option 2. P matches S' and if P starts or ends with a combining mark, there exists no 
non-ignorable combining mark before or after S' in S respectively. Following the 
example above, the pattern "a\u0300" will not find a match in "a\u0325\u0300", since 
there exists a non-ignorable accent '\u0325' in the middle of 'a' and '\u0300'. Even with 
a target text of "a\u0300\u0325" a match will not be found because of the non-
ignorable trailing accent \u0325.

One restriction is to be noted for option 1. Currently there are no composite characters 
that consists of a character with combining class greater than 0 before a character with 
combining class equals to 0. However, if such a character exists in the future, the string 
search service may not work correctly with option 1 when such characters are 
encountered. 

Furthermore, option 1 could generate more than one "encompassing" matches. For 
example, in Danish, 'å' (\u00e5) and 'aa' are considered equivalent. So the pattern "baad" 
will match "a--båd--man" (a--b\u00e5d--man). However, "baad" will match "a--båd--
man" (a--b\u00e5d--man) both at starting offset 3 but also at starting offset 1 and 2. The 
end offset can be either 5, 6, or 7. To be more exact, the string search added a "tightest" 
match condition. In other words, if the pattern matches at offsets <start, end> as well as 
offsets <start + 1, end>, the offsets <start, end> are not considered a match. Likewise, if 
the pattern matches at offsets <start, end> as well as offsets <start, end + 1>, the offsets 
<start, end + 1> are not considered a match. Therefore, when the option 1 is chosen in 
Danish collator, 'baad' will match in the string "a--båd--man" (a--b\u00e5d--man) ONLY 

362 ICU v3.8 User Guide



at offsets <3,5>.

As in other iterator interfaces, the string search service provides APIs to perform string 
matching for the first pattern occurrence, immediate next, previous match, and the last 
pattern occurrence. There are also options to allow for overlapping matching. For 
example, in English, if the string is "ababab" and the pattern is "abab", overlapping 
matching produces results of offsets <0, 3> and <2, 5>. Otherwise, the mutually exclusive 
matching produces the result offset <0, 3> only. To find a whole word match, the user can 
provide a locale-specific BreakIterator object to a StringSearch instance to correctly 
locate the word boundaries. For example, if "c" exists in the string "abc", a match is 
returned. However, the behavior can be overwritten by supplying a word BreakIterator. 

Both a locale or collator can be used to specify the language-sensitive rules for searches. 
When a locale is specified, a collator will be created internally and the StringSearch 
instance that is created is responsible for the ownership of the collator. All the collation 
attributes will be considered during the string search operation. However, the users only 
can set the collator attributes using the collator APIs. Normalization is usually done 
within collation and the process is outside the scope of the string search service. 
Therefore, the result offsets may contain extra combining characters at either the 
beginning or the end of the match. If the start of the match lies within a range of 
normalized characters, the start offset returned will be one character after the immediate 
preceding base letter. If the end of the match lies within a range of normalized characters, 
the end offset returned will be one character before the immediate following base letter. 
For example, the pattern "´¸" (\u00b4\u00b8) is considered a match in string "A´¨¸B" 
(A\u00b4\u00a8\u00b8B) at offsets <1, 3>. It is important to note that the pre-composed 
characters are treated equivalent to their decomposed counterparts. For example, if the 
user searches for the pattern " " (\u02cb) in the string "ÀBC", (\u00c0BC) a match will beˋ  
found at offsets <0, 1>. Currently, there is no existing pre-composed character that 
decomposes in NFD to a character sequence with accents before a base letter. The string 
search service incorporates decomposition and optimizes it for boundary checking. 

When there are contractions in the collation sequence and the contraction happens to span 
across the boundary of a match, it is not considered a match. For example, in traditional 
Spanish where 'ch' is a contraction, the "har" pattern will not match in the string "uno 
charo". Boundaries that are discontiguous contractions will yield a match result similar to 
those described above, where the end of the match returned will be one character before 
the immediate following base letter. In addition, only the first match will be located if a 
pattern contains only combining marks and the search string contains more than one 
occurrences of the pattern consecutively. For example, if the user searches for the pattern 
"´" (\u00b4) in the string "A´´B", (A\u00b4\u00b4B) the result will be offsets <1, 2>. 

Example

In C:

    char *tgtstr = "The quick brown fox jumps over the lazy dog.";

363 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/boundaryAnalysis.sxw


    char *patstr = "fox";
    UChar target[64];
    UChar pattern[16];
    int pos = 0;
    UErrorCode status = U_ZERO_ERROR;
    UStringSearch *search = NULL;
    u_uastrcpy(target, tgtstr);
    u_uastrcpy(pattern, patstr);

    search = usearch_open(pattern, -1, target, -1, "en_US", 
                          NULL, &status);

    if (U_FAILURE(status)) {
        fprintf(stderr, "Could not create a UStringSearch.\n");
        return;
    }
    for(pos = usearch_first(search, &status);
        U_SUCCESS(status) && pos != USEARCH_DONE;
        pos = usearch_next(search, &status))
    {
        fprintf(stdout, "Match found at position %d.\n", pos);
    }
    if (U_FAILURE(status)) {
        fprintf(stderr, "Error searching for pattern.\n");
    }
    

In C++:

    UErrorCode status = U_ZERO_ERROR;
    UnicodeString target("Jackdaws love my big sphinx of quartz.");
    UnicodeString pattern("sphinx");
    StringSearch search(pattern, target, Locale::getUS(), NULL, status);

    if (U_FAILURE(status)) {
        fprintf(stderr, "Could not create a StringSearch object.\n");
        return;
    }
    for(int pos = search.first(status);
        U_SUCCESS(status) && pos != USEARCH_DONE;
        pos = search.next(status))
    {
        fprintf(stdout, "Match found at position %d.\n", pos);
    }
    if (U_FAILURE(status)) {
        fprintf(stderr, "Error searching for pattern.\n");
    }
    

In Java:

    StringCharacterIterator target = new StringCharacterIterator(
                                         "Pack my box with five dozen liquor jugs.");
    String pattern = "box";
    try {
        StringSearch search = new StringSearch(pattern, target, Locale.US);

364 ICU v3.8 User Guide



        for(int pos = search.first();
            pos != StringSearch.DONE;
            pos = search.next())
        {
            System.out.println("Match found for pattern at position " + pos);  
        }
    } catch (Exception e) {
        System.err.println("StringSearch failure: " + e.toString());
    }
    

Performance and Other Implications

The ICU string search service is designed to be on top of the ICU collation service. 
Therefore, all the performance implications that apply to a collator are also applicable to 
the string search service. To obtain the best performance, use the default collator 
attributes described in the Performance and Storage Implications on Attributes. In 
addition, users need to be aware of the following StringSearch specific considerations:  

Change Iterating Direction

The ICU string search service provides a set of very dynamic APIs that allow users to 
change the iterating direction randomly. For example, users can search for a particular 
word going forward by calling the usearch_next (C), StringSearch::next (C++) or 
StringSearch.next (Java) APIs and then search backwards at any point of the search 
operation by calling the usearch_previous (C), StringSearch::previous (C++) or 
StringSearch.previous (Java) APIs. Another way to change the iterating direction is 
by calling the usearch_reset (C), StringSearch::previous (C++) or 
StringSearch.previous (Java) APIs. Though the direction change can occur without 
calling the reset APIs first, this operation comes with a reduction in speed. 

Roundtripping Results

The matching results in the forward direction will, in general, match the results in the 
backwards direction in the reverse order. However, this match is not guaranteed. For 
example, if the pattern consists of prefix accents and a match with a starting 
discontinguous boundary is found, the resulting start offset of the match includes the 
initial base letter in the discontiguous contraction or does not depend on the direction of 
the search. Assuming that we are searching for the accent "¨" (\u00a8) in "X´¨¸" 
(X\u00b4\u00a8\u00b8) and that "X´¸" (X\u00b4\u00b8) is a contraction sequence, the 
string search service will provide a match result at offsets <0, 4> during a forward search 
but offsets <1,3> during a backward search. 

Thai and Lao Character Boundaries

In collation, certain Thai and Lao vowels are swapped with the next character. For 
example, the text string "A ขเ" (A \u0e02\u0e40) is processed internally in collation as 

365 ICU v3.8 User Guide



"A เข" (A \u0e40\u0e02). Therefore, if the user searches for the pattern "A เ" (A\u0e40) 
in "A ขเ" (A \u0e02\u0e40) the string search service will match starting at offset 0. Since 
this normalization process is internal to collation, there is no notification that the 
swapping has happened. The return result offsets in this example will be <0, 2> even 
though the range would encompass one extra character. 

Canonical Equivalence

In collation process, if normalization is on, any string will be compared as if it is 
canonically equivalent. However, FCD (fast C or D form) text is guaranteed to sort 
correctly regardless of the normalization. This process works as long as the pattern is 
within the interior of the search string. However, if the pattern matches at the boundaries 
of the search string, the matching may be confusing. For example, if the user searches for 
the pattern "¸c´" (\u00b8c\u00b4) in the string "a¨¸c´e" (a\u00a8\u00b8c\u00b4e), the 
match is located at offsets <2, 4>. If the search string is normalized, the normalized 
search string will be "a¨¸c´e" (a\u00b8\u00a8c\u00b4e). Without further processing, a 
match cannot be located. In order to ensure canonical equivalence, the user is provided 
with two search options presented at the beginning of this document to ensure that the 
same result should be returned in either case 

Accents refer to characters that have a non-zero canonical combining order and have non-
zero collation elements. 

Not all non-zero canonical combining order characters are ignored and vice 
versa. A discontiguous match might occur in option 1. In this case, the match 
offsets <start, end> may encompass more accents at the end of the match than is  
expected. For example, when the user searches for the "¨c¸" (\u00a8c\u00b8) 
pattern in "a¨c´¸e" (a\u00a8c\u00b4\u00b8e) with the normalization mode turned 
on, a match is found. Although option 2 is more restrictive, it allows users to 
search for Arabic consonants. Using option 2, the match is located against  
"consonant + vowel". However, if a user searches for "consonant + vowel1", it  
will not match against "consonant + vowel1 + vowel2".

366 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/Collate_ServiceArchitecture.sxw#performanceAndStorage


Collation FAQ
• Q. Should I turn Full Normalization on all the time?  

• Q. Are there any cases where I would want to override the Full Normalization setting?  

• Q. How to mimic word sort using collation rules?  

Q. Should I turn Full Normalization on all the time?

A. You can if you want, but you don't typically need to. The key is that normalization for 
most characters is already built into ICU's collation by default. Everything that can be 
done without affecting performance is already there, and will work with most languages. 
So the normalization parameter in ICU really only changes whether full normalization is 
invoked. 

The outlying cases are situations where a language uses multiple accents (non-spacing 
marks) on the same base letter, such as Vietnamese or Arabic. In those cases, full 
normalization needs to be turned on. If you use the right locale (or language) when 
creating a collation in ICU, then full normalization will be turned on or off according to 
what the language typically requires. 

Q. Are there any cases where I would want to override the Full  
Normalization setting?

A. The only case where you really need to worry about that parameter is for very unusual 
cases, such as sorting an list containing of names according to English conventions, but 
where the list contains, for example, some Vietnamese names. One way to check for such 
a situation is to open a collator for each of the languages you expect to find, and see if any 
of them have the full normalization flags set. 

Q. How can collation rules mimic word sorting?

Word sort is a way of sorting where certain interpunction characters are completely 
ignored, while other are considered. An example of word sort below ignores hyphens and 
apostrophes:

Word Sort String Sort
billet bill's
bills billet

367 ICU v3.8 User Guide



Word Sort String Sort
bill's bills
cannot can't
cant cannot
can't cant
con co-op
coop con
co-op coop
This specific behavior can be mimicked using a tailoring that makes these characters 
completely ignorable. In this case, appropriate rule would be "&\u0000 = '' = '-'".

Please note that we don't think that such solution is correct, since different languages 
have different word elements. Instead one should use shifted mode for comparison.

368 ICU v3.8 User Guide



Text Element Boundary Analysis
Overview of Text Boundary Analysis

Text boundary analysis is the process of locating linguistic boundaries while formatting 
and handling text. Examples of this process include:

• Locating appropriate points to word-wrap text to fit within specific margins while 
displaying or printing.

• Locating the beginning of a word that the user has selected.

• Counting characters, words, sentences, or paragraphs.

• Determining how far to move the text cursor when the user hits an arrow key (Some 
characters require more than one position in the text store and some characters in the 
text store do not display at all).

• Making a list of the unique words in a document.

• Figuring out if a given range of text contains only whole words.

• Capitalizing the first letter of each word.

• Locating a particular unit of the text (For example, finding the third word in the 
document).

The BreakIterator classes were designed to support these kinds of tasks. The 
BreakIterator objects maintain a location between two characters in the text. This 
location will always be a text boundary. Clients can move the location forward to the next 
boundary or backward to the previous boundary. Clients can also check if a particular 
location within a source text is on a boundary or find the boundary which is before or 
after a particular location.

Four Types of BreakIterator

ICU BreakIterators can be used to locate the following kinds of text boundaries:

• Character Boundary

• Word Boundary

• Line-break Boundary

• Sentence Boundary

Each type of boundary is found in accordance with the rules specified by Unicode 
Standard Annex #29, Text Boundaries (http://www.unicode.org/reports/tr29)

369 ICU v3.8 User Guide



Character Boundary

The character-boundary iterator locates the boundaries between "characters", where 
"character" is what the end user of an application would usually expect. For example, the 
Ä letter can be represented in Unicode either with a single code-point value or with two 
code-point values (one representing the A and another representing the umlaut). The 
character-boundary iterator will treat the Ä as a single character regardless of whether or 
not it is stored using one code point or two. In short, the character-boundary iterator is 
used to identify sequences that should be treated as single characters from a user's 
perspective.

End-user characters, as described above, are also called grapheme clusters, in an attempt 
to limit the confusion caused by multiple meanings for the word "character".

Word Boundary

The word-boundary iterator locates the boundaries of words, for purposes such as double 
click selection or "Find whole words" operations in an editor.

Here's an example of a sentence, showing the boundary locations that will be identified 
by a word break iterator:

 

Word boundary locations are found according to these general principles:

• Words themselves are kept together

• Numbers are kept together, including any commas, points or currency symbols.

• Apostrophes or hyphens within a word are kept with the word. They are not broken out 
separately like most other punctuation

• Punctuation, spaces and other characters that are not part of a word or number, are 
broken out separately, with a boundary before and after each character.

The rules used for locating word breaks take into account the alphabets and conventions 
used for different languages. 

Locating word breaks for Thai text presents a special challenge, because there are no 
spaces or other identifiable characters separating the words. To solve the problem of 
word-breaking Thai text, ICU provides a special dictionary-based break iterator.

370 ICU v3.8 User Guide

Your balance is $1,234.56...  I think.

http://www.unicode.org/reports/tr29


Line-break Boundary

The line-break iterator locates positions within the text that would be appropriate points 
for a text editor to break lines when displaying the text. Line breaks differ from word 
breaks in that adjoining punctuation and trailing white space are kept with the words 
instead of being treated as separate "words" on their own (for example, do not wrap a line 
before a space). 

This example shows the differences in the break locations produced by word and line 
break iterators 

 

Sentence Boundary

A sentence-break iterator locates sentence boundaries.

The exact rules used for locating each type of boundary are described in a pair of 
documents from the Unicode Consortium. Unicode Standard Annex 14 
( http://www.unicode.org/unicode/reports/tr14/) gives the rules for locating line 
boundaries, while technical report 29 "http://www.unicode.org/unicode/reports/tr29/") 
describe character, word and sentence boundaries.

Usage

To locate boundaries in a document, create a BreakIterator using the 
BreakIterator::create***Instance family of methods in C++, or the ubrk_open() 
function (C). "***" is Character, Word, Line or Sentence, depending on the type of 
iterator wanted. These factory methods also take a parameter that specifies the locale for 
the language of the text to be processed.

When creating a BreakIterator, a locale is also specified, and the behavior of the 
BreakIterator obtained may be specialized in some way for that locale. For ICU 2.6, 
Break Iterators for the Thai locale will make use of a Thai dictionary for finding word and 
line boundaries; all other locales will use the default boundary rules.

Applications also may register customized BreakIterators for use in specific locales. 
Once such a break iterator has been registered, any requests for break iterators for the 

371 ICU v3.8 User Guide

Line break:     Parlez-vous français ? 

Word break:    Parlez-vous français ?

, 09/26/04
html image name: boundary-fig-1.gif



locale will return copies of the registered break iterator

In the general-usage-model, applications will use the following basic steps to analyze a 
piece of text for boundaries:

1. Create a BreakIterator with the desired behavior

2. Use the setText() or adoptText() methods to set the iterator to analyze a particular 
piece of text. Since BreakIterator uses a CharacterIterator to access the text, it can 
be stored in any form as long as you provide an appropriate CharacterIterator. There is 
a convenience method for analyzing a UnicodeString, but the user also can analyze 
part of a UnicodeString by creating a StringCharacterIterator directly.

3. Locate the desired boundaries using the appropriate combination of first(), last(), 
next(), previous(), preceding(), and following() methods. 

The setText() or the adoptText() method can be called more than once, allowing a 
single BreakIterator to be reused to analyze different pieces of text. Because the 
creation of a BreakIterator can be relatively time-consuming, it makes good sense to 
cache and reuse BreakIterators within an application.

Set the text to be searched using the following:

• adoptText(CharacterIterator) sets the BreakIterator to analyze a new piece of 
text. The new piece of text is specified with a CharacterIterator, which allows 
BreakIterator to analyze the text for boundaries no matter how it happens to be 
stored [it always accesses the text through the CharacterIterator]. The 
BreakIterator takes ownership of the CharacterIterator and will delete it when 
the process is completed.

• setText(UnicodeString) is a shortcut for the adoptText() method. If the text is a 
UnicodeString, the user can call setText and pass it the string, rather than creating a 
StringCharacterIterator and passing it to the adoptText() method. This method 
will create the StringCharacterIterator. To analyze only part of a 
UnicodeString, on the other hand, create the StringCharacterIterator manually, 
specify the substring, and then pass it to the adoptText() method.

• getText() method returns a const reference to the CharacterIterator that the 
BreakIterator is using to access the text.

• createText() method returns a clone of the CharacterIterator that the 
BreakIterator is using to access the text. Ownership of the clone is transferred to the 
caller. (The caller can seek the returned CharacterIterator without affecting the 
BreakIterator, but if the actual text underlying the iterator is changed, the 
adoptText() method must be called again to make sure the BreakIterator does not 
malfunction.)

The iterator always points to a boundary position between two characters. The numerical 
value of the position, as returned by current() is the zero-based index of the character 
following the boundary. Thus a position of zero represents a boundary preceding the first 
character of the text, and a position of one represents a boundary between the first and 

372 ICU v3.8 User Guide

, 09/26/04
html image name: boundary-fig-2.gif

http://www.unicode.org/unicode/reports/tr29/
http://www.unicode.org/unicode/reports/tr14/


second characters.

The first() and last() methods reset the iterator's current position to the beginning or 
end of the text (the beginning and the end are always considered boundaries). The next() 
and previous() methods advance the iterator one boundary forward or backward from 
the current position. If the next() or previous() methods run off the beginning or end 
of the text, it returns DONE. The current() method returns the current position.

The following() and preceding() methods are used for random access or to reposition 
the iterator to some arbitrary spot in the middle of the text. Since a BreakIterator 
always points to a boundary position, the following() and preceding() methods will 
never set the iterator to point to the position specified by the caller (even if it is, in fact, a 
boundary position). BreakIterator will, however, set the iterator to the nearest boundary 
position before or after the specified position. The isBoundary() method returns true or 
false, based on whether or not the specified position is a boundary position. It does this by 
calling the preceding() and next() methods, so it also repositions the iterator either at 
the specified position or the first boundary position after it. If any of these functions is 
passed an out-or-range offset, it returns DONE and repositions the iterator to the 
beginning or end of the text.

Reuse

It is slow and wasteful to repeatedly create and destroy a BreakIterator when it is not 
necessary. For example, do not create a separate BreakIterator for each line in a 
document that is being word-wrapped. Keep around a single instance of a line 
BreakIterator and use it whenever a line break iterator is needed.

Accuracy

ICU's break iterators implement the default boundary rules described in the Unicode 
Consortium Technical Reports 14 and 29. These are relatively simple boundary rules that 
can be implemented efficiently, and are sufficient for many purposes and languages. 
However, some languages and applications will require a more sophisticated linguistic 
analysis of the text in order to find boundaries with good accuracy. Such an analysis is 
not directly available from ICU at this time.

Break Iterators based on custom, user-supplied boundary rules can be created and used by 
applications with requirements that are not met by the standard default boundary rules. 

BreakIterator Boundary Analysis Examples

Print out all the word-boundary positions in a UnicodeString:

In C++,
void listWordBoundaries(const UnicodeString& s) {
    UErrorCode status = U_ZERO_ERROR;

373 ICU v3.8 User Guide



    BreakIterator* bi = BreakIterator::createWordInstance(Locale::getUS(), status);
    bi->setText(s);
    int32_t p = bi->first();
    while (p != BreakIterator::DONE) {
        printf("Boundary at position %d\n", p);
        p = bi->next();
    }
    delete bi;
}

In C:

void listWordBoundaries(const UChar* s,
                        int32_t len) {
    UBreakIterator* bi;
    int32_t p;
    UErrorCode err = U_ZERO_ERROR;
    bi = ubrk_open(UBRK_WORD, 0, s, len, &err);
    if (U_FAILURE(err)) return;
    p = ubrk_first(bi);
    while (p != UBRK_DONE) {
        printf("Boundary at position %d\n", p);
        p = ubrk_next(bi);
    }
    ubrk_close(bi);
}

Get the boundaries of the word that contains a double-click 
position:

In C++:
void wordContaining(BreakIterator& wordBrk,
                    int32_t idx,
                    const UnicodeString& s,
                    int32_t& start,
                    int32_t& end) {
    // this function is written to assume that we have an
    // appropriate BreakIterator stored in an object or a
    // global variable somewhere-- When possible, programmers
    // should avoid having the create() and delete calls in
    // a function of this nature.
    if (s.isEmpty())
        return;
    wordBrk.setText(s);
    start = wordBrk.preceding(idx + 1);
    end = wordBrk.next();
    // NOTE: for this and similar operations, use preceding() and next()
    // as shown here, not following() and previous().  preceding() is
    // faster than following() and next() is faster than previous()
    // NOTE: By using preceding(idx + 1) above, we're adopting the convention
    // that if the double-click comes right on top of a word boundary, it
    // selects the word that _begins_ on that boundary (preceding(idx) would
    // instead select the word that _ends_ on that boundary).
}

In C:

374 ICU v3.8 User Guide

http://www.unicode.org/unicode/reports/tr29/
http://www.unicode.org/unicode/reports/tr14/


void wordContaining(UBreakIterator* wordBrk,
                    int32_t idx,
                    const UChar* s,
                    int32_t sLen,
                    int32_t* start,
                    int32_t* end,
                    UErrorCode* err) {
    if (wordBrk == NULL || s == NULL || start == NULL || end == NULL) {
        *err = U_ILLEGAL_ARGUMENT_ERROR;
        return;
    }
    ubrk_setText(wordBrk, s, sLen, err);
    if (U_SUCCESS(*err)) {
        *start = ubrk_preceding(wordBrk, idx + 1);
        *end = ubrk_next(wordBrk);
    }
}

Check for Whole Words

Use the following to check if a range of text is a "whole word":

In C++:
UBool isWholeWord(BreakIterator& wordBrk,
                   const UnicodeString& s,
                   int32_t start,
                   int32_t end) {
    if (s.isEmpty())
        return FALSE;
    wordBrk.setText(s);
    if (!wordBrk.isBoundary(start))
        return FALSE;
    return wordBrk.isBoundary(end);}

In C:
UBool isWholeWord(UBreakIterator* wordBrk,
                   const UChar* s,
                   int32_t sLen,
                   int32_t start,
                   int32_t end,
                   UErrorCode* err) {
    UBool result = FALSE;
    if (wordBrk == NULL || s == NULL) {
        *err = U_ILLEGAL_ARGUMENT_ERROR;
        return FALSE;
    }
    ubrk_setText(wordBrk, s, sLen, err);
    if (U_SUCCESS(*err)) {
        result = ubrk_isBoundary(wordBrk, start)
                 >> ubrk_isBoundary(wordBrk, end);
    }
    return result;
}

375 ICU v3.8 User Guide



Although users can check for "whole words" using these methods, it is possible to get 
better performance (in most cases) with the following algorithm:

bool isWholeWord(BreakIterator *wordBrk,
                   const UnicodeString& s,
                   int32_t start,
                   int32_t end) {
    wordBrk->setText(s);
    if (!wordBrk->isBoundary(start))
        return false;
    UTextOffset p = wordBrk->current();
    while (p < end)
        p = wordBrk->next();
    return p == end;
}

This algorithm is faster because the next() method is the fastest boundary-detection 
method in BreakIterator. The following() and isBoundary() method [while it calls 
following()] is the slowest. Two calls to the isBoundary() method is faster only when 
the selection range is long and comprises more than roughly four words.

Count the words in a document (C++ only):

int32_t containsLetters(RuleBasedBreakIterator& bi,
                        const UnicodeString& s,
                        int32_t start) {
    bi.setText(s);
    int32_t count = 0;
    while (start != BreakIterator::DONE) {
        int  breakType = bi.getRuleStatus();
        if (breakType != UBRK_WORD_NONE) {
            // Exclude spaces, punctuation, and the like.
            ++count;
        }
        start = bi.next();
    }
    return count;
}

The function getRuleStatus() returns an enum giving additional information on the 
text preceding the last break position found. Using this value, it is possible to distinguish 
between numbers, words, words containing kana characters, words containing 
ideographic characters, and non-word characters, such as spaces or punctuation. The 
sample uses the break status value to filter out, and not count, boundaries associated with 
non-word characters.

Word-wrap a document (C++ only):

The sample function below wraps a paragraph so that each line is less than or equal to 72 

376 ICU v3.8 User Guide



characters. The function fills in an array passed in by the caller with the starting offsets of 
each line in the document. Also, it fills in a second array to track how many trailing white 
space characters there are in the line. For simplicity, it is assumed that an outside process 
has already broken the document into paragraphs. For example, it is assumed that every 
string the function is passed has a single newline at the end only. 

int32_t wrapParagraph(const UnicodeString& s,
                   const Locale& locale,
                   int32_t lineStarts[],
                   int32_t trailingwhitespace[],
                   int32_t maxLines,
                   UErrorCode &status) {
    int32_t        numLines = 0;
    int32_t        p, q;
    const int32_t  MAX_CHARS_PER_LINE = 72;
    UChar          c;
    BreakIterator *bi = BreakIterator::createLineInstance(locale, status);
    if (U_FAILURE(status)) {
        delete bi;
        return 0;
    }
    bi->setText(s);

    p = 0;
    while (p < s.length()) {
        // jump ahead in the paragraph by the maximum number of
        // characters that will fit
        q = p + MAX_CHARS_PER_LINE;
        // if this puts us on a white space character, a control character
        // (which includes newlines), or a non-spacing mark, seek forward
        // and stop on the next character that is not any of these things
        // since none of these characters will be visible at the end of a
        // line, we can ignore them for the purposes of figuring out how
        // many characters will fit on the line)
        if (q < s.length()) {
            c = s[q];
            while (q < s.length()
                   && (u_isspace(c)
                       || u_charType(c) == U_CONTROL_CHAR 
                       || u_charType(c) == U_NON_SPACING_MARK
            )) {
                ++q;
                c = s[q];
            }
        }

        // then locate the last legal line-break decision at or before
        // the current position ("at or before" is what causes the "+ 1")
        q = bi->preceding(q + 1);
        // if this causes us to wind back to where we started, then the
        // line has no legal line-break positions.  Break the line at
        // the maximum number of characters
        if (q == p) {
            p += MAX_CHARS_PER_LINE;
            lineStarts[numLines] = p;
            trailingwhitespace[numLines] = 0;
            ++numLines;
        }
        // otherwise, we got a good line-break position.  Record the start of this
        //  line  (p) and then seek back from the end of this line (q) until you find
        // a non-white space character (same criteria as above) and
        // record the number of white space characters at the end of the
        // line in the other results array
        else {

377 ICU v3.8 User Guide



            lineStarts[numLines] = p;
            int32_t nextLineStart = q;
            for (q--; q > p; q--) {
                c = s[q];
                if (!(u_isspace(c)
                       || u_charType(c) == U_CONTROL_CHAR 
                       || u_charType(c) == U_NON_SPACING_MARK)) {
                    break;
                }
            } 
            trailingwhitespace[numLines] = nextLineStart - q -1;
            p = nextLineStart;
           ++numLines;
        }
        if (numLines >= maxLines) {
            break;
        }
    }
    delete bi;
    return numLines;
}

Most text editors would not break lines based on the number of characters on a line. Even 
with a monospaced font, there are still many Unicode characters that are not displayed 
and therefore should be filtered out of the calculation. With a proportional font, character 
widths are added up until a maximum line width is exceeded or an end of the paragraph 
marker is reached.

Trailing white space does not need to be counted in the line-width measurement because 
it does not need to be displayed at the end of a line. The sample code above returns an 
array of trailing white space values because an external rendering process needs to be able 
to measure the length of the line (without the trailing white space) to justify the lines. For 
example, if the text is right-justified, the invisible white space would be drawn outside 
the margin. The line would actually end with the last visible character.

In either case, the basic principle is to jump ahead in the text to the location where the 
line would break (without taking word breaks into account). Then, move backwards using 
the preceding() method to find the last legal breaking position before that location. 
Iterating straight through the text with next() method will generally be slower.

ICU BreakIterator Data Files

The source code for the ICU break rules for the standard boundary types is located in the 
directory icu/source/data/brkitr. These files will be built, and the corresponding binary 
state tables incorporated into ICU's data, by the standard ICU4C build process. 

Beginning with ICU 3.0, the same break rule source files and compiled state tables are 
used for both ICU4C and ICU4J.  The state tables are built using ICU4C, and the 
resulting binary tables are incorporated into ICU4J.  

378 ICU v3.8 User Guide



RBBI Rules

ICU locates boundary positions within text by means of rules, which are a variant form of 
regular expressions. A boundary rule is an expression that matches a section of text - a 
word or sentence or whatever - that should remain together, with boundaries occurring 
between the ranges of matched text. A set of rules consists of a series of regular 
expressions separated by semicolons; the rules, taken together, define regions of text that 
are kept together between boundaries.  Boundaries occur at the end of text ranges 
matched by the rules.

Forward, Reverse, Safe Point rules

For each type of boundary, four sets of rules are required, as described in the following 
table.

Forward Advance (match text) starting from a boundary position and continuing 
to the next following boundary.

Reverse Starting from a boundary, match backwards, until the preceding 
boundary position.

Safe Forward Starting from any arbitrary position in the text, match forward to a safe 
position, which is a position from which the normal Reverse rule will 
work correctly.  

Safe Reverse Starting from any arbitrary position in the text, move backwards to a 
safe position, which is a position from which the normal Forward rule 
will work correctly.

All four rules need to be supplied.  

Normal next() or previous() operations use the Forward or Reverse rules, respectively, to 
move directly from one boundary position to another.

The preceding() and following() functions first apply a safe rule, then apply a normal 
Forward or Reverse rule.  (preceding() and following() can start from any arbitrary 
location in the input text)

Note: Earlier versions of ICU (prior to 3.0) worked with only a Forward rule and 
a safe Reverse rule.  While the rule builder will still recognize rules written in this  
form, their use is deprecated and strongly discouraged.  

A rule input file is divided into sections, one for each type of rule:
# This shows the general layout of a break rule file
#
#  The order of the four sections doesn't matter, so long as they all appear.
#
#  Variable definitions can appear anywhere, so long as they are defined before
#  their first use in a rule.  Variables carry forward across section boundaries.
#

379 ICU v3.8 User Guide



!!forward
#   forward rules go here.

!!reverse
#    Reverse rules go here.

!!safe_forward
#    Safe Forward rules go here.

!!safe_reverse
#    Safe Reverse rules go here.

Variables

A set of break rules may define and use variables, which are convenient when 
subexpressions reappear more than once, or to simplify complex expressions by allowing 
parts to be separately defined and named. Use of variables within a set of rules has no 
effect on the efficiency of the resulting break iterator.

!!chain

ICU boundary rules can be written in two ways: chained or non-chained.

With non-chained rules, each rule (regular expression) stands by itself, matching a 
segment of text between two boundary positions.  When moving to the next boundary, the 
single rule with the longest match defines the boundary position.

This is very much like traditional regular expression behavior.

Non-chained rule matching behavior is the default for ICU break rules.

Chaining allows boundary positions to be determined by an arbitrary number of the 
boundary rules, applied in an arbitrary sequence.  Any character in the text that completes 
a match for one rule can function as a chaining point, and simultaneously be the 
beginning character of a match for any other rule.  Matching continues in this way until 
the longest possible match is obtained.  

Chaining from one rule to the next can occur at any point that the first rule of the pair 
matches.  The longest match of each individual rule is not required, and if chaining from 
a shorter match of an intermediate rule results in a longer overall match, that is what will 
happen.

Chained rules are closer in flavor to the  rules definitions in the Unicode Consortium text 
boundary specifications.  Line Break boundaries, in particular, were not really possible to 
implement accurately with traditional, non-chained regular expression.

!!chain in a rule file enables rule chaining.  !!chain applies to all rule sections, and 
must appear before the first section.

The !!LBCMNoChain  option modifies chaining behavior by preventing chaining from 

380 ICU v3.8 User Guide



one rule to another from occurring on any character whose Line Break property is 
Combining Mark.  This option is subject to change or removal, and should not be used in 
general.  Within ICU, it is used only with the line break rules.  We hope to replace it with 
something more general.

Rule Status Values

Break rules can be tagged with a number, which is called the rule status.  After a 
boundary has been located, the status number of the specific rule that determined the 
boundary position is available to the application through the function getRuleStatus().

For the predefined word boundary rules, status values are available to distinguish between 
boundaries associated with words and those around spaces or punctuation.  Similarly for 
line break boundaries, status values distinguish between mandatory line endings (new line 
characters) and break opportunities that are appropriate points for line wrapping.

In the source form of the break rules, status numbers appear at end of a rule, and are 
enclosed in {braces}. 

Rule Syntax

Here is the syntax for the boundary rules.

Rule Name Rule Values Notes
rules statement+
statement assignment | rule | control
control (“!!forward” | “!!reverse” | “!!safe_forward” | 

“!!safe_reverse” | “!!chain” | “!!LBCMNoChain”)  ';'
assignment variable '=' expr ';' 5
rule '!'? expr ('{'number'}')? ';' 8, 9
number [0-9]+ 1
break-point '/'
expr expr-q | expr '|' expr | expr expr 3
expr-q term | term '*' | term '?' | term '+' 
term rule-char | unicode-set | variable | quoted-sequence | '(' 

expr ')' | break-point
rule-special any printing ascii character except letters or numbers | 

white-space

381 ICU v3.8 User Guide



Rule Name Rule Values Notes
rule-char any non-escaped character that is not rule-special | '.' | 

any escaped character except '\p' or '\P'
variable '$' name-start-char name-char* 7
name-start-char '_' | \p{L}
name-char name-start-char | \p{N}
quoted-sequence ''' (any char except single quote or line terminator or 

two adjacent single quotes)+ '''
escaped-char See “Character Quoting and Escaping”
Unicode set See UnicodeSet 4
comment unescaped '#' [any char except new-line]* new-line 2
s unescaped \p{Z}, tab, LF, FF, CR, NEL 6
new-line LF, CR, NEL 2
Notes: 

1. The number associated with a rule that actually determined a break position is 
available to the application after the break has been returned.  These numbers are not 
Perl regular expression repeat counts.

2. Comments are recognized and removed separately from otherwise parsing the rules. 
They may appear wherever a space would be allowed (and ignored.) 

3. The implicit concatenation of adjacent terms has higher precedence than the '|' 
operation. "ab|cd" is interpreted as "(ab)|(cd)", not as "a(b|c)d" or "(((ab)|c)d)" 

4. The syntax for UnicodeSet is defined (and parsed) by the UnicodeSet class. It is not 
repeated here. 

5. For $variables that will be referenced from inside of a UnicodeSet, the definition must 
consist only of a Unicode Set. For example, when variable $a is used in a rule like 
[$a$b$c], then this definition of $a is ok “$a=[:Lu:];” while this one  “$a=abcd;” 
would cause an error when $a was used. 

6. Spaces are allowed nearly anywhere, and are not significant unless escaped. 
Exceptions to this are noted. 

7. No spaces are allowed within a variable name. The variable name $dictionary is 
special. If defined, it must be a Unicode Set, the characters of which will trigger the 
use of  word dictionary based boundaries. 

8. A leading '!' on a rule is a deprecated syntax for specifying a reverse rule.  Putting 
reverse rules in the !!reverse section is now preferred.

9. {nnn} appearing at the end of a rule is a Rule Status number, not a repeat count as it 
would be with conventional regular expression syntax.

382 ICU v3.8 User Guide



EBNF Syntax used for the RBBI rules syntax description 

a? zero or one instance of a
a+ one or more instances of a
a* zero or more instances of a
a | b either a or b, but not both
'a' "a" the literal string between the quotes

Additional Sample Code

C/C++: See icu/source/samples/break/ in the ICU source distribution for code samples 
showing the use of ICU boundary analysis.

383 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/unicodeSet.sxw


LayoutEngine
Overview

The Latin script, which is the most commonly used script among software developers, is 
also the least complex script to display especially when it is used to write English. Using 
the Latin script, characters can be displayed from left to right in the order that they are 
stored in memory. Some scripts require rendering behavior that is more complicated than 
the Latin script. We refer to these scripts as "complex scripts" and to text written in these 
scripts as "complex text." Examples of complex scripts are the Indic scripts (for example, 
Devanagari, Tamil, Telugu, and Gujarati), Thai, and Arabic.

These complex scripts exhibit complications that are not found in the Latin script. The 
following lists the main complications in complex text: 

The ICU LayoutEngine is designed to handle these complications through a simple, 
uniform client interface. Clients supply Unicode code points in reading or "logical" order, 
and the LayoutEngine provides a list of what to display, indicates the correct order, and 
supplies the positioning information. 

Because the ICU LayoutEngine is platform independent and text rendering is inherently 
platform dependent, the LayoutEngine cannot directly display text. Instead, it uses an 
abstract base class to access font files. This base class models a TrueType font at a 
particular point size and device resolution. The TrueType fonts have the following 
characteristics:

• A font is a collection of images, called glyphs. Each glyph in the font is referred to by 
a 16-bit glyph id.

• There is a mapping from Unicode code points to glyph ids. There may be glyphs in the 
font for which there is no mapping. 

• The font contains data tables referred to by 4 byte tags. (e.g. ''GSUB'', ''cmap''). These 
tables can be read into memory for processing. 

• There is a method to get the width of a glyph.

• There is a method to get the position of a control point from a glyph.

Since many of the contextual forms, ligatures, and split characters needed to display 
complex text do not have Unicode code points, they can only be referred to by their glyph 
indices. Because of this, the LayoutEngine's output is a list of glyph indices. This means 
that the output must be displayed using an interface where the characters are specified by 
glyph indices rather than code points.

A concrete instance of this base class must be written for each target platform. For a 
simple example which uses the standard C library to access a TrueType font, look at the 
PortableFontInstance class in icu/source/test/letest. 

384 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icu/trunk/source/samples/break/


The ICU LayoutEngine supports complex text in the following ways:

• If the font contains OpenType® tables, the LayoutEngine uses those tables.

• If the font contains Apple Advanced Typography (AAT) tables, the LayoutEngine uses 
those tables.

• For Arabic and Hebrew text, if OpenType tables are not present, the LayoutEngine 
uses Unicode presentation forms.

• For Thai text, the LayoutEngine uses either the Microsoft or Apple Thai forms.

OpenType processing requires script-specific processing to be done before the tables are 
used. The ICU LayoutEngine performs this processing for Arabic, Devanagari, Bengali, 
Gurmukhi, Gujarati, Oriya, Tamil, Telegu, Kannada, and Malayalam text. 

The AAT processing in the LayoutEngine is relatively basic as it only applies the default 
features in left-to-right text. This processing has been tested for Devanagari text. Since 
AAT processing is not script-specific, it might not work for other scripts. 

Programming with the LayoutEngine

The ICU LayoutEngine is designed to process a run of text which is in a single font. It is 
written in a single direction (left-to-right or right-to-left), and is written in a single script. 
Clients can use ICU's Bidi processing to determine the direction of the text and use the 
ScriptRun class in icu/source/extra/scrptrun to find a run of text in the same script. Since 
the representation of font information is application specific, ICU cannot help clients find 
these runs of text.

Once the text has been broken into pieces that the LayoutEngine can handle, call the 
LayoutEngineFactory method to create an instance of the LayoutEngine class that is 
specific to the text. The following demonstrates a call to the LayoutEngineFactory:           

The following example shows how to use the LayoutEngine to process the text:             

This previous example computes three arrays: an array of glyph indices in display order, 
an array of x, y position pairs for each glyph, and an array that maps each output glyph 
back to the input text array. Use the following get methods to copy these arrays: 

LEGlyphID *glyphs    = new LEGlyphID[glyphCount];
le_int32  *indices   = new le_int32[glyphCount];
float     *positions = new float[(glyphCount * 2) + 2];
engine->getGlyphs(glyphs, error);
engine->getCharIndices(indices, error);
engine->getGlyphPositions(positions, error);

The positions array contains (glyphCount * 2) + 2 entries. This is because there 
is an x and a y position for each glyph. The extra two positions hold the x, y 
position of the end of the text run. 

385 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icu/trunk/source/test/letest/


Once users have the glyph indices and positions, they can use the platform-specific code 
to draw the glyphs. For example, on Windows 2000, users can call ExtTextOut with the 
ETO_GLYPH_INDEX option to draw the glyphs and on Linux, users can call 
TT_Load_Glyph to get the bitmap for each glyph. However, users must draw the bitmaps 
themselves. 

The ICU LayoutEngine was developed separately from the rest of ICU and uses 
different coding conventions and basic types. To use the LayoutEngine with ICU 
coding conventions, users can use the ICULayoutEngine class, which is a thin 
wrapper around the LayoutEngine class that incorporates ICU conventions and 
basic types. 

For a more detailed example of how to call the LayoutEngine, look at 
icu/source/test/letest/letest.cpp. This is a simple test used to verify that the LayoutEngine 
is working properly. It does not do any complex text rendering. 

For more information, see ICU, the OpenType Specification, and the TrueType Font File 
Specification.

386 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icu/trunk/source/extra/scrptrun/
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/bidi.sxw


Data Management
Overview

ICU makes use of a wide variety of data tables to provide many of its services. Examples 
include converter mapping tables, collation rules, transliteration rules, break iterator rules 
and dictionaries, and other locale data. Additional data can be provided by users, either as 
customizations of ICU's data or as new data altogether.  

This section describes how ICU data is stored and located at run time. It also describes 
how ICU data can be customized to suit the needs of a particular application.

For simple use of ICU's predefined data, this section on data management can safely be 
skipped. The data is built into a library that is loaded along with the rest of ICU. No 
specific action or setup is required of either the application program or the execution 
environment.

ICU Data Directory

The ICU data directory is the default location for all ICU data. Any requests for data 
items that do not include an explicit directory path will be resolved to files located in the 
ICU data directory.

The ICU data directory is determined as follows:

1. If the application has called the function u_setDataDirectory(), use the directory 
specified there, otherwise:

2. If the environment variable ICU_DATA is set, use that, otherwise:

3. If the C preprocessor variable ICU_DATA_DIR was set at the time ICU was built, use 
its compiled-in value.

4. Otherwise, the ICU data directory is an empty string. This is the default behavior for 
ICU using a shared library for its data and provides the highest data loading 
performance.

u_setDataDirectory() is not thread-safe. Call it before calling ICU APIs from 
multiple threads. If you use both u_setDataDirectory() and u_init(), then 
use u_setDataDirectory() first.
Earlier versions of ICU supported two additional schemes: setting a data 
directory relative to the location of the ICU shared libraries, and on Windows, 
taking a location from the registry. These have both been removed to make the 
behavior more predictable and easier to understand.

The ICU data directory does not need to be set in order to reference the standard built-in 
ICU data. Applications that just use standard ICU capabilities (converters, locales, 

387 ICU v3.8 User Guide

http://developer.apple.com/fonts/TTRefMan/RM06/Chap6.html
http://developer.apple.com/fonts/TTRefMan/RM06/Chap6.html
http://www.microsoft.com/typography/tt/tt.htm
http://icu-project.org/
http://source.icu-project.org/repos/icu/icu/trunk/source/test/letest/letest.cpp


collation, etc.) but do not build and reference their own data do not need to specify an 
ICU data directory.

Multiple-Item ICU Data Directory Values

The ICU data directory string can contain multiple directories as well as .dat 
path/filenames. They must be separated by the path separator that is used on the platform, 
for example a semicolon (;) on Windows. Data files will be searched in all directories and 
.dat package files in the order of the directory string. For details, see the example below.

Default ICU Data

The default ICU data consists of the data needed for the converters, collators, locales, etc. 
that are provided with ICU. Default data must be present in order for ICU to function.

The default data is most commonly built into a shared library that is installed with the 
other ICU libraries. Nothing is required of the application for this mechanism to work. 
ICU provides additional options for loading the default data if more flexibility is required.

Here are the steps followed by ICU to locate its default data. This procedure happens only 
once per process, at the time an ICU data item is first requested.

1. If the application has called the function udata_setCommonData(), use the data that 
was provided. The application specifies the address in memory of an image of an ICU 
common format data file (either in shared-library format or .dat package file format).

2. Examine the contents of the default ICU data shared library. If it contains data, use that 
data. If the data library is empty, a stub library, proceed to the next step. (A data shared 
library must always be present in order for ICU to successfully link and load. A stub 
data library is used when the actual ICU common data is to be provided from another 
source).

3. Dynamically load (memory map, typically) a common format (.dat) file containing the 
default ICU data. Loading is described in the section How Data Loading Works. The 
path to the data is of the form "icudt<version><flag>", where <version> is the two-
digit ICU version number, and <flag> is a letter indicating the internal format of the 
file (see Sharing ICU Data Between Platforms).

Once the default ICU data has been located, loading of individual data items proceeds as 
described in the section How Data Loading Works.

Application Data

ICU-based applications can ship and use their own data for localized strings, custom 
conversion tables, etc. Each data item file must have a package name as a prefix, and this 
package name must match the basename of a .dat package file, if one is used. The 
package name must be used in ICU APIs, for example in udata_setAppData() (instead 
of udata_setCommonData() which is only used for ICU's own data) and in the pathname 

388 ICU v3.8 User Guide



argument of ures_open().

The only real difference to ICU's own data is that application data cannot be simply 
loaded by specifying a NULL value for the path arguments of ICU APIs, and application 
data will not be used by APIs that do not have path/package name arguments at all.

The most important APIs that allow application data to be used are for Resource Bundles, 
which are most often used for localized strings and other data. There are also functions 
like ucnv_openPackage() that allow to specify application data, and the udata.h API 
can be used to load any data with minimum requirements on the binary format, and 
without ICU interpreting the contents of the data.

Flexibility vs. Installation vs. Performance

There are choices that affect ICU data loading and depend on application requirements.

Data in Shared Libraries/DLLs vs. .dat package files

Building ICU data into shared libraries is the most convenient packaging method because 
shared libraries (DLLs) are easily found if they are in the same directory as the 
application libraries, or if they are on the system library path. The application installer 
usually just copies the ICU shared libraries in the same place. On the other hand, shared 
libraries are not portable.

Packaging data into .dat files allows them to be shared across platforms, but they must 
either be loaded by the application and set with udata_setCommonData() or 
udata_setAppData(), or they must be in a known location that is included in the ICU 
data directory string. This requires the application installer, or the application itself at 
runtime, to locate the ICU and/or application data by setting the ICU data directory (see 
ICU Data Directory above) or by loading the data and providing it to one of the 
udata_setXYZData() functions.

Unlike shared libraries, .dat package files can be taken apart into separate data item files 
with the decmn ICU tool. This allows post-installation modification of a package file. The 
gencmn and pkgdata ICU tools can then be used to reassemble the .dat package file.

For more information about .dat package files see the section Sharing ICU Data Between 
Platforms below.

Data Overriding vs. Loading Performance

If the ICU data directory string is empty, then ICU will not attempt to load data from the 
file system. It is then only possible to load data from the linked-in shared library or via 
udata_setCommonData() and udata_setAppData(). This is inflexible but provides the 
highest performance.

If the ICU data directory string is not empty, then data items are searched in all directories 

389 ICU v3.8 User Guide



and matching .dat files mentioned before checking in already-loaded package files. This 
allows overriding of packaged data items with single files after installation but costs some 
time for filesystem accesses. This is usually done only once per data item; see User Data 
Caching below.

Single Data Files vs. Packages

Single data files are easy to replace and can override items inside data packages. 
However, it is usually desirable to reduce the number of files during installation, and 
package files use less disk space than many small files.

How Data Loading Works

ICU data items are referenced by three names - a path, a name and a type. The following 
are some examples:

path name type
cnvalias icu
cp1252 cnv
en res
uprops icu

c:\some\path\dataLibName test dat
Items with no path specified are loaded from the default ICU data.

Application data items include a path, and will be loaded from user data files, not from 
the ICU default data. For application data, the path argument need not contain an actual 
directory, but must contain the application data's package name after the last directory 
separator character (or by itself if there is no directory). If the path argument contains a 
directory, then it is logically prepended to the ICU data directory string and searched first 
for data. The path argument can contain at most one directory. (Path separators like 
semicolon (;) are not handled here.)

The ICU data directory string itself may contain multiple directories and 
path/filenames to .dat package files. See ICU Data Directory.

It is recommended to not include the directory in the path argument but to make sure via 
setting the application data or the ICU data directory string that the data can be located. 
This simplifies program maintenance and improves robustness.

See the API descriptions for the functions udata_open() and udata_openChoice() for 
additional information on opening ICU data from within an application.

Data items can exist as individual files, or a number of them can be packaged together in 
a single file for greater efficiency in loading and convenience of distribution. The 

390 ICU v3.8 User Guide



combined files are called Common Files.

Based on the supplied path and name, ICU searches several possible locations when 
opening data. To make things more concrete in the following descriptions, the following 
values of path, name and type are used:

path = "c:\some\path\dataLibName" 
 name = "test" 
 type = "res" 
 

In this case, "dataLibName" is the "package name" part of the path argument, and 
"c:\some\path\" is the directory part of it.

The search sequence for the data for "test.res" is as follows (the first successful loading 
attempt wins):

• Try to load the file "dataLibName_test.res" from c:\some\data\.

• Try to load the file "dataLibName_test.res" from each of the directories in the ICU 
data directory string.

• Try to locate the data package for the package name "dataLibName". 

• Try to locate the data package in the internal cache.

• Try to load the package file "dataLibName.dat" from c:\some\data\.

• Try to load the package file "dataLibName.dat" from each of the directories in 
the ICU data directory string.

The first steps, loading the data item from an individual file, are omitted if no directory is 
specified in either the path argument or the ICU data directory string.

Package files are loaded at most once and then cached. They are identified only by their 
package name. Whenever a data item is requested from a package and that package has 
been loaded before, then the cached package is used immediately instead of searching 
through the filesystem.

ICU versions before 2.2 always searched data packages before looking for 
individual files, which made it impossible to override packaged data items. See 
the ICU 2.2 download page and the readme for more information about the 
changes.

User Data Caching

Once loaded, data package files are cached, and stay loaded for the duration of the 
process. Any requests for data items from an already loaded data package file are routed 
directly to the cached data. No additional search for loadable files is made.

The user data cache is keyed by the base file name portion of the requested path, with any 

391 ICU v3.8 User Guide



directory portion stripped off and ignored. Using the previous example, for the path name 
"c:\some\path\dataLibName", the cache key is "dataLibName". After this is cached, a 
subsequent request for "dataLibName", no matter what directory path is specified, will 
resolve to the cached data.

Data can be explicitly added to the cache of common format data by means of the 
udata_setAppData() function. This function takes as input the path (name) and a 
pointer to a memory image of a .dat file. The data is added to the cache, causing any 
subsequent requests for data items from that file name to be routed to the cache.

Only data package files are cached. Separate data files that contain just a single data item 
are not cached; for these, multiple requests to ICU to open the data will result in multiple 
requests to the operating system to open the underlying file.

However, most ICU services (Resource Bundles, conversion, etc.) themselves cache 
loaded data, so that data is usually loaded only once until the end of the process (or until 
u_cleanup() or ucnv_flushCache() or similar are called.)

There is no mechanism for removing or updating cached data files.

Directory Separator Characters

If a directory separator (generally '/' or '\') is needed in a path parameter, use the form that 
is native to the platform. The ICU header "putil.h" defines U_FILE_SEP_CHAR 
appropriately for the platform.

On Windows, the directory separator must be '\' for any paths passed to ICU 
APIs. This is different from native Windows APIs, which generally allow either '/'  
or '\'.

Sharing ICU Data Between Platforms

ICU's default data is (at the time of this writing) about 8 MB in size. Because it is 
normally built as a shared library, the file format is specific to each platform (operating 
system). The data libraries can not be shared between platforms even though the actual 
data contents are identical.

By distributing the default data in the form of common format .dat files rather than as 
shared libraries, a single data file can be shared among multiple platforms. This is 
beneficial if a single distribution of the application (a CD, for example) includes binaries 
for many platforms, and the size requirements for replicating the ICU data for each 
platform are a problem.

ICU common format data files are not completely interchangeable between platforms. 
The format depends on these properties of the platform:

• Byte Ordering (little endian vs. big endian)

392 ICU v3.8 User Guide



• Base character set - ASCII or EBCDIC

This means, for example, that ICU data files are interchangeable between Windows and 
Linux on X86 (both are ASCII little endian), or between Macintosh and Solaris on 
SPARC (both are ASCII big endian), but not between Solaris on SPARC and Solaris on 
X86 (different byte ordering).

The single letter following the version number in the file name of the default ICU data 
file encodes the properties of the file as follows:

icudt19l.dat Little Endian, ASCII 
 icudt19b.dat Big Endian, ASCII 
 icudt19e.dat Big Endian, EBCDIC 

(There are no little endian EBCDIC systems. All non-EBCDIC encodings include an 
invariant subset of ASCII that is sufficient to enable these files to interoperate.)

The packaging of the default ICU data as a .dat file rather than as a shared library is 
requested by using an option in the configure script at build time. Nothing is required at 
run time; ICU finds and uses whatever form of the data is available.

When the ICU data is built in the form of shared libraries, the library names have 
platform-specific prefixes and suffixes. On Unix-style platforms, all the libraries  
have the "lib" prefix and one of the usual (".dll", ".so", ".sl", etc.) suffixes. Other 
than these prefixes and suffixes, the library names are the same as the above .dat 
files.

Customizing ICU's Data Library

ICU includes a standard library of data that is about 8 MB in size. Most of this consists of 
conversion tables and locale information. The data itself is normally placed into a single 
shared library.

The ICU data library can be easily customized, either by adding additional converters or 
locales, or by removing some of the standard ones for the purpose of saving space.

ICU can load data from individual data files as well as from its default library, so building 
a customized library when adding additional data is not strictly necessary. Adding to 
ICU's library can simplify application installation by eliminating the need to include 
separate files with an application distribution, and the need to tell ICU where they are 
installed.

Reducing the size of ICU's data by eliminating unneeded resources can make sense on 
small systems with limited or no disk, but for desktop or server systems there is no real 
advantage to trimming. ICU's data is memory mapped into an application's address space, 
and only those portions of the data actually being used are ever paged in, so there are no 
significant RAM savings. As for disk space, with the large size of today's hard drives, 
saving a few MB is not worth the bother.

393 ICU v3.8 User Guide



By default, ICU builds with a large set of converters and with all available locales. This 
means that any extra items added must be provided by the application developer. There is 
no extra ICU-supplied data that could be specified.

Details

The converters and resources that ICU builds are in the following configuration files. 
They are only available when building from ICU's source code repository. Normally, the 
standard ICU distribution do not include these files.

icu/source/data/locales/resfiles.mk The standard set of locale data resource 
bundles

icu/source/data/locales/reslocal.mk User-provided file with additional resource 
bundles

icu/source/data/coll/colfiles.mk The standard set of collation data resource 
bundles

icu/source/data/coll/collocal.mk User-provided file with additional collation 
resource bundles

icu/source/data/brkitr/brkfiles.mk The standard set of break iterator data 
resource bundles

icu/source/data/brkitr/brklocal.mk User-provided file with additional break 
iterator resource bundles

icu/source/data/translit/trnsfiles.mk The standard set of transliterator resource 
files

icu/source/data/translit/trnslocal.mk User-provided file with a set of additional 
transliterator resource files

icu/source/data/mappings/ucmcore.mk Core set of conversion tables for 
MIME/Unix/Windows

icu/source/data/mappings/ucmfiles.mk Additional, large set of conversion tables 
for a wide range of uses

icu/source/data/mappings/ucmebcdic.mk Large set of EBCDIC conversion tables
icu/source/data/mappings/ucmlocal.mk User-provided file with additional 

conversion tables
icu/source/data/misc/miscfiles.mk Miscellaneous data, like timezone 

information
These files function identically for both Windows and UNIX builds of ICU. ICU will 
automatically update the list of installed locales returned by uloc_getAvailable() 
whenever resfiles.mk or reslocal.mk are updated and the ICU data library is rebuilt. 
These files are only needed while building ICU. If any of these files are removed or 
renamed, the size of the ICU data library will be reduced.

394 ICU v3.8 User Guide



The optional files reslocal.mk and ucmlocal.mk are not included as part of a standard ICU 
distribution. Thus these customization files do not need to be merged or updated when 
updating versions of ICU.

Both reslocal.mk and ucmlocal.mk are makefile includes. So the usual rules for 
makefiles apply. Lines may be continued by preceding the end of the line to be continued 
with a back slash. Lines beginning with a # are comments. See ucmfiles.mk and 
resfiles.mk for additional information.

Reducing the Size of ICU's Data: Conversion Tables

The size of the ICU data file in the standard build configuration is about 8 MB. The 
majority of this is used for conversion tables. ICU comes with so many conversion tables 
because many ICU users need to support many encodings from many platforms. There are 
conversion tables for EBCDIC and DOS codepages, for ISO 2022 variants, and for small 
variations of popular encodings.

Important: ICU provides full internationalization functionality without any conversion 
table data. The common library contains code to handle several important encodings 
algorithmically: US-ASCII, ISO-8859-1, UTF-7/8/16/32, SCSU, BOCU-1, CESU-8, and 
IMAP-mailbox-name (i.e., US-ASCII, ISO-8859-1, and all Unicode charsets; see 
source/data/mappings/convrtrs.txt for the current list).

Therefore, the easiest way to reduce the size of ICU's data by a lot (without limitation of 
I18N support) is to reduce the number of conversion tables that are built into the data file.

The conversion tables are listed for the build process in several makefiles 
icu/source/data/mappings/ucm*.mk, roughly grouped by how commonly they are 
used. If you remove or rename any of these files, then the ICU build will exclude the 
conversion tables that are listed in that file. Beginning with ICU 2.0, all of these 
makefiles including the main one are optional. If you remove all of them, then ICU will 
include only very few conversion tables for "fallback" encodings (see note below).

If you remove or rename all ucm*.mk files, then ICU's data is reduced to about 3.6 MB. If 
you remove all these files except for ucmcore.mk, then ICU's data is reduced to about 4.7 
MB, while keeping support for a core set of common MIME/Unix/Windows encodings.

If you remove the conversion table for an encoding that could be a default  
encoding on one of your platforms, then ICU will not be able to instantiate a 
default converter. In this case, ICU 2.0 and up will automatically fall back to a 
"lowest common denominator" and load a converter for US-ASCII (or, on 
EBCDIC platforms, for codepages 37 or 1047). This will be good enough for 
converting strings that contain only "ASCII" characters (see the comment about  
"invariant characters" in utypes.h).

395 ICU v3.8 User Guide



When ICU is built with a reduced set of conversion tables, then some tests will  
fail that test the behavior of the converters based on known features of some 
encodings. Also, building the testdata will fail if you remove some conversion 
tables that are necessary for that (to test non-ASCII/Unicode resource bundle 
source files, for example). You can ignore these failures. Build with the standard 
set of conversion tables, if you want to run the tests.

Reducing the Size of ICU's Data: Locale Data

If you need to reduce the size of ICU's data even further, then you need to remove other 
files or parts of files from the build as well.

The largest part of the data besides conversion tables is in collation for East Asian 
languages. You can remove the collation data for those languages by removing the 
CollationElements entries from those icu/source/data/locales/*.txt files. When 
you do that, the collation for those languages will become the same as the Unicode 
Collation Algorithm.

You can remove data for entire locales by removing their files from 
icu/source/data/locales/resfiles.mk. ICU will then use the data of the parent 
locale instead, which is root.txt. If you remove all resource bundles for a given 
language and its country/region/variant sublocales, do not remove root.txt! Also, do not 
remove a parent locale if child locales exist. For example, do not remove "en" while 
retaining "en_US".

Adding Converters to ICU

The first step is to obtain or create a .ucm (source) mapping data file for the desired 
converter. A large archive of converter data is maintained by the ICU team at 
http://source.icu-project.org/repos/icu/data/trunk/charset/data/ucm/ 

We will use solaris-eucJP-2.7.ucm, available from the repository mentioned above, as 
an example.

Build the Converter

Converter source files are compiled into binary converter files (.cnv files) by using the icu 
tool makeconv. For the example, you can use this command

makeconv -v solaris-eucJP-2.7.ucm 

Some of the .ucm files from the repository will need additional header information before 
they can be built. Use the error messages from the makeconv tool, .ucm files for similar 
converters, and the ICU user guide documentation of .ucm files as a guide when making 
changes. For the solaris-eucJP-2.7.ucm example, we will borrow the missing header 
fields from icu/source/data/mappings/ibm-33722_P12A-2000.ucm, which is the 
standard ICU eucJP converter data.

396 ICU v3.8 User Guide



The ucm file format is described in the  "Conversion Data" chapter of this user guide.

After adjustment, the header of the solaris-eucJP-2.7.ucm file contains these items:

<code_set_name>   "solaris-eucJP-2.7"
<subchar>         \x3F
<uconv_class>     "MBCS"
<mb_cur_max>      3
<mb_cur_min>      1
<icu:state>       0-8d, 8e:2, 8f:3, 90-9f, a1-fe:1
<icu:state>       a1-fe
<icu:state>       a1-e4
<icu:state>       a1-fe:1, a1:4, a3-af:4, b6:4, d6:4, da-db:4, ed-f2:4
<icu:state>       a1-fe

The binary converter file produced by the makeconv tool is solaris-eucJP-2.7.cnv 

Installation

Copy the new .cnv file to the desired location for use. Set the environment variable 
ICU_DATA to the directory containing the data, or, alternatively, from within an 
application, tell ICU the location of the new data with the function u_setDataDirectory() 
before using the new converter.

If ICU is already obtaining data from files rather than a shared library, install the new file 
in the same location as the existing ICU data file(s), and don't change/set the environment 
variable or data directory.

If you do not want to add a converter to ICU's base data, you can also generate a 
conversion table with makeconv, use pkgdata to generate your own package and use the 
ucnv_openPackage() to open up a converter with that conversion table from the 
generated package.

Building the new converter into ICU

The need to install a separate file and inform ICU of the data directory can be avoided by 
building the new converter into ICU's standard data library. Here is the procedure for 
doing so:

• Move the .ucm file(s) for the converter(s) to be added ( solaris-eucJP-2.7.ucm for 
our example) into the directory icu/source/data/mappings/ 
 
 

• Create, or edit, if it already exists, the file 
icu/source/data/mappings/ucmlocal.mk Add this line: 
 
   UCM_SOURCE_LOCAL = solaris-eucJP-2.7.ucm 
 
Any number of converters can be listed. Extend the list to new lines with a back slash 

397 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/data/trunk/charset/data/ucm/


at the end of the line. The ucmlocal.mk file is described in more detail in 
icu/source/data/mappings/ucmfiles.mk (Even though they use very different 
build systems, ucmlocal.mk is used for both the Windows and UNIX builds.) 
  

• Add the converter name and aliases to icu/source/data/mappings/convrtrs.txt. 
This will allow your converter to be shown in the list of available converters when you 
call the ucnv_getAvailableName() function. The file syntax is described within the 
file. 
  

• Rebuild the ICU data. 
 For Windows, from MSVC choose the makedata project from the GUI, then build the 
project. 
 For UNIX, "cd icu/source/data; gmake" 

When opening an ICU converter (ucnv_open()), the converter name can not be qualified 
with a path that indicates the directory or common data file containing the corresponding 
converter data. The required data must be present either in the main ICU data library or as 
a separate .cnv file located in the ICU data directory. This is different from opening 
resources or other types of ICU data, which do allow a path.

Adding Locale Data to ICU's Data

If you have data for a locale that is not included in ICU's standard build, then you can add 
it to the build in a very similar way as with conversion tables above. The ICU project 
provides a large number of additional locales in its locale repository on the web. Most of 
this locale data is derived from the CLDR (Common Locale Data Repository) project.

You need to write a resource bundle file for it with a structure like the existing locale 
resource bundles (e.g. icu/source/data/locales/ja.txt, ru_RU.txt, kok_IN.txt) 
and add it by writing a file icu/source/data/locales/reslocal.mk just like above. In 
this file, define the list of additional resource bundles as 
 
 GENRB_SOURCE_LOCAL=myLocale.txt other.txt ... 

Starting in ICU 2.2, these added locales are automatically listed by 
uloc_getAvailable().

ICU Data File Formats

ICU uses several kinds of data files with specific source (plain text) and binary data 
formats. The following table provides links to descriptions of those formats.

Each ICU data object begins with a header before the actual, specific data. The header 
consists of a 16-bit header length value, the two "magic" bytes DA 27 and a UDataInfo 
structure which specifies the data object's endianness, charset family, format, data 
version, etc.

398 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/conversion-data.sxw


Files Source format Binary format Generator tool
ICU .dat package 
files

(list of files on the 
gencmn tool command 
line)

.dat: 
icu/source/tools/genc
mn/gencmn.c

gencmn

Resource bundles .txt: 
icuhtml/design/bnf_rb.txt

.res: 
icu/source/common/ur
esdata.h

genrb

Unicode conversion 
mapping tables

.ucm: Conversion Data 
chapter

.cnv: 
icu/source/common/u
cnvmbcs.h

makeconv

Conversion (charset) 
aliases

icu/source/data/mappings
/convrtrs.txt: contains 
format description
 The command "uconv -l 
--canon" will also 
generate the alias table 
from the currently used 
copy of ICU.

cnvalias.icu: 
icu/source/common/u
cnv_io.c

gencnval

Unicode Character 
Data
(Properties)

icu/source/data/unidata/*.
txt: Unicode Character 
Database

uprops.icu: 
icu/source/tools/genpr
ops/store.c

genprops

Unicode Character 
Data
(Case mappings)

icu/source/data/unidata/*.
txt: Unicode Character 
Database

ucase.icu: 
icu/source/tools/genca
se/store.c

gencase

Unicode Character 
Data
(BiDi, and Arabic 
shaping)

icu/source/data/unidata/*.
txt: Unicode Character 
Database

ubidi.icu: 
icu/source/tools/genbi
di/store.c

genbidi

Unicode Character 
Data
(Normalization)

icu/source/data/unidata/*.
txt: Unicode Character 
Database

unorm.icu: 
icu/source/common/u
normimp.h

gennorm

Unicode Character 
Data
(Character names)

icu/source/data/unidata/U
nicodeData.txt: Unicode 
Character Database

unames.icu: 
icu/source/tools/genna
mes/gennames.c

gennames

Unicode Character 
Data
(Property [value] 
aliases)

icu/source/data/unidata/P
roperty*Aliases.txt: 
Unicode Character 
Database

pnames.icu: 
icu/source/common/pr
opname.h

genpname

399 ICU v3.8 User Guide

http://icu-project.org/apiref/icu4c/structUDataInfo.html#_details
http://www.unicode.org/cldr/
http://source.icu-project.org/repos/icu/icu/trunk/source/data/locales/


Files Source format Binary format Generator tool
Collation data
(UCA, code points 
to weights)

Original data from 
allkeys.txt in UTS #10 
Unicode Collation 
Algorithm
 processed into 
icu/source/data/unidata/Fr
actionalUCA.txt by tool 
at unicode.org maintained 
by Mark Davis (call the 
Main class with option 
writeFractionalUCA)

ucadata.icu: 
(icu/source/i18n/ucol_
imp.h)

genuca

Collation data
(Inverse UCA, 
weights->code 
points)

Processed from 
FractionalUCA.txt like 
ucadata.icu

invuca.icu: 
(icu/source/i18n/ucol_
imp.h)

genuca

Collation data
(Tailorings, code 
points->weights)

Source tailorings (text 
rules) in resource 
bundles: Collation 
Services Customization 
chapter

Binary tailorings in 
resource bundles: 
same format as 
ucadata.icu 
(icu/source/i18n/ucol_
imp.h)

genrb

Rule-based break 
iterator data

.txt: Boundary Analysis 
chapter

.brk: TBD 
(icu/source/common/r
bbidata.h)

genbrk

Rule-based 
transform 
(transliterator) data

.txt (in resource bundles): 
Transform Rule Tutorial 
chapter

Uses genrb to make 
binary format

Does not apply

Time zone data icu/source/data/misc/zone
info.txt: 
ftp://elsie.nci.nih.gov/pub
/tzdata<year>

zoneinfo.res 
(generated by genrb 
and 
source/tools/tzcode/tz.
pl)

Does not apply

StringPrep profile 
data

icu/source/data/misc/Na
mePrepProfile.txt

.spp: 
icu/source/tools/gensp
rep/store.c

gensprep

400 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icu/trunk/source/tools/genpname/
http://source.icu-project.org/repos/icu/icu/trunk/source/common/propname.h
http://source.icu-project.org/repos/icu/icu/trunk/source/common/propname.h
http://www.unicode.org/onlinedat/online.html
http://www.unicode.org/onlinedat/online.html
http://source.icu-project.org/repos/icu/icu/trunk/source/data/unidata/
http://source.icu-project.org/repos/icu/icu/trunk/source/data/unidata/
http://dev.icu-project.org/cgi-bin/viewcvs.cgi/icu/source/tools/gennames/
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/gennames/gennames.c
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/gennames/gennames.c
http://www.unicode.org/onlinedat/online.html
http://www.unicode.org/onlinedat/online.html
http://source.icu-project.org/repos/icu/icu/trunk/source/data/unidata/UnicodeData.txt
http://source.icu-project.org/repos/icu/icu/trunk/source/data/unidata/UnicodeData.txt
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/gennorm/
http://source.icu-project.org/repos/icu/icu/trunk/source/common/unormimp.h
http://source.icu-project.org/repos/icu/icu/trunk/source/common/unormimp.h
http://www.unicode.org/onlinedat/online.html
http://www.unicode.org/onlinedat/online.html
http://source.icu-project.org/repos/icu/icu/trunk/source/data/unidata/
http://source.icu-project.org/repos/icu/icu/trunk/source/data/unidata/
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/genbidi/
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/genbidi/store.c
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/genbidi/store.c
http://www.unicode.org/onlinedat/online.html
http://www.unicode.org/onlinedat/online.html
http://source.icu-project.org/repos/icu/icu/trunk/source/data/unidata/
http://source.icu-project.org/repos/icu/icu/trunk/source/data/unidata/
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/gencase/
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/gencase/store.c
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/gencase/store.c
http://www.unicode.org/onlinedat/online.html
http://www.unicode.org/onlinedat/online.html
http://source.icu-project.org/repos/icu/icu/trunk/source/data/unidata/
http://source.icu-project.org/repos/icu/icu/trunk/source/data/unidata/
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/genprops/
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/genprops/store.c
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/genprops/store.c
http://www.unicode.org/onlinedat/online.html
http://www.unicode.org/onlinedat/online.html
http://source.icu-project.org/repos/icu/icu/trunk/source/data/unidata/
http://source.icu-project.org/repos/icu/icu/trunk/source/data/unidata/
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/gencnval/
http://source.icu-project.org/repos/icu/icu/trunk/source/common/ucnv_io.c
http://source.icu-project.org/repos/icu/icu/trunk/source/common/ucnv_io.c
http://source.icu-project.org/repos/icu/icu/trunk/source/data/mappings/convrtrs.txt
http://source.icu-project.org/repos/icu/icu/trunk/source/data/mappings/convrtrs.txt
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/makeconv/
http://source.icu-project.org/repos/icu/icu/trunk/source/common/ucnvmbcs.h
http://source.icu-project.org/repos/icu/icu/trunk/source/common/ucnvmbcs.h
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/conversion-data.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/conversion-data.sxw
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/genrb/
http://source.icu-project.org/repos/icu/icu/trunk/source/common/uresdata.h
http://source.icu-project.org/repos/icu/icu/trunk/source/common/uresdata.h
http://source.icu-project.org/repos/icu/icuhtml/trunk/design/bnf_rb.txt
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/gencmn/
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/gencmn/gencmn.c
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/gencmn/gencmn.c


Packaging ICU
Overview

This chapter describes, for the advanced user, how to package ICU for distribution, 
whether alone or as part of an application.

Making ICU Smaller

The ICU project is intended to provide everything an application might need in order to 
process Unicode. However, in doing so, the results may become quite large on disk. A 
default build of ICU normally results in over 8 MB of data, and a substantial amount of 
object code. This section describes some techniques to reduce the size of ICU to only the 
items which are required for your application.

Reduce the number of libraries used

ICU consists of a number of different libraries. The library dependency chart can be used 
to understand and determine the exact set of libraries needed.

Disable ICU features

Certain features of ICU may be turned on and off through preprocessor defines. These 
switches are located in the file "uconfig.h", and disable the code for certain features from 
being built.

All of these switches are defined to '0' by default, unless overridden by the build 
environment, or by modifying uconfig.h itself.

Switch Name Library Effect if #defined to '1'
UCONFIG_ONLY_COLLATION common 

&  i18n

Turn off all other modules named here 
except collation and legacy conversion

UCONFIG_NO_LEGACY_CONVERSION common Turn off conversion apart from UTF, 
CESU-8, SCSU, BOCU-1, US-ASCII, 
and ISO-8859-1. Not possible to turn 
off legacy conversion on EBCDIC 
platforms.

UCONFIG_NO_BREAK_ITERATION common Turn off break iteration
UCONFIG_NO_COLLATION i18n Turn off collation and collation-based 

string search.

401 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icu/trunk/source/tools/gensprep/
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/gensprep/store.c
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/gensprep/store.c
http://source.icu-project.org/repos/icu/icu/trunk/source/data/misc/NamePrepProfile.txt
http://source.icu-project.org/repos/icu/icu/trunk/source/data/misc/NamePrepProfile.txt
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/tzcode/readme.txt
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/tzcode/readme.txt
ftp://elsie.nci.nih.gov/pub/
ftp://elsie.nci.nih.gov/pub/
http://source.icu-project.org/repos/icu/icu/trunk/source/data/misc/zoneinfo.txt
http://source.icu-project.org/repos/icu/icu/trunk/source/data/misc/zoneinfo.txt
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/TransformRule.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/TransformRule.sxw
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/genbrk/
http://source.icu-project.org/repos/icu/icu/trunk/source/common/rbbidata.h
http://source.icu-project.org/repos/icu/icu/trunk/source/common/rbbidata.h
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/boundaryAnalysis.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/boundaryAnalysis.sxw
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/genrb/
http://source.icu-project.org/repos/icu/icu/trunk/source/i18n/ucol_imp.h
http://source.icu-project.org/repos/icu/icu/trunk/source/i18n/ucol_imp.h
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/Collate_Customization.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/Collate_Customization.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/Collate_Customization.sxw
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/genuca/
http://source.icu-project.org/repos/icu/icu/trunk/source/i18n/ucol_imp.h
http://source.icu-project.org/repos/icu/icu/trunk/source/i18n/ucol_imp.h
http://source.icu-project.org/repos/icu/icu/trunk/source/tools/genuca/
http://source.icu-project.org/repos/icu/icu/trunk/source/i18n/ucol_imp.h
http://source.icu-project.org/repos/icu/icu/trunk/source/i18n/ucol_imp.h
http://unicode.org/dead-link-placeholder.html
http://unicode.org/dead-link-placeholder.html
http://unicode.org/dead-link-placeholder.html
http://source.icu-project.org/repos/icu/icu/trunk/source/data/unidata/FractionalUCA.txt
http://source.icu-project.org/repos/icu/icu/trunk/source/data/unidata/FractionalUCA.txt
http://www.unicode.org/reports/tr10/#AllKeys
http://www.unicode.org/reports/tr10/#AllKeys
http://www.unicode.org/reports/tr10/#AllKeys


Switch Name Library Effect if #defined to '1'
UCONFIG_NO_FORMATTING i18n Turn off all formatting (date, time, 

number, etc), and calendar/timezone 
services.

UCONFIG_NO_TRANSLITERATION i18n Turn off script-to-script transliteration
UCONFIG_NO_REGULAR_EXPRESSIONS i18n Turn off the regular expression 

functionality

These switches do not necessarily disable data generation. For example,  
disabling formatting does not prevent formatting data from being built into the 
resource bundles. See the section on ICU data, for information on changing data 
packaging.

Using UCONFIG switches with Environment Variables

This method involves setting an environment variable when ICU is built. For example, on 
a POSIX-like platform, settings may be chosen at the point runConfigureICU is run:

env CPPFLAGS="-DUCONFIG_NO_COLLATION=1 -DUCONFIGU_NO_FORMATTING=1" \
   runConfigureICU SOLARISCC ...

Note that when end-user code is compiled, it must also have the same CPPFLAGS set, or 
else calling some functions may result in a link failure.

Using UCONFIG switches by changing uconfig.h

This method involves modifying the source file 
icu/source/common/unicode/uconfig.h directly, before ICU is built. It has the 
advantage that the configuration change is propagated to all clients who compile against 
this build of ICU, however the altered file must be tracked when the next version of ICU 
is installed.

Modify 'uconfig.h' to add the following lines before the first #ifndef UCONFIG_... 
section

#ifndef UCONFIG_NO_COLLATION
#define UCONFIG_NO_COLLATION 1
#enddif
#ifndef UCONFIG_NO_FORMATTING
#define UCONFIG_NO_FORMATTING 1
#endif

402 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/design.sxw#depchart


Reduce ICU Data used

There are many ways in which ICU data may be reduced. If only certain locales or 
converters will be used, others may be removed. Additionally, data may be packaged as 
individual files or interchangeable archives (.dat files), allowing data to be installed and 
removed without rebuilding ICU. For details, see the ICU Data chapter. 

ICU Versions

(This section assumes the reader is familiar with ICU version numbers as covered in the 
Design chapter, and filename conventions for libraries in the ReadMe.)

POSIX Library Names

The following table gives an example of the dynamically linked library and symbolic 
links built by ICU for the common ('uc') library, version 5.4.3, for Linux

File Links to Purpose
libicuuc.so libicuuc.so.54.3 Required for link: Applications compiled with 

'-licuuc' will follow this symlink.
libicuuc.so.54 libicuuc.so.54.3 Required for runtime: This name is what 

applications actually link against.
libicuuc.so.54.3 Actual library Required for runtime and link. Contains the 

name 'libicuuc.so.54'.

This discussion gives Linux as an example, but it is typical for most platforms, of  
which AIX and 390 (zOS) are exceptions.

An application compiled with '-licuuc' will follow the symlink from libicuuc.so to 
libicuuc.so.54.3, and will actually read the file libicuuc.so.54.3. (fully qualified). This 
library file has an embedded name (SONAME) of libicuuc.so.54, that is, with only the 
major and minor number. The linker will write this name into the client application, 
because Binary compatibility is for versions that share the same major+minor number.

403 ICU v3.8 User Guide



If ICU version 5.4.7 is subsequently installed, the following files may be updated.

File Links to Purpose
libicuuc.so libicuuc.so.54.7 Required for link: Newly linked applications 

will follow this link, which should not cause 
any functional difference at link time.

libicuuc.so.54 libicuuc.so.54.7 Required for runtime: Because it now links to 
version .7, existing applications linked to 
version 5.4.3 will follow this link and use the 
5.4.7 code.

libicuuc.so.54.7 Actual library Required for runtime and link. Contains the 
name 'libicuuc.so.54'.

If ICU version 5.6.3 or 3.2.9 were installed, they would not affect already-linked 
applications, because the major+minor numbers are different - 56 and 32, respectively, as 
opposed to 54. They would, however, replace the link 'libicuuc.so', which controls which 
version of ICU newly-linked applications use.

In summary, what files should an application distribute in order to include a functional 
runtime copy of ICU 5.4.3? The above application should distribute libicuuc.so.54.3 
and the symbolic link libicuuc.so.54. (If symbolic links pose difficulty, 
libicuuc.so.54.3 may be renamed to libicuuc.so.54, and only libicuuc.so.54 distributed. 
This is less informative, but functional.)

POSIX Library suffix

The --with-library-suffix option may be used with runConfigureICU or configure, 
to distinguish on disk specially modified versions of ICU. For example, the option --
with-library-suffix=myapp will produce libraries with names such as 
libicuucmyapp.so.54.3, thus preventing another ICU user from using myapp's custom 
ICU libraries.

While two or more versions of ICU may be linked into the same application as long as the 
major and minor numbers are different, changing the library suffix is not sufficient to 
allow the same version of ICU to be linked. In other words, linking ICU 5.4.3, 5.6.3, and 
3.2.9 together is allowed, but 5.4.3 and 5.4.7 may not be linked together, nor may 5.4.3 
and 5.4.3-myapp be linked together.

404 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icu/trunk//readme.html#HowToPackage
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/design.sxw#version
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/icudata.sxw


Windows library names

Assuming ICU version 5.4.3, Windows library names will follow this pattern:

File Purpose
icuuc.lib Release Link-time library. Needed for development. Contains 

'icuuc54.dll' name internally.
icuuc54.dll Release runtime library. Needed for runtime.
icuucd.lib Debug link-time library

(The 'd' suffix indicates debug)
icuuc54d.dll Debug runtime library. 

Debug applications must be linked with debug libraries, and release applications with 
release libraries. 

When a new version of ICU is installed, the .lib files will be replaced so as to keep new 
compiles in sync with the newly installed header files, and the latest DLL. As well, if the 
new ICU version has the same major+minor version (such as 5.4.7), then DLLs will be 
replaced, as they are binary compatible. However, if an ICU with a different major+minor 
version is installed, such as 5.5, then new DLLs will be copied with names such as 
'icuuc55.dll'.

405 ICU v3.8 User Guide



Java Native Interface (JNI) 
Overview

ICU4JNI is a subproject of ICU for Java™ (ICU4J). ICU4JNI provides full conformance 
with Unicode 3.1.1, enhanced functionality, increased performance, better cross language, 
and increased cross platform stability of results. ICU4JNI also provides greater flexibility, 
customization, and access to certain ICU4C native services from Java using the Java 
Native Interface (JNI). Currently, the following services are accessible through JNI:

1. Character Conversion 

2. Collation

3. Normalization

Character Conversion

Character conversion is the conversion of bytes in one charset specification to another. 
One of the problems in character conversion is that the mappings vary and are imprecise 
across various platforms. For example, the results of a conversion for a Shift-JIS byte 
stream to Unicode on an IBM® platform will not match the conversion on a Sun® Solaris 
platform. This service is useful in a situation where an application is multi-language and 
cannot afford differences in conversion output. It can also be used when an application 
requires a higher level of customization and flexibility of character conversion. The 
requirement for realizing performance gains is that the buffers passed to the converters 
should be large enough to offset the JNI overhead.

Conversion service can be accessed through the following APIs:

CharToByteConverterICU and ByteToCharConverterICU classes in the 
com.ibm.icu4jni converters package. These classes inherit from the 
CharToByteConverter and the ByteToCharConverter classes in the 
com.sun.converters package. This interface is limited in its functionality since the 
public conversion APIs like String, InputStream, and OutputStream cannot access ICU's 
converters unless the converters are integrated into the Java Virtual Machine (JVM). 
However, this requires access to JVM's source code ( please refer to the Readme for more 
information). If operations on byte arrays and char arrays can be afforded by the 
application (instead of relying on the Java API's conversion routines), then ICU's classes 
provide methods to instantiate converter objects and to perform the conversion. The 
following example shows this conversion: 

try{
     CharToByteConverter cbConv =
CharToByteConverterICU.createConverter("gb-18030");
     char[] source = { '\u9001','\u3005','\u6458'} ;
     byte[] result =  new byte[source.length * cbConv.getMaxBytesPerChar()];
     cbConv.convert(source, 0, source.length,result,0,result.length);

406 ICU v3.8 User Guide



}catch(Exception e){
... //do something interesting
}

The Charset, CharsetEncoderICU, CharsetDecoderICU, and CharsetProviderICU 
classes in the com.ibm.icu4jni.charset package. In Java 1.4, a new public API for 
character conversions will be added to provide a method for third party implementers to 
plug in their converters and enable the other public APIs to use them as well. ICU4JNI's 
classes are based on this new character conversion API. The following example uses 
ICU4JNI's classes: 

try{
     Charset cs = Charset.forName("gb-18030");
     char[] source = { '\u9001','\u3005','\u6458'} ;
     CharBuffer cb = CharBuffer.wrap(source);
     ByteBuffer result = cs.encode(cb)
}catch(Exception e){
... //do something interesting
}
ByteBuffer bb = ByteBuffer.allocate(cs.newEncoder().maxBytesPerChar()));

try{
     Charset cs = Charset.forName("gb-18030");
     CharsetEncoder encoder = cs.newEncoder();
     char[] source = { '\u9001','\u3005','\u6458'} ;
     CharBuffer cb = CharBuffer.wrap(source);
     ByteBuffer bb = ByteBuffer.allocate(cs.newEncoder().maxBytesPerChar()));
     
     for (i=0; i<=temp.length; i++) {
         cb.limit(i);
         CoderResult result = encoder.encode(cb,bb,false);
     }
}catch(Exception e){
... //do something interesting
}

For more information on character conversion, see the ICU Conversion chapter. 

Collation

Collation service provided by ICU is fully Unicode Collation Algorithm (UCA) and ISO 
14651 compliant. The following lists some of the advantages of the ICU collation service 
over Java:

The following demonstrates how to create a collator:

try{
     Collator coll = Collator.createInstance(Locale("en", "US"));
}catch(ParseException e){
... //do something interesting
}

407 ICU v3.8 User Guide



The following demonstrates how to compare strings: 

try{
     Collator coll = Collator.createInstance(Locale("th", "TH"));
     String jp1 = new String("\u0e01");
     String jp2 = new String("\u0e01\u0e01");
     if(coll.compare(jp1,jp2)==Collator.RESULT_LESS){
            ...//compare succeeded do something
     }else{
            ...//failed do something
     }
}catch(ParseException e){
... //do something interesting
}

Normalization

Normalization converts text into a unique, equivalent form. Systems can normalize 
Unicode-encoded text into one particular sequence, such as normalizing composite 
character sequences into pre-composed characters. The semantics and use are similar to 
ICU4J Normalization service, except for character iteration functionality. 

The following demonstrates how to use a normalizer: 

try{
     String source = "\u00e0ardvark";
     String decomposed = "a\u0300ardvark";
     String composed =   "\u00e0ardvark";
     If(Normalizer.normalize(source,Normalizer.UNORM_NFC).equals(composed){
            ...// do something interesting
     }
     if(Normalizer.normalize(source,Normalizer.UNORM_NFD).equals(decomposed){
               ...// do something interesting
     }
}catch(ParseException e){
... //do something interesting
}

408 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/Collate_Concepts.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/conversion.sxw


How To Use ICU4C From COBOL
Overview

This document describes how to use ICU functions within a COBOL program. It is 
assumed that the programmer understands the concepts behind ICU, and is able to 
identify which ICU APIs are appropriate for his/her purpose. The programmer must also 
understand the meaning of the arguments passed to these APIs and of the returned value, 
if any. This is all explained in the ICU documentation, although in C/C++ style. This 
document’s objective is to facilitate the adaptation of these explanations to COBOL 
syntax.  

It must be understood that the packaging of ICU data and executable code into libraries is 
platform dependent. Consequently, the calling conventions between COBOL programs 
and the C/C++ functions in ICU may vary from platform to platform. In a lesser way, the 
C/C++ types of arguments and return values may have different equivalents in COBOL, 
depending on the platform and even the specific COBOL compiler used. 

This document is supplemented with three sample programs illustrating using ICU APIs 
for code page conversion, collation and normalization. Description of the sample 
programs appears in the appendix at the end of this document. 

ICU API invocation in COBOL

• Invocation of ICU APIs is done with the COBOL “CALL” statement. 

• Variables, pointers and constants appearing in ICU *.H files (for C/C++) must be 
defined in the WORKING-STORAGE section for COBOL. 

• Arguments to a C/C++ API translate into arguments to a COBOL CALL statement, 
passed by value or by reference as will be detailed below. 

• For a C/C++ API with a non-void return value, the RETURNING clause will be used 
for the CALL statement. 

• Character string arguments to C/C++ must be null-terminated. In COBOL, this means 
using the Z“xxx” format for literals, and adding X“00” at the end of the content of 
variables. 

• Special consideration must be given when a pointer is the value returned by an API, 
since COBOL implements a more limited concept of pointers than C/C++. How to 
handle this case will be explained below. 

COBOL and C/C++ Data Types

The following table (extracted from IBM VisualAge COBOL documentation) shows the 
correspondence between the data types available in COBOL and C/C++. 

409 ICU v3.8 User Guide



Parts of identifier names in Cobol are separated by ‘-’, not by ‘_’ like in C. 

C/C++ data types COBOL data types 
wchar_t DISPLAY-1 (PICTURE N, G)

 
 wchar_t is the processing code whereas 
DISPLAY-1 is the file code. 

char PIC X. 
signed char No appropriate COBOL equivalent. 
unsigned char No appropriate COBOL equivalent. 
short signed int PIC S9-S9(4) COMP-5. Can beCOMP, 

COMP-4, or BINARY if you use the 
TRUNC(BIN) compiler option. 

short unsigned int PIC 9-9(4) COMP-5. Can be COMP, 
COMP-4, or BINARY if you use the 
TRUNC(BIN) compiler option. 

long int PIC 9(5)-9(9) COMP-5. Can be COMP, 
COMP-4, or BINARY if you use the 
TRUNC(BIN) compiler option. 

long long int PIC 9(10)-9(18) COMP-5. Can be 
COMP, COMP-4, or BINARY if you use the 
TRUNC(BIN) compiler option. 

float COMP-1. 
double COMP-2. 
enumeration Equivalent to level 88, but not identical. 
char(n) PICTURE X(n). 
array pointer (*) to type No appropriate COBOL equivalent. 
pointer(*) to function PROCEDURE-POINTER. 

A number of C definitions specific to ICU (and many other compilers on POSIX 
platforms) that are not presented in the table above can also be translated into COBOL 
definitions. 

C/C++ data types COBOL data types 
int8_t PIC X. Not really equivalent. 
uint8_t PIC X. Not really equivalent. 
int16_t PIC S9(4) BINARY. Can beCOMP, COMP-4, 

or BINARY if you use the TRUNC(BIN) 
compiler option. 

410 ICU v3.8 User Guide

http://icu-project.org/files/samples/ICU-COBOL.zip


C/C++ data types COBOL data types 
uint16_t PIC 9(4) BINARY. Can beCOMP, COMP-4, 

or BINARY if you use the TRUNC(BIN) 
compiler option. 

int32_t PIC S9(9) COMP-5. Can be COMP, COMP-4, 
or BINARY if you use the TRUNC(BIN) 
compiler option. 

uint32_t PIC 9(9) COMP-5. Can be COMP, COMP-4, 
or BINARY if you use the TRUNC(BIN) 
compiler option. 

Uchar PIC 9(4) BINARY. Can beCOMP, COMP-4, 
or BINARY if you use the TRUNC(BIN) 
compiler option. 

Uchar32 PIC 9(9) COMP-5. Can be COMP, COMP-4, 
or BINARY if you use the TRUNC(BIN) 
compiler option. 

UNormalizationMode PIC S9(9) COMP-5. Can be COMP, COMP-4, 
or BINARY if you use the TRUNC(BIN) 
compiler option. 

UerrorCode PIC S9(9) COMP-5. Can be COMP, COMP-4, 
or BINARY if you use the TRUNC(BIN) 
compiler option. 

pointer(*) to object
 (e.g. Uconverter *) 

PIC S9(9) COMP-5. Can be COMP, COMP-4, 
or BINARY if you use the TRUNC(BIN) 
compiler option. 

Windows Handle PIC S9(9) COMP-5. Can be COMP, COMP-4, 
or BINARY if you use the TRUNC(BIN) 
compiler option. 

Enumerations (first possibility)

C Enumeration types do not translate very well into COBOL. There are two possible 
ways to simulate these enumerations. 

C example

    typedef enum {
        /** No decomposition/composition. @draft ICU 1.8 */
        UNORM_NONE = 1,
        /** Canonical decomposition. @draft ICU 1.8 */
        UNORM_NFD = 2,
        . . .

411 ICU v3.8 User Guide



    } UNormalizationMode;

COBOL example

    WORKING-STORAGE section.
    *--------------- Ported from unorm.h ------------
    *  enum UNormalizationMode {
    77  UNORM-NONE        PIC
    S9(9)   Binary value 1.
    77  UNORM-NFD        PIC
    S9(9)   Binary value 2.
        …

Enumerations (second possibility)

C example

    /*==== utypes.h ========*/
    typedef enum UErrorCode {
        U_USING_FALLBACK_WARNING  = -128,  /* (not an error) */
        U_USING_DEFAULT_WARNING   = -127,  /* (not an error) */
        . . .
    } UErrorCode;

COBOL example

    *==== utypes.h ========
     01 UerrorCode           PIC S9(9) Binary value 0.
    *    A resource bundle lookup returned a fallback
    *            (not an error)
       88  U-USING-FALLBACK-WARNING     value -128.
    *            (not an error)
       88  U-USING-DEFAULT-WARNING      value -127.
       . . .

Call statement, calling by value or by reference

In general, arguments defined in C as pointers (‘*’) must be listed in the COBOL Call 
statement with the using by reference clause. Arguments which are not pointers must be 
transferred with the using by value clause. The exception to this requirement is when an 
argument is a pointer which has been assigned to a COBOL variable (e.g. as a value 
returned by an ICU API), then it must be passed by value. For instance, a pointer to a 
Converter passed as argument to conversion APIs. 

Conversion Declaration Examples

C (API definition in *.h file)

412 ICU v3.8 User Guide



   /*--------------------- UCNV.H ---------------------------*/
    U_CAPI int32_t U_EXPORT2
    ucnv_toUChars(UConverter * cnv,
                  UChar * dest,
                  int32_t destCapacity,
                  const char * src,
                  int32_t srcLength,
                  UErrorCode * pErrorCode);

COBOL

    PROCEDURE DIVISION.
             Call API-Pointer using
                         by value     Converter-toU-Pointer
                         by reference Unicode-Input-Buffer
                         by value     destCapacity
                         by reference Input-Buffer
                         by value     srcLength
                         by reference UErrorCode
                         Returning    Text-Length.

Call statement, Returning clause

Returned value is Pointer or Binary

C (API definition in *.h file)

    U_CAPI UConverter * U_EXPORT2
    ucnv_open(const char * converterName,
              UErrorCode * err);

COBOL

    WORKING-STORAGE section.
      01  Converter-Pointer  PIC S9(9) BINARY.
    PROCEDURE DIVISION
         Move Z"iso-8859-8" to converterNameSource.
    . . .
         Call API-Pointer using
                     by reference  converterNameSource
                     by reference  UErrorCode
                     Returning     Converter-Pointer.

Returned value is a Pointer to string

If the returned value in C is a string pointer (‘char *’), then in COBOL we must use a 
pointer to string defined in the Linkage section. 

C ( API definition in *.h file)

413 ICU v3.8 User Guide



    U_CAPI const char * U_EXPORT2
    ucnv_getAvailableName(int32_t n);

COBOL

    DATA DIVISION.
    WORKING-STORAGE section.
      01  Converter-Name-Link-Pointer     Usage is Pointer.
    LINKAGE section.
      01  Converter-Name-Link.
        03 Converter-Name-String           pic X(80).
    PROCEDURE DIVISION using Converter-Name-Link.
           Call API-Pointer  using by value Converters-Index
              Returning       Converter-Name-Link-Pointer.
           SET  Address of Converter-Name-Link
                       to Converter-Name-Link-Pointer.
    . . .
           Move Converter-Name-String  to Debug-Value.

How to invoke ICU APIs

Inter-language communication is often problematic. This is certainly the case when 
calling C/C++ functions from COBOL, because of the very different roots of the two 
languages. How to invoke the ICU APIs from a COBOL program is likely to depend on 
the operating system and even on the specific compilers in use. The section below deals 
with COBOL to C calls on a Windows platform. Similar sections should be added for 
other platforms. 

Windows platforms

The following instructions were tested on a Windows 2000 platform, with the IBM 
VisualAge COBOL compiler and the Microsoft Visual C/C++ compiler. 

For Windows, ICU APIs are normally packaged as DLLs (Dynamic Load Libraries). For 
technical reasons, COBOL calls to C/C++ functions need to be done via dynamic loading 
of the DLLs at execution time (load on call). 

The COBOL program must be compiled with the following compiler options: 

    * options CBL PGMNAME(MIXED) CALLINT(SYSTEM) NODYNAM

In order to call an ICU API, two preparation steps are needed: 

• Load in memory the DLL which contains the API 

• Get the address of the API 

For performance, it is better to perform these steps once before the first call and to save 
the returned values for future use (the sample programs get the address of APIs for each 
call, for the sake of logging; production programs should get the address once and reuse it 

414 ICU v3.8 User Guide



as many times as needed). 

When no more APIs from a DLL are needed, the DLL should be unloaded in order to free 
the associated memory. 

Load DLL Into Memory

This is done as follows: 

    Call "LoadLibraryA" using by reference    DLL-Name
                              Returning        DLL-Handle.
    IF DLL-Handle = ZEROS
        Perform error handling. . .

Return value:         DLL Handle, defined as  PIC S9(9) BINARY
 Input Value:          DLL Name (null-terminated string) 

Errors may happen if the DLL name is not correct, or the string is not null-terminated, or 
the DLL file is not available (in the current directory or in a directory included in the 
PATH system variable). 

Get API address

This is done as follows: 

    Call "GetProcAddress" using by value      DLL-Handle
                                by reference  API-Name
                                Returning     API-Pointer.
    IF API-Pointer = NULL
        Perform error handling. . .

Return value:         API address, defined as  PROCEDURE-POINTER
 Input Value:          DLL Handle (returned by call to LoadLibraryA)
                              Procedure Name (null-terminated string) 

Errors may happen if the API name is not correct (remember that API names are case-
sensitive), or the string is not null-terminated, or the API is not included in the specified 
DLL. If the API pointer is not null, the call to the API is done with following according to 
the arguments and return value of the API. 

    Call API-Pointer using . . .   returning . . .

After calling an API, the returned error code should be checked when relevant. Code to 
check for error conditions is illustrated in the sample programs. 

Unload DLL from Memory

This is done as follows: 

    Call "FreeLibrary" using DLL-Handle.

415 ICU v3.8 User Guide



Return value:         none
 Input Value:          DLL Handle (returned by call to LoadLibraryA) 

Sample Programs

Three sample programs are supplied with this document. The sample programs were 
developed on and for a Windows 2000 platform. Some adaptations may be necessary for 
other platforms 

Before running the sample programs, you must perform the following steps: 

• Install the version of ICU appropriate for your platform 

• Build ICU libraries if needed (see the ICU Readme file) 

• Make the libraries accessible (for instance on Windows systems, add the directory 
containing the libraries to the PATH system variable) 

• Compile the sample programs with appropriate compiler options 

• Copy the test files to a work directory 

Each program is supplied with input test files and with a model log file. If the log file that 
you create by running a sample program is equivalent to the model log file, your setup is 
probably correct. 

The three sample programs focus each on a certain ICU area of functionality: 

• Conversion 

• Collation 

• Normalization 

Conversion sample program

* The sample program includes the following steps:
* - Display the names of the converters from a list of all
*         converters contained in the alias file.
* - Display the current default converter name.
* - Set new default converter name.
*
* - Read a string from Input file "ICU_Conv_Input_8.txt"
*         (File in UTF-8 Format)
* - Convert this string from UTF-8 to code page iso-8859-8
* - Write the result to output file "ICU_Conv_Output.txt"
*
* - Read a line from Input file "ICU_Conv_Input.txt"
*         (File in ANSI Format, code page 862)
* - Convert this string from code page ibm-862 to UTF-16
* - Convert the resulting string from UTF-16 to code page windows-1255
* - Write the result to output file "ICU_ Conv_Output.txt"
* - Write debugging information to Display and
*         log file "ICU_Conv_Log.txt" (File in ANSI Format)
* - Repeat for all lines in Input file
**
* The following ICU APIs are used:

416 ICU v3.8 User Guide



*    ucnv_countAvailable
*    ucnv_getAvailableName
*    ucnv_getDefaultName
*    ucnv_setDefaultName
*    ucnv_convert
*    ucnv_open
*    ucnv_toUChars
*    ucnv_fromUChars
*    ucnv_close

The ucnv_xxx APIs are documented in file "UCNV.H". 

Collation sample program

* The sample program includes the following steps:
* - Read a string array from Input file "ICU_Coll_Input.txt"
*         (file in ANSI format)
* - Convert string array from code page into UTF-16 format
* - Compare the string array into the canonical composed
* - Perform bubble sort of string array, according
*         to Unicode string equivalence comparisons
* - Convert string array from Unicode into code page format
* - Write the result to output file "ICU_Coll_Output.txt"
*         (file in ANSI format)
* - Write debugging information to Display and
*         log file "ICU_Coll_Log.txt" (file in ANSI format)
**
* The following ICU APIs are used:
*    ucol_open
*    ucol_strcoll
*    ucol_close
*    ucnv_open
*    ucnv_toUChars
*    ucnv_fromUChars
*    ucnv_close

The ucol_xxx APIs are documented in file "UCOL.H".
 The ucnv_xxx APIs are documented in file "UCNV.H". 

Normalization sample program

* The sample includes the following steps:
* - Read a string from input file "ICU_NORM_Input.txt"
*         (file in ANSI format)
* - Convert the string from code page into UTF-16 format
* - Perform quick check on the string, to determine if the
*         string is in NFD (Canonical decomposition)
*         normalization format.
* - Normalize the string into canonical composed form
*         (FCD and decomposed)
* - Perform quick check on the result string, to determine
*         if the string is in NFD normalization form
* - Convert the string from Unicode  into the code page format
* - Write the result to output file "ICU_NORM_Output.txt"
*         (file in ANSI format)
* - Write debugging information to Display and
*         log file "ICU_NORM_Log.txt" (file in ANSI format)
**
* The following ICU APIs are used:
*    ucnv_open
*    ucnv_toUChars
*    unorm_normalize

417 ICU v3.8 User Guide



*    unorm_quickCheck
*    ucnv_fromUChars
*    ucnv_close

The unorm_xxx APIs are documented in file "UNORM.H".
 The ucnv_xxx APIs are documented in file "UCNV.H". 

418 ICU v3.8 User Guide



Coding Guidelines
Overview

This section provides the guidelines for developing C and C++ code, based on the coding 
conventions used by ICU programmers in the creation of the ICU library.

• Details about ICU Error Codes   discusses how a pointer or reference is passed into the 
UErrorCode variable.

• C and C++ Coding Conventions Overview   describes the coding guidelines that the 
ICU group uses for C and C++ coding.

• Java Coding Conventions Overview   describes the coding guidelines that the ICU 
group uses for Java coding.

• Standard Quoting in ICU   discusses where and how quoting methods can be applied in 
ICU.

• Adding .c, .cpp and .h files to ICU   discusses how to add compilable files to ICU and 
the build environment.

• Test Suite Notes   discusses the testing services for the ICU C API.

• IntlTest Test Suite Documentation   discusses the testing services for the ICU C++ API.

• Binary Data Formats   explains how to design portable data file formats

Details about ICU Error Codes

When calling an ICU API function and an error code pointer (C) or reference (C++), a 
UErrorCode variable is often passed in. This variable is allocated by the caller and must 
pass the test U_SUCCESS() before the function call. Otherwise, the function will not work. 
Normally, an error code variable is initialized by U_ZERO_ERROR. 

UErrorCode is passed around and used this way, instead of using C++ exceptions for the 
following reasons:

• It is useful in the same form for C also

• Some C++ compilers do not support exceptions

419 ICU v3.8 User Guide



This error code mechanism, in fact, works similar to exceptions. If users call  
several ICU functions in a sequence, as soon as one sets a failure code, the 
functions in the following example will not work.     This procedure prevents the 
API function from processing data that is not valid in the sequence of function 
calls and relieves the caller from checking the error code after each call. It is  
somewhat similar to how an exception terminates a function block or try block 
early.

The following code shows the inside of an ICU function implementation:

U_CAPI const UBiDiLevel * U_EXPORT2
ubidi_getLevels(UBiDi *pBiDi, UErrorCode *pErrorCode) {
    int32_t start, length;
    if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
        return NULL;
    } else if(pBiDi==NULL || (length=pBiDi->length)<=0) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return NULL;
    }
    ...
    return result;
}
  

Warning Codes

Some UErrorCode values do not indicate a failure but an additional informational return 
value. Their enum constants have the _WARNING suffix and they pass the U_SUCCESS() 
test.

However, experience has shown that they are problematic: They can get lost easily 
because subsequent function calls may set their own "warning" codes or may reset a 
UErrorCode to U_ZERO_ERROR.

The source of the problem is that the UErrorCode mechanism is designed to mimic 
C++/Java exceptions. It prevents ICU function execution after a failure code is set, but 
like exceptions it does not work well for non-failure information passing.

Therefore, we recommend to use warning codes very carefully:

• Try not to rely on any warning codes.

• Use real APIs to get the same information if possible.
 For example, when a string is completely written but cannot be NUL-terminated, then 
U_STRING_NOT_TERMINATED_WARNING indicates this, but so does the returned 
destination string length (which will have the same value as the destination capacity in 
this case). Checking the string length is safer than checking the warning code. (It is 
even safer to not rely on NUL-terminated strings but to use the length.)

• If warning codes must be used, then the best is to set the UErrorCode to 
U_ZERO_ERROR immediately before calling the function in question, and to check for 
the expected warning code immediately after the function returns.

420 ICU v3.8 User Guide



Future versions of ICU will not introduce new warning codes, and will provide real API 
replacements for all existing warning codes.

C and C++ Coding Conventions Overview

The ICU group uses the following coding guidelines to create software using the ICU 
C++ classes and methods as well as the ICU C methods.

• C and C++ Coding Guidelines   discusses the type and format convention guidelines for 
C and C++

• Memory Usage   provides an overview for ICU's memory usage design.

• C++ Coding Guidelines   discusses the software writing guidelines for C++.

• C Coding Guidelines   discusses the software writing guidelines for C.

C and C++ Type and Format Convention Guidelines

The following C and C++ type and format conventions are used to maximize portability 
across platforms and to provide consistency in the code:

Constants (#define, enum items, const)

Use uppercase letters for constants. For example, use UBREAKITERATOR_DONE, 
UBIDI_DEFAULT_LTR, ULESS.

Variables and Functions

Use mixed-case letters that start with a lowercase letter for variables and functions. For 
example, use getLength().

Types (class, struct, enum, union)

Use mixed-case that start with an uppercase letter for types. For example, use class 
DateFormatSymbols

Function Style

Use the getProperty() and setProperty() style for functions where a lowercase letter 
begins the first word and the second word is capitalized without a space between it and 
the first word. For example, UnicodeString getSymbol(ENumberFormatSymbol 
symbol), void setSymbol(ENumberFormatSymbol symbol, UnicodeString value) 

421 ICU v3.8 User Guide



and getLength(), getSomethingAt(index/offset).

Common Parameter Names

In order to keep function parameter names consistent, the following are recommendations 
for names or suffixes (usual "Camel case" applies):

• "start": the index (of the first of several code units) in a string or array

• "limit": the index (of the first code unit after a specified range) in a string or array 
(the number of units are (limit-start))

• name the length (for the number of code units in a (range of a) string or array) either 
"length" or "somePrefixLength"

• name the capacity (for the number of code units available in an output buffer) either 
"capacity" or "somePrefixCapacity"

Order of Source/Destination Arguments

Many ICU function signatures list source arguments before destination arguments, as is 
common in C++ and Java APIs. This is the preferred order for new APIs. (Example: 
ucol_getSortKey(const UCollator *coll, const UChar *source, int32_t 
sourceLength, uint8_t *result, int32_t resultLength))

Some ICU function signatures list destination arguments before source arguments, as is 
common in C standard library functions. This should be limited to functions that closely 
resemble such C standard library functions or closely related ICU functions. (Example: 
u_strcpy(UChar *dst, const UChar *src))

Order of Include File Includes

Include system header files (like <stdio.h>) before ICU headers followed by application-
specific ones. This assures that ICU headers can use existing definitions from system 
headers if both happen to define the same symbols. In ICU files, all used headers should 
be explicitly included, even if some of them already include others.

Pointer Conversions

Do not cast pointers to integers or integers to pointers. Also, do not cast between data 
pointers and function pointers. This will not work on some compilers, especially with 
different sizes of such types. Exceptions are only possible in platform-specific code 
where the behavior is known.

Returning a Number of Items

To return a number of items, use countItems(), not getItemCount(), even if there is 

422 ICU v3.8 User Guide



no need to actually count using that member function. 

Ranges of Indexes

Specify a range of indexes by having start and limit parameters with names or suffix 
conventions that represent the index. A range should contain indexes from start to limit-1 
such as an interval that is left-closed and right-open. Using mathematical notation, this is 
represented as: [start..limit[.

Functions with Buffers

Set the default value to -1 for functions that take a buffer (pointer) and a length argument 
with a default value so that the function determines the length of the input itself (for text, 
calling u_strlen()). Any other negative or undefined value constitutes an error.

Primitive Types

Primitive types are defined by a utypes.h file or a header file that includes other header 
files. The most common types are uint8_t, uint16_t, uint32_t, int8_t, int16_t, 
int32_t, UChar (unsigned, 16-bit), UChar32, and UErrorCode.

File Names (.h, .c, .cpp, data files if possible, etc.)

Use the 8.3 standard with all characters in lowercase for file names.

Language Extensions and Standards

Proprietary features, language extensions, or library functions, must not be used because 
they will not work on all C or C++ compilers.
In Microsoft Visual C++, go to Project Settings(alt-f7)->All Configurations-> C/C++-
>Customize and check Disable Language Extensions.

Tabs and Indentation

Save files with spaces instead of tab characters (\x09). The indentation size is 4.

Documentation

Use Java doc-style in-file documentation created with doxygen.

Multiple Statements

Place multiple statements in multiple lines. if() or loop heads must not be followed by 
their bodies on the same line.

423 ICU v3.8 User Guide



Placements of {} Curly Braces

Place curly braces {} in reasonable and consistent locations. Each of us subscribes to 
different philosophies. It is recommended to use the style of a file, instead of mixing 
different styles. It is requested, however, to not have if() and loop bodies without curly 
braces.

if() {...} and Loop Bodies

Use curly braces for if() and else as well as loop bodies, etc., even if there is only one 
statement.

Function Declarations

Have one line that has the return type and place all the import declarations, extern 
declarations, export declarations, the function name, and function signature at the 
beginning of the next line. For example, use the following convention:

U_CAPI int32_t U_EXPORT2
u_formatMessage(...);

The U_CAPI and U_EXPORT2 qualifiers are required for both the declaration and 
the definiton of the function.
Use U_CAPI before and U_EXPORT2 after the return type of exported C functions.  
Internal functions that are visible outside a compilation unit need a U_CFUNC 
before the return type.

Use Static For File Scope

Use static for variables, functions, and constants that are not exported explicitly by a 
header file. Some platforms are confused if non-static symbols are not explicitly declared 
extern. These platforms will not be able to build ICU nor link to it.

Using C Callbacks From C++ Code

z/OS and Windows COM wrappers around ICU need __cdecl for callback functions. The 
reason is that C++ can have a different function calling convention from C. These 
callback functions also usually need to be private. So the following code

UBool
isAcceptable(void * /* context */,
             const char * /* type */, const char * /* name */,
             const UDataInfo *pInfo)
{
    // Do something here.
}

424 ICU v3.8 User Guide

http://www.doxygen.org/


should be changed to look like the following by adding U_CDECL_BEGIN, static, 
U_CALLCONV and U_CDECL_END.

U_CDECL_BEGIN
static UBool U_CALLCONV
isAcceptable(void * /* context */,
             const char * /* type */, const char * /* name */,
             const UDataInfo *pInfo)
{
    // Do something here.
}
U_CDECL_END

Same Module and Functionality in C and in C++

Determine if two headers are needed. If the same functionality is provided with both a C 
and a C++ API, then there can be two headers, one for each language, even if one uses the 
other. For example, there can be umsg.h for C and msgfmt.h for C++.

Not all functionality has or needs both kinds of API. More and more functionality is 
available only via C APIs to avoid duplication of API, documentation, and maintenance. 
C APIs are perfectly usable from C++ code, especially with UnicodeString methods that 
alias or expose C-style string buffers.

Platform Dependencies

Use the platform dependencies that are within the header files that utypes.h files 
include. They are platform.h (which is generated by the configuration script from 
platform.h.in) and its more specific cousins like pwin32.h for Windows, which define 
basic types, and putil.h, which defines platform utilities.
Important: Outside of these files, and a small number of implementation files that 
depend on platform differences (like umutex.c), no ICU source code may have any 
#ifdef OperatingSystemName instructions.

Short, Unnested Mutex Blocks

Do not use function calls within a mutex block for mutual-exclusion (mutex) blocks. This 
can prevent deadlocks from occurring later. There should be as little code inside a mutex 
block as possible to minimize the performance degradation from blocked threads.
Also, it is not guaranteed that mutex blocks are re-entrant; therefore, they must not be 
nested.

Names of Internal Functions

Internal functions that are not declared static (regardless of inlining) must follow the 
naming conventions for exported functions because many compilers and linkers do not 
distinguish between library exports and intra-library visible functions.

425 ICU v3.8 User Guide



Which Language for the Implementation

Implement low-level functions in C or in C-style C++. Using C++ is acceptable even for 
implementing C APIs if objects are used very carefully. C++ has advantages as "a better 
C" with a relaxed placement of variable declarations and inline functions.

No Compiler Warnings

ICU must compile without compiler warnings unless such warnings are verified to be 
harmless or bogus. Often times a warning on one compiler indicates a breaking error on 
another.

Enum Values

When casting an integer value to an enum type, the enum type should have a constant 
with this integer value, or at least it must have a constant whose value is at least as large 
as the integer value being cast, with the same signedness. For example, do not cast a -1 to 
an enum type that only has non-negative constants. Some compilers choose the internal 
representation very tightly for the defined enum constants, which may result in the 
equivalent of a uint8_t representation for an enum type with only small, non-negative 
constants. Casting a -1 to such a type may result in an actual value of 255. (This has 
happened!)

When casting an enum value to an integer type, make sure that the enum value's numeric 
value is within range of the integer type.

Memory Usage

Dynamically Allocated Memory

ICU4C APIs are designed to allow separate heaps for its libraries vs. the application. This 
is achieved by providing factory methods and matching destructors for all allocated 
objects. The C++ API uses a common base class with overridden new/delete operators 
and/or forms an equivalent pair with createXYZ() factory methods and the delete 
operator. The C API provides pairs of open/close functions for each service. See the 
C++ and C guideline sections below for details.

Declaring Static Data

All unmodifiable data should be declared const. This includes the pointers and the data 
itself. Also if you do not need a pointer to a string, declare the string as an array. This 
reduces the time to load the library and all its pointers. This should be done so that the 
same library data can be shared across processes automatically. Here is an example:

#define MY_MACRO_DEFINED_STR "macro string"

426 ICU v3.8 User Guide



const char *myCString = "myCString";
int16_t myNumbers[] = {1, 2, 3};
      

This should be changed to the following:

static const char MY_MACRO_DEFINED_STR[] = "macro string";
static const char myCString[] = "myCString";
static const int16_t myNumbers[] = {1, 2, 3};
      

No Static Initialization

The most common reason to have static initialization is to declare a static const 
UnicodeString, for example (see utypes.h about invariant characters):

static const UnicodeString myStr("myStr", "");
The most portable and most efficient way to declare ASCII text as a Unicode string is to 
do the following instead:

static const UChar myStr[] = { 0x6D, 0x79, 0x53, 0x74, 0x72, 0};  /* "myStr" */
You can easily change a string to hexadecimal values by using simple tools like 
http://www.macchiato.com/unicode/convert.html. We do not use character literals for 
Unicode characters and strings because the execution character set of C/C++ compilers is 
almost never Unicode and may not be ASCII-compatible (especially on EBCDIC 
platforms). Depending on the API where the string is to be used, a terminating NUL (0) 
may or may not be required. The length of the string (number of UChars in the array) can 
be determined with sizeof(myStr)/U_SIZEOF_UCHAR, (subtract 1 for the NUL if 
present). Always remember to put in a comment at the end of the declaration what the 
Unicode string says.

Static initialization of C++ objects must not be used in ICU libraries because of the 
following reasons: 

1. It takes time to initialize the library.

2. Dependency checking is not completely done in C or C++. For instance, if an ICU user 
creates an ICU object or calls an ICU function statically that depends on static data, it 
is not guaranteed that the statically declared data is initialized.

3. Certain users like to manage their own memory. They can not manage ICU's memory 
properly because of item #2.

4. It is easier to debug code that does not use static initialization.

5. Memory allocated at static initialization time is not guaranteed to be deallocated with a 
C++ destructor when the library is unloaded. This is a problem when ICU is unloaded 
and reloaded into memory and when you are using a heap debugging tool. It would 
also not work with the u_cleanup() function.

6. Some platforms cannot handle static initialization or static destruction properly. 
Several compilers have this random bug (even in the year 2001).

427 ICU v3.8 User Guide



ICU users can use the U_STRING_DECL and U_STRING_INIT macros for C strings. Note 
that on some platforms this will incur a small initialization cost (simple conversion). 
Also, ICU users need to make sure that they properly and consistently declare the strings 
with both macros. See ustring.h for details.

C++ Coding Guidelines

This section describes the C++ specific guidelines or conventions to use.

Portable Subset of C++

ICU uses only a portable subset of C++ for maximum portability. Also, it does not use 
features of C++ that are not implemented well in all compilers or are cumbersome. In 
particular, ICU does not use exceptions, compiler-provided Run-Time Type Information, 
templates, or the Standard Template Library.

ICU uses a limited form of multiple inheritance equivalent to Java's interface mechanism: 
All but one base classes must be interface/mixin classes, i.e., they must contain only pure 
virtual member functions. For details see the 'boilerplate' discussion below. This 
restriction to at most one base class with non-virtual members eliminates problems with 
the use and implementation of multiple inheritance in C++. ICU does not use virtual base 
classes.

Classes and Members

Classes and their members do not need a 'U' or any other prefix.

Global Operators

Global operators (operators that are not class members) can be problematic for library 
entry point versioning, may confuse users and cannot be easily ported to Java (ICU4J). 
They should be avoided if possible.

The issue with library entry point versioning is that on platforms that do not support 
namespaces, users must rename all classes and global functions via urename.h. This 
renaming process is not possible with operators. However, a global operator can be used 
in ICU4C (when necessary) if its function signature contains an ICU C++ class that is 
versioned. This will result in a mangled linker name that does contain the ICU version 
number via the versioned name of the class parameter. For example, ICU4C 2.8 added an 
operator + for UnicodeString, with two UnicodeString reference parameters.

Namespaces

Beginning with ICU version 2.0, ICU uses namespaces. The actual namespace is 

428 ICU v3.8 User Guide

http://www.macchiato.com/unicode/convert.html


icu_M_N with M being the major ICU release number and N being the minor ICU release 
number. For convenience, the namespace icu is an alias to the current release-specific 
one.

Class declarations, even forward declarations, must be scoped to the ICU namespace. For 
example:

U_NAMESPACE_BEGIN
class Locale;
U_NAMESPACE_END
// outside U_NAMESPACE_BEGIN..U_NAMESPACE_END
extern void fn(U_NAMESPACE_QUALIFIER &UnicodeString);
// outside U_NAMESPACE_BEGIN..U_NAMESPACE_END
// automatically set by utypes.h
U_NAMESPACE_USE
Locale loc("fi");

U_NAMESPACE_USE (expands to using namespace icu_M_N; when available) is 
automatically done when utypes.h is included, so that all ICU classes are immediately 
usable.

Declare Class APIs

Class APIs need to be declared like either of the following: 
 

Inline-Implemented Member Functions

Class member functions must be declared and not inline-implemented in the class 
declaration. However, inline implementations may follow after the class declaration in the 
same file.

C++ class layout and 'boilerplate'

There are different sets of requirements for different kinds of C++ classes. In general, all 
instantiable classes (i.e., all classes except for interface/mixin classes and ones with only 
static member functions) inherit the UMemory base class. UMemory provides new/delete 
operators, which allows to keep the ICU heap separate from the application heap, or to 
customize ICU's memory allocation consistently.

Public ICU APIs must return or orphan only C++ objects that are to be released 
with delete. They must not return allocated simple types (including pointers, and 
arrays of simple types or pointers) that would have to be released with a free() 
function call using the ICU library's heap. Simple types and pointers must be 
returned using fill-in parameters (instead of allocation), or cached and owned by 
the returning API.

429 ICU v3.8 User Guide



Public ICU C++ classes must inherit the UObject base class and implement the 
following common set of 'boilerplate' functions:

• default constructor

• copy constructor

• assignment operator

• clone()

• operator==

• operator!=

Each of the above either must be implemented, verified that the default  
implementation according to the C++ standard will work (typically not if any 
pointers are used), or declared private without implementation.

• ICU's Run-Time Type Information mechanism with getDynamicClassID() and 
getStaticClassID() (copy implementations from existing C++ APIs)

Interface/mixin classes are equivalent to Java interfaces. They are as much multiple 
inheritance as ICU uses — they do not decrease performance, and they do not cause 
problems associated with multiple base classes having data members. Interface/mixin 
classes contain only pure virtual member functions, and must contain an empty virtual 
destructor. See for example the UnicodeMatcher class. Interface/mixin classes must not 
inherit any non-interface/mixin class, especially not UMemory or UObject. Instead, 
implementation classes must inherit one of these two (or a subclass of them) in addition 
to the interface/mixin classes they implement. See for example the UnicodeSet class.

Static classes contain only static member functions and are therefore never instantiated. 
They must not inherit UMemory or UObject. Instead, they must declare a private default 
constructor (without any implementation) to prevent instantiation. See for example the 
LESwaps layout engine class.

C++ classes internal to ICU need not (but may) implement the boilerplate functions as 
mentioned above. They must inherit at least UMemory if they are instantiable.

Make Sure The Compiler Uses C++

The XP_PLUSPLUS ensures that the compiler uses C++ and not __cplusplus.

Adoption of Objects

Some constructors and factory functions take pointers to objects that they adopt. The 
newly created object contains a pointer to the adoptee and takes over ownership and 
lifecycle control. If an error occurs while creating the new object (and thus in the code 
that adopts an object), then the semantics used within ICU must be adopt-on-call (as 
opposed to, for example, adopt-on-success):

430 ICU v3.8 User Guide



• General: A constructor or factory function that adopts an object does so in all cases, 
even if an error occurs and a UErrorCode is set. This means that either the adoptee is 
deleted immediately or its pointer is stored in the new object. The former case is most 
common when the constructor or factory function is called and the UerrorCode 
already indicates a failure. In the latter case, the new object must take care of deleting 
the adoptee once it is deleted itself regardless of whether or not the constructor was 
successful. 

• Constructors: The code that creates the object with the new operator must check the 
resulting pointer returned by new and delete any adoptees if it is 0 because the 
constructor was not called. (Typically, a UErrorCode must be set to 
U_MEMORY_ALLOCATION_ERROR.)

• Factory functions (createInstance()): The factory function must set a 
U_MEMORY_ALLOCATION_ERROR and delete any adoptees if it cannot allocate the new 
object. If the construction of the object fails otherwise, then the factory function must 
delete it and the factory function must delete its adoptees. As a result, a factory 
function always returns either a valid object and a successful UErrorCode, or a 0 
pointer and a failure UErrorCode. A factory function returns a pointer to an object that 
must be deleted by the user/owner.

Example:
 Calendar*
Calendar::createInstance(TimeZone* zone, UErrorCode& errorCode) {
    if(U_FAILURE(errorCode)) {
        delete zone;
        return 0;
    }
    // since the Locale isn't specified, use the default locale
    Calendar* c = new GregorianCalendar(zone, Locale::getDefault(),
errorCode);
    if(c == 0) {
        errorCode = U_MEMORY_ALLOCATION_ERROR;
        delete zone;
    } else if(U_FAILURE(errorCode)) {
        delete c;
        c = 0;
    }
    return c;
}
    

Memory Allocation

All ICU C++ class objects directly or indirectly inherit UMemory (see 'boilerplate' 
discussion above) which provides new/delete operators, which in turn call the internal 
functions in cmemory.c. Creating and releasing ICU C++ objects with new/delete 
automatically uses the ICU allocation functions.

431 ICU v3.8 User Guide



Remember that (in absence of explicit :: scoping) C++ determines which 
new/delete operator to use from which type is allocated or deleted, not from the 
context of where the statement is. Since non-class data types (like int) cannot  
define their own new/delete operators, C++ always uses the global ones for 
them by default.

When global new/delete operators are to be used in the application (never inside ICU!), 
then they should be properly scoped as e.g. ::new, and the application must ensure that 
matching new/delete operators are used. In some cases where such scoping is missing in 
non-ICU code, it may be simpler to compile ICU without its own new/delete operators. 
See source/common/unicode/uobject.h for details.

In ICU library code, allocation of non-class data types — simple integer types as well as 
pointers — must use the functions in cmemory.h/.c (uprv_malloc(), uprv_free(), 
uprv_realloc()). Such memory objects must be released inside ICU, never by the user; 
this is achieved either by providing a "close" function for a service or by avoiding to pass 
ownership of these objects to the user (and instead filling user-provided buffers or 
returning constant pointers without passing ownership).

The cmemory.h/.c functions can be overridden at ICU compile time for custom memory 
management. By default, UMemory's new/delete operators are implemented by calling 
these common functions. Overriding the cmemory.h/.c functions changes the memory 
management for both C and C++.

C++ objects that were either allocated with new or returned from a createXYZ() factory 
method must be deleted by the user/owner.

Memory Allocation Failures

All memory allocations and object creations should be checked for success. In the event 
of a failure (a NULL returned), a U_MEMORY_ALLOCATION_ERROR status should be 
returned by the ICU function in question. If the allocation failure leaves the ICU service 
in an invalid state, such that subsequent ICU operations could also fail, the situation 
should be flagged so that the subsequent operations will fail cleanly. Under no 
circumstances should a memory allocation failure result in a crash in ICU code, or cause 
incorrect results rather than a clean error return from an ICU function.

Some functions, such as the C++ assignment operator, are unable to return an ICU error 
status to their caller. In the event of an allocation failure, these functions should mark the 
object as being in an invalid or bogus state so that subsequent attempts to use the object 
will fail. Deletion of an invalid object should always succeed. 

Global Inline Functions

Global functions (non-class member functions) that are declared inline must be made 
static inline. Some compilers will export symbols that are declared inline but not static.

432 ICU v3.8 User Guide



No Declarations in the for() Loop Head

Iterations through for() loops must not use declarations in the first part of the loop. 
There have been two revisions for the scoping of these declarations and some compilers 
do not comply to the latest scoping. Declarations of loop variables should be outside 
these loops.

Common or I18N

Decide whether or not the module is part of the common or the i18n API collection. Use 
the appropriate macros. For example, use U_COMMON_IMPLEMENTATION, 
U_I18N_IMPLEMENTATION, U_COMMON_API, U_I18N_API. See utypes.h.

Constructor Failure

If there is a reasonable chance that a constructor fails (For example, if the constructor 
relies on loading data), then either it must use and set a UErrorCode or the class needs to 
support an isBogus()/setToBogus() mechanism like UnicodeString and the constructor 
needs to sets the object to bogus if it fails.

C Coding Guidelines

This section describes the C-specific guidelines or conventions to use.

Declare and define C APIs with both U_CAPI and U_EXPORT2

All C APIs need to be both declared and defined using the U_CAPI and U_EXPORT2 
qualifiers.

U_CAPI int32_t U_EXPORT2
u_formatMessage(...);
        

Use U_CAPI before and U_EXPORT2 after the return type of explored C functions.  
Internal functions that are visible outside a compilation unit need a U_CFUNC 
before the return type.

Subdivide the Namespace

Use prefixes to avoid name collisions. Some of those prefixes contain a 3- (or sometimes 
4-) letter module identifier. Very general names like u_charDirection() do not have a 
module identifier in their prefix.

• For POSIX replacements, the (all lowercase) POSIX function names start with "u_": 
u_strlen().

433 ICU v3.8 User Guide



• For other API functions, a 'u' is appended to the beginning with the module identifier 
(if appropriate), and an underscore '_', followed by the mixed-case function name. For 
example, use u_charDirection(), ubidi_setPara().

• For types (struct, enum, union), a "U" is appended to the beginning, often "U<module 
identifier>" directly to the typename, without an underscore. For example, use 
UComparisonResult.

• For #defined constants and macros, a "U_" is appended to the beginning, often 
"U<module identifier>_" with an underscore to the uppercase macro name. For 
example, use U_ZERO_ERROR, U_SUCCESS(). For example, UNORM_NFC

Function Declarations

Function declarations need to be in the form CAPI return-type U_EXPORT2 to satisfy 
all the compilers' requirements.

Functions for Constructors and Destructors

Functions that roughly compare to constructors and destructors are called umod_open() 
and umod_close(). See the following example:

CAPI UBiDi * U_EXPORT2
ubidi_open();
CAPI UBiDi * U_EXPORT2
ubidi_openSized(UTextOffset maxLength, UTextOffset maxRunCount);
CAPI void U_EXPORT2
ubidi_close(UBiDi *pBiDi);

Each successful call to a umod_open() returns a pointer to an object that must be released 
by the user/owner by calling the matching umod_close().

Inline Implementation Functions

Some, but not all, C compilers allow ICU users to declare functions inline (which is a 
C++ language feature) with various keywords. This has advantages for implementations 
because inline functions are much safer and more easily debugged than macros. ICU has a 
portable U_INLINE declaration macro that can be used for inline functions. On C 
compilers that do not support any form of inline declaration, U_INLINE will result in a 
static declaration. U_INLINE must only be used in implementation code, not in public C 
APIs.

All functions that are declared inline, or are small enough that an optimizing compiler 
might inline them even without the inline declaration, should be defined (implemented) – 
not just declared – before they are first used. This is to enable as much inlining as 
possible, and also to prevent compiler warnings for functions that are declared inline but 
whose definition is not available when they are called.

434 ICU v3.8 User Guide



C Equivalents for Classes with Multiple Constructors

In cases like BreakIterator and NumberFormat, instead of having several different 'open' 
APIs for each kind of instances, use an enum selector.

Source File Names

Source file names for C begin with a 'u'.

Memory APIs Inside ICU

For memory allocation in C implementation files for ICU, use the functions and macros 
in cmemory.h. When allocated memory is returned from a C API function, there must be 
a corresponding function (like a ucnv_close()) that deallocates that memory.

All memory allocations in ICU should be checked for success. In the event of a failure (a 
NULL returned from uprv_malloc()), a U_MEMORY_ALLOCATION_ERROR status should be 
returned by the ICU function in question. If the allocation failure leaves the ICU service 
in an invalid state, such that subsequent ICU operations could also fail, the situation 
should be flagged so that the subsequent operations will fail cleanly. Under no 
circumstances should a memory allocation failure result in a crash in ICU code, or cause 
incorrect results rather than a clean error return from an ICU function.

// Comments

Do not use C++ style // comments in C files and in headers that will be included in C 
files. Some of the supported platforms are not compatible with C++ style comments in C 
files.

Source Code Strings with Unicode Characters

char * strings in ICU

The C/C++ languages do not provide a portable way to specify Unicode code point or 
string literals other than with arrays of numeric constants. For convenience, ICU4C tends 
to use char * strings in places where only "invariant characters" (a portable subset of the 
7-bit ASCII repertoire) are used. This allows locale IDs, charset names, resource bundle 
item keys and similar items to be easily specified as string literals in the source code. The 
same types of strings are also stored as "invariant character" char * strings in the ICU data 
files.

ICU has hard coded mapping tables in source/common/putil.c to convert invariant 
characters to and from Unicode without using a full ICU converter. These tables must 

435 ICU v3.8 User Guide



match the encoding of string literals in the ICU code as well as in the ICU data files.

Important: ICU assumes that at least the invariant characters always have the 
same codes as is common on platforms with the same charset family (ASCII vs.  
EBCDIC). ICU has not been tested on platforms where this is not the case.

Some usage of char * strings in ICU assumes the system charset instead of invariant 
characters. Such strings are only handled with the default converter (See the following 
section). The system charset is usually a superset of the invariant characters.

The following are the ASCII and EBCDIC byte values for all of the invariant characters 
(see also unicode/utypes.h):

Character(s) ASCII EBCDIC
a..i 61..69 81..89
j..r 6A..72 91..99
s..z 73..7A A2..A9
A..I 41..49 C1..C9
J..R 4A..52 D1..D9
S..Z 53..5A E2..E9
0..9 30..39 F0..F9
(space) 20 40
" 22 7F
% 25 6C
& 26 50
' 27 7D
( 28 4D
) 29 5D
* 2A 5C
+ 2B 4E
, 2C 6B
- 2D 60
. 2E 4B
/ 2F 61
: 3A 7A
; 3B 5E
< 3C 4C

436 ICU v3.8 User Guide



Character(s) ASCII EBCDIC
= 3D 7E
> 3E 6E
? 3F 6F
_ 5F 6D

Rules Strings with Unicode Characters

In order to include characters in source code strings that are not part of the invariant 
subset of ASCII, one has to use character escapes. In addition, rules strings for collation, 
break iteration, etc. need to follow service-specific syntax, which means that spaces and 
ASCII punctuation must be quoted using the following rules:

• Single quotes delineate literal text: a'>'b => a>b

• Two single quotes, either between or outside of single quoted text, indicate a literal 
single quote: 

    a''b => a'b
    a'>''<'b => a>'<b
 

• A backslash precedes a single literal character: 

• Several standard mechanisms are handled by u_unescape() and its variants.

All of these quoting mechanisms are supported by the 
RuleBasedTransliterator. The single quote mechanisms (not backslash, not  
u_unescape()) are supported by the format classes. RuleBasedBreakIterator 
handles an unknown subset of these. In its infancy, ResourceBundle supported 
the \uXXXX mechanism and nothing else.
This quoting method is the current policy. However, there are modules within the 
ICU services that are being updated and this quoting method might not have been 
applied to all of the modules.

Java Coding Conventions Overview

The ICU group uses the following coding guidelines to create software using the ICU 
Java classes and methods.

Code style

437 ICU v3.8 User Guide



The standard order for modifier keywords on APIs is:

• public static final synchronized strictfp

• public abstract

All if/else/for/while/do loops use braces, even if the controlled statement is a single line. 
This is for clarity and to avoid mistakes due to bad nesting of control statements, 
especially during maintenance.

Tabs should not be present in source files.

Indentation is 4 spaces.

Make sure the code is formatted cleanly with regular indentation.  Follow Java style code 
conventions, e.g., don't put multiple statements on a single line, use mixed-case 
identifiers for classes and methods and upper case for constants, and so on.

All public and protected API in the 'API packages' (lang, math, text, util) should be 
tagged with either @draft, @stable, or @internal.

Javadoc should be complete and correct when code is checked in, to avoid playing catch-
up later during the throes of the release.  Please javadoc all methods, not just external 
APIs, since this helps with maintenance.

Code organization

Avoid putting more than one top-level class in a single file.  Either use separate files or 
nested classes.

Do not mix test, tool, and runtime code in the same file.  If you need some access to 
private or package methods or data, provide public accessors for them and mark them 
@internal.  Test code should be under dev/test, and tools (e.g., code that generates data, 
source code, or computes constants) under dev/tool.  Occasionally for very simple cases 
you can leave a few lines of tool code in the main source and comment it out, but 
maintenance is easier if you just comment the location of the tools in the source and put 
the actual code elsewhere.

Avoid creating new interfaces unless you know you need to mix the interface into two or 
more classes that have separate inheritance.  Interfaces are impossible to modify later in a 
backwards-compatible way.  Abstract classes, on the other hand, can add new methods 
with default behavior.  Use interfaces only if it is required by the arcitecture, not just for 
expediency.

Current releases of ICU4J are restricted to use JDK 1.4 APIs and language features.  This 
unfortunately means no static imports, and no enums. But since we hope eventually to 
move forward to 1.5, we should avoid the fancy workarounds for these language 
deficiencies that have been used in the past.  So don't avoid using interfaces as a 
convenience to import static constants into several files. Also, don't use the (rather 
clumsy) enum idiom based on classes with a fixed number of constant instances, as it's 
generally not worth the effort.  Using static int constants is acceptable.

438 ICU v3.8 User Guide



ICU Packages

Public APIs should be placed in com.ibm.icu.text, com.ibm.icu.util, and 
com.ibm.icu.lang. For historical reasons and for easier migration from JDK classes, 
there are also APIs in com.ibm.icu.math but new APIs should not be added there.

APIs used only during development, testing, or tools work should be placed in 
com.ibm.icu.dev.

A class or method which is used by public APIs (listed above) but which is not itself 
public can be placed in different places:

1. If it is only used by one class, make it private in that class.

2. If it is only used by one class and its subclasses, make it protected in that class. In 
general, also tag it @internal unless you are working on a class that supports user-
subclassing (rare).

3. If it is used by multiple classes in one package, make it package private (also known as 
default access) and mark it @internal.

4. If it is used by multiple packages, make it public and place the class in the 
com.ibm.icu.impl package.

Error Handling and Exceptions

Errors should be indicated by throwing exceptions, not by returning “bogus” values.

If an input parameter is in error, then a new 
IllegalArgumentException("description") should be thrown.

Exceptions should be caught only when something must be done, for example special 
cleanup or rethrowing a different exception. If the error “should never occur”, then throw 
a new RuntimeException("description") (rare). In this case, a comment should be 
added with a justification.

Use exception chaining: When an exception is caught and a new one created and thrown 
(usually with additional information), the original exception should be chained to the new 
one.

A catch expression should not catch Throwable. Catch expressions should specify the 
most specific subclass of Throwable that applies. If there are two concrete subclasses, 
both should be specified in separate catch statements.

Binary Data Files

ICU4J uses the same binary data files as ICU4C, in the big-endian/ASCII form. The 
ICUBinary class should be used to read them.

439 ICU v3.8 User Guide



Some data sources (for example, compressed Jar files) do not allow the use of several 
InputStream and related APIs:

• Memory mapping is efficient, but not available for all data sources.

• Do not depend on InputStream.available(): It does not provide reliable 
information for some data sources. Instead, the length of the data needs to be 
determined from the data itself.

• Do not call mark() and reset() methods on InputStream without wrapping the 
InputStream object in a new BufferedInputStream object. These methods are not 
implemented by the ZipInputStream class, and their use may result in an 
IOException.

Compiler Warnings

There should be no compiler warnings when building ICU4J. It is recommended to 
develop using Eclipse, and to fix any problems that are shown in the Eclipse Problems 
panel (below the main window).

Miscellaneous

Objects should not be cast to a class in the sun.* packages because this would cause a 
SecurityException when run under a SecurityManager. The exception needs to be 
caught and default action taken, instead of propagating the exception.

Adding .c, .cpp and .h files to ICU

In order to add compilable files to ICU, add them to the source code control system in the 
appropriate folder and also to the build environment.

To add these files, use the following steps:

1. Choose one of the ICU libraries: 

• The common library provides mostly low-level utilities and basic APIs that 
often do not make use of Locales. Examples are APIs that deal with character 
properties, the Locale APIs themselves, and ResourceBundle APIs.

• The i18n library provides Locale-dependent and -using APIs, such as for 
collation and formatting, that are most useful for internationalized user input 
and output.

2. Put the source code files into the folder icu/source/library-name, then add them to 
the build system: 

• For most platforms, add the expected .o files to icu/source/library-
name/Makefile.in, to the OBJECTS variable. Add the public header files to 

440 ICU v3.8 User Guide



the HEADERS variable.

• For Microsoft Visual C++ 6.0, add all the source code files to 
icu/source/library-name/library-name.dsp. If you don't have Visual 
C++, add the filenames to the project file manually.

3. Add test code to icu/source/test/cintltest for C APIs and to 
icu/source/test/intltest for C++ APIs.

4. Make sure that the API functions are called by the test code (100% API coverage) and 
that at least 85% of the implementation code is exercised by the tests (>=85% code 
coverage).

5. Create test code for C using the log_err(), log_info(), and log_verbose() APIs 
from cintltst.h (which uses ctest.h) and check it into the appropriate folder. 

6. In order to get your C test code called, add its top level function and a descriptive test 
module path to the test system by calling addTest(). The function that makes the call 
to addTest() ultimately must be called by addAllTests() in calltest.c. Groups of 
tests typically have a common addGroup() function that calls addTest() for the test 
functions in its group, according to the common part of the test module path. 

7. Add that test code to the build system also. Modify Makefile.in and the appropriate 
.dsp file (For example, the file for the library code).

Test Suite Notes

The cintltst Test Suite contains all the tests for the International Components for Unicode 
C API. These tests may be automatically run by typing "cintltst" or "cintltst -all" at the 
command line. This depends on the C Test Services: cintltst or cintltst -all.

C Test Services

The purpose of the test services is to enable the writing of tests entirely in C. The services 
have been designed to make creating tests or converting old ones as simple as possible 
with a minimum of services overhead. A sample test file, "demo.c", is included at the end 
of this document. For more information regarding C test services, please see the 
\intlwork\source\tools\ctestfwdirectory.

Writing Test Functions

The following shows the possible format of test functions:
void some_test()
{
}

Output from the test is accomplished with three printf-like functions:

441 ICU v3.8 User Guide



void log_err ( const char *fmt, ... );
void log_info ( const char *fmt, ... );
void log_verbose ( const char *fmt, ... );

• log_info()writes to the console for informational messages.

• log_verbose() writes to the console ONLY if the VERBOSE flag is turned on (or the 
-v option to the command line). This option is useful for debugging. By default, the 
VERBOSE flag is turned OFF.

• log_error() can be called when a test failure is detected. The error is then logged and 
error count is incremented by one.

To use the tests, link them into a hierarchical structure. The root of the structure will be 
allocated by default.

TestNode *root = NULL; /* empty */
addTest( &root, &some_test, "/test");

Provide addTest() with the function pointer for the function that performs the test as 
well as the absolute 'path' to the test. Paths may be up to 127 chars in length and may be 
used to group tests.

The calls to addTest must be placed in a function or a hierarchy of functions (perhaps 
mirroring the paths). See the existing cintltst for more details. 

Running the Tests

A subtree may be extracted from another tree of tests for the programmatic running of 
subtests.

TestNode* sub;
sub = getTest(root, "/mytests");

And a tree of tests may be run simply by:
runTests( root ); /* or 'sub' */

Similarly, showTests() lists out the tests. However, it is easier to use the command 
prompt with the Usage specified below.

Globals

The command line parser resets the error count and prints a summary of the failed tests. 
But if runTest is called directly, for instance, it needs to be managed manually. 
ERROR_COUNT contains the number of times log_err was called. runTests resets the 
count to zero before running the tests. VERBOSITY must be 1 to display log_verbose() 
data. Otherwise, VERBOSITY must be set to 0 (default).

Building

To compile this test suite using Microsoft Visual C++ (MSVC), follow the instructions in 

442 ICU v3.8 User Guide



icu/source/readme.html#HowToInstall for building the allC workspace. This builds 
the libraries as well as the cintltst executable.

Executing

To run the test suite from the command line, change the directories to 
icu/source/test/cintltst/Debug for the debug build (or 
icu/source/test/cintltst/Release for the release build) and then type cintltst.

Usage

Type cintltst -h to view its command line parameters. 
### Syntax:
### Usage: [ -l ] [ -v ] [ -verbose] [-a] [ -all] [-n] \n [
-no_err_msg] [ -h
] [ /path/to/test ]
### -l To get a list of test names
### -all To run all the test
### -a To run all the test(same as -all)
### -verbose To turn ON verbosity
### -v To turn ON verbosity(same as -verbose)
### -h To print this message
### -n To turn OFF printing error messages
### -no_err_msg (same as -n)
### -[/subtest] To run a subtest
### For example to run just the utility tests type: cintltest /tsutil)
### To run just the locale test type: cintltst /tsutil/loctst
###
/******************** sample ctestfw test ********************
********* Simply link this with libctestfw or ctestfw.dll ****
************************* demo.c *****************************/
#include "stdlib.h"
#include "ctest.h"
#include "stdio.h"
#include "string.h"
/**
* Some sample dummy tests.
* the statics simply show how often the test is called.
*/
void mytest()
{
    static i = 0;
    log_info("I am a test[%d]\n", i++);
}
void mytest_err()
{
    static i = 0;
    log_err("I am a test containing an error[%d]\n", i++);
    log_err("I am a test containing an error[%d]\n", i++);
}
void mytest_verbose()
{
    /* will only show if verbose is on (-v) */
    log_verbose("I am a verbose test, blabbing about nothing at
all.\n");
}
/**

443 ICU v3.8 User Guide



* Add your tests from this function
*/
void add_tests( TestNode** root )
{
    addTest(root, &mytest, "/apple/bravo" );
    addTest(root, &mytest, "/a/b/c/d/mytest");
    addTest(root, &mytest_err, "/d/e/f/h/junk");
    addTest(root, &mytest, "/a/b/c/d/another");
    addTest(root, &mytest, "/a/b/c/etest");
    addTest(root, &mytest_err, "/a/b/c");
    addTest(root, &mytest, "/bertrand/andre/damiba");
    addTest(root, &mytest_err, "/bertrand/andre/OJSimpson");
    addTest(root, &mytest, "/bertrand/andre/juice/oj");
    addTest(root, &mytest, "/bertrand/andre/juice/prune");
    addTest(root, &mytest_verbose, "/verbose");
}
int main(int argc, const char *argv[])
{
    TestNode *root = NULL;
    add_tests(&root); /* address of root ptr- will be filled in */
    /* Run the tests. An int is returned suitable for the OS status code.
    (0 for success, neg for parameter errors, positive for the # of
    failed tests) */
    return processArgs( root, argc, argv );
}
    

IntlTest Test Suite Documentation

The IntlTest suite contains all of the tests for the C++ API of International Components 
for Unicode. These tests may be automatically run by typing intltest at the command 
line. Since the verbose option prints out a considerable amount of information, it is 
recommended that the output be redirected to a file: intltest -v > testOutput. 

Building

To compile this test suite using MSVC, follow the instructions for building the alCPP 
(All C++ interfaces) workspace. This builds the libraries as well as the intltest 
executable.

Executing

To run the test suite from the command line, change the directories to 
icu/source/test/intltest/Debug, then type: intltest -v >testOutput. For the 
release build, the executable will reside in the icu/source/test/intltest/Release 
directory.

Usage

444 ICU v3.8 User Guide



Type just intltest -h to see the usage:
### Syntax:
### IntlTest [-option1 -option2 ...] [testname1 testname2 ...]
### where options are: verbose (v), all (a), noerrormsg (n),
### exhaustive (e) and leaks (l).
### (Specify either -all (shortcut -a) or a test name).
### -all will run all of the tests.
###
### To get a list of the test names type: intltest LIST
### To run just the utility tests type: intltest utility
###
### Test names can be nested using slashes ("testA/subtest1")
### For example to list the utility tests type: intltest utility/LIST
### To run just the Locale test type: intltest utility/LocaleTest
###
### A parameter can be specified for a test by appending '@' and the value
### to the testname.

Binary Data Formats

ICU services rely heavily on data to perform their functions. Such data is available in 
various more or less structured text file formats, which make it easy to update and 
maintain. For high runtime performance, most data items are pre-built into binary 
formats, i.e., they are parsed and processed once and then stored in a format that is used 
directly during processing.

Most of the data items are pre-built into binary files that are then installed on a user's 
machine. Some data can also be built at runtime but is not persistent. In the latter case, a 
master object should be built once and then cloned to avoid the multiple parsing, 
processing, and building of the same data.

Binary data formats for ICU must be portable across platforms that share the same 
endianness and the same charset family (ASCII vs. EBCDIC). It would be possible to 
handle data from other platform types, but that would require load-time or even runtime 
conversion.

Data Types

Binary data items are memory-mapped, i.e., they are used as readonly, constant data. 
Their structures must be portable according to the criteria above and should be efficiently 
usable at runtime without building additional runtime data structures.

Most native C/C++ data types cannot be used as part of binary data formats because their 
sizes are not fixed across compilers. For example, an int could be 16/32/64 or even any 
other number of bits wide. Only types with absolutely known widths and semantics must 
be used.

Use for example:

• uint8_t, uint16_t, int32_t etc.

• UBool: same as int8_t

445 ICU v3.8 User Guide



• UChar: for 16-bit Unicode strings

• UChar32: for Unicode code points

• char: for "invariant characters", see utypes.h

ICU assumes that char is an 8-bit byte but makes no assumption about its  
signedness.

Do not use for example:

• short, int, long, unsigned int etc.: undefined widths

• float, double: undefined formats

• bool_t: undefined width and signedness

• enum: undefined width and signedness

• wchar_t: undefined width, signedness and encoding/charset

Each field in a binary/mappable data format must be aligned naturally. This means that a 
field with a primitive type of size n bytes must be at an n-aligned offset from the start of 
the data block. UChar must be 2-aligned, int32_t must be 4-aligned, etc.

It is possible to use struct types, but one must make sure that each field is naturally 
aligned, without possible implicit field padding by the compiler — assuming a reasonable 
compiler.

// bad because i will be preceded by compiler-dependent padding
// for proper alignment
struct BadExample {
    UBool flag;
    int32_t i;
};
// ok with explicitly added padding or generally conscious
// sequence of types
struct OKExample {
    UBool flag;
    uint8_t pad[3];
    int32_t i;
};

Within the binary data, a struct type field must be aligned according to its widest 
member field. The struct OKExample must be 4-aligned because it contains an int32_t 
field.

Another potential problem with struct types, especially in C++, is that some compilers 
provide RTTI for all classes and structs, which inserts a _vtable pointer before the first 
declared field. When using struct types with binary/mappable data in C++, assert in 
some place in the code that offsetof the first field is 0. For an example see the 
genpname tool.

Versioning

ICU data files have a UDataHeader structure preceding the actual data. Among other 
fields, it contains a formatVersion field with four parts (one uint8_t each). It is best to 

446 ICU v3.8 User Guide



use only the first (major) or first and second (major/minor) fields in the runtime code to 
determine binary compatibility, i.e., reject a data item only if its formatVersion contains 
an unrecognized major (or major/minor) version number. The following parts of the 
version should be used to indicate variations in the format that are backward compatible, 
or carry other information.

For example, the current uprops.icu file's formatVersion (see the genprops tool and 
uchar.c/uprops.c) is set to indicate backward-incompatible changes with the major 
version number, backward-compatible additions with the minor version number, and shift 
width constants for the UTrie data structure in the third and fourth version numbers 
(these could change independently of the uprops.icu format).

447 ICU v3.8 User Guide



Synchronization Issues
Overview

There are a number of functions in the International Components for Unicode libraries 
that need to access or allocate global or static data. For example, there is a global cache of 
Collation rules, which ensures that we do not need to load collation data from a file each 
time that a new Collator object is created. The first time a given Collator is loaded it is 
stored in the cache, and subsequent accesses are extremely fast. 

In a single-threaded environment, this is all straightforward. However, in a multithreaded 
application there are synchronization issues to deal with. For example, the collation 
caching mechanism needs to be protected from simultaneous access by multiple threads; 
otherwise there could be problems with the data getting out of synch or with threads 
performing unnecessary work. 

Mutexes

We prevent these problems by using a Mutex object. A Mutex is a "mutually exclusive" 
lock. Before accessing data which might be used by multiple threads, functions instantiate 
a Mutex object, which acquires the exclusive lock. An other thread that tries to access the 
data at the same time will also instantiate a Mutex, but the call will block until the first 
thread has released its lock. 

To save space, we use one underlying mutex implementation object for the entire 
application. An individual Mutex object simply acquires and releases the lock on this this 
global object. Since the implemention of a mutex is highly platform-dependent, 
developers who plan to use the International Classes for Unicode in a multithreaded 
environment are required to create their own mutex implementation object and register it 
with the system. 

Re-Entrancy

Using a single, global lock object can, of course, cause reentrancy problems. Deadlock 
could occur where the Mutex acquire is attempted twice within the same thread before it 
is released. For example, Win32 critical sections are reentrant, but our testing shows that 
some POSIX mutex implementations are not. POSIX would require additional code, at a 
performance loss.

To avoid these problems, the Mutex is only acquired during a pointer assignment, where 
possible. In the few cases where this is not true, care is taken to not call any other 
functions inside the mutex that could possibly acquire the mutex.

The result of this design principle is that the mutex may be acquired more times than 
necessary, however time spent inside the mutex is then minimized.

448 ICU v3.8 User Guide



Developers implementing the Mutex are not required to provide reentrant-safe 
implementations. 

Implementations

The International Classes for Unicode are provided with reference implementations for 
Win32 and POSIX. 

• On Win32 platforms, a reentrant mutex is most naturally implemented on top of a 
Critical Section.

• On POSIX platforms, pthread_mutex provides an implementation. 

See Also

• mutex.h—Mutex API

• muteximp.h—The API's and instructions for providing your own mutexes

• mutex.cpp—Includes reference implementations for Win32 and POSIX

449 ICU v3.8 User Guide



Contributions to the ICU library
Overview

This section provides the guidelines for contributing code to the ICU library. Contribution 
is added functionality to ICU. Bug fixes can always be submitted to the jitterbug 
database.

• The Why Contribute? section discusses the benefits of contributing code to ICU.

• The General Contribution Requirements section discusses the conditions a 
contribution needs to satisfy in order to be considered for inclusion.

• The Legal Issues section discusses the legal implications of your contribution.

Why Contribute?

ICU is an open source library that is a de-facto industry standard for internationalization 
libraries. Our goal is to provide top of the line i18n support on all widely used platforms. 
By contributing your code to the ICU library, you will get the benefit of continuing 
improvement by the ICU team and the community, as well as testing and multi-platform 
portability. In addition, it saves you from having to re-merge your own additions into ICU 
each time you upgrade to a new ICU release.

General Contribution Requirements

We will be glad to take a look at the code you wish to contribute to ICU. We cannot 
guarantee that the code will be included. Contributions of general interest and written 
according to the following guidelines have a better chance of becoming a part of ICU.

For any significant new functionality, contact the ICU development team through the icu-
design mailing list first, and discuss the features, design and scope of the possible 
contribution. This helps ensure that the contribution is expected and will be welcome, 
that it will fit in well with the rest of ICU, and that it does not overlap with other 
development work that may be underway.

While you are considering contributing code to ICU, make sure that the legal terms are 
acceptable to you and your organization.

Here are several things to keep in mind when developing a potential contribution to the 
ICU project:

• ICU has both C/C++ and Java versions. If you develop in one programming language, 
please either provide a port or make sure that the logic is clear enough so that the code 
can be reasonably ported. We cannot guarantee that we will port a contribution to the 
other library.

450 ICU v3.8 User Guide



ICU4J is (now) trying to limit itself to using Java 1.3 APIs.  Java 1.4 APIs 
might be considered for some tools.  Java 5 and later APIs are not permitted.

• Before implementation, read and understand ICU's coding guidelines. Contributions 
that require too much adaptation to be included in the ICU tree will probably wait for a 
long time.

• During implementation, try to mimic the style already present in the ICU source code.

• Always develop the code as an integral part of the library, rather than an add-on.

• Always provide enough test code and test cases. We require that our APIs are 100% 
tested and that tests cover at least 85% of the ICU library code. Make sure that your 
tests are integrated into one of ICU's test suites (cintltst and intltest for ICU4C and 
com.ibm.icu.dev.test classes in ICU4J). New tests and the complete test suite should 
pass.

• Compile using the strictest compiler options. Due to ICU's multi-platform nature, 
warnings on some platforms may mean disastrous errors on other platforms. This can 
be enabled by using the --enable-strict configure option on any platform using the gcc 
compiler.

• Test on more than one platform. For ICU4C, it is good to combine testing on Windows 
with testing on Linux, Mac OS X or another Unix platform. It is always good to try to 
mix big and little endian platforms. For ICU4J, test using both Sun's and IBM's JDKs.

• Each contribution should contain everything that will allow building, testing and 
running ICU with the contribution. This usually includes: source code, build files and 
test files. 

Legal Issues

In order for your code to be contributed, you need to assign to IBM joint copyright 
ownership in the contribution. You retain joint ownership in the contribution without 
restriction. (For the complete set of terms, please see the forms mentioned below.)

The sections below describe two processes, for one-time and ongoing contributors. In 
either case, please complete the form(s) electronically and send it/them to IBM for 
review. After review by IBM, please print and sign the form(s), send it/them by mail, and 
send the code. The code will then be evaluated.

Please consult a legal representative if you do not understand the implications of the 
copyright assignment.

One-Time Contributors

If you would like to make a contribution only once or infrequently, please use the Joint  
Copyright Assignment - One-time Contribution form. (http://source.icu-
project.org/repos/icu/icuhtml/trunkl/legal/contributions/Copyright_Assignment.rtf). The 

451 ICU v3.8 User Guide



contribution will be identified by a bug ID which is unique to the contribution and entered 
into the form. Therefore, please make sure that there is an appropriate bug (or Request 
For Enhancement) in the ICU bug database, or submit one.

The code contribution will be checked into a special part of the ICU source code 
repository and evaluated. The ICU team may request updates, for example for better 
conformance with the ICU design principles, coding and testing guidelines, or 
performance. (See also the guidelines above.) Such updates can be contributed without 
exchanging another form: An ICU team member commits related materials into the ICU 
source code repository using the same bug ID that was entered into the copyright 
assignment form.

Ongoing Contributors

If you are interested in making frequent contributions to ICU, then the ICU Project 
Management Committee may agree to invite you as an ongoing contributor. Ongoing 
contributors may be individuals but are more typically expected to be companies with one 
or more people (“authors”) writing different parts of one or more contributions.

In this case, the relationship between the contributor and the ICU team is much closer: 
One or more authors belonging to the contributor will have commit access to the ICU 
source code repository. With this direct access come additional responsibilities including 
an understanding that the contributor will work to follow the technical guidelines above 
for contributions, and agreement to adhere to the terms of the copyright assignment forms 
for all future contributions.

The process for ongoing contributors involves two types of forms: Initially, and only 
once, an ongoing contributor submits a Joint Copyright Assignment by Ongoing 
Contributor form, agreeing to essentially the same terms as in the one-time contributor 
form, for all future contributions. (See the form at http://source.icu-
project.org/repos/icu/icuhtml/trunk/legal/contributions/Copyright_Assignment_ongoing.rt
f)

The contributor must also send another form, Addendum to Joint Copyright Assignment  
by Ongoing Contributor: Authors, for the initial set and each addition of authors to ICU 
contributions, before any contributions from these authors are committed into the ICU 
source code repository. (Only new, additional authors need to be listed on each such 
form.) The contributor agrees to ensure that all of these authors agree to adhere to the 
terms of the associated Joint Copyright Assignment by Ongoing Contributor Agreement. 
(See the Authors Addendum form at http://source.icu-
project.org/repos/icu/icuhtml/trunk/legal/contributions/Copyright_Assignment_authors.rtf
)

Some of an ongoing contributor's authors will have commit access to the ICU source code 
repository. Their committer IDs need to be established before completing the Authors 
Addendum form, so that these committer IDs can be entered there. (The committer IDs 
should be activated only after the form is received.)

452 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icuhtml/trunk/legal/contributions/Copyright_Assignment.rtf
http://source.icu-project.org/repos/icu/icuhtml/trunk/legal/contributions/Copyright_Assignment.rtf
http://source.icu-project.org/repos/icu/icu4j/trunk/src/com/ibm/icu/dev/test/
http://source.icu-project.org/repos/icu/icu/trunk/source/test/intltest/
http://source.icu-project.org/repos/icu/icu/trunk/source/test/cintltst/
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/conventions.sxw


Committer authors commit materials directly into the appropriate parts of the ICU source 
code repository. Contributions from an ongoing contributor are identified by their 
association with the contributor's committer IDs.

Previous Contributions

All previous contributions from non-IBM sources to ICU are listed on the code 
contributions page in ICU's source code repository. The page contains links to the 
softcopies of the Joint Copyright Assignment forms. See http://source.icu-
project.org/repos/icu/icuhtml/trunk/legal/contributions/code_contributions.html

453 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icuhtml/trunk/legal/contributions/Copyright_Assignment_authors.rtf
http://source.icu-project.org/repos/icu/icuhtml/trunk/legal/contributions/Copyright_Assignment_authors.rtf
http://source.icu-project.org/repos/icu/icuhtml/trunk/legal/contributions/Copyright_Assignment_ongoing.rtf
http://source.icu-project.org/repos/icu/icuhtml/trunk/legal/contributions/Copyright_Assignment_ongoing.rtf
http://source.icu-project.org/repos/icu/icuhtml/trunk/legal/contributions/Copyright_Assignment_ongoing.rtf
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/conventions.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/design.sxw


Editing the ICU User Guide 

Overview

The native source for the ICU user guide is Open Office Writer documents.  All writing 
and editing is done in Open Office, and the HTML and PDF versions are generated from 
the Open Office documents.

Document Structure 

The ICU userguide is organized as an Open Office “Master Document” that includes a 
series of individual chapter documents.

In addition to including the chapter files, the master document provides common style 
definitions, the table of contents, the index, etc.

There is a one-to-one correspondence between OO chapter files and  pages in the HTML 
version of the userguide.  

Here is the directory structure for the user guide files

Directory or File Description
userguide/ The top level directory
userguide/OO/ Directory containing all of the user guide source (.sxw) 

files.
userguide/OO/images/ Sources (.gif, .png, etc) for images used.
userguide/OODTD/ Open Office XML DTD files.  Required by the Open 

Office to html conversion tool.
userguide/html/ Directory into which the generated html files are built
userguide/html-template/ Directory containing a html template file and css style 

sheet file.   These are input files to the Open Office to 
html conversion.

userguide/UGtoHtml/ Directory containing the Java tool for converting the 
.sxw files to html.

All of the userguide source files are kept  in the public ICU source repository at 
http://source.icu-project.org/repos/icu/icuhtml/trunk/userguide/. 

All normal editing of userguide content is done on the individual chapter files.  Just open 
and edit as if they were stand-alone open office files.

454 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icuhtml/trunk/legal/contributions/code_contributions.html
http://source.icu-project.org/repos/icu/icuhtml/trunk/legal/contributions/code_contributions.html


Opening userguide.sxg loads the complete, entire user guide.  All chapters are visible, but 
no editing of the content of the chapters is possible.  Export to PDF or printing of the 
complete document are done from this view.

Generating HTML

The HTML for the user guide is generated by a UGtoHtml, a Java tool.

Java JDK 1.4 or newer is required.

To build the UGtoHtml tool,
    cd userguide\UGtoHtml\src
    javac UGtoHtml.java

To convert a single chapter,
    cd userguide
    java -cp UGtoHtml/src UGtoHtml file-name.sxw

To convert the entire user guide, 

    java -cp UGtoHtml/src UGtoHtml 

In either case, the resulting html file(s) will be placed in the userguide/html directory.

The html files can be tested by simply loading them into a web browser as files.  There 
are no server dependencies – no SSI or dynamic server interactions that would cause 
different behavior when the userguide is accessed through a web server.

HTML formatting (pretty printing):  if you want to view the generated html, the format 
can be improved by enabling XML pretty printing in Open Office. 

From the menus  choose  Tools -> Options -> Load/Save -> General
   Uncheck the box   “Size optimization for XML format (no pretty printing).”

Generating the PDF

Open Office makes generating the PDF easy.

Open the complete userguide file, userguide.sxg, in Open Office.

From the File menu choose Export as PDF... and specify a destination file name.

455 ICU v3.8 User Guide

http://source.icu-project.org/repos/icu/icuhtml/trunk/userguide/


Simple Formatting

Bold, italic, underline, Strike through, superscript and subscript can all be used directly, in any 
combination, and will convert correctly to html.  Superscript, subscript and strike through 
are in the character style dialog.

Custom Styles

Use only paragraph styles with names of the form icu-XXX  that appear in the Custom 
Styles category in Open Office's Stylist window.  (F11 to open the Stylist window)

For character styles, Default and icu-code (for fixed pitch font) are both acceptable, 
meaning that the OO to HTML conversion will work correctly. Changing the font to a 
fixed pitch font by hand will not work; you must use the icu-code character style. (If you 
forget and manually change the font or set some other character styles, select the whole 
paragraph, change its character style to Default, and then apply the icu-code style where 
you want it.

Do not define any new custom styles, or use other built-in Open Office styles.  These will 
not be handled by the html converter.

Images

Images (figures or illustrations) are handled separately for Open Office/PDF and for the 
html userguide. 

For native Open Office and PDF, the image is inserted or pasted directly into the OO 
document.  These images are ignored by the html conversion.

For the HTML conversion, an annotation in the OO document (a Note) specifies the 
image file to be inserted.

There are two reasons for this admittedly awkward scheme:

• The original external image file name is not available for images that are embedded 
directly in the document, meaning that the OO -> html conversion tool needs some 
other mechanism to get the name.

• A printed (PDF) document will benefit from a higher resolution image than a screen 
resolution GIF or PNG.

To insert a .gif, .png or .jpg image into a OO Writer file:

Insert Menu -> Graphics -> from file -> browse to your file.

To insert a .sxd Open Office Draw image, copy and paste it from the Draw  program. 
This will insert the graphic in vector form, which gives the best printed results.  From the 
draw program, also export a .gif or .png screen resolution version of the image for use in 
the html page.

456 ICU v3.8 User Guide



HTML image file name To insert the name of the image file to be used in the html page,

• Position the cursor at the point that the image will appear in the html text flow.

• Insert menu -> Note...

• Enter text of this form: 
 html image name: your-image-name.gif

Open Office Notes  not beginning with the text “html image name:” are ignored during 
the OO to html conversion. 

An “html image name:” note is required even when the same image file has been inserted 
into the Open Office document.

Open Office Template

Explain where the common ICU paragraph styles come from, and how they can be 
updated.

TO DO.

Adding a Chapter to the User Guide

Here are the steps for adding a new chapter to the ICU user guide.

1. Save an existing userguide chapter file (.sxw file) as the new chapter file.  Creating the 
new chapter in this way will include all of the ICU specific styles and template in the 
Open Office document.

2. Replace the original content with your new chapter content, and save.

3. Open the complete userguide (userguide.sxg).  Answer “yes” to the “Update all Links 
question that will pop up when opening.

4. Open the Open Office document navigator (F5, or the  symbol in the toolbar.)

5. In the OO navigator, select the position to insert the new chapter in the list of user 
guide chapter files.  Select the chapter that should  follow the new chapter, right-click 
it, and choose  insert -> file  from the pop up menu.  Choose the new chapter file from 
the file open dialog that will appear.

To change a chapter's position within the userguide, select and drag it in the navigator 
window.

6. Update the table of contents.  Scroll to the top of the complete userguide, right click 
anywhere in the table of contents area, and choose Update Index /Table.

7. Save the userguide.sxg document.

8. Add the new chapter to the html navigation sidebar. 

457 ICU v3.8 User Guide



• In a plain text editor, open the file userguide/html-template/ugtemplate.html

• The html for the side bar is under <div class="sidebar">, and is fairly obvious – 
it is the biggest part of the file.  Copy and paste one of the existing chapter entries, 
and edit it to refer to the new chapter.  Keep the text for the link short, so that it 
does not exceed the width of the navigation bar in the html page.

• Regenerate the user guide html, and test the new navigation bar entry.

9. Put  the new and/or changed files back into cvs.

• New-chapter.sxw

• userguide.sxg

• ugtemplate.html

• any graphics files

ICU Version Number

To Do.

The ICU version number wants to appear on the title page, on the page header or footer 
somewhere, and somewhere in the html version.

These need to come from a single common place.

Fonts

Do not override the default fonts for the ICU styles in Open Office unless they do not 
support the characters needed.

Font choices made in Open Office are not propagated into the html files.  The html 
display font is controlled by a combination of the CSS style sheet and browser strategy 
for locating fonts that will display the characters encountered

For program identifiers or code fragments that are embedded within user guide text, 
choose the character style “icu-code.”  This will result in a fixed width font in the html 
output.

For Japanese, Chinese and Korean characters, and anything else that doesn't display  in 
Times New Roman, use the font Gulim if it works.  This choice is subject to change, but 
we need to be consistent throughout the userguide, both for stylistic reasons and to avoid 
an explosion of embedded fonts in the PDF file.

458 ICU v3.8 User Guide

, 10/19/04
html image name: userguideupdate-oonav.png



Bookmarks & Links

To link to an external html destination, like this, 

• Select the text that will become the link.

• Insert Menu -> HyperLink

• Select “Internet” on the left side of the dialog

• Enter the destination URL.

To link to a location within the ICU userguide,

• Insert Menu -> HyperLink

• Select “Document” on the left side of the dialog.

• Document Path Field:  If the target is in a different file, browse to it.  If the target is in 
the current file, leave the Document Path field empty.

• Target Field:  Click the button to the right of the target field, then expand the 
“Bookmarks” item in the window.  Select the desired bookmark (anchor) from the list.

Note that bookmarks to other user guide chapters are relative, even though the display 
shows a full path.  

When converting the userguide to html, all links to Open Office documents are assumed 
to be to some other part of the user guide, and are translated to normal html links.

To insert a bookmark (an anchor),
• Position the cursor at the desired location

• Insert Menu -> BookMarks

• Enter a name.

Diffing Open Office Documents

Open Office includes a document compare function.  Changes are highlighted in red, with 
change bars in the margin.  Additions are underlined, deletions are  lined out, and a list 
summarizes the changes with an option to keep or discard each.

To compare a chapter with a different or conflicting version of the same file,

• Open the newer document

• Edit Menu -> Compare Document, choose the conflicting or older document.

459 ICU v3.8 User Guide



ICU FAQs
Introduction to ICU

What is ICU?

ICU is a cross-platform Unicode based  globalization library. It includes support for 
locale-sensitive string comparison, date/time/number/currency/message formatting, text 
boundary detection, character set conversion and so on. 

Where can I get ICU?

You can get ICU4C and ICU4J from http://www.icu-project.org/download/

Where are the binary versions of ICU?

There are many versions of compilers on so many platforms that we cannot build them all 
and guarantee compatibility between them all even on the same platform. Due to these 
restrictions, we currently do not distribute binary versions of ICU, but you are welcome to 
distribute them yourself.

What is the ICU binary compatibly policy?

Please see the section on binary compatibility in the design chapter.

How is the ICU licensed?

The ICU projects since ICU 1.8.1 and ICU4J 1.3.1 are covered by the ICU license,  a 
simple, permissive non-copyleft free software license, compatible with the GNU GPL. 
The ICU license is identical to the version of the X license that was formerly available at 
http://www.x.org/Downloads_terms.html.  (This site no longer exists, but can still be 
retrieved through internet archive services)

The ICU license is intended to allow ICU to be included both in free software projects 
and in proprietary or commercial products.

Building and Testing ICU

How do I build ICU?

See the readme.html that is included with ICU.

460 ICU v3.8 User Guide

http://www.icu-project.org/


How do I get 32-bit versions of the ICU libraries?

By default, the configure script will build 64-bit  ICU libraries on platforms that can 
support 64 bit libraries. If you want 32-bit versions of the libraries instead, use the 
configure option --disable-64bit-libs (e.g. runConfigureICU Linux --disable-64bit-libs.

How do I build an optimized, non debug ICU?

On Win32, choose the 'Release' configuration from the drop down menu. On other 
platforms, use the runConfigureICU script, which uses the configure script. The 
runConfigureICU script uses the safest level of optimization for the ICU libraries. If your 
platform is not specified, set the following environment variables before running 
configure or runConfigureICU: CFLAGS=-O CXXFLAGS=-O

Why am I getting so many test failures when I use "gmake check"?

Please view the readme that is included with ICU. It has all the details on how to build 
and test ICU, and it usually answers most problems.

If you are using a compiler that hasn't been tested with ICU before, you may have 
encountered an optimization bug with the compiler. On Unix platforms you can specify --
disable-release when you are using runConfigureICU (e.g. runConfigureICU --disable-
release LinuxRedHat). If this fixes your problem, it is recommended that you report the 
optimization bug to the compiler manufacturer.

If neither of these fix your problem, please send an e-mail to the ICU4C Support List.

How can I reduce the size of the ICU data library?

Please view the ICU Data Management chapter of this User's Guide.

Can I add or remove a converter from ICU?

Yes. Please view the ICU Data Management chapter of this User's Guide. You can also 
get extra converters from http://www.icu-project.org/charts/charset/.

Why don't the makefiles work?

You need GNU's make program version 3.7 or later, and you need to run the 
runConfigureICU script, which is located in the icu/source directory. You may be using a 
platform that ICU does not support. If the first two answers do not apply to you, then you 
should send an e-mail to the ICU4C Support List.

Here are some places you can find gmake

• Main Source: http://www.gnu.org/software/make/

461 ICU v3.8 User Guide

http://www.x.org/Downloads_terms.html
http://source.icu-project.org/repos/icu/icu/trunk/license.html
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/design.sxw#ICU_Binary_Compatibility
http://www.icu-project.org/download/


• Sun® Source/Binaries: http://www.sunfreeware.com

• z/OS (OS/390) Source/Binaries: 
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty1.html#opensrc

• iSeries (OS/400) 
Source/Binaries:http://www.ibm.com/servers/enable/site/porting/iseries/overview/gnu
_utilities.html

Due to differences in every platform's make program, we will not support other versions 
of our make files.

What version of the C iostream is used in ICU4C?

ICU4C uses the latest available version of the iostream on the target platform. ICU 2.0 
does not use iostream in its core libraries. Only the unsupported ustdio library uses 
iostream.

Features of ICU

What computer languages does ICU support?

ICU4C (ICU) is written in C and C++, and ICU4J is written in Java™.

How are the APIs documented for deprecation?

Please read the API lifecycle page in the ICU Design chapter.

What version of Unicode standard does ICU support?

ICU versions 3.6  supports Unicode version 5.0.

The Unicode versions for older versions of ICU are listed on the ICU down load page, 
http://www.icu-project.org/download/

Does ICU support UTF-16 surrogates and Unicode supplementary 
characters?

Yes.

Does Java support UTF-16 surrogates and Unicode supplementary 
characters?

Java 5 introduced support for Unicode supplementary characters.  Java 1.4 and earlier do 
not directly support them.

462 ICU v3.8 User Guide

http://www.gnu.org/software/make/
http://www.icu-project.org/contacts.html
http://www.icu-project.org/charts/charset/
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/icudata.sxw#custom_data_library
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/icudata.sxw#custom_data_library
http://icu-project.org/contacts.html


How does ICU relate to Java's java.text.* package?

The International Components for Unicode is available both as a C/C++ library and a 
Java class library. ICU provides internationalization utilities for writing global 
applications in C, C++ or Java programming languages. ICU was originally developed by 
the Unicode group at the IBM Globalization Center of Competency in Cupertino, and 
ICU was contributed to Sun for inclusion into the JDK 1.1. ICU4J includes enhanced 
versions of some of these contributed classes plus additional classes that complement the 
classes in the JDK.

ICU4C started as a C++ port of the original Java Internationalization classes. These 
classes are now partially implemented in C, with largely parallel C and C++ APIs. ICU4C 
and ICU4J continue to leapfrog each other with features and bug fixes. Over time, 
features from ICU4J get added to the JDK as well.

Both versions of ICU have a goal to implement the latest Unicode standard, maintain a 
single portable source code base, and to make it easier for software developers to create 
global applications.

Using ICU

Can I use any of the features of ICU without Unicode strings?

No. In order to use the collation, text boundary analysis, formatting or other ICU APIs, 
you must use Unicode strings. In order to get Unicode strings from your native codepage, 
you can use the conversion API.

How do I declare a Unicode string in ICU?

Use the U_STRING_DECL and U_STRING_INIT macros or use the UnicodeString class for 
C++. Strings are represented as UChar * as the base string type.

Even though most platforms declare wide strings as wchar_t * or L"" as the base string 
type, that declaration is not portable because the sizeof(wchar_t) can be 1, 2 or 4, and 
the encoding may not even be Unicode. On the platforms where sizeof(wchar_t) is 2 
bytes, UChar is defined as wchar_t. In that case you can use ICU's strings with 3rd party 
legacy functions; however, we do not suggest using Unicode strings without the 
U_STRING_DECL and U_STRING_INIT macros or UnicodeString class because they are 
platform independent implementations.

How is a Unicode string represented in ICU4C?

A Unicode string is currently represented as UTF-16. The endianess of UTF-16 is 
platform dependent. You can guarantee the endianess of UTF-16 by using a converter. 

463 ICU v3.8 User Guide

http://www.icu-project.org/download/
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/design.sxw
http://www.ibm.com/servers/enable/site/porting/iseries/overview/gnu_utilities.html
http://www.ibm.com/servers/enable/site/porting/iseries/overview/gnu_utilities.html
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty1.html#opensrc
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty1.html#opensrc
http://www.sunfreeware.com/


UTF-16 strings can be converted to other Unicode forms by using a converter or with the 
UTF conversion macros.

ICU does not use UCS-2. UCS-2 is a subset of UTF-16. UCS-2 does not support 
surrogates, and UTF-16 does support surrogates. This means that UCS-2 only supports 
UTF-16's Base Multilingual Plane (BMP). The notion of UCS-2 is deprecated and dead. 
Unicode 2.0 in 1996 changed its default encoding to UTF-16.

If you need to do a quick and easy conversion between UTF-16 and UTF-8, UTF-32 or an 
encoding in wchar_t, you should take a look at unicode/ustring.h. In that header file you 
will find u_strToWCS, u_strFromWCS, u_strToUTF8, u_strFromUTF8, u_strToUTF32 
and u_strFromUTF32 functions. These functions are provided for your convenience 
instead of using the ucnv_* API.

You can also take a look at the UTF_*, UTF8_*, UTF16_* and UTF32_* macros, which 
are defined in unicode/utf.h, unicode/utf8.h, unicode/utf16.h and unicode/utf32.h. These 
macros are helpful for programmers that need to manipulate and process Unicode strings.

How do I index into a UTF-16 string?

Typically, indexes and offsets in strings count string units, not characters (although in c 
and java they have a char type).

For example, in old-fashioned MBCS strings, you would count indexes and offsets by 
bytes, not by the variable-width character count. In UTF-16, you do the same, just count 
16-bit units (in ICU: UChar).

What is the performance difference between UTF-8 and UTF-16?

Most of the time, the memory throughput of the hard drive and RAM is the main 
performance constraint. UTF-8 is 50% smaller than UTF-16 for US-ASCII, but UTF-8 is 
50% larger than UTF-16 for East and South Asian scripts. There is no memory difference 
for Latin extensions, Greek, Cyrillic, Hebrew, and Arabic.

For processing Unicode data, UTF-16 is much easier to handle. You get a choice between 
either one or two units per character, not a choice among four lengths. UTF-16 also does 
not have illegal 16-bit unit values, while you might want to check for illegal bytes in 
UTF-8. Incomplete character sequences in UTF-16 are less important and more benign. If 
you want to quickly convert small strings between the different UTF encodings or get a 
UChar32 value, you can use the macros provided in utf.h and its siblings utf8.h and 
utf16.h. For larger or partial strings, please use the conversion API. 

How do the converters work?

The converters act like a data stream. This means that the state of the last character is 
saved in the converter after each call to the ucnv_fromUnicode() and 
ucnv_toUnicode() functions. So if the source buffer ends with part of a surrogate 

464 ICU v3.8 User Guide



Unicode character pair, the next call to ucnv_toUnicode() will write out the equivalent 
character to the destination buffer. Please see the Conversion chapter of the User's Guide 
for details.

What does a locale look like in ICU?

ICU locales are lightweight, and they are represented by just a string. Lightweight means 
that there is just a string to represent a locale and nothing more. Many platforms have 
numbers and other data structures to represent a locale, but ICU has one simple platform 
independent string to represent a locale.

ICU locales usually contain an ISO-639 language name (2-3 characters), an ISO-3166 
country name (2-3 characters), and a variant name which is user specified. When a 
language or country is not represented by these standards, ICU uses 3 characters to 
represent that part of the locale. All three parts are separated by an underscore "_". For 
example, US English is "en_US", and German in Germany with the Euro symbol is 
represented as "de_DE_EURO". Traditionally the language part of the locale is 
lowercase, the country is uppercase and the variant is uppercase. More details are 
available from the Locale Chapter of this User's Guide.

How is ICU versioned?

Please read the ICU Design chapter of the User's Guide.

What is the relationship between ICU locale data and system locale data?

There is no relationship. ICU is not dependent on the operating system for the locale data.

This also means that uloc_setDefault() does not affect the operating system. The 
function uloc_setDefault() only sets ICU's default locale. Normally the default locale 
for ICU is whatever the operating system says is the default locale.

How are errors handled in ICU?

Since not all compilers can handle exceptions, we return an error from functions with a 
UErrorCode parameter. The UErrorCode parameter of a function will return any errors 
that occurred while it was executing. It's usually a good idea to check for errors after 
calling a function by using the U_SUCCESS and U_FAILURE macros. U_SUCCESS returns 
true when the function did run properly, and U_FAILURE returns true when the function 
did NOT run properly. You may handle specific errors from a function by checking the 
exact value of error. The possible values of UErrorCode are located in utypes.h of the 
common project. Before any function is called with a UErrorCode, it must be initialized 
to U_ZERO_ERROR.

Here is an example of UErrorCode being used.

465 ICU v3.8 User Guide



    UErrorCode err = U_ZERO_ERROR;
    callMyFunction(&err);
    if (U_FAILURE(err)) {
        puts("callMyFunction() Failed!");
    }

Please see the ICU Design chapter for details.

With calendar classes, why are months 0-based?

"I have been using ICU for its calendar classes, and have found it to be excellent. That 
said, I am wondering why the decision was made to keep months 0-based while almost all 
the other calendrical units (years, weeks of year, weeks of month, date, days of year, days 
of week, days of week in month) are 1-based? This has been the source of several bugs 
whenever the mind is slightly less than razor sharp." --Contributor

This was not our choice. We inherited it from the Java Calendar API, unfortunately.

Is there a guideline for COBOL programs that want to use ICU?

There is a COBOL/ICU guideline available since ICU 2.2. For more details, please refer 
to the COBOL section of this User's Guide.

Where can I get more information about using ICU?

Please send an e-mail to the ICU4C Support List.

466 ICU v3.8 User Guide

file:///C:/DEVELOPMENT/icuhtml/userguide/OO/design.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/locale.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/conversion.sxw


Glossary
ICU-specific Words and Acronyms

For additional Unicode terms, please see the official Unicode Standard Glossary. 

- A -  

accent  

A modifying mark on a character to indicate a change in 
vocal tone for pronunciation. For example, the accent 
marks in Latin script (acute, tilde, and ogonek) and the tone 
marks in Thai. Synonymous with diacritic.  

accented character  A character that has a diacritic attached to it.  

alphabetic 
language  

A written language in which symbols represent vowels and 
consonants, and in which syllables and words are formed 
by a phonetic combination of symbols. Examples of 
alphabetic languages are English, Greek, and Russian. 
Contrast with ideographic language.  

Arabic numerals  

Forms of decimal numerals used in most parts of the Arabic 
world (for instance, U+0660, U+0661, U+0662, U+0663). 
Although European digits (1, 2, 3...) derive historically 
from these forms, they are visually distinct and are coded 
separately. (Arabic digits are sometimes called Indic 
numerals; however, this nomenclature leads to confusion 
with the digits currently used with the scripts of India.) 
Arabic digits are referred to as Arabic-Indic digits in the 
Unicode Standard. Variant forms of Arabic digits used 
chiefly in Iran and Pakistan are referred to as Eastern 
Arabic-Indic digits.  

Arabic script  

A cursive script used in Arabic countries. Other writing 
systems such as Latin and Japanese also have a cursive 
handwritten form, but usually are typeset or printed in 
discrete letter form. Arabic script has only the cursive form. 
Arabic script is also used for Urdu, (spoken in Pakistan, 
Bangladesh, and India), Farsi and Persian (spoken in Iran, 
Iraq, and Afghanistan).  

ASCII  

"American Standard Code for Information Interchange." A 
standard  7-bit  character  set  used  for  information 
interchange.  ASCII encodes the basic Latin alphabet  and 
punctuation used in American English, but does not encode 
the accented characters used in many European languages. 

 

467 ICU v3.8 User Guide

http://www.icu-project.org/contacts.html
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/cobol.sxw
file:///C:/DEVELOPMENT/icuhtml/userguide/OO/design.sxw


- B -  

base character  

A base character is a Unicode character that does not 
graphically combine with any preceding character. This 
does not include control or formatting characters. This is a 
characteristic of most Unicode characters.  

baseline  A conceptual line with respect to which successive 
characters are aligned.  

Basic Multilingual 
Plane  

As defined by International Standard ISO/IEC 10646, 
Unicode values 0000 through FFFF. This range covers all 
of the major living languages around the world.  

bidi  See bidirectional.  

bidirectional  

Text which has a mixture of languages that read and write 
either left-to-right or right-to-left. Languages such as 
Arabic, Hebrew, and Yiddish have a general flow of text 
that proceeds horizontally from right to left, but numbers 
and Latin based languages like English are written from left 
to right.  

big-endian  

A computer architecture that stores multiple-byte numerical 
values with the most significant byte (MSB or big end) 
values first in a computer's addressable memory. This is the 
opposite from little-endian.  

BMP  See Basic Multilingual Plane.  

boundary  
A boundary is a location between user characters, words, or 
at the start or end of a string. Boundaries break the string 
into logical groups of characters.  

boundary position  
Each boundary has a boundary position in a string. The 
boundary position is an integer that is the index of the 
character that follows it.  

- C -  

canonical 
decomposition  

The decomposition of a character which results from 
recursively applying the canonical mappings until no 
characters can be further decomposed and then re-ordering 
non-spacing marks according to the canonical behavior 
rules. For instance, an acute accented A will decompose 
into an A character followed by an acute accent combining 
character. Canonical mappings do not remove formatting 
information, which is the opposite of what happens during 
a compatibility decomposition.  

canonical 
equivalent  

Two character sequences are said to be canonical 
equivalents if their full canonical decomposition are 
identical.  

468 ICU v3.8 User Guide

http://www.unicode.org/glossary/


CCSID  

Coded Character Set IDentifier. A number which IBM® 
uses to refer to the combination of particular code page(s), 
character set(s), and other information. This is defined 
formally in the CDRA (Coded Character Representation 
Architecture) documents from IBM.  

character 
boundary  

A location between characters.  

character 
properties  

The given properties of a character. These properties 
include, but are not limited to, case, numeric meaning, and 
direction to layout successive characters of the same type.  

character set  
The set of characters represented with reference to the 
binary codes used for the characters. One character set can 
be encoded into more than one code page.  

Chinese numerals  

Chinese characters that represent numbers. For example, 
the Chinese characters for 1, 2, and 3 are written with one, 
two, and three horizontal brush strokes, respectively. 
Contrast with Arabic numerals, Hindi numerals, and 
Roman numerals.  

CJK  Acronym for Chinese/Japanese/Korean characters.  

code page  The particular assignment of character shapes (glyphs) to 
binary codes.  

code set  UNIX term equivalent to code page.  

combining 
character sequence  

A combining character sequence consists of a Unicode base 
character and zero or more Unicode combining characters. 
The base and combining characters are dynamically 
composed at printout time to a user character.  

code page  
An ordered set or characters in which a numeric index 
(code point value) is associated with each character. This 
term can also be called a "character set" or "charset."  

code point value  
The encoding value for a character in the specified 
character set. For example the code point value of "A" in 
Unicode 3.0 is 0x0041.  

collation  
Text comparison using language-sensitive rules as opposed 
to bitwise comparison of numeric character codes. This is 
usually done to sort a list of strings.  

collation element  A collation element consists of the primary, secondary and 
tertiary weights of a user character.  

combining 
character  

A combining character is a Unicode character that 
graphically combines with any preceding base character. A 
combining character does not stand alone unless it is being 
described. Accents are examples of combining characters.  

469 ICU v3.8 User Guide

http://dkuug.dk/jtc1/sc2/wg2/


compatibility 
decomposition  

The decomposition of a character which results from 
recursively applying both compatibility mappings and 
canonical mappings until no characters can be further 
decomposed then re-ordering non-spacing marks according 
to the canonical behavior rules. Compatibility 
decomposition may remove formatting information, which 
is the opposite of what happens during a canonical 
decomposition.  

compatibility 
character  

A character that has a compatibility decomposition.  

compatibility 
equivalent  

Two characters sequences are said to be compatibility 
equivalent if their full compatibility decompositions are 
equivalent.  

core product  

The language independent portion of a software product (as 
distinct from any particular localized version of that 
product - including the English language version). 
Sometimes, however, this term is used to refer to the 
English product as opposed to other localizations.  

cursive script  A script whose adjacent characters touch or are connected 
to each other. For example, Arabic script is cursive.  

- D -  

DBCS
(double-byte

character set)  

A set of characters in which each character is represented 
by 2 bytes. Scripts such as Japanese, Chinese, and Korean 
contain more characters than can be represented by 256 
code points, thus requiring two bytes to uniquely represent 
each character. The term DBCS is often used to mean 
MBCS (multi-byte character set). See multi-byte character 
set.  

decomposable 
character  

A character that is comparable to a sequence of one or more 
other characters.  

decomposition  A sequence of one or more characters that is equivalent to a 
decomposable character.  

diacritic  
A modifying mark on a character. For example, the accent 
marks in Latin script (acute, tilde, and ogonek) and the tone 
marks in Thai. Synonymous with accent.  

digit  A general term for a number character. A digit may or may 
not be base ten.  

display string  

A display string is a string that may be shown to a user. 
Normally a display string is visible in GUI. These strings 
need to be translated for different countries.  

470 ICU v3.8 User Guide



- E -  

EBCDIC  

Extended Binary-Coded Decimal Interchange Code. A 
group of coded character sets that consists of eight-bit 
coded characters. EBCDIC-coded character sets map 
specified graphic and control characters onto code points, 
each consisting of 8 bits. EBCDIC is an extension of BCD 
(Binary-Coded Decimal), which uses only 7 bits for each 
character.  

ECMA  

European Computer Manufacturers Association. A 
nonprofit organization formed by European computer 
vendors to announce standards applicable to the functional 
design and use of data processing equipment.  

encoding scheme  

A set of specific definitions that describe the philosophy 
used to represent character data. Examples of specifications 
in such a definition are: the number of bits, the number of 
bytes, the allowable ranges of bytes, maximum number of 
characters, and meanings assigned to some generic and 
specific bit patterns.  

European 
numerals  

A number comprised of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 
and/or 9.  

expansion  The process of sorting a character as if it were expanded to 
two characters.  

- F -  

font  

A set of graphic characters that have a characteristic design, 
or a font designer's concept of how the graphic characters 
should appear. The characteristic design specifies the 
characteristics of its graphic characters. Examples of 
characteristics are shape, graphic pattern, style, size, 
weight, and increment.  

- G -  

globalization  

The process of developing, manufacturing, and marketing 
software products that are intended for worldwide 
distribution. This term combines two aspects of the work: 
internationalization (enabling the product to be used 
without language or culture barriers) and localization 
(translating and enabling the product for a specific locale).  

glyph  

The actual shape (bit pattern, outline) of a character image. 
For example, an italic "A" and a roman "A" are two 
different glyphs representing the same underlying character. 
Strictly speaking, any two images that differ in shape 
constitute different glyphs. In this usage, glyph is a 
synonym for character image, or simply image.  

471 ICU v3.8 User Guide



Graphical User 
Interface  

Graphical User Interface is normally written as the acronym 
GUI. It is the display the end-user sees when running a 
program. Strings that are visible in the GUI need to 
localized to the end-user's language.  

graphic character  A character, other than a control function, that has a visual 
representation normally handwritten, printed, or displayed.  

global application   

An application that can be completely translated for use in 
different locales. All text shown to the user is in the native 
language, and user expectations are met for dates, times, 
and other locale conventions.  

GMT  

Greenwich mean time. In the 1840s the standard time kept 
by the Royal Greenwich Observatory located at Greenwich, 
England was established for all of England, Scotland, and 
Wales, replacing many local times in use in those days. 
Subsequently GMT became the official time reference for 
the world until 1972 when it was subsumed by the atomic 
clock-based coordinated universal time (UTC). GMT is 
also known as universal time.  

GUI  Acronym for "Graphical User Interface"  
- H -  

Han Characters  Ideographic characters of Chinese origin.  

Hangul  
The Korean alphabet that consists of fourteen consonants 
and ten vowels. Hangul was created by a team of scholars 
in the 15th century at the behest of King Sejong. See jamo.  

Hanja  The Korean term for characters derived from Chinese.  

Hiragana  A Japanese phonetic syllabary. The symbols are cursive or 
curvilinear in style. See Kanji and Katakana.  

- I -  

i18n  
Synonym for internationalization ("i" + 18 letters + "n"; 
lower case i is used to distinguish it from the numeral 1 
(one)).  

ideographic 
language  

A written language in which each character (ideogram) 
represents a thing or an idea (but not necessarily a 
particular word or phrase). An example of such a language 
is written Chinese (Zhongen). Contrast with alphabetic 
language.  

Indic numerals  

A set of numerals used in India and many Arabic countries 
instead of, or in addition to, the Arabic numerals.
Indic numeral shapes correspond to the Arabic numeral 
shapes. Contrast with Arabic numerals, Chinese numerals, 
and Roman numerals. See numbers.  

472 ICU v3.8 User Guide



internationalization 
 

Designing and developing a software product to function in 
multiple locales. This process involves identifying the 
locales that must be supported, designing features which 
support those locales, and writing code that functions 
equally well in any of the supported locales. 
Internationalized applications store their text in external 
resources, and use locale-sensitive utilities for formatting 
and collation.  

ISO  

International Organization for Standardization. Contrary to 
popular belief, ISO does NOT stand for International 
Standards Organization because it is not an acronym. The 
ISO name is derived from the Greek word isos, which 
means "equal." ISO is a non-governmental international 
organization, and it promotes the development of standards 
on goods and services.  

- J -  

jamo  
A set of consonants and vowels used in Korean Hangul. 
The word jamo is derived from ja, which means consonant, 
and mo, which means vowel.  

- K -  

Kanji  
Chinese characters or ideograms used in Japanese writing. 
The characters may have different meanings from their 
Chinese counterparts. See Hiragana and Katakana.  

Katakana  

A Japanese phonetic syllabary used primarily for foreign 
names and place names and words of foreign origin. The 
symbols are angular, while those of Hiragana are cursive. 
Katakana is written left to right, or top to bottom. See 
Kanji.  

- L -  

L10n  Synonym for "localization" ("L" + 10 letters + "n"; upper 
case L is used to distinguish it from the numeral 1 (one)).  

L12y  Acronym for "localizability" ("L" + 12 letters + "y"; upper 
case L is used to distinguish it from the numeral 1 (one)).  

language  

A set of characters, phonemes, conventions, and rules used 
for conveying information. The aspects of a language are 
pragmatics, semantics, syntax, phonology, and 
morphology.  

legacy  

An inherited obligation. For example, a legacy database 
might contain strategic data that must be maintained for a 
long time after the database has become technologically 
obsolete.  

473 ICU v3.8 User Guide



locale  

A set of conventions affected or determined by human 
language and customs, as defined within a particular geo-
political region. These conventions include (but are not 
necessarily limited to) the written language, formats for 
dates, numbers and currency, sorting orders, etc.  

locale-sensitive  Exhibiting different behavior or returning different data, 
depending on the locale.  

localizability  

The degree to which a software product can be localized. 
Localizable products separate data from code, correctly 
display the target language and function properly after 
being localized.  

localization  

Modifying or adapting a software product to fit the 
requirements of a particular locale. This process includes 
(but may not be limited to) translating the user interface, 
documentation and packaging, changing dialog box 
geometries, customizing features (if necessary), and testing 
the translated product to ensure that it still works (at least 
as well as the original).  

lowercase  

The small alphabetic characters, whether accented or not, 
as distinguished from the capital alphabetic characters. The 
concept of case applies to alphabets such as Latin, Cyrillic, 
and Greek, but not to Arabic, Hebrew, Thai, Japanese, 
Chinese, Korean, and many other scripts. Examples of 
lowercase letters are a, b, and c. Contrast with uppercase.  

- M -  

MBCS  
Multi-byte Character Set. A set of characters in which each 
character is represented by 1 or more bytes. Contrast with 
DBCS and SBCS.  

modifier 
characters  

'@' (French secondary collation rule)  

multilingual  

An application that can simultaneously display and 
manipulate text in multiple languages. For example, a word 
processor that allows Japanese and English in the same 
document is multilingual.  

- N -  

NLS  

National Language Support. The features of a product that 
accommodate a specific region, its language, script, local 
conventions, and culture. See internationalization and 
localization.  

474 ICU v3.8 User Guide



National Standard  

A linguistic rule, measurement, educational guideline, or 
technology-related convention as defined by a government 
or an industry standards organization. Examples include 
character sets, keyboard layouts, and some cultural 
conventions, such as punctuations.  

non-display string  
A non-display string is a string such as a URL that is used 
programmatically and is not visible to an end-user. A non-
display string does not need to be translated.  

normalization   
The process of converting Unicode text into one of several 
standardized forms in which precomposed and combining 
characters are used consistently.  

numbers  

Numbers express either quantity (cardinal) or order 
(ordinal). Many cultures have different forms for cardinal 
and ordinal numbers. For example, in French the cardinal 
number five is cinq, but the ordinal fifth is cinquième or 
5eme or 5e. Numbers are written with symbols that are 
usually referred to as numerals. See Arabic numerals, 
Chinese numerals, Indic numerals, European numerals, and 
Roman numerals.  

- P -  

pinyin  A system to phonetically render Chinese ideograms in a 
Latin alphabet.  

- R -  

relation characters  
'<' (primary difference collation rule), ';' (secondary 
difference collation rule), ',' (tertiary difference collation 
rule), '=' (identical difference collation rule)  

reset character  '&'. (reset the collation rules)  

resource  
1. Any part of a program which can appear to the user or be 
changed or configured by the user. 
2. Any piece of the program's data, as opposed to its code.  

resource bundle  
A set of culturally dependent data used by locale-sensitive 
classes in an internationalized software program to provide 
Locale specific responses to the end-user.  

Roman numerals  

A system of writing numbers in which the characters I, V, 
X, L, C, D, and M have the value of 1, 5, 10, 50, 100, 500, 
and 1000, respectively. Lesser numbers in prefix positions 
indicate subtraction. For example MCMLXIV is 1964 in 
decimal, because CM is 900, LX is 60, and IV is 4. 
Contrast with Arabic numerals, European numerals, 
Chinese numerals, and Indic numerals.  

475 ICU v3.8 User Guide



- S -  
SBCS (Single-byte

character set)  
A set of characters in which each character is represented 
by 1 byte.  

script  

A set of characters used to write a particular set of 
languages. For example, the Latin (or Roman) script is used 
to write English, French, Spanish, and most other European 
languages; the Cyrillic script is used to write Russian and 
Serbian.  

separator  

The thousands separator (or digit grouping separator) is the 
local symbol used to separate every third digit in large 
numbers or lengthy decimal fractions. The decimal 
separator is the local symbol used to indicate the decimal 
position in a number. It may be a comma, period or some 
other language specific symbol.  

string  A set of consecutive characters treated by a computer as a 
single item.  

- T -  

titlecase  

A set of words that usually have the first character of each 
word in uppercase characters. The rules for titlecase are 
specific to each locale. Titlecase words usually go on titles 
of literature and other publications.  

transcoding  Conversion of character data from one character set to 
another.  

translation  
The conversion of text from one human language to 
another. This includes properly converting the grammar, 
spelling and meaning of the text into the target language.  

transliteration   

Transformation of text from one script to another, usually 
based on phonetic equivalences and not word meanings. 
For example, Greek text might be transliterated into the 
Latin script so that it can be pronounced by English 
speakers.  

- U -  

UCS  

Universal Multiple-Octet Coded Character Set. The 
Unicode standard is based upon this ISO/IEC 10646 
standard. UCS characters look the same Unicode 
characters, but they do not have any character properties. 
Synonymous with UTF.  

Unicode  
A character set that encompasses all of the world's living 
scripts. Unicode is the basis of most modern software 
internationalization.  

476 ICU v3.8 User Guide



Unicode character  

A Unicode character enables a computer to store, 
manipulate, and transfer to other computers multilingual 
text. A Unicode character has the binary range of 
0..10FFFF.  

uppercase  

The larger alphabetic characters, whether accented or not, 
as distinguished from the lowercase alphabetic characters. 
The concept of case applies to alphabets such as Latin, 
Cyrillic, and Greek, but not to Arabic, Hebrew, Thai, 
Japanese, Chinese, Korean, and many other scripts. 
Examples of uppercase letters are A, B, and C. Contrast 
with lowercase.  

user character  

A character made up of two or more Unicode characters 
that are combined to form a more complex character that 
has its own semantic value. A user character is the smallest 
component of written language that has a semantic value to 
a native language user.  

UTC time  

UTC stands for Coordinated Universal Time. This was 
formerly known as Greenwich Mean Time (GMT). It is 
used as a time constant that can be transformed to display 
an accurate date and time in any world calendar and time 
zone. This is a time scale based on a cesium atomic clocks.  

UTF  

Unicode Transformation Format. A binary format of 
representing a Unicode character. There are several 
encoding forms for a Unicode character, which include 
UTF-8, UTF-16BE, UTF-16LE, UTF-32BE and UTF-
32LE. The numbers in these encoding form names refer to 
the bit size of each number, and the BE and LE stands for 
big endian or little endian respectively. The UTF-8 and 
UTF-16 formats can take multiple units of binary numbers 
to represent a Unicode character.  

477 ICU v3.8 User Guide


