CDF

Fortran Reference Manual

Version 3.2, October 12, 2007

Space Physics Data Facility
NASA / Goddard Space Flight Center

Copyright © 2007

Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)

- Change history (e.g. date, functionality, etc.)

This copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

Internet - cdfsupport@listserv.gsfc.nasa.gov

Contents

i %o 2 0] o1 11 0o USROS 1
1.1 VIMS/OPENVIMS SYSTEIMSviiviieiereiieiesiestestestestesteseeseeaessestessestesseaseeseessessessessessesseasesssensessessessessessesseessessenses 2
1.2 LN S] (=] 1 LSS 2
1.3 Windows NT/2000/XP Systems, Digital Visual FOITran...........cocooiiiiiiiniiieneese st 2

Y N 1 1 1] o SRS SPR SRS 5
2.1 VAXIVMS & VAXIOPENVIMS SYSLEIMISveviitiiiiiitiiieieetesteieste sttt sttt sttt nb bt nn e ans 5
2.2 DEC AIPa/OPENVIMS SYSTEIMSviiiiiitiieiiitirteieatesteseete sttt ebe e bbb bbb bbbttt b et e b b neens 5
2.3 UNDX SYSEBIMIS ..tttk e bbb e b b £ b e b b £ b b e b bt ke b b e bbbt bt b b 6

23.1 Combining the ComPile and LINKcc.oiiiiie e bbb sn e 6
2.4 Windows NT/2000/XP Systems, Digital Visual FOItran.............ccoceiireiiiiiniie e 6

3 Linking Shared CDF LiDrary ... 9
31 VAX (VMS & OPENVIMS) ..ttt b bbbt bbb bbbt bbbt bbbttt 9
T B | Lo N [o] T W (@] o LT NV 1Y) SRS 10
3.3 SUN (SOLARIS) ..ttt bbbt bbb bbb bbbt b bbbt n s 10
34 HP 9000 (HP-UX) ..ottt ettt b ettt e bt bbbt b bbbt et n s 11
3.5 IBM RSB000 (ADX) 1.ririieeieiieriieesie ettt n s 11
3.6 DEC AIPNA (OSF/L) .ottt 11
T A ST (14 D15 TSP TP PT PP 11
3.8 LINUX (PC & POWEE PC) .tttk t bbbt b bbb bbbttt 11
3.9 WiINAOWS (NT/2000/XP)oeiieiieiiieieieieiesisieie sttt sttt sttt e sttt ettt b sttt e e b e b ettt e et ebe e et e e bene s 12

4 Programming INTErfacCeccocviiii i 13
A1 ATQUMENT PASSING ..ouviuiitiiteiiitiiteieeti sttt ettt sb et bt b bbbt e bbb b bt e bbb bbb bbbt b ettt b et 13
4.2 TEEIM RETEIENCING ...ttt ettt bbbt b bbbt bbb bbb eb et ns 14
4.3 StAtUS COUE CONSTANTS.......itiitiitiitiiti ettt sttt sttt e et e be b e besbeebe e s e e s e e beeb e ke sbeebeebeebeeseeebesbeebeebeeneeneennennas 14
A4 CDF FOIMALS....etiuititeteiisteteiee ettt sttt e et s b bt e bbb bRt e b b e s e b e bt e £ b b e e b e b £ s b b e e b e b et e b b e bbbt bbb e e beb s 14
4.5 (61D o -1 r- R Y/ o[- PO P PSRRI 14
T B T - B =g Tod oo 1o [OOSR 15
A O - B I 1= ot Lo L oSSR 16
I Vg T- o] (TN AV, = o]] PSS 17
4.9 ReCOrd/DIMENSION VAITANCES.iiitiietiiteietisteiete sttt sttt st ettt abe st s eb e st s e eb e nbes bt b s e ebe b st ab e b eneenenbeneans 18
T O o T o] £= T [RS 18
A1 SPAISEINESS ...ttt ittt rr et et eh ekt a s et R R R R R R R R R R R R e R R R R R R R e e R Rt R R e e 19

A 111 SPAISE RECOMSueititeieiteitei ettt ettt ettt b ettt b e bbb bbbt e b e bt e ekt e bt ekt e bt ekt s b et ekt s b et et e ebe e et e abeneereas 19

A.11.2 SPAISE ATTAYS ...eeieeeieeutesiest ettt e st st bkt s bt e s e e e E e R R e b e R e e R e s bR R R e AR R et e n e e r Rt R e nne 19
412 AUTIDULE SCOPES ...ttt ettt sttt h et b e bt bt bt bt e b e Rt e R e e b e eb e ke e b e eb e e be e s b e eee b e nbeebeebeeneeneennennas 19
413 REAU-ONIY IMOUES ...ttt et bttt h e e b et e bt e b e e bt e b e e Rt e n b e ee e b e nbeebeebeeneereennennas 20
A LA ZIVIOUES ...ttt bbbkt E bbb R bR E bR bR £ R R oA £ R bR £ AR bRt £ bbb bkt bbb 20
T O N O (o N0 0 I o [T SO SOUSPUSPRTR 20
I @ o 1T =L I3 L (SRS 20
4.17 Limits of Names and Other CharaCter StHNGSccccveeeiiiiieie e st n e sre s 21
4.18 Backward File Compatibility With CDF 2.7cooieiiie sttt sne s 21
R I O 1 1= ot o OO USROS 22

5 Standard Interface (Original)........cccccooiiiiiiiciic e 25

T R O B L i gl (- (=TT PP P VPR PRURPPT 25

511 EXBMPIE(S) + vttt bbbt bbbk bbb R bbb bbbt bt 26
5.2 CDF_Ar BNIIY INQUITE ...eitiie ittt b et bbbt e b e b b e b e bt e b e e Rt e se et e s besbeebe et e e neeseennennas 26
521 =011] <] () OSSR PR URUTRTP 27
LT R O B - 1 1 g o) SO USSP 28
53.1 100101 (=T () USSR 28
LT O | 4 1o [0 1T (PSSR 29
54.1 e 100101 L= () USSR 30
LT T O T - U1 1 1 o SOOI PRR 31
55.1 T 100] 0] L= () USSR 31
LT O 5 T U1 1 o RSOOSR 32
5.6.1 EXBMPIE(S) + vttt bttt bt bbb Rt bbbt b bbbt 33
A OB | 1 g (=10 1 TP TP VTP PRSPPI 33
57.1 =011] <] () OSSR PR USSP 34
LR T ©F B T o] (o1 TSRS ORPROR 34
58.1 1011 o] <] () OSSR USRS 35
5.9 (61D ol (T L L PP TPPT 35
59.1 100101 (=T () ISR 36
LT O O B L o U= 1= TSSOSO 37
ST 050 T 1111 o] 1=) I PSS 37
T8 R 1 T o (oo OO S T USPTR 37
TN I T 1211 o] 1=) I PSS 38
T R O B L =T 4 (o ST O SURT TPV PR PRSPPI 39
B.A2. 1 EXAMPIE(S) wrveueeteieiiite ittt ekttt bt bbb bR bbb bbbt 39
5.13 CDF_QetrVarsrECONAUALAcovereetirtirietiitesiete sttt ettt b et b bbb bbb st b e bbbt bbbt ns 40
TN N R - 1111 o] 1= () OSSPSR 41
5.14 CDF_QetZVaArSIECONTUALA. ... e vt iteiteeuieieeteite ettt sttt bt e et s et e e b e b e ke s be et e e Re e st e eee b e sbeebeebeeneeneennennas 42
TN R - 1111 o] 1= () SO EO U P USROS 42
LTS T @ T 1o (U -SSR 44
TN TS R e 1101 o] 1= () IS 45
LI K I O B o o] 1< o USSP PP PPPTR 45
ST 300 R T 1111 o] 1= () ISR 46
LT A A O L o TV (Y7 U EST =T ot (o o L PSS 46
B.AT. L EXAMPIE(S) vttt sttt ettt bbbtk btk bbb bR bbb b et bbb r e 47
5.18 CDF_PULZVAISIECOTTUUALA. .. .cveveieetiteieite ettt b bbbt bbbt bbbt bbbttt 48
B.LB. L EXAMPIE(S) vttt ittt sttt ettt bbb bR bbb bbbttt 49
LT I O B eV T o [0TSR PSSR 50
T R R - 1111 o] 1= () OSSPSR 51
L O B o V- ol (T LT SR SUPRR 51
I 0 R 5 1101 o] (=T () IS 52
LA R O B o V- L o - TP TP P TPR PR 53
ST S R 5 1101 o] 1= () IS 53
T OB Y - VS 01/ o< o - PSSR 54
I R ;1111 o[- () ISR 55
T T O Y - VS 017/ 0T g o U PSSR 56
5.23. 1 EXAMPIE(S) «uveueteieiiite sttt et bbb bbb e bbbt b 57
524 CDF_VAI_INQUITE ..ottt ettt sttt et et bt e b bt e b b £ bbb bbb bbbt b bbbt bbbttt 58
B.24. 1 EXAMPIE(S) wuveuiitirietiite ettt bbb bbb Rt b bbb bbbttt 59
LA T O B o - L g [0 o PRSPPI 59
I R - 1111 o] 1= () TSSOSO U USROS 60
IR O B LV T o 11| SO T TSR TR U ST PRTUPTOPTPRO 61
I R = 1101 o] (=T () ISR 61
LA A O B o - L g (=] =T 0O PP OUP VRPN 62
ST R 5 1111 o] 1= () PSS 62

6 Standard INterface (NEW).......coeiii i 65

TN R I o] -1 T PP PT PSP U PO URTPRPOPRTPPPOPRPRRPN 65

6.1.1 CDF_get_0atalyPe_SIZE ...cveuiiuiieeiiiteiteieete etttk b et b et b ettt b etk eb etk sb et et b e et e arenrere s 66
6.1.2 CDF_get I _COPYIIGNT.....ouiiiiieeeee ettt bbbt et b e b bt sbe b b e e e anbennen 66
6.1.3 CDF_gEt LI VEBISION ...ttt bttt bbbt bt e st e b e b bt b e sbesbe et e e e anbennen 67
6.1.4 (OB oo T) ro LT S (=) ST P U OO P UR T UUT PP 68
37 O I | SO USRUR P RSRURTPRORPRRN 69
6.2.1 (O8] ol [T ot | USSR 69
6.2.2 (O8] vl =T (Y oo | USRS 70
6.2.3 (O8I0 o 1=1 (oo | SRS 71
6.2.4 (O8] o=y o Tod 1 - SRS 72
6.2.5 (O8I0 o =) o] 1=t 26U PSS 73
6.2.6 CDF_get_COMPIESS_CACNESIZE ... cuiieiciiieeet et b ettt b et sbennene s 74
6.2.7 CDF _gBt_ COMPIESSION ...ttt ettt ettt et b ekt b e ekt b e bbb bkt e bt ekt eb et ekt sb et et e e b e e et e abeneereas 75
6.2.8 CDF_get_COMPIeSSION_INTO........oiiiiiiiieiee ettt bbbt e e e e nren 76
6.2.9 (OB o= A ol] o)V o 41 ST TUURURTRTURPRURRN 76
I K B O B] o) o [=ToToTo |1 o [P SOUSOUUP PR ORTT 77
ST R O 1o - - (oo T [] Vo [PPSR 78
oI O B 1o - R (o] 1 11T L PSS 79
oI T O 1o - 40T 1T 1Y/ 80
LT S O I | o 1= A 0 o - OSSPSR 81
6.2.15 CDF_get negtopoSTPO _MOUE.coiiiiiieeieiee et sttt st sneer e e e eneere e e eneees 81
6.2.16 CDF_get readonly MOUEccueiiiiiiiieie sttt ettt e s e e e saesnesteaneeree e eneees 82
6.2.17 CDF_get_Stage_CACNESIZE.....c.eiuiiieieiiiteiee ettt bbbt bbbt b ettt 83
B.2.18 CDF _gEL VEISION ...ttt sttt bbbt b bbb bbb e e bt bbbt b b e bt bt et b et et b et 84
6.2.19 CDF _gBL ZMOUEoviieieete ettt bbbtk b et b bbb b ettt 85
6.2.20 CDF _INQUITE_COT. ..ottt sttt sttt e s e et et e b e s be st e se e be st e tesbe st e besbe e e benbeneane 86
ST R &1 B] o] o 1= o | OSSOSO 87
6.2.22 CDF _SEL CACNESIZE .. .ecieieii ettt st s e et e et e s be e be e beesaesteesteesteesaeeaeesaeesbeenteenreans 88
I T O B |~y v 0 Yo U] o PSSR 89
6.2.24 CDF_Set_COMPIESS_CACNESIZE ...c.veveviiieiieeteeeeiesie et ste e eete e et et st e st e s besbeeteene e st e e e beseesbesteeneateeneeneees 90
6.2.25 CDF_SEBL_COMPIESSION ..o.vivieiiiiecieiestestesteste s e eseeeestetesresbesteaaeeseesseseesaesbesbesbesteaseessessentesteseesteaneereeseeneenes 91
I T O T ~Y-1 o = ToTo o |13 PSS 92
I A O | ~1- - o oTo o |1 3o PSS 93
6.2.28 CDF _SBL_TOMMAL....c.i ittt et bbb b et bbb bbbttt bttt 93
6.2.29 CDF _SBL MAJOFILY ...ecveiteiieteiieiete ettt bbbttt b ettt b etk b et bt bbb et b e 94
6.2.30 CDF_set_NegtopoSTPO_MOGEc..ciiiiieiiiie ettt et bbbttt 95
6.2.31 CDF_Set_readonly MOGE........ceiiiiiiiie ettt sttt b bt s e sb bbb e b e b b e e e e b e 96
6.2.32 CDF_Set_Stage CACNESIZEeiueiieiee ittt et b bbbttt e bbbt b e bt e b e e e e e 97
I T O B | =1 a4 1[0 o OSSP 98
8.3 VAIIADIE ...t b e e Rt bt E e b et R e bt E e b e te et e ereebenrere s 98
6.3.1 (O8] ol [0 A Y | SN 98
6.3.2 CDF_CONTIFM_ZVAI_ EXISTENCE .. .iviitiie ittt st sttt st e s be e st e e teeseesa et e bestesbestesasereeneeneesrens 99
6.3.3 CDF_confirm_zvar_padvalug_EXISt.........coereieiiriiieiieisie e seese et sne e ene e e s 100
6.3.4 (O e (T (A - | SR 101
6.3.5 (O8] o [=1) (A T T 103
6.3.6 CDF _0EIBLE ZVAI_TBCS ...tttk b bbbtk b ettt b ettt 104
6.3.7 CDF _gBE NMUML_ZVAIS. ...ttt bt e bbbttt b et ne e an b an b an e n s 105
6.3.8 CDF _gBE VA NMUM ..ttt r b bRt b e s b er b an bbb 106
6.3.9 CDF_get_vars_ MaXWIITEENTECNUMSiiueiieieeeitesie sttt etee et se et st sbe e e s e e e sbe st sbesbe e asee e enbaneenes 107
6.3.10 CDF_get_ZVAI _AlIOCIECSccuieiiieiee ittt et bbbt bt bt e b b e b e bt sb e be et en e e e ennas 108
6.3.11 CDF_get_zvar DIOCKINGTACIONoiiiiiiiiiice et e 109
T I O B 1o 1 A7 T o7 (o 111 4= PSSP 110
6.3.13 CDF_(BL ZVAr COMPIESSION ...cvviuveviiteitesieeteeteestetestestestestesseaseeseesestesaestestesteateeseeseeseentesteseestesseesseseenses 111
T TN O B 1o) A V7 T o - - OSSR 112
T TN T OB T o 1 A7 T o - v 11 o PSS 113
T T I OB T o Az T o 14151 SR 114

6.3.17 CDF_get_zvar QiMVAITANCEScoveiiiiieiiitiieeiiste stttk b ettt b 115
6.3.18 CDF_get_zvar_maxallOCIECNUM.........cuiuiiiiiiiiieiisteee ettt 116
6.3.19 CDF_get_zvar MaXWIItEBNTECIUMeiuiiiiiiie ittt sttt see bbbt st e e e e e e sbesbesbesbesbesseeseeneaneas 117
6.3.20 CDF _gBL ZVAI_NEIMIE.... ..ottt ettt ettt e s be e s be e bt e e e et ehe e sbe e bt e mbeas b e eb e e abeesbeenbeaneeennesneesneenas 118
6.3.21 CDF_get_ZVAr NUMAIMS .. .ottt sttt ettt ae b e bbb e e b e et e b e sbesbesbesbesbeeresbeaneaneas 118
6.3.22 CDF_(EL ZVAr NUMEIEMScuieiiieite ittt ettt et st et beebe et e e e e b e seesbesbesbeeteeneereeeenes 119
6.3.23 CDF_get_Zvar NUMIECS WITEEBN....cuiiieieieitiitisesteste et e et e e et e e steste e eseesae e et e sbesbestesbestesneesaesesneeneas 120
6.3.24 CDF_get ZVAr _PAOVAIUE......c.ocviiiiiie ittt st st et te et e e e e be e e besbesneeteeneereeeenes 121
R I T O B 1o =) Az L (-TeTo (o [0 - - RS 122
6.3.26 CDF_(BL ZVAI TBCVAMANCE ... evveveveriestesiesteereestetesees e seestesreaseeseeeestesaestesseaseaseeneeseeseeseseesnestesneeseesennses 123
6.3.27 CDF_get_ZVar_IeSEIVEPEICENTeiiuiestieteeieeierteesieesteesee e e aseesseesre e teenseeseesseesseessaesteeseeaneessessseensesneesnes 124
6.3.28 CDF _get_ZVAr SEOUALAeivieeieititetiiteieei ittt bbb bbb bbb e 125
6.3.29 CDF_QBL_ZVAI _SEOPOS ...eeeeereeseiuretesrestesieatessees s eeess bt bbb aseese e s et sa e e bt bt bt b e e e e nene e n e b ar b et ene e 126
6.3.30 CDF_get_zvars_maXWrittENIECNMUM.......cc.eieiteiestestesieeteeieee ettt este e b sbesbesbe s e eseeseeseesbesbesbesbessesseeneaneas 127
6.3.31 CDF_(Et_ZVAr SPAISEIECONMS. ... c.veveivirteauieuieeeteste st testeete st eseeseesbesbesbe bt e sease e e ebesbesaesbesbesbeene et eseenennas 128
6.3.32 CDF_get_ZVArS_FBCOIUAALA eiueteiteiteeie et ettt sttt be e bt st e bt et e e e s be e e be st sbeebe bt eneeneneas 129
6.3.33 CDF _hyper_get ZVAr 0ata.........ccccoueiiiiiiieiiieieeiie sttt sttt e besteste e esae e e besbesrestesneereeeeneas 130
6.3.34 CDF _hypPer_PUL_ZVAr GaLAcccoieiiiieiicieieeie e ste e teste e sa et e te s ae st e teebaeta e e esaeseesbesbesbesteeneenaeeenns 132
6.3.35 CDF INQUITE _ZVAT . .ctiitiiteiteetieteeteitestestesteste s e eteete et e sbe st e s tesbesbesteeaeesee e enbeseesbesbesaeetaeseeneeseeteseesresresneaneas 134
6.3.36 CDF _PUL ZVAIr A8 ...e.viveieeieiieceeeesiee ettt te e et e e e te st e tesaeeteeseeneesaeeeseearenreaneeneas 136
6.3.37 CDF_pUt_ZVar reCOMAUALAcveveieriesieie ettt e et e et resre et e esae e e e stesreereaneeneeeennes 137
6.3.38 CDF_PUL_ZVAr SEOUALA ... cveiviireieerieieiiesieste et te s e e et e e ste e eete e e et e ee s e besaestesseeneeseeneensesresreaneeneas 138
6.3.39 CDF_pUt_ZVars_TeCONTUALA.cerveuirtiieiirtereeist etttk 139
6.3.40 CDF_IBNAME_ZVAI ..c.tiitiitiiieitieieeit ettt sttt et h et b bt h et b e b e r bt e bt b e e e e e n e b r e b e ne s 142
6.3.41 CDF_set_zvar_alloChIOCKIECS.........c.eiiiiiiiieiisieee bbb 143
6.3.42 CDF_SEt ZVAI _AIIOCIECS.....cciiitiiiteecte ettt te e te e e st e s be et e e beesbesteesteesbeestesnnesneesneenas 144
6.3.43 CDF_set_zvar_bIOCKINGTACIONoiiiiii e e 144
6.3.44 CDF _SEt ZVAI CACNESIZEcuviiviiiieecie ettt te et e et e s ae e e be e s be e be e st e e raesteesteesteesreennesneeanns 145
6.3.45 CDF_SBL_ZVAI COMPIESSION....c.viitiiteitisieiteetestetestestestesteateeeestesaestestesaestesseessessesestesaestestesseeseessesseseenses 146
6.3.46 CDF_SEt_ZVAr JAASPECcuicuieieieieite ittt te et e st et te st e e s beere e e et e s ae st e besbeeteeneesae e e besbesbesteeneeneeseenns 147
6.3.47 CDF_Set_Zvar _0IMVAIIANCEScc.civiiviiiiiieeieeeeieiteste e ste e s e e e et e stestesbesbesbeetaeseesaeseesbesbesaesteenseneeeenees 148
6.3.48 CDF_SEt_ZVAlr INMITIAIIECSiiviiieeeiciesiese sttt te e e e s e eenaetesrenreaneeneas 149
6.3.49 CDF_Set_ZVar _PAOVAIUEceceeieieiece sttt sttt e e s e s e e seestesneareereaneaneas 150
6.3.50 CDF _SEBt_ZVAr_TECVAMNANCE ..e.eeuiieirieiiiteieiist ettt ekttt bbbttt bbb 151
6.3.51 CDF_Set_ZVar _IESEIVEPEITENTeiuiiiiiiieiieieet ettt e et b e bt e nn e nesn e ar bbb neeneas 152
6.3.52 CDF _SBL ZVArS_CACNESIZEoviuiieiiiiicteeee ettt bbbt b e 153
5.3.53 CDF _SBU ZVAI SEOPOS . .cteeteeiteatearesteesteeateebeasbesseesbeesbeesbeeabeebeasseaaeeebeeabe e st e ambeebbesbeesbeesbeenbeenneannesneeeas 154
6.3.54 CDF_SEt_ZVAlr _SPAISEIECONAScueiueitieteaiietieeite et stesteete bt s e e et esbesbesbe bt bees e e e e b e sbesbesbesbesbeere et eneenennas 155
6.4 AUTIDUIES/ENTIIES ...ttt ettt bbbt bt b et e st e nb e e b e eb e s bt e bt e neenbenbe b e nbesbe et e ene e 156
6.4.1 CDF_CONFIrM_attr EXISTENCE ..iiuiiiieiiii ettt st st b et e e e e e et e eesbesbesneereenes 156
6.4.2 CDF_confirm_gentry EXISTENCEviiiieieeieie e ste ettt ettt a e et et st e besaeebeeneeneereenes 157
6.4.3 CDF_CONTIrM_TENIIY EXISIENCEviiviiviitieteeicie et te st te sttt e st teete e et e e e e be s testesreeneenee e eneees 158
6.4.4 CDF_CONFIrM_ZENIIY BXISIENCE . ..icveeieeeieieiee st e sttt e et e et te s re e e e e s e e e e e seeseestesneeneeneaneaneenes 158
6.4.5 (O ol 1= 1 (= L1 S 159
6.4.6 (O8I0 11 1 (- L1 P 161
6.4.7 CDF _delete attr gENIIY ...oviieeitieetiet ettt bbbt b ettt bbbt ne 161
6.4.8 CDF _delete_@tr FENTIY ... ittt bbbkttt b ettt 162
6.4.9 CDF _delte_attr ZENTIY ..ottt bbbt bbbttt na 163
6.4.10 CDF _QBL I GBNIIY ..ttt ettt e bt b e b e s ae e e bt e e b e e bt e st e e s b e s b e e sbeesbeeeeeenneeneesneenas 164
6.4.11 CDF_get_attr_gentry datatyPecoeieeieiiieie ettt ettt st se et bbb besbe e eneas 165
6.4.12 CDF_get_attr_gentry NUMEIEIMSoiiiiiii ettt bbb bbb se e e eneas 166
IR T O B o o = - g 1 0T D G0 [=] 011 Y PSP R PRI 167
6.4.14 CDF _get_ At _MAX_TENIIY ..uviiiiiiiit ettt sttt sb et e st st e e s bt e st e e sab e e s beess b e e anbeennbeesnbeenebeeas 168
6.4.15 CDF_get_altl MAX_ZENTIY ...ueeieeieiee st esteesie e e ese e e e steesteeteasaesseesseesaeenteesteesaesseesseesteeneeaneeanessneenss 169
R e G O | o T~ - Vi g 0 o TS 170
Rt A O | o 1= A Y4 g 010 {0 oS 171

6.4.18 CDF_get_attr NUM_GENTIIES ...eiviiiieitiieeieit ettt bbbttt bbb ene e 172
6.4.19 CDF_get_attr NUM_TENTIESouiitiiitiitiietist ettt sttt b ettt se e e 173
6.4.20 CDF_get_attl NUM_ZENTIIES ...ueiuiiiiieeiteete ettt sttt s a e bbbt e et e st e e e nbe st sbeebe bt ereeeennas 174
B.4.21 CDF_QBL I TEINIIY ..ottt ettt h ettt e bt ekt e e bt e e bt e bt e st e eb b e et e e et e e nbeesbeeneeanneeanesreenis 174
6.4.22 CDF_get_attr_rentry JatatyPe......cocoiiieiiieeiee ettt ettt e e e b e b b be e eneas 176
6.4.23 CDF_get attr rentry NUMEIEMScviieie ettt ettt r et st sbesbe e era e e enaeneas 177
(IR O B e o = | L oo oL SOV S ROV PORRUPPTRRPPN 178
(R A I O B o o = i =] 11 YO U P PP UPPTRRPN 179
6.4.26 CDF_get_attr Zentry datatyPecccoevieiieeiicieie ettt sttt ena e e e e nesresreaneeneas 180
6.4.27 CDF_get_attr Zentry NUMEIEMS.cvieeieicice ettt e e e e e e sresre e neereanaeneas 181
R O | o 1= 10 (4L ST 182
6.4.29 CDF gL NUML_QAEEISiiiieceei et bbbt nn b sr e r e r e r b e e s 183
6.4.30 CDF_gEL NUM_VALIIS .. .eiiiiciiee et bt nn b nr e r e r b s s 184
B.4.31 CDF _INQUITE AT ...eitiitiiteii ettt ettt b et e e e e bbbt b e e he e Rt e e e besee b e s beebeebeeneaneas 185
6.4.32 CDF _INQUITE_ AT gENTIY ..ttt bbbt bt e e e b sb e besbe bt e be bt eneeeennas 187
6.4.33 CDF _INQUITE_ AT FENTIY .ottt ettt bbbt b e et e e e b e besbesbesbeebesbeeneeneas 188
6.4.34 CDF _INQUITE_ AT ZENITY ..cuviiiiiiie ettt sttt st e st e e be e st e e et e be st e s besbeeneereeneeneeseenns 190
(R LR O B o o[V = U1 £ o [=] 01 YOO OUPUR PRSP 191
(R e [O B T o o[V - U g (=] 11 Y TP PRSP UPPTRRPN 192
R A O | o TU - Ut =] 01 1 Y2 ST 194
ORI N O | = 0T T o U ST 195
6.4.39 CDF_set_attr_gentry GALASPECceivvvereeieriiesiestesesresreeeeeeseestestesreste s e eseeeeseseeseestesseaneeneenseseeseenses 196
6.4.40 CDF_Set_attr_rentry _0atASPECc.eiiuiiiiriiieiisienie sttt bbbt bbb 197
B.4.41 CDF _SB_ AT _SCOPE ...ttt b et b e r bbbt n e r b ene s 198
6.4.42 CDF_set_attr_Zentry atASPEC.........ccuruiiiiriiiiiriiiecrieiee sttt bbbttt 199
7 Internal Interface — CDF_LIDc.oooviveiii e 201
7.1 EXAMPIE(S) ettt bbbt bbb R bR R R R b bRt bbbt bbb r et b 201
7.2 CUrrent ODJECtS/STALES (ILEIMS) ...c.viiieieiiiieieie ettt e bbb b b e bt e e e e et e sbesbesbe et e ene e 203
7.3 RETUINEA SEATUS ...ttt ettt b e bbb e bt e bt e e e e et e ebeeb e s bt es e e e et e nbesbe st e e beabeenes 206
T4 INABNTALIONISEYIE ...ttt bbbt n b e b e s bt e bt b e e st et e sbe b e s beebe et e ne e 207
STV b QSOOI 207
7.5.1 MaACINtOSN, IMPWV FOPITAN......cuiitiiiiieiisieieii sttt ettt bbbt bbbt beneee 208
AL T @ 1= - 4 [3L 209
A A Y (o] - =T U 0] o 1= 268
7.7.1 (O {0} OO OO RTSOPPTSOTRTRP 268
7.7.2 zVariable Creation (Character DAta TYPE).....cceoieirerieiiieeie sttt 268
773 Hyper Read With SUDSAMPIING.........coiiii e 269
774 ALLTTOULE RENAMING ...ttt bbbt b et b e bbb e et b e b e 270
7.75 SBOUENTIAT ACCESS. ...ttt ettt ettt b ekttt s e e b e bt bt e b e e R e e R £ e ee e b e e b e eb e e b e e bt eh e e e e beneesbenbeebeebeene e 270
7.7.6 ATEFIDULE FENTIY WWEITES. ... ettt ettt bbbttt b et et e s e e e b et ebesbeaneeneas 271
7.7.7 MUILIPIE ZVArTADIE WIITE ... bbbttt sb bt 272

8 Interpreting CDF Status COEScccoiviiiiiiieiierie e 274
9 EPOCH ULty ROULINESccvvviiieiieciee et 276
9.1 COMPUIE_EPOCHottt sttt b ettt ettt e b e st et e besbe e e besb et e besbe st abe st ene et 276
0.2 EPOCH_BIEAKAOWNcviitiieieite ittt sttt sttt sttt sttt sttt et et b et e e be e et e e be s e tesbe st e tesbeseabenbenentns 277
LS T 4 (ot o [T =1 @ 11 SRS 277
LI 4 (ot o [T =t @ 11 i SRS 277
LR T (ot Lo T =t @ 11 7SS 278
LRI (o1 o [T =t @ 11 SR 278
LR o7 o [T =t L1 P 278
9.8 PAISE_EPOCH ...ttt ettt et et e st te e te e R aRe e aRe e Rttt n e Rt e nEe e EeenRe e eeanaenneenneenns 279
9.9 PAISE_EPOCHI ...t r e 279

9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22

PAISE_EPOCHZ ... bbb 280
PAISE_EPOCHS ...t r e 280
COMPUEE_EPOCHLE ...ttt ettt b btttk ek e bt e ke e bt e se e s he e sbe e ebe e abeenbeenbeneee e 280
S @101 o IR o1 €= 0o [0 ST 281
LT aTodoTo L= = o O O o PSSR 281
LT a ot o [T = o @ T o I T OSSPSR 281
LT a ot o T = o @ L o I TSRS 282
LT a oo o T = e @ L0 o I T TSSO 282
LT a ot o [T = o O L0 o I T SRR 282
[QFs LS =L @O ST 283
QLS =L @O I S 284
PAIrSE_EPOCHILO 2 .. .ot r e 284

PAIrSE_EPOCHILE 3 ... bbbt r e 284

Chapter 1

1 Compiling

Each program, subroutine, or function that calls the CDF library or references CDF parameters must include one or
more CDF include files. On VMS systems a logical name, CDF$INC, that specifies the location of the CDF include
files is defined in the definitions files, DEFINITIONS.COM, provided with the CDF distribution. On UNIX systems
(including Mac OS X) an environment variable, CDF_INC, that serves the same purpose is defined in the definitions
files definitions.<shell-type> where <shell-type> is the type of shell being used: C for the C-shell (csh and tcsh), K for
the Korn (ksh), BASH, and POSIX shells, and B for the Bourne shell (sh). This section assumes that you are using the
appropriate definitions files on those systems. The location of cdf.inc is specified as described in the appropriate
sections for those systems.

On VMS and UNIX systems the following line would be included at/near the top of each routine:
INCLUDE *"<inc-path>cdf.inc*

where <inc-path> is the files name of the directory containing cdf.inc. On VMS systems CDFS$INC: may be used for
<inc-path>. On UNIX systems <inc-path> must be a relative or absolute files name. (An environment variable may
not be used.) Another option would be to create a symbolic link to cdf.inc (using In -s) making cdf.inc appear to be in
the same directory as the source files to be compiled. In that case specifying <inc-path> would not be necessary. On
UNIX systems you will need to know where on your system cdf.inc has been installed.

The cdf.inc include files declares the FUNCTIONS available in the CDF library (CDF var num, CDF lib, etc.). Some
Fortran compilers will display warning messages about unused variables if these functions are not used in a routine
(because they will be assumed to be variables not function declarations). Most of these Fortran compilers have a
command line option (e.g., -nounused) that will suppress these warning messages. If a suitable command line option is
not available (and the messages are too annoying to ignore), the function declarations could be removed from cdf.inc
but be sure to declare each CDF function that a routine uses.*

Digital Visual Fortran®

On Windows NT/2000/XP systems using Digital Visual Fortran, the following lines would be included at the top of
each routine/source files:

- (PROGRAM, SUBROUTINE, or FUNCTION statement)

! Normally, you need to run DFVARS.BAT in bin directory to set up the proper environment from the command
prompt.

INCLUDE "cdfdvf.inc”
INCLUDE "cdfdf.inc"

The include files cdfdvf.inc contains an INTERFACE statement for each subroutine/function in the CDF library.
Including this files is absolutely essential no matter if you are using the Internal Interface (CDF lib) or Standard

Interface (e.g., CDF create, etc.) cdfdvf.inc is located in the same directory as cdf.inc. The include file cdfdf.inc is
similar to cdfdf.inc, with some statements commented out for Digital Visual Fortran compiler.

1.1 VMS/OpenVMS Systems

An example of the command to compile a source file on VMS/OpenVMS systems would be as follows:
$ FORTRAN <source-name>

where <source-name> is the name of the source file being compiled. (The .FOR extension is not necessary.) The
object module created will be named <source-name>.0OBJ.

NOTE: If you are running OpenVMS on a DEC Alpha and are using a CDF distribution built for a default double-

precision floating-point representation of D_FLOAT, you will also have to specify /FLOAT=D_FLOAT on the CC
command line in order to correctly process double-precision floating-point values.

1.2 UNIX Systems

An example of the command to compile a source file on UNIX flavored systems would be as follows:?
% 77 -c <source-name>._T
where <source-file>.f is the name of the source file being compiled. (The .f extension is required.)

The -c option specifies that only an object module is to be produced. (The link step is described in Chapter 2.) The
object module created will be named <source-name>.o.

1.3 Windows NT/2000/XP Systems, Digital Visual Fortran

An example of the command to compile a source file on Windows NT/95/98 systems using Digital Visual Fortran
would be as follows:*

> DF /c /iface:nomixed_strfilesn_arg /nowarn /optimize:0 /I<inc-path> <source-name>.F

% The name of the Fortran compiler may be different depending on the flavor of UNIX being used.
® This example assumes you have properly set the MS-DOS environment variables used by the Digital Visual Fortran
compiler.

where <source-name>.f is the name of the source file being compiled (the .f extension is required) and <inc-path> is
the file name of the directory containing cdfdvf.inc and cdfdf.inc. You will need to know where on your system
cdfdvf.inc and cdfdf.inc have been installed. <inc-path> may be either an absolute or relative file name.

The /c option specifies that only an object module is to be produced. (The link step is described in Chapter 2.) The
object module will be named <source-name>.obj.

The /iface:nomixed str len arg option specifies that Fortran string arguments will have their string lengths appended to
the end of the argument list by the compiler.

The /optimize:0 option specifies that no code optimization is done. We had a problem using the default optimization.
The /nowarn option specifies that no warning messages will be given.

You can run the batch files, DFVARS.BAT, came with the Digital Visual Fortran, to set them up.

Chapter 2

2 Linking

Your applications must be linked with the CDF library.! Both the Standard and Internal interfaces for C applications
are built into the CDF library. On VMS systems a logical name, CDF$LIB, which specifies the location of the CDF
library, is defined in the definitions file, DEFINITIONS.COM, provided with the CDF distribution. On UNIX systems
(including Mac OS X) an environment variable, CDF_LIB, which serves the same purpose, is defined in the definitions
file definitions.<shell-type> where <shell-type> is the type of shell being used: C for the C-shell (csh and tcsh), K for
the Korn (ksh), BASH, and POSIX shells, and B for the Bourne shell (sh). This section assumes that you are using the
appropriate definitions file on those systems. On MS-DOS and Macintosh (MacOS) systems, definitions files are not
available. The location of the CDF library is specified as described in the appropriate sections for those systems.

21 VAX/VMS & VAX/OpenVMS Systems

An example of the command to link your application with the CDF library (LIBCDF.OLB) on VAX/VMS and
VAX/OpenVMS systems would be as follows:

$ LINK <object-file(s)>, CDF$LIB:LIBCDF/LIBRARY
where<object-file(s)> is your application's object module(s). (The .OBJ extension is not necessary.) The name of the
executable created will be the name part of the first object file listed with .EXE appended. A different executable name
may be specified by using the [EXECUTABLE qualifier.

It may also be necessary to specify SYS$LIBRARY:VAXCRTL/LIBRARY at the end of the LINK command if your
system does not properly define LNKSLIBRARY (or LNK$LIBRARY _1, etc.).

2.2 DEC Alpha/OpenVMS Systems

1 A shareable version of the CDF library is also available on VMS and some flavors of UNIX. Its use is described in
Chapter 3. A dynamic link library (DLL), LIBCDF.DLL, is available on MS-DOS systems for Microsoft and Borland
Windows applications. Consult the Microsoft and Borland documentation for details on using a DLL. Note that the
DLL for Microsoft is created using Microsoft C 7.00.

An example of the command to link your application with the CDF library (LIBCDF.OLB) on DEC Alpha/OpenVMS
systems would be as follows:

$ LINK <object-file(s)>, CDF$LIB:LIBCDF/LIBRARY, SYS$LIBRARY:<crtl>/LIBRARY

where <object-file(s)> is your application's object module(s) (the .OBJ extension is not necessary) and <crtl> is
VAXCRTL if your CDF distribution is built for a default double-precision floating-point representation of G_FLOAT
or VAXCRTLD for a default of D_FLOAT. (You must specify a VAX C run-time library because the CDF library is
written in C.) The name of the executable created will be the name part of the first object file listed with .EXE
appended. A different executable name may be specified by using the /EXECUTABLE qualifier.

2.3 UNIX Systems

An example of the command to link your application with the CDF library (libcdf.a) on UNIX flavored systems would
be as follows:

% F77 <object-file(s)>.o ${CDF_LIB}/libcdf.a

where <object-file(s)>.0 is your application's object module(s). (The .o extension is required.) The name of the
executable created will be a.out by default. It may also be explicitly specified using the —o option. Some UNIX
systems may also require that -lc (the C run-time library), -Im (the math library), and/or -ldl (the dynamic linker
library) be specified at the end of the command line. This may depend on the particular release of the operating system
being used. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified instead of
${CDF_LIB}.

2.3.1 Combining the Compile and Link

On UNIX systems the compile and link may be combined into one step as follows:

% F77 <source-file(s)>.f ${CDF_LIB}/libcdf.a

where <source-file(s)>.f is the name of the source file(s) being compiled/linked. (The .f extension is required.) Some
UNIX systems may also require that -Ic, -Im, and/or -1dl be specified at the end of the command line. Note that in a
“makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified instead of ${CDF_LIB}.

2.4 Windows NT/2000/XP Systems, Digital Visual Fortran

NOTE: Even though your application is written in Fortran and compiled with a Fortran compiler, compatible C run-
time system libraries (as supplied with Microsoft Visual C++) will be necessary to successfully link your application.
This is because the CDF library is written in C and calls C run-time system functions.

An example of the command used to link an application to the CDF library (LIBCDF.LIB) on Windows NT/95/98
systems using Digital Visual Fortran and Microsoft Visual C++ would be as follows:?

% This example assumes you have properly set the MS-DOS environment variables (e.g., LIB should be set to include
directories that contain C's LIBC.LIB and Fortran's DFOR.LIB.)

> LINK <objs> <lib-path>libcdf.lib /out:<name.exe> /nodefaultlib:libcd

where <objs> is your application's object module(s) (the .obj extension is necessary); <name.exe> is the name of the
executable file to be created and <lib-path> is the file name of the directory containing LIBCDF.LIB. You will need to

know where on your system LIBCDF.LIB has been installed. <lib-path> may be either an absolute or relative file
name.

The /nodefaultlib:libcd option specifies that the LIBCD.LIB is to be ignored during the library search for resolving
references.

Chapter 3

3 Linking Shared CDF Library

A shareable version of the CDF library is also available on VMS systems, some flavors of UNIX®, Windows NT/95/98°
and Macintosh.® The shared version is put in the same directory as the non-shared version and is named as follows:

Machine/Operating System Shared CDF Library
VAX (VMS & OpenVMS) LIBCDF.EXE
DEC Alpha (OpenVMS) LIBCDF.EXE
Sun (SOLARIS) libcdf.so

HP 9000 (HP-UX)* libcdf.sl

IBM RS6000 (AIX)* libcdf.o

DEC Alpha (OSF/1) libcdf.so

SGi (6.X) libcdf.so
Linux (PC & Power PC) libcdf.so
Windows NT/2000/XP dllcdf.dll
Macintosh OS X* libcdf.dylib

The commands necessary to link to a shareable library vary among operating systems. Examples are shown in the
following sections.

31 VAX (VMS & OpenVMS)

$ ASSIGN CDF$LIB:LIBCDF.EXE CDF$LIBCDFEXE
$ LINK <object-file(s)>, SYS$INPUT:/OPTIONS
CDF$L 1BCDFEXE/SHAREABLE

! On UNIX systems, when executing a program linked to the shared CDF library, the environment variable
LD _LIBRARY_PATH must be set to include the directory containing libcdf.so or libcdf.sl.

2 When executing a program linked to the dynamically linked CDF library (DLL), the environment variable PATH
must be set to include the directory containing dllcdf.dll.

® On Mac systems, when executing a program linked to the shared CDF library, dllcdf.ppc or dlicdf.68k must be copied
into System's Extension folder.

* Not yet tested. Contact CDFsupport@listserv.gsfc.nasa.gov to coordinate the test.

SYS$SHARE : VAXCRTL/SHAREABLE
<Control-Z>
$ DEASSIGN CDF$LIBCDFEXE

where<object-file(s)> is your application's object module(s). (The .OBJ extension is not necessary.) The name of the
executable created will be the name part of the first object file listed with .EXE appended. A different executable name
may be specified by using the [EXECUTABLE qualifier.

NOTE: on VAX/VMS and VAX/OpenVMS systems the shareable CDF library may also be installed in SYS$SHARE.
If that is the case, the link command would be as follows:

$ LINK <object-file(s)>, SYS$INPUT:/OPTIONS
SYS$SHARE : LIBCDF/SHAREABLE
SYS$SHARE : VAXCRTL/SHAREABLE
<Control-z>

3.2 DEC Alpha (OpenVMS)

$ ASSIGN CDF$LIB:LIBCDF.EXE CDFS$LIBCDFEXE
$ LINK <object-File(s)>, SYS$INPUT:/OPTIONS
CDFS$LIBCDFEXE/SHAREABLE
SYS$LIBRARY :<crtl>/LI1BRARY
<Control-Z>
$ DEASSIGN CDF$LIBCDFEXE

where <object-file(s)> is your application's object module(s) (the .OBJ extension is not necessary) and <crtl> is
VAXCRTL if your CDF distribution is built for a default double-precision floating-point representation of G_FLOAT
or VAXCRTLD for a default of D_FLOAT or VAXCRTLT for a default of IEEE_FLOAT. (You must specify a VAX
C run-time library [RTL] because the CDF library is written in C.) The name of the executable created will be the
name part of the first object file listed with .EXE appended. A different executable name may be specified by using the
/[EXECUTABLE qualifier.

NOTE: on DEC Alpha/OpenVMS systems the shareable CDF library may also be installed in SYS$SHARE. If that is
the case, the link command would be as follows:

$ LINK <object-File(s)>, SYS$INPUT:/OPTIONS
SYS$SHARE : L 1BCDF/SHAREABLE

SYS$LIBRARY :<crtl>/LI1BRARY
<Control-zZ>

33 SUN (SOLARIS)

% F77 -0 <exe-file> <object-file(s)>.o0 ${CDF_LIB}/libcdf.so -Ic -Im
where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

10

3.4 HP 9000 (HP-UX)

% 77 -0 <exe-file> <object-file(s)>.o0 ${CDF_LIB}/libcdf.sl -Ic -Im
where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

35 1BM RS6000 (AIX)

% F77 -0 <exe-file> <object-file(s)>.o0 -L${CDF_LIB} ${CDF_LIB}/libcdf.o -Ic -Im
where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.6 DEC Alpha (OSF/1)

% F77 -0 <exe-file> <object-file(s)>.o0 ${CDF_LIB}/libcdf.so -Im -Ic
where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

37 SGi (IRIX 6.X)

% F77 -0 <exe-file> <object-file(s)>.o0 ${CDF_LIB}/libcdf.so -Im -Ic
where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.8 Linux (PC & Power PC)

% g77 -0 <exe-file> <object-file(s)>.o0 ${CDF_LIB}/libcdf.so -Im -Ic
where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

11

3.9 Windows (NT/2000/XP)

% link /out:<exe-file>_.exe <object-file(s)>.obj <lib-path>dllcdf.lib
/nodefaultlib:libcd

where <object-file(s)>.obj is your application's object module(s) (the .obj extension is required) and <exe-file>.exe is
the name of the executable file created, and <lib-path> may be either an absolute or relative directory name that has
dllcdf.lib. The environment variable LIB has to set to the directory that contains LIBC.LIB. Your PATH environment
variable needs to be set to include the directory that contains dllcdf.dll when the executable is run.

12

Chapter 4

4 Programming Interface

The following sections describe various aspects of the Fortran programming interface for CDF applications. These
include constants and types defined for use by all CDF application programs written in Fortran. These constants and
types are defined in cdf.inc. The file cdf.inc should be INCLUDEed in all application source files referencing CDF
routines/parameters.

4.1 Argument Passing

The CDF library is written entirely in C. Most computer systems have Fortran and C compilers that allow a Fortran
application to call a C function without being concerned that different programming languages are involved. The CDF
library takes advantage of the mechanisms provided by these compilers so that your Fortran application can appear to
be calling another Fortran subroutine/function (in actuality the CDF library written in C). Pass all arguments exactly as
shown in the description of each CDF function. This includes character strings (i.e., %REF(...) is not required). Be
aware, however, that trailing blanks on variable and attribute names will be considered as part of the name. If the
trailing blanks are not desired, pass only the part of the character string containing the name (e.g., VAR NAME(1:8)).

NOTE: Unfortunately, the Microsoft C and Microsoft Fortran compilers on the IBM PC and the C and Fortran
compilers on the NeXT computer do not provide the needed mechanism to pass character strings from Fortran to C
without explicitly NUL terminating the strings. Your Fortran application must place an ASCII NUL character after the
last character of a CDF, variable, or attribute name. An example of this follows:

CHARACTER ATTR_NAME*9 ! Attribute name
ATTR_NAME(1:8) = "VALIDMIN*® I Actual attribute name
ATTR_NAME(9:9) = CHAR(O) I ASCI1 NUL character

CHAR(0) is an intrinsic Fortran function that returns the ASCII character for the numerical value passed in (0 is the
numerical value for an ASCII NUL character). ATTR_NAME could then be passed to one of the CDF library
functions.

13

When the CDF library passes out a character string on an IBM PC (using the Microsoft compilers) or on a NeXT
computer, the number of characters written will be exactly as shown in the description of the function called. You must
declare your Fortran variable to be exactly that size.

4.2 Item Referencing

For Fortran applications all items are referenced starting at one (1). These include variable, attribute, and attribute
entry numbers, record numbers, dimensions, and dimension indices. Note that both rVariables and zVariables are
numbered starting at one (1).

4.3 Status Code Constants

These constants are of type INTEGER*4.
CDF _OK A status code indicating the normal completion of a CDF function.
CDF_WARN Threshold constant for testing severity of non-normal CDF status codes.

Chapter 8 describes how to use these constants to interpret status codes.

4.4 CDF Formats

SINGLE_FILE The CDF consists of only one file. This is the default file format.

MULTI_FILE The CDF consists of one header file for control and attribute data and one
additional file for each variable in the CDF.

4.5 CDF Data Types

One of the following constants must be used when specifying a CDF data type for an attribute entry or variable.

CDF _BYTE 1-byte, signed integer.
CDF_CHAR 1-byte, signed character.
CDF_INT1 1-byte, signed integer.
CDF_UCHAR 1-byte, unsigned character.
CDF_UINT1 1-byte, unsigned integer.

14

CDF_INT2 2-byte, signed integer.

CDF_UINT2 2-byte, unsigned integer.
CDF_INT4 4-byte, signed integer.
CDF_UINT4 4-byte, unsigned integer.
CDF_REAL4 4-byte, floating point.
CDF_FLOAT 4-byte, floating point.
CDF_REALS 8-byte, floating point.
CDF_DOUBLE 8-byte, floating point.
CDF_EPOCH 8-byte, floating point.
CDF_EPOCH16 two 8-byte, floating point.

CDF_CHAR and CDF_UCHAR are considered character data types. These are significant because only variables of
these data types may have more than one element per value (where each element is a character).

NOTE: When using a DEC Alpha running OSF/1 keep in mind that a long is 8 bytes and that an int is 4 bytes. Use int
C variables with the CDF data types CDF_INT4 and CDF_UINT4 rather than long C variables.

NOTE: When using an PC (MS-DOS) keep in mind that an int is 2 bytes and that a long is 4 bytes. Use long C
variables with the CDF data types CDF_INT4 and CDF_UINT4 rather than int C variables.

4.6 Data Encodings

A CDF's data encoding affects how its attribute entry and variable data values are stored (on disk). Attribute entry and
variable values passed into the CDF library (to be written to a CDF) should always be in the host machine's native
encoding. Attribute entry and variable values read from a CDF by the CDF library and passed out to an application
will be in the currently selected decoding for that CDF (see the Concepts chapter in the CDF User's Guide).

HOST_ENCODING Indicates host machine data representation (native). This is the default
encoding, and it will provide the greatest performance when
reading/writing on a machine of the same type.

NETWORK_ENCODING Indicates network transportable data representation (XDR).

VAX_ENCODING Indicates VAX data representation. Double-precision floating-point
values are encoded in Digital's D_FLOAT representation.

ALPHAVMSd ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values are encoded in Digital's D_FLOAT
representation.

15

ALPHAVMSg ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's G_FLOAT
representation.

ALPHAVMSi_ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

ALPHAOSF1_ENCODING Indicates DEC Alpha running OSF/1 data representation.

SUN_ENCODING Indicates SUN data representation.

SGi_ENCODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION_ENCODING
Indicates DECstation data representation.

IBMRS_ENCODING Indicates IBMRS data representation (IBM RS6000 series).
HP_ENCODING Indicates HP data representation (HP 9000 series).
PC_ENCODING Indicates PC data representation.

NeXT_ENCODING Indicates NeXT data representation.

MAC_ENCODING Indicates Macintosh data representation.

When creating a CDF (via the Standard interface) or respecifying a CDF's encoding (via the Internal Interface), you
may specify any of the encodings listed above. Specifying the host machine's encoding explicitly has the same effect
as specifying HOST_ENCODING.

When inquiring the encoding of a CDF, either NETWORK_ENCODING or a specific machine encoding will be
returned. (HOST_ENCODING is never returned.)

4.7 Data Decodings

A CDF's decoding affects how its attribute entry and variable data values are passed out to a calling application. The
decoding for a CDF may be selected and reselected any number of times while the CDF is open. Selecting a decoding
does not affect how the values are stored in the CDF file(s) - only how the values are decoded by the CDF library. Any
decoding may be used with any of the supported encodings. The Concepts chapter in the CDF User's Guide describes a
CDF's decoding in more detail.

HOST_DECODING Indicates host machine data representation (native). This is the default
decoding.

NETWORK_DECODING Indicates network transportable data representation (XDR).

VAX_DECODING Indicates VAX data representation. Double-precision floating-point

values will be in Digital's D_FLOAT representation.
ALPHAVMSd _DECODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values will be in Digital's D_FLOAT
representation.

16

ALPHAVMSg DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's G_FLOAT
representation.

ALPHAVMSi_DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in IEEE representation.

ALPHAOSF1_DECODING Indicates DEC Alpha running OSF/1 data representation.

SUN_DECODING Indicates SUN data representation.

SGi_DECODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION_DECODING Indicates DECstation data representation.

IBMRS_DECODING Indicates IBMRS data representation (IBM RS6000 series).

HP_DECODING Indicates HP data representation (HP 9000 series).

PC_DECODING Indicates PC data representation.

NeXT_DECODING Indicates NeXT data representation.

MAC_DECODING Indicates Macintosh data representation.

The default decoding is HOST_DECODING. The other decodings may be selected via the Internal Interface with the
<SELECT_,CDF_DECODING_> operation. The Concepts chapter in the CDF User's Guide describes those situations
in which a decoding other than HOST_DECODING may be desired.

4.8 Variable Majorities

A CDF's variable majority determines the order in which variable values (within the variable arrays) are stored in the
CDF file(s). The majority is the same for rVVariable and zVariables.

ROW_MAJOR C-like array ordering for variable storage. The first dimension in each
variable array varies the slowest. This is the default majority.

COLUMN_MAJOR Fortran-like array ordering for variable storage. The first dimension in
each variable array varies the fastest.

Knowing the majority of a CDF's variables is necessary when performing hyper reads and writes. During a hyper read
the CDF library will place the variable data values into the memory buffer in the same majority as that of the variables.
The buffer must then be processed according to that majority. Likewise, during a hyper write, the CDF library will
expect to find the variable data values in the memory buffer in the same majority as that of the variables.

The majority must also be considered when performing sequential reads and writes. When sequentially reading a
variable, the values passed out by the CDF library will be ordered according to the majority. When sequentially
writing a variable, the values passed into the CDF library are assumed (by the CDF library) to be ordered according to
the majority.

17

As with hyper reads and writes, the majority of a CDF's variables affects multiple variable reads and writes. When
performing a multiple variable write, the full-physical records in the buffer passed to the CDF library must have the
CDF's variable majority. Likewise, the full-physical records placed in the buffer by the CDF library during a multiple
variable read will be in the CDF's variable majority.

For Fortran applications the compiler defined majority for arrays is column major. The first dimension of multi-
dimensional arrays varies the fastest in memory.

4.9 Record/Dimension Variances

Record and dimension variances affect how variable data values are physically stored.

VARY True record or dimension variance.

NOVARY False record or dimension variance.
If a variable has a record variance of VARY, then each record for that variable is physically stored. If the record
variance is NOVARY, then only one record is physically stored. (All of the other records are virtual and contain the
same values.)
If a variable has a dimension variance of VARY, then each value/subarray along that dimension is physically stored. If

the dimension variance is NOVARY, then only one value/subarray along that dimension is physically stored. (All
other values/subarrays along that dimension are virtual and contain the same values.)

4.10 Compressions

The following types of compression for CDFs and variables are supported. For each, the required parameters are also
listed. The Concepts chapter in the CDF User's Guide describes how to select the best compression type/parameters for
a particular data set.

NO_COMPRESSION No compression.

RLE_COMPRESSION Run-length encoding compression. There is one parameter.

1. The style of run-length encoding. Currently, only the run-length

encoding of zeros is supported. This parameter must be set to
RLE_OF_ZEROs.
HUFF_COMPRESSION Huffman compression. There is one parameter.

1. The style of Huffman encoding. Currently, only optimal encoding
trees are supported. An optimal encoding tree is determined for each
block of bytes being compressed. This parameter must be set to
OPTIMAL_ENCODING_TREES.

AHUFF_COMPRESSION Adaptive Huffman compression. There is one parameter.

18

1. The style of adaptive Huffman encoding. Currently, only optimal
encoding trees are supported. An optimal encoding tree is determined
for each block of bytes being compressed. This parameter must be set
to OPTIMAL_ENCODING_TREES.

GZIP_COMPRESSION Gnu's “zip" compression.! There is one parameter.

1. The level of compression. This may range from 1 to 9. 1 provides the

least compression and requires less execution time. 9 provides the

most compression but requires the most execution time. Values in-
between provide varying compromises of these two extremes.

4.11 Sparseness

4111 Sparse Records

The following types of sparse records for variables are supported.
NO_SPARSERECORDS No sparse records.

PAD_SPARSERECORDS Sparse records - the variable's pad value is used when reading values from
a missing record.

PREV_SPARSERECORDS Sparse records - values from the previous existing record are used when

reading values from a missing record. If there is no previous existing
record the variable's pad value is used.

4.11.2 Sparse Arrays

The following types of sparse arrays for variables are supported.’

NO_SPARSEARRAYS No sparse arrays.

4.12 Attribute Scopes

Attribute scopes are simply a way to explicitly declare the intended use of an attribute by user applications (and the
CDF toolkit).

GLOBAL_SCOPE Indicates that an attribute's scope is global (applies to the CDF as a
whole).

! Disabled for PC running 16-bit DOS/Windows 3.x.
Z Obviously, sparse arrays are not yet supported.

19

VARIABLE_SCOPE Indicates that an attribute's scope is by-variable. (Each rEntry or zEntry
corresponds to an rVariable or zVariable, respectively.)

4.13 Read-Only Modes

Once a CDF has been opened, it may be placed into a read-only mode to prevent accidental modification (such as when
the CDF is simply being browsed). Read-only mode is selected via the Internal Interface using the
<SELECT_,CDF_READONLY_MODE_> operation. When read-only mode is set, all metadata is read into memory
for future reference. This improves overall metadata access performance but is extra overhead if metadata is not
needed. Note that if the CDF is modified while not in read-only mode, subsequently setting read-only mode in the same
session will not prevent future modifications to the CDF.

READONLYon Turns on read-only mode.
READONLY off Turns off read-only mode.
4.14 zModes

Once a CDF has been opened, it may be placed into one of two variations of zMode. zMode is fully explained in the
Concepts chapter in the CDF User's Guide. A zMode is selected for a CDF via the Internal Interface using the
<SELECT_,CDF_zMODE_> operation.

zMODEoff Turns off zMode.
zMODEon1 Turns on zMode/1.
zZMODEon2 Turns on zMode/2.

4.15 -0.0 to 0.0 Modes

Once a CDF has been opened, the CDF library may be told to convert -0.0 to 0.0 when read from or written to that
CDF. This mode is selected via the Internal Interface using the <SELECT ,CDF_NEGtoPOSfp0_MODE_> operation.

NEGtoPOSfp0on Convert -0.0 to 0.0 when read from or written to a CDF.

NEGtoPOSfpOoff Do not convert -0.0 to 0.0 when read from or written to a CDF.

4,16 Operational Limits

These are limits within the CDF library. If you reach one of these limits, please contact CDF User Support.

20

CDF_MAX_DIMS Maximum number of dimensions for the rVariables or a zVariable.
CDF_MAX_PARMS Maximum number of compression or sparseness parameters.

The CDF library imposes no limit on the number of variables, attributes, or attribute entries that a CDF may have. On
the PC, however, the number of rVariables and zVariables will be limited to 100 of each in a multi-file CDF because of
the 8.3 naming convention imposed by MS-DOS.

4.17 Limits of Names and Other Character Strings

CDF_PATHNAME_LEN Maximum length of a CDF file name (excluding the .cdf or .vnn appended
by the CDF library to construct file names). A CDF file name may
contain disk and directory specifications that conform to the conventions
of the operating systems being used (including logical names on VMS
systems and environment variables on UNIX systems).

CDF_VAR_NAME_LEN256 Maximum length of a variable name.
CDF_ATTR_NAME_LEN256 Maximum length of an attribute name.
CDF_COPYRIGHT_LEN Maximum length of the CDF copyright text.
CDF_STATUSTEXT_LEN Maximum length of the explanation text for a status code.

4.18 Backward File Compatibility with CDF 2.7

By default, a CDF file created by CDF V3.0 or a later release is not readable by any of the CDF releases before CDF
V3.0 (e.g. CDF 2.7.x, 2.6.x, 2.5.x, etc.). The file incompatibility is due to the 64-bit file offset used in CDF 3.0 and
later releases (to allow for files greater than 2G bytes). Note that before CDF 3.0, 32-bit file offset was used.

There are two ways to create a file that’s backward compatible with CDF 2.7 and 2.6, but not 2.5. A new Fortran
subroutine, CDF_set_FileBackward, can be called to control the backward compatibility from an application before a
CDF file is created (i.e. CDF_create CDF). This subroutine takes an argument to control the backward file
compatibility. Passing a flag value of BACKWARDFILEon, defined in cdf.inc, to the subroutine will cause new
files to be backward compatible. The created files are of version V2.7.2, not V3.*. This option is useful for those who
wish to create and share files with colleagues who still use a CDF V2.6 or V2.7 library. If this option is specified, the
maximum file is limited to 2G bytes. Passing a flag value of BACKWARDFILEOoff, also defined in cdf.inc, will use
the default file creation mode and new files created will not be backward compatible with older libraries. The created
files are of version 3.* and thus their file sizes can be greater than 2G bytes. Not calling this function has the same
effect of calling the function with an argument value of BACKWARDFILEoff.

The following example uses the Internal Interface routine to create two CDF files: “MY_TEST1.cdf” is a V3.1 file
while “MY_TEST2.cdf” a V2.7 file. Alternatively, the Standard Interface routine CDF_create_ CDF can be used for
the file creation.

include ‘cdf.inc’

21

integer*4 id1, id2 /* CDF identifier. */

integer*4 status /* Returned status code. */
integer*4 numDims =0 /* Number of dimensions. */
integer*4 dimSizes[1] = {0} /* Dimension sizes. */

status = CDF_lib (CREATE_, CDF_, “MY_TESTL1”, numDims, dimSizes, id1,
1 NULL _, status)
if (status .It. CDF_OK) call UserStatusHandler (status)

call CDF_set_FileBackward(BACKWARDFILEon)

status = CDF _lib (CREATE_, CDF_, “MY_TEST2”, numDims, dimSizes, id2,
1 NULL_, status)

if (status .NE. CDF_OK) call UserStatusHandler (status)

Another method is through an environment variable and no function call is needed (and thus no code change involved
in any existing applications). The environment variable, CDF_FILEBACKWARD on all Unix platforms and
Windows, or CDF$FILEBACKWARD on Open/VMS, is used to control the CDF file backward compatibility. If its
value is set to “TRUE”, all new CDF files are backward compatible with CDF V2.7 and 2.6. This applies to any
applications or CDF tools dealing with creation of new CDFs. If this environment variable is not set, or its value is set
to anything other than “TRUE”, any files created will be of the CDF 3.* version and these files are not backward
compatible with the CDF 2.7.2 or earlier versions .

Normally, only one method should be used to control the backward file compatibility. If both methods are used, the
subroutine call through CDF_set_FileBackward will take the precedence over the environment variable.

You can use the CDF_get FileBackward subroutine to check the current value of the backward-file-compatibility
flag. It returns 1 if the flag is set (i.e. create files compatible with V2.7 and 2.6) or 0 otherwise.

include ‘cdf.inc’

integer*4 flag /* CDF identifier. */

;‘Iag = CDF_get_FileBackward()

4.19 Checksum

To ensure the data integrity while transferring CDF files from/to different platforms at different locations, the
checksum feature was added in CDF V3.2 as an option for the single-file format CDF files (not for the multi-file
format). By default, the checksum feature is not turned on for new files. Once the checksum bit is turned on for a
particular file, the data integrity check of the file is performed every time it is open; and a new checksum is computed
and stored when it is closed. This overhead (performance hit) may be noticeable for large files. Therefore, it is
strongly encouraged to turn off the checksum bit once the file integrity is confirmed or verified.

If the checksum bit is turned on, a 16-byte signature message (a.k.a. message digest) is computed from the entire file
and appended to the end of the file when the file is closed (after any create/write/update activities). Every time such

22

file is open, other than the normal steps for opening a CDF file, this signature, serving as the authentic checksum, is
used for file integrity check by comparing it to the re-computed checksum from the current file. If the checksums
match, the file’s data integrity is verified. Otherwise, an error message is issued. Currently, the valid checksum modes
are: NO_CHECKSUM and MD5_CHECKSUM, bhoth defined in cdf.h. With MD5_CHECKSUM, the MD5
algorithm is used for the checksum computation. The checksum operation can be applied to CDF files that were
created with V2.6 or later.

There are several ways to add or remove the checksum bit. One way is to use the Interface call (Standard or Internal)
with a proper checksum mode. Another way is through the environment variable. Finally, CDFedit and CDFconvert
(CDF tools included as part of the standard CDF distribution package) can be used for adding or removing the
checksum bit. Through the Interface call, you can set the checksum mode for both new or existing CDF files while the
environment variable method only allows to set the checksum mode for new files.

See Section 6.2.5 and 6.2.23 for the Standards Interface functions and Section 7.6 for the Internal Interface functions.
The environment variable method requires no function calls (and thus no code change is involved for existing
applications). The environment variable CDF _CHECKSUM on all Unix platforms and Windows, or
CDF$CHECKSUM on Open/VMS, is used to control the checksum option. If its value is set to “MD5”, all new CDF
files will have their checksum bit set with a signature message produced by the MD5 algorithm. If the environment
variable is not set or its value is set to anything else, no checksum is set for the new files.

The following example uses the Internal Interface to set one new CDF file with the MD5 checksum and set another
existing file’s checksum to none.

include ‘cdf.inc’

integer*4 id1, id2 /* CDF identifier. */
integer*4 status /* Returned status code. */
integer*4 numDims =0 /* Number of dimensions. */
integer*4 dimSizes[1] = {0} /* Dimension sizes. */
integer*4 checksum /* Number of dimensions. */

status = CDF_lib (CREATE_, CDF_, “MY_TEST1”, numDims, dimSizes, id1,
1 NULL_, status)
if (status .NE. CDF_OK) call UserStatusHandler (status)

checksum = MD5_CHECKSUM

status = CDFlib (SELECT_, CDF_, id1,

1 PUT_, CDF_CHECKSUM _, checksum,
2 NULL _, status)

if (status .NE. CDF_OK) UserStatusHandler (status)

status = CDFlib (OPEN_, CDF_, “MY_TEST2”, id2,
1 NULL_);
if (status .NE. CDF_OK) UserStatusHandler (status)

checksum = NO_CHECKSUM

status = CDFlib (SELECT_, CDF_, id2,

1 PUT_, CDF_CHECKSUM_, checksum,
2 NULL _, status)

if (status .NE. CDF_OK) UserStatusHandler (status)

23

Alternatively, the Standard Interface function CDF_set_Checksum can be used for the same purpose.

The following example uses the Internal Interface to get the checksum mode used in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long checksum; /* Checksum code. */

status = CDFlib (OPEN_, CDF_, “MY_TEST1”, &id,
NULL_);
if (status .NE. CDF_OK) UserStatusHandler (status);

status = CDFlib (SELECT_, CDF_ id,
GET_, CDF_CHECKSUM _, &checksum,
NULL_);

if (status .NE. CDF_OK) UserStatusHandler (status)

if (checksum .EQ. MD5_CHECKSUM) THEN

Alternatively, the Standard Interface function CDF_get Checksum can be used for the same purpose.

24

Chapter 5

5 Standard Interface (Original)

The following sections describe the original Standard Interface routines callable from Fortran applications. Most
functions return a status code of type INTEGER*4 (see Chapter 8). The Internal Interface is described in Chapter 7.
An application can use both interfaces when necessary.

These routines have been available since earlier CDF versions. Very limited access to zVariables is available here and
there is no access to entries associated with zVariable. While they are still supported in the VV3.* library, a new set of

Standard Interface routines is made available to complement this limited list. Those routines are described in the
Chapter 6.

5.1 CDF_attr _create

SUBROUTINE CDF _attr_create (

INTEGER*4 id, !in -- CDF identifier.

CHARACTER attr_name*(*), I'in -- Attribute name.

INTEGER*4 attr_scope, Iin -- Scope of attribute.

INTEGER*4 attr_num, I out -- Attribute number.
]

INTEGER*4 status) ! out -- Completion status

CDF_attr_create creates an attribute in the specified CDF. An attribute with the same name must not already exist in
the CDF.

The arguments to CDF _attr_create are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create or CDF_open.

attr_name The name of the attribute to create. This may be at most CDF_ATTR_NAME_LEN256
characters. Attribute names are case-sensitive.

attr_scope The scope of the new attribute. Specify one of the scopes described in Section 4.12.

25

attr_num The number assigned to the new attribute. This number must be used in subsequent CDF
function calls when referring to this attribute. An existing attribute's number may be
determined with the CDF_attr_num function.

status The completion status code. Chapter 8 explains how to interpret status codes.

51.1 Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

iNCLUDE "<path>cdf.inc"

INTEGER*4 1id I CDF identifier.

INTEGER*4 status I Returned status code.
CHARACTER UNITS attr_name*5 I Name of "Units" attribute.
INTEGER*4 UNITS attr_num I "Units" attribute number.
INTEGER*4 TITLE attr_num I "TITLE"™ attribute number.
INTEGER*4 TITLE_attr_scope I "TITLE"™ attribute scope.

DATA UNITS_attr_name/"Units"/, TITLE attr_scope/GLOBAL_ SCOPE/

CALL CDF_attr_create (id, "TITLE", TITLE attr_scope, TITLE attr_num, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

CALL CDF_attr_create (id, UNITS attr_name, VARIABLE SCOPE, UNITS attr_num,

1 status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

5.2 CDF_attr_entry_inquire

SUBROUTINE CDF_attr_entry_inquire (

INTEGER*4 id, !in -- CDF identifier.

INTEGER*4 attr_num, I'in -- Attribute number.

INTEGER*4 entry_num, I'in -- Entry number.

INTEGER*4 data_type, ! out -- Data type.

INTEGER*4 num_elements, ! out -- Number of elements (of the data type).
|

INTEGER*4 status) out -- Completion status

CDF_attr_entry_inquire is used to inquire about a specific attribute entry. to inquire about the attribute in general, use
CDF_attr_inquire (see Section 5.4). CDF _attr_entry_inquire would normally be called before calling CDF_attr_get in
order to determine the data type and number of elements (of that data type) for an entry. This would be necessary to
correctly allocate enough memory to receive the value read by CDF_attr_get.

26

The arguments to CDF _attr_entry_inquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create or CDF_open.

attr_num The attribute number for which to inquire an entry. This number may be determined
with a call to CDF_attr_num (see Section 5.5).

entry_num The entry number to inquire. If the attribute is global in scope, this is simply the gEntry
number and has meaning only to the application. If the attribute is variable in scope, this
is the number of the associated rVariable (the rVariable being described in some way by
the rEntry).

data_type The data type of the specified entry. The data types are defined in Section 4.5.
num_elements The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

status The completion status code. Chapter 8 explains how to interpret status codes.

52.1 Example(s)

The following example inquires each entry for an attribute. Note that entry numbers need not be consecutive - not
every entry number between one (1) and the maximum entry number must exist. For this reason NO_SUCH_ENTRY
is an expected error code. Note also that if the attribute has variable scope, the entry numbers are actually rVariable
numbers.

INCLUDE *<path>cdf.inc"

INTEGER*4 id

INTEGER*4 status

INTEGER*4 attr_n

INTEGER*4 entryN

CHARACTER attr_name*(CDF_ATTR_NAME_LEN256)

CDF identifier.
Returned status code.
Attribute number.
Entry number.
Attribute name.

INTEGER*4 attr_scope Attribute scope.

INTEGER*4 max_entry Maximum entry number used.

INTEGER*4 data_type Data type.

INTEGER*4 num_elems Number of elements (of the
data type).

attr_n = CDF_attr_num (id, “TMP*®)
IF (attr_n .LT. 1) CALL UserStatusHandler (attr_n) ! If less than one (1),
I then it must be a
I warning/error code.
CALL CDF_attr_inquire (id, attr_n, attr_name, attr_scope, max_entry, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)
DO entryN = 1, max_entry
CALL CDF_attr_entry_inquire (id, attr_n, entryN, data_type, num _elems,
1 status)

27

IF (status .LT. CDF_OK) THEN

ELSE

IF (status .NE. NO_SUCH_ENTRY) CALL UserStatusHandler (status)

C (process entries)

END
END DO

IF

5.3 CDF_attr_get

SUBROUTINE CDF_attr_get (

INTEGER*4 id, 1in -- CDF identifier.

INTEGER*4 attr_num, I'in --attribute number.

INTEGER*4 entry_num, I'in -- Entry number.

<type> value, ! out -- Value (<type> is dependent on the data type of the enrty).
]

INTEGER*4 status)

out -- Completion status

CDF_attr_get is used to read an attribute entry from a CDF. In most cases it will be necessary to call
CDF_attr_entry_inquire before calling CDF_attr_get in order to determine the data type and number of elements (of
that data type) for the entry.

The arguments to CDF_attr_get are defined as follows:

id

attr_num

entry_num

value

status

5.3.1

The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.

The attribute number. This number may be determined with a call to CDF_attr_num (see
Section 5.5).

The entry number. If the attribute is global in scope, this is simply the gEntry number and
has meaning only to the application. If the attribute is variable in scope, this is the number
of the associated rVariable (the rVariable being described in some way by the rEntry).

The value read. This buffer must be large enough to hold the value. The function
CDF _attr_entry_inquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry does not
have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

28

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES_LVL

rVariable (but only if the data type is CDF_CHAR).

INCLUDE *<path>cdf. inc"

INTEGER*4 id
INTEGER*4 status
INTEGER*4 attr_n
INTEGER*4 entryN
INTEGER*4 data_type
INTEGER*4 num_elems
CHARACTER buffer*100

CDF identifier.
Returned status code.
Attribute number.
Entry number.

Data type.

attr_n = CDF_attr_Num (id, “UNITS®)

IF (attr_n .LT. 0) CALL UserStatusHandler (attr_n) !
1
1

entryN = CDF_var_num (id, "PRES_LVL") !
!

IF (entryN .LT. 0) CALL UserStatusHandler (entryN) !

Number of elements (of data type).
Buffer to receive value (in this case it is
assumed that 100 characters is enough).

IT less than one (1),

I then i1t must be a

warning/error code.

The rEntry number is
the rvariable number.

IT less than one (1),

I then 1t must be a

warning/error code.

CALL CDF_attr_entry_inquire (id, attr_n, entryN, data_type, num elems,

1 status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

IF (data_type .EQ. CDF_CHAR) THEN

CALL CDF_attr_get (id, attr_n, entryN, buffer, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

WRITE (6,10) buffer(l:num_elems)
10 FORMAT (* ",A)
END IF

54 CDF_attr_inquire

SUBROUTINE CDF_attr_inquire (

INTEGER*4 id,

INTEGER*4 attr_num

CHARACTER attr_name*(CDF_ATTR_NAME_LEN256),
INTEGER*4 attr_scope,

INTEGER*4 max_entry,

INTEGER*4 status)

29

in -- CDF identifier.

in -- Attribute number.

out -- Attribute name.

out -- Attribute scope.

out -- Maximum gEntry or rEntry number.
out -- Completion status

CDF_attr_inquire is used to inquire about the specified attribute. to inquire about a specific attribute entry, use
CDF_attr_entry_inquire (Section 5.2).

The arguments to CDF_attr_inquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create or CDF_open.

attr_num The number of the attribute to inquire. This number may be determined with a call to
CDF_attr_num (see Section 5.5).

attr_name The attribute's name. This character string must be large enough to hold
CDF_ATTR_NAME_LEN256 characters and will be blank padded if necessary.

attr_scope The scope of the attribute. Attribute scopes are defined in Section 4.12.

max_entry For gAttributes this is the maximum gEntry number used. For vAttributes this is the
maximum rEntry number used. in either case this may not correspond with the number of
entries (if some entry numbers were not used). The number of entries actually used may be
inquired with the CDF _lib function (see Section 7). If no entries exist for the attribute,
then a value of zero (0) will be passed back.

status The completion status code. Chapter 8 explains how to interpret status codes.

54.1 Example(s)

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined using the function CDF _inquire. Note that attribute numbers start at one (1) and are consecutive.

INCLUDE *<path>cdf.inc"

INTEGER*4 id

INTEGER*4 status

INTEGER*4 num_dims

INTEGER*4 dim_sizes(CDF_MAX_DIMS)

CDF identifier.

Returned status code.

Number of dimensions.
Dimension sizes (allocate to
allow the maximum number of
dimensions).

Data encoding.

Variable majority.

Maximum record number in CDF.
Number of variables in CDF.
Number of attributes in CDF.

INTEGER*4 encoding
INTEGER*4 majority
INTEGER*4 max_rec
INTEGER*4 num_vars
INTEGER*4 num_attrs

INTEGER*4 attr_n 1 Attribute number.
CHARACTER attr_name*(CDF_ATTR_NAME_LEN256)! Attribute name.
INTEGER*4 attr_scope I Attribute scope.
INTEGER*4 max_entry I Maximum entry number.

CALL CDF_inquire (id, num_dims, dim_sizes, encoding, majority,
1 max_rec, num_vars, num_attrs, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

30

DO attr_n = 1, num_attrs
CALL CDF_attr_inquire (id, attr_n, attr_name, attr_scope, max_entry,
1 status)
IF (status .LT. CDF_OK) THEN I INFO status codes ignored.
CALL UserStatusHandler (status)
ELSE
WRITE (6,10) attr_name
10 FORMAT (" ",A)
END IF
END DO

5.5 CDF_attr num

INTEGER*4 FUNCTION CDF _attr_num (

INTEGER*4 id, lin-- CDF id
CHARACTER attr_name*(*)); !in-- attribute name

CDF_attr_num is used to determine the attribute number associated with a given attribute name. If the attribute is
found, CDF _attr_num returns its number - which will be equal to or greater than one (1). If an error occurs (e.g., the
attribute name does not exist in the CDF), an error code (of type INTEGER*4) is returned. Error codes are less than
zero (0).

The arguments to CDF_attr_num are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.
attr_name The name of the attribute for which to search. This may be at most

CDF_ATTR_NAME_LEN256 characters. Attribute names are case-sensitive.

CDF_attr_num may be used as an embedded function call when an attribute number is needed. CDF attr num is
declared in cdf.inc. (Fortran functions must be declared so that the returned value is interpreted correctly.)

55.1 Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDF_attr_num being used
as an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDF_attr_num
would have returned an error code. Passing that error code to CDF_attr_rename as an attribute number would have
resulted in CDF_attr_rename also returning an error code. CDF_attr_rename is described in Section 5.7.

INCLUDE *<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status 1 Returned status code.

31

CALL CDF_attr_rename (id, CDF_attr_num(id, "pressure®), "PRESSURE", status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

5.6 CDF_attr_put

SUBROUTINE CDF_attr_put (

INTEGER*4 id,
INTEGER*4 attr_num,
INTEGER*4 entry_num,
INTEGER*4 data_type,
INTEGER*4 num_elements,
<type> value,
INTEGER*4 status)

out -- Value (<type> is dependent on the data type of the enrty).
out -- Completion status

I'in -- CDF identifier.

1in -- Attribute number.

I'in -- Entry number.

I in -- Data type of this entry.

1in -- Number of elements (of the data type).
|

]

CDF_attr_put is used to write an attribute entry to a CDF. The entry may or may not already exist. If it does exist, it is
overwritten. The data type and number of elements (of that data type) may be changed when overwriting an existing

entry.

The arguments to CDF_attr_put are defined as follows:

id

attr_num

entry_num

data_type

num_elements

value

status

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create or CDF_open.

The attribute number. This number may be determined with a call to CDF_attr_num
(see Section 5.5).

The entry number. If the attribute is global in scope, this is simply the gEntry number
and has meaning only to the application. If the attribute is variable in scope, this is the
number of the associated rVariable (the rVariable being described in some way by the
rEntry).

The data type of the specified entry. Specify one of the data types defined in Section
4.5,

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry
does not have one of the character data types, then value must NOT be a
CHARACTER Fortran variable.

The completion status code. Chapter 8 explains how to interpret status codes.

32

num_elements elements of the data type data_type will be written to the CDF starting from memory address value.

56.1 Example(s)

The following example writes two attribute entries. The first is to gEntry number one (1) of the gAttribute TITLE.
The second is to the variable scope attribute VALIDs for the rEntry that corresponds to the rVVariable TMP.

INCLUDE "<path>cdf.inc"

PARAMETER TITLE_LEN = 10 ! Length of CDF title.

INTEGER*4 id

INTEGER*4 status

INTEGER*4 entry_num
INTEGER*4 num_elements
CHARACTER title*(TITLE_LEN)
INTEGER*2 TMPvalids(2)

CDF identifier.

Returned status code.

Entry number.

Number of elements (of data type).

Value of TITLE attribute, rEntry number 1.
Value(s) of VALIDs attribute,

rEntry for rVariable TMP

DATA title/"CDF title."/, TMPvalids/15,30/

entry_num = 1

CALL CDF_attr_put (id, CDF_attr_num(id,"TITLE"), entry _num, CDF_CHAR,
1 TITLE_LEN, title, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

num_elements = 2

CALL CDF_attr_put (id, CDF_attr_num(id, "VALIDs"), CDF_var_num(id, "TMP®),
1 CDF_INT2, num_elements, TMPvalids, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

5.7 CDF_attr_rename

SUBROUTINE CDF_attr_rename (

INTEGER*4 id, !'in -- CDF identifier.
INTEGER*4 attr_num, I'in -- Attribute number.
CHARACTER attr_name*(*), I'in -- New attribute name.
INTEGER*4 status) ! out -- Completion status

CDF_attr_rename is used to rename an existing attribute. An attribute with the new name must not already exist in the
CDF.

33

The arguments to CDF_attr_rename are defined as follows:

id

attr_num

attr_name

status

5.7.1

The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.

The number of the attribute to rename. This number may be determined with a call to
CDF_attr_num (see Section 5.5).

The new attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters.
Attribute names are case-sensitive.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

In the following example the attribute named LAT is renamed to LATITUDE.

INCLUDE *<path>cdf.inc"

INTEGER*4 id

1 CDF identifier.

INTEGER*4 status 1 Returned status code.

CALL CDF_attr_rename (id, CDF_attr_num(id, "LAT"), "LATITUDE", status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

5.8 CDF_close

SUBROUTINE CDF_close (

INTEGER*4 id,
INTEGER*4 status)

1in -- CDF identifier.
! out -- Completion status

CDF_close closes the specified CDF. The CDF's cache buffers are flushed; the CDF's open file is closed (or files in the
case of a multi-file CDF); and the CDF identifier is made available for reuse.

NOTE: You must close a CDF with CDF_close to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDF_close, the
CDF's cache buffers are left unflushed.

The arguments to CDF_close are defined as follows:

id

The identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF_open.

34

status

5.8.1

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example will close an open CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id
INTEGER*4 status 1 Returned status code.

1 CDF identifier.

CALL CDF _close (id, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

5.9 CDF create

SUBROUTINE CDF_create (

CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

CDF_name*(*), lin -- CDF file name.

num_dims, lin -- Number of dimensions, rVariables.
dim_sizes(*), lin -- Dimension sizes, rVariables.
encoding, lin -- Data encoding.

majority, lin -- Variable majority.

id, ! out-- CDF identifier.

status) ! out -- Completion status

CDF_create creates a CDF as defined by the arguments. A CDF cannot be created if it already exists. (The existing
CDF will not be overwritten.) If you want to overwrite an existing CDF, you must first open it with CDF_open, delete
it with CDF_delete, and then recreate it with CDF_create. If the existing CDF is corrupted, the call to CDF_open will
fail. (An error code will be returned.) In this case you must delete the CDF at the command line. Delete the dotCDF
file (having an extension of .cdf), and if the CDF has the multi-file format, delete all of the variable files (having
extensions of .v0,.v1,...and .z0,.z1,.. .).

The arguments to CDF_create are defined as follows:

CDF_name

The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on VMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

35

num_dims

dim_sizes

encoding

majority

id

status

Number of dimensions the rVariables in the CDF are to have. This may be as few as zero
(0) and at most CDF_MAX_DIMS.

The size of each dimension. Each element of dim_sizes specifies the corresponding
dimension size. Each size must be greater then zero (0). For 0-dimensional rVariables this
argument is ignored (but must be present).

The encoding for variable data and attribute entry data. Specify one of the encodings
described in Section 4.6.

The majority for variable data. Specify one of the majorities described in Section 4.8.

The identifier for the created CDF. This identifier must be used in all subsequent operations
on the CDF.

The completion status code. Chapter 8 explains how to interpret status codes.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with
CDF_create is specified in the configuration file of your CDF distribution. Consult your system manager for this
default. The CDF_lib function (Internal Interface) may be used to change a CDF's format.

NOTE: CDF_close must be used to close the CDF before your application exits to ensure that the CDF will
be correctly written to disk (see Section 5.8).

59.1 Example(s)

The following example will create a CDF named testl with network encoding and row majority.

INCLUDE "<path>cdf.inc"

INTEGER*4 id

INTEGER*4 status
INTEGER*4 num_dims
INTEGER*4 dim_sizes(3)
INTEGER*4 majority

CDF identifier.

Returned status code.

Number of dimensions, rVariables.
Dimension sizes, rVariables.
Variable majority.

DATA num_dims/3/, dim_sizes/180,360,10/, majority/ROW_MAJOR/

CALL CDF_create ("testl®, num_dims, dim_sizes, NETWORK_ENCODING,

1

majority, id, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

ROW_MAJOR and NETWORK_ENCODING are defined in cdf.inc.

36

5.10 CDF_delete

SUBROUTINE CDF_delete (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 status) ! out -- Completion status

CDF_delete deletes the specified CDF. The CDF files deleted include the dotCDF file (having an extension of .cdf),
and if a multi-file CDF, the variable files (having extensions of .v0,.v1,...and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will
not be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDF_delete are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF_open.
status The completion status code. Chapter 8 explains how to interpret status codes.
5.10.1 Example(s)

The following example will open and then delete an existing CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status I Returned status code.

CALL CDF_open ("test2", id, status)

IF (status .LT. CDF_OK) THEN I INFO status codes ignored.
CALL UserStatusHandler (status)

ELSE
CALL CDF _delete (id, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

END IF

5.11 CDF _doc

37

SUBROUTINE CDF_doc (

INTEGER*4 id, !
INTEGER*4 version, !
INTEGER*4 release, !
CHARACTER copy_right*(CDF_COPYRIGHT_LEN), !
INTEGER*4 status) !

in -- CDF identifier.
out -- Version number.
out -- Release number.
out -- Copyright.

out -- Completion status

CDF_doc is used to inquire general documentation about a CDF. The version/release of the CDF library that created
the CDF is provided (e.g., CDF V2.4 is version 2, release 4) along with the CDF copyright notice.

The arguments to CDF_doc are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.

version The version number of the CDF library that created the CDF.

release The release number of the CDF library that created the CDF.

copy_right The copyright notice of the CDF library that created the CDF. This character string must be

large enough to hold CDF_COPYRIGHT_LEN characters and will be blank padded if
necessary. This string will contain a newline character after each line of the copyright

notice.

status The completion status code. Chapter 8 explains how to interpret status codes.

The copyright notice is formatted for printing without modification. The version and release are used together (e.g.,

CDF V2.4 is version 2, release 4).

511.1 Example(s)

The following example will inquire and display the version/release and copyright notice.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id

INTEGER*4 status

INTEGER*4 version

INTEGER*4 release

CHARACTER copyright*(CDF_COPYRIGHT_LEN)
INTEGER*4 last_char

INTEGER*4 start_char

CHARACTER I1f*1

CALL CDF _doc (id, version, release, copyright,

38

CDF identifier.

Returned status code.

CDF version number.

CDF release number.

I Copyright notice.

Last character position
actually used in the copyright.
Starting character position
ina line of the copyright.
Linefeed character.

status)

IF (status .LT. CDF_OK) THEN I INFO status codes ignored
CALL UserStatusHandler (status)

ELSE
WRITE (6,101) version, release
101 FORMAT (* *,"Version: ",13," Release:",13)
last_CHARACTER= CDF_COPYRIGHT_LEN
DO WHILE (copyright(last_char:last_char) .EQ. = *)
last_CHARACTER= last_CHARACTER- 1
END DO
1T = CHAR(10)
start_CHARACTER= 1
DO 1 = 1, last char
IF (copyright(i:i) -EQ. ITf) THEN
WRITE (6,301) copyright(start_char:i-1)

301 FORMAT (" *,A)
start_CHARACTER= i + 1
END IF
END DO
END IF

5.12 CDF_error

SUBROUTINE CDF_error (

INTEGER*4 status, I'in -- Status code.
CHARACTER message*(CDF_STATUSTEXT_LEN)) ! out -- Explanation text for the status code.

CDF_error is used to inquire the explanation of a given status code (not just error codes). Chapter 8 explains how to
interpret status codes and Appendix A lists all of the possible status codes.

The arguments to CDF_error are defined as follows:
status The status code to check.

message The explanation of the status code. This character string must be large enough to hold
CDF_STATUSTEXT_LEN characters and will be blank padded if necessary.

512.1 Example(s)

The following example displays the explanation text if an error code is returned from a call to CDF_open.

INCLUDE *<path>cdf.inc"

39

CDF identifier.

Returned status code.
Explanation text.

Last character position
actually used in the copyright.

INTEGER*4 id

INTEGER*4 status

CHARACTER text*(CDF_STATUSTEXT_LEN)
INTEGER*4 last_char

CALL CDF_open (“giss_wetl®, id, status)

IF (status .LT. CDF_WARN) THEN I INFO and WARNING codes ignored.
CALL CDF_error (status, text)
last_CHARACTER= CDF_STATUSTEXT_LEN
DO WHILE (text(last char:last char) .EQ. " ©)

last_CHARACTER= last_CHARACTER- 1
END DO
WRITE (6,101) text(l:last_char)
101 FORMAT (* *,"ERROR> *,A)
END IF

5.13 CDF_getrvarsrecorddata

SUBROUTINE CDF_getrvarsrecorddata(

INTEGER*4 id, 1'in -- CDF identifier.

INTEGER*4 num_var I in -- Number of rVariables.

INTEGER*4 var_nums(*) Iin --rVariable numbers.

INTEGER*4 rec_num ! in -- Record number.

<type> buffer I out -- First variable buffer in a common block (<type> depends
! on the data type of the rVVariable).

INTEGER*4 status ! out -- Completion status.

CDF_getrvarsrecorddata is used to read a full record data at a specific record number for a selected group of rVariables

in a CDF. It expects that the data buffer for each rVariable is big enough to hold a full physical record* data and

properly put in a common block. No space is needed for each rVariable's non-variant dimensional elements. Retrieved

record data from the variable group is filled into respective rVariable's buffer.

The arguments to CDF_getrvarsrecorddata are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDF_open or a similar CDF creation or opening functionality from the Internal Interface.

num_vars The number of the rVariables in the group involved this read operation.

var_nums The numbers of the rVariables involved for which to read a whole record data.

rec_num The record number at which to read the whole record data for the group of rVariables.
buffer The first variable buffer to read in a common block. The number of buffers should match to

the num_var argument. Each buffer should hold a full physical record data.

! Physical record is explained in the Primer chapter in the CDF User's Guide.

40

5.13.1 Example(s)

The following example will read an entire single record data for a group of rVariables. The CDF's rVariables are 2-
dimensional with sizes [2,2]. The rVariables involved in the read are Time, Longitude, Latitude and Temperature.
The record to read is 5. Since the dimension variances for Time are [NONVARY ,NONVARY], a scalar variable of
INTEGER*4 is allocated for its data type CDF_INT4. For Longitude, a 1-dimensional array of REAL*4 is allocated
as its dimension variances are [VARY,NONVARY] with data type CDF_REALA4. A similar allocation is done for
Latitude for its [NONVARY ,VARY] dimension variances and CDF_REAL4 data type. For Temperature, a 2-
dimensional array of REAL*4 is allocated due to its [VARY,VARY] dimension variances and CDF_REAL4 data

type.

INCLUDE '<path>cdf.inc'

INTEGER*4 id | CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 num_var I Number of rVariables.
INTEGER*4 var_nums(4) ! rVariable numbers in CDF.
INTEGER*4 rec_num ! Record number to read.
INTEGER*4 time ! Datatype: INT4.

! Rec/dim variances: T/FF.
REAL*4 longitude(2) ! Datatype: REAL4.

! Rec/dim variances: T/TF.
REAL*4 latitude(2) ! Datatype: REAL4.

! Rec/dim variances: T/FT.
REAL*4 temperature(2,2) ! Datatype: REALA4.

! Rec/dim variances: T/TT.
COMMON /BLK/time, longitude, latitude, temperature

num_var = 4 ! Number of rVariables

rec num=5 ! Record number to read

var_nums(1) = CDF_var_num (id, 'Time") ! rVariable number

IF (var_nums(1) .LT. 1) 1 If less than one (1),

1 CALL UserStatusHandler (var_nums(1)) I'then it is actually a
! warning/error code.

var_nums(2) = CDF_var_num (id, 'Longitude’)

IF (var_nums(2) .LT. 1) CALL UserStatusHandler (var_nums(2))

var_nums(3) = CDF_var_num (id, 'Latitude’)
IF (var_nums(3) .LT. 1) CALL UserStatusHandler (var_nums(3))

var_nums(4) = CDF_var_num (id, 'Temperature")
IF (var_nums(4) .LT. 1) CALL UserStatusHandler (var_nums(4))

CALL CDF_getrvarsrecorddata (id, num_var, var_nums, rec_num,

1 time, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

41

Note that the ordering of the variable data buffer in the COMMON block BLK is very important. Always arrange data
buffer in the order in such way that the variables with the bigger data types come in front of the variables with the
smaller data types. They should be in this ordering: 8-byte, 4-byte, 2-byte, and 1-byte. Unexpected results may return if
such ordering is not followed. This function can be a replacement for the similar functionality provided from the
Internal Interface as <GET _, rVARs_RECDATA >.

5.14 CDF_getzvarsrecorddata

SUBROUTINE CDF_getzvarsrecorddata(

INTEGER*4 id, I'in -- CDF identifier.

INTEGER*4 num_var 1'in -- Number of zVariables.

INTEGER*4 var_nums(*) 1'in -- zVariable numbers.

INTEGER*4 rec_num !'in -- Record number.

<type> buffer I out -- First variable buffer in a common block (<type> depends
! on the data type of the zVariable).

INTEGER*4 status ! out -- Completion status.

CDF_getzvarsrecorddata is used to read a full record data at a specific record number for a selected group of zVariables

ina CDF. It expects that the data buffer for each zVariable is big enough to hold a full physical record? data and

properly put in a common block. No space is needed for each zVariable's non-variant dimensional elements. Retrieved

record data from the variable group is filled into respective zVariable's buffer.

The arguments to CDF_getzvarsrecorddata are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDF_open or a similar CDF creation or opening functionality from the Internal Interface.

num_vars The number of the zVariables in the group involved this read operation.

var_nums The numbers of the zVariables involved for which to read a whole record data.

rec_num The record number at which to read the whole record data for the group of zVariables.
buffer The first variable buffer to read in a common block. The number of buffers should match to

the num_var argument. Each buffer should hold a full physical record data.

5.14.1 Example(s)

The following example will read an entire single record data for a group of zZVariables. The zVariables involved in the
read are Time, Longitude, Delta, Temperature and NAME. The record to read is 4. Since Temperature is 0-
dimensional with CDF_FLOAT data type, a scalar variable of REAL*4 is allocated. For Longitude, a 1-dimensional
array of INTEGER*2 (size [3]) is given for its dimension variance [VARY] and data type CDF_INT2. Similar data
variables are provided for Longitude and Time. They both are 2-dimensional array of INTEGER*4 (sizes [3,2]) for
their dimension variances [VARY,VARY] and data type either CDF_INT4 or CDF_UINT4. For NAME, a 1-
dimensional array of CHARACTER*10 (size [2]) is allocated due to its [VARY] dimension variance and CDF_CHAR
data type with the number of element 10.

2 Physical record is explained in the Primer chapter in the CDF User's Guide.

42

INCLUDE '<path>cdf.inc'

INTEGER*4

id ! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 num_var ! Number of zVariables.
INTEGER*4 var_nums(5) ! zVariable numbers in CDF.
INTEGER*4 rec_num ! Record number to write.
INTEGER*4 time(3,2) ! Datatype: UINTA4.

! Rec/dim variances: T/TT.
INTEGER*4 delta(3,2) ! Datatype: INT4 .

! Rec/dim variances: T/TT.
INTEGER*2 longitude(3) ! Datatype: INT2.

! Rec/dim variances: T/T.
REAL*4 temperature ! Datatype: FLOAT.

CHARACTER*10 name(2)

! Rec/dim variances: T/.
! Datatype: CHAR/10.
! Rec/dim variances: T/T.

COMMON /BLK/delta, time, temperature, longitude, name

num_var =5
rec_num=4

I Number of zVariables
I Record number to read

status = CDF_LIB (GET_, zZVAR_NUMBER_, 'Delta’, var_nums(1),
1 NULL _, status) ! zVariable number
IF (var_nums(1) .LT. 1) 1If less than one (1),
X CALL UserStatusHandler (var_nums(1)) ! then it is actually a
! warning/error code.

status = CDF_LIB (GET_, zZVAR_NUMBER _, 'Time', var_nums(2),
1 NULL _, status)
IF (var_nums(2) .LT. 1) CALL UserStatusHandler (var_nums(2))

status = CDF_LIB (GET_, zZVAR_NUMBER _, 'Longitude’, var_nums(3),
1 NULL_, status)
IF (var_nums(3) .LT. 1) CALL UserStatusHandler (var_nums(3))

status = CDF_LIB (GET_, zZVAR_NUMBER _, "Temperature', var_nums(4),
1 NULL _, status)
IF (var_nums(4) .LT. 1) CALL UserStatusHandler (var_nums(4))

status = CDF_LIB (GET_, zZVAR_NUMBER _, 'NAME', var_nums(5),
1 NULL _, status)
IF (var_nums(5) .LT. 1) CALL UserStatusHandler (var_nums(5))

CALL CDF_getzvarsrecorddata (id, num_var, var_nums, rec_num,
1 time, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

Note that the ordering of the variable data buffer in the COMMON block BLK is very important. Always arrange data
buffer in the order in such way that the variables with the bigger data types come in front of the variables with the
smaller data types. They should be in this ordering: 8-byte, 4-byte, 2-byte, and 1-byte. Unexpected results may return if

43

such ordering is not followed. This function can be a replacement for the similar functionality provided from the
Internal Interface as <GET_, zZVARs_RECDATA_>.

5.15 CDF_inquire

SUBROUTINE CDF_inquire(

INTEGER*4 id,
INTEGER*4 num_dims,

INTEGER*4 dim_sizes(CDF_MAX_DIMS),

INTEGER*4 encoding,
INTEGER*4 majority,

INTEGER*4 max_rec,

INTEGER*4 num_vars,
INTEGER*4 num_attrs,
INTEGER*4 status)

Iin -- CDF identifier

I out -- Number of dimensions, rVariables.

I out -- Dimension sizes, rVariables.

! out -- Data encoding.

! out -- Variable majority.

! out -- Maximum record number in the CDF, rVariables.
! out -- Number of rVariables in the CDF.

! out -- Number of attributes in the CDF.

! out -- Completion status

CDF_inquire inquires the basic characteristics of a CDF. An application needs to know the number of rVariable
dimensions and their sizes before it can access rVariable data. Knowing the variable majority can be used to optimize
performance and is necessary to properly use the variable hyper functions (for both rVariables and zVariables).

The arguments to CDF_inquire are defined as follows:

id

num_dims

dim_sizes

encoding

majority

max_rec

num_vars
num_attrs

status

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create or CDF_open.

The number of dimensions for the rVariables in the CDF.

The dimension sizes of the rVariables in the CDF. dim_sizes is a 1-dimensional array
containing one element per dimension. Each element of dim_sizes receives the
corresponding dimension size. For O-dimensional rVariables this argument is ignored (but
must be present).

The encoding of the variable data and attribute entry data. The encodings are defined in
Section 4.6.

The majority of the variable data. The majorities are defined in Section 4.8.

The maximum record number written to an rVariable in the CDF. Note that the maximum
record number written is also kept separately for each rVariable in the CDF. The value of
max_rec is the largest of these. Some rVariables may have fewer records actually written.
CDF _lib (Internal Interface) may be used to inquire the maximum record written for an
individual rVariable (see Section 7).

The number of rVariables in the CDF.

The number of attributes in the CDF.

The completion status code. Chapter 8 explains how to interpret status codes.

44

5.15.1 Example(s)

The following example will inquire the basic information about a CDF.

INCLUDE "<path>cdf.inc*

INTEGER*4 id

INTEGER*4 status
INTEGER*4 num_dims
INTEGER*4 dim_sizes(CDF_MAX_DIMS)

INTEGER*4 encoding
INTEGER*4 majority
INTEGER*4 max_rec
INTEGER*4 num_vars
INTEGER*4 num_attrs

CDF identifier.

Returned status code.

Number of dimensions, rVariables.
Dimension sizes, rVariables
(allocate to allow the maximum
number of dimensions).

Data encoding.

Variable majority.

Maximum record number.

Number of rVariables in CDF.
Number of attributes in CDF.

éALL CDF_inquire (id, num_dims, dim_sizes, encoding, majority,

max_rec, num_vars, num_attrs, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

5.16 CDF_open

SUBROUTINE CDF_open (

CHARACTER CDF_name*(*), 1'in -- CDF file name.

INTEGER*4 id
INTEGER*4 status)

! out-- CDF identifier.
! out -- Completion status

CDF_open opens an existing CDF. The CDF is initially opened with only read access. This allows multiple
applications to read the same CDF simultaneously. When an attempt to modify the CDF is made, it is automatically
closed and reopened with read/write access. (The function will fail if the application does not have or cannot get write

access to the CDF.)

The arguments to CDF_open are defined as follows:

CDF_name

The file name of the CDF to open. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on VMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

45

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

status The completion status code. Chapter 8 explains how to interpret status codes.

NOTE: CDF_close must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk (see Section 5.8).

5.16.1 Example(s)

The following example will open a CDF named NOAA1.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id
INTEGER*4 status

1 CDF identifier.
I Returned status code.

CHARACTER CDF_name*(CDF_PATHNAME_LEN) ! File name of CDF.

DATA CDF_name/"NOAA1*"/

CALL CDF_open (CDF_name, id, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

5.17 CDF_putrvarsrecorddata

SUBROUTINE CDF_putrvarsrecorddata(

INTEGER*4 id, !
INTEGER*4 num_var !
INTEGER*4 var_nums(*) !
INTEGER*4 rec_num !
<type> buffer !

]

]

INTEGER*4 status

in -- CDF identifier.

in -- Number of rVariables.

in -- rVariable numbers.

in -- Record number.

in -- First variable buffer in a common block (<type> depends
on the data type of the rVVariable).

out -- Completion status.

CDF_putrvarsrecorddata is used to write a full record data at a specific record number for a selected group of
rVariables in a CDF. It expects that the data buffer for each zVariable is big enough to contain a full physical record
data and properly put in a common block. No space is expected for each rVariable's non-variant dimensional elements.
Record data from each buffer is written to its respective rVariable.

The arguments to CDF_putrvarsrecorddata are defined as follows:

46

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDF_open or a similar CDF creation or opening functionality from the Internal Interface.

num_vars The number of the rVariables in the group involved this write operation.

var_nums The numbers of the rVariables involved for which to write a whole record data.

rec_num The record number at which to write the whole record data for the group of rVariables.
buffer The first variable buffer to write in a common block. The number of buffers should match to

the num_var argument. Each buffer should hold a full physical record data.

517.1 Example(s)

The following example will write an entire single record data for a group of rVVariables. The CDF's rVariables are 2-
dimensional with sizes [2,2]. The rVariables involved in the write are Time, Longitude, Latitude and Temperature.
The record to write is 5. Since the dimension variances for Time are [NONVARY,NONVARY], a scalar variable of
INTEGER*4 is allocated for its data type CDF_INT4. For Longitude, a 1-dimensional array of REAL*4 is allocated
as its dimension variances are [VARY,NONVARY] with data type CDF_REALA4. A similar allocation is done for
Latitude for its [NONVARY,VARY] dimension variances and CDF_REAL4 data type. For Temperature, a 2-
dimensional array of REAL*4 is allocated due to its [VARY,VARY] dimension variances and CDF_REAL4 data

type.
INCLUDE '<path>cdf.inc'

INTEGER*4 id | CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 num_var ! Number of rVariables.
INTEGER*4 var_nums(4) ! rVariable numbers in CDF.
INTEGER*4 rec_num ! Record number to write.
INTEGER*4 time /123/ ! Datatype: INT4.

! Rec/dim variances: T/FF.
REAL*4 longitude(2) ! Datatype: REAL4.
1 /100.01, -100.02/ ! Rec/dim variances: T/TF.
REAL*4 latitude(2) ! Datatype: REALA4.
1 /23.45, -54.32/ ! Rec/dim variances: T/FT.
REAL*4 temperature(2,2) ! Datatype: REALA4.
1 /20.0, 40.0, ! Rec/dim variances: T/TT.
2 30.0, 50.0/

COMMON /BLK/time, longitude, latitude, temperature

num_var = 4 ! Number of rVariables

rec num=>5 I Record number to write
var_nums(1) = CDF_var_num (id, 'Time") ! rVariable number

IF (var_nums(1) .LT. 1) 1 If less than one (1),

1 CALL UserStatusHandler (var_nums(1)) I'then it is actually a

! warning/error code.
var_nums(2) = CDF_var_num (id, 'Longitude")
IF (var_nums(2) .LT. 1) CALL UserStatusHandler (var_nums(2))

47

var_nums(3) = CDF_var_num (id, 'Latitude")
IF (var_nums(3) .LT. 1) CALL UserStatusHandler (var_nums(3))

var_nums(4) = CDF_var_num (id, 'Temperature’)
IF (var_nums(4) .LT. 1) CALL UserStatusHandler (var_nums(4))

CALL CDF_putrvarsrecorddata (id, num_var, var_nums, rec_num,
1 time, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

Note that the ordering of the variable data buffer in the COMMON block BLK is very important. Always arrange data
buffer in the order in such way that the variables with the bigger data types come in front of the variables with the
smaller data types. They should be in this ordering: 8-byte, 4-byte, 2-byte, and 1-byte. Unexpected results may return if
such ordering is not followed. This function can be a replacement for the similar functionality provided from the
Internal Interface as <PUT_, rVARs_RECDATA >.

5.18 CDF_putzvarsrecorddata

SUBROUTINE CDF_putzvarsrecorddata(

INTEGER*4 id, I in -- CDF identifier.

INTEGER*4 num_var 1'in -- Number of zVariables.

INTEGER*4 var_nums(*) 1'in -- zVariable numbers.

INTEGER*4 rec_num I'in -- Record number.

<type> buffer Iin -- First variable buffer in a common block (<type> depends
! on the data type of the zVariable).

INTEGER*4 status ! out -- Completion status.

CDF_putzvarsrecorddata is used to write a full record data at a specific record number for a selected group of

zVariables in a CDF. It expects that the data buffer for each zVariable is big enough to contain a full physical record

data and properly put in a common block. No space is expected for each zVariable's non-variant dimensional elements.

Record data from each buffer is written to its respective zVariable.

The arguments to CDF_putzvarsrecorddata are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
Cdf_open or a similar CDF creation or opening functionality from the Internal Interface.

num_vars The number of the zVariables in the group involved this write operation.

var_nums The numbers of the zVariables involved for which to write a whole record data.

rec_num The record number at which to write the whole record data for the group of zVariables.
buffer The first variable buffer to write in a common block. The number of buffers should match to

the num_var argument. Each buffer should hold a full physical record data.

48

5.18.1 Example(s)

The following example will write an entire single record data for a group of zVariables. The zVariables involved in the
write are Time, Longitude, Delta, Temperature and NAME. The record to write is 4. Since Temperature is O-
dimensional with CDF_FLOAT data type, a scalar variable of REAL*4 is allocated. For Longitude, a 1-dimensional
array of INTEGER*2 (size [3]) is given for its dimension variance [VARY] and data type CDF_INT2. Similar data
variables are provided for Longitude and Time. They both are 2-dimensional array of INTEGER*4 (sizes [3,2]) for
their dimension variances [VARY,VARY] and data type either CDF_INT4 or CDF_UINT4. For NAME, a 1-
dimensional array of CHARACTER*10 (size [2]) is allocated due to its [VARY] dimension variance and CDF_CHAR
data type with the number of element 10.

INCLUDE '<path>cdf.inc'

INTEGER*4 id | CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 num_var I Number of zVariables.
INTEGER*4 var_nums(5) ! zVariable numbers in CDF.
INTEGER*4 rec_num ! Record number to write.
INTEGER*4 time(3,2) ! Datatype: UINT4.

1 /10, 20, ! Rec/dim variances: T/TT.
2 30, 40,

3 50, 60/

INTEGER*4 delta(3,2) ! Datatype: INT4 .

1 1, 2, ! Rec/dim variances: T/TT.
2 5, 6,

3 9, 10/

INTEGER*2 longitude(3) ! Datatype: INT2.

1 /10, 20, 30/ I Rec/dim variances: T/T.
REAL*4 temperature ! Datatype: FLOAT.

1 /1234.56/ ! Rec/dim variances: T/.

CHARACTER*10 name(2)

1
2

['ABCDEFGHIJ,
'12345678/

! Datatype: CHAR/10.
! Rec/dim variances: T/T.

COMMON /BLK/delta, time, temperature, longitude, name

num_var =5
rec_ num=4

I Number of zVariables
I Record number to write

status = CDF_LIB (GET_, zZVAR_NUMBER _, 'Delta’, var_nums(1),

1

NULL _, status)

IF (var_nums(1) .LT. 1)
x CALL UserStatusHandler (var_nums(1)) ! then it is actually a

! zVariable number
1 If less than one (1),

! warning/error code.

status = CDF_LIB (GET_, zVAR_NUMBER_, 'Time', var_nums(2),

1

NULL _, status)

IF (var_nums(2) .LT. 1) CALL UserStatusHandler (var_nums(2))

status = CDF_LIB (GET_, zZVAR_NUMBER_, 'Longitude’, var_nums(3),

1

NULL_, status)

IF (var_nums(3) .LT. 1) CALL UserStatusHandler (var_nums(3))

49

status = CDF_LIB (GET_, zVAR_NUMBER_, 'Temperature', var_nums(4),
1 NULL_, status)
IF (var_nums(4) .LT. 1) CALL UserStatusHandler (var_nums(4))

status = CDF_LIB (GET_, zZVAR_NUMBER_, 'NAME', var_nums(5),
1 NULL _, status)
IF (var_nums(5) .LT. 1) CALL UserStatusHandler (var_nums(5))

CALL CDF_putzvarsrecorddata (id, num_var, var_nums, rec_num,
1 time, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

Note that the ordering of the variable data buffer in the COMMON block BLK is very important. Always arrange data
buffer in the order in such way that the variables with the bigger data types come in front of the variables with the
smaller data types. They should be in this ordering: 8-byte, 4-byte, 2-byte, and 1-byte. Unexpected results may return if
such ordering is not followed. This function can be a replacement for the similar functionality provided from the
Internal Interface as <PUT _, zZVARs_RECDATA >.

5.19 CDF_var close

SUBROUTINE CDF _var_close (

INTEGER*4 id, 1in -- CDF identifier.
INTEGER*4 var_num, Iin -- rVariable number.
INTEGER*4 status) ! out -- Completion status

CDF_var_close is used to close an rVariable in a multi-file CDF. This function is not applicable to single-file CDFs.
The use of CDF_var_close is not required since the CDF library automatically closes the rVariable files when a multi-
file CDF is closed or when there are insufficient file pointers available (because of an open file quota) to keep all of the
rVVariable files open. CDF_var_close would be used by an application since it knows best how its rVariables are going
to be accessed. Closing an rVariable would also free the cache buffers that are associated with the rVariable's file.
This could be important in those situations where memory is limited (e.g., the IBM PC). The caching scheme used by
the CDF library is described in the Concepts chapter in the CDF User's Guide. Note that there is not a function that
opens an rVariable. The CDF library automatically opens an rVariable when it is accessed by an application (unless it
is already open).

The arguments to CDF_var_close are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF_open.
var_num The number of the rVariable to close. This number may be determined with a call to

CDF_var_num (see Section 5.25).

status The completion status code. Chapter 8 explains how to interpret status codes.

50

5.19.1 Example(s)

The following example will close an rVariable in a multi-file CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id

INTEGER*4 status

1 CDF identifier.
I Returned status code.

CALL CDF_var_close (id, CDF_var_num(id, "Flux®), status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

5.20 CDF_var _create

SUBROUTINE CDF _var_create (

INTEGER*4 id, !in -- CDF identifier.

CHARACTER var_name*(*), Iin -- rVariable name.

INTEGER*4 data_type, I'in -- Datatype.

INTEGER*4 num_elements, I'in -- Number of elements (of the data type).

INTEGER*4 rec_variance,

I in -- Record variance.

INTEGER*4 dim_variances(*), ! in -- Dimension variances.

INTEGER*4 var_num,

! out -- rVariable number.

CDF_var_create is used to create a new rVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDF_var_create are defined as follows:

id

var_name

data_type

num_elements

rec_variance

dim_variances

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create or CDF_open.

The name of the rVariable to create. This may be at most CDF_VAR_NAME_LEN256
characters. Variable names are case-sensitive.

The data type of the new rVariable. Specify one of the data types defined in Section 4.5.
The number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The rVariable's record variance. Specify one of the variances defined in Section 4.9.

The rVariable's dimension variances. Each element of dim_variances specifies the
corresponding dimension variance. For each dimension specify one of the variances

51

defined in Section 4.9. For 0-dimensional rVariables this argument is ignored (but must
be present).

var_num The number assigned to the new rVariable. This number must be used in subsequent
CDF function calls when referring to this r\Variable. An existing rVariable's number may
be determined with the CDF_var_num function.

status The completion status code. Chapter 8 explains how to interpret status codes.

5.20.1 Example(s)

The following example will create several rVariables in a CDF whose rVariables are 2-dimensional. In this case
EPOCH, LAT, and LON are independent rVariables, and TMP is a dependent rVariable.

INCLUDE *<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status I Returned status code.

EPOCH record variance.
LAT record variance.

LON record variance.

TMP record variance.
EPOCH dimension variances.
LAT dimension variances.
LON dimension variances.
TMP dimension variances.
EPOCH variable number.
LAT rVariable number.
LON rVariable number.
TMP rVariable number.

INTEGER*4 EPOCH_rec_vary
INTEGER*4 LAT_rec_vary
INTEGER*4 LON_rec_vary
INTEGER*4 TMP_rec_vary
INTEGER*4 EPOCH_dim_varys(2)
INTEGER*4 LAT dim_varys(2)
INTEGER*4 LON_dim_varys(2)
INTEGER*4 TMP_dim_varys(2)
INTEGER*4 EPOCH_var_num
INTEGER*4 LAT_var_num
INTEGER*4 LON_var_num
INTEGER*4 TMP_var_num

DATA EPOCH_rec_vary/VARY/, LAT_rec_vary/NOVARY/,
1 LON_rec_vary/NOVARY/, TMP_rec_vary/VARY/

DATA EPOCH_dim_varys/NOVARY ,NOVARY/, LAT dim_varys/NOVARY,VARY/,
1 LON_dim_varys/VARY,NOVARY/, TMP_dim_varys/VARY,VARY/

CALL CDF_var_create (id, "EPOCH", CDF_EPOCH, 1,
1 EPOCH_rec _vary, EPOCH dim varys, EPOCH var_num, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

CALL CDF _var_create (id, "LATITUDE", CDF_INT2, 1,

1 LAT _rec vary, LAT dim_varys, LAT var_num, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

CALL CDF_var_create (id, "LONGITUDE", CDF_INT2, 1,

1 LON_rec_vary, LON_dim_varys, LON_var_num, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

CALL CDF_var_create (id, "TEMPERATURE®", CDF_REAL4, 1,

52

1

TMP_rec_vary, TMP_dim varys, TMP_var_num, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

5.21 CDF var _get

SUBROUTINE CDF _var_get (

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 rec_num,
INTEGER*4 indices(*),
<type> value,
INTEGER*4 status)

out -- Value (<type> is dependent on the data type of the rVariable).
out -- Completion status

I in -- CDF identifier.
1in -- rVariable number.
I in -- Record number.
I'in -- Dimension indices.
!

!

CDF_var_get is used to read a single value from an rVariable. CDF_var_hyper_get may be used to read more than one
rVVariable value with a single call (see Section 5.22).

The arguments to CDF_var_get are defined as follows:

id

var_num

rec_num

indices

value

status

The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.

The number of the rVariable from which to read. This number may be determined with a
call to CDF_var_num (see Section 5.25).

The record number at which to read.

The array indices within the specified record at which to read. Each element of indices
specifies the corresponding dimension index. For 0-dimensional rVariables this argument is
ignored (but must be present).

The value read. This buffer must be large enough to hold the value. CDF_var_inquire
would be used to determine the rVariable's data type and number of elements (of that data
type) at each value. The value is read from the CDF and placed at memory address value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the rVariable does
not have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

The completion status code. Chapter 8 explains how to interpret status codes.

521.1 Example(s)

The following example will read and hold an entire record of data from an rVariable. The CDF's rVariables are 3-
dimensional with sizes [180,91,10]. For this rVariable the record variance is VARY, the dimension variances are
[VARY,VARY VARYT], and the data type is CDF_REALA4.

53

INCLUDE *<path>cdf.inc"

INTEGER*4 id
INTEGER*4 status
REAL*4 tmp(180,91,10)
INTEGER*4 indices(3)
INTEGER*4 var_n
INTEGER*4 rec_num
INTEGER*4 d1, d2, d3

CDF identifier.
Returned status code.
Temperature values.
Dimension indices.
rVariable number.
Record number.
Dimension index values.

var_n = CDF_var_num (id, "Temperature®)

IF (var_n .LT. 1) CALL UserStatusHandler (var_n) I If less than one (1),
I then it is actually a
I warning/error code.

rec_num = 13

DO d1 = 1, 180
indices(l) = dil
DO d2 = 1, 91
indices(2) = d2
DO d3 = 1, 10
indices(3) = d3
CALL CDF _var_get (id, var_n, rec_num, indices, tmp(dl,d2,d3), status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)
END DO
END DO
END DO

522 CDF_var_hyper_get

SUBROUTINE CDF _var_hyper_get (

INTEGER*4 id,
INTEGER*4 var_num,

1in -- CDF identifier.

1'in -- rVariable number.

INTEGER*4 rec_start, ! in -- Starting record number.

INTEGER*4 rec_count, 1in -- Number of records.

INTEGER*4 rec_interval, I'in -- Subsampling interval between records.

INTEGER*4 indices(*), ! in -- Dimension indices of starting value.

INTEGER*4 counts(*), I'in -- Number of values along each dimension.

INTEGER*4 intervals(*), Iin -- Subsampling intervals along each dimension.

<type> buffer, I in -- Buffer of values (<type> is dependent on the data type of the rVVariable).
INTEGER*4 status) ! out -- Completion status

CDF_var_hyper_get is used to read a buffer of one or more values from an rVariable. It is important to know the
variable majority of the CDF before using CDF_var_hyper_get because the values placed into the buffer will be in that

54

majority. CDF_inquire can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities.

The arguments to CDF_var_hyper_get are defined as follows:

id

var_num

rec_start
rec_count

rec_interval

indices

counts

intervals

buffer

status

5.22.1

The identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF_open.

The number of the rVariable from which to read. This number may be determined with a call to
CDF_var_num (see Section 5.25).

The record number at which to start reading.
The number of records to read.

The interval between records for subsampling (e.g., an interval of 2 means read every other
record).

The indices (within each record) at which to start reading. Each element of indices specifies the
corresponding dimension index. If there are zero (0) dimensions, this argument is ignored (but
must be present).

The number of values along each dimension to read. Each element of counts specifies the
corresponding dimension count. For O-dimensional rVariables this argument is ignored (but
must be present).

For each dimension, the interval between values for subsampling (e.g., an interval of 2 means
read every other value). Each element of intervals specifies the corresponding dimension
interval. For O-dimensional rVariables, this argument is ignored (but must be present).

The buffer of values read. The majority of the values in this buffer will be the same as that of the
CDF. This buffer must be large to hold the values. CDF var_inquire would be used to
determine the rVariable's data type and number of elements (of that data type) at each value. The
values are read from the CDF and placed into memory starting at address buffer.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the rVariable does not
have one of the character data types, then value must NOT be a CHARACTER Fortran variable.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example will read an entire record of data from an rVariable. The CDF’s rVariables are 3-dimensional
with sizes [180,91,10] and CDF’s variable majority is ROW_MAJOR. For the rVariable the record variance is VARY,
the dimension variances are [VARY,VARY,VARY], and the data type is CDF_REALA4. This example is similar to the
example in Section 5.21 except that it uses a single call to CDF_var_hyper_get rather than numerous calls to
CDF_var_get.

INCLUDE "<path>cdf.inc"

55

INTEGER*4 id

INTEGER*4 status
REAL*4 tmp(180,91,10)
INTEGER*4 var_n
INTEGER*4 rec_start
INTEGER*4 rec_count
INTEGER*4 rec_interval
INTEGER*4 indices(3)
INTEGER*4 counts(3)
INTEGER*4 intervals(3)

CDF identifier.
Returned status code.
Temperature values.
rVariable number.
Record number.

Record counts.

Record interval.
Dimension indices.
Dimension counts.
Dimension intervals.

DATA rec_start/13/, rec_count/1/, rec_interval/l/,
1 indices/1,1,1/, counts/180,91,10/, intervals/1,1,1/

var_n = CDF_var_num (id, "Temperature®)
IF (var_n .LT. 1) CALL UserStatusHandler (var_n) 1 If less than one (1),

I then it is actually a
I warning/error code.

CALL CDF_var_hyper_get (id, var_n, rec_start, rec_count, rec_interval,
indices, counts, intervals, tmp, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

1

Note that if the CDF's variable majority had been ROW_MAJOR, the tmp array would have been declared REAL*4
tmp[10][91][180] for proper indexing.

5.23 CDF_var_hyper put

SUBROUTINE CDF _var_hyper_put (

INTEGER*4 id,

INTEGER*4 var_num,
INTEGER*4 rec_start,
INTEGER*4 rec_count,

INTEGER*4 indices(*),
INTEGER*4 counts(*),
INTEGER*4 intervals(*),
<type> buffer,
INTEGER*4 status)

|
!
!
!
INTEGER*4 rec_interval, [
!
!
!
|
|

in --
out --

CDF identifier.

rVariable number.

Starting record number.

Number of records.

Interval between records.

Dimension indices of starting value.

Number of values along each dimension.

Interval between values along each dimension.

Buffer of values (<type> is dependent on the data type of the rVariable).
Completion status

CDF_var_hyper_put is used to write a buffer of one or more values to an rVariable. It is important to know the
variable majority of the CDF before using CDF_var_hyper_put because the values in the buffer to be written must be in
the same majority. CDF_inquire can be used to determine the default variable majority of a CDF distribution. The
Concepts chapter in the CDF User's Guide describes the variable majorities.

The arguments to CDF_var_hyper_put are defined as follows:

56

5.23.1

var_num

rec_start
rec_count

rec_interval

indices

counts

intervals

buffer

status

The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.

The number of the rVariable to which to write. This number may be determined with a call to
CDF_var_num (see Section 5.25).

The record number at which to start writing.
The number of records to write.

The interval between records for subsampling® (e.g., An interval of 2 means write to every
other record).

The indices (within each record) at which to start writing. Each element of indices specifies
the corresponding dimension index. If there are zero (0) dimensions, this argument is ignored
(but must be present).

The number of values along each dimension to write. Each element of count specifies the
corresponding dimension count. For O-dimensional rVariables this argument is ignored (but
must be present).

For each dimension the interval between values for subsampling* (e.g., an interval of 2 means
write to every other value). intervals is a 1-dimensional array containing one element per
rVariable dimension. Each element of intervals specifies the corresponding dimension
interval. For O-dimensional rVariables this argument is ignored (but a place holder is
necessary).

The buffer of values to write. The majority of the values in this buffer must be the same as
that of the CDF. The values starting at memory address buffer are written to the CDF.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry does not
have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example writes values to the rVariable LATITUDE of a CDF whose rVariables are 2-dimensional with
dimension sizes [360,181]. For LATITUDE the record variance is NOVARY, the dimension variances are
[NOVARY,VARY], and the data type is CDF_INT2. This example is similar to the example in Section 5.26

except that it uses a single call to CDF_var_hyper_put rather than numerous calls to CDF_var_put.

INCLUDE *<path>cdf. inc"

INTEGER*4 id

1 CDF identifier.

INTEGER*4 status I Returned status code.

3

Subsampling" is not the best term to use when writing data, but you should know what we mean.

* Again, not the best term.

57

INTEGER*2 lat
INTEGER*2 lats(181)
INTEGER*4 var_n
INTEGER*4 rec_start
INTEGER*4 rec_count
INTEGER*4 rec_interval
INTEGER*4 indices(2)
INTEGER*4 counts(2)
INTEGER*4 intervals(2)

Latitude value.

Buffer of latitude values.
rVariable number.

Record number.

Record counts.

Record interval.

Dimension indices.
Dimension counts.
Dimension intervals.

DATA rec_start/1/, rec _count/1/, rec_interval/l/,
1 indices/1,1/, counts/1,181/, intervals/1,1/

var_n = CDF_var_num (id, "LATITUDE")
IF (var_n .LT. 1) CALL UserStatusHandler (var_n) I If less than one (1),
I then not an rVariable
I number but rather a
I warning/error code
DO lat = -90, 90
lats(91+lat) = lat
END DO

CALL CDF_var_hyper_put (id, var_n, rec_start, rec_count, rec_interval,
1 indices, counts, intervals, lats, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

5.24 CDF_var_inquire

SUBROUTINE CDF _var_inquire (

INTEGER*4 id, !in -- CDF identifier.
INTEGER*4 var_num, I'in -- rVariable number.
CHARACTER var_name*(CDF_VAR_NAME_LEN256), ! out-- rVariable name.
INTEGER*4 data_type, ! out -- Data type.

INTEGER*4 num_elements,

INTEGER*4 rec_variance,

INTEGER*4 dim_variances(CDF_MAX_DIMS),
INTEGER*4 status)

! out -- Number of elements (of the data type).

! out -- Record variance.

! out -- Dimension variances.

! out -- Completion status

CDF_var_inquire is used to inquire about the specified rVariable. This function would normally be used before
reading rVariable values (with CDF_var_get or CDF var_hyper_get) to determine the data type and number of
elements (of that data type).

The arguments to CDF_var_inquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create or CDF_open.

58

var_num

var_name

data_type

num_elements

rec_variance

dim_variances

status

The number of the rVariable to inquire. This number may be determined with a call to
CDF_var_num (see Section 5.25).

The rVariable's name. This character string must be large enough to hold
CDF_VAR_NAME_LENZ256 characters and will be blank padded if necessary.

The data type of the rVariable. The data types are defined in Section 4.5.

The number of elements of the data type at each rVariable value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The record variance. The record variances are defined in Section 4.9.

The dimension variances. Each element of dim_variances receives the corresponding
dimension variance. The dimension variances are defined in Section 4.9. For O-
dimensional rVariable this argument is ignored (but must be present).

The completion status code. Chapter 8 explains how to interpret status codes.

5.24.1 Example(s)

The following example inquires about an rVariable named HEAT_FLUX in a CDF. Note that the rVVariable name
returned by CDF_var_inquire will be the same as that passed in to CDF_var_num.

INCLUDE "<path>cdf.inc*

INTEGER*4 id
INTEGER*4 status

1 CDF identifier.
! Returned status code.

CHARACTER var_name*(CDF_VAR_NAME_LEN2565 I rvariable name.
INTEGER*4 data_type I Data type.

INTEGER*4 num_elems
INTEGER*4 rec_vary
INTEGER*4 dim_varys(CDF_MAX_DIMS)

Number of elements (of data type).
Record variance.

Dimension variances (allocate to
allow the maximum number of
dimensions).

CALL CDF_var_inquire (id, CDF_var_num(id, "HEAT_FLUX"), var_name, data_type,

1

num_elems, rec vary, dim_varys, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

5.25 CDF_var_num

INTEGER*4 FUNCTION CDF_var_num (

59

INTEGER*4 id,

l'in-- CDF identifier.

CHARACTER var_name*(*)); !in-- Variable name.

CDF_var_num is used to determine the number associated with a given rVariable or zVariable name. If the variable is
found, CDF_var_num returns its number - which will be equal to or greater than one (1). If an error occurs (e.g., the
rVVariable does not exist in the CDF), an error code (of type INTEGER™*4) is returned. Error codes are less than zero

0).

The arguments to CDF_var_num are defined as follows:

id

VarName

The identifier of the CDF. This identifier must have been initialized by a call to CDF_create

or CDF_open.

The name of the variable, either rVariable or zVariable, for which to search. This may be at

most CDF_VAR_NAME_LEN256 characters. Variable names are case-sensitive.

CDF_var_num may be used as an embedded function call when a variable number is needed. CDF_var_num is
declared in cdf.inc. (Fortran functions must be declared so that the returned value is interpreted correctly.)

5.25.1

Example(s)

In the following example CDF_var_num is used as an embedded function call when inquiring about an rVariable.

iNCLUDE "<path>cdf.inc"

INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4

id !
status !
var_name*(CDF_VAR_NAME_LEN256)
data_type !
num_elements

rec_variances
dim_variances(CDF_MAX DIMS)

CDF identifier.
Returned status code.
! rVariable name.
Data type of the rVariable.
Number of elements (of the
data type).
Record variance.
Dimension variances.

CALL CDF_var_inquire (id, CDF_var_num(id,"LATITUDE"), var_name, data_type,
num_elements, rec variance, dim _variances, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

1

In this example the rVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDF_var_num would have returned an error code. Passing that error code to CDF_var_inquire as an rVariable
number would have resulted in CDF_var_inquire also returning an error code. Also note that the name written into
var_name is already known (LATITUDE). In some cases the rVariable names will be unknown - CDF_var_inquire

would be used to determine them. CDF_var_inquire is described in Section 5.24.

60

5.26 CDF _var put

SUBROUTINE CDF _var_put (

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 rec_num,
INTEGER*4 indices(*),
<type> value,
INTEGER*4 status)

out -- Value (<type> is dependent on the data type of the rVariable).
out -- Completion status

I in -- CDF identifier.
I'in -- rVariable number.
I'in -- Record number.

I in -- Dimension indices.
!

!

CDF_var_put is used to write a single value to an rVVariable. CDF_var_hyper_put may be used to write more than one
rVVariable value with a single call (see Section 5.23).

The arguments to CDF_var_put are defined as follows:

id

var_num

rec_num

indices

value

status

5.26.1 Exam

The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.

The number of the rVariable to which to write. This number may be determined with a call
to CDF_var_num (see Section 5.25).

The record number at which to write.

The array indices within the specified record at which to write. Each element of indices
specifies the corresponding dimension index. For 0-dimensional rVariables this argument is
ignored (but must be present).

The value to write. The value is written to the CDF from memory address value.
WARNING: If the rVariable has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the rVariable does
not have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

The completion status code. Chapter 8 explains how to interpret status codes.

ple(s)

The following example writes values to the rVariable named LATITUDE in a CDF whose rVariables are 2-

dimensional with dimensi

on sizes [360,181]. For LATITUDE the record variance is NOVARY, the dimension

variances are [NOVARY,VARY], and the data type is CDF_INT2.

INCLUDE *<path>

INTEGER*4 id
INTEGER*4 statu
INTEGER*2 lat
INTEGER*4 var_n
INTEGER*4 rec_n

cdf.inc”

CDF identifier.
Returned status code.
Latitude value.
rVariable number.
Record number.

S

um

61

INTEGER*4 indices(2) I Dimension indices.

DATA rec_num/1/, indices/1,1/

var_n = CDF_var_num (id, "LATITUDE")
IF (var_n .LT. 1) CALL UserStatusHandler (var_n) 1 If less than one (1),
I then not an rVariable
I number but rather a
I warning/error code.
DO lat = -90, 90
indices(2) = 91 + lat
CALL CDF_var_put (id, var_n, rec_num, indices, lat, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)
END DO

Since the record variance is NOVARY, the record number (rec_num) is set to one (1). Also note that because the
dimension variances are [NOVARY,VARY], only the second dimension is varied as values are written. (The values are
“virtually” the same at each index of the first dimension.)

5.27 CDF _var_rename

SUBROUTINE CDF_var_rename (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 var_num, Iin -- rVariable number.
CHARACTER var_name*(*), I'in -- New name.
INTEGER*4 status) ! out -- Completion status

CDF_var_rename is used to rename an existing rVariable. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDF_var_rename are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.
var_num The number of the rVariable to rename. This number may be determined with a call to

CDF_var_num (see Section 5.25).

var_name The new rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.
Variable names are case-sensitive.
status The completion status code. Chapter 8 explains how to interpret status codes.
5.27.1 Example(s)

62

In the following example the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDF_var_num returns a value less than one (1) then that value is not an rVariable number but rather a warning/error
code.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 status I Returned status code.
INTEGER*4 var_num I rvariable number.

var_num = CDF_var_num (id, "TEMPERATURE®)
IF (var_num _LT. 1) THEN
IF (var_num _NE. NO_SUCH_VAR) CALL UserStatusHandler (var_num)
ELSE
CALL CDF_var_rename (id, var_num, "TMP", status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)
END IF

63

Chapter 6

6 Standard Interface (New)

The following sections describe the new set of Standard Interface routines callable from Fortran applications. Most
subroutines return a status code of type INTEGER*4 (see Chapter 8). The Internal Interface is described in Chapter 7.
An application can use either or both interfaces when necessary.

Previously, the Standard Interface only provided a very limited functionality within the CDF library. For example, it
could not handle zVariables and vAttribute zEntries (they were only accessible via the Internal Interface). Since V3.1,
the Standard Interface has been expanded to include many new operations that are previously only available through
the Internal Interface.

The original Standard Interface functions* and subroutines?, described in Chapter 5, in the previous library version are
still available and work the same way as before. To encourage the use of zVariables, the preferred variable type over
the rVariables in the CDF, new subroutines are explicitly added to the library to handle zVariables, their data as well as
entries in the variable-scoped attributes. The original Standard Interface functions/subroutines can be used to operate
the rVariables and their associated rEntries. The Internal Interface needs to be called to operate the functions/items that
are not available from the new Standard Interface.

A naming convention is adopted by the new Standard Interface subroutines to separate the operations on zVariable, as
well as entry, i.e., gEntry, rEntry and zEntry.

The new functions, based on the operands, are grouped into four (4) categories: library, CDFs, variables and
attributes/entries.

6.1 Library

The functions in this section are related to the library being used for the CDF operations and are common for any CDF
entity, i.e., CDFs, variables, attributes and entries.

! They are: CDF_attr_Num and CDF_var_Num.

% They are: CDF_create, CDF_open, CDF_doc, CDF_inquire, CDF_close, CDF_delete, CDF_attr_Create,
CDF_attr_Rename, CDF _attr_Inquire, CDF_attr_Entry Inquire, CDF_attr_Put, CDF_attr_Get, CDF_var_Create,
CDF_var_Rename, CDF_var_Inquire, CDF_var_Put, CDF var_Get, CDF_var_Hyper_Put, CDF_var_Hyper_Get,
CDF_var_Close, CDF_getrVarsRecordData, CDF_getzVarsRecordData, CDF_putrVVarsRecordData and
CDF_putzVarsRecordData.

65

6.1.1 CDF_get_datatype_size

SUBROUTINE CDF_get datatype_size (

INTEGER*4 data_type, ! in -- CDF data type.
INTEGER*4 size, ! out-- Size in bytes.
INTEGER*4 status) ! out-- Completion status

CDF_get_datatype_size acquires the size (in bytes) of an element of the specified CDF data type
The arguments to CDF_get_datatype_size are defined as follows:

data_type The CDF data type.

size Size in bytes of that data type.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.1.1.1. Example(s)

The following example acquires the size (in bytes) of CDF data type CDF_INT4 (it should be 4 bytes).

INCLUDE *<path>cdf. inc"

INTEGER*4 size I Size of the data type.
INTEGER*4 status 1 Returned status code.

CALL CDF_get_datatype_size (CDF_INT4, size, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.1.2 CDF_get _lib_copyright

SUBROUTINE CDF_get_lib_copyright (

CHARACTER copyright*(*), ! out -- CDF library copyright notice.
INTEGER*4 status) ! out -- Completion status

CDF_get_lib_copyright acquires the copyright notice of the CDF library being used.
The arguments to CDF_get_lib_copyright are defined as follows:

copyright The copyright notice from the CDF library.

66

status The completion status code. Chapter 8 explains how to interpret status codes.

6.1.2.1. Example(s)

The following example acquires the CDF library’s copyright notice.

INCLUDE "<path>cdf.inc*

CHARACTER copyright*(CDF_COPYRIGHT_LEN) I Copyright notice.
INTEGER*4 status ! Returned status code.

CALL CDF_get_lib_copyright (copyright, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.1.3 CDF_get_lib_version

SUBROUTINE CDF _get lib_version (

INTEGER*4 version, ! out-- CDF library version.
INTEGER*4 release, ! out -- CDF library release.
INTEGER*4 increment, ! out -- CDF library increment.
CHARACTER sub_increment*(*) ! out -- CDF library sub-increment..
INTEGER*4 status) ! out -- Completion status.

CDF_get_lib_version acquires the version and release information from the CDF library being used.
The arguments to CDF_get_lib_version are defined as follows:

version The CDF library version.

release The CDF library release.

increment The CDF library increment.

sub_increment The CDF library sub-increment.

status The completion status code. Chapter 8 explains how to interpret status codes.

67

6.1.3.1. Example(s)

The following example acquires the CDF library’s version/release information.

INCLUDE "<path>cdf. inc"

INTEGER*4 version
INTEGER*4 release
INTEGER*4 increment
CHARACTER sub_increment*1
INTEGER*4 status

Library version.
Library release.
Library increment.
Library sub-increment.
Returned status code.

CALL CDF _get lib_version (version, release, increment,
1 sub_increment, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.14 CDF_get_status_text

SUBROUTINE CDF _get_status_text (

INTEGER*4 status_id, ! in -- CDF status identifier.
CHARACTER text*(*), ! out -- Status text description.
INTEGER*4 status) ! out -- Completion status

CDF_get_status_text is used to inquire the explanation of a given status code (not just error codes). Chapter 8 explains
how to interpret status codes and Appendix A lists all of the possible status codes.

The arguments to CDF_get_status_text are defined as follows:

status_id The status code to check.

message The explanation of the status code. This character string must be large enough to hold
CDF_STATUSTEXT_LEN characters and will be blank padded if necessary.

status The status of checking.

6.1.4.1. Example(s)
The following example displays the explanation text if an error code is returned from a call to CDF_open_cdf.

INCLUDE "<path>cdf. inc"

68

CDF identifier.

Returned status code.
Explanation text.

Last character position
actually used in the copyright.

INTEGER*4 id

INTEGER*4 statusl, status?
CHARACTER text*(CDF_STATUSTEXT_LEN)
INTEGER*4 last_char

CALL CDF_open_cdf ("giss wetl®, id, statusl)

IF (statusl .LT. CDF_WARN) THEN I INFO and WARNING codes ignored.
CALL CDF_get status_text (statusl, text, status2?)
last_CHARACTER= CDF_STATUSTEXT_LEN
DO WHILE (text(last char:last char) .EQ. " ©)

last_CHARACTER= last_CHARACTER- 1
END DO
WRITE (6,101) text(l:last_char)
101 FORMAT (* *,"ERROR> *,A)
END IF

6.2 CDF

The functions in this section provide CDF-specific operations. Any operations on variables or attributes in a CDF are
described in the following sections. This CDF has to be a newly created or opened from an existing one.

6.2.1 CDF_close_cdf

SUBROUTINE CDF_close_cdf (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 status) ! out -- Completion status

CDF_close_cdf closes the specified CDF. The CDF's cache buffers are flushed; the CDF's open file is closed (or files
in the case of a multi-file CDF); and the CDF identifier is made available for reuse. This routine is identical to the
original Standard Interface routine CDF_close.

NOTE: You must close a CDF with CDF_close_cdf to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDF_close_cdf,
the CDF's cache buffers are left unflushed.

The arguments to CDF_close_cdf are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf
or CDF_open_cdf.

status The completion status code. Chapter 8 explains how to interpret status codes.

69

6.2.1.1. Example(s)

The following example will close an open CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status 1 Returned status code.

CALL CDF_close_cdf (id, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.2.2 CDF_create_cdf

SUBROUTINE CDF _create_cdf (

CHARACTER CDF_name*(*), lin -- CDF file name.
INTEGER*4 status) ! out -- Completion status

CDF_create_cdf creates a CDF as defined by the arguments. This function provides the simplest form of CDF creation
without the number of dimensions, dimension sizes, encoding and majority arguments required in the original Standard
Interface routine, CDF_create, or the similar process from the Internal Interface CDF _lib routine. The created CDF will
have zero (0) dimension (thus no dimension sizes) and use the default encoding (HOST_ENCODING) and majority
(ROW_MAJOR), specified in the configuration file of your CDF distribution. This routine should be used to create
CDFs that will have only zVariables, or rVariables with no dimensionality. Use CDF_create or CDF_lib routine to
create CDFs to hold rVariables with dimensions. A CDF cannot be created if it already exists. (The existing CDF will
not be overwritten.) If you want to overwrite an existing CDF, you must first open it with CDF_open_cdf, delete it
with CDF_delete, and then recreate it with CDF_create cdf. If the existing CDF is corrupted, the call to
CDF_open_cdf will fail. (An error code will be returned.) In this case you must delete the CDF at the command line.
Delete the dotCDF file (having an extension of .cdf), and if the CDF has the multi-file format, delete all of the variable
files (having extensions of .v0,.v1,. .. and .z0,.z1,.. .).

The arguments to CDF_create_cdf are defined as follows:
CDF_name The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including

logical names on VMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id The identifier for the created CDF. This identifier must be used in all subsequent operations
on the CDF.
status The completion status code. Chapter 8 explains how to interpret status codes.

70

When a CDF is created, both read and write access are allowed. The default format for a CDF created with
CDF_create is specified in the configuration file of your CDF distribution. Consult your system manager for this
default. The CDF_lib function (Internal Interface) may be used to change a CDF's format.

NOTE: CDF_close_cdf must be used to close the CDF before your application exits to ensure that the CDF will
be correctly written to disk (see Section 6.2.1).

6.2.2.1. Example(s)

The following example will create a CDF named test1 with default encoding and majority.

INCLUDE *<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status I Returned status code.

CALL CDF _create_cdf ("testl®, id, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.3 CDF_delete_cdf

SUBROUTINE CDF_delete_cdf (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 status) ! out -- Completion status

CDF_delete_cdf deletes the specified CDF. The CDF files deleted include the dotCDF file (having an extension of
.cdf), and if a multi-file CDF, the variable files (having extensions of .v0,.v1,.. . and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will
not be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDF_delete_cdf are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

71

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.3.1. Example(s)

The following example will open and then delete an existing CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status I Returned status code.

CALL CDF_open_cdf ("test2", id, status)

IF (status .LT. CDF_OK) THEN I INFO status codes ignored.
CALL UserStatusHandler (status)

ELSE
CALL CDF _delete _cdf (id, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

END IF
6.2.4 CDF_get_cachesize
SUBROUTINE CDF_get_cachesize (
INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 num_buffers, ! out -- Number of cache buffers.
INTEGER*4 status) ! out -- Completion status

CDF_get_cachesize acquires the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to
the CDF User’s Guide for the description of caching scheme used by the CDF library.

The arguments to CDF_get_cachesize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

num_buffers The number of cache buffers.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.4.1. Example(s)

72

The following example acquires the number of cache buffers used for a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 num_buffers I Number of cache buffers.
INTEGER*4 status I Returned status code.

CALL CDF _get cachesize (id, num_buffers, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.5 CDF_get_checksum

SUBROUTINE CDF_get_checksum (

INTEGER*4 id, Iin -- CDF identifier.
INTEGER*4 checksum, ! out -- Checksum mode.
INTEGER*4 status) ! out -- Completion status

CDF_get_checksum acquires the checksum mode of a CDF file. Refer to Section 4.19 for the description of checksum.
The arguments to CDF_get_ checksum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

checksum The checksum mode.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.5.1. Example(s)

The following example acquires the checksum mode for a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 checksum I Checksum mode.
INTEGER*4 status 1 Returned status code.

73

CALL CDF_get_checksum(id, checksum, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.2.6 CDF_get_compress_cachesize

SUBROUTINE CDF_get_compress_cachesize (

INTEGER*4 id, 1in -- CDF identifier.
INTEGER*4 num_buffers, ! out -- Number of cache buffers.
INTEGER*4 status) ! out -- Completion status

CDF_get_compress_cachesize acquires the number of cache buffers used for the compression scratch CDF file. Refer
to the CDF User’s Guide for the description of caching scheme used by the CDF library.

The arguments to CDF_get_compress_cachesize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

num_buffers The number of cache buffers.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.6.1. Example(s)

The following example acquires the number of cache buffers used for the compression scratch CDF file.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 num_buffers I Number of cache buffers.
INTEGER*4 status ! Returned status code.

CALL CDF_get_compress_cachesize (id, num_buffers, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

74

6.2.7 CDF_get_compression

SUBROUTINE CDF_get_compression (

INTEGER*4 id, 1in -- CDF identifier.
INTEGER*4 compress_type, ! out -- Compression type.
INTEGER*4 compress_parms(*), ! out-- Compression parameters.
INTEGER*4 compress_percent, ! out-- Compression percentage.
INTEGER*4 status) ! out -- Completion status

CDF_get_compression acquires the compression information of the CDF. It returns the compression type (method)
and, if compressed, the compression parameters and compression rate. CDF compression types/parameters are
described in Section 4.10.

The arguments to CDF_get_compression are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

compress_type The compression type.
compress_parms The compression parameters.
compress_percent The compression percentage.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.7.1. Example(s)

The following example acquires the compression information from a CDF.

INCLUDE *<path>cdf. inc"

CDF identifier.
Compression type.
Compression parameters.
Compression percentage.
Returned status code.

INTEGER*4 id

INTEGER*4 compress_type

INTEGER*4 compress_parms(CDF_MAX_DIMS)
INTEGER*4 compress_percent

INTEGER*4 status

CALL CDF_get_compression (id, compress_type, compress_parms,
1 compress_percent, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

75

6.2.8 CDF_get_compression_info

SUBROUTINE CDF_get _compression_info (

char *CDFname, !'in -- CDF name. */
INTEGER*4 compress_type, ! out -- Compression type.
INTEGER*4 compress_parms(*), ! out-- Compression parameters.
INTEGER*4 compress_percent, ! out-- Compression percentage.
INTEGER*4 status) ! out -- Completion status

CDF_get_compression_info returns the compression type/parameters of a CDF without having to open the CDF. This
refers to the compression of the CDF - not of any compressed variables.

The arguments to CDFgetCompressioninfo are defined as follows:
CDFname The pathname of a CDF file without the .cdf file extension.
compress_type The compression type.
compress_parms The compression parameters.
compress_percent The compression percentage.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.8.1. Example(s)

The following example acquires the compression information from a CDF named “MY CDF.cdf”.

INCLUDE *<path>cdf.inc"

INTEGER*4 compress_type

INTEGER*4 compress_parms(CDF_MAX_DIMS)
INTEGER*4 compress_percent

INTEGER*4 status

Compression type.
Compression parameters.
Compression percentage.
Returned status code.

CALL CDF_get_compression_info (“MYCDF”, id, compress_type, compress_parms,
1 compress_percent, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.9 CDF_get_copyright

76

SUBROUTINE CDF_get_copyright (

INTEGER*4 id, Iin -- CDF identifier.
CHARACTER copyright*(*), ! out -- Copyright notice.
INTEGER*4 status) ! out -- Completion status

CDF_get_copyright acquires the copyright notice in a CDF.

The arguments to CDF_get_copyright are defined as follows:

id

copyright

status

The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

The copyright notice.

The completion status code. Chapter 8 explains how to interpret status codes.

6.2.9.1. Example(s)

The following example acquires the copyright notice from a CDF.

INCLUDE *

<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

CHARACTER copyright*(CDF_COPYRIGHT_LEN) I Copyright.
INTEGER*4 status I Returned status code.
CALL CDF_get copyright (id, copyright, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.2.10

CDF_get_decoding

SUBROUTINE CDF_get_decoding (

INTEGER*4 id, 1 in-- CDF identifier.
INTEGER*4 decoding, ! out-- CDF decoding.
INTEGER*4 status) ! out -- Completion status

CDF_get_decoding acquires the decoding for the data in a CDF. The decodings are described in Section 4.7.

The arguments to CDF_get_decoding are defined as follows:

77

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

decoding The decoding.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.10.1. Example(s)

The following example acquires the decoding code for a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id I CDF identifier.
INTEGER*4 decoding I Decoding.
INTEGER*4 status 1 Returned status code.

CALL CDF _get decoding (id, decoding, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.2.11 CDF_get_encoding

SUBROUTINE CDF_get_encoding (

INTEGER*4 id, ! in-- CDF identifier.
INTEGER*4 decoding, ! out -- CDF encoding.
INTEGER*4 status) ! out -- Completion status

CDF_get_encoding acquires the encoding code used for the data in a CDF. The encodings are described in Section 4.6.
The arguments to CDF_get_encoding are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

encoding The encoding.

status The completion status code. Chapter 8 explains how to interpret status codes.

78

6.2.11.1. Example(s)

The following example acquires the encoding code used in a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 encoding I Encoding.
INTEGER*4 status 1 Returned status code.

CALL CDF _get _encoding (id, encoding, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.12 CDF_get_format

SUBROUTINE CDF_get_format (

INTEGER*4 id, ! in-- CDF identifier.
INTEGER*4 format, ! out -- CDF format.
INTEGER*4 status) ! out -- Completion status

CDF_get_format acquires the file format, single or multi-file, of the CDF. The formats are described in Section 4.4.

The arguments to CDF_get_format are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

format The format.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.12.1. Example(s)

The following example acquires the file format for a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 format ! Format.

79

INTEGER*4 status I Returned status code.

CALL CDF _get_ format (id, format, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.13 CDF_get_majority

SUBROUTINE CDF_get_majority (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 majority, ! out -- Variable majority.
INTEGER*4 status) ! out -- Completion status

CDF_get_majority acquires the variable majority, row or column-major, of the CDF. The majorities are described in
Section 4.8.

The arguments to CDF_get_majority are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

majority ~ The variable majority of the CDF.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.13.1. Example(s)

The following example acquires the variable majority of a CDF.

INCLUDE *<path>cdf. inc"

INTEGER*4 id I CDF identifier.
INTEGER*4 majority I Variable majority.
INTEGER*4 status I Returned status code.

CALL CDF _get majority (id, majority, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

80

6.2.14 CDF_get_name

SUBROUTINE CDF_get name (

INTEGER*4 id, I in -- CDF identifier.
INTEGER*4 name, I out -- CDF name.
INTEGER*4 status) ! out -- Completion status

CDF_get_name acquires the name of the specified CDF.

The arguments to CDF_get_name are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

name The name of the CDF.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.14.1. Example(s)

The following example acquires the name of a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

CHARACTER name*(CDF_PATHNAME_LEN) 1 CDF name.
INTEGER*4 status ! Returned status code.

CALL CDF_get _name (id, name, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.15 CDF_get_negtoposfp0_mode

SUBROUTINE CDF_get_negtoposfp0_mode (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 negtoposfp0, ! out -- -0.0 to 0.0 mode.
INTEGER*4 status) ! out -- Completion status

81

CDF_get_negtoposfp0_mode acquires —0.0 to 0.0 mode of the CDF. You can use CDF_set _negtoposfp0_mode
subroutine to set the mode. The —0.0 to 0.0 modes are described in Section 4.15.

The arguments to CDF_get_negtoposfp0_mode are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

negtoposfp0The —0.0 to 0.0 mode of the CDF.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.15.1. Example(s)

The following example acquires the —0.0 to 0.0 mode of a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 negtoposfpO I —-0.0 to 0.0 mode.
INTEGER*4 status 1 Returned status code.

CALL CDF_get _negtoposfpO_mode (id, negtoposfpO, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.16 CDF_get_readonly_mode

SUBROUTINE CDF_get_readonly_mode (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 readonly, ! out -- Read-only mode of the CDF.
INTEGER*4 status) ! out -- Completion status

CDF_get_readonly_mode acquires the read-only mode for a CDF. You can use CDF_set readonly_mode to set the
mode. The read-only modes are described in Section 4.13.

The arguments to CDF_get_readonly_mode are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

readonly The read-only mode.

82

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.16.1. Example(s)

The following example acquires the read-only mode of a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 readonly I Read-only mode.
INTEGER*4 status I Returned status code.

CALL CDF_get_readonly mode (id, readonly, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.17 CDF_get _stage cachesize

SUBROUTINE CDF_get_stage_cachesize (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 num_buffers, ! out -- Number of cache buffers.
INTEGER*4 status) ! out -- Completion status

CDF_get _stage_cachesize inquires the number of cache buffers being used for the staging scratch file a CDF. Refer to
the CDF User’s Guide for the description of the caching scheme used by the CDF library.

The arguments to CDF_get_stage_cachesize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

num_buffers Number of cache buffers.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.17.1. Example(s)

The following example acquires the number of cache size buffers used for the staging scratch file for a CDF.

83

INCLUDE “<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 status I Returned status code.
INTEGER*4 num_buffers I Number of cache buffers.

CALL CDF_get_stage cachesize (id, num_buffers, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.2.18 CDF_get_version

SUBROUTINE CDF_get_version (

INTEGER*4 id, I in -- CDF identifier.

INTEGER*4 version, I out -- CDF version number.

INTEGER*4 release, I out -- CDF release number within the version.
INTEGER*4 increment, ! out -- CDF increment number within the release.
INTEGER*4 status) ! out -- Completion status

CDF_get_version inquires the version/release information for a CDF file. This information reflects the CDF library that
was used to create the CDF file.

The arguments to CDF_get_version are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

version CDF version number.

release CDF release number within the version.

increment CDF increment number within the release.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.18.1. Example(s)

In the following example, a CDF’s version/release is acquired.

INCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 status I Returned status code.
INTEGER*4 version 1 CDF version number.

84

INTEGER*4 release 1 CDF release number.
INTEGER*4 increment 1 CDF increment number.

CALL CDF_get_version (id, version, release, increment, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.19 CDF_get_zmode

SUBROUTINE CDF_get_zmode (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 zmode, ! out -- CDF zMode.
INTEGER*4 status) ! out -- Completion status

CDF_get_zmode inquires the zMode for a CDF file. The zModes are described in Section 4.14.

The arguments to CDF_get_zmode are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

zmode CDF zMode.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.19.1. Example(s)

In the following example, a CDF’s zMode is acquired.

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 status 1 Returned status code.
INTEGER*4 zmode 1 CDF zMode.

CALL CDF _get zmode (id, zmode, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

85

6.2.20

CDF_inquire_cdf

SUBROUTINE CDF_inquire_cdf (

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

CDF_inquire

subroutine CDF _inquire by acquiring extra information regarding the zVariables. An application needs to know the
number of rVariable dimensions and their sizes before it can access rVariable data.
CDF_get_zvar_numdims and CDF_get_zvar_dimsizes subroutines to acquire each individual zVariable’s dimensions
and its sizes. Knowing the variable majority can be used to optimize performance and is necessary to properly use the
variable hyper functions (for both rVVariables and zVariables).

id, !in -- CDF identifier

num_dims, ! out-- Number of dimensions, rVariables.
dim_sizes(CDF_MAX_DIMS), ! out-- Dimension sizes, rVariables.

encoding, ! out -- Data encoding.

majority, ! out -- Variable majority.

max_rrec, ! out -- Maximum record number in the CDF, rVariables.
num_rvars, ! out -- Number of rVariables in the CDF.

max_zrec, I out -- Maximum record number in the CDF, zVariables.
num_zvars, ! out -- Number of zVariables in the CDF.

num_attrs, ! out -- Number of attributes in the CDF.

status) ! out -- Completion status

cdf inquires the basic characteristics of a CDF. This subroutine expands the original Standard Interface

The arguments to CDF_inquire_cdf are defined as follows:

For zVariables, use

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF _create_cdf or CDF_open_cdf.

num_dims The number of dimensions for the rVariables in the CDF.

dim_sizes The dimension sizes of the rVariables in the CDF. dim_sizes is a 1-dimensional array
containing one element per dimension. Each element of dim_sizes receives the
corresponding dimension size. For O-dimensional rVariables this argument is ignored (but
must be present).

encoding The encoding of the variable data and attribute entry data. The encodings are defined in
Section 4.6.

majority The majority of the variable data. The majorities are defined in Section 4.8.

max_rrec The maximum record number written to an rVariable in the CDF. Note that the maximum
record number written is also kept separately for each rVariable in the CDF. The value of
max_rrec is the largest of these. Some rVariables may have fewer records actually written

num_rvars The number of rVariables in the CDF.

max_zrec The maximum record number written to a zVariable in the CDF. Note that the maximum
record number written is also kept separately for each zVariable in the CDF. The value of
max_zrec is the largest of these. Some zVariables may have fewer records actually
written. CDF_get _zvar_maxwrittenrecnum (Section 6.3.19) can be used to inquire the
maximum record written for an individual zVariable.

num_zvars The number of zVariables in the CDF.

num_attrs The number of attributes in the CDF.

86

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.20.1. Example(s)

The following example inquires the basic information about a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id
INTEGER*4 status
INTEGER*4 num_dims

1 CDF identifier.
I Returned status code.
I Number of dimensions, rVariables.

INTEGER*4 dim_sizes(CDF_MAX_DIMS)! Dimension sizes, rVariables

INTEGER*4 encoding
INTEGER*4 majority
INTEGER*4 max_rrec
INTEGER*4 num_rvars
INTEGER*4 max_zrec
INTEGER*4 num_zvars
INTEGER*4 num_attrs

(allocate to allow the maximum

number of dimensions).

Data encoding.

Variable majority.

Maximum record number among rVariables.
Number of rVariables in CDF.

Maximum record number among zVariables.
Number of zVariables in CDF.

Number of attributes in CDF.

CALL CDF_inquire_cdf (id, num_dims, dim_sizes, encoding, majority,

. max_rrec,
status)

num_rvars, max_zrec, num_zvars, num_attrs,

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.21 CDF_open_cdf

SUBROUTINE CDF_open_cdf (

CHARACTER CDF_name*(*),
INTEGER*4 id
INTEGER*4 status)

CDF_open_cdf opens an existing CDF. The CDF is initially opened with only read access. This allows multiple
applications to read the same CDF simultaneously. When an attempt to modify the CDF is made, it is automatically
closed and reopened with read/write access. (The function will fail if the application does not have or cannot get write

I'in -- CDF file name.
I out -- CDF identifier.
! out -- Completion status

access to the CDF.) This routine is identical to the original Standard Interface routine CDF_open.

The arguments to CDF_open_cdf are defined as follows:

CDF_name The file name of the CDF to open. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters. A CDF file name may contain disk and directory

87

specifications that conform to the conventions of the operating system being used (including
logical names on VMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.
status The completion status code. Chapter 8 explains how to interpret status codes.

NOTE: CDF close_cdf must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk (see Section 6.2.1).

6.2.21.1. Example(s)

The following example will open a CDF named NOAA1.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status I Returned status code.
CHARACTER CDF_name*(CDF_PATHNAME_LEN) ' File name of CDF.

DATA CDF_name/"NOAA1*"/

CALL CDF_open_cdf (CDF_name, id, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.22 CDF _set_cachesize

SUBROUTINE CDF_set_cachesize (

INTEGER*4 id, !in -- CDF identifier.
INTEGER*4 num_buffers, I in -- Number of cache buffers.
INTEGER*4 status) ! out -- Completion status

CDF_set_cachesize specifies the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to
the CDF User’s Guide for the description of caching scheme used by the CDF library.

The arguments to CDF_set_cachesize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

88

num_buffers The number of cache buffers.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.22.1. Example(s)

The following example sets the number of cache buffers to 10 to be used for a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 num_buffers I Number of cache buffers.
INTEGER*4 status I Returned status code.

ﬁum_buffers = 10
CALL CDF_set_cachesize (id, num_buffers, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.23 CDF_set_checksum

SUBROUTINE CDF_set_checksum (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 checksum, Iin -- Checksum mode.
INTEGER*4 status) ! out -- Completion status

CDF_set_checksum specifies the checksum mode of a CDF file. Refer to Section 4.19 for the description of checksum.

The arguments to CDF_set_checksum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or

CDF_open_cdf.
checksum The checksum mode.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.23.1. Example(s)

The following example sets checksum mode for a CDF.

89

INCLUDE *<path>cdf. inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 checksum 1 Checksum mode.
INTEGER*4 status 1 Returned status code.

checksum = MD5_CHECKSUM
CALL CDF_set_checksum (id, checksum, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.2.24 CDF_set_compress_cachesize

SUBROUTINE CDF_set_compress_cachesize (

INTEGER*4 id, I'in -- CDF identifier.
INTEGER*4 num_buffers, Iin -- Number of cache buffers.
INTEGER*4 status) ! out -- Completion status

CDF_set_compress_cachesize specifies the number of cache buffers used for the compression scratch CDF file. Refer
to the CDF User’s Guide for the description of caching scheme used by the CDF library.

The arguments to CDF_set_compress_cachesize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

num_buffers The number of cache buffers.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.24.1. Example(s)

The following example sets the number of cache buffers to 10 to be used for the compression scratch CDF file.

INCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

90

INTEGER*4 num_buffers I Number of cache buffers.
INTEGER*4 status I Returned status code.

ﬁum_buffers = 10
CALL CDF_set_compress_cachesize (id, num_buffers, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.2.25 CDF_set_compression

SUBROUTINE CDF_set_compression (

INTEGER*4 id, 1in -- CDF identifier.
INTEGER*4 compress_type, 1'in -- Compression type.
INTEGER*4 compress_parms(*), ! in -- Compression parameters.
INTEGER*4 status) ! out -- Completion status

CDF_set_compression specifies the compression information of the CDF. It returns the compression type (method)
and, if compressed, the compression parameters and compression rate. CDF compression types/parameters are
described in Section 4.10.

The arguments to CDF_set_compression are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

compress_type The compression type.
compress_parms The compression parameters.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.25.1. Example(s)

The following example uses GZIP.9 compression for a CDF.

INCLUDE *<path>cdf. inc"

INTEGER*4 id I CDF identifier.
INTEGER*4 compress_type I Compression type.
INTEGER*4 compress_parms(CDF_MAX_DIMS) ! Compression parameters.
INTEGER*4 status I Returned status code.

91

compress_type = GZIP_COMPRESSION

compress_parms(1l) = 9

CALL CDF_set_compression (id, compress_type, compress_parms,
1 status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.26 CDF_set_decoding

SUBROUTINE CDF_set_decoding (

INTEGER*4 id, ! in-- CDF identifier.
INTEGER*4 decoding, ! in -- CDF decoding.
INTEGER*4 status) ! out -- Completion status

CDF_set_decoding specifies the decoding for the data in a CDF. The decodings are described in Section 4.7.
The arguments to CDF_set_decoding are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

decoding The decoding.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.26.1. Example(s)

The following example sets the decoding to NETWORK _DECODING for a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 decoding I Decoding.
INTEGER*4 status 1 Returned status code.

decoding = NETWORK_DECODING
CALL CDF_set_decoding (id, decoding, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

92

6.2.27 CDF_set_encoding

SUBROUTINE CDF _set_encoding (

INTEGER*4 id, 1 in-- CDF identifier.
INTEGER*4 decoding, ! in -- CDF encoding.
INTEGER*4 status) ! out -- Completion status

CDF_set_encoding specifies the encoding code used for the data in a CDF. The encodings are described in Section 4.6.
The arguments to CDF_set_encoding are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

encoding The encoding.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.27.1. Example(s)

The following example sets the encoding code to NETWORK_ENCODING to be used for a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 encoding I Encoding.
INTEGER*4 status 1 Returned status code.

encoding = NETWORK_ENCODING
CALL CDF_set_encoding (id, encoding, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.28 CDF_set_format

SUBROUTINE CDF_set_format (

INTEGER*4 id, ! in-- CDF identifier.
INTEGER*4 format, ! in-- CDF format.
INTEGER*4 status) ! out -- Completion status

93

CDF_set_format specifies the file format, single or multi-file, of the CDF. The formats are described in Section 4.4.

The arguments to CDF_set_format are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

format The format.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.28.1. Example(s)

The following example sets the file format to MULTI_FILE_FORMAT for a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 format I Format.
INTEGER*4 status 1 Returned status code.

%ormat = MULTI_FILE_FORMAT
CALL CDF_set_format (id, format, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.29 CDF_set_majority

SUBROUTINE CDF_set_majority (

INTEGER*4 id, I'in -- CDF identifier.
INTEGER*4 majority, I'in -- Variable majority.
INTEGER*4 status) ! out -- Completion status

CDF_set_majority specifies the variable majority, row or column-major, of the CDF. The majorities are described in
Section 4.8.

The arguments to CDF_set_majority are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

majority ~ The variable majority of the CDF.

94

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.29.1. Example(s)

The following example sets the variable majority to ROW_MAJOR for a CDF.

INCLUDE "<path>cdf.inc*

INTEGER*4 id ! CDF identifier.

INTEGER*4 majority I Variable majority.
INTEGER*4 status I Returned status code.

majority = ROW_MAJOR
CALL CDF_set majority (id, majority, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.30 CDF_set_negtoposfp0_mode

SUBROUTINE CDF_set_negtoposfp0_mode (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 negtoposfp0, I'in ---0.0to 0.0 mode.
INTEGER*4 status) ! out -- Completion status

CDF_set_negtoposfp0_mode specifies —0.0 to 0.0 mode of the CDF. You can use CDF_get negtoposfp0_mode
subroutine to check the mode. The —0.0 to 0.0 modes are described in Section 4.15.

The arguments to CDF_set_negtoposfp0_mode are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

negtoposfp0The —0.0 to 0.0 mode of the CDF.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.30.1. Example(s)

The following example sets the —0.0 to 0.0 mode to NEGtoPOSfpQoff for a CDF.

95

INCLUDE *<path>cdf. inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 negtoposfp0 I —-0.0 to 0.0 mode.
INTEGER*4 status 1 Returned status code.

negtoposfp0 = NEGtoPOSfpOoff
CALL CDF_set_negtoposfpO _mode (id, negtoposfpO, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.2.31 CDF_set_readonly_mode

SUBROUTINE CDF_set_readonly_mode (

INTEGER*4 id, I'in -- CDF identifier.
INTEGER*4 readonly, 1 in -- Read-only mode of the CDF.
INTEGER*4 status) ! out -- Completion status

CDF_set_readonly_mode specifies the read-only mode for a CDF. You can use CDF_get_readonly_mode to check the
mode. The read-only modes are described in Section 4.13.

The arguments to CDF_set_readonly_mode are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

readonly The read-only mode.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.31.1. Example(s)

The following example sets the read-only mode to READONLY off (to allow read/write) for a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id I CDF identifier.
INTEGER*4 readonly I Read-only mode.

96

INTEGER*4 status 1 Returned status code.

readonly = READONLYoff
CALL CDF_set _readonly mode (id, readonly, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.2.32 CDF_set_stage cachesize

SUBROUTINE CDF_set_stage cachesize (

INTEGER*4 id, !in -- CDF identifier.
INTEGER*4 num_buffers, I in -- Number of cache buffers.
INTEGER*4 status) ! out -- Completion status

CDF_set_stage_cachesize respecifies the number of cache buffers being used for the staging scratch file a CDF. Refer

to the CDF User’s Guide for the description of the caching scheme used by the CDF library.

The arguments to CDF_set_stage_cachesize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

num_buffers Number of cache buffers.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.32.1. Example(s)

The following example sets the number of stage cache buffers to 10 for a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id I CDF identifier.
INTEGER*4 status 1 Returned status code.
INTEGER*4 num_buffers I Number of cache buffers.

num_buffers = 10
CALL CDF_set_stage cachesize (id, rec_number, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

97

6.2.33 CDF_set_zmode

SUBROUTINE CDF_set_zmode (

INTEGER*4 id, 1in -- CDF identifier.
INTEGER*4 zmode, 1in -- zMode.
INTEGER*4 status) ! out -- Completion status

CDF_set_zmode respecifies the zMode for a CDF file. The zModes are described in Section 4.14.

The arguments to CDF_set_zmode are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

zmode CDF zMode.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.2.33.1. Example(s)

The following example sets zMode to zMODEon2, all rVariables are viewed as zVariables with NOVARY dimensions
being eliminated, for a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status I Returned status code.

CALL CDF_set _zmode (id, zMODEon2, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3 Variable

This section provides the variable-specific functions. A variable is identified by its unique name in a CDF or a variable
number in either rVariable or zZVariable group. To operate a variable, the CDF it resides in must be open.

6.3.1 CDF_close_zvar

98

SUBROUTINE CDF_close_zvar (

INTEGER*4 id, Iin -- CDF identifier.
INTEGER*4 var_num, Iin -- zVariable identifier.
INTEGER*4 status) ! out -- Completion status

CDF_close_zvar closes the specified zVariable file from a multi-file format CDF. The variable's cache buffers are
flushed before the variable's open file is closed. However, the CDF file is still open.

NOTE: You must close all open variable files to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDF_close, the
CDF's cache buffers are left unflushed.

The arguments to CDF_close_zvar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf
or CDF_open_cdf.

var_num The variable number for the open zVariable’s file. This identifier must have been initialized by a
call to CDF_create_zvar or CDF_get var_num.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.1.1. Example(s)

The following example closes an open zVariable “MY_VAR” in a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 var_num I Variable identifier.
INTEGER*4 status I Returned status code.

var_num = CDF_get_var_num(id, “MY_VAR?”)
IF (var_num _LT. 0) CALL UserQuit(..)

CALL CDF_close_zvar (id, var_num, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.2 CDF_confirm_zvar_existence

INTEGER*4 FUNCTION CDF_confirm_zvar_existence (

INTEGER*4 id, !in -- CDF identifier.

99

CHARACTER var_name*(*)) 1in -- Variable name.

CDF_ confirm_zvar_existence confirms the existence of a zVariable with the specified name in a CDF. If the
zVariable does not exist, an error code will be returned.

The arguments to CDF_ confirm_zvar_existence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf
or CDF_open_cdf.

var_name The variable name.

6.3.2.1. Example(s)

The following example will check the existence of zVariable “MY_VAR” in a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status 1 Returned status code.

status = CDF_confirm_zvar_existence (id, “MY_VAR?)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.3 CDF_confirm_zvar_padvalue_exist

INTEGER*4 FUNCTION CDF_confirm_zvar_padvalue_exist (

INTEGER*4 id, 1in -- CDF identifier.
INTEGER*4 var_num) !'in -- Variable number.

CDF_ confirm_zvar_padvalue_exist confirms the existence of an explicitly specified pad value for the specified
zVariable in a CDF. If an explicit pad value has not been specified, the informational status code
NO_PADVALUE_SPECIFIED will be returned.

The arguments to CDF_ confirm_zvar_padvalue_exist are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf
or CDF_open_cdf.

var_num The variable number.

100

6.3.3.1. Example(s)

The following example will check the existence of the pad value for zVariable “MY_VAR” in a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 var_num I Variable number.
INTEGER*4 status I Returned status code.

var_num = CDF_get_var_num(id, “MY_VAR?”)

IF (var_num _LT. 1) CALL UserQuit(...)

Status = CDF_confirm_zvar_padvalue exist (id, var_num)
IF (status .NE. NO_PADVALUE_SPECIFIED) THEN

END IF

6.3.4 CDF_create _zvar

SUBROUTINE CDF_create_zvar (

INTEGER*4 id,
CHARACTER var_name*(*),
INTEGER*4 data_type,
INTEGER*4 num_elements,
INTEGER*4 num_dims,
INTEGER*4 dim_sizes(*),
INTEGER*4 rec_variance,
INTEGER*4 dim_variances(*),
INTEGER*4 var_num,
INTEGER*4 status)

!in -- CDF identifier.

!'in -- zVariable name.

I'in -- Data type.

I'in -- Number of elements (of the data type).
!'in -- Number of dimensions.

I in -- Dimension sizes.

!'in -- Record variance.

! in -- Dimension variances.

! out -- zVariable number.

! out -- Completion status

CDF_create_zvar is used to create a new zVariable in a CDF. A variable (rVariable or zZVariable) with the same name
must not already exist in the CDF.

The arguments to CDF_create_zvar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_name The name of the zVariable to create. This may be at most CDF_VAR_NAME_LEN256
characters. Variable names are case-sensitive.

data_type The data type of the new zVariable. Specify one of the data types defined in Section 4.5.

101

num_elements

num_dims

dim_sizes

rec_variance

dim_variances

var_num

status

6.3.4.1.

The number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The zVariable's number of dimension.

The zVariable's dimension sizes. Each element of dim_sizes specifies the number of
values in corresponding dimension. For O-dimensional zVariables this argument is
ignored (but must be present).

The zVariable's record variance. Specify one of the variances defined in Section 4.9.

The zVariable's dimension variances. Each element of dim_variances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 4.9. For 0-dimensional zVariables this argument is ignored (but must
be present).

The number assigned to the new zVariable. This number must be used in subsequent
CDF function calls when referring to this zVariable. An existing zVariable's number
may be determined with the CDF_get var_num function.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example will create several zVariables in a CDF. In this case, EPOCH is a 0-dimensional of
CDF_EPOCH data type, LAT a 1-dimensional of 2 elements of CDF_INT2 data type, LON a 2-dimensional with 2 by
3 of CDF_INT2 data type and TMP a 2 dimensional with 2 by 3 of CDF_REAL4 data type.

INCLUDE "<path>cdf.inc*

INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
1
INTEGER*4
1

id
status

EPOCH_
LAT_rec_vary
LON_rec_vary
TMP_rec_vary
EPOCH_dim_varys(2)
LAT _dim_varys(2)
LON_dim_varys(2)
TMP_dim_varys(2)
EPOCH_var_num
LAT_var_num
LON_var_num

1 CDF identifier.
I Returned status code.

EPOCH record variance.
LAT record variance.

LON record variance.

TMP record variance.
EPOCH dimension variances.
LAT dimension variances.
LON dimension variances.
TMP dimension variances.
EPOCH variable number.
LAT zVariable number.
LON zVariable number.

rec_vary

TMP_var_num I TMP zVariable number.
num_dims_EPOCH, num_dims_LAT, num_dims_LON,
num_dims_TEMP I Number of dimensions.

dim_sizes EPOCH(1), dim_sizes LAT(1),
dim_sizes LON(2), dim_sizes TEMP(2)

102

I Dimesion sizes.

DATA num_dims_EPOCH/0/, num_dims_ LAT/1/,
1 num_dims_LON/2/, num_dims_TEMP/2/

DATA dim_sizes EPOCH/1/, dim sizes LAT/3/,
1 dim_sizes LON/2,3/, dim_sizes TEMP/2,3/

DATA EPOCH_rec_vary/VARY/, LAT_rec_vary/NOVARY/,
1 LON_rec_vary/NOVARY/, TMP_rec_vary/VARY/

DATA EPOCH_dim_varys/NOVARY/, LAT dim_varys/VARY/,
1 LON_dim_varys/VARY,VARY/, TMP_dim_varys/VARY,VARY/

CALL CDF _create zvar (id, "EPOCH", CDF_EPOCH, 1, num_dims_EPOCH,
1 dim_sizes EPOCH,
2 EPOCH_rec_vary, EPOCH_dim_varys, POCH_var_num, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

CALL CDF _create zvar (id, "LATITUDE®, CDF_INT2, 1, num_dims_LAT,
1 dim_sizes LAT,
2 LAT _rec_vary, LAT dim_varys, LAT_var_num, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

CALL CDF _create zvar (id, "LONGITUDE", CDF_INT2, 1, num _dims_LON,
1 dim_sizes LON,
2 LON_rec_vary, LON_dim_varys, LON_var_num, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

CALL CDF _create zvar (id, "TEMPERATURE", CDF_REAL4, 1, num _dims_TEMP,
1 dim_sizes TEMP,
2 TMP_rec_vary, TMP_dim_varys, TMP_var_num, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.5 CDF_delete_zvar

SUBROUTINE CDF_delete_zvar (

INTEGER*4 id, I in -- CDF identifier.
INTEGER*4 var_num, ! in -- zVariable number.
INTEGER*4 status) ! out -- Completion status

CDF_delete_zvar deletes the specified zVariable from a CDF
The arguments to CDF_delete_zvar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

103

var_num The zVariable number.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.5.1. Example(s)

The following example will delete the zVariable “MY_VAR” in a CDF.

INCLUDE "<path>cdf.inc*

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF _delete zvar (id, CDF_get var_num(id, “MY_VAR?), status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.6 CDF _delete_zvar_recs

SUBROUTINE CDF_delete_zvar_recs (

INTEGER*4 id,
INTEGER*4 var_num,

! - CDF identifier.

!
INTEGER*4 start rec, ! in

!

1

- zVariable number.
- Starting record number.
- Ending record number.
out -- Completion status

5. 3.
1 1

INTEGER*4 end_rec,
INTEGER*4 status)

5.
1

CDF_delete_zvar_recs deletes a range of data records from the specified zVariable in a CDF
The arguments to CDF_delete_zvar_recs are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

var_num The zVariable number.
start rec The starting record number to delete.
end_rec The ending record number to delete.

status The completion status code. Chapter 8 explains how to interpret status codes.

104

6.3.6.1. Example(s)

The following example will delete 10 records (from record number 10 to 19) from the zVariable “MY_VAR” in a
CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status 1 Returned status code.

CALL CDF_delete_zvar_recs (id, CDF_get_var_num(id, “MY_VAR?), 10, 19, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.7 CDF_get_num_zvars

SUBROUTINE CDF_get_num_zvars (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 vars, ! out— Number of zVariables.
INTEGER*4 status) ! out -- Completion status

CDF_get_num_zvars acquires the total number of zVariables in a CDF.

The arguments to CDF_get_num_zvars are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

vars The number of zVariables.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.7.1. Example(s)

The following example acquires the total number of zVariables in a CDF.

INCLUDE *<path>cdf. inc"

INTEGER*4 id ! CDF identifier.

105

INTEGER*4 vars 1 zVariables.
INTEGER*4 status 1 Returned status code.

CALL CDF_get num zvars (id, vars, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.8 CDF_get_var_num

INTEGER*4 FUNCTION CDF_get var_num (

INTEGER*4 id, lin-- CDF identifier.
CHARACTER var_name*(*)); !in-- Variable name.

CDF_get_var_num is used to determine the number associated with the specified variable name. If the Variable is
found, CDF_get_var_num returns its number - which will be equal to or greater than one (1). If an error occurs (e.g.,
the Variable does not exist in the CDF), an error code (of type INTEGER™*4) is returned. Error codes are less than zero

(0).

Initially, this function can only handle rVariables. As the variable name is unique in a CDF file, no two variables, either
rVVariable or zVariable can have the same name. This function is now extended to include zVariable. The variable
number it returns represents the number in either the rVVariable group or zVariable group wherever the variable exists.

The arguments to CDF_get_var_num are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

varName The name of the Variable for which to search. This may be at most
CDF_VAR_NAME_LEN256 characters. Variable names are case-sensitive.

CDF_get_var_num may be used as an embedded function call when a Variable number is needed. CDF_get_var_num
is declared in cdf.inc. (Fortran functions must be declared so that the returned value is interpreted correctly.)

6.3.8.1. Example(s)

In the following example CDF_get var_num is used as an embedded function call when inquiring about an rVariable
and a zVariable.

INCLUDE "<path>cdf.inc*

INTEGER*4 id I CDF identifier.
INTEGER*4 status I Returned status code.
CHARACTER var_namel*(CDF_VAR_NAME_LEN256) I rvariable name.

106

CHARACTER var_name2*(CDF_VAR_NAME_LEN256) I zVariable name.

INTEGER*4 data_typel, data_ typel
INTEGER*4 num_elemsl, num_elems2

I Data type of the rVariable.
I Number of elements (of the
I data type).

INTEGER*4 rec_varyl, rec_vary?2 I Record variance.

INTEGER*4 num_dims2 I Number of dimensions
INTEGER*4 dim_sizes2(CDF_MAX_DIMS) I Dimension sizes

INTEGER*4 dim_variancesl1(CDF_MAX_DIMS)! Dimension variances.
INTEGER*4 dim_variances2(CDF_MAX_DIMS)! Dimension variances..

CALL CDF _var_inquire (id, CDF_get var_num(id, "LATITUDE"), var_namel,
1 data_typel, num_elemsl, rec _varyl, dim_variancesl,
2 status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

CALL CDF_inquire_zvar (id, CDF_get var_num(id, "LONGITUDE"), var_namel,
1 data_type2, num_elems2, num dims2, dim_sizes2,
2 rec_vary?2, dim_variances?2, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

In this example the rVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDF_get_var_num would have returned an error code. Passing that error code to CDF_inquire_rvar as an
rVariable number would have resulted in CDF_inquire_rvar also returning an error code. Also note that the name
written into var_name is already known (LATITUDE). In some cases the rVariable names will be unknown —
CDF_var_inquire would be used to determine them. CDF_var_inquire is described in Section 5.24.

6.3.9 CDF_get_vars_maxwrittenrecnums

SUBROUTINE CDF_get_vars_maxwrittenrecnums (

INTEGER*4 id, !in -- CDF identifier.

INTEGER*4 rvars_maxrec, I out -- Maximum record number among rVariables.
INTEGER*4 zvars_maxrec, I out -- Maximum record number among zVariables.
INTEGER*4 status) ! out -- Completion status

CDF_get_vars_maxwrittenrecnums inquires the maximum written record numbers among all rVariables and zVariables
in a CDF.

The arguments to CDF_get vars_maxwrittenrecnums are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

rvars_maxrec Maximum record number among rVariables.

zvars_maxrec Maximum record number among zVariables.

status The completion status code. Chapter 8 explains how to interpret status codes.

107

6.3.9.1. Example(s)

The following example acquires the maximum record numbers from all rVariables and zVariables in a CDF.

INCLUDE *<path>cdf. inc"

INTEGER*4 id

INTEGER*4 status
INTEGER*4 rvars_maxrec
INTEGER*4 zvars_maxrec

CDF identifier.

Returned status code.

Maximum record number among rVariables.
Maximum record number among zVariables.

CALL CDF_get vars_maxwrittenrecnums (id, rvars_maxrec, zvars_maxrec, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.10 CDF_get_zvar_allocrecs

SUBROUTINE CDF_get_zvar_allocrecs (

in -- CDF identifier.

in -- zVariable number.

out -- Number of allocated records.
out -- Completion status

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 num_recs,

!
[
!
INTEGER*4 status) !

CDF_get_zvar_allocrecs inquires the number of records allocated for the specified zVariable in a CDF. Refer to the
CDF User’s Guide for the description of allocating variable records in a single-file CDF.

The arguments to CDF_get_zvar_allocrecs are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

var_num The zVariable number.
Num_recs The number of records allocated for the variable.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.10.1. Example(s)

The following example acquires the number of records allocated for zVariable “MY_VAR” in a CDF.

108

INCLUDE “<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 num_recs I Number of allocated records.
INTEGER*4 status I Returned status code.

CALL CDF _get _zvar_allocrecs (id, CDF _get var_num(id, “MY_VAR?),
1 num_recs, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.11 CDF_get_zvar_blockingfactor

SUBROUTINE CDF_get_zvar_blockingfactor (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 var_num, I in -- zVariable number.
INTEGER*4 bf, ! out -- Variable blocking factor.
INTEGER*4 status) ! out -- Completion status

CDF_get_zvar_blockingfactor inquires the blocking factor for the specified zVariable in a CDF. Refer to the CDF
User’s Guide for the description of the blocking factor.

The arguments to CDF_get_zvar_blockingfactor are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

var_num The zVariable number.
bf The blocking factor of the variable.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.11.1. Example(s)

The following example acquires the blocking factor for zVariable “MY_VAR” in a CDF.

INCLUDE *<path>cdf. inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 bTf I Blocking factor.

109

INTEGER*4 status I Returned status code.

CALL CDF_get_zvar_blockingfactor (id, CDF_get_var_num(id, “MY_VAR?),
1 bf, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.12 CDF_get_zvar_cachesize

SUBROUTINE CDF_get_zvar_cachesize (

INTEGER*4 id, ! in -- CDF identifier.

INTEGER*4 var_num, I in -- zVariable number.

INTEGER*4 num_buffers, ! out -- Variable number of cache buffers.
INTEGER*4 status) ! out -- Completion status

CDF_get_zvar_cachesize inquires the number of cache buffers being for the specified zVariable in a CDF. This
operation is not applicable to a single-file CDF. Refer to the CDF User’s Guide for the description about caching

scheme used by the CDF library.

The arguments to CDF_get_zvar_cachesize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or

CDF_open_cdf.
var_num The zVariable number.
num_buffers The number of cache buffers.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.12.1. Example(s)

The following example acquires the number of cache buffers used for zVariable “MY_VAR” in a CDF.

INCLUDE *<path>cdf. inc*

INTEGER*4 id ! CDF identifier.
INTEGER*4 num_buffers! Number of cache buffers.
INTEGER*4 status I Returned status code.

CALL CDF_get zvar_cachesize (id, CDF_get _var_num(id, “MY_VAR?),

110

1

num_buffers, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.13 CDF_get_zvar_compression

SUBROUTINE CDF_get_zvar_compression (

INTEGER*4 id, !
INTEGER*4 var_num, !
INTEGER*4 compress_type, !
INTEGER*4 compress_parms, !
INTEGER*4 compress_percent, !
INTEGER*4 status) !

in -- CDF identifier.

in -- zVariable number.

out -- Compression type.

out -- Compression parameters.
out -- Compression percentage.
out -- Completion status

CDF_get_zvar_compression inquires the compression type/parameters of the specified zVariable in a CDF. Refer to
Section 4.10 for the description of the CDF supported compression types/parameters.

The arguments to CDF_get_zvar_compression are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or

CDF_open_cdf.

var_num The zVariable number.

compress_type The compression type.

compress_parms The compression parameters.

compress_percent The compression percentage.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.13.1. Example(s)

The following example acquires the compression type/parameters for zVariable “MY_VAR” in a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id
INTEGER*4 ctype

INTEGER*4 cparms(CDF_MAX_DIMS)

INTEGER*4 cpercent
INTEGER*4 status

CDF identifier.
Compression type.
Compression parameters.
Compression percentage.
Returned status code.

111

CALL CDF _get zvar_compression (id, CDF_get var_num(id, “MY_VAR?),

1

ctype, cparms, cpercent, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.14 CDF_get_zvar_data

SUBROUTINE CDF _get zvar_data (

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 rec_num,
INTEGER*4 indices(*),
<type> value,
INTEGER*4 status)

out -- Value (<type> is dependent on the data type of the zVariable).
out -- Completion status

I in -- CDF identifier.
Iin -- zVariable number.
I'in -- Record number.

I in -- Dimension indices.
!

!

CDF_get_zvar_data is used to read a single value from a zVariable. CDF_hyper_get zvar_data may be used to read
more than one zVariable values with a single call (see Section 6.3.33).

The arguments to CDF_get_zvar_data are defined as follows:

id

var_num

rec_num

indices

value

status

6.3.14.1.

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

The record number at which to read.

The array indices within the specified record at which to read. Each element of indices
specifies the corresponding dimension index. For 0-dimensional zVariables this argument is
ignored (but must be present).

The value read. This buffer must be large enough to hold the value. CDF_inquire_zvar
would be used to determine the zVariable's data type and number of elements (of that data
type) at each value. The value is read from the CDF and placed at memory address value.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the zVariable does
not have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example reads and hold an entire record of data from zVariable “Temperature” in a CDF. This
zVariable is 3-dimensional with sizes [180,91,10]. The record variance is VARY, the dimension variances are
[VARY,VARY ,VARY], and the data type is CDF_REALA4.

112

INCLUDE "<path>cdf. inc"

INTEGER*4 id
INTEGER*4 status
REAL*4 tmp(180,91,10)
INTEGER*4 indices(3)
INTEGER*4 var_n
INTEGER*4 rec_num
INTEGER*4 d1, d2, d3

CDF identifier.
Returned status code.
Temperature values.
Dimension indices.
zVariable number.
Record number.
Dimension index values.

var_n = CDF_get var_num (id, "Temperaturev)

IF (var_n .LT. 1) CALL UserStatusHandler (var_n) I If less than one (1),
I then it is actually a
I warning/error code.

rec_num = 13

DO d1 = 1, 180
indices(l) = di1
DO d2 = 1, 91
indices(2) = d2
DO d3 = 1, 10
indices(3) = d3
CALL CDF _get zvar_data (id, var_n, rec_num, indices, tmp(dl,d2,d3),

1 status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)
END DO
END DO
END DO

6.3.15 CDF_get_zvar_datatype

SUBROUTINE CDF_get_zvar_datatype (

in -- CDF identifier.
in -- zVariable number.
out -- Data type.

out -- Completion status

INTEGER*4 id, !
INTEGER*4 var_num, !
INTEGER*4 data_type, !
INTEGER*4 status) !
CDF_get_zvar_datatype is used to acquires the data type of the specified zVariable in a CDF. Refer to Section 4.5 for
the description of the CDF data types.

The arguments to CDF_get_zvar_datatype are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

113

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

data_type The data type of the variable data.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.15.1. Example(s)

The following example acquires the data type of zVariable “Temperature” in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status 1 Returned status code.
INTEGER*4 data_type I Data type.

CALL CDF _get zvar_datatype (id, CDF_get var_num (id, "Temperature-®),
1 data_type, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.16 CDF_get _zvar_dimsizes

SUBROUTINE CDF_get zvar_dimsizes (

in -- CDF identifier.

in -- zVariable number.
out -- Dimension sizes.
out -- Completion status

INTEGER*4 id, !
INTEGER*4 var_num, !
INTEGER*4 dim_sizes(*), !
INTEGER*4 status) !
CDF_get_zvar_dimsizes acquires the size of each dimension for the specified zVariable in a CDF. For 0-dimensional
zVariables, this operation is not applicable.

The arguments to CDF_get_zvar_dimsizes are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num zVariable number.

dim_sizes Dimension sizes.

status The completion status code. Chapter 8 explains how to interpret status codes.

114

6.3.16.1. Example(s)

The following example acquires the dimension sizes for zVariable “MY_VAR” in a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status I Returned status code.
INTEGER*4 dim_sizes(CDF_MAX_DIMS) I Dimension sizes.

CALL CDF_get_zvar_dimsizes (id, CDF_get_var_num(id, “MY_VAR?), dim_sizes,
1 status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.17 CDF_get_zvar_dimvariances

SUBROUTINE CDF_get_zvar_dimvariances (

in -- CDF identifier.

in -- zVariable number.
out -- Dimension variances.
out -- Completion status

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 dim_varys(*),

!
[
!
INTEGER*4 status) !

CDF_get_zvar_dimvariances acquires the dimension variances of the specified zVariable in a CDF. For 0-dimensional
zVariable, this operation is not applicable. Refer to Section 4.9 for the description of the CDF variable’s dimension
variances.

The arguments to CDF_get_zvar_dimvariances are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

dim_varys The dimension variances.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.17.1. Example(s)

The following example acquires the dimension variances for zVariable “Temperature” in a CDF.

115

INCLUDE *<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status 1 Returned status code.
INTEGER*4 dim_varys(CDF_MAX_DIMS)! Dimension variances.

CALL CDF _get zvar_dimvariances (id, CDF _get var _num (id, "Temperature®),
1 dim_varys, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.18 CDF_get_zvar_maxallocrecnum

SUBROUTINE CDF_get_zvar_maxallocrecnum (

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 rec_num,
INTEGER*4 status)

in -- CDF identifier.

in -- zVariable number.

out -- Maximum allocated record number.
out -- Completion status

!
!
!
!
CDF_get_zvar_maxallocrecnum acquires the maximum record number allocated for the specified zVariable in a CDF.
The arguments to CDF_get_zvar_maxallocrecnum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

rec_num The maximum record number allocated.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.18.1. Example(s)

The following example acquires the maximum record number allocated for zVariable “Temperature” in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id I CDF identifier.
INTEGER*4 status I Returned status code.
INTEGER*4 rec_num I Maximum allocated record number.

116

CALL CDF_get_zvar_maxallocrecnum (id, CDF_get var_num (id, "Temperature-®),
1 rec_num, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.19 CDF_get_zvar_maxwrittenrecnum

SUBROUTINE CDF_get_zvar_maxwrittenrecnum (

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 rec_num,
INTEGER*4 status)

in -- CDF identifier.

in -- zVariable number.

out -- Maximum written record number.
out -- Completion status

!
|
I
|
CDF_get_zvar_maxwrittenrecnum acquires the maximum record number written for the specified zVariable in a CDF.
The arguments to CDF_get_zvar_maxwrittenrecnum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

rec_num The maximum record number written.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.19.1. Example(s)

The following example acquires the maximum record number written for zVariable “Temperature” in a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 status I Returned status code.
INTEGER*4 rec_num I Maximum written record number.

CALL CDF_get_zvar_maxwrittenrecnum (id, CDF_get var_num (id, "Temperature-®),
1 rec_num, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

117

6.3.20 CDF_get_zvar_name

SUBROUTINE CDF_get_zvar_name (

in -- CDF identifier.
in -- zVariable number.
out -- zVariable name.
out -- Completion status

INTEGER*4 id,
INTEGER*4 var_num,
CHARACTER var_name*(*),

!
!
!
INTEGER*4 status) !

CDF_get_zvar_name acquires the name of the specified zVariable, by its number, in a CDF.

The arguments to CDF_get_zvar_name are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to

CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a

call to CDF_get_var_num (see Section 6.3.8).

var_name The name of the variable.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.20.1. Example(s)

The following example acquires the name of the zVariable, numbered 2 in the zVariable group, in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id

INTEGER*4 status

INTEGER*4 var_num

INTEGER*4 var_name*(CDF_VAR_NAME_LEN256)

rec_num = 2
CALL CDF_get_zvar_name (id, var_num, var_name,
IF (status _NE. CDF_OK) CALL UserStatusHandler

6.3.21 CDF_get_zvar_numdims

SUBROUTINE CDF_get_zvar_numdims (

118

CDF identifier.
Returned status code.
zVariable number.
zVariable name.

status)
(status)

INTEGER*4 id, 1in -- CDF identifier.
INTEGER*4 var_num, I'in -- zVariable number.
INTEGER*4 num_dims, I out -- Number of dimensions.
INTEGER*4 status) ! out -- Completion status

CDF_get_zvar_numdims acquires the number of dimensions for the specified zVariable in a CDF.

The arguments to CDF_get_zvar_numdims are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num zVariable number.

num_dims Number of dimensions.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.21.1. Example(s)

The following example acquires the number of dimensions for zVariable “MY_VAR” in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status 1 Returned status code.
INTEGER*4 num_dims I Dimension sizes.

CALL CDF _get _zvar_numdims (id, CDF_get var_num(id, “MY_VAR?), num_dims,
1 status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.22 CDF_get_zvar_numelems

SUBROUTINE CDF_get_zvar_numelems (

in -- CDF identifier.

in -- zVariable number.
out -- Number of elements.
out -- Completion status

INTEGER*4 id, !
INTEGER*4 var_num, !
INTEGER*4 num_elems, !
INTEGER*4 status) !
CDF_get_zvar_numelems acquires the number of elements for each data value of the specified zVariable in a CDF. For
character data type (CDF_CHAR and CDF_UCHAR), the number of elements is the number of characters in the string.
(Each value consists of the entire string.) For other data types, the number of elements will always be one (1).

119

The arguments to CDF_get_zvar_numelems are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

num_elems The number of elements.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.22.1. Example(s)

The following example acquires the number of elements for the data values for zVariable “Temperature” in a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 status I Returned status code.
INTEGER*4 num_elems I Number of elements.

CALL CDF_get_zvar_numelems (id, CDF_get var_num (id, "Temperature-®),
1 num_elems, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.23 CDF_get_zvar_numrecs_written

SUBROUTINE CDF_get_zvar_numrecs (

in -- CDF identifier.

in -- zVariable number.

out -- Number of written records.
out -- Completion status

INTEGER*4 id, !
INTEGER*4 var_num, !
INTEGER*4 num_records, !
INTEGER*4 status) !
CDF_get_zvar_numrecs_written acquires the number of records written for the specified zVariable in a CDF. This
number may not correspond to the maximum record written if the zVariable has sparse records.

The arguments to CDF_get _zvar_numrecs_written are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

120

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

num_records The number of written records.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.23.1. Example(s)

The following example acquires the number of written records for zVariable “Temperature” in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id I CDF identifier.
INTEGER*4 status I Returned status code.
INTEGER*4 num_records I Number of written records.

CALL CDF _get _zvar_numrecs_written (id, CDF _get var_num (id, "Temperature®),
1 num_records, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.24 CDF_get_zvar_padvalue

SUBROUTINE CDF_get zvar_padvalue (

INTEGER*4 id, 1in -- CDF identifier.
INTEGER*4 var_num, I'in -- zVariable number.
<type> pad_value, ! out -- Pad value.
INTEGER*4 status) ! out -- Completion status

CDF_get_zvar_padvalue acquires the pad value of the specified zVariable in a CDF. If a pad value has not been
explicitly specified for the zVariable through CDF_set_zvar_padvalue or something similar from the Internal Interface
function, the informational status code NO_PADVALUE_SPECIFIED will be returned and the default pad value for
the variable’s data type will be placed in the pad value buffer provided.

The arguments to CDF_get zvar_padvalue are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

pad_value The pad value.

121

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.24.1. Example(s)

The following example acquires acquire the pad value from zVariable “MY_VAR”, a CDF_INT4 type variable in a

CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id
INTEGER*4 status
INTEGER*4 pad_value

1 CDF identifier.
I Returned status code.
1 Pad value.

CALL CDF_get_zvar_padvalue (id, CDF_get var_num (id, *MY_VAR"),

1

pad_value, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.25 CDF_get_zvar_recorddata

SUBROUTINE CDF_get_zvar_recorddata (

INTEGER*4 id, !
INTEGER*4 var_num, !
INTEGER*4 rec_num, !
<type> buffer, !
INTEGER*4 status) !

in -- CDF identifier.
in -- zVariable number.
in -- Record number.
out -- Record data buffer.
out -- Completion status

CDF_get_zvar_recorddata acquires an entire record at a given record number for the specified zVariable in a CDF.
The buffer should be large enough to hold the entire data values for the variable. The retrieved data values in the buffer
are in the order that corresponds to the variable majority defined for the CDF.

The arguments to CDF_get_zvar_recorddata are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

rec_num The record number of the zVariable from which to read.
buffer The record buffer to hold the data values from an entire record.
status The completion status code. Chapter 8 explains how to interpret status codes.

122

6.3.25.1. Example(s)

The following example acquires an entire record, at numbered 5, for zVariable “MY_VAR?”, a 2-dimensional variable
(2 by 3) of CDF_INT4 data type, in a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 status I Returned status code.
INTEGER*4 buffer(2,3) I Record buffer.

CALL CDF _get zvar_recorddata (id, CDF_get var_num (id, "MY_VAR"), 5,
1 buffer, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.26 CDF_get_zvar_recvariance

SUBROUTINE CDF_get_zvar_recvariance (

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 rec_vary,
INTEGER*4 status)

in -- CDF identifier.
in -- zVariable number.
out -- Record variance.

!
!
!
! out -- Completion status

CDF_get_zvar_recvariance acquires the record variance of the specified zVariable in a CDF. Refer to Section 4.9 for
the description of the CDF variable’s record variance.

The arguments to CDF_get_zvar_recvariance are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

rec_vary The record variance.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.26.1. Example(s)

The following example acquires the record variance for zVariable “Temperature” in a CDF.

123

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 status I Returned status code.
INTEGER*4 rec_vary I Record variance.

CALL CDF_get zvar_recvariance (id, CDF_get var _num (id, "Temperature®),
1 rec_vary, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.27 CDF_get_zvar_reservepercent

SUBROUTINE CDF_get_zvar_reservepercent (

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 res_percent,
INTEGER*4 status)

in -- CDF identifier.
in -- zVariable number.
out -- Reserve percentage.

!
!
!
! out -- Completion status

CDF_get_zvar_reservepercent acquires the reserve percentage being used for the specified zVariable in a CDF. This
operation only applies to compressed zVariables. Refer to the CDF User’s Guide for the description of the reserve
scheme used by the CDF library.

The arguments to CDF_get_zvar_reservepercent are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

res_percent The reserve percentage.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.27.1. Example(s)

The following example acquires the reserve percentage for the compressed zVariable “Temperature” in a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id ! CDF identifier.

124

INTEGER*4 status I Returned status code.

INTEGER*4

res_percent 1 Reserve percentage.

CALL CDF _get_zvar_reservepercent (id, CDF_get var_num (id, "Temperature-®),

1

res_percent, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.28

CDF_get zvar_segdata

SUBROUTINE CDF_get_zvar_seqdata (

INTEGER*4 id,

<type> value,

in -- CDF identifier.

out -- Data value.

!

INTEGER*4 var_num, Iin -- zVariable number.
1
!

INTEGER*4 status)

out -- Completion status

CDF_get_zvar_seqdata reads one data value at the current sequential value for the specified zVariable in a CDF. After
the read, the current sequential value is automatically incremented to the next value. An error is returned if the current
sequential value is past the last record of the zVariable. Use CDF _set zvar seqpos and CDF _get zvar_seqpos
subroutine calls to set and get the current sequential value (position) for the variable.

The arguments to CDF_get_zvar_seqdata are defined as follows:

id

var_num
value

status

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

The zVariable number.
The data value buffer.

The completion status code. Chapter 8 explains how to interpret status codes.

6.3.28.1. Example(s)

The following example reads two data values from the beginning of record (numbered 2) from a zVariable, a 2-
dimensional CDF_INT4 type variable, in a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id I CDF identifier.
status I Returned status code.
var_num I Variable number.
valuel, value2 I Variable data values.
rec_num 1 Record number.
indices(2) I Dimension indices.

125

rec_num = 2

indices(1l) = 0

indices(2) = 0

CALL CDF_set_zvar_segpos (id, var_num, rec_num, indices, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

CALL CDF_get_zvar_seqdata (id, var_num, valuel, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)
CALL CDF_get zvar_seqdata (id, var_num, value2, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.29 CDF_get_zvar_seqpos

SUBROUTINE CDF_get _zvar_seqpos (

INTEGER*4 id, in -- CDF identifier.
INTEGER*4 var_num, in -- zVariable number.

|

!
INTEGER*4 rec_num, ! out -- Record number.
INTEGER*4 indices(*), ! out -- Indices in a record.
INTEGER*4 status) ! out -- Completion status
CDF_get_zvar_seqpos acquires the current sequential value (position) for sequential access for the specified zVariable
in a CDF. Note that a current sequential value is maintained for each zVariable individually. Use
CDF_get_zvar_seqdata subroutine to get the data value.

The arguments to CDF_get_zvar_seqpos are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The zVariable number.

rec_num The record number.

Indices The dimension indices. Each element of indices receives the corresponding dimension

index. For 0-dimensional zVariable, this argument is ignored, but must be presented.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.29.1. Example(s)

The following example inquires the location for the current sequential value, the record number and indices within it,
from a 2-dimensional zVariable “MY_VAR” in a CDF.

INCLUDE "<path>cdf.inc"

126

INTEGER*4 id ! CDF identifier.

INTEGER*4 status I Returned status code.
INTEGER*4 rec_num I Record number.
INTEGER*4 indices(2) I Dimension indices.

CALL CDF_get zvar_seqgpos (id, CDF_get var_num(id, “MY_VAR”), rec_num,
1 indices, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.30 CDF_get_zvars_maxwrittenrecnum

SUBROUTINE CDF_get_zvars_maxwrittenrecnum (

INTEGER*4 id, !in -- CDF identifier.
INTEGER*4 rec_num, I out -- Maximum record number.
INTEGER*4 status) ! out -- Completion status

CDF_get_zvars_maxwrittenrecnum acquires the maximum written record number among all of the zVariables in a
CDF. A value of zero (0) indicates that zVariables contain no records. The maximum record number for an individual
zVariable may be acquired using the CDF_get_zvar_maxwrittenrecnum function call.

The arguments to CDF_get zvars_maxwrittenrecnum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

rec_num The maximum record number among all zVariables.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.30.1. Example(s)

The following example acquires the maximum written record number among all zVariables in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 status 1 Returned status code.
INTEGER*4 rec_num 1 Record number.

CALL CDF_get zvars_maxwrittenrecnum (id, rec_num, status)

127

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.31 CDF_get_zvar_sparserecords

SUBROUTINE CDF_get_zvar_sparserecords (

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 srecords_type,
INTEGER*4 status)

!'in -- CDF identifier.

1'in -- zVariable number.

! out -- Sparse records type.

! out -- Completion status

CDF_get_zvar_sparserecords acquires the sparse records type of the specified zVariable in a CDF. Refer to Section
4.11 for the description of the sparse records.

The arguments to CDF_get_zvar_sparserecords are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num zVariable number.

srecords_type Sparse records type.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.31.1. Example(s)

The following example inquires the sparse records type for zVariable ‘MY_VAR” in a CDF.

INCLUDE *<path>cdf. inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 srecords_type I Sparse records type.
INTEGER*4 num_dims I Dimension sizes.

CALL CDF_get_zvar_sparserecrods (id, CDF_get var_num(id, “MY_VAR™),
1 srecords_type, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

128

6.3.32 CDF_get _zvars_recorddata

SUBROUTINE CDF_get zvars_recorddata(

INTEGER*4 id, I'in -- CDF identifier.

INTEGER*4 num_var, Iin -- Number of zVariables.

INTEGER*4 var_nums(*), Iin -- zVariable numbers.

INTEGER*4 rec_num, I'in -- Record number.

<type> buffer, I out -- First variable buffer in a common block (<type> depends
! on the data type of the zVariable).

INTEGER*4 status ! out -- Completion status.

CDF_get_zvars_recorddata is used to read a full record data at a specific record number for a selected group of

zVariables in a CDF. It expects that the data buffer for each zVariable is big enough to hold a full physical record® data

and properly put in a common block. No space is needed for each zVariable's non-variant dimensional elements.

Retrieved record data from the variable group is filled into respective zVariable's buffer.

The arguments to CDF_get_zvars_recorddata are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
Cdf_open or a similar CDF creation or opening functionality from the Internal Interface.

num_vars The number of the zVariables in the group involved this read operation.

var_nums The numbers of the zVariables involved for which to read a whole record data.

rec_num The record number at which to read the whole record data for the group of zVariables.
buffer The first variable buffer to read in a common block. The number of buffers should match to

the num_var argument. Each buffer should hold a full physical record data.

6.3.32.1. Example(s)

The following example will read an entire single record data for a group of zVariables. The zVariables involved in the
read are Time, Longitude, Delta, Temperature and NAME. The record to read is 4. Since Temperature is 0-
dimensional with CDF_FLOAT data type, a scalar variable of REAL*4 is allocated. For Longitude, a 1-dimensional
array of INTEGER*2 (size [3]) is given for its dimension variance [VARY] and data type CDF_INT2. Similar data
variables are provided for Longitude and Time. They both are 2-dimensional array of INTEGER*4 (sizes [3,2]) for
their dimension variances [VARY,VARY] and data type either CDF_INT4 or CDF_UINT4. For NAME, a 1-
dimensional array of CHARACTER*10 (size [2]) is allocated due to its [VARY] dimension variance and CDF_CHAR
data type with the number of element 10.

INCLUDE '<path>cdf.inc'

INTEGER*4 id | CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 num_var I Number of zVariables.
INTEGER*4 var_nums(5) ! zVariable numbers in CDF.
INTEGER*4 rec_num ! Record number to write.

¥ Physical record is explained in the Primer chapter in the CDF User's Guide.

129

INTEGER*4 time(3,2) ! Datatype: UINTA4.
! Rec/dim variances: T/TT.

INTEGER*4 delta(3,2) ! Datatype: INT4 .

! Rec/dim variances: T/TT.
INTEGER*2 longitude(3) ! Datatype: INT2.

! Rec/dim variances: T/T.
REAL*4 temperature I Datatype: FLOAT.

! Rec/dim variances: T/.
CHARACTER*10 name(2) ! Datatype: CHAR/10.

! Rec/dim variances: T/T.
COMMON /BLK/delta, time, temperature, longitude, name

num_var =5 I Number of zVariables
rec num=4 I Record number to read

status = CDF_LIB (GET_, zZVAR_NUMBER _, 'Delta’, var_nums(1),
1 NULL _, status) ! zVariable number
IF (var_nums(1) .LT. 1) 1 If less than one (1),
x CALL UserStatusHandler (var_nums(1)) ! then it is actually a
! warning/error code.

status = CDF_LIB (GET_, zVAR_NUMBER_, 'Time', var_nums(2),
1 NULL _, status)
IF (var_nums(2) .LT. 1) CALL UserStatusHandler (var_nums(2))

status = CDF_LIB (GET_, zZVAR_NUMBER_, 'Longitude’, var_nums(3),
1 NULL _, status)
IF (var_nums(3) .LT. 1) CALL UserStatusHandler (var_nums(3))

status = CDF_LIB (GET_, zZVAR_NUMBER _, "Temperature', var_nums(4),
1 NULL _, status)
IF (var_nums(4) .LT. 1) CALL UserStatusHandler (var_nums(4))

status = CDF_LIB (GET_, zVAR_NUMBER_, 'NAME', var_nums(5),
1 NULL _, status)
IF (var_nums(5) .LT. 1) CALL UserStatusHandler (var_nums(5))

CALL CDF_get_zvars_recorddata (id, num_var, var_nums, rec_num,
1 time, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

Note that the ordering of the variable data buffer in the COMMON block BLK is very important. Always arrange data
buffer in the order in such way that the variables with the bigger data types come in front of the variables with the
smaller data types. They should be in this ordering: 8-byte, 4-byte, 2-byte, and 1-byte. Unexpected results may return if
such ordering is not followed. This function can be a replacement for the similar functionality provided from the

Internal Interface as <GET _, zZVARs _RECDATA >.

6.3.33 CDF_hyper_get zvar_data

130

SUBROUTINE CDF_hyper_get _zvar_data (

INTEGER*4 id,

|
INTEGER*4 var_num, !
INTEGER*4 rec_start, !
INTEGER*4 rec_count, !
INTEGER*4 rec_interval, I in -- Subsampling interval between records.
INTEGER*4 indices(*), !
INTEGER*4 counts(*), !
INTEGER*4 intervals(*), !
<type> buffer, !
INTEGER*4 status) !

in -- CDF identifier.

in -- zVariable number.

in -- Starting record number.
in -- Number of records.

in -- Dimension indices of starting value.

in -- Number of values along each dimension.

in -- Subsampling intervals along each dimension.

in -- Buffer of values (<type> is dependent on the data type of the zZVariable).
out -- Completion status

CDF_hyper_get_zvar_data is used to read a buffer of one or more values from a zVariable. It is important to know the
variable majority of the CDF before using CDF_hyper_get_zvar_data because the values placed into the buffer will be
in that majority. CDF_inquire can be used to determine the default variable majority of a CDF distribution. The
Concepts chapter in the CDF User's Guide describes the variable majorities.

The arguments to CDF_hyper_get zvar_data are defined as follows:

id

var_num

rec_start
rec_count

rec_interval

indices

counts

intervals

buffer

status

The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf
or CDF_open_cdf.

The number of the zVariable from which to read. This number may be determined with a call to
CDF_get_var_num (see Section 6.3.8).

The record number at which to start reading.
The number of records to read.

The interval between records for subsampling (e.g., an interval of 2 means read every other
record).

The indices (within each record) at which to start reading. Each element of indices specifies the
corresponding dimension index. If there are zero (0) dimensions, this argument is ignored (but
must be present).

The number of values along each dimension to read. Each element of counts specifies the
corresponding dimension count. For 0-dimensional zVariables this argument is ignored (but
must be present).

For each dimension, the interval between values for subsampling (e.g., an interval of 2 means
read every other value). Each element of intervals specifies the corresponding dimension
interval. For O-dimensional zVariables, this argument is ignored (but must be present).

The buffer of values read. The majority of the values in this buffer will be the same as that of the
CDF. This buffer must be large to hold the values. CDF _var_inquire would be used to
determine the zVariable's data type and number of elements (of that data type) at each value.
The values are read from the CDF and placed into memory starting at address buffer.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the zVariable does not
have one of the character data types, then value must NOT be a CHARACTER Fortran variable.

The completion status code. Chapter 8 explains how to interpret status codes.

131

6.3.33.1. Example(s)

The following example reads an entire record of data from zVariable “Temperature” in a CDF. This zVariable is 3-
dimensional with sizes [180,91,10] and CDF’s variable majority is ROW_MAJOR. The record variance is VARY, the
dimension variances are [VARY,VARY,VARY], and the data type is CDF_REAL4. This example is similar to the
example in Section 6.3.33 except that it uses a single call to CDF_hyper_get_zvar_data rather than numerous calls to
CDF_get_zvar_data.

INCLUDE "<path>cdf.inc*

INTEGER*4 id

INTEGER*4 status
REAL*4 tmp(180,91,10)
INTEGER*4 var_n
INTEGER*4 rec_start
INTEGER*4 rec_count
INTEGER*4 rec_interval

CDF identifier.
Returned status code.
Temperature values.
rVariable number.
Record number.

Record counts.

Record interval.

INTEGER*4 indices(3) I Dimension indices.
INTEGER*4 counts(3) I Dimension counts.
INTEGER*4 intervals(3) I Dimension intervals.

DATA rec_start/13/, rec_count/l1/, rec_interval/l/,
1 indices/1,1,1/, counts/180,91,10/, intervals/1,1,1/

var_n = CDF_get _var_num (id, "Temperature®)

IF (var_n .LT. 1) CALL UserStatusHandler (var_n) ! If less than one (1),
I then it is actually a
I warning/error code.

CALL CDF_hyper_get _zvar _data (id, var_n, rec_start, rec_count, rec_interval,
1 indices, counts, intervals, tmp, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

Note that if the CDF's variable majority had been ROW_MAJOR, the tmp array would have been declared REAL*4
tmp[10][91][180] for proper indexing.

6.3.34 CDF_hyper_put_zvar_data

SUBROUTINE CDF_hyper_put_zvar_data (

INTEGER*4 id, 1in -- CDF identifier.

INTEGER*4 var_num, I'in -- zVariable number.

INTEGER*4 rec_start, ! in -- Starting record number.

INTEGER*4 rec_count, 1in -- Number of records.

INTEGER*4 rec_interval, I'in -- Interval between records.
1

5.
1
1

INTEGER*4 indices(*), Dimension indices of starting value.

132

INTEGER*4 counts(*),

<type> buffer,

I'in -- Number of values along each dimension.

I in -- Buffer of values (<type> is dependent on the data type of the zVariable).

]

INTEGER*4 intervals(*), 1in -- Interval between values along each dimension.
|
]

INTEGER*4 status)

! out -- Completion status

CDF_hyper_put_zvar_data is used to write a buffer of one or more values to a zVariable. It is important to know the

variable majority of the

CDF before using CDF_hyper_put_zvar_data because the values in the buffer to be written

must be in the same majority. CDF inquire can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

The arguments to CDF_hyper_put_zvar_data are defined as follows:

id

var_num

rec_start
rec_count

rec_interval

indices

counts

intervals

buffer

status

6.3.34.1.

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

The number of the zVariable to which to write. This number may be determined with a call to
CDF_get_var_num (see Section 6.3.8).

The record number at which to start writing.
The number of records to write.

The interval between records for subsampling® (e.g., An interval of 2 means write to every
other record).

The indices (within each record) at which to start writing. Each element of indices specifies
the corresponding dimension index. If there are zero (0) dimensions, this argument is ignored
(but must be present).

The number of values along each dimension to write. Each element of count specifies the
corresponding dimension count. For O-dimensional zVariables this argument is ignored (but
must be present).

For each dimension the interval between values for subsampling® (e.g., an interval of 2 means
write to every other value). intervals is a 1-dimensional array containing one element per
zVariable dimension. Each element of intervals specifies the corresponding dimension
interval. For O-dimensional zVariables this argument is ignored (but a place holder is
necessary).

The buffer of values to write. The majority of the values in this buffer must be the same as
that of the CDF. The values starting at memory address buffer are written to the CDF.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry does not
have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

49

Subsampling" is not the best term to use when writing data, but you should know what we mean.

® Again, not the best term.

133

The following example writes values to the zVariable LATITUDE of a CDF. This zVariable is 2-dimensional with
dimension sizes [360,181]. The record variance is NOVARY, the dimension variances are [NOVARY,VARY], and the
data type is CDF_INT2. This example is similar to the example in Section 6.3.34

except that it uses a single call to CDF_hyper_put_zvar_data rather than numerous calls to CDF_put_zvar_data

iNCLUDE "<path>cdf.inc"

INTEGER*4

id I CDF identifier.
INTEGER*4 status I Returned status code.
INTEGER*2 lat I Latitude value.
INTEGER*2 lats(181) 1 Buffer of latitude values.
INTEGER*4 var_n 1 zVariable number.
INTEGER*4 rec_start I Record number.
INTEGER*4 rec_count I Record counts.
INTEGER*4 rec_interval I Record interval.
INTEGER*4 indices(2) I Dimension indices.
INTEGER*4 counts(2) I Dimension counts.
INTEGER*4 intervals(2) I Dimension intervals.

DATA rec_start/1/, rec _count/1/, rec_interval/l/,
1 indices/1,1/, counts/1,181/, intervals/1,1/

var_n = CDF_get var_num (id, "LATITUDE")
IF (var_n .LT. 1) CALL UserStatusHandler (var_n)

DO lat = -90, 90
lats(91+lat) = lat
END DO

IT less than one (1),
then not a zVariable
number but rather a
warning/error code

CALL CDF_hyper_put_zvar _data (id, var_n, rec_start, rec_count, rec_interval,

1 indices, counts,

intervals,

lats, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.35 CDF _inquire_zvar

SUBROUTINE CDF_inquire_zvar (

INTEGER*4 id, !'in -- CDF identifier.

INTEGER*4 var_num, I'in -- zVariable number.

CHARACTER var_name*(CDF_VAR_NAME_LEN256), ! out-- zVariable name.

INTEGER*4 data_type, ! out -- Data type.

INTEGER*4 num_elements, ! out -- Number of elements (of the data type).
INTEGER*4 num_dims, ! out-- Number of dimensions.

INTEGER*4 dim_sizes(CDF_MAX_DIMS), ! out -- Dimension sizes.

INTEGER*4 rec_variance,

134

! out -- Record variance.

INTEGER*4 dim_variances(CDF_MAX_DIMS), ! out -- Dimension variances.
INTEGER*4 status)

! out -- Completion status

CDF_inquire_zvar is used to inquire about the specified zVariable. This subroutine would normally be used before
reading zVariable values (with CDF_get_zvar_data or CDF_hyper_get zvar_data) to determine the data type and
number of elements (of that data type).

The arguments to CDF _inquire_zvar are defined as follows:

id

var_num

var_name

data_type

num_elements

num_dims

dim_sizes

rec_variance

dim_variances

status

6.3.35.1.

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open.

The number of the zVariable to inquire. This number may be determined with a call to
CDF_get_var_num (see Section 6.3.8).

The zVariable's name. This character string must be large enough to hold
CDF_VAR_NAME_LEN256 characters and will be blank padded if necessary.

The data type of the zVariable. The data types are defined in Section 4.5.

The number of elements of the data type at each zVariable value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The number of dimensions.

The dimension sizes. It is a 1-dimensional array, containing one element per dimension.
Each element of dimSizes receives the corresponding dimension size. For 0-dimensional
zVariable this argument is ignored (but must be present).

The record variance. The record variances are defined in Section 4.9.

The dimension variances. Each element of dim_variances receives the corresponding
dimension variance. The dimension variances are defined in Section 4.9. For O-

dimensional zVariable this argument is ignored (but must be present).

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example inquires about a zVariable named HEAT _FLUX in a CDF. Note that the zVariable name
returned by CDF_inquire_zvar will be the same as that passed in to CDF_get_var_num.

INCLUDE "<path>cdf.inc*

INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4

id I CDF identifier.

status I Returned status code.
var_name*(CDF_VAR_NAME_LEN256) I zvariable name.

data_type I Data type.

num_elems I Number of elements (of data type).
rec_vary I Record variance.

135

INTEGER*4 dim_varys(CDF_MAX_DIMS) I Dimension variances (allocate to
I allow the maximum number of
I dimensions).
INTEGER*4 num_dims I Number of dimensions.
INTEGER*4 dim_sizes(CDF_MAX_DIMS) I Dimension sizes (allocate to
I allow the maximum number of
I dimensions).

CALL CDF_inquire_zvar (id, CDF_get_var_num(id, "HEAT_FLUX"), var_name,

1
2

data_type, num_elems, rec vary, dim_varys,
num_dims, dim_sizes, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.36

CDF_put_zvar_data

SUBROUTINE CDF_put_zvar_data (

INTEGER*4 i
INTEGER*4 var_num,

INTEGER*4
INTEGER*4
<type>

INTEGER*4

status)

in -- Value (<type> is dependent on the data type of the zVariable).
out -- Completion status

I in -- CDF identifier.
I'in -- zVariable number.
I'in -- Record number.

! in -- Dimension indices.
!

!

CDF_put_zvar_data is used to write a single value for a zVariable. CDF_hyper_put_zvar_data may be used to write
more than one zVariable values with a single call (see Section 6.3.34).

The arguments to CDF_put_zvar_data are defined as follows:

id

var_num

rec_num

indices

value

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

The number of the zVariable to which to write. This number may be determined with a call
to CDF_get_var_num (see Section 6.3.8).

The record number at which to write.

The array indices within the specified record at which to write. Each element of indices
specifies the corresponding dimension index. For O-dimensional zVariables this argument is
ignored (but must be present).

The value to write. This buffer must be large enough to hold the value. CDF_inquire_zvar
would be used to determine the zVariable's data type and number of elements (of that data
type) at each value. The value is written to the CDF.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the zVariable does
not have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

136

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.36.1. Example(s)

The following example writes an entire record of data to zVariable “Temperature”. This zVariable is 3-dimensional
with sizes [180,91,10]. The record variance is VARY, the dimension variances are [VARY,VARY,VARY], and the
data type is CDF_REALA4.

INCLUDE "<path>cdf.inc"

INTEGER*4 id
INTEGER*4 status
REAL*4 tmp(180,91,10)
INTEGER*4 indices(3)
INTEGER*4 var_n
INTEGER*4 rec_num
INTEGER*4 d1, d2, d3

CDF identifier.
Returned status code.
Temperature values.
Dimension indices.
zVariable number.
Record number.
Dimension index values.

var_n = CDF_get var_num (id, "Temperature®)

IF (var_n .LT. 1) CALL UserStatusHandler (var_n) I If less than one (1),
I then it is actually a
I warning/error code.

rec_num = 13

. Filled tmp array

DO d1 = 1, 180
indices(l) = d1
DO d2 =1, 91
indices(2) = d2
DO d3 = 1, 10
indices(3) = d3
CALL CDF_put_zvar_data (id, var_n, rec_num, indices, tmp(dl,d2,d3),
1 status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)
END DO
END DO
END DO

6.3.37 CDF_put_zvar_recorddata

SUBROUTINE CDF_put_zvar_recorddata (

INTEGER*4 id, 1in -- CDF identifier.
INTEGER*4 var_num, I'in -- zVariable number.

137

INTEGER*4 rec_num, I'in -- Record number.
<type> buffer, I'in -- Record data buffer.
INTEGER*4 status) ! out -- Completion status

CDF_put_zvar_recorddata writes an entire record at a given record number for the specified zVariable in a CDF. The
buffer should be large enough to hold the entire data values for the variable. The written data values in the buffer are in
the order that corresponds to the variable majority defined for the CDF.

The arguments to CDF_put_zvar_recorddata are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable to which to write. This number may be determined with a call
to CDF_get_var_num (see Section 6.3.8).

rec_num The record number of the zVariable to which to write.
buffer The record buffer to hold the data values for an entire record.
status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.37.1. Example(s)

The following example writes an entire record (numbered 5) for zVariable “MY_VAR?”, a 2-dimensional variable (2 by
3) of CDF_INT4 data type, in a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 status 1 Returned status code.
INTEGER*4 buffer(2,3) I Record buffer.

. Fill buffer array

CALL CDF_put_zvar_recorddata (id, CDF_get var_num (id, "MY_VAR"), 5,
1 buffer, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.38 CDF_put_zvar_segdata

SUBROUTINE CDF_put_zvar_seqdata (

INTEGER*4 id, !in -- CDF identifier.
INTEGER*4 var_num, Iin -- zVariable number.
<type> value, I in -- Data value.
INTEGER*4 status) ! out -- Completion status

138

CDF_put_zvar_seqdata writes one data value at the current sequential value for the specified zVariable in a CDF.
After the read, the current sequential value is automatically incremented to the next value. An error is returned if the
current sequential value is past the last record of the zVariable. Use CDF_get zvar_seqpos and CDF_set_zvar_seqpos
subroutine calls to get and set the current sequential value (position) for the variable.

The arguments to CDF_put_zvar_seqdata are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The zVariable number.

value The data value.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.38.1. Example(s)

The following example writes two data values from the beginning of record (numbered 2) to a zVariable, a 2-
dimensional CDF_INT4 type variable, in a CDF.

INCLUDE *<path>cdf.inc"

CDF identifier.
Returned status code.
Variable number.
Variable data values.
Record number.
Dimension indices.

INTEGER*4 id

INTEGER*4 status
INTEGER*4 var_num
INTEGER*4 valuel, value2
INTEGER*4 rec_num
INTEGER*4 indices(2)

rec_num = 2

indices(1l) = 0

indices(2) = 0

CALL CDF_set _zvar_segpos (id, var_num, rec_num, indices, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)
valuel = 10

value2 = 20

CALL CDF _put_zvar_seqdata (id, var_num, valuel, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)
CALL CDF_put_zvar_seqdata (id, var_num, value2, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.39 CDF_put_zvars_recorddata

139

SUBROUTINE CDF_put_zvars_recorddata(

INTEGER*4 id, I'in -- CDF identifier.

INTEGER*4 num_var, I in -- Number of zVariables.

INTEGER*4 var_nums(*), I'in -- zVariable numbers.

INTEGER*4 rec_num, I in -- Record number.

<type> buffer, I in -- First variable buffer in a common block (<type> depends
! on the data type of the zVariable).

INTEGER*4 status) ! out -- Completion status.

CDF_put_zvars_recorddata is used to write a full record data at a specific record number for a selected group of

zVariables in a CDF. It expects that the data buffer for each zVariable is big enough to contain a full physical record

data and properly put in a common block. No space is expected for each zVariable's non-variant dimensional elements.

Record data from each buffer is written to its respective zVariable.

The arguments to CDF_put_zvars_recorddata are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
Cdf_open or a similar CDF creation or opening functionality from the Internal Interface.

num_vars The number of the zVariables in the group involved this write operation.

var_nums The numbers of the zVariables involved for which to write a whole record data.

rec_num The record number at which to write the whole record data for the group of zVariables.
buffer The first variable buffer to write in a common block. The number of buffers should match to

the num_var argument. Each buffer should hold a full physical record data.

6.3.39.1. Example(s)

The following example will write an entire single record data for a group of zZVariables. The zVariables involved in the
write are Time, Longitude, Delta, Temperature and NAME. The record to write is 4. Since Temperature is 0-
dimensional with CDF_FLOAT data type, a scalar variable of REAL*4 is allocated. For Longitude, a 1-dimensional
array of INTEGER*2 (size [3]) is given for its dimension variance [VARY] and data type CDF_INT2. Similar data
variables are provided for Longitude and Time. They both are 2-dimensional array of INTEGER*4 (sizes [3,2]) for
their dimension variances [VARY,VARY] and data type either CDF_INT4 or CDF_UINT4. For NAME, a 1-
dimensional array of CHARACTER*10 (size [2]) is allocated due to its [VARY] dimension variance and CDF_CHAR
data type with the number of element 10.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.
INTEGER*4 num_var ! Number of zVariables.
INTEGER*4 var_nums(5) ! zVariable numbers in CDF.
INTEGER*4 rec_num ! Record number to write.
INTEGER*4 time(3,2) ! Datatype: UINTA4.

1 /10, 20, ! Rec/dim variances: T/TT.
2 30, 40,

3 50, 60/

INTEGER*4 delta(3,2) ! Datatype: INT4 .

140

1 1, 2, I Rec/dim variances: T/TT.

2 5,6,

3 9, 10/

INTEGER*2 longitude(3) ! Datatype: INT2.

1 /10, 20, 30/ I Rec/dim variances: T/T.
REAL*4 temperature I Datatype: FLOAT.

1 /1234.56/ ! Rec/dim variances: T/.
CHARACTER*10 name(2) ! Datatype: CHAR/10.

1 ['ABCDEFGHIJ', ! Rec/dim variances: T/T.
2 '12345678'/

COMMON /BLK/delta, time, temperature, longitude, name

num_var =5 I Number of zVariables
rec num=4 I Record number to write

status = CDF_LIB (GET_, zZVAR_NUMBER _, 'Delta’, var_nums(1),
1 NULL _, status) ! zVariable number
IF (var_nums(1) .LT. 1) 1 If less than one (1),
x CALL UserStatusHandler (var_nums(1)) ! then it is actually a
! warning/error code.

status = CDF_LIB (GET_, zVAR_NUMBER_, 'Time', var_nums(2),
1 NULL _, status)
IF (var_nums(2) .LT. 1) CALL UserStatusHandler (var_nums(2))

status = CDF_LIB (GET_, zZVAR_NUMBER_, 'Longitude’, var_nums(3),
1 NULL _, status)
IF (var_nums(3) .LT. 1) CALL UserStatusHandler (var_nums(3))

status = CDF_LIB (GET_, zZVAR_NUMBER _, "Temperature', var_nums(4),
1 NULL _, status)
IF (var_nums(4) .LT. 1) CALL UserStatusHandler (var_nums(4))

status = CDF_LIB (GET_, zVAR_NUMBER_, 'NAME', var_nums(5),
1 NULL_, status)
IF (var_nums(5) .LT. 1) CALL UserStatusHandler (var_nums(5))

CALL CDF_put_zvars_recorddata (id, num_var, var_nums, rec_num,
1 time, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

Note that the ordering of the variable data buffer in the COMMON block BLK is very important. Always arrange data
buffer in the order in such way that the variables with the bigger data types come in front of the variables with the
smaller data types. They should be in this ordering: 8-byte, 4-byte, 2-byte, and 1-byte. Unexpected results may return if
such ordering is not followed. This function can be a replacement for the similar functionality provided from the

Internal Interface as <PUT _, zZVARs_RECDATA >.

141

6.3.40 CDF_rename_zvar

SUBROUTINE CDF_rename_zvar (

INTEGER*4 id, 1in -- CDF identifier.
INTEGER*4 var_num, I'in -- zVariable number.
CHARACTER var_name*(*), I'in -- New name.
INTEGER*4 status) ! out -- Completion status

CDF_rename_zvar is used to rename an existing zVariable. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDF_rename_zvar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable to rename. This number may be determined with a call to
CDF_get_var_num (see Section 6.3.8).

var_name The new zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.
Variable names are case-sensitive.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.40.1. Example(s)

In the following example the zVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDF_get_var_num returns a value less than one (1) then that value is not a zVariable number but rather a warning/error
code.

INCLUDE *<path>cdf.inc"

INTEGER*4 id I CDF identifier.
INTEGER*4 status 1 Returned status code.
INTEGER*4 var_num 1 zVariable number.

var_num = CDF_get var_num (id, "TEMPERATURE")
IF (var_num .LT. 1) THEN
IF (var_num _NE. NO_SUCH_VAR) CALL UserStatusHandler (var_num)
ELSE
CALL CDF_rename_zvar (id, var_num, "TMP", status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)
END IF

142

6.3.41 CDF_set_zvar_allocblockrecs

SUBROUTINE CDF _set_zvar_allocblockrecs (

INTEGER*4 id, ! in-- CDF identifier.

INTEGER*4 var_num, ! in -- zZVariable number.

INTEGER*4 first_rec, ! in -- First record number to allocate.

INTEGER*4 last_rec, ! in -- Last record number to allocate.

INTEGER*4 status) ! out -- Completion status

CDF_set_zvar_allocblockrecs specifies a range records to allocate for the specified zVariable in a CDF. This operation
is only applicable to uncompressed variables in single-file CDFs. Refer to the CDF User’s Guide for the description of
allocations of variable records.

The arguments to CDF_set_zvar_allocblockrecs are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

var_num The zVariable number.
first rec The first record number to allocate.
last_rec The last record number to allocate.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.41.1. Example(s)

The following example allocates 100 records, from record number 21 to 120, for zVariable “MY_VAR” in a CDF.

INCLUDE *<path>cdf. inc"

CDF identifier.

Starting record number to allocate.
Ending record number to allocate.
Returned status code.

INTEGER*4 id
INTEGER*4 first_rec
INTEGER*4 last_rec
INTEGER*4 status

first rec = 21

last _rec = 120

CALL CDF_set_zvar_allocblockrecs (id, CDF _get var_ num(id, “MY_VAR?),
1 first_rec, last rec, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

143

6.3.42 CDF_set_zvar_allocrecs

SUBROUTINE CDF _set_zvar_allocrecs (

in -- CDF identifier.

in -- zVariable number.

in -- Number of allocated records.
out -- Completion status

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 num_recs,

!
!
!
INTEGER*4 status) !

CDF_set_zvar_allocrecs specifies the number of records allocated for the specified zVariable in a CDF. The records
are allocated beginning at record number one (1). This operation is only applicable to uncompressed variables in single-
file CDFs. Refer to the CDF User’s Guide for the description of allocating variable records in a single-file CDF.

The arguments to CDF_set_zvar_allocrecs are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

var_num The zVariable number.
num_recs The number of records allocated for the variable.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.42.1. Example(s)

The following example allocates 100 records (record number 1 to 100) for zVariable “MY_VAR” in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id I CDF identifier.
INTEGER*4 num_recs I Number of allocated records.
INTEGER*4 status I Returned status code.

num_recs = 100

CALL CDF_set_zvar_allocrecs (id, CDF_get_var_num(id, “MY_VAR?),
1 num_recs, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.43 CDF _set_zvar_blockingfactor

SUBROUTINE CDF_set_zvar_blockingfactor (

144

INTEGER*4 id, ! in-- CDF identifier.
INTEGER*4 var_num, I in -- zVariable number.
INTEGER*4 bf, ! in -- Variable blocking factor.
INTEGER*4 status) ! out -- Completion status

CDF_set_zvar_blockingfactor respecifies the blocking factor for the specified zVariable in a CDF. Refer to the CDF
User’s Guide for the description of a variable’s blocking factor.

The arguments to CDF_set_zvar_blockingfactor are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

var_num The zVariable number.
bf The blocking factor of the variable.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.43.1. Example(s)

The following example sets the blocking factor to 100 records for zVariable “MY_VAR” in a CDF.

INCLUDE *<path>cdf. inc"

INTEGER*4 id I CDF identifier.

INTEGER*4 bTF I Blocking factor.

INTEGER*4 status I Returned status code.

bf = 100

CALL CDF_set_zvar_blockingfactor (id, CDF _get var_num(id, “MY_VAR?),
1 bf, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.44 CDF_set_zvar_cachesize

SUBROUTINE CDF _set_zvar_cachesize (

in -- CDF identifier.

in -- zVariable number.

in -- Number of cache buffers.
out -- Completion status

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 num_buffers,

!
!
!
INTEGER*4 status) !

145

CDF_set_zvar_cachesize specifies the humber of cache buffers being for the specified zVariable in a CDF. This
operation is not applicable to a single-file CDF. Refer to the CDF User’s Guide for the description about caching
scheme used by the CDF library.

The arguments to CDF_set_zvar_cachesize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

var_num The zVariable number.
num_buffers The number of cache buffers.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.44.1. Example(s)

The following example sets the number of cache buffers to 10 to be used for zVariable “MY_VAR” in a multi-file
CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id I CDF identifier.
INTEGER*4 num_buffers! Number of cache buffers.
INTEGER*4 status I Returned status code.

num_buffers = 10

CALL CDF_set_zvar_cachesize (id, CDF_get_var_num(id, “MY_VAR?),
1 num_buffers, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.45 CDF_set_zvar_compression

SUBROUTINE CDF_set_zvar_compression (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 var_num, ! in -- zVariable number.
INTEGER*4 compress_type, ! in -- Compression type.
INTEGER*4 compress_parms, ! in -- Compression parameters.
INTEGER*4 status) ! out-- Completion status

146

CDF_set_zvar_compression respecifies the compression type/parameters of the specified zVariable in a CDF. Refer to
Section 4.10 for the description of the CDF supported compression types/parameters.

The arguments to CDF_set_zvar_compression are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

var_num The zVariable number.
compress_type The compression type.
compress_parms The compression parameters.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.45.1. Example(s)

The following example uses GZIP.9 compression for zVariable “MY_VAR” in a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 ctype I Compression type.
INTEGER*4 cparms(CDF_MAX_DIMS) I Compression parameters.
INTEGER*4 status I Returned status code.

ctype = GZIP_COMPRESSION

cparms(l) = 9

CALL CDF_set_zvar_compression (id, CDF_get var_num(id, “MY_VAR?”),
1 ctype, cparms, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.46 CDF_set_zvar_dataspec

SUBROUTINE CDF_set_zvar_dataspec (

INTEGER*4 id, I'in -- CDF identifier.
INTEGER*4 var_num, I'in -- zVariable number.
INTEGER*4 data_type, I'in -- Datatype.

!

INTEGER*4 status) out -- Completion status

147

CDF_set_zvar_dataspec is used to respecify the data specification (data type and number of elements) of the specified
zVariable in a CDF. A zVariable’s data specification may not be changed if the new data specification is not equivalent
to the old one and any values, including pad value, have been written. Data specifications are considered equivalent if
the data types are equivalent and the number of elements are the same. Refer to Section 4.5 for the description of the
CDF data types.

The arguments to CDF_set_zvar_dataspec are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable to which to set. This number may be determined with a call to
CDF_get_var_num (see Section 6.3.8).

data_type The data type of the variable data.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.46.1. Example(s)

The following example respecifies the data type of zVariable “Temperature” to CDF_UINTZ2, from its original
CDF_INT2, in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id CDF identifier.
INTEGER*4 status Returned status code.
INTEGER*4 data_type I Data type.

data_type = CDF_UINT2

CALL CDF_set _zvar_dataspec (id, CDF_get var_num (id, "Temperature-®),
1 data_type, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.47 CDF_set_zvar_dimvariances

SUBROUTINE CDF _set_zvar_dimvariances (

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 dim_varys(*),
INTEGER*4 status)

in -- CDF identifier.
in -- zVariable number.
in -- Dimension variances.

]
|
!
! out -- Completion status

148

CDF_set_zvar_dimvariances respecifies the dimension variances of the specified zVariable in a CDF. For 0-
dimensional zVariable, this operation is not applicable. Refer to Section 4.9 for the description of the CDF variable’s
dimension variances.

The arguments to CDF_set_zvar_dimvariances are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable to which to set. This number may be determined with a call to
CDF_get_var_num (see Section 6.3.8).

dim_varys The dimension variances.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.47.1. Example(s)

The following example sets the dimension variances to VARY and VARY for zVariable “Temperature”, a 2-
dimensional variable, in a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 status I Returned status code.
INTEGER*4 dim_varys(CDF_MAX_DIMS) I Dimension variances.

dim_varys(1) = VARY

dim_varys(2) = VARY

CALL CDF_set_zvar_dimvariances (id, CDF_get_var_num (id, "Temperature®),
1 dim_varys, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.48 CDF_set_zvar_initialrecs

SUBROUTINE CDF_set_zvar_initialrecs (

in -- CDF identifier.

in -- zVariable number.

in -- Number of written records.
out -- Completion status

INTEGER*4 id, !
INTEGER*4 var_num, !
INTEGER*4 num_recs, !
INTEGER*4 status) !
CDF_set_zvar_initialrecs specifies the number of records initially written for the specified zVariable in a CDF. The
records are written beginning at record number one (1). This may be specified only once per variable and before any
other records have been written to that variable. If a pad value has not yet been specified, the default value is used. If a

149

pad value has been explicitly specified, that value is written to the records. Refer to the CDF User’s Guide for the
description of initial variable records.

The arguments to CDF_set_zvar _initialrecs are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

var_num The zVariable number.
num_recs The number of records to be written for the variable.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.48.1. Example(s)

The following example writes initially 100 records (record number 1 to 100) for zVariable “MY_VAR” in a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 num_recs I Number of initially written records.
INTEGER*4 status I Returned status code.

num_recs = 100

CALL CDF_set_zvar_initialrecs (id, CDF_get_var_num(id, “MY_VAR?),
1 num_recs, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.49 CDF_set_zvar_padvalue

SUBROUTINE CDF_set_zvar_padvalue (

INTEGER*4 id, Iin -- CDF identifier.
INTEGER*4 var_num, I in -- zVariable number.
<type> pad_value, I'in -- Pad value.
INTEGER*4 status) ! out -- Completion status

CDF_set_zvar_padvalue respecifies the pad value for the specified zVariable in a CDF. A zVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values.

The arguments to CDF_set_zvar_padvalue are defined as follows:

150

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable to which to set. This number may be determined with a call to
CDF_get_var_num (see Section 6.3.8).

pad_value The pad value.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.49.1. Example(s)

The following example sets the pad value to —999 for zVariable “MY_VAR”, a CDF_INT4 type variable, in a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 status 1 Returned status code.
INTEGER*4 pad_value I Pad value.

pad_value = -999

CALL CDF_set_zvar_padvalue (id, CDF_get var_num (id, *"MY_VAR"),
1 pad_value, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.50 CDF_set_zvar_recvariance

SUBROUTINE CDF _set_zvar_recvariance (

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 rec_vary,
INTEGER*4 status)

I'in -- CDF identifier.

I'in -- zVariable number.

! in -- Record variance.

! out -- Completion status

CDF_set_zvar_recvariance respecifies the record variance for the specified zVariable in a CDF. Refer to Section 4.9
for the description of the CDF variable’s record variance.

The arguments to CDF_set_zvar_recvariance are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable to which to set. This number may be determined with a call to
CDF_get_var_num (see Section 6.3.8).

151

rec_vary The record variance.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.50.1. Example(s)

The following example sets the record variance to VARY for zVariable “Temperature” in a CDF.

INCLUDE "<path>cdf.inc*

INTEGER*4 id ! CDF identifier.
INTEGER*4 status I Returned status code.
INTEGER*4 rec_vary I Record variance.

rec_vary = VARY

CALL CDF_set_zvar_recvariance (id, CDF_get var_num (id, "Temperature-®),
1 rec_vary, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.51 CDF_set_zvar_reservepercent

SUBROUTINE CDF_set_zvar_reservepercent (

in -- CDF identifier.

in -- zVariable number.
in -- Reserve percentage.
out -- Completion status

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 res_percent,

!
!
!
INTEGER*4 status) !

CDF_set_zvar_reservepercent respecifies the reserve percentage being used for the specified zVariable in a CDF. This
operation only applies to compressed zVariables. Refer to the CDF User’s Guide for the description of the reserve
scheme used by the CDF library.

The arguments to CDF_set_zvar_reservepercent are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The number of the zVariable from which to read. This number may be determined with a
call to CDF_get_var_num (see Section 6.3.8).

res_percent The reserve percentage.

status The completion status code. Chapter 8 explains how to interpret status codes.

152

6.3.51.1. Example(s)

The following example sets the reserve percentage to 15 for the compressed zVariable “Temperature” in a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id I CDF identifier.
INTEGER*4 status I Returned status code.
INTEGER*4 res_percent 1 Reserve percentage.

res_percent = 15

CALL CDF_set_zvar_reservepercent (id, CDF_get var_num (id, "Temperature®),
1 res_percent, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.52 CDF_set_zvars_cachesize

SUBROUTINE CDF_set_zvars_cachesize (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 num_buffers, ! in-- zVariables’s number of cache buffers.
INTEGER*4 status) ! out -- Completion status

CDF_set_zvars_cachesize respecifies the number of cache buffers being used for all zVariables in a CDF. This
operation is not applicable to a single-file CDF. Refer to the CDF User’s Guide for the description about caching
scheme used by the CDF library.

The arguments to CDF_set_zvars_cachesize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

num_buffers The number of cache buffers.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.52.1. Example(s)

The following example sets the number of cache buffers to 10 for all zVariables in a CDF.

INCLUDE *<path>cdf.inc"

153

INTEGER*4 id 1 CDF identifier.
INTEGER*4 num_buffers! Number of cache buffers.
INTEGER*4 status I Returned status code.

ﬁum_buffers = 10
CALL CDF_set_zvars_cachesize (id, num_buffers, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.3.53 CDF_set_zvar_seqpos

SUBROUTINE CDF_set_zvar_seqpos (

INTEGER*4 id, in -- CDF identifier.
INTEGER*4 var_num, in -- zVariable number.

|

!
INTEGER*4 rec_num, ! in -- Record number.
INTEGER*4 indices(*), I in -- Indices in a record.
INTEGER*4 status) ! out-- Completion status
CDF_set_zvar_seqpos specifies the current sequential value (position) for sequential access for the specified zVariable
in a CDF. Note that a current sequential value is maintained for each zVariable individually. Use
CDF_get_zvar_seqdata subroutine to get the data value.

The arguments to CDF_set_zvar_seqpos are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num The zVariable number.

rec_num The record number.

indices The dimension indices. Each element of indices receives the corresponding dimension

index. For 0-dimensional zVariable, this argument is ignored, but must be presented.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.53.1. Example(s)

The following example sets the current sequential value to the first value element in record number 2 for zVariable
“MY_VAR”, a 2-dimensional variable, in a CDF.

INCLUDE *<path>cdf.inc"

154

INTEGER*4 id ! CDF identifier.

INTEGER*4 status I Returned status code.
INTEGER*4 rec_num I Record number.
INTEGER*4 indices(2) I Dimension indices.

rec_num = 2

indices(1) = 0

indices(2) = 0

CALL CDF_set zvar_segpos (id, CDF_get var_num(id, “MY_VAR”), rec_num,
1 indices, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.3.54 CDF_set_zvar_sparserecords

SUBROUTINE CDF _set_zvar_sparserecords (

INTEGER*4 id, 1in -- CDF identifier.
INTEGER*4 var_num, I'in -- zVariable number.
INTEGER*4 srecords_type, I in -- Sparse records type.
INTEGER*4 status) ! out -- Completion status

CDF_set_zvar_sparserecords respecifies the sparse records type for the specified zVariable in a CDF. Refer to Section
4.11 for the description of the sparse records.

The arguments to CDF_set_zvar_sparserecords are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

var_num zVariable number.

srecords_type Sparse records type.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.3.54.1. Example(s)

The following example sets the sparse records type to PAD_SPARSERECORDS from its original type for zVariable
“MY_VAR” in a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

155

INTEGER*4 srecords_type I Sparse records type.
INTEGER*4 num_dims I Dimension sizes.

srecords_type = PAD_SPARSERECORDS

CALL CDF_set_zvar_sparserecords (id, CDF_get var_num(id, “MY_VAR™),
1 srecords_type, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4 Attributes/Entries

This section provides the functions related to attributes or entries in an attribute. An attribute is identified by its name
or an number in the CDF. To operate an attribute or entry, the CDF it resides in must be open.

6.4.1 CDF_confirm_attr_existence

INTEGER*4 FUNCTION CDF_confirm_attr_existence (

INTEGER*4 id, ! in -- CDF identifier.
CHARACTER attr_name*(*)) I'in -- Attribute name.

CDF_ confirm_attr_existence confirms whether the specified name is an existing attribute in a CDF. It returns
CDF_OK if the attribute exists.

The arguments to CDF_ confirm_attr_existence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf
or CDF_open_cdf.

attr_name Checks if an attribute with the given name exists in the CDF.

6.4.1.1. Example(s)

The following example checks whether the attribute by the name of “ATTR_NAMEL” is in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status 1 Returned status code.

156

status = CDF_confirm_attr_existence (id, “ATTR_NAME1”, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.2 CDF_confirm_gentry_existence

INTEGER*4 FUNCTION CDF_confirm_gentry_existence (

INTEGER*4 id, 1in -- CDF identifier.
INTEGER*4 attr_num, 1 in -- Global attribute identifier.
INTEGER*4 entry_num) I in -- gEntry number.

CDF_ confirm_gentry_existence confirms the existence of the specified gEntry in an (global) attribute of a CDF. If the
gEntry does not exist, NO_SUCH_ENTRY will be returned.

The arguments to CDF_ confirm_gentry_existence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf
or CDF_open_cdf.

attr_num The (global) attribute number.

entry_ num The gEntry number.

6.4.2.1. Example(s)

The following example will check the existence of gEntry numbered 1 for attribute “MY_ATTR” in a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 attr_num 1 Attribute number.
INTEGER*4 status 1 Returned status code.

attr_num = CDF_get_attr_num(id, “MY_ATTR?)

IF (attr_num _LT. 1) CALL UserQuit(...)

status = CDF_confirm_gentry_existence (id, attr_num, 1)

IF (status .EQ. NO_SUCH_ENTRY) CALL UserStatusHandler (status)

157

6.4.3 CDF_confirm_rentry_existence

INTEGER*4 FUNCTION CDF_confirm_rentry_existence (

INTEGER*4 id, !in -- CDF identifier.
INTEGER*4 attr_num, I'in -- Variable attribute identifier.
INTEGER*4 entry _num) I in -- rEntry number.

CDF_ confirm_rentry_existence confirms the existence of the specified rEntry, corresponding to an rVariable, in an
(variable) attribute of a CDF. If the rEntry does not exist, NO_SUCH_ENTRY will be returned.

The arguments to CDF_ confirm_rentry_existence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf
or CDF_open_cdf.

attr_num The (variable) attribute number.

entry_num The rEntry number.

6.4.3.1. Example(s)

The following example will check the existence of the rEntry corresponding to rVariable “MY_VAR?” for attribute
“MY_ATTR” in a CDF

iNCLUDE "<path>cdf.inc"

CDF identifier.
Attribute number.
rEntry number.
Returned status code.

INTEGER*4 1id
INTEGER*4 attr_num
INTEGER*4 entry_num
INTEGER*4 status

attr_num = CDF_get_attr_num(id, “MY_ATTR?)

IF (attr_num _LT. 1) CALL UserQuit(...)

entry_num = CDF_get var_num(id, “MY_VAR?)

IF (entry_num .LT. 1) CALL UserQuit(...)

status = CDF_confirm_rentry_existence (id, attr_num, entry_num, status)
IF (status .EQ. NO_SUCH_ENTRY) CALL UserStatusHandler (status)

6.4.4 CDF_confirm_zentry_existence

INTEGER*4 FUNCTION CDF_confirm_zentry_existence (

158

INTEGER*4 id, !in -- CDF identifier.
INTEGER*4 attr_num, I'in -- Variable attribute identifier.
INTEGER*4 entry_num) I'in -- zEntry number.

CDF_ confirm_zentry_existence confirms the existence of the specified zEntry, corresponding to a zVariable, in an
(variable) attribute of a CDF. If the zEntry does not exist, NO_SUCH_ENTRY will be returned.

The arguments to CDF_ confirm_zentry_existence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf
or CDF_open_cdf.

attr_num The (variable) attribute number.

entry_ num The zEntry number.

6.4.4.1. Example(s)

The following example will check the existence of the zEntry corresponding to zVariable “MY_VAR” for attribute
“MY_ATTR” in a CDF.

INCLUDE *<path>cdf.inc"

CDF identifier.
Attribute number.
zEntry number.
Returned status code.

INTEGER*4 id
INTEGER*4 attr_num
INTEGER*4 entry_num
INTEGER*4 status

attr_num = CDF_get_attr_num(id, “MY_ATTR?)

IF (attr_num _LT. 1) CALL UserQuit(...)

entry_num = CDF_get_var_num(id, “MY_VAR?”)

IF (entry_num .LT. 1) CALL UserQuit(...)

Status = CDF_confirm_zentry existence (id, attr_num, entry num, status)
IF (status .EQ. NO_SUCH_ENTRY) CALL UserStatusHandler (status)

6.4.5 CDF_ create_attr

SUBROUTINE CDF_ create_attr (

in -- CDF identifier.
in -- Attribute name.
in -- Scope of attribute.
out -- Attribute number.

out -- Completion status

INTEGER*4 id,
CHARACTER attr_name*(*),
INTEGER*4 attr_scope,
INTEGER*4 attr_num,
INTEGER*4 status)

159

CDF_create_attr creates an attribute in the specified CDF. An attribute with the same name must not already exist in

the CDF.

The arguments to CDF_create_attr are defined as follows:

id

attr_name

attr_scope

attr_num

status

The identifier of the CDF. This identifier must have been initialized by a call to
CDF _create_cdf or CDF_open_cdf.

The name of the attribute to create. This may be at most CDF_ATTR_NAME_LEN256
characters. Attribute names are case-sensitive.

The scope of the new attribute. Specify one of the scopes described in Section 4.12.
The number assigned to the new attribute. This number must be used in subsequent CDF
subroutine calls when referring to this attribute. An existing attribute's number may be

determined with the CDF_get_attr_num function.

The completion status code. Chapter 8 explains how to interpret status codes.

6.4.5.1. Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

INCLUDE "<path>c

INTEGER*4 id
INTEGER*4 status

CHARACTER UNITS_.
INTEGER*4 UNITS_
INTEGER*4 TITLE_
INTEGER*4 TITLE_.

DATA UNITS_attr_

éALL CDF_create_

IF (status .NE.

CALL CDF_create

1
IF (status _NE.

df.inc”

1 CDF identifier.
I Returned status code.
attr_name*5 I Name of "Units" attribute.

attr_num I "Units" attribute number.
attr_num I "TITLE" attribute number.
attr_scope I "TITLE" attribute scope.

name/*Units"/, TITLE attr_scope/GLOBAL_SCOPE/

attr (id, "TITLE", TITLE attr_scope, TITLE attr_num, status)

CDF_OK) CALL UserStatusHandler (status)

attr (id, UNITS_attr_name, VARIABLE_SCOPE, UNITS attr_num,
status)

CDF_OK) CALL UserStatusHandler (status)

160

6.4.6 CDF_delete_attr

SUBROUTINE CDF_delete_attr (

INTEGER*4 id, 1in -- CDF identifier.
INTEGER*4 attr num, ! in -- Attribute number.
INTEGER*4 status) ! out-- Completion status

CDF_delete_attr deletes the specified attribute from a CDF.
The arguments to CDF_delete_attr are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The attribute number to be deleted.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.6.1. Example(s)

The following example will delete attribute “MY_ATTR” in a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status I Returned status code.

CALL CDF_delete_attr (id, CDF_get attr_num(id, “MY_ATTR”), status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.7 CDF_delete_attr_gentry

SUBROUTINE CDF_delete_attr_gentry (

INTEGER*4 id, 1in -- CDF identifier.
INTEGER*4 attr num, ! in -- Global attribute number.
INTEGER*4 entry_num, ! in -- gEntry number.
INTEGER*4 status) ! out-- Completion status

CDF_delete_attr_gentry deletes the specified gEntry in an (global) attribute from a CDF

161

The arguments to CDF_delete_attr_gentry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The global attribute number.
entry_num The gEntry number to be deleted.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.7.1. Example(s)

The following example will delete gEntry numbered 2 from the global attribute “MY_ATTR” in a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status 1 Returned status code.

CALL CDF_delete_attr_gentry (id, CDF_get attr_num(id, “MY_ATTR?), 2, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.8 CDF_delete_attr_rentry

SUBROUTINE CDF _delete_attr_rentry (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 attr num, ! in -- Variable attribute number.
INTEGER*4 entry num, ! in -- rEntry number.
INTEGER*4 status) ! out-- Completion status

CDF_delete_attr_rentry deletes the specified rEntry, corresponding to an rVariable, in an (variable) attribute from a
CDF

The arguments to CDF_delete_attr_rentry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The variable attribute number.

entry_num The rEntry number to be deleted.

162

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.8.1. Example(s)

The following example will delete the entry for rVariable “MY_VAR” from the variable attribute “MY_ATTR” in a
CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 entry_num I rVariable number.
INTEGER*4 status I Returned status code.

entry_num = CDF_get _var_num(id, “MY_VAR?”)

IF (entry _num _LT. 1) CALL UserQuit(...)

CALL CDF_delete_attr_rentry (id, CDF _get_attr_num(id, “MY_ATTR?), entry_num,
1 status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.9 CDF_delete_attr_zentry

SUBROUTINE CDF_delete_attr_zentry (

INTEGER*4 id, 1in -- CDF identifier.
INTEGER*4 attr num, ! in -- Variable attribute number.
INTEGER*4 entry _num, ! in -- zEntry number.
INTEGER*4 status) ! out -- Completion status

CDF_delete_attr_zentry deletes the specified rEntry, corresponding to a zVariable, in an (variable) attribute from a
CDF

The arguments to CDF_delete_attr_zentry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The variable attribute number.
entry_num The zEntry number to be deleted.

status The completion status code. Chapter 8 explains how to interpret status codes.

163

6.4.9.1. Example(s)

The following example will delete the entry for zVariable “MY_VAR” from the variable attribute “MY_ATTR” in a
CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 entry_num I zvariable number.
INTEGER*4 status ! Returned status code.

entry_num = CDF_get_var_num(id, “MY_VAR™)

IF (entry_num .LT. 1) CALL UserQuit(...)

CALL CDF_delete_attr_zentry (id, CDF _get_attr_num(id, “MY_ATTR?), entry_num,
1 status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.10 CDF_get_attr_gentry

SUBROUTINE CDF _get_attr_gentry (

INTEGER*4 id, 1in -- CDF identifier.

INTEGER*4 attr_num, I'in -- Global attribute number.

INTEGER*4 entry_num, I'in -- Entry number.

<type> value, ! out -- Value (<type> is dependent on the data type of the enrty).
|

INTEGER*4 status) out -- Completion status

CDF_get_attr_gentry is used to read a global attribute’s entry from a CDF. In most cases it will be necessary to call
CDF _inquire_attr_gentry before calling CDF_get attr_gentry in order to determine the data type and number of
elements (of that data type) for the entry.

The arguments to CDF_get _attr_gentry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

attr_num The global attribute number. This number may be determined with a call to
CDF_get_attr_num (see Section 6.4.17).

entry_num The entry number. This is the gEntry number and has meaning only to the application.

value The value read. This buffer must be large enough to hold the value. The subroutine
CDF _attr_entry_inquire would be used to determine the entry data type and number of

164

elements (of that data type). The value is read from the CDF and placed into memory at
address value.

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry does not
have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.10.1. Example(s)

The following example displays the value of the global attribute UNITS for the gEntry numbered 2 (but only if the data
type is CDF_CHAR).

INCLUDE *<path>cdf. inc"

INTEGER*4 id
INTEGER*4 status
INTEGER*4 attr_n
INTEGER*4 data_type
INTEGER*4 num_elems
CHARACTER buffer*100

CDF identifier.

Returned status code.

Attribute number.

Data type.

Number of elements (of data type).

Buffer to receive value (in this case it is
assumed that 100 characters is enough).

attr_n = CDF_get_attr_num (id, “UNITS®)

IF (attr_n .LT. 0) CALL UserStatusHandler (attr_n) ! If less than one (1),
I then it must be a
I warning/Zerror code.

CALL CDF_inquire_attr_gentry (id, attr_n, 2, data_type, num_elems,
1 status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

IF (data_type .EQ. CDF_CHAR) THEN
CALL CDF_get_attr_gentry (id, attr_n, 2, buffer, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)
WRITE (6,10) buffer(l:num_elems)
10 FORMAT (* ",A)
END IF

6.4.11 CDF_get_attr_gentry datatype

SUBROUTINE CDF_get_attr_gentry_datatype (

165

INTEGER*4 id, ! in -- CDF identifier.

INTEGER*4 attr_ num, ! in -- Attribute number.

INTEGER*4 entry_num, ! in -- Entry number.

INTEGER*4 data_type, ! out-- Data type of the entry.

INTEGER*4 status) ! out -- Completion status

CDF_get_attr_gentry_datatype acquires the data type of the specified gEntry from an (global) attribute in a CDF
The arguments to CDF_get _attr_gentry_datatype are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The attribute number.
entry_num The gEntry number.
data_type The data type of the entry.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.11.1. Example(s)

The following example acquires the data type for gEntry numbered 5 in the global attribute “MY_ATTR” in a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 data_type I Data type.
INTEGER*4 status 1 Returned status code.

CALL CDF _get _attr_gentry datatype (id, CDF _get_attr_num(id, “MY_ATTR?), 5,
1 data_type, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.12 CDF_get_attr_gentry_numelems

SUBROUTINE CDF_get_attr_gentry_numelems (

INTEGER*4 id, Lin
INTEGER*4 attr_ num, ! in
INTEGER*4 entry_num, ! in
INTEGER*4 num_elems,! out

- CDF identifier.

Attribute number.

Entry number.

Number of elements of the entry.

166

INTEGER*4 status) ! out -- Completion status

CDF_get_attr_gentry_numelems acquires the number of elements of the specified gEntry from an (global) attribute in a

CDF

The arguments to CDF_get_attr_gentry_numelems are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or

CDF_open_cdf.

attr num The attribute number.

entry_num The gEntry number.

num_elems The number of elements of the gEntry.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.12.1. Example(s)

The following example acquires the number of elements for gEntry numbered 5 in the global attribute “MY_ATTR” in

a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id

1 CDF identifier.

INTEGER*4 num_elements I Number of elements.

INTEGER*4 status

! Returned status code.

CALL CDF _get _attr_gentry numelems (id, CDF _get_attr_num(id, “MY_ATTR?), 5,

1

num_elems, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.13 CDF_get_attr_max_gentry

SUBROUTINE CDF_get_attr_max_gentry (

INTEGER*4 id, Lin -
INTEGER*4 attr num, ! in --
INTEGER*4 entry_num, ! out --
INTEGER*4 status) ! out --

CDF identifier.
Attribute number.
Entry number.
Completion status

CDF_get_attr_max_gentry acquires the last gentry number from an (global) attribute in a CDF.

167

The arguments to CDF_get_attr_max_gentry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The attribute number.
entry_num The last gEntry number.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.13.1. Example(s)

The following example acquires the last gEntry number from the global attribute “MY_ATTR” in a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 entry_num I The last gEntry number.
INTEGER*4 status ! Returned status code.

CALL CDF _get_attr_max_gentry (id, CDF_get attr_num(id, “MY_ATTR”),
1 entry_num, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.14 CDF_get_attr_max_rentry

SUBROUTINE CDF_get_attr_ max_rentry (

INTEGER*4 id, !in -- CDF identifier.

INTEGER*4 attr num, ! in -- Attribute number.

INTEGER*4 entry _num, ! out-- Entry number.

INTEGER*4 status) ! out -- Completion status

CDF_get_attr_max_rentry acquires the last rEntry number from an (variable) attribute in a CDF.

The arguments to CDF_get_attr_max_rentry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The attribute number.

168

entry_num The last rEntry number.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.14.1. Example(s)

The following example acquires the last rEntry number from the variable attribute “MY_ATTR” in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 entry_num I The last rEntry number.
INTEGER*4 status I Returned status code.

CALL CDF_get_attr_max_gentry (id, CDF_get_attr_num(id, “MY_ATTR”),
1 entry_num, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.15 CDF_get_attr_max_zentry

SUBROUTINE CDF_get_attr_max_zentry (

INTEGER*4 id, !in -- CDF identifier.

INTEGER*4 attr num, ! in -- Attribute number.

INTEGER*4 entry_num, ! out-- Entry number.

INTEGER*4 status) ! out-- Completion status

CDF_get_attr_max_zentry acquires the last zEntry number from an (variable) attribute in a CDF.

The arguments to CDF_get_attr_max_zentry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The attribute number.
entry_num The last zEntry number.

status The completion status code. Chapter 8 explains how to interpret status codes.

169

6.4.15.1. Example(s)

The following example acquires the last zEntry number from the variable attribute “MY_ATTR” in a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 entry_num I The last zEntry number.
INTEGER*4 status I Returned status code.

CALL CDF_get_attr_max_gentry (id, CDF _get attr_num(id, “MY_ATTR?),
1 entry_num, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.16 CDF_get _attr_name

SUBROUTINE CDF_get_attr_name (

INTEGER*4 id, ! in -- CDF identifier.

INTEGER*4 attr_num, I'in -- Attribute number.

CHARACTER attr_name*(*), ! out -- Attribute name.

INTEGER*4 status) ! out -- Completion status

CDF_get_attr_name acquires the name of the specified attribute (by its number) in a CDF.

The arguments to CDF_get_attr_name are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr_ num The attribute number.
attr name The attribute name.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.16.1. Example(s)

The following example acquires the name of the attribute number 2 in a CDF.

170

INCLUDE “<path>cdf.inc"

INTEGER*4 id I CDF identifier.
CHARACTER attr_name*(CDF_ATTR_NAME_LEN256) ! The last rEntry number.
INTEGER*4 status ! Returned status code.

CALL CDF_get_attr_name (id, 2, attr_name, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.17 CDF_get_attr num

INTEGER*4 FUNCTION CDF_get_attr_num (

INTEGER*4 id, ! in -- CDF identifier.
CHARACTER attr_name*(*), I'in -- Attribute name.
INTEGER*4 status) ! out-- Completion status

CDF_get_attr_num is used to determine the attribute number associated with a given attribute name. If the attribute is
found, CDF_get attr_num returns its number - which will be equal to or greater than one (1). If an error occurs (e.g.,
the attribute name does not exist in the CDF), an error code (of type INTEGER*4) is returned. Error codes are less
than zero (0).

The arguments to CDF_get_attr_num are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

attr_name The name of the attribute for which to search. This may be at most
CDF_ATTR_NAME_LEN256 characters. Attribute names are case-sensitive.

CDF_attr_num may be used as an embedded function call when an attribute number is needed. CDF attr num is
declared in cdf.inc. (Fortran functions must be declared so that the returned value is interpreted correctly.)

6.4.17.1. Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDF_attr_num being used
as an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDF_get_attr_num
would have returned an error code. Passing that error code to CDF_rename_attr as an attribute number would have
resulted in CDF_rename_attr also returning an error code. CDF_rename_attr is described in Section 6.4.38.

INCLUDE "<path>cdf.inc*

171

INTEGER*4 id ! CDF identifier.
INTEGER*4 status 1 Returned status code.

CALL CDF_rename_attr (id, CDF_get attr_num(id, "pressure®), "PRESSURE",
1 status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.18 CDF_get_attr_num_gentries

SUBROUTINE CDF_get_attr_num_gentries (

INTEGER*4 id, in -- CDF identifier.

!
INTEGER*4 attr num, ! in -- Attribute number.
INTEGER*4 entries, I out -- Total entries.

INTEGER*4 status) ! out -- Completion status

CDF_get_attr_ num_gentries acquires the total number of entries (gEntries) in the specified (global) attribute of a CDF.
The arguments to CDF_get_attr_num_gentries are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The attribute number.
entries Total gEntries.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.18.1. Example(s)

The following example acquires the total number of entries (gEntries) in the global attribute “MY_ATTR” in a CDF.

INCLUDE *<path>cdf. inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 entries 1 Total entries.
INTEGER*4 status ! Returned status code.

CALL CDF _get_attr_num gentries (id, CDF _get attr_num(id, “MY_ATTR?),
1 entries, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

172

6.4.19 CDF_get_attr_num_rentries
SUBROUTINE CDF_get_attr_num_rentries (

INTEGER*4 id,
INTEGER*4 attr_num,
INTEGER*4 entries,
INTEGER*4 status)

in -- CDF identifier.
in -- Attribute number.
out -- Total entries.

!
!
!
! out-- Completion status

CDF_get_attr_num_rentries acquires the total number of entries for the rVVariables (rEntries) in the specified (variable)
attribute of a CDF.

The arguments to CDF_get_attr_num_rentries are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The attribute number.
entries Total rEntries.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.19.1. Example(s)

The following example acquires the total number of entries (rEntries) in the variable attribute “MY_ATTR” in a CDF.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 entries 1 Total entries.
INTEGER*4 status 1 Returned status code.

CALL CDF _get_attr_num_rentries (id, CDF_get attr_num(id, “MY_ATTR?),
1 entries, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

173

6.4.20 CDF_get_attr_num_zentries

SUBROUTINE CDF_get_attr_num_zentries (

in -- CDF identifier.
in -- Attribute number.
out -- Total entries.

out -- Completion status

INTEGER*4 id,
INTEGER*4 attr_num,
INTEGER*4 entries,

!
!
!
INTEGER*4 status) !

CDF_get_attr_num_zentries acquires the total number of entries for the zZVariable (zEntries) in the specified (variable)
attribute of a CDF.

The arguments to CDF_get_attr_num_zentries are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr_ num The attribute number.
entries Total zEntries.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.20.1. Example(s)

The following example acquires the total number of entries (zEntries) in the variable attribute “MY_ATTR” in a CDF.

INCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 entries I Total entries.
INTEGER*4 status 1 Returned status code.

CALL CDF_get_attr_num_zentries (id, CDF_get_attr_num(id, “MY_ATTR?),
1 entries, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.21 CDF_get_attr_rentry

SUBROUTINE CDF_get_attr_rentry (

INTEGER*4 id, !in -- CDF identifier.

174

INTEGER*4 attr_num,

INTEGER*4 entry_num,

<type> value,
INTEGER*4 status)

1in -- Variable attribute number.

I'in -- Entry number.

! out -- Value (<type> is dependent on the data type of the enrty).
! out -- Completion status

CDF_get_attr_rentry is used to read a variable attribute’s entry corresponding to an rVariable (rEntry) from a CDF. In
most cases it will be necessary to call CDF_inquire_attr_rentry before calling CDF_get attr_rentry in order to
determine the data type and number of elements (of that data type) for the entry.

The arguments to CDF_get_attr_rentry are defined as follows:

id

attr_num

entry_num

value

status

6.4.21.1.

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

The variable attribute number. This number may be determined with a call to
CDF_get_attr_num (see Section 6.4.17).

The entry number. This is the number of the associated rVariable (the rVariable being
described in some way by the rEntry).

The value read. This buffer must be large enough to hold the value. The subroutine
CDF_attr_entry_inquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry does not
have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example displays the value of the variable attribute UNITS for the rEntry corresponding to the
PRES_LVL rVariable (but only if the data type is CDF_CHAR).

INCLUDE *<path>cdf. inc"

INTEGER*4 id

INTEGER*4 status
INTEGER*4 attr_n
INTEGER*4 entryN
INTEGER*4 data_type
INTEGER*4 num_elems
CHARACTER buffer*100

CDF identifier.

Returned status code.

Attribute number.

Entry number.

Data type.

Number of elements (of data type).

Buffer to receive value (in this case it is
assumed that 100 characters is enough).

attr_n = CDF_get_attr_num (id, "UNITS®)
IF (attr_n .LT. 0) CALL UserStatusHandler (attr_n) ! If less than one (1),

I then i1t must be a

175

I warning/Zerror code.

entryN = CDF_get _var_num (id, "PRES LVL") I The rEntry number is
I the rVariable number.

IF (entryN .LT. 0) CALL UserStatusHandler (entryN) ! If less than one (1),
I then it must be a
I warning/error code.

CALL CDF_inquire_attr_rentry (id, attr_n, entryN, data_type, num_elems,
1 status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

IF (data_type .EQ. CDF_CHAR) THEN
CALL CDF_get_attr_rentry (id, attr_n, entryN, buffer, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)
WRITE (6,10) buffer(1:num_elems)
10 FORMAT (* *,A)
END IF

6.4.22 CDF_get_attr_rentry_datatype

SUBROUTINE CDF _get _attr_rentry_datatype (

INTEGER*4 id, 1in -- CDF identifier.
INTEGER*4 attr num, ! in -- Attribute number.
INTEGER*4 entry_num, ! in -- Entry number.
INTEGER*4 data_type, ! out-- Data type of the entry.
INTEGER*4 status) ! out -- Completion status

CDF_get_attr_rentry_datatype acquires the data type of the specified rEntry, corresponding to an rVariable, from an
(variable) attribute in a CDF.

The arguments to CDF_get_attr_rentry_datatype are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr_ num The attribute number.
entry_num The rEntry number.
data_type The data type of the entry.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.22.1. Example(s)

176

The following example acquires the data type for rEntry, corresponding to rVariable “MY_VAR” in the variable
attribute “MY_ATTR” in a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 data_type I Data type.
INTEGER*4 status 1 Returned status code.

CALL CDF_get _attr_rentry_datatype (id, CDF _get attr_num(id, “MY_ATTR?),
1 CDF_get _var_num(id, “MY_VAR™), data_type,
2 status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.23 CDF_get_attr_rentry_numelems

SUBROUTINE CDF_get_attr_rentry_numelems (

INTEGER*4 id, !in -- CDF identifier.

INTEGER*4 attr num, ! in -- Attribute number.

INTEGER*4 entry_num, ! in -- Entry number.

INTEGER*4 num_elems,! out-- Number of elements of the entry.
INTEGER*4 status) ! out -- Completion status

CDF_get_attr_rentry_numelems acquires the number of elements of the specified rEntry, corresponding to an
rVariable, from an (variable) attribute in a CDF.

The arguments to CDF_get_attr_rentry_numelems are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr_num The attribute number.
entry_num The rEntry number.
num_elems The number of elements of the rEntry.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.23.1. Example(s)

177

The following example acquires the number of elements for rEntry, corresponding to rVVariable “MY_VAR?”, in the
variable attribute “MY_ATTR” in a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 num_elements I Number of elements.
INTEGER*4 status I Returned status code.

CALL CDF_get_attr_rentry_numelems (id, CDF _get attr_num(id, “MY_ATTR?),
1 CDF_get _var_num(id, “MY_VAR™), num _elems,
2 status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.24 CDF_get_attr_scope

SUBROUTINE CDF_get_attr_scope (

INTEGER*4 id,
INTEGER*4 attr_num,
INTEGER*4 scope,
INTEGER*4 status)

in -- CDF identifier.

in -- Attribute number.
out -- Attribute scope.

]
!
!
! out -- Completion status

CDF_get_attr_scope acquires the scope, either GLOBAL_SCOPE or VARIABLE_SCOPE, of the specified attribute in
a CDF.

The arguments to CDF_get_attr_scope are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr_num The attribute number.
scope The attribute scope.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.24.1. Example(s)

The following example acquires the scope for the attribute “MY_ATTR” in a CDF.

178

INCLUDE “<path>cdf.inc"

INTEGER*4 id
INTEGER*4 scope
INTEGER*4 status

CALL CDF_get_attr_scope

1

1 CDF identifier.
I Attribute scope.
! Returned status code.

(id, CDF_get_attr_num(id, “MY_ATTR”), scope,

status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.25 CDF_get_attr_zentry

SUBROUTINE CDF_get_attr_zentry (

INTEGER*4 id, !
INTEGER*4 attr_num, !
INTEGER*4 entry_num, !
<type> value, !
INTEGER*4 status) !

in -- CDF identifier.

in -- variable attribute number.

in -- Entry number.

out -- Value (<type> is dependent on the data type of the enrty).
out -- Completion status

CDF_get_attr_zentry is used to read a variable attribute’s entry, corresponding to a zVariable, (zEntry) in a CDF. In
most cases it will be necessary to call CDF_inquire_attr_zentry before calling CDF_get attr_zentry in order to
determine the data type and number of elements (of that data type) for the entry.

The arguments to CDF_get_attr_zentry are defined as follows:

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

The variable attribute number. This number may be determined with a call to
CDF_get_attr_num (see Section 6.4.17).

The entry number. This is the number of the associated zVariable (the zVariable being
described in some way by the zEntry).

The value read. This buffer must be large enough to hold the value. The subroutine
CDF_inquire_attr_zentry would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry does not
have one of the character data types, then value must NOT be a CHARACTER Fortran

id
attr_num
entry_num
value
address value.
variable.
status

The completion status code. Chapter 8 explains how to interpret status codes.

179

The following example displays the value of the UNITS attribute for the zEntry corresponding to the PRES_LVL

6.4.25.1. Example(s)

zVariable (but only if the data type is CDF_CHAR).

10

6.4.26

iNCLUDE "<path>cdf.inc"

INTEGER*4 id
INTEGER*4 status
INTEGER*4 attr_n
INTEGER*4 entryN
INTEGER*4 data_type
INTEGER*4 num_elems
CHARACTER buffer*100

CDF identifier.

Returned status code.

Attribute number.

Entry number.

Data type.

Number of elements (of data type).

Buffer to receive value (in this case it is
assumed that 100 characters is enough).

attr_n = CDF_get_attr_num (id, "UNITS®)

IF (attr_n _LT. 0) CALL UserStatusHandler (attr_n) !

IT less than one (1),
I then it must be a
I warning/error code.

entryN = CDF_get_var_num (id, "PRES_LVL") I The zEntry number 1is

1 the zVariable number.

IF (entryN .LT. 0) CALL UserStatusHandler (entryN) ! If less than one (1),

I then it must be a
I warning/error code.

CALL CDF_inquire_attr_zentry (id, attr_n, entryN, data_type, num_elems,

1

status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

IF (data_type .EQ. CDF_CHAR) THEN
CALL CDF _get_attr_zentry (id, attr_n, entryN, buffer, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)
WRITE (6,10) buffer(1:num_elems)

FORMAT (" *,A)
END IF

CDF_get_attr_zentry datatype

SUBROUTINE CDF_get_attr_zentry datatype (

INTEGER*4 id,
INTEGER*4 attr_num,

I in -- CDF identifier.
Iin -- Attribute number.

INTEGER*4 entry_num, ! in -- Entry number.

180

INTEGER*4 data_type, ! out-- Data type of the entry.
INTEGER*4 status) ! out -- Completion status

CDF_get_attr_zentry datatype acquires the data type of the specified zEntry, corresponding to a zVariable, from an
(variable) attribute in a CDF.

The arguments to CDF_get_attr_zentry datatype are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr_num The attribute number.
entry_num The zEntry number.
data_type The data type of the entry.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.26.1. Example(s)

The following example acquires the data type for zEntry, corresponding to zVariable “MY_VAR” in the variable
attribute “MY_ATTR” in a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 data_type I Data type.
INTEGER*4 status 1 Returned status code.

CALL CDF_get _attr_zentry datatype (id, CDF _get attr_num(id, “MY_ATTR?),

1 CDF_get _var_num(id, “MY_VAR?), data_type,
2 Status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.27 CDF_get_attr_zentry_numelems

SUBROUTINE CDF _get attr_rentry_numelems (

INTEGER*4 id, 1in
INTEGER*4 attr_ num, ! in
INTEGER*4 entry_num, ! in
INTEGER*4 num_elems, ! out

CDF identifier.

Attribute number.

Entry number.

Number of elements of the entry.

181

INTEGER*4 status) ! out -- Completion status

CDF_get_attr_zentry_numelems acquires the number of elements of the specified zEntry, corresponding to a
zVariable, from an (variable) attribute in a CDF.

The arguments to CDF_get_attr_zentry _numelems are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr_ num The attribute number.
entry_num The zEntry number.
num_elems The number of elements of the zEntry.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.27.1. Example(s)

The following example acquires the number of elements for zEntry corresponding to zVariable “MY_VAR” in the
variable attribute “MY_ATTR” in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.

INTEGER*4 num_elements I Number of elements.
INTEGER*4 status I Returned status code.

CALL CDF _get_attr_zentry numelems (id, CDF _get attr_num(id, “MY_ATTR?),
1 CDF_get_var_num(id, “MY_VAR?), num_elems,
2 status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.28 CDF_get_num_attrs

SUBROUTINE CDF_get_num_attrs (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 num_attrs, ! out -- Number of attributes.
INTEGER*4 status) ! out -- Completion status

CDF_get_num_attrs acquires the total number of (global and variable) attributes in a CDF.

182

The arguments to CDF_get_num_attrs are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

num_attrs The number of attributes.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.28.1. Example(s)

The following example acquires the total number of attributes in a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 attrs 1 Attributes.
INTEGER*4 status 1 Returned status code.

CALL CDF_get num attrs (id, attrs, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.29 CDF_get_num_gattrs

SUBROUTINE CDF_get num_gattrs (

INTEGER*4 id, I in -- CDF identifier.
INTEGER*4 attrs, ! out -- Number of attributes.
INTEGER*4 status) ! out -- Completion status

CDF_get_num_gattrs acquires the total number of global attributes in a CDF.

The arguments to CDF_get_num_gattrs are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attrs The number of global attributes.

status The completion status code. Chapter 8 explains how to interpret status codes.

183

6.4.29.1. Example(s)

The following example acquires the total number of global attributes in a CDF.

INCLUDE "<path>cdf. inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 attrs 1 Attributes.
INTEGER*4 status 1 Returned status code.

CALL CDF_get num gattrs (id, attrs, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.30 CDF_get_num_vattrs

SUBROUTINE CDF_get num_vattrs (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 attrs, ! out -- Number of attributes.
INTEGER*4 status) ! out -- Completion status

CDF_get_num_vattrs acquires the total number of variable attributes in a CDF.

The arguments to CDF_get_num_vattrs are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attrs The number of variable attributes.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.30.1. Example(s)

The following example acquires the total number of variable attributes in a CDF.

INCLUDE *<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 attrs 1 Attributes.

184

INTEGER*4 status I Returned status code.

CALL CDF_get num vattrs (id, attrs, status)

IF (status .NE.

CDF_OK) CALL UserStatusHandler (status)

6.4.31 CDF _inquire_attr

SUBROUTINE CDF_inquire_attr (

INTEGER*4 id,
INTEGER*4 attr_num,

CHARACTER attr_name*(CDF_ATTR_NAME_LENZ256),

INTEGER*4 attr_scope,

INTEGER*4 max_gentry,
INTEGER*4 max_rentry,
INTEGER*4 max_zentry,

INTEGER*4 status)

in -- CDF identifier.

in -- Attribute number.

out -- Attribute name.

out -- Attribute scope.

out -- Maximum gEntry number if global attribute.
out -- Maximum rEntry number if variable attribute.
out -- Maximum zEntry number if variable attribute.
out -- Completion status

CDF_inquire_attr is used to inquire about the specified attribute. This subroutine expands the original Standard
Interface subroutine CDF_attr_inquire (Section 5.4) by including an extra information about zEntry if variable attribute
is involved. To inquire about a specific attribute entry, use CDF_inquire_attr_gentry (Section 6.4.32),
CDF_inquire_attr_rentry (Section 6.4.33) or CDF _inquire_attr_zentry (Section 6.4.34).

The arguments to CDF_inquire_attr are defined as follows:

id

attr_num

attr_name

attr_scope

max_gentry

max_rentry

max_zentry

The identifier of the CDF. This identifier must have been initialized by a call to
CDF _create_cdf or CDF_open_cdf.

The number of the attribute to inquire. This number may be determined with a call to
CDF _get_attr_num (see Section 6.4.17).

The attribute's name. This character string must be large enough to hold
CDF_ATTR_NAME_LEN256 characters and will be blank padded if necessary.

The scope of the attribute. Attribute scopes are defined in Section 4.12,

For gAttributes this is the maximum gEntry number used. This may not correspond with
the number of entries (if some entry numbers were not used). The number of entries
actually used may be inquired with CDF_get_attr_num_gentries (see Section 6.4.18). If no
entries exist for the attribute, then a value of zero (0) will be passed back.

For vAttributes this is the maximum rEntry number used. This may not correspond with the
number of entries (if some entry numbers were not used). The number of entries actually
used may be inquired with CDF_get_attr_num_rentries (see Section 6.4.19). If no entries
exist for the attribute, then a value of zero (0) will be passed back.

For vAttributes, this is the maximum zEntry number used. This may not correspond with
the number of entries (if some entry numbers were not used). The number of entries

185

actually used may be inquired with the CDF_get_attr_num_zentries subroutine (see Section
6.4.20). If no entries exist for the attribute, such as for gAttributes, then a value of zero (0)
will be passed back.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.31.1. Example(s)

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined using the subroutine CDF_inquire. Only variable attributes may return non-zero maximum zEntry number.
Note that attribute numbers start at one (1) and are consecutive.

10

INCLUDE *<path>cdf.inc"

INTEGER*4 id

INTEGER*4 status

INTEGER*4 num_dims

INTEGER*4 dim_sizes(CDF_MAX_DIMS)

CDF identifier.

Returned status code.

Number of dimensions.
Dimension sizes (allocate to
allow the maximum number of
dimensions).

Data encoding.

Variable majority.

Maximum record number in CDF.
Number of variables in CDF.
Number of attributes in CDF.
Attribute number.

Attribute name.

Attribute scope.

Maximum gEntry number.
Maximum rEntry number.
Maximum zEntry number.

INTEGER*4 encoding
INTEGER*4 majority
INTEGER*4 max_rec
INTEGER*4 num_vars
INTEGER*4 num_attrs
INTEGER*4 attr_n
CHARACTER attr_name*(CDF_ATTR_NAME_LEN256)
INTEGER*4 attr_scope
INTEGER*4 max_gentry
INTEGER*4 max_rentry
INTEGER*4 max_zentry

CALL CDF_inquire (id, num_dims, dim_sizes, encoding, majority,
1 max_rec, num_vars, num_attrs, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)
DO attr_n = 1, num_attrs
CALL CDF_inquire_attr (id, attr_n, attr_name, attr_scope, max_gentry,
max_rentry, max_zentry, status)
IF (status .LT. CDF_OK) THEN I INFO status codes ignored.
CALL UserStatusHandler (status)
ELSE
WRITE (6,10) attr_name
FORMAT (* ",A)
END IF
END DO

186

6.4.32 CDF_inquire_attr

SUBROUTINE CDF _inquire_attr_gentry (

INTEGER*4 id, !
INTEGER*4 attr_num, !
INTEGER*4 entry_num, !
INTEGER*4 data_type, !
INTEGER*4 num_elements, !
INTEGER*4 status) !

gentry

in -- CDF identifier.

in -- Global attribute number.

in -- Entry number.

out -- Data type.

out -- Number of elements (of the data type).
out -- Completion status

CDF_inquire_attr_gentry is used to inquire about a specific global attribute’s entry. To inquire about the attribute in
general, use CDF_inquire_attr (see Section 6.4.31). CDF _inquire_attr_gentry would normally be called before calling
CDF_get_attr_gentry in order to determine the data type and number of elements (of that data type) for an entry. This
would be necessary to correctly allocate enough memory to receive the value read by CDF_attr_get.

The arguments to CDF_attr_entry_inquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

attr_num The global attribute number for which to inquire an entry. This number may be
determined with a call to CDF_get_attr_num (see Section 6.4.17).

entry_num The entry number to inquire. This is simply the gEntry number and has meaning only to

the application.

data_type The data type of the specified entry. The data types are defined in Section 4.5.

num_elements The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.32.1. Example(s)

The following example inquires each entry for a global attribute. Note that entry numbers need not be consecutive -
not every entry number between one (1) and the maximum entry number must exist. For this reason
NO_SUCH_ENTRY is an expected error code.

INCLUDE *<path>cdf.inc"

INTEGER*4 id

INTEGER*4 status
INTEGER*4 attr_n
INTEGER*4 entryN

CHARACTER attr_name*(CDF_ATTR_NAME_LEN256)

INTEGER*4 attr_scope
INTEGER*4 max_gentry
INTEGER*4 max_rentry

CDF identifier.

Returned status code.
Attribute number.

Entry number.

Attribute name.

Attribute scope.

Maximum gEntry number used.
Maximum rEntry number used.

187

INTEGER*4 max_zentry
INTEGER*4 data_type
INTEGER*4 num_elems

I Maximum zEntry number used.
1 Data type.

I Number of elements (of the
I data type).

attr_n = CDF_get_attr_num (id, "TMP®)
IF (attr_n _.LT. 1) CALL UserStatusHandler (attr_n) ! If less than one (1),

I then it must be a
I warning/error code.

CALL CDF_inquire_attr (id, attr_n, attr_name, attr_scope, max_gentry,
1 max_rentry, max_zentry, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

DO entryN = 1, max_gentry

CALL CDF_inquire_attr_gentry (id, attr_n, entryN, data_type, num_elems,

1

IF (status .LT. CDF_OK) THEN
IF (status _NE. NO_SUCH_ENTRY) CALL UserStatusHandler (status)

ELSE
C (process entries)

END IF
END DO

status)

6.4.33 CDF_inquire_attr_rentry

SUBROUTINE CDF_inquire_attr_rentry (

INTEGER*4 id, !
INTEGER*4 attr_num, !
INTEGER*4 entry_num, !
INTEGER*4 data_type, !
INTEGER*4 num_elements, !
INTEGER*4 status) !

in --
in --
in --
out --
out --

out --

CDF identifier.

Variable attribute number.

Entry number.

Data type.

Number of elements (of the data type).
Completion status

CDF_inquire_attr_rentry is used to inquire about a specific entry, corresponding to an rVariable, in a variable attribute,
(rEntry). To inquire about the attribute in general, use CDF_inquire_attr (see Section 6.4.31). CDF_inquire_attr_rentry
would normally be called before calling CDF_get_attr_rentry in order to determine the data type and number of
elements (of that data type) for an entry. This would be necessary to correctly allocate enough memory to receive the

value read by CDF_get_attr_zentry.

The arguments to CDF_inquire_attr_rentry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

attr_num The attribute number for which to inquire an entry. This number may be determined
with a call to CDF_get_attr_num (see Section 6.4.17).

entry_num The entry number to inquire. The attribute must be variable in scope. This is the number
of the associated rVariable (the rVVariable being described in some way by the zEntry).

188

data_type The data type of the specified entry. The data types are defined in Section 4.5.

num_elements The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.33.1. Example(s)

The following example inquires each rEntry for variable attribute “TMP” in a CDF. Note that entry numbers need not
be consecutive - not every entry number between one (1) and the maximum entry number must exist. For this reason
NO_SUCH_ENTRY is an expected error code

INCLUDE *<path>cdf. inc"

INTEGER*4 id

INTEGER*4 status

INTEGER*4 attr_n

INTEGER*4 entryN

CHARACTER attr_name*(CDF_ATTR_NAME_LEN256)
INTEGER*4 attr_scope

INTEGER*4 max_gentry

INTEGER*4 max_rentry

INTEGER*4 max_zentry

CDF identifier.

Returned status code.
Attribute number.

Entry number.

Attribute name.

Attribute scope.

Maximum gEntry number used.
Maximum rEntry number used.
Maximum zEntry number used.

INTEGER*4 data_type Data type.
INTEGER*4 num_elems Number of elements (of the
data type).

attr_n = CDF_get_attr_num (id, "TMP®)
IF (attr_n .LT. 1) CALL UserStatusHandler (attr_n) ! If less than one (1),
I then it must be a
I warning/error code.
CALL CDF_inquire_attr (id, attr_n, attr_name, attr_scope, max_gentry,
1 max_rentry, max_zentry, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)
DO entryN = 1, max_rentry
CALL CDF_inquire_attr_rentry (id, attr_n, entryN, data_type, num_elems,
1 status)
IF (status .LT. CDF_OK) THEN
IF (status _NE. NO_SUCH_ENTRY) CALL UserStatusHandler (status)
ELSE
C (process entries)

END IF
END DO

189

6.4.34

CDF_inquire_attr_zentry

SUBROUTINE CDF _inquire_attr_zentry (

INTEGER*4 id,

INTEGER*4 attr_num,
INTEGER*4 entry_num,
INTEGER*4 data_type,

INTEGER*4 num_elements,

INTEGER*4 status)

1'in -- CDF identifier.

1'in -- Variable attribute number.

I'in -- Entry number.

! out -- Data type.

! out -- Number of elements (of the data type).
! out -- Completion status

CDF_inquire_attr_zentry is used to inquire about a specific entry, corresponding to a zVariable, in a variable attribute,

(zEntry). To inquire

about the attribute in general, use CDF_inquire attr (see Section 6.4.31).

CDF _inquire_attr_zentry would normally be called before calling CDF_get_attr_zentry in order to determine the data
type and number of elements (of that data type) for an entry. This would be necessary to correctly allocate enough
memory to receive the value read by CDF_get_attr_zentry.

The arguments to CDF_inquire_attr_zentry are defined as follows:

id

attr_num

entry_num

data_type

num_elements

status

6.4.34.1.

The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

The attribute number for which to inquire an entry. This number may be determined
with a call to CDF_get_attr_num (see Section 6.4.17).

The entry number to inquire. The attribute must be variable in scope. This is the number
of the associated zVariable (the zVariable being described in some way by the zEntry).

The data type of the specified entry. The data types are defined in Section .
The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).

For all other data types this is the number of elements in an array of that data type.

The completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example inquires each zEntry for variable attribute “TMP” in a CDF. Note that entry numbers need not
be consecutive - not every entry number between one (1) and the maximum entry number must exist. For this reason
NO_SUCH_ENTRY is an expected error code.

INCLUDE *<path>cdf.inc"

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4

id

status
attr_n
entryN

attr_name*(CDF_ATTR_NAME_LEN256)
attr_scope
max_gentry

CDF identifier.

Returned status code.
Attribute number.

Entry number.

Attribute name.

Attribute scope.

Maximum gEntry number used.

190

INTEGER*4 max_rentry
INTEGER*4 max_zentry
INTEGER*4 data_type
INTEGER*4 num_elems

Maximum rEntry number used.
Maximum zEntry number used.
Data type.
Number of elements (of the
data type).

attr_n = CDF_get_attr_num (id, "TMP®)
IF (attr_n .LT. 1) CALL UserStatusHandler (attr_n) ! If less than one (1),

I then it must be a
I warning/Zerror code.

CALL CDF_inquire_attr (id, attr_n, attr_name, attr_scope, max_gentry,

max_rentry, max_zentry, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

DO entryN = 1, max_zentry
CALL CDF_inquire_attr_zentry (id, attr_n, entryN, data_type, num_elems,

1

status)

IF (status _NE. NO_SUCH_ENTRY) CALL UserStatusHandler (status)

1
IF (status .LT. CDF_OK) THEN
ELSE
C (process entries)
END IF
END DO

6.4.35 CDF_put_attr_gentry

SUBROUTINE CDF_put_attr_gentry (

INTEGER*4 id,
INTEGER*4 attr_num,
INTEGER*4 entry_num,

INTEGER*4 num_elements,
<type> value,
INTEGER*4 status)

CDF_put_attr_gentry is used to write an gentry to a variable attribute in a CDF. The entry may or may not already
exist. If it does exist, it is overwritten. The data type and number of elements (of that data type) may be changed when

overwriting an existing entry.

!
!
[
INTEGER*4 data_type, i
!
!
|

55555
1 1 1 1 1
1 1 1 1 1

in --
out --

CDF identifier.

Global attribute number.

Entry number.

Data type of this entry.

Number of elements (of the data type).

Value (<type> is dependent on the data type of the enrty).
Completion status

The arguments to CDF_put_attr_gentry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to

CDF_create_cdf or CDF_open_cdf.

attr_num The global attribute number.

CDF _get_attr_num (see Section 6.4.17).

entry_num The entry number. The attribute must be global in scope.

191

This number may be determined with a call to

data_type

num_elements

value

status

The data type of the specified entry. Specify one of the data types defined in Section
4.5,

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry
does not have one of the character data types, then value must NOT be a
CHARACTER Fortran variable.

The completion status code. Chapter 8 explains how to interpret status codes.

6.4.35.1. Example(s)

The following example writes one global attribute’s gEntry. It is to the global scope attribute VALIDs for gEntry
numbered 2. This entry is of CDF_INT2 type.

INCLUDE *<path>cdf

INTEGER*4 id
INTEGER*4 status

INTEGER*4 num_elements

INTEGER*2 TMPvalid

DATA TMPvalids/15/

num_elements = 1

.inc”

1 CDF identifier.

1 Returned status code.

I Number of elements (of data type).
1 Value of VALIDs attribute.

CALL CDF_put_attr_gentry (id, CDF_get attr_num(id, "VALIDs"), 2,

1

CDF_INT2, num_elements, TMPvalid, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.36 CDF_put_attr_rentry

SUBROUTINE CDF_put_attr_rentry (

INTEGER*4 id,
INTEGER*4 attr_num,
INTEGER*4 entry_num,
INTEGER*4 data_type,

I'in -- CDF identifier.

I'in -- Variable attribute number.
I'in -- Entry number.

I'in -- Data type of this entry.

192

INTEGER*4 num_elements, I'in -- Number of elements (of the data type).
<type> value, I'in -- Value (<type> is dependent on the data type of the enrty).
INTEGER*4 status) ! out -- Completion status

CDF_put_attr_rentry is used to write an entry, corresponding to an rVariable, (rEntry) to a variable attribute in a CDF.
The entry may or may not already exist. If it does exist, it is overwritten. The data type and number of elements (of
that data type) may be changed when overwriting an existing entry.

The arguments to CDF_put_attr_rentry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF _create_cdf or CDF_open_cdf.

attr_num The attribute number. This number may be determined with a call to
CDF_get_attr_num (see Section 6.4.17).

entry_num The entry number. The attribute must be variable in scope. This is the number of the
associated rVariable (the rVVariable being described in some way by the zEntry).

data_type The data type of the specified entry. Specify one of the data types defined in Section
4.5,
num_elements The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

value The value(s) to write. The entry value is written to the CDF from memory address
value.

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry
does not have one of the character data types, then value must NOT be a
CHARACTER Fortran variable.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.36.1. Example(s)

The following example writes one variable attribute’s rEntry. It is to the variable scope attribute VALIDs for the rEntry
that corresponds to the zVariable TMP. This entry has two (2) elements, each one is of CDF_INT2 type.

INCLUDE "<path>cdf.inc"

CDF identifier.

Returned status code.

Number of elements (of data type).
Value(s) of VALIDs attribute,

INTEGER*4 id

INTEGER*4 status
INTEGER*4 num_elements
INTEGER*2 TMPvalids(2)

DATA TMPvalids/15,30/

193

num_elements

CALL CDF_put_attr_rentry (id, CDF_get _attr_num(id, "VALIDs"),

1
2

CDF_get_var_num(id, "TMP*®),
CDF_INT2, num_elements, TMPvalids, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.37 CDF_put_attr_zentry

SUBROUTINE CDF_put_attr_zentry (

INTEGER*4 id,

INTEGER*4 attr_num,
INTEGER*4 entry_num,
INTEGER*4 data_type,
INTEGER*4 num_elements,
<type> value,
INTEGER*4 status)

I'in -- CDF identifier.

I'in -- Variable attribute number.

1in -- Entry number.

! in -- Data type of this entry.

1in -- Number of elements (of the data type).

I'in -- Value (<type> is dependent on the data type of the enrty).
|

out -- Completion status

CDF_put_attr_zentry is used to write an entry, corresponding to a zVariable, (zEntry) to a variable attribute in a CDF.
The entry may or may not already exist. If it does exist, it is overwritten. The data type and number of elements (of
that data type) may be changed when overwriting an existing entry.

The arguments to CDF_put_attr_zentry are defined as follows:

id

attr_num

entry_num

data_type

num_elements

value

status

The identifier of the CDF. This identifier must have been initialized by a call to
CDF _create_cdf or CDF_open_cdf.

The attribute number. This number may be determined with a call to
CDF _get_attr_num (see Section 6.4.17).

The entry number. The attribute must be variable in scope. This is the number of the
associated zVariable (the zVariable being described in some way by the zEntry).

The data type of the specified entry. Specify one of the data types defined in Section
4.5,

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry
does not have one of the character data types, then value must NOT be a
CHARACTER Fortran variable.

The completion status code. Chapter 8 explains how to interpret status codes.

194

6.4.37.1. Example(s)

The following example writes one variable attribute’s zEntry. It is to the variable scope attribute VALIDs for the
zEntry that corresponds to the zVariable TMP. This entry has two (2) elements, each one is of CDF_INT2 type.

INCLUDE *<path>cdf.inc"

CDF identifier.

Returned status code.

Number of elements (of data type).
Value(s) of VALIDs attribute,

INTEGER*4 1id

INTEGER*4 status
INTEGER*4 num_elements
INTEGER*2 TMPvalids(2)

DATA TMPvalids/15,30/

num_elements = 2

CALL CDF _put_attr_zentry (id, CDF_get attr_num(id, "VALIDs"),
1 CDF_get_var_num(id, "TMP*®),
2 CDF_INT2, num_elements, TMPvalids, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.38 CDF_rename_attr

SUBROUTINE CDF_rename_attr (

in -- CDF identifier.

in -- Attribute number.
in -- New attribute name.
out -- Completion status.

INTEGER*4 id, !
INTEGER*4 num_attr, !
CHARACTER attr_name*(*), !
INTEGER*4 status) !
CDF_rename_attr is used to rename an existing attribute. An attribute with the new name must not already exist in the
CDF.

The arguments to CDF_rename_attr are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF_create_cdf or CDF_open_cdf.

attr_num The number of the attribute to rename. This number may be determined with a call to
CDF_get_attr_num (see Section 6.4.17).

attr_name The new attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters.
Attribute names are case-sensitive.

195

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.38.1. Example(s)

In the following example the attribute named LAT is renamed to LATITUDE.

iNCLUDE "<path>cdf.inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status 1 Returned status code.

CALL CDF_rename_attr (id, CDF _get attr_num(id,"LAT"), "LATITUDE", status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.39 CDF_set_attr_gentry_dataspec

SUBROUTINE CDF _set_attr_gentry dataspec (

INTEGER*4 data_type,
INTEGER*4 status)

in -- Data type.
out -- Completion status

INTEGER*4 id, 1 in-- CDF identifier.
INTEGER*4 attr_num, ! in -- Global attribute number.
INTEGER*4 entry_num, ! in -- gEntry number.

!

!

CDF_set_attr_gentry dataspec respecifies the data specification (data type and number of elements) of a gEntry of a
global attribute in a CDF. The only part of the data specification that can be changed is the data type. However, the new
and old data type must be equivalent. Refer to the CDF User’s Guide for the descriptions of equivalent data types.

The arguments to CDF_set_attr_gentry_dataspec are defined as follows;

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr_ num The (global) attribute number.
entry_num The gEntry number.
data_type The data type.

status The completion status code. Chapter 8 explains how to interpret status codes.

196

6.4.39.1. Example(s)

The following example modifies a gEntry’s (numbered 2) data specification in the global attribute “MY_ATTR” in a
CDF. It will change its original data type from CDF_INT2 to CDF_UINT2.

INCLUDE "<path>cdf. inc"

INTEGER*4 id I CDF identifier.
INTEGER*4 entry_num I gEntry number.
INTEGER*4 status I Returned status code.

entry_num = 2

CALL CDF_set_attr_gentry dataspec (id, CDF _get attr_num(id, “MY_ATTR?),
1 entry _num, CDF_UINT2, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.40 CDF _set_attr_rentry_dataspec

SUBROUTINE CDF_set_attr_rentry_dataspec (

INTEGER*4 data_type,
INTEGER*4 status)

in -- Data type.
out -- Completion status

INTEGER*4 id, ! in-- CDF identifier.
INTEGER*4 attr_num, ! in -- Variable attribute number.
INTEGER*4 entry_num, I in -- rEntry number.

!

1

CDF_set_attr_rentry_dataspec respecifies the data specification (data type and number of elements) of an rEntry,
corresponding to an rVariable, of a variable attribute in a CDF. The only part of the data specification that can be
changed is the data type. However, the new and old data type must be equivalent. Refer to the CDF User’s Guide for
the descriptions of equivalent data types.

The arguments to CDF_set_attr_rentry_dataspec are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The (variable) attribute number.
entry_num The rEntry number.
data_type The data type.

status The completion status code. Chapter 8 explains how to interpret status codes.

197

6.4.40.1. Example(s)

The following example modifies an rEntry’s (corresponding to rVariable “MY_VAR”) data specification in the
variable attribute “MY_ATTR” in a CDF. It will change its original data type from CDF_INT2 to CDF_UINT2.

INCLUDE "<path>cdf. inc"

INTEGER*4 id 1 CDF identifier.
INTEGER*4 status 1 Returned status code.

CALL CDF_set_attr_rentry_dataspec (id, CDF_get_ attr_num(id, “MY_ATTR?),
1 CDF_get_var_num(id, “MY_VAR?),

2 CDF_UINT2, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

6.4.41 CDF_set_attr_scope

SUBROUTINE CDF_set_attr_scope (

in -- CDF identifier.

in -- Attribute number.
in -- Attribute scope.

out -- Completion status

INTEGER*4 id,
INTEGER*4 attr_num,
INTEGER*4 scope,

!
!
!
INTEGER*4 status) !

CDF_set_attr_scope respecifies the scope of an attribute in a CDF. Specify one of the scopes described in Section 4.12.
Global-scoped attributes will contain only gEntries, while variable-scoped attributes can hold rEntries and zEntries.

The arguments to CDF_set_attr_scope are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The attribute number.
scope The attribute scope.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.41.1. Example(s)

The following example respecifies the scope to VARIABLE _SCOPE (from its original GLOBAL_SCOPE) for
attribute “MY_ATTR” in a CDF.

198

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 status 1 Returned status code.

CALL CDF_set_attr_scope (id, CDF_get attr _num(id, “MY_ATTR”?), VARIABLE_SCOPE,
1 status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

6.4.42 CDF_set_attr_zentry_ dataspec

SUBROUTINE CDF_set_attr_zentry dataspec (

INTEGER*4 data_type,
INTEGER*4 status)

in -- Data type.
out -- Completion status

INTEGER*4 id, ! in-- CDF identifier.
INTEGER*4 attr_num, ! in-- Variable attribute number.
INTEGER*4 entry_num, ! in -- zEntry number.

!

!

CDF_set_attr_zentry dataspec respecifies the data specification (data type and number of elements) of a zEntry,
corresponding to a zVariable, of a variable attribute in a CDF. The only part of the data specification that can be
changed is the data type. However, the new and old data type must be equivalent. Refer to the CDF User’s Guide for
the descriptions of equivalent data types.

The arguments to CDF_set_attr_zentry dataspec are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create_cdf or
CDF_open_cdf.

attr num The (variable) attribute number.
entry_num The zEntry number.

data_type The data type.

num_elems The number of elements.

status The completion status code. Chapter 8 explains how to interpret status codes.

6.4.42.1. Example(s)

The following example modifies a zEntry’s (corresponding to zVariable “MY_VAR?”) data specification in the variable
attribute “MY_ATTR” in a CDF. It will change its original data type from CDF_INT2 to CDF_UINT2.

199

INCLUDE *<path>cdf.inc"

INTEGER*4 id ! CDF identifier.
INTEGER*4 status 1 Returned status code.

CALL CDF_set_attr_zentry dataspec (id, CDF _get attr_num(id, “MY_ATTR?),
1 CDF_get_var_num(id, “MY_VAR?),
2 CDF_UINT2, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

200

Chapter 7

7 Internal Interface — CDF _lib

The Internal interface consists of only one routine, CDF_lib.* CDF_lib can be used to perform all possible operations
on a CDF. In fact, all of the Standard Interface functions are implemented using the Internal Interface. CDF_lib must
be used to perform operations not possible with the Standard Interface functions. These operations would involve CDF
features added after the Standard Interface functions had been defined (e.g., specifying a single-file format for a CDF,
accessing zVariables, or specifying a pad value for an rVariable or zVariable). Note that CDF _lib can also be used to
perform certain operations more efficiently than with the Standard Interface functions.

CDF_lib takes a variable number of arguments that specify one or more operations to be performed (e.g., opening a
CDF, creating an attribute, or writing a variable value). The operations are performed according to the order of the
arguments. Each operation consists of a function being performed on an item. An item may be either an object (e.g., a
CDF, variable, or attribute) or a state (e.g., a CDF's format, a variable's data specification, or a CDF's current attribute).
The possible functions and corresponding items (on which to perform those functions) are described in Section 7.6.

7.1 Example(s)

The easiest way to explain how to use CDF_lib would be to start with a few examples. The following example shows
how a CDF would be created with the single-file format (assuming multi-file is the default).

INCLUDE *<path>cdf.inc"

CDF identifier.
Returned status code.
Name of the CDF.
Number of dimensions.
Dimension sizes.
Format of CDF.

INTEGER*4 id

INTEGER*4 status
CHARACTER CDF_name*5
INTEGER*4 num_dims
INTEGER*4 dim_sizes(1)
INTEGER*4 format

DATA CDF_name/"testl®"/, num_dims/0/, dim_sizes/0/,

! See section 6.5.1 for an ugly exception to this.

201

1 format/SINGLE_FILE/

CALL CDF_create_cdf (CDF_name, id, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

status
2

CDF_lib (PUT_, CDF_FORMAT , format,

NULL_, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

The call to CDF_create created the CDF as expected but with a format of multi-file (assuming that is the default). The
call to CDF _lib is then used to change the format to single-file (which must be done before any variables are created in

the CDF).

The arguments to CDF _lib in this example are explained as follows:

PUT_

CDF_FORMAT

format

NULL_

status

The first function to be performed. in this case An item is going to be put to the
“current” CDF (a new format). PUT _is defined in cdf.inc (as are all CDF constants). It
was not necessary to select a current CDF since the call to CDF_create implicitly
selected the CDF created as the current CDF.? This is the case since all of the Standard
Interface functions actually call the Internal Interface to perform their operations.

The item to be put. In this case it is the CDF's format.

The actual format for the CDF. Depending on the item being put, one or more
arguments would have been necessary. In this case only one argument is necessary.

This argument could have been one of two things. It could have been another item to put
(followed by the arguments required for that item) or it could have been a new function
to perform. In this case it is a new function to perform - the NULL_function. NULL
indicates the end of the call to CDF _lib. Specifying NULL _ at the end of the argument
list is required because not all compilers/operating systems provide the ability for a
called function to determine how many arguments were passed in by the calling function.

The completion status code. Note that CDF _lib also returns the completion status code.?
Chapter 8 explains how to interpret status codes.

The next example shows how the same CDF could have been created using only one call to CDF_lib. (The
declarations would be the same.)

status
1
2

CDF_lib (CREATE_, CDF_, CDF_name, num dims, dim_sizes, id,

PUT_, CDF_FORMAT , format,
NULL_, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

% In previous releases of CDF, it was required that the current CDF be selected in each call to CDF_lib. That
requirement has been eliminated. The CDF library now maintains the current CDF from one call to the next of

CDF_lib.

¥ Section 6.5 explains why it does both.

202

The purpose of each argument is as follows:

CREATE_

CDF_

CDF_name
num_dims
dim_sizes

id

PUT_

CDF_FORMAT _

format

NULL_

status

The first function to be performed. In this case something will be created.

The item to be created - a CDF in this case. There are four required arguments that
must follow. When a CDF is created (with CDF _lib), the format, encoding, and
majority default to values specified when your CDF distribution was built and
installed. Consult your system manager for these defaults.

The file name of the CDF.

The number of dimensions in the CDF.

The dimension sizes.

The identifier to be used when referencing the created CDF in subsequent
operations.

This argument could have been one of two things. Another item to create or a new
function to perform. In this case it is another function to perform - something will
be put to the CDF.

Once again this argument could have been either another item to put or a new
function to perform. It is another item to put - the CDF's format.

The format to be put to the CDF.

This argument could have been either another item to put or a new function to
perform. Here it is another function to perform - the NULL_function that ends the
call to CDF_lib.

The completion status code. Note that CDF_lib also returns the completion status
code. Chapter 8 explains how to interpret status codes.

Note that the operations are performed in the order that they appear in the argument list. The CDF had to be created
before the encoding, majority, and format could be specified (put).

7.2 Current Objects/States (Items)

The use of CDF _lib requires that an application be aware of the current objects/states maintained by the CDF library.
The following current objects/states are used by the CDF library when performing operations.

CDF (object)

A CDF operation is always performed on the current CDF. The current CDF is implicitly selected whenever a
CDF is opened or created. The current CDF may be explicitly selected using the <SELECT_,CDF_>* operation.
There is no current CDF until one is opened or created (which implicitly selects it) or until one is explicitly

selected.®

* This notation is used to specify a function to be performed on an item. The syntax is <function_,item_>.
® In previous releases of CDF, it was required that the current CDF be selected in each call to CDF_lib. That
requirement no longer exists. The CDF library now maintains the current CDF from one call to the next of CDF_lib.

203

rVVariable (object)
An rVariable operation is always performed on the current rVariable in the current CDF. For each open CDF a
current rVariable is maintained. This current rVariable is implicitly selected when an rVariable is created (in the
current CDF) or it may be explicitly selected with the <SELECT_,rVAR_> or <SELECT_,r'VAR_NAME_>
operations. There is no current rVariable in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

zVariable (object)
A zVariable operation is always performed on the current zVariable in the current CDF. For each open CDF a
current zVariable is maintained. This current zVariable is implicitly selected when a zVariable is created (in the
current CDF) or it may be explicitly selected with the <SELECT ,zZVAR_> or <SELECT ,zVAR_NAME_>
operations. There is no current zVariable in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

attribute (object)
An attribute operation is always performed on the current attribute in the current CDF. For each open CDF a
current attribute is maintained. This current attribute is implicitly selected when an attribute is created (in the
current CDF) or it may be explicitly selected with the <SELECT ,ATTR_ > or <SELECT ,ATTR_NAME_>
operations. There is no current attribute in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

gEntry number (state)
A gAttribute gEntry operation is always performed on the current gEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current gEntry number is maintained. This current gEntry
number must be explicitly selected with the <SELECT_,gENTRY _> operation. (There is no implicit or default
selection of the current gEntry number for a CDF.) Note that the current gEntry number is maintained for the
CDF (not each attribute) - it applies to all of the attributes in that CDF.

rEntry number (state)
A VAttribute rEntry operation is always performed on the current rEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current rEntry number is maintained. This current rEntry
number must be explicitly selected with the <SELECT _,rENTRY_> operation. (There is no implicit or default
selection of the current rEntry number for a CDF.) Note that the current rEntry number is maintained for the CDF
(not each attribute) - it applies to all of the attributes in that CDF.

ZEntry number (state)
A VAttribute zEntry operation is always performed on the current zEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current zEntry number is maintained. This current zEntry
number must be explicitly selected with the <SELECT _,zZENTRY_> operation. (There is no implicit or default
selection of the current zEntry number for a CDF.) Note that the current zEntry number is maintained for the CDF
(not each attribute) - it applies to all of the attributes in that CDF.

record number, rVariables (state)
An rVariable read or write operation is always performed at (for single and multiple variable reads and writes) or
starting at (for hyper reads and writes) the current record number for the rVariables in the current CDF. When a
CDF is opened or created, the current record number for its rVariables is initialized to zero (0). It may then be
explicitly selected using the <SELECT_,r'VARs_ RECNUMBER_> operation. Note that the current record
number for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the rVariables in that
CDF.

record count, rVVariables (state)
An rVariable hyper read or write operation is always performed using the current record count for the rVariables
in the current CDF. When a CDF is opened or created, the current record count for its rVariables is initialized to
one (1). It may then be explicitly selected using the <SELECT ,rVARs RECCOUNT_> operation. Note that the
current record count for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the
rVariables in that CDF.

204

record interval, rVariables (state)
An rVariable hyper read or write operation is always performed using the current record interval for the
rVariables in the current CDF. When a CDF is opened or created, the current record interval for its rVariables is
initialized to one (1). It may then be explicitly selected using the <SELECT_,rVARs_RECINTERVAL_ >
operation. Note that the current record interval for rVariables is maintained for a CDF (not each rVariable) - it
applies to all of the rVariables in that CDF.

dimension indices, rVVariables (state)
An rVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current dimension indices for the rVariables in the current CDF. When a CDF is opened or
created, the current dimension indices for its rVariables are initialized to zeroes (0,0,...). They may then be
explicitly selected using the <SELECT_,rVARs_DIMINDICES > operation. Note that the current dimension
indices for rVariables are maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that
CDF. For 0-dimensional rVVariables the current dimension indices are not applicable.

dimension counts, rVariables (state)
An rVariable hyper read or write operation is always performed using the current dimension counts for the
rVariables in the current CDF. When a CDF is opened or created, the current dimension counts for its rVariables
are initialized to the dimension sizes of the rVariables (which specifies the entire array). They may then be
explicitly selected using the <SELECT_,rVARs_DIMCOUNTS_> operation. Note that the current dimension
counts for rVariables are maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that
CDF. For 0-dimensional rVariables the current dimension counts are not applicable.

dimension intervals, rVariables (state)
An rVariable hyper read or write operation is always performed using the current dimension intervals for the
rVariables in the current CDF. When a CDF is opened or created, the current dimension intervals for its
rVariables are initialized to ones 1.1,..). They may then be explicitly selected using the
<SELECT ,rVARs DIMINTERVALS_ > operation. Note that the current dimension intervals for rVVariables are
maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that CDF. For 0-dimensional
rVariables the current dimension intervals are not applicable.

sequential value, rVariable (state)
An rVariable sequential read or write operation is always performed at the current sequential value for that
rVariable. When an rVariable is created (or for each rVariable in a CDF being opened), the current sequential
value is set to the first physical value (even if no physical values exist yet). It may then be explicitly selected
using the <SELECT_,rVAR_SEQPOS_> operation. Note that a current sequential value is maintained for each
rVariable in a CDF.

record number, zVariable (state)

A zVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current record number for the current zVariable in the current CDF. A multiple variable read
or write operation is performed at the current record number of each of the zVariables involved. (The record
numbers do not have to be the same.) When a zVariable is created (or for each zVariable in a CDF being
opened), the current record number for that zVariable is initialized to zero (0). It may then be explicitly selected
using the <SELECT_,zVAR_RECNUMBER_> operation (which only affects the current zVariable in the current
CDF). Note that a current record number is maintained for each zVariable in a CDF.

record count, zVariable (state)
A zVariable hyper read or write operation is always performed using the current record count for the current
zVariable in the current CDF. When a zVariable created (or for each zVariable in a CDF being opened), the
current record count for that zVariable is initialized to one (1). It may then be explicitly selected using the
<SELECT ,zZVAR_RECCOUNT _> operation (which only affects the current zVariable in the current CDF). Note
that a current record count is maintained for each zVariable in a CDF.

record interval, zVariable (state)

205

A zVariable hyper read or write operation is always performed using the current record interval for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current record interval for that zVariable is initialized to one (1). It may then be explicitly selected using the
<SELECT_,zZVAR_RECINTERVAL_> operation (which only affects the current zVariable in the current CDF).
Note that a current record interval is maintained for each zVariable in a CDF.

dimension indices, zVariable (state)

A zVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current dimension indices for the current zVariable in the current CDF. When a zVariable is
created (or for each zVariable in a CDF being opened), the current dimension indices for that zVariable are
initialized to zeroes (0,0,...). They may then be explicitly selected using the <SELECT ,zVAR_DIMINDICES >
operation (which only affects the current zVariable in the current CDF). Note that current dimension indices are
maintained for each zVariable in a CDF. For 0-dimensional zVariables the current dimension indices are not
applicable.

dimension counts, zVariable (state)

A zVariable hyper read or write operation is always performed using the current dimension counts for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current dimension counts for that zVariable are initialized to the dimension sizes of that zVariable (which
specifies the entire array). They may then be explicitly selected using the <SELECT ,zVAR_DIMCOUNTS >
operation (which only affects the current zVariable in the current CDF). Note that current dimension counts are
maintained for each zVariable in a CDF. For 0-dimensional zVariables the current dimension counts are not
applicable.

dimension intervals, zVariable (state)
A zVariable hyper read or write operation is always performed using the current dimension intervals for the
current zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened),
the current dimension intervals for that zVariable are initialized to ones (1,1,...). They may then be explicitly
selected using the <SELECT _,zVAR_DIMINTERVALS_> operation (which only affects the current zVariable in
the current CDF). Note that current dimension intervals are maintained for each zVariable in a CDF. For 0-
dimensional zVariables the current dimension intervals are not applicable.

sequential value, zVariable (state)
A zVariable sequential read or write operation is always performed at the current sequential value for that
zVariable. When a zVariable is created (or for each zVariable in a CDF being opened), the current sequential
value is set to the first physical value (even if no physical values exist yet). It may then be explicitly selected
using the <SELECT _,zVAR_SEQPOS_> operation. Note that a current sequential value is maintained for each
zVariable in a CDF.

status code (state)
When inquiring the explanation of a CDF status code, the text returned is always for the current status code. One
current status code is maintained for the entire CDF library (regardless of the number of open CDFs). The current
status code may be selected using the <SELECT _,CDF_STATUS > operation. There is no default current status
code. Note that the current status code is NOT the status code from the last operation performed.®

7.3 Returned Status

CDF_lib returns a status code of type INTEGER*4 in the last argument given.” Since more than one operation may be
performed with a single call to CDF_lib, the following rules apply:

® The CDF library now maintains the current status code from one call to the next of CDF_lib.
" CDF_lib has been changed from a subroutine to a function and now also returns the status code.

206

[EEN

. The first error detected aborts the call to CDF _lib, and the corresponding status code is returned.

2. In the absence of any errors, the status code for the last warning detected is returned.

3. In the absence of any errors or warnings, the status code for the last informational condition is returned.
4. In the absence of any errors, warnings, or informational conditions, CDF_OK is returned.

Chapter 8 explains how to interpret status codes. Appendix A lists the possible status codes and the type of each: error,
warning, or informational.

7.4 Indentation/Style

Indentation should be used to make calls to CDF_lib readable. The following example shows a call to CDF _lib using
proper indentation.

status = CDF_lib (CREATE_, CDF_, CDF_name, num_dims, dim_sizes, id,
PUT_, CDF_FORMAT_ , format,
CDF_MAJORITY_, majority,
CREATE_, ATTR_, attr_name, scope, attr_num,
rVAR_, var_name, data_type, num_elements,
rec_vary, dim_varys, var_num,

OO WNE

NULL_, status)

Note that the functions (CREATE, PUT_, and NULL) are indented the same and that the items (CDF_,
CDF_FORMAT_, CDF_MAJORITY_, ATTR_, and rVAR_) are indented the same under their corresponding
functions.

The following example shows the same call to CDF_lib without the proper indentation.

status = CDF_lib (CREATE_, CDF_, CDF_name, num_dims, dim_sizes, id, PUT_,
CDF_FORMAT_, format, CDF_MAJORITY_, majority, CREATE ,
ATTR_, attr_name, scope, attr_num, rVAR_, var_name,
data_type, num _elements, rec_vary, dim_varys, var_num,
NULL_, status)

A WNPEF

The need for proper indentation to ensure the readability of your applications should be obvious.

7.5 Syntax

CDF_lib takes a variable number of arguments. There must always be at least one argument. The maximum number
of arguments is not limited by CDF but rather the Fortran compiler and operating system being used. Under normal
circumstances that limit would never be reached (or even approached). Note also that a call to CDF_lib with a large
number of arguments can always be broken up into two or more calls to CDF_lib with fewer arguments.

The syntax for CDF_lib is as follows:

207

status = CDF_lib (fncl, iteml, argl, arg2, ...argN,

+ item2, argl, arg2, ...argN,
+ itemN, argl, arg2, ...argN,
+ fnc2, iteml, argl, arg2, ...argN,
+ item2, argl, arg2, ...argN,
+ itemN, argl, arg2, ...argN,
+ fncN, iteml, argl, arg2, ...argN,
+ item2, argl, arg2, ...argN,
+ itemN, argl, arg2, ...argN,
+ NULL_, status)

where fncx is a function to perform, itemx is the item on which to perform the function, and argx is a required
argument for the operation. The NULL_function must be used to end the call to CDF_lib. The completion status,
status, is returned.

Previously, CDF_lib was a subroutine. It was changed to a function which returns the completion status code (and still
stores it in the last argument) to ease the debugging of calls to CDF _lib.? If in a call to CDF lib an unknown function
or item is specified, or if an operation's argument is missing, the status argument would never be reached (and
BAD_FNC_OR_ITEM would not be stored). By returning the completion status code this situation should not occur.
Note that the same Fortran variable can be used to receive the status code and as the last argument in the call to

CDF _lib.

7.5.1 Macintosh, MPW Fortran

The MPW Fortran compiler does not allow variable length argument lists such as those used by CDF_lib.° For that
reason, a number of additional Internal Interface functions are available named CDF _lib_4, CDF_lib_5, etc. Each of
these functions expects the number of arguments indicated by their names. The maximum number of arguments is at
least 25 (corresponding to CDF _lib_25) but can be increased if necessary by contacting CDF support. Using these
functions, the second example shown in this section would be as follows:

étatus = CDF_lib_15 (CREATE_, CDF_, CDF_name, num_dims, dim_sizes, id,

1 PUT_, CDF_ENCODING_, encoding,
2 CDF_MAJORITY_, majority,
3 CDF_FORMAT _, format,

4 NULL_, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

& Current applications do not have to be changed because the completion status code is still stored in the last argument.
° If you know of a way to make MPW Fortran accept variable length argument lists, by all means let us know. We
don't like having to do this any more than you do.

208

Note that CDF_lib may still be used but with the same number of arguments for each occurrence.

7.6 Operations. . .

An operation consists of a function being performed on an item. The supported functions are as follows:

CLOSE_ Used to close an item.

CONFIRM_ Used to confirm the value of an item.

CREATE_ Used to create an item.

DELETE_ Used to delete an item.

GET_ Used to get (read) something from an item.

NULL_ Used to signal the end of the argument list of an internal interface call.
OPEN _ Used to open an item.

PUT_ Used to put (write) something to an item.

SELECT _ Used to select the value of an item.

For each function the supported items, required arguments, and required preselected objects/states are listed below.
The required preselected objects/states are those objects/states that must be selected (typically with the SELECT _
function) before a particular operation may be performed. Note that some of the required preselected objects/states have
default values as described at Section 7.2.
<CLOSE_,CDF_>

Closes the current CDF. When the CDF is closed, there is no longer a current CDF. A CDF must be closed to

ensure that it will be properly written to disk.

There are no required arguments.

The only required preselected object/state is the current CDF.

<CLOSE_,rVAR_ >
Closes the current rVariable (in the current CDF). This operation is only applicable to multi-file CDFs.

There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.

<CLOSE_,zVAR_>
Closes the current zVariable (in the current CDF). This operation is only applicable to multi-file CDFs.

There are no required arguments.
The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_ATTR_>
Confirms the current attribute (in the current CDF). Required arguments are as follows:

out: INTEGER*4 attr_num
Attribute number.
The only required preselected object/state is the current CDF.

<CONFIRM_,ATTR_EXISTENCE_>

209

Confirms the existence of the named attribute (in the current CDF). If the attribute does not exist, an error code
will be returned. in any case the current attribute is not affected. Required arguments are as follows:

in:. CHARACTER attr_name*(*)
The attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters.
The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_>
Confirms the current CDF. Required arguments are as follows:

out: INTEGER*4 id
The current CDF.
There are no required preselected objects/states.
<CONFIRM_,CDF_ACCESS_>
Confirms the accessibility of the current CDF. If a fatal error occurred while accessing the CDF the error code
NO_MORE_ACCESS will be returned. If this is the case, the CDF should still be closed.
There are no required arguments.
The only required preselected object/state is the current CDF.
<CONFIRM_,CDF_CACHESIZE_>
Confirms the number of cache buffers being used for the dotCDF file (for the current CDF). The Concepts
chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are
as follows:
out: INTEGER*4 num_buffers
The number of cache buffers being used.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_DECODING_>
Confirms the decoding for the current CDF. Required arguments are as follows:

out: INTEGER*4 decoding
The decoding. The decodings are described in Section 4.7.
The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_NAME_>
Confirms the file name of the current CDF. Required arguments are as follows:

out: CHARACTER CDF_name*(CDF_PATHNAME_LEN)
File name of the CDF.
The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_NEGtoPOSfp0_MODE_>

210

Confirms the -0.0 to 0.0 mode for the current CDF. Required arguments are as follows:
out: INTEGER*4 mode
The -0.0 to 0.0 mode. The -0.0 to 0.0 modes are described in Section 4.15.
The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_READONLY_MODE_>
Confirms the read-only mode for the current CDF. Required arguments are as follows:

out: INTEGER*4 mode
The read-only mode. The read-only modes are described in Section 4.13.
The only required preselected object/state is the current CDF.
<CONFIRM_,CDF_STATUS >
Confirms the current status code. Note that this is not the most recently returned status code but rather the most
recently selected status code (see the <SELECT ,CDF_STATUS > operation).
Required arguments are as follows:
out: INTEGER*4 status
The status code.

The only required preselected object/state is the current status code.

<CONFIRM_,zZMODE_>
Confirms the zMode for the current CDF. Required arguments are as follows:

out: INTEGER*4 mode
The zMode. The zModes are described in Section 4.14.
The only required preselected object/state is the current CDF.
<CONFIRM_,COMPRESS_CACHESIZE_>
Confirms the number of cache buffers being used for the compression scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:
out: INTEGER*4 num_buffers
The number of cache buffers being used.
The only required preselected object/state is the current CDF.
<CONFIRM_,CURgENTRY_EXISTENCE_>
Confirms the existence of the gEntry at the current gEntry number for the current attribute (in the current CDF).
If the gEntry does not exist, an error code will be returned.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

211

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<CONFIRM_,CURIENTRY_EXISTENCE_>

Confirms the existence of the rEntry at the current rEntry number for the current attribute (in the current CDF).

If the rEntry does not exist, an error code will be returned.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<CONFIRM_,CURZENTRY_EXISTENCE_>

Confirms the existence of the zEntry at the current zEntry number for the current attribute (in the current CDF).

If the zEntry does not exist, an error code will be returned.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on VAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,gENTRY_>
Confirms the current gEntry number for all attributes in the current CDF. Required arguments are as follows:

out: INTEGER*4 entry_num
The gEntry number.
The only required preselected object/state is the current CDF.
<CONFIRM_,gENTRY_EXISTENCE_>

Confirms the existence of the specified gEntry for the current attribute (in the current CDF). If the gEntry does
not exist, an error code will be returned. in any case the current gEntry number is not affected. Required
arguments are as follows:

in: INTEGER*4 entry_num

The gEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<CONFIRM_,rENTRY >
Confirms the current rEntry number for all attributes in the current CDF. Required arguments are as follows:

out: INTEGER*4 entry_num
The rEntry number.
The only required preselected object/state is the current CDF.

<CONFIRM_rENTRY_EXISTENCE_>

212

Confirms the existence of the specified rEntry for the current attribute (in the current CDF). If the rEntry does
not exist, An error code will be returned. in any case the current rEntry number is not affected. Required
arguments are as follows:
in: INTEGER*4 entry_num
The rEntry number.
The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on VAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,rVAR_>
Confirms the current rVariable (in the current CDF). Required arguments are as follows:

out: INTEGER*4 var_num
rVariable number.
The only required preselected object/state is the current CDF.
<CONFIRM_,rVAR_CACHESIZE_>
Confirms the number of cache buffers being used for the current rVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:
out: INTEGER*4 num_buffers
The number of cache buffers being used.
The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,r'VAR_EXISTENCE_>
Confirms the existence of the named rVariable (in the current CDF). If the rVariable does not exist, an error
code will be returned. in any case the current rVVariable is not affected. Required arguments are as follows:
in: CHARACTER var_name*(*)
The rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.
The only required preselected object/state is the current CDF.
<CONFIRM_,rVAR_PADVALUE_>
Confirms the existence of an explicitly specified pad value for the current rVariable (in the current CDF). If An
explicit pad value has not been specified, the informational status code NO_PADVALUE_SPECIFIED will be
returned.
There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,rVAR_RESERVEPERCENT_>
Confirms the reserve percentage being used for the current rVariable (of the current CDF). This operation is

only applicable to compressed rVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:

213

out: INTEGER*4 percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,rVAR_SEQPOS_>
Confirms the current sequential value for sequential access for the current rVariable (in the current CDF). Note
that a current sequential value is maintained for each rVariable individually. Required arguments are as follows:
out: INTEGER*4 rec_num
Record number.

out: INTEGER*4 indices(CDF_MAX_DIMS)

Dimension indices. Each element of indices receives the corresponding dimension index. For O-
dimensional rVVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,rVARs_DIMCOUNTS >
Confirms the current dimension counts for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
out: INTEGER*4 counts(CDF_MAX_DIMS)
Dimension counts. Each element of counts receives the corresponding dimension count.
The only required preselected object/state is the current CDF.
<CONFIRM_,rVARs_DIMINDICES_>
Confirms the current dimension indices for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
out: INTEGER*4 indices(CDF_MAX_DIMS)
Dimension indices. Each element of indices receives the corresponding dimension index.
The only required preselected object/state is the current CDF.
<CONFIRM_,rVARs_DIMINTERVALS_>
Confirms the current dimension intervals for all rVariables in the current CDF. For 0-dimensional rVariables
this operation is not applicable. Required arguments are as follows:
out: INTEGER*4 intervals(CDF_MAX_DIMS)
Dimension intervals. Each element of intervals receives the corresponding dimension interval.

The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs_RECCOUNT_>
Confirms the current record count for all rVariables in the current CDF. Required arguments are as follows:

out: INTEGER*4 rec_count

214

Record count.
The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs_RECINTERVAL_>
Confirms the current record interval for all rVVariables in the current CDF. Required arguments are as follows:

out: INTEGER*4 rec_interval
Record interval.
The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs_RECNUMBER_>
Confirms the current record number for all rVVariables in the current CDF. Required arguments are as follows:

out: INTEGER*4 rec_num
Record number.
The only required preselected object/state is the current CDF.
<CONFIRM_,STAGE_CACHESIZE >
Confirms the number of cache buffers being used for the staging scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:
out: INTEGER*4 num_buffers
The number of cache buffers being used.

The only required preselected object/state is the current CDF.

<CONFIRM_,ZENTRY_>
Confirms the current zEntry number for all attributes in the current CDF. Required arguments are as follows:

out: INTEGER*4 entry_num
The zEntry number.
The only required preselected object/state is the current CDF.
<CONFIRM_,ZENTRY_EXISTENCE_>
Confirms the existence of the specified zEntry for the current attribute (in the current CDF). If the zEntry does
not exist, an error code will be returned. in any case the current zEntry number is not affected. Required
arguments are as follows:
in: INTEGER*4 entry_num
The zEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on VAttributes. An error will occur if used on a gAttribute.

215

<CONFIRM_,zVAR_>
Confirms the current zVariable (in the current CDF). Required arguments are as follows:

out: INTEGER*4 var_num
zVariable number.
The only required preselected object/state is the current CDF.
<CONFIRM_,zZVAR_CACHESIZE_>
Confirms the number of cache buffers being used for the current zVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:
out: INTEGER*4 num_buffers
The number of cache buffers being used.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_DIMCOUNTS_>
Confirms the current dimension counts for the current zVariable in the current CDF. For O-dimensional
zVariables this operation is not applicable. Required arguments are as follows:
out: INTEGER*4 counts(CDF_MAX_DIMS)
Dimension counts. Each element of counts receives the corresponding dimension count.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_DIMINDICES_>
Confirms the current dimension indices for the current zVariable in the current CDF. For O-dimensional
zVariables this operation is not applicable. Required arguments are as follows:
out: INTEGER*4 indices(CDF_MAX_DIMS)
Dimension indices. Each element of indices receives the corresponding dimension index.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_DIMINTERVALS_>
Confirms the current dimension intervals for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:
out: INTEGER*4 intervals(CDF_MAX_DIMS)
Dimension intervals. Each element of intervals receives the corresponding dimension interval.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zVAR_EXISTENCE_>
Confirms the existence of the named zVariable (in the current CDF). If the zVariable does not exist, an error

code will be returned. in any case the current zVariable is not affected. Required arguments are as follows:

in: CHARACTER var_name*(*)

216

The zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.
The only required preselected object/state is the current CDF.
<CONFIRM_,zVAR_PADVALUE_>
Confirms the existence of an explicitly specified pad value for the current zVariable (in the current CDF). If An
explicit pad value has not been specified, the informational status code NO_PADVALUE_SPECIFIED will be
returned.
There are no required arguments.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_RECCOUNT _>
Confirms the current record count for the current zVariable in the current CDF. Required arguments are as
follows:
out: INTEGER*4 rec_count
Record count.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_RECINTERVAL_ >
Confirms the current record interval for the current zVariable in the current CDF. Required arguments are as
follows:
out: INTEGER*4 rec_interval
Record interval.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zVAR_RECNUMBER_>
Confirms the current record number for the current zVariable in the current CDF. Required arguments are as
follows:
out: INTEGER*4 rec_num
Record number.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zVAR_RESERVEPERCENT_>
Confirms the reserve percentage being used for the current zVariable (of the current CDF). This operation is
only applicable to compressed zVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
out: INTEGER*4 percent
The reserve percentage.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_SEQPOS_>

217

Confirms the current sequential value for sequential access for the current zVariable (in the current CDF). Note
that a current sequential value is maintained for each zVariable individually. Required arguments are as follows:

out: INTEGER*4 rec_num
Record number.
out: INTEGER*4 indices(CDF_MAX_DIMS)

Dimension indices. Each element of indices receives the corresponding dimension index. For O-
dimensional zVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current zVariable.
<CREATE_ATTR_>
A new attribute will be created in the current CDF. An attribute with the same name must not already exist in

the CDF. The created attribute implicitly becomes the current attribute (in the current CDF). Required
arguments are as follows:

in: CHARACTER attr_name*(*)

Name of the attribute to be created. This can be at most CDF_ATTR_NAME_LEN256 characters.
Attribute names are case-sensitive.

in: INTEGER*4 scope
Scope of the new attribute. Specify one of the scopes described in Section 4.12.
out: INTEGER*4 attr_num
Number assigned to the new attribute. This number must be used in subsequent CDF function calls
when referring to this attribute. An existing attribute's number may also be determined with the
<GET_,ATTR_NUMBER_> operation.
The only required preselected object/state is the current CDF.
<CREATE_,CDF_>
A new CDF will be created. It is illegal to create a CDF that already exists. The created CDF implicitly
becomes the current CDF. Required arguments are as follows:
in: CHARACTER CDF_name*(*)
File name of the CDF to be created. (Do not append an extension.) This can be at most
CDF_PATHNAME_LEN characters. A CDF file name may contain disk and directory specifications
that conform to the conventions of the operating system being used (including logical names on VMS
systems and environment variables on UNIX systems).
UNIX: File names are case-sensitive.

in: INTEGER*4 num_dims

Number of dimensions for the rVariables. This can be as few as zero (0) and at most
CDF_MAX_DIMS. Note that this must be specified even if the CDF will contain only zVariables.

in: INTEGER*4 dim_sizes(*)

218

Dimension sizes for the rVariables. Each element of dim_sizes specifies the corresponding dimension
size. Each dimension size must be greater than zero (0). For O-dimensional rVariables this argument
is ignored (but must be present). Note that this must be specified even if the CDF will contain only
zVariables.

out: INTEGER*4 id
CDF identifier to be used in subsequent operations on the CDF.

A CDF is created with the default format, encoding, and variable majority as specified in the configuration file
of your CDF distribution. Consult your system manager to determine these defaults. These defaults can then be
changed with the corresponding <PUT_,CDF_FORMAT >, <PUT_,CDF _ENCODING >, and
<PUT_,CDF_MAJORITY_> operations if necessary.

A CDF must be closed with the <CLOSE_,CDF_> operation to ensure that the CDF will be correctly written to
disk.

There are no required preselected objects/states.

<CREATE_,rVAR >
A new rVariable will be created in the current CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. The created rVariable implicitly becomes the current rVariable (in the
current CDF). Required arguments are as follows:
in: CHARACTER var_name*(*)

Name of the rVariable to be created. This can be at most CDF_VAR_NAME_LEN256 characters
(excluding the NUL). Variable names are case-sensitive.

in: INTEGER*4 data_type

Data type of the new rVariable. Specify one of the data types described in Section 4.5.

in: INTEGER*4 num_elements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value of the variable. For the non-character data types this must be one (1) - multiple elements
are not allowed for non-character data types.

in: INTEGER*4 rec_vary
Record variance. Specify one of the variances described in Section 4.9.

in: INTEGER*4 dim_varys(*)
Dimension variances. Each element of dim_varys specifies the corresponding dimension variance.
For each dimension specify one of the variances described in Section 4.9. For 0-dimensional

rVVariables this argument is ignored (but must be present).

out: INTEGER*4 var_num

Number assigned to the new rVariable. This number must be used in subsequent CDF function calls
when referring to this rVariable. An existing rVariable's number may also be determined with the
<GET_,rVAR_NUMBER_> operation.

219

The only required preselected object/state is the current CDF.

<CREATE_,zVAR_>
A new zVariable will be created in the current CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. The created zVariable implicitly becomes the current zVariable (in the
current CDF). Required arguments are as follows:

in:

out:

CHARACTER var_name*(*)

Name of the zVariable to be created. This can be at most CDF_VAR_NAME_LEN256
characters. Variable names are case-sensitive.

in: INTEGER*4 data_type

Data type of the new zVariable. Specify one of the data types described in Section 4.5.

in: INTEGER*4 num_elements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value of the variable. For the non-character data types this must be one (1) - multiple elements
are not allowed for non-character data types.

in: INTEGER*4 num_dims

Number of dimensions for the zVariable. This may be as few as zero and at most CDF_MAX_DIMS.

in: INTEGER*4 dim_sizes(*)

The dimension sizes. Each element of dim_sizes specifies the corresponding dimension size. Each
dimension size must be greater than zero (0). For a 0-dimensional zVariable this argument is ignored
(but must be present).

in: INTEGER*4 rec_vary

Record variance. Specify one of the variances described in Section 4.9.

in: INTEGER*4 dim_varys(*)

Dimension variances. Each element of dim_varys specifies the corresponding dimension variance.
For each dimension specify one of the variances described in Section 4.9. For a 0-dimensional
zVariable this argument is ignored (but must be present).

INTEGER*4 var_num
Number assigned to the new zVariable. This number must be used in subsequent CDF function calls

when referring to this zVariable. An existing zVariable's number may also be determined with the
<GET_,zZVAR_NUMBER_> operation.

The only required preselected object/state is the current CDF.

<DELETE_,ATTR_>
Deletes the current attribute (in the current CDF). Note that the attribute's entries are also deleted. The attributes
which numerically follow the attribute being deleted are immediately renumbered. When the attribute is deleted,
there is no longer a current attribute.

220

There are no required arguments.

The required preselected objects/states are the current CDF and its current attribute.

<DELETE_,CDF_>
Deletes the current CDF. A CDF must be opened before it can be deleted. When the CDF is deleted, there is no
longer a current CDF.
There are no required arguments.
The only required preselected object/state is the current CDF.
<DELETE_,gENTRY_ >
Deletes the gEntry at the current gEntry number of the current attribute (in the current CDF). Note that this does
not affect the current gEntry number.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<DELETE_,rfENTRY_>
Deletes the rEntry at the current rEntry number of the current attribute (in the current CDF). Note that this does
not affect the current rEntry number.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<DELETE_,rVAR_>
Deletes the current rVariable (in the current CDF). Note that the rVariable's corresponding rEntries are also
deleted (from each vAttribute). The rVariables which numerically follow the rVariable being deleted are
immediately renumbered. The rEntries which numerically follow the rEntries being deleted are also
immediately renumbered. When the rVariable is deleted, there is no longer a current rVVariable. NOTE: This

operation is only allowed on single-file CDFs.
There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.
<DELETE_,rVAR_RECORDS_>

Deletes the specified range of records from the current rVariable (in the current CDF). If the rVariable has
sparse records a gap of missing records will be created. If the rVariable does not have sparse records, the
records following the range of deleted records are immediately renumbered beginning with the number of the
first deleted record. NOTE: This operation is only allowed on single-file CDFs.
Required arguments are as follows:

in: INTEGER*4 first_record

The record number of the first record to be deleted.

in: INTEGER*4 last_record

221

The record number of the last record to be deleted.
The required preselected objects/states are the current CDF and its current rVariable.
<DELETE_,zENTRY_>
Deletes the zEntry at the current zEntry number of the current attribute (in the current CDF). Note that this does
not affect the current zEntry number.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<DELETE_,zVAR_>
Deletes the current zVariable (in the current CDF). Note that the zVariable's corresponding zEntries are also
deleted (from each vAttribute). The zVariables which numerically follow the zVariable being deleted are
immediately renumbered. The rEntries which numerically follow the rEntries being deleted are also
immediately renumbered. When the zVariable is deleted, there is no longer a current zVariable. NOTE: This
operation is only allowed on single-file CDFs.
There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.
<DELETE_,zZVAR_RECORDS >
Deletes the specified range of records from the current zVariable (in the current CDF). If the zVariable has
sparse records a gap of missing records will be created. If the zVariable does not have sparse records, the
records following the range of deleted records are immediately renumbered beginning with the number of the

first deleted record. NOTE: This operation is only allowed on single-file CDFs. Required arguments are as
follows:

in: INTEGER*4 first_record
The record number of the first record to be deleted.
in: INTEGER*4 last_record
The record number of the last record to be deleted.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,ATTR_MAXQENTRY_>
Inquires the maximum gEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of gEntries for the attribute. Required arguments are as follows:

out: INTEGER*4 max_entry

The maximum gEntry number for the attribute. If no gEntries exist, then a value of -1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

222

<GET_,ATTR_MAXIENTRY_>

Inquires the maximum rEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of rEntries for the attribute. Required arguments are as follows:

out: INTEGER*4 max_entry
The maximum rEntry number for the attribute. If no rEntries exist, then a value of -1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,ATTR_MAXZENTRY_>

Inquires the maximum zEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of zEntries for the attribute. Required arguments are as follows:

out: INTEGER*4 max_entry
The maximum zEntry number for the attribute. If no zEntries exist, then a value of —1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,ATTR_NAME_>

Inquires the name of the current attribute (in the current CDF). Required arguments are as follows:

out: CHARACTER attr_name*(CDF_ATTR_NAME_LEN256)

Attribute name. This character string will be blank padded if necessary.
UNIX: For the proper operation of CDF_lib, attr_name MUST be a Fortran CHARACTER variable
or constant.

The required preselected objects/states are the current CDF and its current attribute.
<GET_ATTR_NUMBER_>

Gets the number of the named attribute (in the current CDF). Note that this operation does not select the current
attribute. Required arguments are as follows:

in: CHARACTER attr_name*(*)

Attribute name. This may be at most CDF_ ATTR_NAME_LEN256 characters.

UNIX: For the proper operation of CDF_lib, attr_name MUST be a Fortran CHARACTER variable
or constant.

out: INTEGER*4 attr_num
The attribute number.

The only required preselected object/state is the current CDF.

<GET_,ATTR_NUMgENTRIES_>

223

Inquires the number of gEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum gEntry number used. Required arguments are as follows:

out: INTEGER*4 num_entries
The number of gEntries for the attribute.
The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<GET_,ATTR_NUMIENTRIES >
Inquires the number of rEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum rEntry number used. Required arguments are as follows:
out: INTEGER*4 num_entries
The number of rEntries for the attribute.
The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on VAttributes. An error will occur if used on a gAttribute.
<GET_,ATTR_NUMZzENTRIES >
Inquires the number of zEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum zEntry number used. Required arguments are as follows:
out: INTEGER*4 num_entries
The number of zEntries for the attribute.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,ATTR_SCOPE_>
Inquires the scope of the current attribute (in the current CDF). Required arguments are as follows:

out: INTEGER*4 scope
Attribute scope. The scopes are described in Section 4.12.

The required preselected objects/states are the current CDF and its current attribute.

<GET_,CDF_CHECKSUM_>
Inquires the checksum mode of the current CDF. Required arguments are as follows:

out: INTEGER*4 checksum

Checksum. The checksum is described in Section 4.19.

The only required preselected object/state is the current CDF.

<GET_,CDF_COMPRESSION_>

224

Inquires the compression type/parameters of the current CDF. This refers to the compression of the CDF - not
of any compressed variables. Required arguments are as follows:

out: INTEGER*4 c_type

The compression type. The types of compressions are described in Section 4.10.
out: INTEGER*4 c_parms(CDF_MAX_PARMS)

The compression parameters. The compression parameters are described in Section 4.10.
out: INTEGER*4 c_pct

If compressed, the percentage of the uncompressed size of the CDF needed to store the compressed
CDF.

The only required preselected object/state is the current CDF.
<GET_,CDF_COPYRIGHT_>
Reads the copyright notice for the CDF library that created the current CDF. Required arguments are as follows:

out: CHARACTER copy_right*(CDF_COPYRIGHT_LEN)

CDF copyright text. The character string will be padded if necessary.
UNIX: For the proper operation of CDF _lib, copy_right MUST be a Fortran CHARACTER variable
or constant.

The only required preselected object/state is the current CDF.

<GET_,CDF_ENCODING_>
Inquires the data encoding of the current CDF. Required arguments are as follows:

out: INTEGER*4 encoding

Data encoding. The encodings are described in Section 4.6.

The only required preselected object/state is the current CDF.

<GET_,CDF_FORMAT_>
Inquires the format of the current CDF. Required arguments are as follows:

out: INTEGER*4 format

CDF format. The formats are described in Section 4.4.

The only required preselected object/state is the current CDF.
<GET_,CDF_INCREMENT >

Inquires the incremental number of the CDF library that created the current CDF. Required arguments are as
follows:

out: INTEGER*4 increment

Incremental number.

225

The only required preselected object/state is the current CDF.
<GET_,CDF_INFO_>
Inquires the compression type/parameters of a CDF without having to open the CDF. This refers to the
compression of the CDF - not of any compressed variables. Required arguments are as follows:
in: CHARACTER CDF_name*(*)
File name of the CDF to be inquired. (Do not append an extension.) This can be at most
CDF_PATHNAME_LEN characters. A CDF file name may contain disk and directory specifications
that conform to the conventions of the operating system being used (including logical names on VMS
systems and environment variables on UNIX systems).
UNIX: File names are case-sensitive.
UNIX: For the proper operation of CDF_lib, CDF_name MUST be a Fortran CHARACTER variable
or constant.
out: INTEGER*4 c_type
The CDF compression type. The types of compressions are described in Section 4.10.
out: INTEGER*4 c_parms(CDF_MAX_PARMS)
The compression parameters. The compression parameters are described in Section 4.10.
out: INTEGER*8Y ¢_size
If compressed, size in bytes of the dotCDF file. If not compressed, set to zero (0).

out: INTEGER*8Y u_size

If compressed, size in bytes of the dotCDF file when decompressed. If not compressed, size in bytes
of the dotCDF file.

There are no required preselected objects/states.

<GET_,CDF_MAJORITY_>
Inquires the variable majority of the current CDF. Required arguments are as follows:

out: INTEGER*4 majority
Variable majority. The majorities are described in Section 4.8.
The only required preselected object/state is the current CDF.

<GET_,CDF_NUMATTRS >
Inquires the number of attributes in the current CDF. Required arguments are as follows:

out: INTEGER*4 num_attrs

Number of attributes.

%You need to have a Fortran compiler supporting 8-byte integer.

226

The only required preselected object/state is the current CDF.

<GET_,CDF_NUMgATTRS_>
Inquires the number of gAttributes in the current CDF. Required arguments are as follows:

out: INTEGER*4 num_attrs
Number of gAttributes.
The only required preselected object/state is the current CDF.
<GET_,CDF_NUMrVARS_>
Inquires the number of rVariables in the current CDF. Required arguments are as follows:
out: INTEGER*4 num_vars
Number of rVariables.
The only required preselected object/state is the current CDF.

<GET_,CDF_NUMVATTRS_>
Inquires the number of vAttributes in the current CDF. Required arguments are as follows:

out: INTEGER*4 num_attrs
Number of vAttributes.
The only required preselected object/state is the current CDF.

<GET_,CDF_NUMzVARS_>
Inquires the number of zVariables in the current CDF. Required arguments are as follows:

out: INTEGER*4 num_vars
Number of zVariables.
The only required preselected object/state is the current CDF.

<GET_,CDF_RELEASE_>
Inquires the release number of the CDF library that created the current CDF. Required arguments are as follows:

out: INTEGER*4 release
Release number.
The only required preselected object/state is the current CDF.
<GET_,CDF_VERSION_>
]Icg(lqlg:lrvis the version number of the CDF library that created the current CDF. Required arguments are as

out: INTEGER*4 version

Version number.

227

The only required preselected object/state is the current CDF.

<GET_,DATATYPE_SIZE_>
Inquires the size (in bytes) of an element of the specified data type. Required arguments are as follows:

in: INTEGER*4 data_type
Data type.
out: INTEGER*4 num_bytes
Number of bytes per element.
There are no required preselected objects/states.
<GET_,gENTRY_DATA >
Reads the gEntry data value from the current attribute at the current gEntry number (in the current CDF).
Required arguments are as follows:

out: <type> value

Value. This buffer must be large to hold the value. (<type> is dependent on the data type of the
gEnrty). The value is read from the CDF and placed into memory at address value.

WARNING: If the gEntry has one of the character data types (CDF_CHAR or CDF_UCHAR), then
value must be a CHARACTER Fortran variable. If the gEntry does not have one of the character
data types, then value must NOT be a CHARACTER Fortran variable.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<GET_,gENTRY_DATATYPE_>
Inquires the data type of the gEntry at the current gEntry number for the current attribute (in the current CDF).
Required arguments are as follows:
out: INTEGER*4 data_type
Data type. The data types are described in Section 4.5.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<GET_,gENTRY_NUMELEMS_>
Inquires the number of elements (of the data type) of the gEntry at the current gEntry number for the current
attribute (in the current CDF). Required arguments are as follows:
out: INTEGER*4 num_elements
Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR) this
is the number of characters in the string (an array of characters). For all other data types this is the

number of elements in an array of that data type.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

228

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<GET_,LIB_COPYRIGHT_>
Reads the copyright notice of the CDF library being used. Required arguments are as follows:

out: CHARACTER copy_right*(CDF_COPYRIGHT_LEN)

CDF library copyright text.

UNIX: For the proper operation of CDF _lib, copy_right MUST be a Fortran CHARACTER variable
or constant.

There are no required preselected objects/states.
<GET_,LIB_INCREMENT_>
Inquires the incremental number of the CDF library being used. Required arguments are as follows:

out: INTEGER*4 increment
Incremental number.

There are no required preselected objects/states.
<GET_,LIB_RELEASE >
Inquires the release number of the CDF library being used. Required arguments are as follows:
out: INTEGER*4 release

Release number.

There are no required preselected objects/states.

<GET_,LIB_subINCREMENT >
Inquires the subincremental character of the CDF library being used. Required arguments are as follows:

out: CHARACTER*1 *subincrement

Subincremental character.

UNIX: For the proper operation of CDF _lib, subincrement MUST be a Fortran CHARACTER
variable or constant.

There are no required preselected objects/states.
<GET_,LIB_VERSION_>
Inquires the version number of the CDF library being used. Required arguments are as follows:

out: INTEGER*4 version
Version number.

There are no required preselected objects/states.
<GET_/rENTRY_DATA >

Reads the rEntry data value from the current attribute at the current rEntry number (in the current CDF).
Required arguments are as follows:

229

out: <type> value

Value. This buffer must be large to hold the value. <type> is dependent on the data type of the
rEnrty. The value is read from the CDF and placed into memory at address value.

WARNING: If the rEntry has one of the character data types (CDF_CHAR or CDF_UCHAR), then
value must be a CHARACTER Fortran variable. If the rEntry does not have one of the character data
types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,fENTRY_DATATYPE_>

Inquires the data type of the rEntry at the current rEntry number for the current attribute (in the current CDF).
Required arguments are as follows:

out: INTEGER*4 data_type
Data type. The data types are described in Section 4.5.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,rENTRY_NUMELEMS_>

Inquires the number of elements (of the data type) of the rEntry at the current rEntry number for the current
attribute (in the current CDF). Required arguments are as follows:

out: INTEGER*4 num_elements

Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR)

this is the number of characters in the string (an array of characters). For all other data types this is
the number of elements in an array of that data type.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,rVAR_ALLOCATEDFROM_>
Inquires the next allocated record at or after a given record for the current rVariable (in the current CDF).
Required arguments are as follows:

in: INTEGER*4 start_record

The record number at which to begin searching for the next allocated record. If this record exists, it
will be considered the next allocated record.

out: INTEGER*4 next_record
The number of the next allocated record.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,fVAR_ALLOCATEDTO >

230

Inquires the last allocated record (before the next unallocated record) at or after a given record for the current
rVVariable (in the current CDF). Required arguments are as follows:

in: INTEGER*4 start_record
The record number at which to begin searching for the last allocated record.
out: INTEGER*4 next_record
The number of the last allocated record.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_BLOCKINGFACTOR_>*
Inquires the blocking factor for the current rVariable (in the current CDF). Blocking factors are described in the
Concepts chapter in the CDF User's Guide. Required arguments are as follows:
out: INTEGER*4 blocking_factor
The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_COMPRESSION_>
Inquires the compression type/parameters of the current rVariable (in the current CDF). Required arguments are
as follows:
out: INTEGER*4 c_type
The compression type. The types of compressions are described in Section 4.10.
out: INTEGER*4 ¢_parms(CDF_MAX_PARMS)
The compression parameters. The compression parameters are described in Section 4.10.

out: INTEGER*4 c_pct

If compressed, the percentage of the uncompressed size of the rVVariable's data values needed to store
the compressed values.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,r'VAR_DATA_>
Reads a value from the current rVariable (in the current CDF). The value is read at the current record number
and current dimension indices for the rVariables (in the current CDF). Required arguments are as follows:

out: <type> value

Value. This buffer must be large to hold the value. <type> is dependent on the data type of the
rVariable. The value is read from the CDF and placed into memory at address value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

! The item rVAR_BLOCKINGFACTOR was previously named rVAR_EXTENDRECS.

231

The required preselected objects/states are the current CDF, its current rVariable, its current record number for
rVariables, and its current dimension indices for rVariables.

<GET_,r'VAR_DATATYPE_ >
Inquires the data type of the current rVVariable (in the current CDF). Required arguments are as follows:

out: INTEGER*4 data_type
Data type. The data types are described in Section 4.5.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_DIMVARYS_ >
Inquires the dimension variances of the current rVVariable (in the current CDF). For O-dimensional rVariables
this operation is not applicable. Required arguments are as follows:

out: INTEGER*4 dim_varys(CDF_MAX_DIMS)

Dimension variances. Each element of dim_varys receives the corresponding dimension variance.
The variances are described in Section 4.9.

The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_HYPERDATA >

Reads one or more values from the current rVariable (in the current CDF). The values are read based on the

current record number, current record count, current record interval, current dimension indices, current

dimension counts, and current dimension intervals for the rVariables (in the current CDF). Required arguments
are as follows:

out: <type> buffer

Value. This buffer must be large to hold the value. <type> is dependent on the data type of the
rVVariable. The value is read from the CDF and placed into memory at address value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.
The required preselected objects/states are the current CDF, its current rVariable, its current record number,
record count, and record interval for rVariables, and its current dimension indices, dimension counts, and
dimension intervals for rVariables.
<GET_,rVAR_MAXallocREC >
Inquires the maximum record number allocated for the current rVariable (in the current CDF). Required
arguments are as follows:
out: INTEGER*4 max_rec
Maximum record number allocated.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,'VAR_MAXREC_>

232

Inquires the maximum record number for the current rVariable (in the current CDF). For rVariables with a
record variance of NOVARY, this will be at most zero (0). A value of negative one (-1) indicates that no
records have been written. Required arguments are as follows:
out: INTEGER*4 max_rec
Maximum record number.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,r'VAR_NAME_>
Inquires the name of the current rVVariable (in the current CDF). Required arguments are as follows:

out: CHARACTER var_name*(CDF_VAR_NAME_LEN256
Name of the rVariable. This character string will be padded if necessary.

UNIX: For the proper operation of CDF _lib, var_name MUST be a Fortran CHARACTER variable
or constant.

The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_nINDEXENTRIES >
Inquires the number of index entries for the current rVariable (in the current CDF). This only has significance
for rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: INTEGER*4 num_entries
Number of index entries.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_nINDEXLEVELS >
Inquires the number of index levels for the current rVVariable (in the current CDF). This only has significance for
rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the indexing
scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: INTEGER*4 num_levels
Number of index levels.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_nINDEXRECORDS_>
Inquires the number of index records for the current rVVariable (in the current CDF). This only has significance
for rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: INTEGER*4 num_records
Number of index records.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_NUMallocRECS >

233

Inquires the number of records allocated for the current r\Variable (in the current CDF). The Concepts chapter in

the CDF User's Guide describes the allocation of variable records in a single-file CDF. Required arguments are
as follows:

out: INTEGER*4 num_records
Number of allocated records.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_NUMBER_>

Gets the number of the named rVariable (in the current CDF). Note that this operation does not select the current
rVariable. Required arguments are as follows:

in: CHARACTER var_name*(*)
The rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.

UNIX: For the proper operation of CDF_lib, var_name MUST be a Fortran CHARACTER variable
or constant.

out: INTEGER*4 var_num
The rVariable number.
The only required preselected object/state is the current CDF.

<GET_,rVAR_NUMELEMS_>

Inquires the number of elements (of the data type) for the current rVariable (in the current CDF). Required
arguments are as follows:

out: INTEGER*4 num_elements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR) this is the number of characters in the string. (Each value consists of the entire

string.) For all other data types this will always be one (1) — multiple elements at each value are not
allowed for non-character data types.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_NUMRECS_>

Inquires the number of records written for the current rVariable (in the current CDF). This may not correspond

to the maximum record written (see <GET_,r'VAR_MAXREC_>) if the rVariable has sparse records. Required
arguments are as follows:

out: INTEGER*4 num_records
Number of records written.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_PADVALUE_ >
Inquires the pad value of the current rVariable (in the current CDF). If a pad value has not been explicitly
specified for the rVariable (see <PUT ,rVAR PADVALUE_>), the informational status code
NO_PADVALUE_SPECIFIED will be returned and the default pad value for the rVariable's data type will be
placed in the pad value buffer provided. Required arguments are as follows:

234

out: <type> value

Pad value. This buffer must be large to hold the value. <type> is dependent on the data type of the
pad value. The value is read from the CDF and placed into memory at address value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_RECVARY_>
Inquires the record variance of the current rVariable (in the current CDF). Required arguments are as follows:

out: INTEGER*4 rec_vary
Record variance. The variances are described in Section 4.9.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,[VAR_SEQDATA >

Reads one value from the current rVariable (in the current CDF) at the current sequential value for that
rVariable. After the read the current sequential value is automatically incremented to the next value (crossing a
record boundary If necessary). An error is returned if the current sequential value is past the last record for the
rVariable. Required arguments are as follows:

out: <type> value

Value. This buffer must be large to hold the value. <type> is dependent on the data type of the
rVariable. The value is read from the CDF and placed into memory at address value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current rVariable, and the current sequential

value for the rVariable. Note that the current sequential value for an rVariable increments automatically as
values are read.

<GET_,rVAR_SPARSEARRAYS >
Inquires the sparse arrays type/parameters of the current rVariable (in the current CDF). Required arguments are
as follows:
out: INTEGER*4 s_arrays_type
The sparse arrays type. The types of sparse arrays are described in Section 4.11.
out: INTEGER*4 a_arrays_parms(CDF_MAX_PARMS)
The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.

out: INTEGER*4 a_arrays_pct

If sparse arrays, the percentage of the non-sparse size of the rVariable's data values needed to store
the sparse values.

235

The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_SPARSERECORDS >
Inquires the sparse records type of the current rVariable (in the current CDF). Required arguments are as
follows:
out: INTEGER*4 s_records_type
The sparse records type. The types of sparse records are described in Section 4.11.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVARs_DIMSIZES >
Inquires the size of each dimension for the rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
out: INTEGER*4 dim_sizes(CDF_MAX_DIMS)
Dimension sizes. Each element of dim_sizes receives the corresponding dimension size.
The only required preselected object/state is the current CDF.
<GET_,rVARs_MAXREC_>
Inquires the maximum record number of the rVariables in the current CDF. Note that this is not the number of
records but rather the maximum record number (which is one less than the number of records). A value of

negative one (-1) indicates that the rVariables contain no records. The maximum record number for an
individual rVVariable may be inquired using the <GET_,r'VAR_MAXREC_> operation. Required arguments are

as follows:
out: INTEGER*4 max_rec
Maximum record number.
The only required preselected object/state is the current CDF.

<GET_,rVARs_NUMDIMS_>
Inquires the number of dimensions for the rVariables in the current CDF. Required arguments are as follows:

out: INTEGER*4 num_dims
Number of dimensions.
The only required preselected object/state is the current CDF.

<GET_,rVARs_RECDATA >
Reads full-physical records from one or more rVariables (in the current CDF). The full-physical records are
read at the current record number for rVariables. This operation does not affect the current rVariable (in the
current CDF). Required arguments are as follows:
in: INTEGER*4 num_vars
The number of rVariables from which to read. This must be at least one (1).

in: INTEGER*4 var_nums(*)

236

The rVariables from which to read. This array, whose size is determined by the value of hum_vars,
contains rVariable numbers. The rVariable numbers can be listed in any order.

out: <type> buffer

The buffer into which the full-physical rVariable records being read are to be placed. This buffer must
be large enough to hold the full-physical records. <type> must be a Fortran variable that will be
passed by reference and cannot be of type CHARACTER. (The CDF library is expecting an address at
which to place the full-physical records being read.) The order of the full-physical rVariable records
in this buffer will correspond to the rVariable numbers listed in varNums, and this buffer will be
contiguous --- there will be no spacing between full-physical rVariable records. Be careful if using
Fortran STRUCTUREsS to receive multiple full-physical rVariable records. Fortran compilers on some
operating systems will pad between the elements of a STRUCTURE in order to prevent memory
alignment errors (i.e., the elements of a STRUCTURE may not be contiguous). See the Concepts
chapter in the CDF User's Guide for more details on how to create this buffer.

The required preselected objects/states are the current CDF and its current record number for rVariables. *?

<GET_,STATUS_TEXT_>
Inquires the explanation text for the current status code. Note that the current status code is NOT the status from
the last operation performed. Required arguments are as follows:

out: CHARACTER text*(CDF_STATUSTEXT_LEN)
Text explaining the status code.

UNIX: For the proper operation of CDF_lib, text MUST be a Fortran CHARACTER variable or
constant.

The only required preselected object/state is the current status code.

<GET_,zENTRY_DATA >
Reads the zEntry data value from the current attribute at the current zEntry number (in the current CDF).
Required arguments are as follows:

out: <type> value

Value. This buffer must be large to hold the value. <type> is dependent on the data type of the
zEnrty. The value is read from the CDF and placed into memory at address value.

WARNING: If the zEntry has one of the character data types (CDF_CHAR or CDF_UCHAR), then
value must be a CHARACTER Fortran variable. If the zEntry does not have one of the character
data types, then value must NOT be a CHARACTER Fortran variable.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,zENTRY_DATATYPE_>
Inquires the data type of the zEntry at the current zEntry number for the current attribute (in the current CDF).

Required arguments are as follows:

out: INTEGER*4 data_type

12 A Standard Interface at Section 5.13 provides the same functionality.

237

Data type. The data types are described in Section 4.5.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,zENTRY_NUMELEMS_>
Inquires the number of elements (of the data type) of the zEntry at the current zEntry number for the current
attribute (in the current CDF). Required arguments are as follows:
out: INTEGER*4 num_elements
Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR) this
is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,zVAR_ALLOCATEDFROM_>
Inquires the next allocated record at or after a given record for the current zVariable (in the current CDF).
Required arguments are as follows:

in: INTEGER*4 start_record

The record number at which to begin searching for the next allocated record. If this record exists, it
will be considered the next allocated record.

out: INTEGER*4 next_record
The number of the next allocated record.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zZVAR_ALLOCATEDTO_>
Inquires the last allocated record (before the next unallocated record) at or after a given record for the current
zVariable (in the current CDF). Required arguments are as follows:
in: INTEGER*4 start_record
The record number at which to begin searching for the last allocated record.
out: INTEGER*4 next_record
The number of the last allocated record.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_BLOCKINGFACTOR_>"
Inquires the blocking factor for the current zVariable (in the current CDF). Blocking factors are described in the

Concepts chapter in the CDF User’s Guide. Required arguments are as follows:

out: INTEGER*4 blocking_factor

3 The item zZVAR_BLOCKINGFACTOR was previously named zVAR_EXTENDRECS .

238

The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_COMPRESSION_>
Inquires the compression type/parameters of the current zVariable (in the current CDF). Required arguments are
as follows:

out: INTEGER*4 c_type

The compression type. The types of compressions are described in Section 4.10.

out: INTEGER*4 c_parms(CDF_MAX_PARMS)
The compression parameters. The compression parameters are described in Section 4.10.

out: INTEGER*4 c_pct

If compressed, the percentage of the uncompressed size of the zVariable's data values
needed to store the compressed values.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zZVAR_DATA_>
Reads a value from the current zVariable (in the current CDF). The value is read at the current record number
and current dimension indices for that zVariable (in the current CDF). Required arguments are as follows:

out: <type> value

Value. This buffer must be large to hold the value. <type> is dependent on the data type of the
zVariable. The value is read from the CDF and placed into memory at address value.

WARNING: If the zZVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the zVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current zVariable, the current record number for
the zVariable, and the current dimension indices for the zVariable.

<GET_,zVAR_DATATYPE_>
Inquires the data type of the current zVariable (in the current CDF). Required arguments are as follows:

out: INTEGER*4 data_type
Data type. The data types are described in Section 4.5.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_DIMSIZES >
Inquires the size of each dimension for the current zVariable in the current CDF. For 0-dimensional zVariables

this operation is not applicable. Required arguments are as follows:

out: INTEGER*4 dim_sizes(CDF_MAX_DIMS)

239

Dimension sizes. Each element of dim_sizes receives the corresponding dimension size.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_DIMVARYS_>
Inquires the dimension variances of the current zVariable (in the current CDF). For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:

out: INTEGER*4 dim_varys(CDF_MAX_DIMS)

Dimension variances. Each element of dim_varys receives the corresponding dimension variance.
The variances are described in Section 4.9.

The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_HYPERDATA >

Reads one or more values from the current zVariable (in the current CDF). The values are read based on the

current record number, current record count, current record interval, current dimension indices, current

dimension counts, and current dimension intervals for that zVariable (in the current CDF). Required arguments
are as follows:

out: <type> buffer

Value. This buffer must be large to hold the value. <type> is dependent on the data type of the
zVariable. The value is read from the CDF and placed into memory at address value.

WARNING: If the zZVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the zVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.
The required preselected objects/states are the current CDF, its current zVariable, the current record number,
record count, and record interval for the zVariable, and the current dimension indices, dimension counts, and
dimension intervals for the zVariable.
<GET_,zVAR_MAXallocREC_>
Inquires the maximum record number allocated for the current zVariable (in the current CDF). Required
arguments are as follows:
out: INTEGER*4 max_rec
Maximum record number allocated.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_MAXREC_>
Inquires the maximum record number for the current zVariable (in the current CDF). For zVariables with a

record variance of NOVARY, this will be at most zero (0). A value of negative one (-1) indicates that no
records have been written. Required arguments are as follows:

out: INTEGER*4 max_rec
Maximum record number.
The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NAME_>

240

Inquires the name of the current zVariable (in the current CDF). Required arguments are as follows:
out: CHARACTER var_name*(CDF_VAR_NAME_LEN256)

Name of the zVariable.

UNIX: For the proper operation of CDF _lib, var_name MUST be a Fortran CHARACTER variable
or constant.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_nINDEXENTRIES_>

Inquires the number of index entries for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: INTEGER*4 num_entries
Number of index entries.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_nINDEXLEVELS_>

Inquires the number of index levels for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: INTEGER*4 num_levels

Number of index levels.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_nINDEXRECORDS_>

Inquires the number of index records for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: INTEGER*4 num_records

Number of index records.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMallocRECS >

Inquires the number of records allocated for the current zVariable (in the current CDF). The Concepts chapter

in the CDF User's Guide describes the allocation of variable records in a single-file CDF. Required arguments
are as follows:

out: INTEGER*4 num_records
Number of allocated records.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,2VAR_NUMBER_>

241

Gets the number of the named zVariable (in the current CDF). Note that this operation does not select the current
zVariable. Required arguments are as follows:

in: CHARACTER var_name*(*)
The zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.

UNIX: For the proper operation of CDF_lib, var_name MUST be a Fortran CHARACTER variable
or constant.

out: INTEGER*4 var_num
The zVariable number.

The only required preselected object/state is the current CDF.

<GET_,zVAR_NUMDIMS_>

Inquires the number of dimensions for the current zVariable in the current CDF. Required arguments are as
follows:

out: INTEGER*4 num_dims
Number of dimensions.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMELEMS_>

Inquires the number of elements (of the data type) for the current zVariable (in the current CDF). Required
arguments are as follows:

out: INTEGER*4 num_elements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR) this is the number of characters in the string. (Each value consists of the entire

string.) For all other data types this will always be one (1) — multiple elements at each value are not
allowed for non-character data types.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMRECS_>

Inquires the number of records written for the current zVariable (in the current CDF). This may not correspond

to the maximum record written (see <GET_,zZVAR_MAXREC_>) if the zVariable has sparse records. Required
arguments are as follows:

out: INTEGER*4 num_records
Number of records written.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_PADVALUE_>

Inquires the pad value of the current zVariable (in the current CDF). If a pad value has not been explicitly
specified for the zVariable (see <PUT ,zZVAR PADVALUE_>), the informational status code
NO_PADVALUE_SPECIFIED will be returned and the default pad value for the zVariable's data type will be
placed in the pad value buffer provided. Required arguments are as follows:

242

out: <type> value

Pad value. This buffer must be large to hold the value. <type> is dependent on the data type of the
zVariable. The value is read from the CDF and placed into memory at address value.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the zVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_RECVARY >
Inquires the record variance of the current zVariable (in the current CDF). Required arguments are as follows:

out: INTEGER*4 rec_vary
Record variance. The variances are described in Section 4.9.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_SEQDATA_>

Reads one value from the current zVariable (in the current CDF) at the current sequential value for that
zVariable. After the read the current sequential value is automatically incremented to the next value (crossing a
record boundary If necessary). An error is returned if the current sequential value is past the last record for the
zVariable. Required arguments are as follows:

out: <type> value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and
placed into memory at address value.

The required preselected objects/states are the current CDF, its current zVariable, and the current sequential
value for the zVariable. Note that the current sequential value for a zVariable increments automatically as
values are read.
<GET_,zVAR_SPARSEARRAYS >
Inquires the sparse arrays type/parameters of the current zVariable (in the current CDF). Required arguments
are as follows:
out: INTEGER*4 s_arrays_type
The sparse arrays type. The types of sparse arrays are described in Section 4.11.

out: INTEGER*4 a_arrays_parms(CDF_MAX_PARMS)

The sparse arrays parameters. The sparse arrays parameters are described in Sec-
tion 4.11.

out: INTEGER*4 a_arrays_pct

If sparse arrays, the percentage of the non-sparse size of the zVariable's data values needed to store
the sparse values.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,ZVAR_SPARSERECORDS_>

243

Inquires the sparse records type of the current zVariable (in the current CDF). Required arguments are as
follows:

out: INTEGER*4 s_records_type
The sparse records type. The types of sparse records are described in Section 4.11.
The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zZVARs_MAXREC_>
Inquires the maximum record number of the zVariables in the current CDF. Note that this is not the number of
records but rather the maximum record number (which is one less than the number of records). A value of
negative one (-1) indicates that the zVariables contain no records. The maximum record number for an
individual zVariable may be inquired using the <GET_,zZVAR_MAXREC_> operation. Required arguments are
as follows:

out: INTEGER*4 max_rec
Maximum record number.
The only required preselected object/state is the current CDF.

<GET_,zVARs_RECDATA >
Reads full-physical records from one or more zVariables (in the current CDF). The full-physical record for a
particular zVariable is read at the current record number for that zVariable. (The record numbers do not have to
be the same but in most cases probably will be.) This operation does not affect the current zVariable (in the
current CDF). Required arguments are as follows:

in: INTEGER*4 num_vars
The number of zVariables from which to read. This must be at least one (1).
in: INTEGER*4 var_nums(*)

The zVariables from which to read. This array, whose size is determined by the value of num_vars,
contains zVariable numbers. The zVariable numbers can be listed in any order.

out: <type> buffer

The buffer into which the full-physical zVariable records being read are to be placed. This buffer
must be large enough to hold the full-physical records. <type> must be a Fortran variable that will be
passed by reference and cannot be of type CHARACTER. (The CDF library is expecting an address at
which to place the full-physical records being read.) The order of the full-physical zVariable records
in this buffer will correspond to the zVariable numbers listed in varNums, and this buffer will be
contiguous --- there will be no spacing between full-physical zVariable records. Be careful if using
Fortran STRUCTUREsS to receive multiple full-physical zVariable records. Fortran compilers on
some operating systems will pad between the elements of a STRUCTURE in order to prevent memory
alignment errors (i.e., the elements of a STRUCTURE may not be contiguous). See the Concepts
chapter in the CDF User's Guide for more details on how to create this buffer.

The required preselected objects/states are the current CDF and the current record number for each of the
zVariables specified. A convenience operation exists, <SELECT ,zZVARs_RECNUMBER_>, that allows the
current record number for each zVariable to be selected at one time (as opposed to selecting the current record
numbers one at a time using <SELECT ,zVAR_RECNUMBER_>). ™

4 A Standard Interface at Section 5.14 provides the same functionality.

244

<NULL_>
Marks the end of the argument list that is passed to An internal interface call. No other arguments are allowed
after it.
<OPEN ,CDF_>
Opens the named CDF. The opened CDF implicitly becomes the current CDF. Required arguments are as
follows:
in: CHARACTER CDF_name*(*)
File name of the CDF to be opened. (Do not append an extension.) This can be at most
CDF_PATHNAME_LEN characters. A CDF file name may contain disk and directory specifications
that conform to the conventions of the operating system being used (including logical names on VMS
systems and environment variables on UNIX systems).
UNIX: File names are case-sensitive.

UNIX: For the proper operation of CDF_lib, CDF_name MUST be a Fortran CHARACTER variable
or constant.

out: INTEGER*4 id
CDF identifier to be used in subsequent operations on the CDF.
There are no required preselected objects/states.
<PUT_ATTR_NAME_>

Renames the current attribute (in the current CDF). An attribute with the same name must not already exist in
the CDF. Required arguments are as follows:

in: CHARACTER attr_name*(*)

New attribute name. This may be at most CDF_ATTR_NAME_LENZ256 characters.

UNIX: For the proper operation of CDF_lib, attr_name MUST be a Fortran CHARACTER variable
or constant.

The required preselected objects/states are the current CDF and its current attribute.

<PUT_,ATTR_SCOPE_>
Respecifies the scope for the current attribute (in the current CDF). Required arguments are as follows:

in: INTEGER*4 scope
New attribute scope. Specify one of the scopes described in Section 4.12.
The required preselected objects/states are the current CDF and its current attribute.

<PUT_,CDF_CHECKSUM_>
Respecifies the checksum mode for the current CDF. Required arguments are as follows:

in: INTEGER*4 checksum

New checksum. The checksum is described in Section 4.19.

245

The only required preselected object/state is the current CDF.
<PUT_,CDF_COMPRESSION_>
Specifies the compression type/parameters for the current CDF. This refers to the compression of the CDF - not
of any variables. Required arguments are as follows:
in: INTEGER*4 cType
The compression type. The types of compressions are described in Section 4.10.
in: INTEGER*4 c_parms(*)
The compression parameters. The compression parameters are described in Section 4.10.
The only required preselected object/state is the current CDF.
<PUT_,CDF_ENCODING_>
Respecifies the data encoding of the current CDF. A CDF's data encoding may not be changed after any variable
values (including the pad value) or attribute entries have been written. Required arguments are as follows:
in: INTEGER*4 encoding
New data encoding. Specify one of the encodings described in Section 4.6.
The only required preselected object/state is the current CDF.
<PUT_,CDF_FORMAT >
Respecifies the format of the current CDF. A CDF’s format may not be changed after any variables have been
created. Required arguments are as follows:
in: INTEGER*4 format
New CDF format. Specify one of the formats described in Section 4.4.
The only required preselected object/state is the current CDF.
<PUT_,CDF_MAJORITY_>
Respecifies the variable majority of the current CDF. A CDF's variable majority may not be changed after any
variable values have been written. Required arguments are as follows:
in: INTEGER*4 majority
New variable majority. Specify one of the majorities described in Section 4.8.
The only required preselected object/state is the current CDF.
<PUT_,gENTRY_DATA >
Writes a gEntry to the current attribute at the current gEntry number (in the current CDF). An existing gEntry
may be overwritten with a new gEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:

in: INTEGER*4 data_type

Data type of the gEntry. Specify one of the data types described in Section 4.5.

246

in: INTEGER*4 num_elements

Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in

the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.

in: <type> value

Value. <type> is dependent on the data type of the gEnrty. The value is written to the CDF from
value.

WARNING: If the gEntry has one of the character data types (CDF_CHAR or CDF_UCHAR), then
value must be a CHARACTER Fortran variable. If the gEntry does not have one of the character data
types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<PUT_,gENTRY_DATASPEC_>

Modifies the data specification (data type and number of elements) of the gEntry at the current gEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of

elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:

in: INTEGER*4 data_type

New data type of the gEntry. Specify one of the data types described in Section 4.5.

in: INTEGER*4 num_elements
Number of elements of the data type.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<PUT_rENTRY_DATA >

Writes an rEntry to the current attribute at the current rEntry number (in the current CDF). An existing rEntry
may be overwritten with a new rEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:

in: INTEGER*4 data_type
Data type of the rEntry. Specify one of the data types described in Section 4.5.

in: INTEGER*4 num_elements

Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in

the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.

in: <type> value

247

Value. <type> is dependent on the data type of the rEnrty. The value is written to the CDF from
value.

WARNING: If the rEntry has one of the character data types (CDF_CHAR or CDF_UCHAR), then

value must be a CHARACTER Fortran variable. If the rEntry does not have one of the character data
types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on VAttributes. An error will occur if used on a gAttribute.
<PUT _,rENTRY_DATASPEC >
Modifies the data specification (data type and number of elements) of the rEntry at the current rEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:
in: INTEGER*4 data_type
New data type of the rEntry. Specify one of the data types described in Section 4.5.
in: INTEGER*4 num_elements
Number of elements of the data type.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<PUT_,rVAR_ALLOCATEBLOCK_>
Specifies a range of records to allocate for the current rVariable (in the current CDF). This operation is only
applicable to uncompressed rVariables in single-file CDFs. The Concepts chapter in the CDF User's Guide
describes the allocation of variable records. Required arguments are as follows:
in: INTEGER*4 first_record
The first record number to allocate.
in: INTEGER*4 last_record
The last record number to allocate.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,rVAR_ALLOCATERECS >
Specifies the number of records to allocate for the current rVariable (in the current CDF). The records are
allocated beginning at record number 0 (zero). This operation is only applicable to uncompressed rVariables in
single-file CDFs. The Concepts chapter in the CDF User's Guide describes the allocation of variable records.
Required arguments are as follows:
in: INTEGER*4 num_records

Number of records to allocate.

The required preselected objects/states are the current CDF and its current rVariable.

248

<PUT_,rVAR_BLOCKINGFACTOR_>"
Specifies the blocking factor for the current rVariable (in the current CDF). The Concepts chapter in the CDF
User's Guide describes a variable's blocking factor. NOTE: The blocking factor has no effect for NRV
variables or multi-file CDFs. Required arguments are as follows:
in: INTEGER*4 blockingFactor
The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_COMPRESSION_>
Specifies the compression type/parameters for the current rVariable (in current CDF). Required arguments are
as follows:

in: INTEGER*4 cType
The compression type. The types of compressions are described in Section 4.10.
in: INTEGER*4 c_parms(*)
The compression parameters. The compression parameters are described in Section 4.10.
The required preselected objects/states are the current CDF and its current rVariable.

<PUT_/rVAR_DATA >
Writes one value to the current rVVariable (in the current CDF). The value is written at the current record number
and current dimension indices for the rVariables (in the current CDF). Required arguments are as follows:

in: <type> value

Value. <type> is dependent on the data type of the rVVariable. The value is written to the CDF from
value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current rVariable, its current record number for
rVariables, and its current dimension indices for rVariables.

<PUT_,rVAR_DATASPEC_>
Respecifies the data specification (data type and number of elements) of the current rVariable (in the current
CDF). An rVariable's data specification may not be changed If the new data specification is not equivalent to
the old data specification and any values (including the pad value) have been written. Data specifications are
considered equivalent If the data types are equivalent (see the Concepts chapter in the CDF User's Guide) and
the number of elements are the same. Required arguments are as follows:

in: INTEGER*4 data_type
New data type. Specify one of the data types described in Section 4.5.

in: INTEGER*4 num_elements

> The item rVAR_BLOCKINGFACTOR was previously named rVAR_EXTENDRECS .

249

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value. For the non-character data types this must be one (1) - arrays of values are not allowed
for non-character data types.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_DIMVARYS >
Respecifies the dimension variances of the current rVariable (in the current CDF). An rVariable's dimension
variances may not be changed if any values have been written (except for an explicit pad value - it may have
been written). For 0-dimensional rVariables this operation is not applicable. Required arguments are as follows:

in: INTEGER*4 dim_varys(*)

New dimension variances. Each element of dim_varys specifies the corresponding dimension
variance. For each dimension specify one of the variances described in Section 4.9.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_HYPERDATA >
Writes one or more values to the current rVariable (in the current CDF). The values are written based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for the rVariables (in the current CDF). Required arguments
are as follows:

in: <type> buffer

Value. <type> is dependent on the data type of the rVariable. The values in buffer are written to the
CDF.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current rVariable, its current record number,
record count, and record interval for rVariables, and its current dimension indices, dimension counts, and
dimension intervals for rVVariables.

<PUT_,rVAR_INITIALRECS >
Specifies the number of records to initially write to the current rVariable (in the current CDF). The records are
written beginning at record number 0 (zero). This may be specified only once per rVariable and before any
other records have been written to that rVariable. If a pad value has not yet been specified, the default is used
(see the Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is
written to the records. The Concepts chapter in the CDF User's Guide describes initial records. Required
arguments are as follows:

in: INTEGER*4 num_records
Number of records to write.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,r'VAR_NAME_>

Renames the current rVariable (in the current CDF). A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. Required arguments are as follows:

250

in: CHARACTER var_name*(*)
New name of the rVariable. This may consist of at most CDF_VAR_NAME_LEN256 characters.

UNIX: For the proper operation of CDF_lib, var_name MUST be a Fortran CHARACTER variable
or constant.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_PADVALUE_>
Specifies the pad value for the current rVariable (in the current CDF). An rVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were
used). The Concepts chapter in the CDF User's Guide describes variable pad values. Required arguments are as
follows:

in: <type> value

Pad value. <type> is dependent on the data type of the rVariable. The pad value is written to the
CDF from value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_RECVARY_ >
Respecifies the record variance of the current rVariable (in the current CDF). An rVariable's record variance
may not be changed if any values have been written (except for an explicit pad value - it may have been written).
Required arguments are as follows:

in: INTEGER*4 rec_vary
New record variance. Specify one of the variances described in Section 4.9.
The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_SEQDATA >
Writes one value to the current rVariable (in the current CDF) at the current sequential value for that rVariable.
After the write the current sequential value is automatically incremented to the next value (crossing a record
boundary if necessary). If the current sequential value is past the last record for the rVariable, the rVariable is
extended as necessary. Required arguments are as follows:

in: <type> value

Value. <type> is dependent on the data type of the rVVariable. The value is written to the CDF from
value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current rVariable, and the current sequential

value for the rVariable. Note that the current sequential value for an rVariable increments automatically as
values are written.

251

<PUT_,'VAR_SPARSEARRAYS_>

Specifies the sparse arrays type/parameters for the current rVariable (in the current CDF). Required arguments
are as follows:

in: INTEGER*4 s_arrays_type

The sparse arrays type. The types of sparse arrays are described in Section 4.11.
in: INTEGER*4 a_arrays_parms(*)
The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.
The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,r'VAR_SPARSERECORDS_>

Specifies the sparse records type for the current rVariable (in the current CDF). Required arguments are as
follows:

in: INTEGER*4 s_records_type

The sparse records type. The types of sparse records are described in Section 4.11.
The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVARs_RECDATA_>
Writes full-physical records to one or more rVariables (in the current CDF). The full-physical records are

written at the current record number for rVariables. This operation does not affect the current rVariable (in the
current CDF). Required arguments are as follows:

in: INTEGER*4 num_vars

The number of rVariables to which to write. This must be at least one (1).

in: INTEGER*4 var_nums(*)

The rVariables to which to write. This array, whose size is determined by the value of num_vars,
contains rVariable numbers. The rVariable numbers can be listed in any order.

in: <type> buffer

The buffer of full-physical rVariable records to be written. <type> must be a Fortran variable that will
be passed by reference and cannot be of type CHARACTER. (The CDF library is expecting an address
at which to get the full-physical records being written.) The order of the full-physical rVariable
records in this buffer must agree with the r\VVariable numbers listed in varNums and this buffer must be
contiguous --- there can be no spacing between full-physical rVVariable records. Be careful if using
Fortran STRUCTUREsS to store multiple full-physical rVariable records. Fortran compilers on some
operating systems will pad between the elements of a STRUCTURE in order to prevent memory
alignment errors (i.e., the elements of a STRUCTURE may not be contiguous). See the Concepts
chapter in the CDF User's Guide for more details on how to create this buffer.

The required preselected objects/states are the current CDF and its current record number for rVariables. *®

<PUT_,zENTRY_DATA >

16 A Standard Interface at Section 5.17 provides the same functionality.

252

Writes a zEntry to the current attribute at the current zEntry number (in the current CDF). An existing zEntry
may be overwritten with a new zEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:

in: INTEGER*4 data_type
Data type of the zEntry. Specify one of the data types described in Section 4.5.

in: INTEGER*4 num_elements

Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in

the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.

in: <type> value

The value(s). <type> depends on the data type of the zEntry. The value is written to the CDF from
value.

253

254

WARNING: If the zEntry has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the zEntry does not have one of the character
data types, then value must NOT be a CHARACTER Fortran variable.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<PUT_,zENTRY_DATASPEC_>
Modifies the data specification (data type and number of elements) of the zEntry at the current zEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:
in: INTEGER*4 data_type
New data type of the zEntry. Specify one of the data types described in Section 4.5.
in: INTEGER*4 num_elements
Number of elements of the data type.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<PUT_,zZVAR_ALLOCATEBLOCK_>
Specifies a range of records to allocate for the current zVariable (in the current CDF). This operation is only
applicable to uncompressed zVariables in single-file CDFs. The Concepts chapter in the CDF User's Guide
describes the allocation of variable records. Required arguments are as follows:
in: INTEGER*4 first_record
The first record number to allocate.
in: INTEGER*4 last_record
The last record number to allocate.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zZVAR_ALLOCATERECS_>
Specifies the number of records to allocate for the current zVariable (in the current CDF). The records are
allocated beginning at record number 0 (zero). This operation is only applicable to uncompressed zVariables in
single-file CDFs. The Concepts chapter in the CDF User's Guide describes the allocation of variable records.
Required arguments are as follows:
in: INTEGER*4 num_records
Number of records to allocate.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_BLOCKINGFACTOR_>"

" The item zZVAR_BLOCKINGFACTOR was previously named zVAR_EXTENDRECS .

255

Specifies the blocking factor for the current zVariable (in the current CDF). The Concepts chapter in the CDF
User's Guide describes a variable's blocking factor. NOTE: The blocking factor has no effect for NRV
variables or multi-file CDFs. Required arguments are as follows:
in: INTEGER*4 blockingFactor
The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zZVAR_COMPRESSION_>
Specifies the compression type/parameters for the current zVariable (in current CDF). Required arguments are
as follows:
in: INTEGER*4 cType
The compression type. The types of compressions are described in Section 4.10.
in: INTEGER*4 c_parms(*)
The compression parameters. The compression parameters are described in Section 4.10.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zZVAR _DATA >

Writes one value to the current zVariable (in the current CDF). The value is written at the current record number
and current dimension indices for that zVariable (in the current CDF). Required arguments are as follows:

in: <type> value

Value. <type> is dependent on the data type of the zVariable. The value is written to the CDF from
value.

WARNING: If the zZVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the zVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current zVariable, the current record number for
the zVariable, and the current dimension indices for the zVariable.

<PUT_,zZVAR_DATASPEC >

Respecifies the data specification (data type and number of elements) of the current zVariable (in the current
CDF). A zVariable's data specification may not be changed If the new data specification is not equivalent to the
old data specification and any values (including the pad value) have been written. Data specifications are
considered equivalent If the data types are equivalent (see the Concepts chapter in the CDF User's Guide) and
the number of elements are the same. Required arguments are as follows:

in: INTEGER*4 data_type

New data type. Specify one of the data types described in Section 4.5.
in: INTEGER*4 num_elements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists

256

at each value. For the non-character data types this must be one (1) - arrays of values are not allowed
for non-character data types.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zZVAR_DIMVARYS_>
Respecifies the dimension variances of the current zVariable (in the current CDF). A zVariable's dimension
variances may not be changed if any values have been written (except for an explicit pad value - it may have
been written). For O-dimensional zVariables this operation is not applicable. Required arguments are as
follows:

in: INTEGER*4 dim_varys(*)

New dimension variances. Each element of dim_varys specifies the corresponding dimension
variance. For each dimension specify one of the variances described in Section 4.9.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zZVAR_INITIALRECS_>
Specifies the number of records to initially write to the current zVariable (in the current CDF). The records are
written beginning at record number 0 (zero). This may be specified only once per zVariable and before any
other records have been written to that zVariable. If a pad value has not yet been specified, the default is used
(see the Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is
written to the records. The Concepts chapter in the CDF User's Guide describes initial records. Required
arguments are as follows:

in: INTEGER*4 num_records
Number of records to write.
The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zZVAR_HYPERDATA_>
Writes one or more values to the current zVariable (in the current CDF). The values are written based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for that zVariable (in the current CDF). Required arguments
are as follows:

in: <type> buffer

Value. <type> is dependent on the data type of the zVariable. The value is written to the CDF from
value.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the zVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current zVariable, the current record number,
record count, and record interval for the zVariable, and the current dimension indices, dimension counts, and
dimension intervals for the zZVariable.

<PUT_,zZVAR_NAME_>
Renames the current zVariable (in the current CDF). A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. Required arguments are as follows:

in: CHARACTER var_name*(*)

257

New name of the zVariable. This may consist of at most CDF_VAR_NAME_LEN256 characters.
The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zZVAR_PADVALUE_>
Specifies the pad value for the current zVariable (in the current CDF). A zVariable's pad value may be specified
(or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values. Required arguments are as
follows:

in: <type> value

Pad value. <type> is dependent on the data type of the zVariable. The value is written to the CDF
from value.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the zVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zZVAR_RECVARY_>
Respecifies the record variance of the current zVariable (in the current CDF). A zVariable's record variance may
not be changed if any values have been written (except for an explicit pad value - it may have been written).
Required arguments are as follows:

in: INTEGER*4 rec_vary
New record variance. Specify one of the variances described in Section 4.9.
The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zZVAR_SEQDATA >
Writes one value to the current zVariable (in the current CDF) at the current sequential value for that zVariable.
After the write the current sequential value is automatically incremented to the next value (crossing a record
boundary if necessary). If the current sequential value is past the last record for the zVariable, the zZVariable is
extended as necessary. Required arguments are as follows:

in: <type> value

Value. <type> is dependent on the data type of the zVariable. The value is written to the CDF from
value.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the zVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current zVariable, and the current sequential
value for the zVariable. Note that the current sequential value for a zVariable increments automatically as
values are written.

<PUT_,zVAR_SPARSEARRAYS >

Specifies the sparse arrays type/parameters for the current zVariable (in the current CDF). Required arguments
are as follows:

258

in: INTEGER*4 s_arrays_type

The sparse arrays type. The types of sparse arrays are described in Section 4.11.
in: INTEGER*4 a_arrays_parms(*)
The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_SPARSERECORDS_>

Specifies the sparse records type for the current zVariable (in the current CDF). Required arguments are as
follows:

in: INTEGER*4 s_records_type

The sparse records type. The types of sparse records are described in Section 4.11.
The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVARs_RECDATA_>
Writes full-physical records to one or more zVariables (in the current CDF). The full-physical record for a
particular zVariable is written at the current record number for that zVariable. (The record numbers do not have

to be the same but in most cases probably will be.) This operation does not affect the current zVariable (in the
current CDF). Required arguments are as follows:

in: INTEGER*4 num_vars

The number of zVariables to which to write. This must be at least one (1).

in: INTEGER*4 var_nums(*)

The zVariables to which to write. This array, whose size is determined by the value of hum_vars,
contains zVariable numbers. The zVariable numbers can be listed in any order.

in: <type> buffer

The buffer of full-physical zVariable records to be written. <type> must be a Fortran variable that will
be passed by reference and cannot be of type CHARACTER. (The CDF library is expecting an address
at which to get the full-physical records being written.) The order of the full-physical zVariable
records in this buffer must agree with the zVariable numbers listed in varNums and this buffer must be
contiguous --- there can be no spacing between full-physical zVariable records. Be careful if using
Fortran STRUCTURES to store multiple full-physical zVariable records. Fortran compilers on some
operating systems will pad between the elements of a STRUCTURE in order to prevent memory
alignment errors (i.e., the elements of a STRUCTURE may not be contiguous). See the Concepts
chapter in the CDF User's Guide for more details on how to create this buffer.

The required preselected objects/states are the current CDF and the current record number for each of the
zVariables specified. A convenience operation exists, <SELECT ,zZVARs_RECNUMBER_>, that allows the
current record number for each zVariable to be selected at one time (as opposed to selecting the current record
numbers one at a time using <SELECT_,zVAR_RECNUMBER_>). 18

<SELECT_,ATTR_>
Explicitly selects the current attribute (in the current CDF) by number. Required arguments are as follows:

18 A Standard Interface at Section 5.18 provides the same functionality.

259

in: INTEGER*4 attr_num
Attribute number.
The only required preselected object/state is the current CDF.
<SELECT_,ATTR_NAME_>
Explicitly selects the current attribute (in the current CDF) by name. NOTE: Selecting the current attribute by
number (see <SELECT_,ATTR_>) is more efficient. Required arguments are as follows:
in: CHARACTER attr_name*(*)
Attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters.

UNIX: For the proper operation of CDF _lib, attr_name MUST be a Fortran CHARACTER variable
or constant.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_>
Explicitly selects the current CDF. Required arguments are as follows:

in: INTEGER*4 id

Identifier of the CDF. This identifier must have been initialized by a successful <CREATE_,CDF_>
or <OPEN ,CDF_> operation.

There are no required preselected objects/states.
<SELECT_,CDF_CACHESIZE_>
Selects the number of cache buffers to be used for the dotCDF file (for the current CDF). The Concepts chapter
in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are as
follows:
in: INTEGER*4 num_buffers
The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_DECODING_>
Selects a decoding (for the current CDF). Required arguments are as follows:

in: INTEGER*4 decoding
The decoding. Specify one of the decodings described in Section 4.7.
The only required preselected object/state is the current CDF.

<SELECT_,CDF_NEGtoPOSfp0_MODE_>
Selects a -0.0 to 0.0 mode (for the current CDF). Required arguments are as follows:

in: INTEGER*4 mode

The -0.0 to 0.0 mode. Specify one of the -0.0 to 0.0 modes described in Section 4.15.

260

The only required preselected object/state is the current CDF.

<SELECT_,CDF_READONLY_MODE_>
Selects a read-only mode (for the current CDF). Required arguments are as follows:

in: INTEGER*4 mode
The read-only mode. Specify one of the read-only modes described in Section 4.13.
The only required preselected object/state is the current CDF.
<SELECT_,CDF_SCRATCHDIR_>

Selects a directory to be used for scratch files (by the CDF library) for the current CDF. The Concepts chapter
in the CDF User’s Guide describes how the CDF library uses scratch files. This scratch directory will override
the directory specified by the CDF$TMP logical name (on VMS systems) or CDF TMP environment variable
(on UNIX and MS-DQOS systems). Required arguments are as follows:

in: CHARACTER scratch_dir*(*)

The directory to be used for scratch files. The length of this directory specification is limited only by
the operating system being used.

UNIX: For the proper operation of CDF _lib, scratch_dir MUST be a Fortran CHARACTER variable
or constant.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_STATUS >
Selects the current status code. Required arguments are as follows:

in: INTEGER™*4 status
CDF status code.
There are no required preselected objects/states.

<SELECT_,CDF_zMODE_>
Selects a zMode (for the current CDF). Required arguments are as follows:

in: INTEGER*4 mode
The zMode. Specify one of the zModes described in Section 4.14.
The only required preselected object/state is the current CDF.
<SELECT_,COMPRESS_CACHESIZE_>

Selects the number of cache buffers to be used for the compression scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:

in: INTEGER*4 num_buffers

The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

261

<SELECT_,gENTRY_>
Selects the current gEntry number for all gAttributes in the current CDF. Required arguments are as follows:

in: INTEGER*4 entry_num
gEntry number.
The only required preselected object/state is the current CDF.

<SELECT_,rENTRY_>
Selects the current rEntry number for all vAttributes in the current CDF. Required arguments are as follows:

in: INTEGER*4 entry_num
rEntry number.
The only required preselected object/state is the current CDF.
<SELECT_,rfENTRY_NAME_>
Selects the current rEntry number for all vAttributes (in the current CDF) by rVariable name. The number of the
named rVariable becomes the current rEntry number. (The current rVariable is not changed.) NOTE: Selecting
the current rEntry by number (see <SELECT_,rENTRY_>) is more efficient. Required arguments are as
follows:
in: CHARACTER var_name*(*)
rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.

UNIX: For the proper operation of CDF_lib, var_name MUST be a Fortran CHARACTER variable
or constant.

The only required preselected object/state is the current CDF.

<SELECT ,rVAR >
Explicitly selects the current rVariable (in the current CDF) by number. Required arguments are as follows:

in: INTEGER*4 var_num
rVVariable number.
The only required preselected object/state is the current CDF.
<SELECT_,rVAR_CACHESIZE_>
Selects the number of cache buffers to be used for the current rVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:
in: INTEGER*4 num_buffers
The number of cache buffers to be used.

The required preselected objects/states are the current CDF and its current rVariable.

<SELECT_,r'VAR_NAME_>

262

Explicitly selects the current rVVariable (in the current CDF) by name. NOTE: Selecting the current rVariable
by number (see <SELECT _,rVAR_>) is more efficient. Required arguments are as follows:

in: CHARACTER var_name*(*)
rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.

UNIX: For the proper operation of CDF_lib, var_name MUST be a Fortran CHARACTER variable
or constant.

The only required preselected object/state is the current CDF.
<SELECT_,rVAR_RESERVEPERCENT_>
Selects the reserve percentage to be used for the current rVariable (in the current CDF). This operation is only
applicable to compressed rVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
in: INTEGER*4 percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current rVariable.
<SELECT_,rVAR_SEQPOS_>
Selects the current sequential value for sequential access for the current rVariable (in the current CDF). Note that
a current sequential value is maintained for each rVariable individually. Required arguments are as follows:
in: INTEGER*4 rec_num
Record number.

in: INTEGER*4 indices(*)

Dimension indices. Each element of indices specifies the corresponding dimension index. For 0-
dimensional rVVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current rVariable.
<SELECT_,rVARs_CACHESIZE >

Selects the number of cache buffers to be used for all of the rVariable files (of the current CDF). This operation

is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching

scheme used by the CDF library. Required arguments are as follows:

in: INTEGER*4 num_buffers
The number of cache buffers to be used.

The only required preselected object/state is the current CDF.
<SELECT_,rVARs_DIMCOUNTS_>

Selects the current dimension counts for all rVariables in the current CDF. For 0-dimensional rVariables this

operation is not applicable. Required arguments are as follows:

in: INTEGER*4 counts(*)

Dimension counts. Each element of counts specifies the corresponding dimension count.

263

The only required preselected object/state is the current CDF.
<SELECT_,rVARs_DIMINDICES >
Selects the current dimension indices for all r\Variables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
in: INTEGER*4 indices(*)
Dimension indices. Each element of indices specifies the corresponding dimension index.
The only required preselected object/state is the current CDF.
<SELECT_,rVARs_DIMINTERVALS_>
Selects the current dimension intervals for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
in: INTEGER*4 intervals(*)
Dimension intervals. Each element of intervals specifies the corresponding dimension interval.

The only required preselected object/state is the current CDF.

<SELECT_,rVARs_RECCOUNT_>
Selects the current record count for all rVariables in the current CDF. Required arguments are as follows:

in: INTEGER*4 rec_count
Record count.
The only required preselected object/state is the current CDF.

<SELECT_,rVARs_RECINTERVAL_>
Selects the current record interval for all rVariables in the current CDF. Required arguments are as follows:

in: INTEGER*4 rec_interval
Record interval.
The only required preselected object/state is the current CDF.

<SELECT_,rVARs_RECNUMBER_>
Selects the current record number for all r\Variables in the current CDF. Required arguments are as follows:

in: INTEGER*4 rec_num
Record number.
The only required preselected object/state is the current CDF.
<SELECT_,STAGE CACHESIZE_>
Selects the number of cache buffers to be used for the staging scratch file (for the current CDF). The Concepts
chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are

as follows:

in: INTEGER*4 num_buffers

264

The number of cache buffers to be used.
The only required preselected object/state is the current CDF.

<SELECT_,ZENTRY_>
Selects the current zEntry number for all vAttributes in the current CDF. Required arguments are as follows:

in: INTEGER*4 entry_num
ZEntry number.
The only required preselected object/state is the current CDF.
<SELECT_,zZENTRY_NAME_>
Selects the current zEntry number for all vAttributes (in the current CDF) by zVariable name. The number of
the named zVariable becomes the current zEntry number. (The current zVariable is not changed.) NOTE:
Selecting the current zEntry by number (see <SELECT ,zENTRY _>) is more efficient. Required arguments are
as follows:
in: CHARACTER var_name*(*)
zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.

UNIX: For the proper operation of CDF_lib, var_name MUST be a Fortran CHARACTER variable
or constant.

The only required preselected object/state is the current CDF.

<SELECT_,zZVAR_>
Explicitly selects the current zZVariable (in the current CDF) by number. Required arguments are as follows:

in: INTEGER*4 var_num
zVariable number.
The only required preselected object/state is the current CDF.
<SELECT_,zVAR_CACHESIZE_ >
Selects the number of cache buffers to be used for the current zVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:
in: INTEGER*4 num_buffers
The number of cache buffers to be used.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zVAR_DIMCOUNTS_>
Selects the current dimension counts for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:

in: INTEGER*4 counts(*)

Dimension counts. Each element of counts specifies the corresponding dimension count.

265

The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zVAR_DIMINDICES >
Selects the current dimension indices for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:
in: INTEGER*4 indices(*)
Dimension indices. Each element of indices specifies the corresponding dimension index.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zVAR_DIMINTERVALS >
Selects the current dimension intervals for the current zVariable in the current CDF. For O-dimensional zVariables this
operation is not applicable. Required arguments are as follows:
in: INTEGER*4 intervals(*)
Dimension intervals. Each element of intervals specifies the corresponding dimension interval.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_NAME_>
Explicitly selects the current zVariable (in the current CDF) by name. NOTE: Selecting the current zVariable

by number (see <SELECT_,zZVAR_>) is more efficient. Required arguments are as follows:
in: CHARACTER var_name*(*)
zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.

UNIX: For the proper operation of CDF_lib, var_name MUST be a Fortran CHARACTER variable
or constant.

The only required preselected object/state is the current CDF.
<SELECT_,zVAR_RECCOUNT _>
Selects the current record count for the current zVariable in the current CDF. Required arguments are as
follows:
in: INTEGER*4 rec_count
Record count.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT ,zVAR_RECINTERVAL >
Selects the current record interval for the current zVariable in the current CDF. Required arguments are as
follows:
in: INTEGER*4 rec_interval

Record interval.

The required preselected objects/states are the current CDF and its current zVariable.

266

<SELECT ,zVAR_RECNUMBER_>
Selects the current record number for the current zVariable in the current CDF. Required arguments are as
follows:
in: INTEGER*4 rec_num
Record number.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zVAR_RESERVEPERCENT_>
Selects the reserve percentage to be used for the current zVariable (in the current CDF). This operation is only
applicable to compressed zVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
in: INTEGER*4 percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zVAR_SEQPOS_>
Selects the current sequential value for sequential access for the current zVariable (in the current CDF). Note
that a current sequential value is maintained for each zVariable individually. Required arguments are as follows:
in: INTEGER*4 rec_num
Record number.

in: INTEGER*4 indices(*)

Dimension indices. Each element of indices specifies the corresponding dimension index. For 0-
dimensional zVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zZVARs_CACHESIZE_>
Selects the number of cache buffers to be used for all of the zVariable files (of the current CDF). This operation
is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library. Required arguments are as follows:
in: INTEGER*4 num_buffers
The number of cache buffers to be used.
The only required preselected object/state is the current CDF.
<SELECT_,zZVARs_RECNUMBER_>
Selects the current record number for each zVariable in the current CDF. This operation is provided to simplify
the selection of the current record numbers for the zVariables involved in a multiple variable access operation
(see the Concepts chapter in the CDF User’s Guide). Required arguments are as follows:

in: INTEGER*4 rec_num

Record number.

267

The only required preselected object/state is the current CDF.

7.7 More Examples

Several more examples of the use of CDF_lib follow. in each example it is assumed that the current CDF has already
been selected (either implicitly by creating/opening the CDF or explicitly with <SELECT_,CDF_>).

7.7.1 Creation

In this example an rVariable will be created with a pad value being specified; initial records will be written; and the
rVVariable's blocking factor will be specified. Note that the pad value was specified before the initial records. This
results in the specified pad value being written. Had the pad value not been specified first, the initial records would
have been written with the default pad value. It is assumed that the current CDF has already been selected.

INCLUDE “<path>cdf.inc"

INTEGER*4 status
INTEGER*4 dim_varys(2)
INTEGER*4 var_num
REAL*4 pad_value

Status returned from CDF library.
Dimension variances.

rVariable number.

Pad value.

DATA pad_value/-999.9/

dim_varys(1) = VARY

dim_varys(2) = VARY

status = CDF_lib (CREATE , rVAR_, "HUMIDITY", CDF_REAL4, 1, VARY,
1 dim_varys, var_num,

2 PUT_, rVAR_PADVALUE_ , pad_value,

3 rVAR_INITIALRECS , 500,

4 rVAR_BLOCKINGFACTOR_, 50,

5 NULL_, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

7.7.2 zVariable Creation (Character Data Type)

In this example a zVariable with a character data type will be created with a pad value being specified. It is assumed
that the current CDF has already been selected.

INCLUDE *<path>CDF. INC"

268

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

status
dim_varys(1)
var_num
num_dims
dim_sizes(1)
num_elems

CHARACTER*10 pad_value

DATA pad_value/=****x*x*xx=/

0 num_dims/1/,
1 dim_sizes/20/,
2 num_elems/10/

dim_varys(1) = VARY
status = CDF_lib (CREATE_, zVAR , "Station®, CDF_CHAR, num_elems, num_dims,

1
2
3

7.7.3

Status returned from CDF library.
Dimension variances.

zVariable number.

Number of dimension.

Dimension sizes.

Number of elements (of the data type).
Pad value.

dim_sizes, NOVARY, dim_varys, var_num,

PUT , zVAR_PADVALUE , pad_value,
NULL_, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

Hyper Read with Subsampling

In this example an rVariable will be subsampled in a CDF whose rVariables are 2-dimensional and have dimension
sizes [100,200]. The CDF is column major, and the data type of the rVariable is CDF_UINT2. It is assumed that the

current CDF has already been selected.

INCLUDE “<path>CDF.INC"

INTEGER*4
INTEGER*2
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4

DATA rec_count/1/, rec_interval/1/,

status

values(50,100)

rec_count
rec_interval
indices(2)
counts(2)
intervals(2)

rec_num
max_rec

Status returned from CDF library.
Buffer to receive values.

Record count, one record per hyper get.
Record interval, set to one to indicate
contiguous records (really meaningless
since record count is one).

Dimension indices, start each read

at 1,1 of the array.

Dimension counts, half of the values along
each dimension will be read.

Dimension intervals, every other value
along each dimension will be read.
Record number.

Maximum rVariable record in the

CDF - this was determined with a call
to CDF_inquire.

indices/1,1/, counts/50,100/,

269

1 intervals/2,2/

status = CDF_lib (SELECT_, rVAR_NAME , "BRIGHTNESS",

1 rVARs_RECCOUNT_, rec_count,

2 rVARs RECINTERVAL_, rec_interval,
3 rVARs DIMINDICES , indices,

4 rVARs_DIMCOUNTS_, counts,

5 rVARs_DIMINTERVALS , intervals,

6 NULL_, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

DO rec_num = 1, max_rec
status = CDF_lib (SELECT_, rVARs_RECNUMBER_, rec_num,
1 GET_, rVAR_HYPERDATA , values,
2 NULL_, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

I process values

END DO

7.7.4 Attribute Renaming

In this example the attribute named Tmp will be renamed to TMP. It is assumed that the current CDF has already been
selected.

INCLUDE ®<path>CDF.INC"

iNTEGER*4 status I Status returned from CDF library.

status = CDF_lib (SELECT_, ATTR_NAME , "Tmp-,

1 PUT _, ATTR_NAME, "TMP*",

2 NULL_, status)

IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

7.7.5 Sequential Access

In this example the values for a zZVariable will be averaged. The values will be read using the sequential access method
(see the Concepts chapter in the CDF User's Guide). Each value in each record will be read and averaged. It is

270

assumed that the data type of the zVariable has been determined to be CDF_REALA4. It is assumed that the current
CDF has already been selected.

INCLUDE “<path>CDF.INC"

INTEGER*4 status
INTEGER*4 var_num
INTEGER*4 rec_num
INTEGER*4 indices(2)
REAL*4 value
REAL*8 sum
INTEGER*4 count
REAL*4 ave

Status returned from CDF library.
zVariable number.

Record number, start at first record.
Dimension indices.

Value read.

Sum of all values.

Number of values.

Average value.

DATA indices/1,1/, sum/0.0/, count/0/, rec_num/1/

status = CDF_lib (GET_, zVAR_NUMBER_, "FLUX®", var_num,
1 NULL_, status)
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

status = CDF_lib (SELECT_, zVAR_, var_num,

1 zVAR_SEQPOS , rec _num, indices,
2 GET_, zVAR_SEQDATA_, value,
3 NULL_, status)

DO WHILE (status .GE. CDF_OK)
sum = sum + value
count = count + 1
status = CDF_lib (GET_, zVAR_SEQDATA , value,
1 NULL_, status)
END DO

IF (status .NE. END_OF VAR) CALL UserStatusHandler (status)

ave = sum / count

7.7.6 Attribute rEntry Writes

In this example a set of attribute rEntries for a particular rVariable will be written. It is assumed that the current CDF
has already been selected.

INCLUDE *<path>CDF. INC"

271

INTEGER*4 status I Status returned from CDF library.
REAL*4 scale(2) I Scale, minimum/maximum.

DATA scale/-90.0,90.0/

status = CDF_lib (SELECT_, rENTRY_NAME_, “LATITUDE",

1 ATTR_NAME_, “FIELDNAM®,

2 PUT_, rENTRY_DATA , CDF_CHAR, 20, "Latitude-”,

3 SELECT , ATTR_NAME , "SCALE",

4 PUT_, rENTRY_DATA_, CDF_REAL4, 2, scale,

5 SELECT_, ATTR_NAME_, “UNITS",

6 PUT_, rENTRY_DATA , CDF_CHAR, 20, "Degrees north",
7 NULL_, status)

IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

7.7.7 Multiple zVariable Write

In this example full-physical records will be written to the zVariables in a CDF. Note the ordering of the zVariables
(see the Concepts chapter in the CDF User's Guide). It is assumed that the current CDF has already been selected.

INCLUDE *<path>CDF. INC"

Status returned from CDF library.
“Time" value.

“vectorA*® values.

“vectorB® values.

Record number.

Buffer of full-physical records.
Variable numbers.

INTEGER*4 status
INTEGER*2 time

BYTE vector_a(3)
REAL*8 vector_b(5)
INTEGER*4 rec_number
BYTE buffer(45)
INTEGER*4 var_numbers(3)

EQUIVALENCE (vector_b, buffer(l))
EQUIVALENCE (time, buffer(4l))
EQUIVALENCE (vector_a, buffer(43))

status = CDF_lib (GET_, zVAR_NUMBER_, "vectorB", var_numbers(l),
1 zVAR_NUMBER _, “time", var_numbers(2),

2 zVAR_NUMBER_, “vectorA®", var_numbers(3),
3
|

NULL_, status);
F (status _NE. CDF_OK) CALL UserStatusHandler (status)

50 rec_number = 1, 100
}* read values from input file */

status = CDF_lib (SELECT_, zVARs_RECNUMBER_, rec_number,

272

1 PUT_, zVARs_ RECDATA , 3L, var_numbers, buffer,
2 NULL_, status);
IF (status _NE. CDF_OK) CALL UserStatusHandler (status)

END DO

273

Chapter 8

8 Interpreting CDF Status Codes

Most CDF functions return a status code of type INTEGER*4. The symbolic names for these codes are defined in
cdf.inc and should be used in your applications rather than using the true numeric values. Appendix A explains each
status code. When the status code returned from a CDF function is tested, the following rules apply.

status > CDF_OK Indicates successful completion but some additional information is
provided. These are informational codes.

status = CDF_OK Indicates successful completion.

CDF_WARN < status < CDF_OK Indicates that the function completed but probably not as expected.
These are warning codes.

status < CDF_WARN Indicates that the function did not complete. These are error
codes.

The following example shows how you could check the status code returned from CDF functions.

INTEGER*4 status

CALL CDF_function (..., status) I any CDF function returning status
IF (status .NE. CDF_OK) THEN
CALL UserStatusHandler (status, ...)

END IF

In your own status handler you can take whatever action is appropriate to the application. An example status handler
follows. Note that no action is taken in the status handler if the status is CDF_OK.

INCLUDE ®<path>cdf.inc"

SUBROUTINE UserStatusHandler (status)
INTEGER*4 status

274

CHARACTER message*(CDF_STATUSTEXT_LEN)

IF (status .LT. CDF_WARN) THEN
WRITE (6,10)
10 FORMAT (* ","An error has occurred, halting...")
CALL CDF_error (status, message)
WRITE (6,11) message
11 FORMAT (" ",A)
STOP
ELSE
IF (status .LT. CDF_OK) THEN
WRITE (6,12)
12 FORMAT (* =,"Warning, function may not have completed as expected...")
CALL CDF_error (status, message)
WRITE (6,13) message
13 FORMAT (* ",A)
ELSE
IF (status .GT. CDF_OK) THEN
WRITE (6,14)
14 FORMAT (* ", "Function completed successfully, but be advised that...")
CALL CDF_error (status, message)
WRITE (6,15) message

15 FORMAT (" *,A)
END IF
END IF
END IF
RETURN
END

Explanations for all CDF status codes are available to your applications through the function CDF_error. CDF_error
encodes in a text string an explanation of a given status code.

275

Chapter 9

9 EPOCH Utility Routines

Several subroutines exist that compute, decompose, parse, and encode CDF_EPOCH and CDF_EPOCH16 values.
These functions may be called by applications using the CDF_EPOCH and CDF_EPOCH16 data types and are
included in the CDF library. Function prototypes for these functions may be found in the include file cdf.h. The
Concepts chapter in the CDF User's Guide describes EPOCH values.

The CDF_EPOCH and CDF_EPOCH16 data types are used to store time values referenced from a particular epoch.

For CDF that epoch values for CDF_EPOCH and CDF_EPOCH16 are 01-Jan-0000 00:00:00.000 and 01-Jan-0000
00:00:00.000.000.000.000, respectively.

9.1 compute EPOCH

compute_EPOCH calculates a CDF_EPOCH value given the individual components. If an illegal component is
detected, the value returned will be ILLEGAL_EPOCH_VALUE.

SUBROUTINE compute_EPOCH (

INTEGER*4 year, lin -- Year (AD, e.g., 1994).
INTEGER*4 month, lin -- Month (1-12).
INTEGER*4 day, lin -- Day (1-31).
INTEGER*4 hour, Yin -- Hour (0-23).
INTEGER*4 minute, lin -- Minute (0-59).
INTEGER*4 second, lin -- Second (0-59).
INTEGER*4 msec, lin -- Millisecond (0-999).
REAL*8 epoch) ! out-- CDF_EPOCH value

NOTE: There are two variations on how compute EPOCH may be used. If the month argument is 0 (zero), then the
day argument is assumed to be the day of the year (DOY) having a range of 1 through 366. Also, if the hour, minute,
and second arguments are all 0 (zero), then the msec argument is assumed to be the millisecond of the day having a
range of 0 through 86400000.

276

9.2 EPOCH_breakdown

EPOCH_breakdown decomposes a CDF_EPOCH value into the individual components.
SUBROUTINE EPOCH_breakdown (

REAL*8 epoch, 1in -- The CDF_EPOCH value.
INTEGER*4 vyear, ! out -- Year (AD, e.g., 1994).
INTEGER*4 month, ! out -- Month (1-12).
INTEGER*4 day, ! out -- Day (1-31).
INTEGER*4 hour, I out -- Hour (0-23).
INTEGER*4 minute, I out -- Minute (0-59).
INTEGER*4 second, ! out -- Second (0-59).
INTEGER*4 msec) ! out -- Millisecond (0-999).

9.3 encode_ EPOCH

encode_EPOCH encodes a CDF_EPOCH value into the standard date/time character string. The format of the string is
dd-mmm-yyyy hh:mm:ss.ccc where dd is the day of the month (1-31), mmm is the month (Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the minute (0-59), ss is the second
(0-59), and ccc is the millisecond (0-999).

SUBROUTINE encode_EPOCH (

REAL*8 epoch; !in -- The CDF_EPOCH value.
CHARACTER epString*(EPOCH_STRING_LEN)) ! out -- The standard date/time character string.

EPOCH_STRING_LEN is defined in cdf.inc.

9.4 encode_ EPOCH1

encode_EPOCH1 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymmdd.ttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and ttttttt is the
fraction of the day (e.g., 5000000 is 12 o'clock noon).

SUBROUTINE encode EPOCH1(

REAL*8 epoch; !in -- The CDF_EPOCH value.
CHARACTER epString*(EPOCH1_STRING_LEN)) ! out -- The alternate date/time character string.

EPOCH1_STRING_LEN is defined in cdf.inc.

277

9.5 encode EPOCH2

encode_EPOCH2 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the hour (0-
23), mm is the minute (0-59), and ss is the second (0-59).

SUBROUTINE encode_EPOCH?2 (

REAL*8 epoch; 1in -- The CDF_EPOCH value.
CHARACTER epString*(EPOCH2_STRING_LEN)) ! out -- The alternate date/time character string.

EPOCH2_STRING_LEN is defined in cdf.inc.

9.6 encode EPOCHS3

encode_EPOCHS3 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyy-mo-ddThh:mm:ss.cccZ where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is
the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

SUBROUTINE encode_EPOCHS3 (

REAL*8 epoch; 1in -- The CDF_EPOCH value.
CHARACTER epString*(EPOCH3_STRING_LEN)) ! out -- The alternate date/time character string.

EPOCH3_STRING_LEN is defined in cdf.inc.

9.7 encode_EPOCHX

encode_EPOCHXx encodes a CDF_EPOCH value into a custom date/time character string. The format of the encoded
string is specified by a format string.

SUBROUTINE encode_EPOCHX (

REAL*8 epoch; !in -- The CDF_EPOCH value.
CHARACTER format*(EPOCHx_FORMAT_MAX) I in -- The format string.
CHARACTER encoded*(EPOCHx_STRING_MAX)) I out -- The custom date/time character string.

The format string consists of EPOCH components which are encoded and text which is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width.
The syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will
be encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>

278

month Month (*Jan',"Feb',...,"Dec’) <month>

mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
fos Fraction of second. <f0s.3>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format
string (character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string (see Section 9.3) would
be. ..

<dom.02>-<month>-<year> <hour>:<min>:<sec>.<fos>

EPOCHx_FORMAT_LEN and EPOCHx_STRING_MAX are defined in cdf.inc.

9.8 parse_ EPOCH

parse_EPOCH parses a standard date/time character string and returns a CDF_EPOCH value. The format of the string
is that produced by the encode_ EPOCH function described in Section 9.3. If an illegal field is detected in the string the
value returned will be ILLEGAL_EPOCH_VALUE.

SUBROUTINE parse_EPOCH (

CHARACTER epString*(EPOCH_STRING_LEN), I in -- The standard date/time character string.
REAL*8 epoch) ! out -- CDF_EPOCH value

EPOCH_STRING_LEN is defined in cdf.inc.

9.9 parse EPOCH1

parse_ EPOCH1 parses An alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encode_ EPOCH1 function described in Section 9.4. If an illegal field is detected in the
string the value returned will be ILLEGAL_EPOCH_VALUE.

SUBROUTINE parse_EPOCHL1 (

CHARACTER epString*(EPOCH1_STRING_LEN), I in -- The standard date/time character string.
REAL*8 epoch) ! out -- CDF_EPOCH value

279

EPOCH1_STRING_LEN is defined in cdf.inc.

9.10 parse EPOCH2

parse_EPOCH2 parses An alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encode_ EPOCH2 function described in Section 9.5. If an illegal field is detected in the
string the value returned will be ILLEGAL_EPOCH_VALUE.

SUBROUTINE parse_ EPOCH?2 (

CHARACTER epString*(EPOCH2_STRING_LEN), I in -- The standard date/time character string.
REAL*8 epoch) ! out -- CDF_EPOCH value

EPOCH2_STRING_LEN is defined in cdf.inc.

9.11 parse_ EPOCH3

parse_ EPOCH3 parses An alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encode_ EPOCH3 function described in Section 9.6. If an illegal field is detected in the
string the value returned will be ILLEGAL_EPOCH_VALUE.

SUBROUTINE parse_ EPOCH3 (

CHARACTER epString*(EPOCH3_STRING_LEN), I in -- The standard date/time character string.
REAL*8 epoch) ! out -- CDF_EPOCH value

EPOCH3_STRING_LEN is defined in cdf.inc.

9.12 compute EPOCHI16

compute_ EPOCH16 calculates a CDF_EPOCH16 value given the individual components. If An illegal component is
detected, the value returned will be ILLEGAL_EPOCH_VALUE.

SUBROUTINE compute_ EPOCH16 (

INTEGER*4 year, lin -- Year (AD, e.g., 1994).
INTEGER*4 month, lin -- Month (1-12).
INTEGER*4 day, lin -- Day (1-31).
INTEGER*4 hour, Yin -- Hour (0-23).
INTEGER*4 minute, lin -- Minute (0-59).
INTEGER*4 second, lin -- Second (0-59).
INTEGER*4 msec, lin -- Millisecond (0-999).
INTEGER*4 usec, lin -- Microsecond (0-999).
INTEGER*4 nsec, lin -- Nanosecond (0-999).

280

INTEGER*4 psec, lin -- Picosecond (0-999).
REAL*8 epoch(2)) ! out-- CDF_EPOCH16 value

9.13 EPOCH16 breakdown

EPOCH16_breakdown decomposes a CDF_EPOCH16 value into the individual components.
SUBROUTINE EPOCH_breakdown (
REAL*8 epoch(2),

INTEGER*4 vyear,
INTEGER*4 month,

I'in -- The CDF_EPOCH16 value.

! out -- Year (AD, e.g., 1994).

! out -- Month (1-12).
INTEGER*4 day, I out -- Day (1-31).
INTEGER*4 hour, ! out -- Hour (0-23).
INTEGER*4 minute, ! out -- Minute (0-59).
INTEGER*4 second, ! out -- Second (0-59).
INTEGER*4 msec, ! out -- Millisecond (0-999).
INTEGER*4 usec, ! out -- Microsecond (0-999).
INTEGER*4 nsec, ! out -- Nanosecond (0-999).
INTEGER*4 psec) ! out -- Picosecond (0-999).

9.14 encode EPOCHI16

encode_ EPOCH16 encodes a CDF_EPOCH16 value into the standard date/time character string. The format of the
string is dd-mmm-yyyy hh:mm:ss.ccc.uuu.nnn.ppp where dd is the day of the month (1-31), mmm is the month (Jan,
Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the minute (O-
59), ss is the second (0-59), ccc is the millisecond (0-999), uuu is the microsecond (0-999), nnn is the nanosecond (0-
999), and ppp is the picosecond (0-999).

SUBROUTINE encode_EPOCH16 (

REAL*8 epoch(2), I in -- The CDF_EPOCH16 value.
CHARACTER epString*(EPOCH16_STRING_LEN)) ! out-- The standard date/time string.

EPOCH16_STRING_LEN is defined in cdf.inc.

9.15 encode EPOCHI16 1

encode_ EPOCH16_1 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyymmdd.ttttttttttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and
ttttttttttttttt is the fraction of the day (e.g., 500000000000000 is 12 o'clock noon).

SUBROUTINE encode_EPOCH16_1(

281

REAL*8 epoch(2), lin -- The CDF_EPOCH16 value.
CHARACTER epString*(EPOCH16_1_STRING_LEN)) lout -- The date/time string.

EPOCH16_1_STRING_LEN is defined in cdf.inc.

9.16 encode EPOCH16 2

encode EPOCH16_2 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the
hour (0-23), mm is the minute (0-59), and ss is the second (0-59).

SUBROUTINE encode EPOCH16_2 (

REAL*8 epoch(2), I'in -- The CDF_EPOCH16 value.
CHARACTER epString*(EPOCH16_2_STRING_LEN)) ! out -- The date/time string.

EPOCH16_2_STRING_LEN is defined in cdf.inc.

9.17 encode EPOCH16 3

encode EPOCH16_3 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyy-mo-ddThh:mm:ss.ccc.uuu.nnn.pppZ where yyyy is the year, mo is the month (1-12), dd is the day of the
month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), ccc is the millisecond (0-999),
uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

SUBROUTINE encode_EPOCH16_3 (

REAL*8 epoch(2), I in -- The CDF_EPOCH16 value.
CHARACTER epString*(EPOCH16_3_STRING_LEN)) I out -- The date/time string.

EPOCH16_3 STRING_LEN is defined in cdf.inc.

9.18 encode EPOCH16 x

encode EPOCH16_x encodes a CDF_EPOCH16 value into a custom date/time character string. The format of the
encoded string is specified by a format string.

SUBROUTINE encode_EPOCH16_x (

REAL*8 epoch(2); 1in -- The CDF_EPOCH16 value.
CHARACTER format*(EPOCHx_FORMAT_MAX) I'in -- The format string.
CHARACTER encoded*(EPOCHx_STRING_MAX)) I out -- The custom date/time character string.

282

The format string consists of EPOCH components which are encoded and text which is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width.
The syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will
be encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows.

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month (‘Jan',"Feb',...,"Dec") <month>
mm Month (1,2,...,12) <mm.0>

year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
msec Millisecond (000-999) <msec.3>
usec Microsecond (000-999) <usec.3>
nsec Nanosecond (000-999) <nsec.3>
psec Picosecond (000-999) <psec.3>
fos Fraction of second. <fos.3>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format
string (character stuffing).

For example, the format string used to encode the standard EPOCH16 date/time character string (see Section 9.14)
would be. . .

<dom.02>-<month>-<year> <hour>:<min>;<sec>.<msec>.<usec>.<nsec>.<psec>.<fos>

EPOCHx_FORMAT_LEN and EPOCHx_STRING_MAX are defined in cdf.inc.

9.19 parse_ EPOCHI16

parse_ EPOCH16 parses a standard date/time character string and returns a CDF_EPOCH16 value. The format of the
string is that produced by the encode_ EPOCH16 function. If an illegal field is detected in the string the value returned
will be ILLEGAL_EPOCH_VALUE.

SUBROUTINE parse_ EPOCH16 (

CHARACTER epString*(EPOCH16_STRING_LEN), 1 in -- The date/time string.
REAL*8 epoch(2)) ! out -- CDF_EPOCH16 value

EPOCH16_STRING_LEN is defined in cdf.inc.

283

9.20 parse EPOCH16 1

parse_ EPOCH16_1 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encode_ EPOCH16_1 function. If an illegal field is detected in the string the value
returned will be ILLEGAL_EPOCH_VALUE.

SUBROUTINE parse_EPOCH16_1 (

CHARACTER epString*(EPOCH16_1 STRING_LEN), I in -- The date/time string.
REAL*8 epoch(2)) ! out -- CDF_EPOCH16 value

EPOCH16_1 STRING_LEN is defined in cdf.inc.

9.21 parse EPOCHI16 2

parse_ EPOCH16_2 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encode_ EPOCH16_2 function. If an illegal field is detected in the string the value
returned will be ILLEGAL_EPOCH_VALUE.

SUBROUTINE parse_EPOCH16_2 (

CHARACTER epString*(EPOCH16_2 STRING_LEN), ! in -- The date/time string.
REAL*8 epoch(2)) ! out -- CDF_EPOCH16 value

EPOCH16 2 STRING_LEN is defined in cdf.inc.

9.22 parse_ EPOCH16 3

parse_EPOCH16_3 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encode_ EPOCH16_3 function. If an illegal field is detected in the string the value
returned will be ILLEGAL_EPOCH_VALUE.

SUBROUTINE parse_EPOCH16_3 (

CHARACTER epString*(EPOCH16_3 STRING_LEN), I in -- The date/time string.
REAL*8 epoch(2)) ! out -- CDF_EPOCH16 value

EPOCH16_3 STRING_LEN is defined in cdf.inc.

284

Appendix A

A.l Introduction

A status code is returned from most CDF functions. The cdf.inc (for C) and CDF.INC (for Fortran) include files
contain the numerical values (constants) for each of the status codes (and for any other constants referred to in the
explanations). The CDF library Standard Interface functions CDFerror (for C) and CDF_error (for Fortran) can be
used within a program to inquire the explanation text for a given status code. The Internal Interface can also be used to
inquire explanation text.

There are three classes of status codes: informational, warning, and error. The purpose of each is as follows:

Informational Indicates success but provides some additional information that may be of interest to an
application.

Warning Indicates that the function completed but possibly not as expected.

Error Indicates that a fatal error occurred and the function aborted.

Status codes fall into classes as follows:
Error codes < CDF_WARN < Warning codes < CDF_OK < Informational codes

CDF_OK indicates an unqualified success (it should be the most commonly returned status code). CDF_WARN is
simply used to distinguish between warning and error status codes.

A.2 Status Codes and Messages

The following list contains an explanation for each possible status code. Whether a particular status code is considered
informational, a warning, or an error is also indicated.

ATTR_EXISTS Named attribute already exists - cannot create or rename. Each
attribute in a CDF must have a unique name. Note that trailing
blanks are ignored by the CDF library when comparing attribute
names. [Error]

ATTR_NAME_TRUNC Attribute name truncated to CDF_ATTR_NAME_LEN256
characters. The attribute was created but with a truncated name.
[Warning]

285

BAD_ALLOCATE_RECS

BAD_ARGUMENT

BAD_ATTR_NAME

BAD_ATTR_NUM

BAD_BLOCKING_FACTOR!

BAD_CACHESIZE

BAD_CDF_EXTENSION

BAD_CDF_ID

BAD_CDF_NAME

BAD_CDFSTATUS

BAD_CHECKSUM

BAD_COMPRESSION_PARM

BAD_DATA_TYPE

BAD_DECODING

BAD_DIM_COUNT

BAD_DIM_INDEX

An illegal number of records to allocate for a variable was
specified. For RV variables the number must be one or greater.
For NRV variables the number must be exactly one. [Error]

An illegal/undefined argument was passed. Check that all
arguments are properly declared and initialized. [Error]

Illegal attribute name specified. Attribute names must contain at
least one character, and each character must be printable. [Error]

Illegal attribute number specified. Attribute numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

An illegal blocking factor was specified. Blocking factors must
be at least zero (0). [Error]

An illegal number of cache buffers was specified. The value
must be at least zero (0). [Error]

An illegal file extension was specified for a CDF. In general, do
not specify an extension except possibly for a single-file CDF
which has been renamed with a different file extension or no file
extension. [Error]

CDF identifier is unknown or invalid. The CDF identifier
specified is not for a currently open CDF. [Error]

Illegal CDF name specified. CDF names must contain at least
one character, and each character must be printable. Trailing
blanks are allowed but will be ignored. [Error]

Unknown CDF status code received. The status code specified is
not used by the CDF library. [Error]

An illegal checksum mode received. It is invlid or currently not
supported. [Error]

An illegal compression parameter was specified. [Error]

An unknown data type was specified or encountered. The CDF
data types are defined in cdf.inc for C applications and in cdf.inc
for Fortran applications. [Error]

An unknown decoding was specified. The CDF decodings are
defined in cdf.inc for C applications and in cdf.inc for Fortran
applications. [Error]

Illegal dimension count specified. A dimension count must be at
least one (1) and not greater than the size of the dimension.
[Error]

One or more dimension index is out of range. A valid value must
be specified regardless of the dimension variance. Note also that

! The status code BAD_BLOCKING_FACTOR was previously named BAD_EXTEND_RECS.

286

BAD_DIM_INTERVAL

BAD_DIM_SIZE

BAD_ENCODING

BAD_ENTRY_NUM

BAD_FNC_OR_ITEM

BAD_FORMAT

BAD_INITIAL_RECS

BAD_MAJORITY

BAD_MALLOC

BAD_NEGtoPOSfp0_MODE

BAD_NUM_DIMS

BAD_NUM_ELEMS

BAD_NUM_VARS

BAD_READONLY_MODE

the combination of dimension index, count, and interval must not
specify an element beyond the end of the dimension. [Error]

Illegal dimension interval specified. Dimension intervals must be
at least one (1). [Error]

Illegal dimension size specified. A dimension size must be at
least one (1). [Error]

Unknown data encoding specified. The CDF encodings are
defined in cdf.inc for C applications and in cdf.inc for Fortran
applications. [Error]

Illegal attribute entry number specified. Entry numbers must be
at least zero (0) for C applications and at least one (1) for Fortran
applications. [Error]

The specified function or item is illegal. Check that the proper
number of arguments are specified for each operation being
performed. Also make sure that NULL_ is specified as the last
operation. [Error]

Unknown format specified. The CDF formats are defined in
cdf.inc for C applications and in cdf.inc for Fortran applications.
[Error]

An illegal number of records to initially write has been specified.
The number of initial records must be at least one (1). [Error]

Unknown variable majority specified. @~ The CDF variable
majorities are defined in cdf.inc for C applications and in cdf.inc
for Fortran applications. [Error]

Unable to allocate dynamic memory - system limit reached.
Contact CDF User Support if this error occurs. [Error]

An illegal -0.0 to 0.0 mode was specified. The -0.0 to 0.0 modes
are defined in cdf.inc for C applications and in cdf.inc for Fortran
applications. [Error]

The number of dimensions specified is out of the allowed range.
Zero (0) through CDF_MAX_DIMS dimensions are allowed. If
more are needed, contact CDF User Support. [Error]

The number of elements of the data type is illegal. The number
of elements must be at least one (1). For variables with a non-
character data type, the number of elements must always be one
(1). [Error]

Illegal number of variables in a record access operation. [Error]
Illegal read-only mode specified. The CDF read-only modes are

defined in cdf.inc for C applications and in cdf.inc for Fortran
applications. [Error]

287

BAD_REC_COUNT

BAD_REC_INTERVAL

BAD_REC_NUM

BAD_SCOPE

BAD_SCRATCH_DIR

BAD_SPARSEARRAYS_PARM

BAD_VAR_NAME

BAD_VAR_NUM

BAD_zMODE

CANNOT_ALLOCATE_RECORDS

CANNOT_CHANGE

Illegal record count specified. A record count must be at least
one (1). [Error]

Illegal record interval specified. A record interval must be at
least one (1). [Error]

Record number is out of range. Record numbers must be at least
zero (0) for C applications and at least one (1) for Fortran
applications. Note that a valid value must be specified regardless
of the record variance. [Error]

Unknown attribute scope specified. The attribute scopes are
defined in cdf.inc for C applications and in cdf.inc for Fortran
applications. [Error]

An illegal scratch directory was specified. The scratch directory
must be writeable and accessible (if a relative path was specified)
from the directory in which the application has been executed.
[Error]

An illegal sparse arrays parameter was specified. [Error]

Illegal variable name specified. Variable names must contain at
least one character and each character must be printable. [Error]

Illegal variable number specified. Variable numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

Illegal zMode specified. The CDF zModes are defined in cdf.inc
for C applications and in cdf.inc for Fortran applications. [Error]

Records cannot be allocated for the given type of variable (e.g., a
compressed variable). [Error]

Because of dependencies on the value, it cannot be changed.
Some possible causes of this error follow:

1. Changing a CDF's data encoding after a variable value
(including a pad value) or an attribute entry has been
written.

N

. Changing a CDF's format after a variable has been created
or if a compressed single-file CDF.

w

. Changing a CDF's variable majority after a variable value
(excluding a pad value) has been written.

4. Changing a variable's data specification after a value
(including the pad value) has been written to that variable
or after records have been allocated for that variable.

5. Changing a variable's record variance after a value

(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

288

CANNOT_COMPRESS

CANNOT_SPARSEARRAYS

CANNOT_SPARSERECORDS

CDF_CLOSE_ERROR

CDF_CREATE_ERROR

CDF_DELETE_ERROR

CDF_EXISTS

CDF_INTERNAL_ERROR

CDF_NAME_TRUNC

CDF_OK

6. Changing a variable's dimension variances after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

7. Writing “initial" records to a variable after a value
(excluding the pad value) has already been written to that
variable.

@™

Changing a variable's blocking factor when a compressed
variable and a value (excluding the pad value) has been
written or when a variable with sparse records and a
value has been accessed.

©

Changing an attribute entry's data specification where the
new specification is not equivalent to the old
specification.

The CDF or variable cannot be compressed. For CDFs, this
occurs if the CDF has the multi-file format. For variables, this
occurs if the variable is in a multi-file CDF, values have been
written to the variable, or if sparse arrays have already been
specified for the variable. [Error]

Sparse arrays cannot be specified for the variable. This occurs if
the variable is in a multi-file CDF, values have been written to
the variable, records have been allocated for the variable, or if
compression has already been specified for the variable. [Error]

Sparse records cannot be specified for the variable. This occurs
if the variable is in a multi-file CDF, values have been written to
the variable, or records have been allocated for the variable.
[Error]

Error detected while trying to close CDF. Check that sufficient
disk space exists for the dotCDF file and that it has not been
corrupted. [Error]

Cannot create the CDF specified - error from file system. Make
sure that sufficient privilege exists to create the dotCDF file in
the disk/directory location specified and that an open file quota
has not already been reached. [Error]

Cannot delete the CDF specified - error from file system.
Insufficient privileges exist the delete the CDF file(s). [Error]

The CDF named already exists - cannot create it. The CDF
library will not overwrite an existing CDF. [Error]

An unexpected condition has occurred in the CDF library. Report
this error to CDFsupport. [Error]

CDF file name truncated to CDF_PATHNAME_LEN characters.
The CDF was created but with a truncated name. [Warning]

Function completed successfully.

289

CDF OPEN_ERROR

CDF_READ_ERROR

CDF_WRITE_ERROR

CHECKSUM_ERROR

CHECKSUM_NOT_ALLOWED

COMPRESSION_ERROR

CORRUPTED_V2_CDF

DECOMPRESSION_ERROR

DID_NOT_COMPRESS

EMPTY_COMPRESSED_CDF

END_OF VAR

FORCED_PARAMETER

IBM_PC_OVERFLOW

ILLEGAL_FOR_SCOPE

ILLEGAL_IN_zMODE

Cannot open the CDF specified - error from file system. Check
that the dotCDF file is not corrupted and that sufficient privilege
exists to open it. Also check that an open file quota has not
already been reached. [Error]

Failed to read the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

Failed to write the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

The data integrity verification through the checksum failed.
[Error]

The checksum is not allowed for old versioned files. [Error]

An error occurred while compressing a CDF or block of variable
records. This is an internal error in the CDF library. Contact
CDF User Support. [Error]

This Version 2 CDF is corrupted. An error has been detected in
the CDF's control information. If the CDF file(s) are known to
be valid, please contact CDF User Support. [Error]

An error occurred while decompressing a CDF or block of
variable records. The most likely cause is a corrupted dotCDF
file. [Error]

For a compressed variable, a block of records did not compress to
smaller than their uncompressed size. They have been stored
uncompressed. This can result If the blocking factor is set too
low or if the characteristics of the data are such that the
compression algorithm chosen is unsuitable. [Informational]

The compressed CDF being opened is empty. This will result if a
program which was creating/modifying the CDF abnormally
terminated. [Error]

The sequential access current value is at the end of the variable.
Reading beyond the end of the last physical value for a variable is
not allowed (when performing sequential access). [Error]

A specified parameter was forced to an acceptable value (rather
than an error being returned). [Warning]

An operation involving a buffer greater than 64k bytes in size has
been specified for PCs running 16-bit DOS/Windows 3.*.
[Error]

The operation is illegal for the attribute's scope. For example,
only gEntries may be written for gAttributes - not rEntries or
zEntries. [Error]

The attempted operation is illegal while in zMode. Most

operations involving rVariables or rEntries will be illegal.
[Error]

290

ILLEGAL_ON_V1_CDF

MULTI_FILE_FORMAT

NA_FOR_VARIABLE

NEGATIVE_FP_ZERO

NO_ATTR_SELECTED

NO_CDF_SELECTED

NO_DELETE_ACCESS

NO_ENTRY_SELECTED

NO_MORE_ACCESS

NO_PADVALUE_SPECIFIED

NO_STATUS SELECTED

NO_SUCH_ATTR

NO_SUCH_CDF

NO_SUCH_ENTRY
NO_SUCH_RECORD

NO_SUCH_VAR

NO_VAR_SELECTED

The specified operation (i.e., opening) is not allowed on Version
1 CDFs. [Error]

The specified operation is not applicable to CDFs with the multi-
file format. For example, it does not make sense to inquire
indexing statistics for a variable in a multi-file CDF (indexing is
only used in single-file CDFs). [Informational]

The attempted operation is not applicable to the given variable.
[Warning]

One or more of the values read/written are -0.0 (An illegal value
on VAXes and DEC Alphas running OpenVMS). [Warning]

An attribute has not yet been selected. First select the attribute on
which to perform the operation. [Error]

A CDF has not yet been selected. First select the CDF on which
to perform the operation. [Error]

Deleting is not allowed (read-only access). Make sure that
delete access is allowed on the CDF file(s). [Error]

An attribute entry has not yet been selected. First select the entry
number on which to perform the operation. [Error]

Further access to the CDF is not allowed because of a severe
error. If the CDF was being modified, an attempt was made to
save the changes made prior to the severe error. in any event, the
CDF should still be closed. [Error]

A pad value has not yet been specified. The default pad value is
currently being used for the variable. The default pad value was
returned. [Informational]

A CDF status code has not yet been selected. First select the
status code on which to perform the operation. [Error]

The named attribute was not found. Note that attribute names are
case-sensitive. [Error]

The specified CDF does not exist. Check that the file name
specified is correct. [Error]

No such entry for specified attribute. [Error]
The specified record does not exist for the given variable. [Error]

The named variable was not found. Note that variable names are
case-sensitive. [Error]

A variable has not yet been selected. First select the variable on
which to perform the operation. [Error]

291

NO_VARS_IN_CDF

NO_WRITE_ACCESS

NOT_A_CDF

PRECEEDING_RECORDS_ALLOCATED

READ_ONLY_DISTRIBUTION

READ_ONLY_MODE

SCRATCH_CREATE_ERROR

SCRATCH_DELETE_ERROR

SCRATCH_READ_ERROR

SCRATCH_WRITE_ERROR

SINGLE_FILE_FORMAT

SOME_ALREADY_ALLOCATED

TOO_MANY_PARMS

TOO_MANY_VARS

UNKNOWN_COMPRESSION

UNKNOWN_SPARSENESS

This CDF contains no rVariables. The operation performed is
not applicable to a CDF with no rVariables. [Informational]

Write access is not allowed on the CDF file(s). Make sure that
the CDF file(s) have the proper file system privileges and
ownership. [Error]

Named CDF is corrupted or not actually a CDF. This can also
occur if an older CDF distribution is being used to read a CDF
created by a more recent CDF distribution. Contact CDF User
Support if you are sure that the specified file is a CDF that should
be readable by the CDF distribution being used. CDF is
backward compatible but not forward compatible. [Error]

Because of the type of variable, records preceding the range of
records being allocated were automatically allocated as well.
[Informational]

Your CDF distribution has been built to allow only read access to
CDFs. Check with your system manager if you require write
access. [Error]

The CDF is in read-only mode - modifications are not allowed.
[Error]

Cannot create a scratch file - error from file system. If a scratch
directory has been specified, ensure that it is writable. [Error]

Cannot delete a scratch file - error from file system. [Error]
Cannot read from a scratch file - error from file system. [Error]
Cannot write to a scratch file - error from file system. [Error]
The specified operation is not applicable to CDFs with the single-
file format. For example, it does not make sense to close a

variable in a single-file CDF. [Informational]

Some of the records being allocated were already allocated.
[Informational]

A type of sparse arrays or compression was encountered having
too many parameters. This could be causes by a corrupted CDF
or if the CDF was created/modified by a CDF distribution more
recent than the one being used. [Error]

A multi-file CDF on a PC may contain only a limited number of
variables because of the 8.3 file naming convention of MS-DOS.
This consists of 100 rVariables and 100 zVariables. [Error]

An unknown type of compression was specified or encountered.
[Error]

An unknown type of sparseness was specified or encountered.
[Error]

292

UNSUPPORTED_OPERATION
VAR_ALREADY_CLOSED

VAR_CLOSE_ERROR

VAR_CREATE_ERROR

VAR_DELETE_ERROR

VAR_EXISTS

VAR_NAME_TRUNC

VAR_OPEN_ERROR

VAR_READ_ERROR

VAR_WRITE_ERROR

VIRTUAL_RECORD_DATA

The attempted operation is not supported at this time. [Error]
The specified variable is already closed. [Informational]

Error detected while trying to close variable file. Check that
sufficient disk space exists for the variable file and that it has not
been corrupted. [Error]

An error occurred while creating a variable file in a multi-file
CDF. Check that a file quota has not been reached. [Error]

An error occurred while deleting a variable file in a multi-file
CDF. Check that sufficient privilege exist to delete the CDF
files. [Error]

Named variable already exists - cannot create or rename. Each
variable in a CDF must have a unique name (rVariables and
zVariables can not share names). Note that trailing blanks are
ignored by the CDF library when comparing variable names.
[Error]

Variable name truncated to CDF_VAR_NAME_LEN256
characters. The variable was created but with a truncated name.
[Warning]

An error occurred while opening variable file. Check that
sufficient privilege exists to open the variable file. Also make
sure that the associated variable file exists. [Error]

Failed to read variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

Failed to write variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

One or more of the records are virtual (never actually written to
the CDF). Virtual records do not physically exist in the CDF
file(s) but are part of the conceptual view of the data provided by
the CDF library. Virtual records are described in the Concepts
chapter in the CDF User's Guide. [Informational]

293

Appendix B

B.1 Standard Interface (original)

SUBROUTINE CDF _attr_create (id, attr_name, attr_scope, attr_num, status)

INTEGER*4 id lin
CHARACTER attr_name*(*) lin
INTEGER*4 attr_scope lin
INTEGER*4 attr_num ! out
INTEGER*4 status ! out
SUBROUTINE CDF_attr_entry_inquire (id, attr_num, entry_num, data_type, num_elements,
1 status)

INTEGER*4 id lin
INTEGER*4 attr_num lin
INTEGER*4 entry_num lin
INTEGER*4 data_type I out
INTEGER*4 num_elements I out
INTEGER*4 status out
SUBROUTINE CDF attr_get (id, attr_num, entry_num, value, status)

INTEGER*4 id lin
INTEGER*4 attr_num lin
INTEGER*4 entry_num lin
<type> value !out
INTEGER*4 status ! out
SUBROUTINE CDF _attr_inquire (id, attr_num, attr_name, attr_scope, max_entry, status)
INTEGER*4 id lin
INTEGER*4 attr_num lin
CHARACTER attr_name*(*) I out
INTEGER*4 attr_scope out
INTEGER*4 max_entry I out
INTEGER*4 status out
INTEGER*4 FUNCTION CDF _attr_num (id, attr_name)

INTEGER*4 id lin
CHARACTER attr_name*(*) lin
SUBROUTINE CDF_attr_put (id, attr_num, entry_num, data_type, num_elements, value,

1 status)

INTEGER*4 id lin
INTEGER*4 attr_num lin

295

INTEGER*4 entry_num lin
INTEGER*4 data_type lin
INTEGER*4 num_elements lin
<type> value lin
INTEGER*4 status ! out
SUBROUTINE CDF _attr_rename (id, attr_num, attr_name, status)

INTEGER*4 id in

!
INTEGER*4 attr_num lin

|

|

CHARACTER attr_name*(*) in
INTEGER*4 status out
SUBROUTINE CDF_close (id, status)

INTEGER*4 id lin
INTEGER*4 status out

SUBROUTINE CDF _create (CDF_name, num_dims, dim_sizes, encoding, majority, id, status)
CHARACTER CDF_name*(*) lin

INTEGER*4 num_dims in
INTEGER*4 dim_sizes(*) in
INTEGER*4 encoding in

]

|

1
INTEGER*4 majority lin

]

]

INTEGER*4 id I out
INTEGER*4 status I out
SUBROUTINE CDF _delete (id, status)

INTEGER*4 id lin
INTEGER*4 status ! out
SUBROUTINE CDF doc (id, version, release, text, status)

INTEGER*4 id in
INTEGER*4 version out

]

1
INTEGER*4 release ! out

|

]

CHARACTER text*(CDF_DOCUMENT_LEN) out
INTEGER*4 status out
SUBROUTINE CDF _error (status, message, status)

INTEGER*4 status lin
CHARACTER message*(CDF_STATUSTEXT_LEN) ! out
INTEGER*4 status out
SUBROUTINE CDF_getrvarsrecorddata (id, num_var, var_nums, rec_num,

1 buffer, status)

INTEGER*4 id lin
INTEGER*4 num_var lin
INTEGER*4 var_nums(*) lin
INTEGER*4 rec_num lin
<type> buffer out
INTEGER*4 status out
SUBROUTINE CDF_getzvarsrecorddata (id, num_var, var_nums, rec_num,

1 buffer, status)

INTEGER*4 id lin
INTEGER*4 num_var lin
INTEGER*4 var_nums(*) lin
INTEGER*4 rec_num lin

296

<type> buffer ! out
INTEGER*4 status ! out

SUBROUTINE CDF _inquire (id, num_dims, dim_sizes, encoding, majority, max_rec,
num_vars, num_attrs, status)

INTEGER*4 id in

INTEGER*4 num_dims out
INTEGER*4 dim_sizes(CDF_MAX_DIMS) out
INTEGER*4 encoding out

|
]
|
!
INTEGER*4 majority !out
|
]
]
]

INTEGER*4 max_rec out
INTEGER*4 num_vars out
INTEGER*4 num_attrs out
INTEGER*4 status out
SUBROUTINE CDF_open (CDF_name, id, status)

CHARACTER CDF_name*(*) lin
INTEGER*4 id ! out
INTEGER*4 status ! out
SUBROUTINE CDF_putrvarsrecorddata (id, num_var, var_nums, rec_num,

1 buffer, status)

INTEGER*4 id lin
INTEGER*4 num_var lin
INTEGER*4 var_nums(*) lin
INTEGER*4 rec_num lin
<type> buffer lin
INTEGER*4 status ! out
SUBROUTINE CDF_putzvarsrecorddata (id, num_var, var_nums, rec_num,

1 buffer, status)

INTEGER*4 id lin
INTEGER*4 num_var lin
INTEGER*4 var_nums(*) lin
INTEGER*4 rec_num lin
<type> buffer lin
INTEGER*4 status out
SUBROUTINE CDF _var_close (id, var_num, status)

INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 status out
SUBROUTINE CDF _var_create (id, var_name, data_type, num_elements, rec_variances,

1 dim_variances, var_num, status)

INTEGER*4 id lin
CHARACTER var_name*(*) lin
INTEGER*4 data_type lin
INTEGER*4 num_elements lin
INTEGER*4 rec_variance lin
INTEGER*4 dim_variances(*) lin
INTEGER*4 var_num I out
INTEGER*4 status out
SUBROUTINE CDF _var_get (id, var_num, rec_num, indices, value, status)

INTEGER*4 id lin

297

INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4

SUBROUTINE CDF _var_hyper_get (id, var_num, rec_start, rec_count, rec_interval,

1
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4

SUBROUTINE CDF _var_hyper_put (id, var_num, rec_start, rec_count, rec_interval,

1
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4

SUBROUTINE CDF _var_inquire (id, var_num, var_name, data_type, num_elements,
rec_variance, dim_variances, status)

1
INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

var_num
rec_num
indices(*)
value
status

id;
var_num
rec_start
rec_count
rec_interval
indices(*)
counts(*)
intervals(*)
buffer
status

id

var_num
rec_start
rec_count
rec_interval
indices(*)
counts(*)
intervals(*)
buffer
status

id
var_num

indices, counts, intervals, buffer, status)

indices, counts, intervals, buffer, status)

var_name*(CDF_VAR_NAME_LEN256)

data_type

num_elements

rec_variance

dim_variances(CDF_MAX_DIMS)

status

INTEGER*4 FUNCTION CDF _var_num (id, var_name)

INTEGER*4

CHARACTER var_name*(*)

id

SUBROUTINE CDF_var_put (id, var_num, rec_num, indices, value, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4

id
var_num
rec_num
indices(*)
value
status

SUBROUTINE CDF_var_rename (id, var_num, var_name, status)

298

5

5

out
out
out
out
out
out

I out

INTEGER*4 id lin

INTEGER*4 var_num lin
CHARACTER var_name*(*) lin
INTEGER*4 status !out

299

B.2 Standard Interface (new)

SUBROUTINE CDF_close_cdf (id, status)
INTEGER*4 id
INTEGER*4 status

SUBROUTINE CDF close_zvar (id, var_num, status)
INTEGER*4 id

INTEGER*4 var_num

INTEGER*4 status

INTEGER*4 FUNCTION CDF_confirm_attr_existence (id, attr_name)
INTEGER*4 id
CHARACTER attr_name*(*)

INTEGER*4 FUNCTION CDF_confirm_gentry_existence (id, attr_num, entry_num)

INTEGER*4 id
INTEGER*4 attr_num
INTEGER*4 entry_num

INTEGER*4 FUNCTION CDF_confirm_rentry_existence (id, attr_num, entry_num)

INTEGER*4 id
INTEGER*4 attr_num
INTEGER*4 entry_num

INTEGER*4 FUNCTION CDF_confirm_zentry existence (id, attr_num, entry_num)

INTEGER*4 id
INTEGER*4 attr_num
INTEGER*4 entry_num

INTEGER*4 FUNCTION CDF_confirm_zvar_existence (id, var_name)
INTEGER*4 id
CHARACTER var_name*(*)

INTEGER*4 FUNCTION CDF_confirm_zvar_padvalue_exist (id, var_num)

INTEGER*4 id
INTEGER*4 var_num

SUBROUTINE CDF create_attr (id, attr_name, attr_scope, attr_num, status)

INTEGER*4 id
CHARACTER attr_name*(*)
INTEGER*4 attr_scope
INTEGER*4 attr_num
INTEGER*4 status

SUBROUTINE CDF_create_cdf (CDF_name, id, status)
CHARACTER CDF_name*(*)

INTEGER*4 id

INTEGER*4 status

301

55

5

SUBROUTINE CDF_create_zvar (id, var_name, data_type, num_elements, num_dims,
dim_sizes, rec_variances, dim_variances, var_num, status)

1
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF_delete_attr (id, attr_num, status)

INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF _delete_attr_gentry (id, attr_num, entry_num, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF_delete_attr_rentry (id, attr_num, entry_num, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF _delete_attr_zentry (id, attr_num, entry_num, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF_delete_cdf (id, status)

INTEGER*4
INTEGER*4

SUBROUTINE CDF _delete_zvar (id, var_num, status)

INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF_delete_zvar_recs (id, var_num, start_rec, end_rec, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id

var_name*(*)
data_type
num_elements
num_dims
dim_sizes(*)
rec_variance
dim_variances(*)
var_num

status

id
attr_num
status

id
attr_num
entry_num
status

id
attr_num
entry_num
status

id
attr_num
entry_num
status

id
status

id
var_num
status

id
var_num
start_rec
end_rec
status

5

5

I out

SUBROUTINE CDF _get attr_gentry_datatype (id, attr_num, entry_num, data_type, status)

INTEGER*4
INTEGER*4
INTEGER*4

id
attr_num
entry_num

lin
lin
lin

INTEGER*4
INTEGER*4

data_type
status

I out
I out

SUBROUTINE CDF_get_attr_gentry_numelems (id, attr_num, entry_num, num_elems, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id

attr_num
entry_num
num_elems
status

SUBROUTINE CDF_get_attr_gentry (id, attr_num, entry_num, value, status)

INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4

id
attr_num
entry_num
value
status

SUBROUTINE CDF_get_attr_max_gentry (id, attr_num, entry_num, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
attr_num
entry_num
status

SUBROUTINE CDF_get_attr_ max_rentry (id, attr_num, entry_num, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
attr_num
entry_num
status

SUBROUTINE CDF_get attr_max_zentry (id, attr_num, entry_num, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
attr_num
entry_num
status

SUBROUTINE CDF_get_attr_name (id, attr_num, attr_name, status)

INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4

id

attr_num
attr_name*(*)
status

INTEGER*4 FUNCTION CDF_get_attr num (id, attr_name, status)

INTEGER*4
CHARACTER
INTEGER*4

id
attr_name*(*)
status

SUBROUTINE CDF_get_attr_ num_gentries (id, attr_num, entries, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
attr_num
entries
status

SUBROUTINE CDF_get_attr_num_rentries (id, attr_num, entries, status)

INTEGER*4
INTEGER*4
INTEGER*4

id
attr_num
entries

303

lin
lin
lin

! out
I out

INTEGER*4

SUBROUTINE CDF_get_attr_num_zentries (id, attr_num, entries, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF_get_attr_rentry (id, attr_num, entry_num, value, status)

INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4

status

id
attr_num
entries
status

id
attr_num
entry_num
value
status

I out

lin
lin
! out
! out

lin
lin
lin
I out
! out

SUBROUTINE CDF_get_attr_rentry_datatype (id, attr_num, entry_num, data_type, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
attr_num
entry_num
data_type
status

lin
lin
lin
! out
! out

SUBROUTINE CDF_get_attr_rentry_numelems (id, attr_num, entry_num, num_elems, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF _get_attr_scope (id, attr_num, scope, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF_get_attr_zrentry (id, attr_num, entry_num, value, status)

INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4

id

attr_num
entry_num
num_elems
status

id
attr_num
scope
status

id
attr_num
entry_num
value
status

lin
lin
lin
! out
! out

lin
lin
! out
out

lin
lin
lin
! out
! out

SUBROUTINE CDF_get_attr_zentry datatype (id, attr_num, entry_num, data_type, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
attr_num
entry_num
data_type
status

lin
lin
lin
out
out

SUBROUTINE CDF_get_attr_zentry _numelems (id, attr_num, entry_num, num_elems, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id

attr_num
entry_num
num_elems
status

lin
lin
lin
! out
! out

SUBROUTINE CDF_get_cachesize (id, num_buffers, status)

INTEGER*4 id lin
INTEGER*4 num_buffers Iout
INTEGER*4 status ! out
SUBROUTINE CDF_get_checksum (id, checksum, status)

INTEGER*4 id lin
INTEGER*4 checksum ! out
INTEGER*4 status ! out
SUBROUTINE CDF_get_compress_cachesize (id, num_buffers, status)

INTEGER*4 id lin
INTEGER*4 num_buffers ! out
INTEGER*4 status ! out
SUBROUTINE CDF_get_compression (id, ctype, cparms, cpercent, status)

INTEGER*4 id lin
INTEGER*4 ctype out
INTEGER*4 cparms(*) ! out
INTEGER*4 cpercent I out
INTEGER*4 status ! out
SUBROUTINE CDF_get_compression_info (cdf_name, compress_type, compress_parms,

1 compres_size, decompress_size, status)
CHARACTER cdf_name*(*) lin
INTEGER*4 compress_type out
INTEGER*4 compress_parms(*) ! out
INTEGER*8 compress_size !out
INTEGER*8 decompress_size !out
INTEGER*4 status ! out
SUBROUTINE CDF_get_copyright (id, copyright, status)

INTEGER*4 id lin
CHARACTER copyright*(*) ! out
INTEGER*4 status ! out
SUBROUTINE CDF_get_datatype_size (data_type, size, status)

INTEGER*4 date_type lin
INTEGER*4 size ! out
INTEGER*4 status out
SUBROUTINE CDF_get_decoding (id, decoding, status)

INTEGER*4 id lin
INTEGER*4 decoding ! out
INTEGER*4 status ! out
SUBROUTINE CDF_get_encoding (id, encoding, status)

INTEGER*4 id lin
INTEGER*4 encoding !out
INTEGER*4 status out
SUBROUTINE CDF _get format (id, format, status)

INTEGER*4 id lin
INTEGER*4 format ! out
INTEGER*4 status ! out

305

SUBROUTINE CDF_get_lib_copyright (copyright, status)

CHARACTER copyright*(*) ! out
INTEGER*4 status out
SUBROUTINE CDF_get_lib_version (version, release, increment, sub_increment, status)
INTEGER*4 version ! out
INTEGER*4 release ! out
INTEGER*4 increment ! out
CHARACTER sub_increment*(*) !out
INTEGER*4 status ! out
SUBROUTINE CDF_get_majority (id, majority, status)

INTEGER*4 id lin
INTEGER*4 majority !out
INTEGER*4 status out
SUBROUTINE CDF_get_name (id, name, status)

INTEGER*4 id lin
CHARACTER name*(*) ! out
INTEGER*4 status ! out
SUBROUTINE CDF_get_negtoposfp0_maode (id, negtoposfp0, status)

INTEGER*4 id lin
INTEGER*4 negtoposfp0 I out
INTEGER*4 status ! out
SUBROUTINE CDF_get_num_attrs (id, num_attrs, status)

INTEGER*4 id lin
INTEGER*4 num_attrs I out
INTEGER*4 status ! out
SUBROUTINE CDF_get_num_gattrs (id, num_attrs, status)

INTEGER*4 id lin
INTEGER*4 num_attrs ! out
INTEGER*4 status ! out
SUBROUTINE CDF_get_num_rvars (id, num_vars, status)

INTEGER*4 id lin
INTEGER*4 num_vars out
INTEGER*4 status out
SUBROUTINE CDF_get_num_vattrs (id, num_attrs, status)

INTEGER*4 id lin
INTEGER*4 num_attrs I out
INTEGER*4 status ! out
SUBROUTINE CDF_get_num_zvars (id, num_vars, status)

INTEGER*4 id lin
INTEGER*4 num_vars out
INTEGER*4 status out
SUBROUTINE CDF_get _readonly_mode (id, readonly, status)

INTEGER*4 id lin
INTEGER*4 readonly out
INTEGER*4 status ! out

306

SUBROUTINE CDF_get stage cachesize (id, num_buffers, status)

INTEGER*4 id lin
INTEGER*4 num_buffers Iout
INTEGER*4 status out
SUBROUTINE CDF_get_status_text (statusid, text, status)

INTEGER*4 statusid lin
CHARACTER text*(*) ! out
INTEGER*4 status ! out
INTEGER*4 FUNCTION CDF_get var_num (id, var_name)

INTEGER*4 id lin
INTEGER*4 var_name*(*) lin
SUBROUTINE CDF_get_vars_maxwrittenrecnums (id, max_rvars_rechum,

1 max_zvars_recnum, status)

INTEGER*4 id lin
INTEGER*4 max_rvars_recnum out
INTEGER*4 max_zvars_recnum ! out
INTEGER*4 status ! out
SUBROUTINE CDF_get version (id, version, release, increment, status)

INTEGER*4 id in
INTEGER*4 version out

1
!
INTEGER*4 release I out
1
1

INTEGER*4 increment out
INTEGER*4 status out
SUBROUTINE CDF_get zmode (id, zmode, status)

INTEGER*4 id lin
INTEGER*4 zmode ! out
INTEGER*4 status ! out
SUBROUTINE CDF_get_zvar_allocrecs (id, var_num, num_recs, status)

INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 num_recs out
INTEGER*4 status out
SUBROUTINE CDF_get zvar_blockingfactor (id, var_num, bf, status)

INTEGER*4 id in

!
INTEGER*4 var_num lin

|

|

INTEGER*4 bf out
INTEGER*4 status out
SUBROUTINE CDF_get_zvar_cachesize (id, var_num, num_buffers, status)

INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 num_buffers Iout
INTEGER*4 status out
SUBROUTINE CDF_get_zvar_compression (id, var_num, compress_type, compress_parms,
1 compress_percent, status)

INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 compress_type ! out

307

INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF_get_zvar_data (id, var_num, rec_num, indices, value, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4

compress_parms(*)
compress_percent
status

id
var_num
rec_num
indices(*)
value
status

SUBROUTINE CDF_get_zvar_datatype (id, var_num, data_type, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
var_num
data_type
status

SUBROUTINE CDF_get zvar_dimsizes (id, var_num, dim_sizes, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id

var_num
dim_sizes(*)
status

SUBROUTINE CDF_get_zvar_dimvariances (id, var_num, dim_varys, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id

var_num
dim_varys(*)
status

SUBROUTINE CDF_get zvar_maxallocrecnum (id, var_num, rec_num, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
var_num
rec_num
status

SUBROUTINE CDF_get_zvar_maxwrittenrecnum (id, var_num, rec_num, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
var_num
rec_num
status

SUBROUTINE CDF_get_zvar_name (id, var_num, var_name, status)

INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4

id

var_num
var_name*(*)
status

SUBROUTINE CDF_get_zvar_numdims (id, var_num, num_dims, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
var_num
num_dims
status

SUBROUTINE CDF_get_zvar_numelems (id, var_num, num_elems, status)

INTEGER*4

id

308

INTEGER*4 var_num lin
INTEGER*4 num_elems ! out
INTEGER*4 status !out

SUBROUTINE CDF_get_zvar_numrecs (id, var_num, num_recs, status)
INTEGER*4 id !
INTEGER*4 var_num lin
]
|

INTEGER*4 num_recs out
INTEGER*4 status out
SUBROUTINE CDF_get zvar_padvalue (id, var_num, pad_value, status)

INTEGER*4 id lin
INTEGER*4 var_num lin
<type> pad_value I out
INTEGER*4 status out
SUBROUTINE CDF _get zvar_recorddata (id, var_num, rec_num, record_data, status)
INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 rec_num lin
<type> record_data I out
INTEGER*4 status ! out
SUBROUTINE CDF_get_zvar_recvariance (id, var_num, rec_vary, status)

INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 rec_vary out
INTEGER*4 status out
SUBROUTINE CDF_get zvar_reservepercent (id, var_num, reserve_percent, status)
INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 reserve_percent I out
INTEGER*4 status ! out
SUBROUTINE CDF_get_zvar_seqdata (id, var_num, value, status)

INTEGER*4 id lin
INTEGER*4 var_num lin
<type> value !out
INTEGER*4 status out
SUBROUTINE CDF_get_zvar_seqpos (id, var_num, rec_num, indices, status)
INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 rec_num I out
INTEGER*4 indices(*) ! out
INTEGER*4 status ! out
SUBROUTINE CDF_get_zvars_maxwrittenrecnum (id, rec_num, status)

INTEGER*4 id lin
INTEGER*4 rec_num out
INTEGER*4 status out
SUBROUTINE CDF_get zvar_sparserecords (id, var_num, srecords, status)

INTEGER*4 id lin
INTEGER*4 var_num lin

309

INTEGER*4
INTEGER*4

srecords
status

SUBROUTINE CDF_get_zvars_recorddata (id, hum_var, var_nums, rec_num,

1
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4

id

num_var
var_nums(*)
rec_num
buffer

status

buffer, status)

I out
I out

lin
lin
lin
lin
I out
I out

SUBROUTINE CDF_hyper_get_zvar_data (id, var_num, rec_start, rec_count, rec_interval,

1
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4

id;
var_num
rec_start
rec_count
rec_interval
indices(*)
counts(*)
intervals(*)
buffer
status

indices, counts, intervals, buffer, status)

!
!
!
lin
!
!
!

lin
I out
I out

SUBROUTINE CDF_hyper_put zvar_data (id, var_num, rec_start, rec_count, rec_interval,

1
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4

id

var_num
rec_start
rec_count
rec_interval
indices(*)
counts(*)
intervals(*)
buffer
status

indices, counts, intervals, buffer, status)

SUBROUTINE CDF _inquire_attr (id, attr_num, attr_name, attr_scope, max_gentry,
max_rentry, max_zentry, status)

1
INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id

attr_num
attr_name*(*)
attr_scope
max_gentry
max_rentry
max_zentry
status

1
1
1
|
!
lin
!
!
!
!

lin

lin

! out
I out
! out
Iout
! out
out

SUBROUTINE CDF _inquire_attr_gentry (id, attr_num, entry_num, data_type, num_elements,

1

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
attr_num
entry_num
data_type

num_elements

status)

310

lin
lin
lin
! out
! out

INTEGER*4

status

I out

SUBROUTINE CDF _inquire_attr_rentry (id, attr_num, entry_num, data_type, num_elements,

1

INTEGER*4 id lin
INTEGER*4 attr_num lin
INTEGER*4 entry_num lin
INTEGER*4 data_type out
INTEGER*4 num_elements out
INTEGER*4 status ! out
SUBROUTINE CDF_inquire_attr_zentry (id, attr_num, entry_num, data_type, num_elements,
1

INTEGER*4 id lin
INTEGER*4 attr_num lin
INTEGER*4 entry_num lin
INTEGER*4 data_type out
INTEGER*4 num_elements ! out
INTEGER*4 status ! out
SUBROUTINE CDF _inquire_cdf (id, num_dims, dim_sizes, encoding, majority, max_rrec,

1 num_rvars, max_zrec, num_zvars, num_attrs, status)
INTEGER*4 id lin
INTEGER*4 num_dims ! out
INTEGER*4 dim_sizes(CDF_MAX_DIMS) ! out
INTEGER*4 encoding ! out
INTEGER*4 majority out
INTEGER*4 max_rrec Iout
INTEGER*4 num_rvars ! out
INTEGER*4 max_zrec I out
INTEGER*4 num_zvars ! out
INTEGER*4 num_attrs I out
INTEGER*4 status ! out
SUBROUTINE CDF_inquire_zvar (id, var_num, var_name, data_type, num_elements, num_dims,
1 dim_sizes, rec_variance, dim_variances, status)
INTEGER*4 id lin
INTEGER*4 var_num lin
CHARACTER var_name*(CDF_VAR_NAME_LEN256) ! out
INTEGER*4 data_type ! out
INTEGER*4 num_elements !out
INTEGER*4 num_dims ! out
INTEGER*4 dim_sizes(CDF_MAX_DIMS) out
INTEGER*4 rec_variance out
INTEGER*4 dim_variances(CDF_MAX_DIMS) out
INTEGER*4 status ! out
SUBROUTINE CDF_open_cdf (CDF_name, id, status)

CHARACTER CDF_name*(*) lin
INTEGER*4 id ! out
INTEGER*4 status I out
SUBROUTINE CDF_put_attr_gentry (id, attr_num, entry_num, data_type, num_elements, value,
1

INTEGER*4 id lin
INTEGER*4 attr_num lin

INTEGER*4 entry_num lin

INTEGER*4 data_type lin
INTEGER*4 num_elements lin
<type> value lin
INTEGER*4 status ! out

SUBROUTINE CDF_put_attr_rentry (id, attr_num, entry_num, data_type, num_elements, value,
1 status)

INTEGER*4 id lin
INTEGER*4 attr_num lin
INTEGER*4 entry_num lin
INTEGER*4 data_type lin
INTEGER*4 num_elements lin
<type> value lin
INTEGER*4 status ! out

SUBROUTINE CDF_put_attr_zentry (id, attr_num, entry_num, data_type, num_elements, value,
1 status)

INTEGER*4 id lin
INTEGER*4 attr_num lin
INTEGER*4 entry_num lin
INTEGER*4 data_type lin
INTEGER*4 num_elements lin
<type> value lin
INTEGER*4 status ! out
SUBROUTINE CDF_put_zvar_data (id, var_num, rec_num, indices, value, status)
INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 rec_num lin
INTEGER*4 indices(*) lin
<type> value lin
INTEGER*4 status ! out
SUBROUTINE CDF_put_zvar_recorddata (id, var_num, rec_num, values, status)
INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 rec_num lin
<type> values lin
INTEGER*4 status out
SUBROUTINE CDF_put_zvar_seqdata (id, var_num, value, status)

INTEGER*4 id in
INTEGER*4 var_num in

|

|
<type> value lin

]

INTEGER*4 status out
SUBROUTINE CDF_put_zvars_recorddata (id, num_var, var_nums, rec_num,

1 buffer, status)

INTEGER*4 id Yin
INTEGER*4 num_var lin
INTEGER*4 var_nums(*) lin
INTEGER*4 rec_num lin
<type> buffer lin
INTEGER*4 status ! out

312

SUBROUTINE CDF_rename_attr (id, attr_num, attr_name, status)

INTEGER*4 id lin
INTEGER*4 attr_num lin
CHARACTER attr_name*(*) lin
INTEGER*4 status out
SUBROUTINE CDF_rename_zvar (id, var_num, var_name, status)

INTEGER*4 id lin
INTEGER*4 var_num lin
CHARACTER var_name*(*) lin
INTEGER*4 status ! out
SUBROUTINE CDF_set_attr_gentry dataspec (id, attr_num, entry_num, data_type, status)
INTEGER*4 id lin
INTEGER*4 attr_num lin
INTEGER*4 entry_num lin
INTEGER*4 data_type lin
INTEGER*4 num_elems lin
INTEGER*4 status ! out

SUBROUTINE CDF_set_attr_rentry_dataspec (id, attr_num, entry_num, data_type, status)
INTEGER*4 id lin
INTEGER*4 attr_num i
INTEGER*4 entry_num !
INTEGER*4 data_type lin
1
1

INTEGER*4 num_elems in
INTEGER*4 status out
SUBROUTINE CDF _set_attr_scope (id, attr_num, scope, status)

INTEGER*4 id lin
INTEGER*4 attr_num lin
INTEGER*4 scope lin
INTEGER*4 status ! out

SUBROUTINE CDF_set_attr_zenty dataspec (id, attr_num, entry_num, data_type, status)
INTEGER*4 id lin
INTEGER*4 attr_num i
INTEGER*4 entry_num !
INTEGER*4 data_type lin
]
|

INTEGER*4 num_elems in
INTEGER*4 status out
SUBROUTINE CDF_set_cachesize (id, num_buffers, status)

INTEGER*4 id lin
INTEGER*4 num_buffers lin
INTEGER*4 status ! out
SUBROUTINE CDF_set_checksum (id, checksum, status)

INTEGER*4 id lin
INTEGER*4 checksum lin
INTEGER*4 status out
SUBROUTINE CDF_set_compress_cachesize (id, num_buffers, status)

INTEGER*4 id lin
INTEGER*4 num_buffers lin
INTEGER*4 status ! out

313

SUBROUTINE CDF_set_compression (id, compress_type, compress_parms, status)
INTEGER*4 id

INTEGER*4 compress_type

INTEGER*4 compress_parms(*)

INTEGER*4 status

SUBROUTINE CDF _set_decoding (id, decoding, status)
INTEGER*4 id

INTEGER*4 decoding

INTEGER*4 status

SUBROUTINE CDF_set_encoding (id, encoding, status)
INTEGER*4 id

INTEGER*4 encoding

INTEGER*4 status

SUBROUTINE CDF _set_format (id, format, status)
INTEGER*4 id

INTEGER*4 format

INTEGER*4 status

SUBROUTINE CDF_set_majority (id, majority, status)
INTEGER*4 id

INTEGER*4 majority

INTEGER*4 status

SUBROUTINE CDF_set_negtoposfp0_mode (id, negtoposfp0, status)
INTEGER*4 id

INTEGER*4 negtoposfp0

INTEGER*4 status

SUBROUTINE CDF_set_readonly_mode (id, readonly, status)
INTEGER*4 id

INTEGER*4 readonly

INTEGER*4 status

SUBROUTINE CDF_set_stage_cachesize (id, num_buffers, status)
INTEGER*4 id

INTEGER*4 num_buffers

INTEGER*4 status

SUBROUTINE CDF_set_zmode (id, zmode, status)
INTEGER*4 id

INTEGER*4 zmode

INTEGER*4 status

SUBROUTINE CDF_set_zvar_allocblockrecs (id, var_num, start_rec, end_rec, status)
INTEGER*4 id

INTEGER*4 var_num

INTEGER*4 start_rec

INTEGER*4 end_rec

INTEGER*4 status

SUBROUTINE CDF_set_zvar_allocrecs (id, var_num, num_recs, status)
INTEGER*4 id

314

INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF_set_zvar_blockingfactor (id, var_num, bf, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF_set_zvar_cachesize (id, var_num, num_buffers, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF _set_zvar_compression (id, var_num, compress_type, compress_parms, status)

var_num
num_recs
status

id
var_num
bf

status

id

var_num
num_buffers
status

in
in
in
out

INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 compress_type lin
INTEGER*4 compress_parms(*) lin
INTEGER*4 status ! out
SUBROUTINE CDF_set_zvar_dataspec (id, var_num, data_type, status)

INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 data_type in
INTEGER*4 num_elems lin
INTEGER*4 status ! out
SUBROUTINE CDF _set_zvar_dimvariances (id, var_num, dimvarys, status)

INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 dimvarys(*) lin
INTEGER*4 status ! out
SUBROUTINE CDF_set_zvar_initialrecs (id, var_num, num_recs, status)

INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 num_recs lin
INTEGER*4 status out
SUBROUTINE CDF_set_zvar_padvalue (id, var_num, value, status)

INTEGER*4 id lin
INTEGER*4 var_num lin
<type> value lin
INTEGER*4 status ! out
SUBROUTINE CDF _set_zvar_recvariance (id, var_num, rec_vary, status)

INTEGER*4 id lin
INTEGER*4 var_num lin
INTEGER*4 rec_vary lin
INTEGER*4 status out
SUBROUTINE CDF_set_zvar_reservepercent (id, var_num, reserve_percent, status)
INTEGER*4 id lin

315

INTEGER*4 var_num
INTEGER*4 reserve_percent
INTEGER*4 status

SUBROUTINE CDF_set_zvars_cachesize (id, num_buffers, status)

INTEGER*4 id
INTEGER*4 num_buffers
INTEGER*4 status

SUBROUTINE CDF_set_zvar_seqpos (id, var_num, rec_num, indices, status)

INTEGER*4 id
INTEGER*4 var_num
INTEGER*4 rec_num
INTEGER*4 indices(*)
INTEGER*4 status

SUBROUTINE CDF _set_zvar_sparserecords (id, var_num, sparse_records, status)

INTEGER*4 id
INTEGER*4 var_num
INTEGER*4 sparse_records
INTEGER*4 status

B.3 Internal Interface

INTEGER*4 FUNCTION CDF_lib (fnc, ..., status)
INTEGER*4 fnc

INTEGER*4 status
CLOSE_
CDF_
VAR _
ZVAR_

CONFIRM_
ATTR_
ATTR_EXISTENCE._
CDF_
CDF_ACCESS_
CDF_CACHESIZE_
CDF_DECODING_
CDF_NAME_

CDF_NEGtoPOSfp0_MODE_
CDF_READONLY_MODE_
CDF_STATUS_
CDF_zMODE_
COMPRESS_CACHESIZE_
CURGENTRY_EXISTENCE_
CURIENTRY_EXISTENCE_

INTEGER*4 attr_num
CHARACTER attr_name*(*)
INTEGER*4 id

INTEGER*4 num_buffers
INTEGER*4 decoding

lin

! out

! out
lin
! out

! out
! out

CHARACTER CDF_name*(CDF_PATHNAME_LEN)

INTEGER*4 mode
INTEGER*4 mode
INTEGER*4 status
INTEGER*4 mode
INTEGER*4 num_buffers

316

! out
! out
I out
I out
I out
! out

CURZENTRY_EXISTENCE_
gENTRY_
gENTRY_EXISTENCE_
rENTRY _
rENTRY_EXISTENCE_
'VAR_

'VAR_CACHESIZE_
'VAR_EXISTENCE_
'VAR_PADVALUE_
'VAR_RESERVEPERCENT
'VAR_SEQPOS_

rVARs_DIMCOUNTS_
r'VARs_DIMINDICES_
r'VARs_DIMINTERVALS_
r'VARs_RECCOUNT _
'VARs_RECINTERVAL _
rVARs_RECNUMBER _
STAGE_CACHESIZE_
ZENTRY_
ZENTRY_EXISTENCE_
ZVAR_
ZVAR_CACHESIZE_
ZVAR_DIMCOUNTS_
zZVAR_DIMINDICES_
ZVAR_DIMINTERVALS_
ZVAR_EXISTENCE_
ZVAR_PADVALUE_
ZVAR_RECCOUNT_
ZVAR_RECINTERVAL _
ZVAR_RECNUMBER _
ZVAR_RESERVEPERCENT _
ZVAR_SEQPOS_

CREATE_

ATTR_

CDF_

'VAR_

ZVAR_

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

CHARACTER
INTEGER*4
INTEGER*4

CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4

CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4

317

entry_num
entry_num
entry_num
entry_num
var_num
num_buffers
var_name*(*)

percent

rec_num
indices(CDF_MAX_DIMS)
counts(CDF_MAX_DIMS)
indices(CDF_MAX_DIMS)
intervals(CDF_MAX_DIMS)
rec_count

rec_interval

rec_num

num_buffers

entry_num

entry_num

var_num

num_buffers
counts(CDF_MAX_DIMS)
indices(CDF_MAX_DIMS)
intervals(CDF_MAX_DIMS)
var_name*(*)

rec_count

rec_interval

rec_num

percent

rec_num
indices(CDF_MAX_DIMS)

attr_name*(*)
scope
attr_num

CDF_name*(*)
num_dims
dim_sizes(*)

id

var_name*(*)
data_type
num_elements
rec_vary
dim_varys(*)
var_num

var_name*(*)
data_type
num_elements
num_dims

lin

lin

DELETE_

GET_

ATTR_
CDF_

gENTRY _
rENTRY

'VAR_
F'VAR_RECORDS_

ZENTRY_
ZVAR_
ZVAR_RECORDS_

ATTR_MAXgENTRY_
ATTR_MAXIrENTRY_
ATTR_MAXzZENTRY _
ATTR_NAME_

ATTR_NUMBER_

ATTR_NUMQENTRIES_

ATTR_NUMIENTRIES_
ATTR_NUMZzENTRIES_
ATTR_SCOPE_
CDF_CHECKSUM_
CDF_COMPRESSION_

CDF_COPYRIGHT_

CDF_ENCODING_
CDF_FORMAT_
CDF_INCREMENT_
CDF_INFO_

CDF_MAJORITY_
CDF_NUMATTRS_
CDF_NUMgATTRS_
CDF_NUMIVARS_
CDF_NUMVATTRS_
CDF_NUMzVARS_
CDF_RELEASE_
CDF_VERSION_
DATATYPE_SIZE_

gENTRY_DATA_
gENTRY_DATATYPE_

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4
INTEGER*4

CHARACTER

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*8
INTEGER*8
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4

318

dim_sizes(*)
rec_vary
dim_varys(*)
var_num

first_record
last_record

first_record
last_record

max_entry
max_entry
max_entry

lin
lin
lin
! out

lin
lin

l'in
lin

! out
! out
! out

attr_name*(CDF_ATTR_NAME_LEN256)

attr_name*(*)
attr_num
num_entries
num_entries
num_entries
scope
checksum
c_type

c_parms(CDF_MAX_PARMS)

c_pct

I out
lin

! out
! out
! out
! out
! out
! out
! out
! out
I out

copy_right*(CDF_COPYRIGHT_LEN)

encoding
format
increment

CDF_name*(*)

c_type

c_parms(CDF_MAX_PARMS)

Cc_size
u_size
majority
num_attrs
num_attrs
num_vars
num_attrs
num_vars
release
version
data_type
num_bytes
value
data_type

I out
! out
! out
! out
lin

! out
! out
! out
! out
! out
I out
I out
I out
! out
! out
! out
! out
lin

! out
! out
! out

gENTRY_NUMELEMS_
LIB_COPYRIGHT _

LIB_INCREMENT _
LIB_RELEASE_
LIB_subINCREMENT _
LIB_VERSION_
rENTRY_DATA_
rENTRY_DATATYPE_
rENTRY_NUMELEMS_

'VAR_ALLOCATEDFROM_

'VAR_ALLOCATEDTO_

r'VAR_BLOCKINGFACTOR_

r'VAR_COMPRESSION_

r'VAR_DATA_
r'VAR_DATATYPE_
r'VAR_DIMVARYS_
r'VAR_HYPERDATA_
r'VAR_MAXallocREC_
r'VAR_MAXREC_
rVAR_NAME_

r'VAR_nINDEXENTRIES _
r'VAR_nINDEXLEVELS _
r'VAR_nINDEXRECORDS _
r'VAR_NUMallocRECS
r'VAR_NUMBER_

'VAR_NUMELEMS_
r'VAR_NUMRECS_
'VAR_PADVALUE_
'VAR_RECVARY _
r'VAR_SEQDATA_
r'VAR_SPARSEARRAYS_

'VAR_SPARSERECORDS_
rVARs_DIMSIZES_
'VARs_MAXREC
rVARs_NUMDIMS_
'VARs_RECDATA_

STATUS_TEXT_
ZENTRY_DATA_
ZENTRY_DATATYPE_
ZENTRY_NUMELEMS_

ZVAR_ALLOCATEDFROM_

ZVAR_ALLOCATEDTO_

INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
<type>

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4
INTEGER*4
<type>

INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4
<type>

INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

CHARACTER

<type>

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

319

num_elements | out
copy_right*(CDF_COPYRIGHT_LEN)
!out

increment ! out
release I out
subincrement*1 ! out
version ! out
value I out
data_type out
num_elements I out
start_record lin

next_record ! out
start_record lin

last_record Iout
blocking_factor out
C_type I out
c_parms(CDF_MAX_PARMS) ! out
C_pct I out
value I out
data_type out
dim_varys(CDF_MAX_DIMS) ! out
buffer I out
max_rec ! out
max_rec !out

var_name*(CDF_VAR_NAME_LEN256)
!out

num_entries I out
num_levels Iout
num_records out
num_records I out
var_name*(*) lin

var_num ! out
num_elements I out
num_records I out
value I out
rec_vary I out
value ! out
S_arrays_type out

a_arrays_parms(CDF_MAX_PARMS)
!out

a_arrays_pct I out
s_records_type out
dim_sizes(CDF_MAX_DIMS) I out
max_rec ! out
num_dims !out
num_vars lin

var_nums(*) lin

buffer I out
text*(CDF_STATUSTEXT_LEN) !out
value ! out
data_type I out
num_elements I out
start_record lin

next_record out
start_record lin

last_record ! out

NULL _

OPEN_

PUT__

zZVAR_BLOCKINGFACTOR_

zVAR_COMPRESSION_

ZVAR_DATA_
zZVAR_DATATYPE_
zVAR_DIMSIZES_
zVAR_DIMVARYS_
zZVAR_HYPERDATA _
zZVAR_MAXallocREC _
zZVAR_MAXREC _
zVAR_NAME_

ZVAR_nINDEXENTRIES_
ZVAR_nINDEXLEVELS_
ZVAR_nINDEXRECORDS_
zZVAR_NUMallocRECS_
zZVAR_NUMBER _

ZVAR_NUMDIMS_
zZVAR_NUMELEMS _
ZVAR_NUMRECS_
ZVAR_PADVALUE_
ZVAR_RECVARY _
ZVAR_SEQDATA_
ZVAR_SPARSEARRAYS_

ZVAR_SPARSERECORDS_
ZVARs_MAXREC_
ZVARs_RECDATA _

CDF_

ATTR_NAME_
ATTR_SCOPE_
CDF_CHECKSUM_
CDF_COMPRESSION_

CDF_ENCODING_
CDF_FORMAT _
CDF_MAJORITY_
gENTRY _DATA_
gENTRY_DATASPEC_

rENTRY_DATA_

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4
INTEGER*4
CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4
<type>
INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

CHARACTER
INTEGER*4

CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

320

blocking_factor
c_type

c_parms(CDF_MAX_PARMS)

c_pct
value
data_type

dim_sizes(CDF_MAX_DIMS)
dim_varys(CDF_MAX_DIMS)

buffer
max_rec
max_rec

! out
I out
! out
! out
! out
I out
I out
! out
! out
! out
! out

var_name*(CDF_VAR_NAME_LEN256)

num_entries
num_levels
num_records
num_records
var_name*(*)
var_num
num_dims
num_elements
num_records
value
rec_vary
value

s_arrays_type

I out
! out
! out
I out
! out
lin

! out
! out
! out
! out
I out
I out
I out
! out

a_arrays_parms(CDF_MAX_PARMS)

a_arrays_pct
s_records_type
max_rec
num_vars
var_nums(*)
buffer

CDF_name*(*)
id

attr_name*(*)
scope
checksum
cType
c_parms(*)
encoding
format
majority
data_type
num_elements
value
data_type
num_elements
data_type
num_elements
value

! out
! out
! out
! out
lin

5

rENTRY_DATASPEC_
r'VAR_ALLOCATEBLOCK _

r'VAR_ALLOCATERECS_
r'VAR_BLOCKINGFACTOR_
r'VAR_COMPRESSION_

'VAR_DATA_
'VAR_DATASPEC_

'VAR_DIMVARYS_
'VAR_HYPERDATA
r'VAR_INITIALRECS_
'VAR_NAME._
r'VAR_PADVALUE_
'VAR_RECVARY _
'VAR_SEQDATA_
'VAR_SPARSEARRAYS_

r'VAR_SPARSERECORDS_
'VARs_RECDATA_

ZENTRY_DATA_

ZENTRY_DATASPEC_
ZVAR_ALLOCATEBLOCK_

ZVAR_ALLOCATERECS_
ZVAR_BLOCKINGFACTOR _
zZVAR_COMPRESSION _

ZVAR_DATA_
ZVAR_DATASPEC_

ZVAR_DIMVARYS_
ZVAR_INITIALRECS_
ZVAR_HYPERDATA_
ZVAR_NAME_
ZVAR_PADVALUE_
ZVAR_RECVARY _
ZVAR_SEQDATA_
ZVAR_SPARSEARRAYS_

ZVAR_SPARSERECORDS_
ZVARs_RECDATA

SELECT_

ATTR_
ATTR_NAME_
CDF_
CDF_CACHESIZE_

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4
CHARACTER
<type>
INTEGER*4
<type>
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4
INTEGER*4
<type>
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
CHARACTER
<type>
INTEGER*4
<type>
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4

321

data_type
num_elements
first_record
last_record
numRecords
blockingFactor
cType
c_parms(*)
value
data_type
num_elements
dim_varys(*)
buffer
num_records
var_name*(*)
value
rec_vary
value
s_arrays_type

a_arrays_parms(*)

s_records_type
num_vars
var_nums(*)
buffer
data_type
num_elements
value
data_type
num_elements
first_record
last_record
numRecords
blockingFactor
cType
c_parms(*)
value
data_type
num_elements
dim_varys(*)
num_records
buffer
var_name
value
rec_vary
value
s_arrays_type

a_arrays_parms(*)

s_records_type
num_vars
var_nums(*)
buffer

attr_num
attr_name*(*)
id
num_buffers

CDF_DECODING_
CDF_NEGtoPOSfp0_MODE_
CDF_READONLY_MODE_
CDF_SCRATCHDIR_
CDF_STATUS_
CDF_zMODE_
COMPRESS_CACHESIZE_
gENTRY_

rENTRY _

rENTRY_NAME_

'VAR_

r'VAR_CACHESIZE
'VAR_NAME_
r'VAR_RESERVEPERCENT _
r'VAR_SEQPOS_

'VARs_CACHESIZE_
rVARs_DIMCOUNTS_
rVARs_DIMINDICES_
rVARs_DIMINTERVALS_
'VARs_RECCOUNT _
rVARs_RECINTERVAL _
rVARs_RECNUMBER _
STAGE_CACHESIZE_
ZENTRY _
ZENTRY_NAME_

ZVAR_
ZVAR_CACHESIZE_
ZVAR_DIMCOUNTS_
zZVAR_DIMINDICES_
zZVAR_DIMINTERVALS_
ZVAR_NAME_
ZVAR_RECCOUNT _
ZVAR_RECINTERVAL _
ZVAR_RECNUMBER _
ZVAR_RESERVEPERCENT _
ZVAR_SEQPOS_

ZVARs_CACHESIZE_
ZVARs_RECNUMBER _

INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

322

decoding
mode

mode
dir_name*(*)
status

mode
num_buffers
entry_num
entry_num
var_name*(*)
var_num
num_buffers
var_name*(*)
percent
rec_num
indices(*)
num_buffers
counts(*)
indices(*)
intervals(*)
rec_count
rec_interval
rec_num
num_buffers
entry_num
var_name*(*)
var_num
num_buffers
counts(*)
indices(*)
intervals(*)
var_name*(*)
rec_count
rec_interval
rec_num
percent
rec_num
indices(*)
num_buffers
rec_num

B.4 EPOCH Utility Routines

SUBROUTINE compute_ EPOCH (year, month, day, hour, minute, second, msec, epoch)
INTEGER*4 vyear, !
INTEGER*4 month; !
INTEGER*4 day; !
INTEGER*4 hour; lin
INTEGER*4 minute; !
INTEGER*4 second; !
INTEGER*4 msec; !

]

REAL*4 epoch; ! out
SUBROUTINE EPOCH_breakdown (epoch, year, month, day, hour, minute, second, msec)
REAL*4 epoch; lin
INTEGER*4 year, I out
INTEGER*4 month; ! out
INTEGER*4 day; ! out
INTEGER*4 hour; ! out
INTEGER*4 minute; ! out
INTEGER*4 second; ! out
INTEGER*4 msec; ! out
SUBROUTINE encode_EPOCH (epoch, epString)

REAL*8 epoch; lin
CHARACTER epString*(EPOCH_STRING_LEN); I out
SUBROUTINE encode_EPOCH1 (epoch, epString)

REAL*8 epoch; Lin
CHARACTER epString*(EPOCH1_STRING_LEN); I out
SUBROUTINE encode EPOCH2 (epoch, epString)

REAL*8 epoch; Lin
CHARACTER epString*(EPOCH2_STRING_LEN); I out
SUBROUTINE encode_EPOCH3 (epoch, epString)

REAL*8 epoch; Lin
CHARACTER epString*(EPOCH3_STRING_LEN); I out
SUBROUTINE encode EPOCHx (epoch, format, epString)

REAL*8 epoch; lin
CHARACTER format*(EPOCHx_FORMAT_MAX); lin
CHARACTER epString*(EPOCHx_STRING_MAX); out
SUBROUTINE parse_ EPOCH (epString)

CHARACTER epString*(EPOCH_STRING_LEN); lin
REAL*8 epoch; I out
SUBROUTINE parse_EPOCH1 (epString)

CHARACTER epString*(EPOCH1_STRING_LEN); lin
REAL*8 epoch; I out

323

SUBROUTINE parse_EPOCH2 (epString)

CHARACTER epString*(EPOCH2_STRING_LEN); lin
REAL*8 epoch; I out
SUBROUTINE parse_ EPOCH3 (epString)

CHARACTER epString*(EPOCH3_STRING_LEN); lin
REAL*8 epoch; I out

SUBROUTINE compute EPOCH16 (year, month, day, hour, minute, second, msec, epoch)
INTEGER*4 vyear;

INTEGER*4 month;

INTEGER*4 day;

INTEGER*4 hour;

INTEGER*4 minute;

INTEGER*4 second;

INTEGER*4 msec;

!

!

!

!

i

!

!
REAL*4 epoch(2); !

out

SUBROUTINE EPOCH16_breakdown (epoch, year, month, day, hour, minute, second, msec)

REAL*4 epoch(2); Lin
INTEGER*4 vyear; Iout
INTEGER*4 month; I out
INTEGER*4 day; ! out
INTEGER*4 hour; I out
INTEGER*4 minute; ! out
INTEGER*4 second; ! out
INTEGER*4 msec; I out
SUBROUTINE encode EPOCH16 (epoch, epString)

REAL*8 epoch(2); Lin
CHARACTER epString*(EPOCH16_STRING_LEN); I out
SUBROUTINE encode_ EPOCH16_1 (epoch, epString)

REAL*8 epoch(2); Lin
CHARACTER epString*(EPOCH16_1 STRING_LEN); I out
SUBROUTINE encode EPOCH16_2 (epoch, epString)

REAL*8 epoch(2); Lin
CHARACTER epString*(EPOCH16_2 STRING_LEN); I out
SUBROUTINE encode EPOCH16_3 (epoch, epString)

REAL*8 epoch(2); Lin
CHARACTER epString*(EPOCH16_3 STRING_LEN); I out
SUBROUTINE encode_EPOCH16_x (epoch, format, epString)

REAL*8 epoch(2); Lin
CHARACTER format*(EPOCHx_FORMAT_MAX); lin
CHARACTER epString*(EPOCHx_STRING_MAX); ! out
SUBROUTINE parse_EPOCH16 (epString)

CHARACTER epString*(EPOCH16_STRING_LEN); Lin
REAL*8 epoch(2); ! out

SUBROUTINE parse EPOCH16_1 (epString)
CHARACTER epString*(EPOCH16_1_STRING_LEN); Lin

324

REAL*8 epoch(2); ! out

SUBROUTINE parse_EPOCH16_2 (epString)

CHARACTER epString*(EPOCH16_2 STRING_LEN); Lin
REAL*8 epoch; !out
SUBROUTINE parse_ EPOCH16_3 (epString)

CHARACTER epString*(EPOCH16_3 STRING_LEN); Lin
REAL*8 epoch(2); !out

325

Index

ALPHAOSF1_DECODING......ccccotnaeiririnieeseseenieeneaeas 18
ALPHAOSF1_ENCODING......16
ALPHAVMSd_DECODING A7
ALPHAVMSA_ENCODINGccooveeiriiiieieses e 16
ALPHAVMSg _DECODINGcoovveveiriiiieeiesies e 17
ALPHAVMSg_ENCODING
ALPHAVMSIi_DECODINGccooiiiriiinnenseisieeseeens 18
ALPHAVMSIi_ENCODINGccooiiirriieenesei s 16
Attribute
gEntry
Number of Elements
ACCESSING w.vvvevieeieierieieste st see et sresbe st eeseeneeeas 172
Attribute
gEntry
Data Type
ACCESSING vttt 171
name
INQUITING c.eeeeeeee e 176
attributes
numbering
INQUITING ©.veeeeeee e 176
attributes
CrEALING vovvevveveeiiciecee e 27, 165, 227
(o101 £ 0| ST 212
CONFIFMING ..o 218
selecting
DY NAME ..
by number ...
elBtING vt
entries
CUITENT ottt 212,213
CONFIrMING ..o 220, 221, 224
selecting
DY NAMe....ooii 272,275
by nUMber ... 272, 275
data specification
Changingcccoeeveieiiiieee e 34, 257, 265
data type
INQUINING...cvoeice e 29, 237, 239, 247
number of elements
INQUITING...cveiiicececee 29, 238, 239, 247
deleting
existence, determiningcccccovvvenencieienncne 221, 224
maximum
INQUITING ...t 32,191, 232
number of
INQUITING .. 233
reading
writing
existence, determiningccoccveeverennienieneneseee 218
gEntries
data specification
ChanNgiNgcccoiiieeirce e 198, 203

327

WITTING -t 198
NAMING ..ttt 23, 28, 165
inquiring ...32,192, 232
TENAMING ..ottt ie ettt e e eas 36, 255
number of
INQUITING oot 236
NUMBEIING ...ttt 14
INQUITING oo 33,232
numberof
INQUITING oo 46
rEntries
data specification
ChangiNg.....coovieeec e 199
writing
rEntry
FRAING ...ttt 180
scopes
changing
constants
GLOBAL_SCOPEceiiiiireeee e 21
VARIABLE_SCOPEcooeiiirirnieeeias 21
INQUITING oo 32,191, 233
zEntries
data specification
ChanNgiNg.....ooiiii e 201
WIEITING -t 201
zEntry
FEAUING ...veveeeietiec et 185
Attributes
AEletiNG .ovvveieeeec e 166
gEntries
data specification
data type
INQUITING e 193
number of elements
INQUITING et 193
number of
INQUITING . 177
FEAUINGveveiei ettt 169
gEntry
AelBtING .. 167
MaXimUM ENLIY ..o 173
name
FENAMING .ttt 202
number of
global attributes
INQUITING oo 189
INQUITING oo 88, 189
variable attributes
INQUITING c.eeeeeeee e 190
rEntries
data specification
data type

INQUIFING. v 195
number of elements

INQUITING. v 195
number of
INQUITING ..o 178
rEntry
data specification
ChaNGINgcoviirie e 204
data type
INQUITING .. 182
ElEtiNG ..ot 167
MaXimuM ENEIYoveiiieieie e 174
number of elements
INQUITING ..o 183
scope
changing
inquiring
zEntries
data specification
data type
INQUITING. ..o 196
number of elements
INQUITING ..o 196
number of
INQUITING ..o 179
zEntry
data specification
ChangiNgcovoiveieee e 206
data type
INQUITING ..o 186
eletiNg ..o 168
MaXimuM eNLIYcooooiiirineeeee e 175
number of elements
INQUITING ..o 187
CDF
backward file........ccccooiiiiiii 23
backward file flag
QELLING .cveiveivicee e
setting
Checksum
Checksum mode
SEEEING «.veeeeeeeet et 26
copyright
INQUITING ©.veeeeeee e 79

CDF library
copy right notice

MaX Iengthcooeii 23
reading
internal iNterface ... 209
modes
-0.0t0 0.0
CONFIFMING ..t 219
constants
NEGtoPOSTPOOff......c.covciveiiveecccce 22
NEGtoPOSfpOon

selecting
decoding
CONFIMMING .. 219
constants
ALPHAOSF1_DECODING.......cccoviririirienne
ALPHAVMSd_DECODING
ALPHAVMSg_DECODING

328

ALPHAVMSi_DECODINGcccceevrrrnirenne 18
DECSTATION_DECODINGcccoevvrirrennn 18
HOST_DECODING.......cccoeiriiiienieineeee 17
HP_DECODINGcoovviiireirieeeeesiec e 18
IBMRS_DECODINGccooviririineincieineene 18
MAC_DECODINGccoovviiiriiineenesiecieenee 18
NETWORK_DECODING.......cccccceeereriririerenenns 17
NeXT_DECODINGcocccevvrreneenesiecsieeneae 18
PC_DECODING
SGi_DECODINGcoovevirreree e 18
SUN_DECODINGcceeivieiieeiesiensieesieiennns 18
VAX_DECODING....
selecting
read-only
CONFIMMING ..ot 220
constants
READONLY off
READONLYon
SEIECHING e
zMode
CONFIrMING...cciiiiieieice s 220
constants
ZMODEOST ..ot 22
ZMODEONL.....ociiiiiiieiiec e 22
ZMODEONZ.....cciiiiiieieeeeeee e 22
SEIECHING 1.t 22,271
shared CDF lBrary.......c.ccccoeevieineineenseseeseeies 9
standard interface (NEW)........coceovrvirneiineiiecee 67
standard interface (Original)c.cccoevvvivieviieiiceieeinn, 27
version
INQUITING oo 239
CDF$LIB
CAFINC. e
CDF_ get_stage _CacheSize.......c.ccocereveieiieieieieieceee 86
CDF_attr_create
CDF_attr_entry_iNQUITeccccoeereneieieese e 29
CDF_attr geL. . eioveiiiiieieie e 30
CDF_attr_iNQUITE ..cvecviiieieieccece e 32
CDF_ATTR_NAME_LEN256ccceovrieririiireenieinienes
CDF _attr_num....
CDF_attr_put
CDF_attr_rename....
CDF_BYTE
CDF_CHAR...........
CDF_close..............
CDF_Cl0Se_CAF.....oiviiiieieieice e
CDF_ClOSE_ZVAr.....cccuiiiiieietice et
CDF_confirm_attr_existence
CDF_confirm_gentry_eXiStence...........cccoovverererreiencnnenn 162
CDF_confirm_rentry_eXiStenCeccceevrerereeieeesenneenn 163
CDF_confirm_zentry eXiStenCe..........ccceovrerereneeiescneenn 164
CDF_confirm_zvar_eXiStenCe.........ccoevveererereeieeninneenns 103
CDF_confirm_zvar_padvalue_existence..............cccccvee.. 103
CDF_COPYRIGHT_LEN.....cciiiiiriinnerec e 23
CDF _CIEALE ..ovveveecteeie sttt st 38
CDF _create CAfccveviiiiiisice e 72
CDF_Create ZVarl......ccccevviverieeiiee e e eiee e sneesiee e 104
CDF_delete ...t 39
CDF_delete_attr........cooeieiriieie e 166
CDF_delete_attr_gentryccoceeveveienieienese e 167
CDF_delete_attr_rentry
CDF_delete_attr_zentryc.cccocevevevveinieseseseieecseies 168

CDF_delete_Cdf.......ccoiiiieeeee e
CDF_delete_zvar............
CDF_delete_zvar_recs ...
CDF_dOCcovvvvvireriinnn,
CDF_DOUBLE....
CDF_EPOCH........
CDF_EPOCHI6 ...ttt
(O] =11 (o] S SRR
CDF_error or CDF_error....
CDF_FLOAT ..ottt
CDF_get_attr_gentry.....cccoeivievenieeseniesieseeie e
CDF_get_attr_gentry_datatypecccceevrvruennnne.
CDF_get_attr_gentry_numelems
CDF_get_attr_max_gentry....
CDF_get_attr_max_rentry.....
CDF_get_attr_max_zentry
CDF_get_attr_name...............
CDF_get_attr_num..........cc......
CDF_get_attr_num_gentries
CDF_get_attr_num_rentries.........ccooeverereniseneneseeeenns
CDF_get_attr_num_zentries.........ccocovevverveveieneseserienenns
CDF_get_attr_Tentryccccoevvevevenieinie e sieseeie e
CDF_get_attr_rentry_datatypecccoeeevevrenerenenieenn,
CDF_get_attr_rentry_numelems
CDF_get_attr_SCOPE......eeeirieierieeieeie e
CDF_get_attr_ZENtrYccccevieieieeieieeee e
CDF_get_attr_zentry _datatype........ccccoeereevveienierenerieene.
CDF_get_attr_zentry_numelems
CDF_get_cachesize.......ccccecvviviivenciiicie e
CDF_get_checksum
CDF_get_compress_cachesizecccoceoereruennene
CDF_get_compressionccocveneeeeneneneneenns
CDF_get_compression_info.........ccccoceveiiinincneneieee
CDF_get_copyright........cocooeeiieieee e
CDF_get_datatype_size..
CDF_get_decoding.........cceceruereeirienerienieieeeeese e
CDF_get_encoding.........cccceruevieirienenenieseeieesesee e
CDF_get_format.............
CDF_get_lib_copyright..
CDF_get_lib_version
CDF_get_majority..........
CDF_get_Name.......coceviiiiiieie e
CDF_get_negtoposfp0_mode
CDF_get_num_attrs
CDF_get_num_gattrs
CDF_get_num_vattrs
CDF_get_num_zvars
CDF_get_readonly_mode...
CDF_get_status textcccccvvieiiiieieiieieiesese e
CDF_get_Var_NUM ..ot
CDF_get_vars_maxwrittenrecnums
CDF_get_VerSioN.......cccoceveieenireneieeee e
CDF_get_zmode.................
CDF_get_zvar_alloCrecscccovevviivienierieieeie e
CDF_get_zvar_blockingfactor
CDF_get_zvar_cachesizeccccoevevvrivnenennnn.
CDF_get_zvar_Compressionc.ccoeeeeerenuenene
CDF_get_zvar_data
CDF_get_zvar_datatypecccccoeverereeneiencsene e
CDF_get_zvar_dimSiZeS........ccoverniineenieineeseenene
CDF_get_zvar_dimvariances
CDF_get_zvar_maxallocrecnumcccevvevvivieriernennane.

329

CDF_get_zvar_maxwrittenreCnumcccceeeeeeeruennne 121
CDF_get_zvar NAME........coovevieiieneeie e 121
CDF_get_zvar_numdims.........ccccovrreieniinieneneneneeseeeens 122
CDF_get_zvar_nUmMelems..........ccocovereieeneiereeese e 123
CDF_get_zvar NUMIECS.....cccvvierieieeiesieeesiesiesiesseeseesneas 124
CDF_get_zvar_padvalue........cccccevevveiveieeieserieieeeneies 125
CDF_get_zvar_recorddata...........coceeeverirenenennienenenienns 126
CDF_get_zvar_reCvarianCe.........c.cooeeeeeeeneneneeneeieseenienns 127
CDF_get_zvar_reservepercent....

CDF_gBt_ZVAI_SBQ . .cviiveeieerieeiee ettt 129
CDF_get_zvar_SEgPOScccoerieruerieeienieeeesiesresiesieesaesaeas 130
CDF_get_zvar_SparsereCords..........cceoueveererereerenesreseens 132
CDF_get_zvars_maxXwrittenreCnumccocevverververnrnenn. 131
CDF_get_zvars_recorddata..........cccevvevreninerierieresnnnenns 133
CDF_getrvarsrecorddataccoeveeeinenenienieieeecsiennens 43
CDF_getzvarsrecorddata..........c.cooverveeeirenenienieeesesiennens 44
CDF_hyper_get_zvar_data.........cccceeeverireneneieeeseeeens 135
CDF_hyper_put_zvar_dataccccooeveririeneieieeeneeeene 137
CDF _INQUITE. ..ttt 46
CDF_iNQUITE_attrecveeeieieicese e 191
CDF_inquire_attr_gentryccocevevereeieiesesesieeese e 193
CDF_inquire_attr_rentry

CDF_inquire_attr_Zentrycccccoerereiinenene e 196
CDF_inqUire_Cf........ccooveiiiiiieieeeee e
CDF_inquire_zvar

CDF_put_zvar_recorddataccceveeireneneneeienieneniens
CDF_put_zvar_Seqdata...........cceeererreerinenene e 143
CDF_put_zvars_recorddata...........cccceoeeerenereneieniencneenns 144
CDF_putrvarsrecorddatac.covererieieienieieneeieeceeniens 49
CDF_putzvarsrecorddata.........cc.coverereeieenieneneieeecseniens 51
CDF_REALA ...ttt
CDF_REALSB ..ottt
CDF_rename_attr

CDF_IeName_ZVArccooverieiieenieesieeniee e sieesseesieeseees 146
CDF_set_attr_gentry_dataspec.........cccceeeeerererecieniencnnenn 203
CDF_set_attr_rentry _dataSpecccoeerererereeienierecneenns 204
CDF_Set_attr_SCOPEccoccvrririrrereeieeecne e 205
CDF_set_attr_zentry _dataspec.........cccceeveererereeiniennneenns 206
CDF_set_blockingfactorc.ccocevvevviviiieiieseseieecn e 149
CDF_Set_CaChESIZEcvevvevreeicieiie i 91
CDF_Set_CheCKSUM.....cciveieiieiiiee et 92
CDF_Set_COMPIESSIONc.erviriiiereiieieeiieie e 94
CDF_set_compression_cachesizecccceoervvreneieicnenncns 93
CDF_set_decodingccceoerereneieeieeiceese e 95
CDF_set_encodingcoeveirinieriiieeniee e 96
CDF_set_format

CDF_Set_MaJOrity ...ccevveieieiieesiesiesie et 97

CDF_set_negtoposfp0_modeccoceveieiieencneierceee 98
CDF_set_readonly_mode
CDF_set_stage_cachesize
CDF_set_zmode.......cccccvevrunee.
CDF_set_zvar_allocblockrecs...
CDF_set_zvar_allocrecs............
CDF _set_zvar_Cachesize........cccocvvivevviiieieiieie e 150
CDF_set_zvar_COMPIresSioNccoervereerererenenieneeenennes 151
CDF_set_zvar_dataspec
CDF_set_zvar_dimvarianCes.........c.ccoceeerererenenieseeieeennns 153
CDF_set_zvar_initialrecscccovvrirenereieese e 154
CDF_set_zvar_padvalue.............cccovvnncrnicinnenens
CDF_Set_zvar_recvariancCe...........cooeoeveereeenenrenens
CDF_set_zvar_reservepercent
CDF_set_zvar_seqpos...............
CDF_set_zvar_sparserecords
CDF_set_zvars_cachesizeccccoceveievncicnnnn
CDF_STATUSTEXT_LEN
CDF_UCHAR
CDF_UINT1
CDF_UINT2
CDF_UINT4
CDF_Var_ClOSE.....cccveiiecieiece e
CDF_Var _Create.......ccivveiiieiieeeiee e sreesieesieesiee e sreesveenees
CDF_var_get...............
CDF_var_hyper_get....
CDF_var_hyper_put....
CDF_Var_iNQUITE.......ccooeeririiiieireesee s
CDF_VAR_NAME_LEN256ccooveirniiranens
CDF_Var_NUM ..o
CDF_var_put............
CDF_var_rename s
CDF_WARN ..ottt
CDFs
ACCESSING vnveveereereriestesieieeate e steseeseeseeresaeseesnens
DrOWSING....covieiiiice e
cache buffers
confirmingccoceeeveveieinninn, 219, 220, 222, 224, 225
selecting.....ccoovveveieieiiece 270, 272, 273, 275, 278
cache size
INQUITING c.eeeii e 74
FESELEING vt 91
stage
TESEHHING .ovveveee e 100
staging
INQUITING v 86
checksum
INQUITING c.eevieee e 75
checksum
FEAAING ..ot 234, 255
resetting
closing
compression
cache size
INQUITING v 76
resetting
inquiring
resetting
SPECITYING .o
COMPression types/parameters........ccocvvererveeeererereenenns 20
copy right notice
MaxX Iength ..o 23

330

FEAINGveieeeieete e
corrupted............
creating
current
confirming
SEIECHING....veviivirieciee e
decoding
INQUITING oo 80
resetting
deletingcoeveie e
encoding
ChANGING ..o
CONSEANES ...t
ALPHAOSF1_ENCODING
ALPHAVMSd_ENCODING......
ALPHAVMSg_ENCODING......
ALPHAVMSIi_ENCODING.......
DECSTATION_ENCODING......
HOST_ENCODINGccoeuee
HP_ENCODING.......cccootriiriiiieiniieeiee s
IBMRS_ENCODINGccoeovririiriiiniiiniininas
MAC_ENCODING
NETWORK_ENCODING........ccccorniirireiciiienns
NeXT_ENCODING........ccovviiiiiinnnieeieieees
PC_ENCODING........
SGi_ENCODING.......
SUN_ENCODING.....
VAX_ENCODING....

inquiring

TESEIHING ..o e
format

ChANGING .eeeeeee e 256

constants

inquiring

inquiring

resetting
majority

INQUITING e 82

resetting
mode

postoposfp0

FESELEING . v eveitecieiee e 98
read only
FESELEING...eovieeeieeieeiee e 99

name

INQUITING e 83
NAMING .t 23, 38, 48, 73, 90
negtoposfp0 mode

inquiring
nulling................
opening
overwriting
readonly mode

INQUITING .o 85
scratch directory

SPECITYING v 271
status

text

INQUITING .. 70
version
INQUITING .o 40, 87, 235, 237
zmode
FESELEING voveieeieeee e 101
zMode
INQUITING c.eevieee e 88
zVariables
records
MaXimUM WIILEEN ..o 131
CKECKSUM ...t
COLUMN_MAJIOR ...
COMPIlING....iiiicici e
compression
CDF
INQUITING «.eeeie e 234,235
specifying
LY PES/PArAMELETS ..ot 20
variables
INQUITING «eeee s 240, 248
reserve percentage
CONFIrMING ...voiviiiiciecc e 222,226
selecting
SPECITYING .o
compute_EPOCH
compute_EPOCHIL6ccooiiiiiiiicieeeeeeeee e 291
confirm
existence
ALNDULE. ... 161

zEntry
ZVariable ... 103
PAAVAIUE ... 103
data type
size
INQUITING ©.eeeieeec e 68
data types
CONSEANES. ..ttt
CDF_BYTE.....
CDF_CHAR..........
CDF_DOUBLE.....
CDF_EPOCH........
CDF_EPOCH16.....
CDF_FLOAT
CDF_INTL. oottt
CDF_INT2.ciiieisietieeieree et
CDF_INT4
CDF_REALA ...ttt
CDF_REALSB ...t
CDF_UCHAR
CDF_UINT1.......
CDF_UINT2....
CDF_UINT4....
INQUITING SIZE...cvviviiieciiieeeee e
DECSTATION_DECODING
DECSTATION_ENCODING
definitions file ...
DEFINITIONS.COMcootiiiiieiisee e
dimensions

encode _EPOCH ..o 287
encode_EPOCHL ..ot 287
encode_EPOCHILGcccoveiiiiiiieeccce e 292
encode_EPOCHIL6 1cccccoviiiiiieiicce e 292
encode_EPOCHI16 2ccccovviiiiieiiice e 293
encode_EPOCHI16_ 3 ..o 293
encode_EPOCHLO X ...cccvvvieiiiiiie e cieeie st 293
encode_ EPOCH?2
encode_EPOCH3
encode_EPOCHXx
EPOCH
COMPUEING «veve e 286
dECOMPOSING ...eviieieiieii et 287
ENCOAING....ecviiieereieee e 287, 288, 289
PAISING .ottt 290, 291, 295
ULTHEY FOULINES ... 286
compute_EPOCH ... 286
compute_EPOCHI6ccccviieiiiiiceee e
encode_EPOCH...........
encode_EPOCHI........cccooviiiineeeee e
encode_EPOCHIB.........cccccvvivievieiee e
encode_EPOCH16 1
encode_ EPOCH16 2
encode EPOCHI6 3.......ccccocvviieviiieiiceeee e 293
encode_EPOCHIL6 X...ccoooiireneieeieiesie e 293
encode EPOCH2.........cccceiiiiiiee e 288
encode_EPOCHS........ccooiiiiieeeese e 288
encode_EPOCHX........cccooiiiiiencee e 289
EPOCH_breakdowncccovveveeiiieneeeeieeeene 287
EPOCH16_breakdowncccoovvviiiniiiciciceseen
parse_EPOCH
parse_EPOCHL1
parse_EPOCHIGcccoooeiiiiieieseee e
parse_EPOCH16_1
parse_EPOCH16_2
parse_EPOCHI6_3.......cccccoiiiiiiiiieienceee e 295
parse_EPOCH2 ...t 290
parse_EPOCHS3
EPOCH_breakdown
EPOCH16
COMPUEING +veeeeiesie e 291
AECOMPOSING ...t 291
ENCOAING. e e ettt 292, 293
PAISING .eveereiirecieee e 294, 295
EPOCH16_breakdownccocvreiiiieiiiceneneeee e 291
examples
accessing
Attribute
rEntry
MaxXimum entryccoceeevereeneie e 174
zEntry
MaxXimum entryccoceeereieeneneneeese s 175
accessing
Attribute
gEntry
Data TYPE ..cveeeeeiiiieie e 171
Maximum entryccoceeevernenieneneeeseees 173
Number of Elements...........ccccovviiiencininne 172
allocating
zVariable
FECONUS. ... vviee sttt eee et sbee e s 148, 149

changing

attribute
rEntry
data specification

zEntry
data specificationc..ccecevvevieiiinieneseien, 207
CDF
CACNE SIZE ..vviiieece e
stage
ChECKSUMviiiiecie ettt
compression
cache size
decoding.........
encoding......
format..........
MAJOTTLY et
mode
NEGLOPOSTPO....eivieiicieirere e 99
read only
411100 [T UR 101
ZVariable ..o 152
attribute
data SpecifiCation...........ccccovrineiiiieiiecee, 203
zVariable
blocking faCtorccoeiiiiiiiieee e 150
cache size...............
data specification..........cccccooveneiiiisienieeee 153
dimeNnSion VarianCeSccvevevieveecreriie e
reCOrd VarianCeccevevieveiieie et e e
reserve percentage
SPAISE FECONUS ...ttt
closing
O 37,72
TVariable ..o 53, 54
ZVANabIe ..o 102
confirm
existence

confirm
existence
ALEMTDULE .. 161
creating
ALMDULE. .o 28, 165
TVariable ... 55, 278
ZVAabIE ..o 105, 279
deleting
ATIDULE. ... 166

inquiring

332

Attribute

rEntry
number of elements...........ccceeveveveiiiieeens 182, 183

zEntry
data tYPe .o 187
number of elements..........ccccvveeevieeieieccrennene, 188
Attributes
OENTES o
number of attributes........
number of gAttributes.....
number of vAttributes....
rENtries......ccovevevvveveeennnn,
ZENETIES 1ot

ChECKSUM L.t
COMPIESSION ..t
cache size.....
copyright..........
decoding....
encoding....

negtoposfp0 mode..........

number of zZVariables..........ccocooiiiiiiniii
readonly Mode.........coooiiiiiiiice e
staging cache size....

zVariables
records
MaXimum WIHENcoeeeeeieeeeecee e 131

data type

error code explanation text
library

COPYIIGNE ..t 69
Library

VEISION .ottt 70
PVariable........ooooii 62
variable

NUMDET ...t 63
Variable

Variables
records
Maximum WEItEEN......ccvveieveiecce e 111
zVariable ..o,
allocated records
blocking factor
CACNE SIZE .veiveicee et
COMPIESSION .ttt
data type
AiIMENSION SIZES ...ecvviireiieiieceecre e

number of dimensions
number of elements

FECONd VAITANCEocvvivreirecveeere et sre e
records
maximum allocated............ccoevveeevieiieiieeiiens 120
MAXIMUM WILEEN ..o 121
written
ESEIVE PEICENTAGEcvviveeirertieiie st siee e e 128
sequential POSItION........ccccovvvereiiiisiesc e 131
SPArse reCords tYPe ...ovevereeevrenerieieese e 132
Internal INterface........ccoevvevveveiecicce e 209, 278
interpreting
STALUS COUBSevveireicie ettt 284
opening
O 49,91
reading
attribute
OENLNY oo 170
TENENY o 181
zEntry..........
attribute entry
rVariable values
NYPEE .
single.......
rVariables
rVariables full record
zVariable
PAd VAIUE ..o 126
zVariable values
TUHL TECON ... 127
NYPEE e 136
sequential ..o 129, 281
single
ZVANADIES ..ot 44,133
zVariables full recordccocvevveveiiciee e, 45,133
renaming
ALMDULE. ..o
attributes
rVariable
zVariable
resetting
zVariable
PAA VAU ...t 156
seting
zVariable
sequential POSItION.........ccccoererciiiieceee 159
setting
zVariables
CACNE SIZE ..evvicieeceeeee e 158
Status handIercc.oovvieiiii e 284
writing
attribute

333

rVariables full record.........c..cocoeeviiiieveeiieceeee 50
zVariable values
FUIl TECOId...ovicee e
hyper ...
multiple variable
sequential
SINGIE ..ot
ZVariableS.......cooveireice e
zVariables full record
GLOBAL_SCOPEcotictieeesiee s
HOST_DECODING.......ccooiiirieenieeitseesee e
HOST_ENCODING......
HP_DECODING...........
HP_ENCODING...........
IBMRS_DECODING....
IBMRS_ENCODING........ccooiiiiiieieeece e
interfaces
INEEINAL.....ccoviieeice e
Standard (New)
Standard (Original)ccocvveiiieieiic e 27
Internal INterfacecoevveiveiiiicie e 209
currnt objects/states...
ALFTDULE o 212

sequential value.....
status code.............
variables
examples............
Indentation/Style...
Operations...........c.......
status cOdes, retUrNEdc.ceevvviieiiiie e 215
01 O SRR
argument list
HMITAtIONS ..o
item referenCingcocvveeeieee e
libcdfa....cooeinee.
LIBCDF.OLBooiiiiiiiiiiiisiesieiet e 5,6
Library
copyright
INQUITING e 69
version
INQUITING oot e 69
limits
attribute NAME ... 23
COPYTIGNEEXT ..o.viiiieiccece e 23
dimensions
explanation/status teXt...........cooeveirienininereeeeee
FIlE NAME .
parameters..........
variable name.....
linKingooeeviee
shareable CDF library......
MAC_DECODING..............
MAC_ENCODING.......
MULTI_FILE............
NEGtoPOSfp0off...
NEGLOPOSTPOON......eiiviiiiiieicsie e
NETWORK_DECODING
NETWORK_ENCODING
NeXT_DECODINGccooieiriiennieireesee e

NEXT_ENCODINGcocoeiiiiiiiireeninseie e
NO_COMPRESSION.........
NO_SPARSEARRAYS
NO_SPARSERECORDS.......
NOVARY ..o
PAD_SPARSERECORDS....
parse_EPOCH ...t
parse_EPOCHL ..ot
parse_EPOCH16
parse_EPOCHL6_1cccooiiiiiiiieieneecse e
parse_EPOCHL6_2cccocvviiiiiiiie e
parse_EPOCH16_3
parse_EPOCH2
parse_EPOCH3
PC_DECODING......
PC_ENCODINGcccceovririrenae
PREV_SPARSERECORDS
programming interface
compilingcc.coeee.
INKING ..
READONLYOFf ..ot
READONLYon....
ROW_MAUIOR ..ottt
rVariables
ClOSING .ttt 53
CTEALING ...ttt 54
data specification
data type
INQUITING v 61
number of elements
INQUITING e 61
dimensionality
INQUITING .o 46, 88
full record
FEATING ..o 43
WITEING ©veieie e 49
multiple values
ACCESSING .evvevverrereeristestesterereatestesresteseess e e aresressesseseens 57
WIEEING cviiecce e 59
naming
INQUITING e e 61
FENAMING ..ttt 65
number of
INQUITING ©veveeeee e 47
records
maximum
INQUITING v 47
single value
ACCESSING . veneeeeeterterte sttt ettt sttt 56
WITEING 1o 64
scratch directory
SPECITYING...viiveieeiee e
SGi_DECODING
SGi_ENCODING
SINGLE_FILE ..o
sparse arrays
INQUITING ..

specifying

sparse records
INQUITING .. 245, 253
SPECITYING...eiiiieicce e 262, 269

334

confirming
SEIECHING. ...ttt
LT o] SRRSO
explanation text
INQUITING oo 42,246
MaXx [eNGthocviiic 23
exXplanation teXL........cccoiieiiiiie e 297
informational..........c.ccoeoiiiiiii 297
INTErPreting.......ooeieeieeieie e 284,297
status handler, example.........ccocooeoeiiiiieiencieeeee 282
WAINING ¢t 297
SUN_DECODING. ..ottt 18
SUN_ENCODINGcotiiiiiiiriet e 16
VARIABLE_SCOPEcooiiiiiriiiiieieisieseesee e 21
variables
aparse arrays
INQUIFING .o 245, 253, 261, 269
ClOSING. ..ttt 102, 218
compression
CONFIFMING ..o 222, 226
INQUINING oo 234, 240, 248
SEIECHING....vevievicece e 273, 277
SPECITYING .. 258, 266
TYPES/PArAMELENS.cvevcieeieiesie e 20
CIEALING .eviveieeec ettt 228, 229
CUITENE ...ttt 212
CONFIFMING ..o 222, 225
selecting
DY NAME...ooiiie 273, 276
by NUMbBEr ..o 272, 275
data specification
ChANGING ..o 259, 266
data type
INQUITING e 241, 249
number of elements
INQUITING e
Aeleting .cvoveeieie e
dimension counts
CUTTENT 1t
confirming....
SEIECHING vt
dimension indices, starting
(01013 | SRS
confirming....
SEIECHING ..vvveveieie et
dimension intervals
CUTTENT 1ottt
confirming....
SEIECHING v
dimensionality
INQUITING .o
existence, determiningcocceevvvereneieiinicsiennne 222, 226
indices
NUMBDEIING. ...ttt e 14

majority

ChangiNgooeie e

considering

CONSLANES ...
COLUMN_MAJOR......
ROW_MAJCR.............

default......ccoviiiic

number of, inquiring ..

numbering
INQUITING «.eeeieee s 243, 251
pad value
CONFIFMING .o
inquiring
specifying
FEAUING ..t
record count
CUITENE. .t
CONFIMMING .. 223, 226
SEIECHING v 274, 276
record interval
(o1 =] | SO 213, 214
CONFIFMING ..veiviiie e 224, 226
SEIECHING .ovvveveieeieee e 274, 277
record number, starting
CUITENT ottt 213, 214
CONFIMMING .veeiiiee e 224, 226
SEIECHING .. 275, 277
records
allocated
INQUIrING ...ocviiieecce e 240, 243, 247, 248, 251
SPECITYING ..eoveiei e 258, 265
blocking factor
INQUITING e 240, 248
SPECITYING ..viveiviiicec e 258, 266
eletingcveeeiieee e 231
indexing
INQUITING e 242, 250
initial
WIEING Lo 260, 267
maximum
INQUINING ..o 242, 245, 250, 253
number of
INQUITING ..o 244,252
NUMDEFING ...t 14
SPIAISE ..ttt ettt 20
inquiring.......
specifying
sparse arrays
EYPES 1ottt e 21
variances
[o0] 4] 721 1 T SRRSO 19
NOVARY.... .19
VARY oottt 19
dimensional
INQUITING .o 241, 249
SPECITYING ..oveiii e 259, 267
record

335

changing
inquiring.....
WITTING. oot
Variables
number of
INQUITING oo
numbering

INQUITING oo 63, 109

records
maximum
INQUITING oo
maximum written

INQUITING .o e 111

VAX_DECODING.......
VAX_ENCODING.......
zZMODEoff
ZMODEonl............
ZMODEONZ ...t
zVariabels

records

AllOCALING ..o 147

zVariables

accessing
FUH FECONT ..o
hyper values..........
sequential value.....
SINGIE VAIUB......ceoiiiieeicee e

blocking factor
inquiring
resetting

cache size

INQUITING oo s 113
FESEHHING ..ot 150, 158

compression

INQUITING oo 114
FESEHHING 1ot 151
CIEALING cvvvvveieiei ettt 104

data specification
data type

INQUITING .o 139

number of elements

inquiring

TESEHHING 1.veveeeeee e
data type

INQUITING oo 117
EletiNG vovvveiec e 107
dimension sizes

INQUITING oo 118
dimension variances

INQUITING oo 119

FESETHING 1.veveeeeec e 153
full record

FEAAINGveveiiieeet et e 44

WIHEING oot 51
name

INQUITING oo 121

FENAMING .ttt 146
naming

INQUITING oo s 139
number of

INQUITING oo s 108

number of dimensions

INQUITING c.veee e 122
number of elements
INQUITING 1o e 123
pad value
ACCESSING .evvevverrereeristestesteteseereeresteste s et eseeseeresresresees 125
FESELEING vt 155
reading
FUIL FECONd ... 133
record variance
INQUITING 1o e 127
FESELEING voveieeieeie e 156
records
allocated
INQUITING ..o 111
allocation
eletiNg ..o
maximum allocated
INQUITING e 120

336

maximum written
INQUITING e 121
written
INQUITING .
written initially
reserve percentage

INQUITING oo 128
TESEIHING ..ot 157
sequential position
INQUITING e 130
SEELING voveveeieete e 159
sparse records type
INQUITING oo 132
TESEHHING 1.veveii e s 160
WITEING et e 144
FUIT TECONT ..o 142
hyper ValUes..........ccooiiiiiieee e 137
sequential value ... 143
SINGIE VAIUB......ceeiiiieece e 140

