GLE Users Guide

David Parfitt, david.parfitt@chch.ox.ac.uk !

Oxford University Department of Physics 26th July 2003
Contents

1 Introduction 3

1.1 What is GLE? o e 3

1.2 What do I need touse GLE? 4

1.3 Where are we going? e e e e e 4

2 Technical Details 5

2.1 Download and installation L 5

2.1.1 Installation for MS-DOS and Windows 2000/98/95 6

2.2 Working with GLE e 6

3 Simple Applications 7

3.1 Helloworld e 7

311 TheGLE code e 8

3.1.2 Measurments in the GLE environment 9

3.1.3 Relative and absolute motion L 9

3.1.4 Basic text SUPPOTrt e e e e e e e e e e e e 10

3.1.5 Shapes and Sizes L e e e 12

3.2 More text examples oL L Lo L e e e e 13

3.3 Allshapesand sizes o . L e e e 15

3.3.1 Namingobjects e e 17

3.3.2 The justify commands L 17

3.3.3 Thejoin command e e e e 17

334 Beginboxandendbox 19

3.4 Lines and line widths e e e e e e e e e 19

CONTENTS)
4 Formal development 25
4.1 Variables and expressions Lo e e e 26
4.2 Conditional logic and programming loops e 27
421 Thecircles e 27

422 If...thenstatements L 28

4.2.3 Thesuperellipse e e e 29

4.3 Subroutines e e e e e e e e e e e 30

5 The graph module 35
5.1 Graph basics L e e e e 36
5.2 Examples of formatting L 38
5.2.1 Adding asimplekey 40

5.2.2 Formatting the axis L 40

523 Finetuning 43

5.2.4 Logarithmicscales e 43

5.2.5 Filling between the lines L 45

5.3 Plotting graphs from user defined formulae, 46
54 Barcharts e 49
5.4.1 Combining linesand bars e 49

5.4.2 Comparing data - grouped and 3D bar charts 51

5.5 Scientific graphs L 56
5.5.1 Treatment of errors. L L L L e e e e 56

5.5.2 Curve fitting e 59

5.5.3 Dealing with very large datasets L oL 60

5.6 Thekeymodule. e 62
56.1 Abasickey 62

5.6.2 Thekeysyntax e e 64

5.7 Integrating graphs and diagrams L L o 65

6 More complex examples 67
6.1 Adding existing graphics to a GLE scripto 67
6.2 Coordinate transforms L e e e e e e e e 67
6.2.1 Rotations L 67

6.2.2 Scaling. 70

6.3 Mathematical curves L 73

1. Introduction 3

6.3.1 Asimplecurve e 73
6.3.2 Bezier cubic sections 74
6.3.3 Circular arcs e e e e 76
6.3.4 Thearctocommand e 79
6.3.5 Ellipses 80
6.3.6 Elliptical arcs L. e 81

6.4 Pathdrawing e 85
6.41 Asimplepath. e 85
6.4.2 The zero winding rule L e 86
6.4.3 Clipping L e e 89

6.5 Filehandling e 91
7 Appendices 91
7.1 List of available functions 91
7.1.1 Text functions o v i i e e e e e e e e e e e e e 91
7.1.2 Mathematical functions 92
7.1.3 Graphic functions L 92

7.2 Special LaTeX characters e e e 93
7.3 Fontlist o . e 93
74 Commandindex e 95
74.1 Basiccommands 95
7.4.2 Functions for use within expresions Lo 99
74.3 Thegraphmodule e 99
744 Thekey module e 102

7.5 GLE wall chart e e e 103

1 Introduction

This document is intended to introduce the skills needed to produce technical diagrams and graphs using the
graphics package GLE. The bulk of the text is a series of tutorials which illustrate many of the important
commands and concepts. Readers who are already familiar with GLE 3.3 or 3.5 may wish to skip the tutorial
section and use only the reference section in the appendix.

1.1 What is GLE?

GLE, or Graphics Language Editor, is a programming language whose command set is dedicated almost
entirely to graphical output. Using this language it is possible to produce accurately drawn graphs and

1. Introduction 4

diagrams, with a high degree of control over the finished output. Like all other programming languages, it is
necessary to learn some basic commands before very much can be achieved, and in this respect, GLE differs
from more traditional methods of producing graphics. It lacks the immediate feedback of a point and click
type interface, nor is it as easily understood.

The strength of GLE lies in its reproducibly and in its adaptability. Rather than a set of pixel values, a GLE
diagram is stored as a series of vector drawing instructions. A line is stored as a line, a circle as a circle.
The GLE package itself takes these instructions and converts them into a recognisable graphic. Many of the
concepts from other programming languages can also be included in the code. Variables, subroutines, and
programming loops can all greatly simplify the diagrams we wish to produce by allowing us to refer back to
and reuse drawing instructions. We are also given a great deal of control over the finished output. There
are very few complex commands in GLE; much of what we draw must be built up from a series of lines and
other shapes. Although this can take a lot of time, the simplicity of the interface means that we are always
in control of exactly what appears on screen.

GLE is a program written with scientists in mind; its command set is well suited to producing graphics for
inclusion in reports and papers. These graphics are often difficult or impossible to produce in a graphics
package. Scientists may require a large number of slightly different elements, or an exactly drawn mathemat-
ical shape. They may simply require line widths and font heights to be changed easily and repeatedly, (e.g.
at the whim of a publisher!) If you either do not need, or can already produce, graphics that satisfy these
requirements then it is probably not worth taking the time to learn GLE. If you need technical diagrams,
and lack the artistic ability or tolerance to produce them by hand, then GLE can make their production
great deal more painless.

1.2 What do I need to use GLE?

Through necessity this document must start from a basic level of computer and scientific literacy. A fair
degree of experience using computers is assumed throughout; as is an acquaintance of programming concepts
such as reusable code and subroutines. Obtaining the GLE program itself is covered in a following section,
however some form of text editor with which to prepare the programming scripts is also required. Emacs or
Pico in Linux, Edit in MS-Dos, or Notepad in Windows, are all perfectly suitable.

Many of the programming examples are mathematical in nature, and require the use of simple, and occa-
sionally not so simple, expressions. These are on the whole self explanatory, at least at undergraduate level
and above. Where possible some explanation has been offered or, failing that, a reference to a more detailed
description has been given. As much of GLE is based on the Cartesian coordinate system, a good grasp
of trigonometry is essential. Converting between this and polar coordinates, or even simply calculating the
components of a vector are skills routinely used in most GLE scripts.

The examples included are meant to be representative of those found in text books or papers. A word of
warning however, their purpose is to illustrate the use of commands, not to teach any meaningful science.
The data used was not checked for accuracy, and in some cases entirely made up. Equally, to make the
diagrams as simple and illistrative as possible some physical correctness may have been lost.

1.3 Where are we going?

Due to the public nature of the GLE code we shall beginning with some, unfortunately necessary, technical
notes on the different versions available. Following this we shall examine a series of worked examples falling

2. Technical Details 5

into the following sections:

Simple applications

As an introduction we look at diagrams that can be drawn using the simplest possible building blocks.
These can be accomplished both within the GLE program, and with a traditional graphics package.
The examples will illustrate the different approaches taken in each case.

Formal development

The programming aspect of the language is developed allowing us to produce much more complex
routines. This shows many of the advantages, and some of the disadvantages, GLE has over its
alternatives.

The graph module

A major part of GLE is its ability to take raw data and produce a graph with a high degree of control
over the finished appearance. This section is largely self-contained and relies only a little on the
previous sections.

More complex examples

A look at some of the more complex graphics that can be produced, using some of the less common
commands.

We shall conclude with a reference section that explains the commands used in GLE, and contains most of
the available formatting options.

2 Technical Details

Both the program files and the source code for GLE are available at no cost over the internet. The open
nature of the source code has spawned several different versions of GLE; many of which have slightly different
syntax for entering the programming script. This guide has been written explicitly for version 3.5, older
versions will not contain all the features discussed here. A newer version, GLE2000, exists for Windows
95/98 which has some additional commands and a better, that is to say an icon driven, user interface. Many
of these revisions come with their own comprehensive user documentation, which details not only installation
and setup procedures, but should also cover any changes in syntax.

The existence of GLE in different versions and on different platforms means that some of the commands may
differ slightly from those written below. It may be necessary to experiment with different names for fonts,
shading, and colours, all of which are very sensitive to both the operating system and version. GLE 3.5, for
example, uses a shorthand tagging system for its fonts, while GLE 2000 uses the full name as listed in the
Windows directory. Where possible the examples have avoided the use of these less well defined variables;
however experimentation may be necessary, not only to complete the examples presented here but also to
exploit the additional features that may not.

2.1 Download and installation

GLE is available within the public domain and can be freely downloaded from several sites across the internet.
For executables and source code for both PC and Linux machines see :

2. Technical Details 6

Derek Ingram’s GLE2000 can be found at:
http://softlad.narod.ru/graphics_and_ drawing/flow_chart and_ diagram_ making/ .

Many of the sites from which GLE can be downloaded provide comprehensive installation instructions for
different operating systems and machines. The installation of GLE 3.5 for DOS and Windows is detailed
below, instructions for Linux can be found on Stephen Blundell’s homepage at http://users.ox.ac.uk/
“sjb/gle/

2.1.1 Installation for MS-DOS and Windows 2000/98/95

Files needed: gle35-w32-R0-23.exe (self extracting zip file)

Run gle35-w32-R0O-23. exe, this will create a program directory directory gle3.5. Alternatively, if you have
the non-executable zip file then unzip into your chosen directory (which we assume to be c:\gle3.5 from
now onwards).

We can enter the GLE directory either through the windows interface or, in MS-DOS, by typing
cd gle3.5

To compile a GLE script we first save it as a ASCII text file, then run GLE with the script. In MS-DOS
mode we type,

gle_ps filename.gle

Or in Windows we may double click on the gle_ps icon, then type in the name of our file.

When GLE is run a ‘font.dat’ error may occur. In this case it is neccessary to set the environment variable to
point to the directory where GLE is located. Start an MS-DOS prompt from the START menu in Windows,
then:

cd \

edit autoexec.bat
The blue edit screen will now appear, scroll to the end of the file and insert the following line,
set GLE_TOP=c:\gle3.5\

Select save from the FILE menu, then exit. GLE should now run correctly, although it may be neccessary
to restart the computer for changes to take effect.

2.2 Working with GLE

The GLE executable is merely an interface that takes a programming script and converts it into a postscript
file for embedding within other documents. The script can be created as a plain ASCII file with any text
editor. There are not, as yet, any dedicated editors that provide highlighted commands, debugging routines
or other luxuries.

Once the script has been written then we can compile it using the GLE program itself. Ideally, this will
produce a postscript, .ps, file in the same directory as the program file. More often though, GLE will

3. Simple Applications 7

produce a number of error messeges indicating the line number and type of error which occured. The error
mesages are reasonably comprehensible, certainly compared with many other languages, and corrections
should be made to the .gle file before it is saved and recompiled.

There are several options that can be added to the GLE command. For producing diagrams to be included
within documents a useful option is the ability to produce encapsulated postscript, .eps files. To do this we
add the option,

gle filename.gle -deps

to the command for Linux, and for MS-DOS we write,
gle_ps filename.gle /deps

There are two commands that help the external formatting of the text introduced in GLE 3.5. The first
allows for the addition of a text comment in start of the postscript file that is produced. To add such a
comment we insert the line,

pscomment text

Where ‘text’ represents the comment placed at the start of the postscript file. The command must be entered
at the very start of the program, before the initial size command.

In some applications a GLE file will appear with a white border around it, a black bounding box, or may be
missing a section of the graphic. This is usually due to confusion between GLE and some graphics programs,
by default GLE adds a whitespace boundary to the graphic which may be interpreted in some applications
(photoshop for example) as a change of origin. To reset the origin to (0,0) we add the line

tsbbtweak

Where again the command must come before the body of the program.

Although the diagrams included in this document are a close representation of the accompaning GLE code,
there have been a number of alterations for the sake of typesetting. They have been scaled to fit within
a sensible size on the page, in most cases a bounding box is added, and some of them have been clipped
to remove unwanted construction lines. The scaling is due to the underlying document type (SGML), the
bounding box and clipping are added using the box and clip commands covered in sections 3.1.5 (Shapes
and sizes) and 6.4.3 (Clipping) respectively.

3 Simple Applications

We begin our tour of GLE with some basic examples of what can be done. For each we will present both
the finished diagram and the script used to produce it along with a discussion of the important points raised
within the script.

3.1 Hello world

This program demonstrates the use of absolute and relative movment and some basic text editing.

3. Simple Applications 8

O

Hello world

e

'Helloworld.gle - Illustrates the use of basic GLE commands

size 24 18 !Sets the size of the graphic in cm

amove 2 2 !Demonstrates the difference between relative
aline 10 2 'and absolute movement

rline -8 2

rline 8 0

amove 7 7
!Displays some basic text
text Hello world
set font plge
set hei 0.5
amove 4 4

text How are you today?

rmove O 5 !Displays some simple shapes
circle 1

amove 8 9

circle 1 fill grey20

The small choice of commands in GLE means the syntax has not deviated too far from recognisable English.
Even if the exact meaning of all the lines in the above code is not clear, it should be possible to follow
through the steps which produce the results in the diagram.

3.1.1 The GLE code

Like all other programming languages GLE breaks down the task into a series of small steps. These are
represented by the series of lines in the code, each line represents an individual step and the end of line char-
acter (produced whenever the return key is pressed) tells GLE where each step begins and ends. Although,
as we shall see later, it is possible to combine several steps in the same command it is always necessary to
begin each command on a separate line.

Most GLE commands require some sort of qualifier, an additional string of information that tells GLE how
and where to perform the operation. In the above program we can see that the qualifiers are mainly numbers,
in this case representing coordinates.

3. Simple Applications 9

It is also worth noting early on the use of comments, as in many other high level programming languages
GLE provides a system for the programmer to leave notes or descriptive passages within the code. These
comments are invisible to the compiler and are not present in the finished diagram. Their sole purpose is to
make the programming script both easier to read and more transparent when making revisions. In GLE we
denote a comment by the use of the exclamation mark (!), any text entered between the excamlation mark
and the end of line character that signifies the start of a new line is ignored entirley by the compiler. The
text command is an exception to this rule, an exclamation placed after a text command is treated as an
exclamation, and will appear in the diagram.

With the exception of the end of line character GLE ignores all whitespace in a program. The constructive
use of this whitespace combined with suitable comments can make a program much easier to error check and
revise, both for the original programmer and for others. Similarly GLE is case insensitive. The commands,

size 20 18
SIZE 20 18
sIZe 20 18

Are all, from the point of view of the compiler, identical. Again through the use of capitals we can make
a script easier to read. There are no accepted conventions, but it make sense to stick to the same format
throughout a program.

3.1.2 Measurments in the GLE environment

The first line of the ‘Hello world’ program is size 24 18. This defines the size of the diagram in cm, so that
our working area is now 24cm by 18cm. Commands are referred to a grid of points from (0,0) to (24,18), any
command that refers to a point outside this range will not appear in the final graphic. With a few exceptions
GLE diagrams start with a size command, and should at least contain one somewhere within the program.

Notice that GLE will still compile a program with an illegal coordinate reference, one that refers to a point
outside of our working area. The diagram will only show the part of the diagram that lies within the
dimensions of the size command. This can be useful in cases where the diagram has a particular symmetry.
For example, we may be interested in the lines of an electric field caused by a charge distribution. We can
set up the equations that govern this distribution and then, using the size command, look only at a small
portion of the field. Of course, the fact that GLE understands illegal coordinate references is no guarantee
that any other publishing program will. Often a second graphics package will ignore the size command and
attempt to draw out the entire graphic in all its glory. If this happens then the best solution is to add a
clip command, covered in section 6.4.3 (Clipping), to the start of the program such that only the desired
portion is viewed.

Fractional coordinates are also allowed, and in many cases essential. The resolution depends upon the output
device but in general structures below 0.1 mm are not well resolved and lines less than 0.0001 mm are very
faint. Negative coordinates are also allowed, although obviously lines cannot have a negative width nor fonts
a negative height.

3.1.3 Relative and absolute motion

A GLE script consists of a set of instructions that GLE interprets to build up the completed picture. Each
operation is referred to a coordinate point. At the start of the program the first command refers to the point
(0,0) at the bottom left hand corner of the page. Thereafter the current point is defined by the end of the

3. Simple Applications 10

last operation, though what GLE defines as the end of an operation and what we define as the end of an
operation may differ.

We have four basic commands for moving around the diagram, each expressed in terms of relative or absolute
motion.

amove X y

Moves the cursor to the absolute coordinates (x,y).

aline x y

Draws a line from the current point to the coordinates (x,y).

rmove X y

Moves the cursor by a relative amount such that the new coordinates are the sum of the initial
coordinates and the values of x and y.

rline x y

Draws a line from the current point to the point a vector (x,y) away.

Clearly both sets of commands are very similar, and the same diagram can be drawn with any combination
of the above. However, absolute movements are less prone to errors and are easier to visualize. Relative
movements are important when creating figures that can be expressed in terms of a continuous path or set
of operations and can help simplify the construction of complex diagrams considerably.

We can add arrow heads to the lines we draw, both relative and absolute, by the arrow start, arrow end
or arrow both commands. For example in our program we can draw an arrow on the final line with the
command

rline 8 0 arrow end

The first few lines of our program therefore draws a simple shape using a combination of the above commands.
Because of the nature of the GLE interface there is a lack of immediate feedback from any alteration to the
program. To save time and typing it is a good idea to plan out the commands on graph paper, to get a
general feel for the layout of the diagram, before attempting the GLE script.

3.1.4 Basic text support

The next section of our program deals with the basics of introducing text onto a diagram. The command
text tells GLE that everything from the first character following the command to the next end of line
character is to be printed onto the page. If the line of text is too long then the text will not all appear on
the diagram; there is no provision for the text to run onto the next line. Writing text at a given coordinate
point also does not change that coordinate point so if we had written:

text Hello

text How are you?

Then the ‘How are you’ would have been superimposed over the ‘Hello’ . To add a line of text after a
previously written one we must instruct GLE to move the cursor to the end of the text box. For most fonts
which do not have a constant letter width this would be difficult to do, however there is a command which

3. Simple Applications 11

we can use to simplify the problem. xend () and yend() are qualifiers which will return the coordinates of
the last point drawn, thus to write a following string of text we would write:

text Hello
amove xend() yend()
text How are you

Where the command amove xend() yend() instructs GLE to move to the coordinates of the last letter of
‘Hello’ . Notice that we could not have solved the problem by writing:

text Hello
text How are you?

As GLE does not recognise the spaces placed immediately after the text command. GLE will, however,
recognise many of the LaTeX special characters. In particular we may use \: to represent a space, and
\glass to indicate the beginning of a line.

text Hello
text \glass \: \: \: \: \: How are you

The \glass command is neccessary as, by default, GLE will not print either real spaces or the character
representation unless preeceded by another character.

A list of related LaTeX commands supported by GLE is given in the index. Note however that GLE is not
a dedicated text compiler. The following program illistrates some of the problems that can occur in the use
of some special characters.

E:mc2
h,O

2
Whebye

2
eV / Zka

Problems,;, cripts

!'sub.gle - Demonstrates the problems that can occur when using sub- and superscripts
size 10 10

set font texcmr

amove 1 9 !Single sub- and super scripts work fine
text E=mc~2

amove 1 7.5
text h_20

3. Simple Applications 12

amove 1 5.5 !Problems occur when we try to add both sub- and
!'superscripts
text \omega_{Debye}~{2}

amove 1 3.5 !We can of course nest expressions within each other
'using brackets
text e~{v~{2}/2k_{b}T}
amove 1 1 !Without brackets GLE takes the first single
!character

text Problems_{with}~scripts

The LaTeX commands for the use of subscripts and superscripts are _{} and "{}, where the curly brackets
can be replaced by normal brackets. In the absence of any brackets GLE will assume that only the first
single character is to form the subscript or superscript. Greek letters are normally produced by a \ followed
by the name of the letter.

The set command has a special role in GLE. It allows the defalt values for a number of commands to be
specified. They will remain this way until another set command changes them, or until the program ends.
Thus the command set font plge sets the font to Plotter Gothic English (plge), any text command that
follows will display text in the Gothic font. We can also set the width of the lines in the stroked (plotter)
fonts using the set fontlwidth 0.2 command, which will set the line width to 0.2cm.

The set hei 0.5 command defines the height of the font. For reasons stemming from the original typesetting
of letters on printing presses a 10cm high font has letters that are only about 6.5¢cm high. Again the set
command remebers the height, and includes it in all following text. If no set command is issued the default
height is 1cm.

To write longer sections of text and tables there are dedicated commands that more accurately control the
formatting. We mention one here, and defer a fuller treatment to another example. The set just command
aligns the text either to the left, right or center. For example,

amove 4 4

set just right
text Hello
rmove -2 -2

set just center

text How are you

Will print two lines of text, one justified right of (4,4) and the other centred on (2,2).

3.1.5 Shapes and Sizes

The final section to our program draws some basic shapes. Many of these can be constructed from the aline
and rline commands (though circles are difficult), but it makes sense to have dedicated keywords for the
more common shapes. Following each shape command we add a qualifier that defines the size, and there are
also optional qualifiers that can add fill shades and colours to the shape. The various fill styles are provided
in a reference chart at the end of this document, they can take the form of either a named colour (black,
white, red...), a grayscale (greyl to grey100), or a predefined pattern. There is a difference between a white

3. Simple Applications 13

fill style and no fill style - a shape filled in white will obscure any drawing that has taken place beneath it,
no fill style will allow it to show through.

We may also define the colour of the circle outline using the set color command (note the American
spelling). We could have drawn a red circle with a blue filling using;:

set color red
circle 2 fill blue

Another common predefined shape is the box, this requires two size variables a height and a width. Again
we may specify line and fill styles as with the circle. For example:

set color red
box 5 2 fill grey20

Draws a grey box with a red outline. To remove the outline we can add the qualifier nobox to the end of
the box command which will tell GLE not to add an outline.

box 5 2 nobox

3.2 More text examples

In this section we take a longer look at some of the different text options we may use.

The begin and end text
commands alow longer
passagest of text to be
incorporated within a
GLE file. If we specify
the width of the text
then GLE will wrap
lines around at that
width. Without a widt h

Mary had alittle lamb quaifier GLEwl
1 attempt to recreate the
Its fleece was white as snow o e the

And everywhere that Mary went Propramie Xrip, s we
The lamb was sure to go See with the - poem.

Thisisatable, GLE maintains the format see in the programme script

Field (T) Displacment (mm) Frequency (GHz)
0.1 0.445 422
0.2 0.454 423
0.3 0.470 4.87
0.4 0.479 522
05 0.487 597

'text.gle - Demonstrates some of the text options available within GLE
size 20 17 !Sets the size of the window

amove 1 10.5 !'Writes a poem
set color red

set hei 0.8

begin text

3. Simple Applications 14

Mary had a little lamb
Its fleece was white as snow
And everywhere that Mary went
The lamb was sure to go

end text

amove 12 15 !Writes an explanation
set color black
set hei 0.5
begin text width 5

The begin and end text commands allow longer passagest of text to be
incorporated within a GLE file. If we specify the width of the text then GLE
will wrap lines around at that width. Without a width qualifier GLE will att
empt to recreate the format of the text in the program script, as we see w
ith the poem.
end text

amove 1 5 !Draws a table
begin table

This is a table, GLE maintains the format seen in the program script

Field (T) Displacment (mm) Frequency (GHz)
0.1 0.445 4.22

0.2 0.454 4.23

0.3 0.470 4.87

0.4 0.479 5.22

0.5 0.487 5.97

end table

The code demonstrates how the begin text and end text commands can be used to construct longer
passages of text. Everything between the two commands is treated as a text file, GLE does not recognise
any keywords or comments within the text however it will recognise most LaTeX commands for displaying
special character. A list of these can be found in the appendix.

If no width is specified then GLE will attempt to format the text as it is set out in the script. With a width
specified (in cm) GLE will wrap text around to the required width; though it will still respect end of line
characters and multiple spaces.

The table option is used when the text must be aligned into columns. GLE reads the spaces and tabs and
aligns the text accordingly. When creating tables it is best to use a fixed pitch font, that is one with a
constant letter width, rather than a variable one. This aligns not only the left hand side of the text but the
right hand ones as well.

3. Simple Applications 15

3.3 All shapes and sizes

Here we look at more complex shapes that can be drawn as well as many shorthand commands that make
the construction of flow diagrams or charts much easier. Be aware however that this section does not use
the full programming ability of GLE. Some of the commands introduced in section 4 can make the following
program much more compact.

So far we have accepted the default positioning of the shapes we have drawn. However it is possible to have
a far greater control, both over the shapes and over the orientation of the text. The following program shows
the naming convention that is used.

L [1c] TR

BL [cB] BR

'justify.gle - Illistrates the shorthand names for the justify and join commands

size 20 20 !Sets the size of the viewing window

set just CC 'Al1l text from now on will be center justified
amove 10 10 !Draws the box in the center and adds text

set hei 0.2

box 4 2 just CC name centerbox

begin text width 3.5
The justify and join commands refer to the corners of a box with the shown

convention. TL stands for ’Top Left’, CR for ’Center Right’ etc.
end text

set hei 0.5 'Formats the following text
!The following commands write out the shorthand labels and draw boxes around them

amove 10 15
begin box add 0.2 name topbox

3. Simple Applications

text TC
end box

amove 15 15

begin box add 0.2 name toprightbox
text TR

end box

amove 15 10

begin box add 0.2 name rightbox
text CR

end box

amove 15 5

begin box add 0.2 name bottomrightbox
text BR

end box

amove 10 5

begin box add 0.2 name bottombox
text BC

end box

amove 5 5
begin box add 0.2 name bottomleftbox
text BL

end box

amove 5 10

begin box add 0.2 name leftbox
text CL

end box

amove 5 15
begin box add 0.2 name topleftbox
text TL

end box

!These commands join the central box to the others with arrows
join centerbox.tc <- topbox.bc

join centerbox.tr <- toprightbox.bl

join centerbox.cr <- rightbox.cl

join centerbox.br <- bottomrightbox.tl

join centerbox.bc <- bottombox.tc

join centerbox.bl <- bottomleftbox.tr

join centerbox.cl <- leftbox.cr

join centerbox.tl <- topleftbox.br

3. Simple Applications 17

3.3.1 Naming objects

Within GLE we can refer to a point on the screen or an object by a predefined names, GLE will substitute
the absolute coordinates of the point. This has the advantage that, in a subsequent line of programming,
any given point can be referred to by name as opposed to a string of coordinates. Thus, if we require the
coordinates of the top left hand corner of a box, we can refer to it by its name followed by an extension for
the left hand corner. We can also save an individual point for later use,

amove 4 4
save pointl
amove 3 3
save fred

join fred - pointl

This will join the two points (4,4) and (3,3).

3.3.2 The justify commands

The second line of the program set just CC tells GLE that all following text should be centered over the
reference point. Notice that this is different from the center command which positions the text according
to its bottom center. Similarly left is identical to BL (bottom left), and right is identical to BR (bottom
right). We may use the labels interchangably, and we may also swap the order of letters, so BR is the same
command as RB or rb.

The set justify command only applies to text, so when we come to draw the box around the text with
the command,

box 4 2 just CC name centerbox

We must specify the positioning with the just command. CC can be replaced with any other handle as
required.

3.3.3 The join command

The usefulness of naming objects is shown above when we wish to join together two objects. We could, of
course, have used the aline command, but then we would need to know the coordinates of each point on
the boxes. It is far easier to refer to each point by its name and let GLE work out exactly where it is.

The join command draws a line between two named points in the same way that the aline command draws
a line from the reference point to the given coordinate. So the command:

join abox.tl - anotherbox.br

Will connect the top left hand corner of ‘abox’ to the bottom right hand corner of ‘anotherbox’. The ‘-’
can be replaced with a ‘<-’ for a single arrow; a ‘~->’ for an arrow in the opposite direction; or ‘<->’ for a
double headed arrow.

Along with the commands above there are four other options we should look at. The first occurs if we fail
to specify any justification at all on an object:

3. Simple Applications 18

join objectl - object2.tl

In this case GLE will join the top left hand corner of object2 to the centre of objectl, however the line
will be clipped at the edge of objectl.

We may also specify that the line joining two objects be either horizontal or vertical, using the h and v
qualifiers.

join objectl.h object2

Indicates that object1 should be joined to object2 by a horizontal line. If two statements are present then
GLE will draw a line which satifies both, but the lines will no longer neccesarly connect the two objects.

Finally we can use the command ci. This is similar to the absence of any justify type, but in this case GLE
will clip the line at the circumference of the largest circle that can be drawn within the confines of the box.
Obviously, the main application of the ci command is to join circles.

The following code demonstrates many of these remaining points:

!just2.gle - Demonstrates the remaining justify commands
size 10 10

amove 5 5

'Draws the centre circle
begin box name circle nobox
circle 1

end box

amove 0 8 !Draws two boxes

box 9 0.5 name topbox nobox fill grey20

amove 8 0
box 0.5 9 name rightbox nobox fill grey20

join circle.v <-> topbox.rb !Joins the various objects
join circle -> rightbox.h

join circle.ci - topbox.lb

3. Simple Applications 19

join circle.tl - topbox.lb

join circle.v <-> topbox.rb

Notice that the circle.v <-> topbox.rb creates a line that does not come into contact with the circle
itself. We also see that using the command circle.tl - topbox.1lb joins to the corner of the box containing
the circle. If we wish to connect to the circle itself then we must use the ci justifier.

3.3.4 Begin box and end box

Although we now have a fair degree of control over the positioning of the shapes, in many cases it is an
advantage not to have to specify the dimensions of the shape at all. We may instead merely wish to have a
box that encloses some text with a margin on each side, without having to worry about the text overrunning
the sides of the box. For this the begin box command is provided. This draws a box around everything
in between the begin box and end box command. This includes text, other shapes, or graphs. The usual
qualifiers can be added to the box command with the addition of add which specifies the margin left between
the extent of the enclosed object and the edge of the box. For example,

begin box fill grey20 add 1.5 nobox name mybox
¢...)

end box

Will draw a grey box without a border aroung the enclosed commands (...), the add 1.5 command gives a
1.5cm margin on all sides. In the remaining program it will be possible to refer to the coordinates of the
box using the name mybox and one of the corners. For this we do not know, or need to know, the absolute
coordinates of the box.

3.4 Lines and line widths

We look at another example of the use of graphics. Notice how this program makes the distinction between
absolute and relative movement. Relative movement is used in the construction of each individual block and
absolute movement is used in moving between the blocks. In an ideal world there would be no advantage to
either, but using this form ensures that if we make an error and wish to move one of the blocks then only
one coordinate must be changed. Similarly, if we wish to resize one of the elements of the diagram then it
is easier to deal in relative measures rather than having to work out the absolute position of each point.

!1ines.gle - Demonstrates the various options for lines and markers
size 10 8

set hei 0.5
set just CC 'Adds a title
amove 5 7.5

text Line styles and markers

set hei 0.3
set just LC !Adds a title and box to the different line styles
amove 0.7 6.5

3. Simple Applications

Line styles and markers
Different line styles
0 circle Square diamond
fcircle fsquare fdiamond
----------------- 2 wircle wsquare wdiamond
and so on
- === I 0.2 — 001
— (.1 — 0.005
______ — 005 — 0.0001
— 0.02 — 0
—- —- — 9229
mitre
set cap butt
set cap round
Set cap square bevel round
begin box add 0.25
text Different line styles
rmove 0 -0.5 !Draws the various line style options
set lstyle O !Tdeally this should be placed

!within a subroutine
rline 2 0 !See following section
text \glass \: \: O

rmove -2 -0.5

set lstyle 1

rline 2 0

text \glass \: \: 1

rmove -2 -0.5

set lstyle 2

rline 2 0

text \glass \: \: 2

rmove -2 -0.5

text \glass \: \: ...and so on

rmove 0 -0.5

set lstyle 8

rline 2 0

text \glass \: \: 8

rmove -2 -0.5

3. Simple Applications

21

set lstyle 9
rline 2 0
text \glass \: \: 9

rmove -2 -0.7

set lstyle 9229

rline 2 0

text \glass \: \: 9229

set lstyle 1
end box

amove 4.6 6.5

set lwidth 0.05
rline 0 -2

set lwidth 0.0001
rmove 0 0.5
marker wcircle 0.8

text \glass \: wcircle

rmove 0 0.5
marker fcircle 0.8
text \glass \: fcircle

rmove 0 0.5
marker circle 0.8

text \glass \: circle
amove 6.4 6.5

set lwidth 0.05
rline 0 -2

set lwidth 0.0001
rmove 0 0.5
marker wsquare 0.8

text \glass \: wsquare

rmove 0 0.5
marker fsquare 0.8

text \glass \: fsquare

rmove 0 0.5

marker square 0.8

!We can produce a line from a combination of
!'the other line styles

!'Demonstrates the different markers available

3. Simple Applications

22

text \glass \: square
amove 8.4 6.5

set lwidth 0.05
rline 0 -2

set lwidth 0.0001

rmove O 0.5

marker wdiamond

text \glass \: wdiamond

rmove O 0.5
marker fdiamond
text \glass \: fdiamond

rmove O 0.5
marker diamond
text \glass \: diamond

amove 5 4
set lwidth 0.2
rline 1 0

text \glass \: 0.2

rmove -1 -0.3
set lwidth 0.1
rline 1 0

text \glass \: 0.1

rmove -1 -0.3
set lwidth 0.05
rline 1 0

text \glass \: 0.05

rmove -1 -0.3

set lwidth 0.02
rline 1 0

text \glass \: 0.02

amove 7.5 4
set lwidth 0.01

rline 1 0
text \glass \: 0.01

!Draws examples of the different line widths

3. Simple Applications

23

rmove -1 -0.3

set lwidth 0.005
rline 1 0

text \glass \: 0.005

rmove -1 -0.3

set lwidth 0.0001
rline 1 0

text \glass \: 0.0001

rmove -1 -0.3
set lwidth O
rline 1 0

text \glass \: 0

amove 0.5 0.5
box 2 1.5

rmove 0 0.25
set cap square
set lwidth 0.2
set hei 0.3
rline 2 0

text \glass \: set cap square

rmove -2 0.5

set cap round

rline 2 0

text \glass \: set cap round

rmove -2 0.5

set cap butt

rline 2 0

text \glass \: set cap butt

amove 5.5 2.5
set lwidth 0.1
set just CC
set join mitre
rline 4 0
rline 0 -1

set join round
rline 0 -1

rline -2 0

!Shows the different options for ending a line

!Shows the different options for joining lines

!Notice that the path is split - this is significant

3. Simple Applications 24

set join bevel

rline -2 0
rline 0 2
rmove 0.5 -0.25 !Adds text labels to the various joins
rmove 3 0 !We could not have done this within the

!join commands themselves - see main text
text mitre
rmove 0 -1.5
text round
rmove -3 0
text bevel

The purpose of many of the commands can be seen from the graphical output, this kind of program with
a lot of repeated steps can be simplified greatly by the use of subroutines. However, we will postpone a
discussion of other possible programming structures until the following section, dealing here only with the
commands’ literal meaning.

After defining the size of the page and adding a title, the script draws a number of different line styles using
the command:

set lstyle n

Where n is an integer which represents the different line styles, there are 10 (0..9) pre-defined styles. We can
make additional ones by combining digits,

set lstyle 9229

This produces a line style that is a sum of individual styles, we begin with a black line style 9, then
superimpose on top a style 2 in white, followed by a style 2 in black and a style 9 in white.

Markers are shapes that are attached to a given point in a diagram, we are free to define their size using a
height in cm following the marker command. As with fonts the actual height of the marker is only about
65% of the specified height.

We can also specify the width of a line created either with the rline and aline commands or with a join
command. We use,

set lwidth 0.2

Which sets the line width to 0.2 cm. The default setting for the width is 0.02, if we set the line width to
zero then GLE will adopt the default value. Thus, a line width of 0.0002 is (100 times) thiner than a line
width of zero.

When working with significant line widths we can specify how the lines begin, end, or join. The first two are
controlled by the set cap command. This can either produce a line that is clipped exactly, a line that has
a rounded cap at each end, or a line that has a square cap at each end. The various forms are illustrated
above.

The set join command is more complex, by default GLE will simply overlap two lines that are connected
to the same point. To invoke the different types of join we must form a continuous path from one point
through another and onto a third. That is,

4. Formal development 25

set join round
amove 1 1
aline 1 2

aline 2 1

Will form a rounded join at (1,2). If we break the path by inserting a command in between,

set join round

amove 1 1

aline 1 2

text This is not a rounded join
aline 2 1

Then the join style will not apply. If either the incoming line or outgoing line is under a different join style
then, again, the style will not apply.

set join mitre
amove 1 1
rline 1 0
rline 0 1
set join round

rline -1 0

This will produce a mitred join at (2,1) but the rounded join will not apply at (2,2) as the incomming line
still has the previous set join mitre style. If we were to produce a rounded join then, as in the script
above, we would need to split the line into two parallel, colinear, segments.

4 Formal development

So far we have looked only at programs that proceed from one command to another using each only once.
Although this has made our first few programs easy to follow, it does not demonstrate the full potential
of GLE as a programming language. In the following section we will develop the drawing routines already
studied within the context of a full programming language. We shall look at how, by reusing code and
defining subroutines, we can greatly simplify the construction of a complex program. These concept will
be familiar territory to anyone with a knowledge of other high level programming languages such as C or
Pascal.

To begin with we formalize some of the syntax we have been using. We define a command as a keyword
that prepares GLE for a task. Following this is a set of qualifiers that define the parameters of the task; the
width and height of a box or the coordinates of a point for example. We also distinguish between qualifiers
that are single variables and those that are commands in their own right. The instruction set to draw a box
may be written as:

box 2 4 fill grey20 justify CR

We see that 2 and 4 are single variables that are required to draw the box successfully. The other qualifiers
take the form of a sub command followed by another qualifier, these are optional - removing them will result
in the box being drawn with the default settings. The order of the sub-commands does not matter but we

4. Formal development 26

cannot separate command and qualifier, nor can we place the sub-commands before the single variables, the
2 4 must not be separate from the box command.

When GLE finds a keyword in the script it looks to the right of that word for any qualifiers that are
necessary, then to the right of those for any optional sub-commands and their qualifiers. GLE ignores all
multiple spaces, though each word must, at least, be separated by a single space. The end of line character
is a signal to GLE that the current command sequence has ended and it should proceed to the next line of
code.

The set command is a keyword and, if we have several variables to specify at the same time, then we may
shorten the usage to a single line. Suppose we have the code:

set hei 3
set color red
set just center

set font ss

GLE reads the keyword set; sets the font height to 3, then forgets about the set command. In the second
line it follows the same process but sets the colour to red. It makes sense that we can shorten the code to a
single set command that we write as,

set hei 3 color red just center font ss

Which accomplishes the same thing but using the command to sub-command system.

4.1 Variables and expressions

So far we have explicitly provided values for each command we have used. For example, when drawing a box
we gave numerical values for both the height and width. It is useful, however, to be able to define a variable
that represents a number or a string of text. For example we may write:

a=3.1415
b=3
box a b

Which tells GLE to draw a box of width ‘a’ and height ‘b’, where ‘a’ and ‘b’ are defined to have the numerical
vales 4 and 3.1415. If a variable is not defined before it is used in the program then it will take the default
value of zero.

Any combination of letters and numbers may be used to represent a numerical variable, it makes sense to
choose ones that are both memorable and sensible. Text strings can be represented by variables that end in
a ‘$’ sign, text$ for example. This works fine for most commands but the text command treats text strings
as plain text. For example, the set of commands:

a$=Hello
text a$

Will write the text ‘a$’ to the screen. To display the variable text we use the command write, the only
difference from text being the ability to detect and display text strings.

4. Formal development 27

text1$=color

text2$=red

set color text2$

write This is the textl$ text2$ text3$

The string variable ‘text3$’ is undefined at this point in the program. On fininding this GLE will simple
disply the plain text ‘text3$’ . The write command does not preclude the use of $ signs, just any defined
string variable containing them.

GLE contains and extensive library of built in functions which may also be used to simplify a program. Many
of the expressions are mathematical, including all the standard operations: ‘+’ for add, ‘-’ for subtract, “*’
and ¢/’ for multiply and divide. We may include Boolean operators (AND, OR) and relational operators
(<, >, =>, <=, =, <>). There are also trigometric and exponential functions, a set of functions for
manipulating strings of text, and functions that return the current date and time. A full listing of the
available expressions is given in the appendix.

Wherever a string or numerical value is used, an expression can also be used. Equally, numerical and string
variables can be substituted into an expression. The following lines of code will draw three identical lines:

rline 3 2

rline 9/3 sqrt(4)
a=9

b=3

c=1+1

rline a/b sqrt(2*c)

Expressions in GLE are delimited by white space and therefore we must not include any spaces within the
expressions themselves. Thus, rline 3*2 4 is a valid expression, whilst rline 3 * 2 4 is not.

4.2 Conditional logic and programming loops

An important part of GLE programming is the use of programming loops and the logic that is needed to
execute them. Suppose we have a repetitive task whose execution differs slightly each time. Instead of writing
out each individual step we use a loop, a repeated piece of code that runs until the conditions specified at
the top of the loop are satisfied.

4.2.1 The circles

We look at a simple example of the use of a loop

circles.gle

size 20 20

amove 10 10

for x = 0.01 to 100 step 0.01
circle 1/x
next x

4. Formal development 28

Draws a series of concentric circles aproaching a limit at the center of the page. The loop is determined
by the for command and the next x command, everything between these is part of the loop. The three
qualifiers that follow this command determine the number and spacing of the loops, consider the loop,

for x = a to b step ¢
...

next x
On reaching this line of code GLE sets x equal to a and then repeats the following procedure,

e If x is greater that b then the loop is skipped and the command immediately following the loop is
exectuted.

e The value c is added to x

e The code between the for and next commands is executed

There is nothing special about x, it can be any variable we wish. Notice, however, that the variable used in
a loop is not a local variable as with a subroutine. If we define x in the code preceding the loop then in the
following code the value of x will be the last value it took in the loop.

4.2.2 If...then statements

A similar command can be used to execute different code depending on whether a given statement is true
or not.

if xpos()=3 then

text We are at x=3
else

text We are not at x=3

end if

If the statement immediately following the if command is true then GLE executes the code between the
then command and the else command, if it is false then GLE executes the code between else and end if.
Either way GLE then moves onto the line of code imediatly following end if. In this case the program will
print ‘We are at x=3’ if the x coordinate is 3, or ‘We are not at x=3’ if it is not.

4. Formal development 29

4.2.3 The superellipse

We look at a more concrete example using both the loop and conditional logic, this illustrates the great
advantage GLE has over traditional drawing programs. The following code draws Piet Hein’s superellipse,
a set of shapes that satify, for different values of n, the equation

(/a)" + (y/b)" =1 (1)

For a discussion of the superellipses origin, and the diagram itself, see J. Phys: Condensed Matter 13, 2271
(2001).

!Superellipse.gle - Graphical representation of Piet Hein’s superellipse
size 24 18

amove 10 9

begin origin !Sets the origin of the ellipse at (10,9)

a=b5 'a and b represent the excentricity of the ellipse
b=8

n=1.5

amove -a -b !Draws the box that represents the limit as n tends to
box 2%a 2x%b 'infinity

amove 0 O

4. Formal development 30

for j=0.5 to 10 step 0.25

n=j 'n is the exponent of the ellipse

for i=0 to 360 step 1 !Calculates the radial distance from the x and y
ang=1i%3.14/180
c=cos (ang)
if (c<0) then
c=-c
end if
s=sin(ang)
if (s<0) then

s=-s

end if

ax=(c/a)"n 'ax is the projection of the radial coordinate along
!'the x axis

ay=(s/b)"n 'ay is the same along the y axis

zob=1/(ax+ay)
if (zob<0) then
Zob=-zob
end if
zub=zob~ (1/n)
x=zub*cos (ang)
y=zub*sin(ang)
if i=0 then
amove X y
else
aline x y
end if

next i

next j

4.3 Subroutines

Although variables may be defined anywhere within a code it makes sense to place them at or near the
start of the program. This allows the variables of the program to easily be changed if the need arises, and
also, reduces the number of lines within the central body of a program. Reducing the size of the main
programming loop makes the program easier to understand, and to check for errors. A similar technique
applies to the writting of subroutines. A subroutine is a distinct section of code that perform a particular
task. For example, within a program we may be required to draw a triangle,

amove 2 2
rline 2 0
rline -1 sqrt(3)
rline -1 -sqrt(3)

4. Formal development 31

We can write this section of code at the beginning of the script using the sub and end sub commands.

sub triangle
amove 2 2
rline 2 0
rline -1 sqrt(3)
rline -1 -sqrt(3)

end sub

Indentation is optional but can make the program easier to understand. We may call the triangle at any
point within the program body using the command,

Q@triangle

Where the @triangle commmand tells GLE to execute a subroutine with the name ‘triangle’ .

This has accomplished our goal of simplifying the program body by removing self contained code to the start
of the program and giving it a logical call name. It would, however, be far more useful if we could specify
the size and position of the triangle each time we draw it. We do this by specifying a series of local variables
within the subroutine.

sub triangle x y size
amove X y
rline (size) 0
rline -(0.5)*(size) (0.5)*(sqrt(3))*(size)
rline -(0.5)*(size) -(0.5)*(sqrt(3))*(size)

end sub

Again we may call the triangle at any point in the program, however we must now specify the size and
position of the triangle.

Q@triangle 2 3 1
Q@triangle 0.2 sqrt(3.4) 0.5
Qtriangle a b c-4

The variables used within a subroutine are entirly separate from the program body. They are forgotten as
soon as the subroutine is finished; so the size variable in the above line of code is undefined in the program
body. We are, of course, free to define a variable ‘size’ and use it within the program body. It will neither
affect nor be affected by the execution of the subroutine.

Commonly used subroutines can be removed entirly from the programming script and placed in a separate
file which can be made available to any number of GLE programs. The following subroutine substitutes a
character (a snowflake) from one of the font tables as a marker for either a graph or diagram.

!subsnow.gle - Subroutine that prints a snowflake

sub subsnow size !Size is the font size of the snowflake

gsave !Saves the initial graphic state

set font pszd hei size

t$ = "\char{102}"

rmove -twidth(t$)/2 -theight(t$)/2 !Centers the snowflake over the initial coordinates

4. Formal development 32

write t$
grestore !Restores the saved graphic state

end sub

There are several new elements within this code. The gsave and grestore commands respectively save
and restore the current graphic state. When the subroutine is called GLE remembers the initial coordinates
and settings of the font height and type. Thus the set command that appears in the subroutine is then not
allowed to affect the main program loop, an advantage if we wish to construct a piece of code that will fit
into any program we choose.

The rest of the subroutine writes character 102 (a snowflake) from the postscript zapdingbat font at the
center of the initial coordinates. The quotation marks around the definition of ‘t$’ indicate to GLE that
the string reference is to be taken as a special character and not a literal piece of text. The twidth(t$)
and theight (t$) are special functions that give the width and height of the character in brackets, if it was
printed with the current font size settings.

This piece of code is a perfectly valid subroutine and can be placed at the top of any GLE program. However,
if we draw a lot of snowflakes we can reduce the complexity of our GLE script by calling the subroutine from
within the program. The above code is placed in a separate file snowflake.gle. Notice that this is not a
valid GLE file, it does not have a size declaration nor any program body. We can however tell GLE that
this subroutine is to be compilied with a program using the include command. We write,

!Snowflake - produces a boxed snowflake

size 5 5
include subsnow.gle !Subroutine for drawing a snowflake
define marker snow subsnow !'Defines a marker to be the snowflake produced

'by the subroutine
amove 2.5 2.5
box 2 2 just CC
marker snow 1 'Draws a 1lcm snowflake

The code defines a new marker snow that draws the snowflake in the subroutine in the same way as any
other marker. The box is to show that the snowflake is centered on the initial coordinates.

We have looked at including subroutines in our program, but we can also use the include command to run
any GLE script at any point within another program. Sometimes we may have a very large or complex
program that we wish to use again in another script, in this case the include command can be used instead

4. Formal development 33

of copying out the entire file. If we wish to call a very complex program then we can also use the command
bigfile, this is identical to the include command except the program will be read and compliled one line at
a time. This can speed up the execution of complex programs, however there are certain restrictions: some
complex multi-line commands will not work and we cannot define subroutines within the bigfile program.

Frequently used subroutines can be stored in a separate user directory and called by any program. For
example the following code will produce a shadowing effect on any given text.

sub ziptext tt$

gsave

for i =1 to O step -0.05
set color (i)

write tt$
rmove -0.05 0.025
next i

set color white
write tt$
grestore

end sub

We call the subroutine at any point using the usual set of commands, we are able to pass any text string we
wish onto the subroutine.

—
‘1“

!glezip.gle - Demonstrates the ziptext command
size 7 5

include ziptext.gle

amove 2 1
set font rm hei 2
@ziptext "GLE"

We also look at a final example of the use of subroutines which gives an idea of the maximum processing
speed that GLE is capable of. When using programming loops it is a good idea to start with only a small
number of iterations, before building up to the number required to produce an accurate looking diagram.
It is also important to remember that most postscript viewers are not designed to display very complex
diagrams and will not do so with any haste.

4. Formal development

34

A

!fractal.gle - Draws a fractal

size 18 20

rx=1
ry=1
bx=9
by=16
gx=17
gy=1

amove rx ry
set color red
marker dot 0.4
amove bx by

set color blue
marker dot 0.4
amove gx gy

set color green
marker dot 0.4

sub green

set color green

!Defines the position of the coloured markers

!'Draws the coloured markers

!This set of subroutines moves to halfway between the initial

!coordinate and the coloured marker and draws a dot

5. The graph module 35

amove (gx+xpos())/2 (gy+ypos())/2
end sub

sub blue

set color blue

amove (bx+xpos())/2 (by+ypos())/2
end sub

sub red

set color red

amove (rx+xpos())/2 (ry+ypos())/2
end sub

amove 5 5

for n=1 to 100000 step 1 !Number of iterations defines the speed at

!wvhich the program compiles

r=rnd (1) !Executes each of the subroutines randomly with
if r<0.333 then !the same probability
@blue
else
if r<0.6666 then
Ggreen
else
Q@red
end if
end if
if n>15 then !Tgnores the first few dots which are influenced by
marker dot 0.05 !initial start position
next n
else
next n

5 The graph module

GLE allows the user to produce a graph from data in a separate file or by defining a formula within a
program script. The advantage of using GLE to produce graphs lies in its flexibility and the degree of
control it allows over the final apperance. However, GLE does not include a dedicated spreadsheet. There
is, of course, nothing to prevent us from preparing the data in a traditional spreadsheet and then producing
the finished graph in GLE.

5. The graph module 36

5.1 Graph basics

The graph module is a separate enitity within a GLE program. The commands begin graph and end graph
define the limit of the module. Outside of these commands we are free to use any standard GLE command,
between them there is a special command set appropriate for graph drawing. The following example draws
a simple graph using data from a separate file.

My first Graph

© b v w5 o o N ® ©

05 10 15 20 25 30 35 40 45 50

!mygraph.gle - Some of the simple graph drawing commands

size 10 13 !Sets the size of the paper
begin graph
size 10 10 !Sets the size of the graph
data mydata.dat 'Reads data from mydata.dat
title "My first Graph" hei 1 color red dist 2
yaxis min O !Sets the y axis to zero

dl line marker circle msize 0.2

end graph

The data file (mydata.dat), in the same directory as the source code, is:

12
26
32
45
59

The first command, size, sets the size of the paper we are working with. On this paper we can place
any number of graphs or other drawings, though in this case we have only a single graph. The second size
command, within the graph loop, sets the size of the graph within the page. To separate the graph from the
rest of the page GLE automatically scales the graph to 70% of the given size and also adds a box. Entering
the command nobox within the graph loop will remove the box. To change either or both of the default
scaling we use the commands vscale and hscale. For example, inserting the commands:

size 10 10
nobox
vscale 1.2
hscale 1

5. The graph module 37

would remove the box and scale the vertical axis to 12cm and the horizontal axis to 10cm. To set the graph
size to 100% and remove the box we can use the shortcut command fullsize within the module.

Data is stored in GLE as a set of (x,y) coordinates, each with a name given by dn where n is an integer.
The default for the first data set is d1, d2 for the second, and so on. The data command tells GLE which
file to use for the data set, and in the above example we use the default settings. If we wish we may specify
any data set.

data mydata.dat d34
More usefuly if we have a data file with multiple columns, we can define a data set using any pair of columns.
data experiment.dat dil=cil,c2 d2=cl1,c3

Which would read columns 1 and 2 of experiment.dat into d1, and columns 1 and 3 into d2.

The title command places, as might be expected, a title onto the graph. The title must be contained
within quotation marks and may be followed by commands defining the height, colour, or font of the title.
The dist command sets the distance of the title (in cm) from the top of the x-axis, the default setting is
zero with positive and negative values also allowed.

Another default setting that is often altered is GLE’s habit of taking the origin of the graph to be the lowest
(x,y) data pair. To set the origin and the maximum we use the command,

xaxis min 0 max 5 dpoints 1
yaxis min 0 max 10 dpoints 1

Where min and max determine the maximum and minimum values of the x and y axis. dpoints sets the
number of decimal places displayed in the data.

To plot the data we use the data label (d1, d2, d3, ...) followed by a set of commands that determine how
the data is plotted. The line command tells GLE to join the points with a series of straight lines. We can
apply the usual formatting options for lines by adding qualifiers after the main data command.

d2 line lstyle 2 lwidth 0.01 color red

The d1 marker command indicates that each point should be represented by a set of circular markers of
size 0.2cm. The markers are identical to those used outside of the graph module: a list can be found in the
appendix. By default neither lines or markers are drawn by GLE, and an error in this command can often
be the reason behind blank graphs.

The dataset commands have the same syntax as the set function introduced in the previous section. The
subcommands can appear on the same line, or on separate lines each with its own data label. The following
script is identical to the single line command,

dl line
dl marker circle
dl msize 0.2

Often we shall use the longer version when highlighting new commands or to make programs easier to
understand. If we wish to format a group of data types at the same time then we can also use the dn
command, which applies to all the defined data sets at the same time.

5. The graph module 38

dn marker circle

d3 marker square

This will draw all of the data sets with circles except for the set d3 which will be drawn with squares. Notice
that the dn command will overwrite any previous formatting commands, so if we had written:

d3 marker square

dn marker circle

All the data sets would be circles regardless of the d3 marker square command.

If a data point is missing (there is no value supplied in the data file) then, by default, GLE will not connect
the points on either side of the blank. To connect all points, even if they are not consecutive, we can add the
nomiss command, either in the same statement as the line command, or with its own separate data label.

5.2 Examples of formatting

To cover all the possible options for formatting both the axis and line styles we shall look at a series of more
complex graphs. The first example is somewhat artificial, in that both graphs use the same (made up) data
set, but it does serve to illustrate the degree of control it is possible to take over the final appearnce of a
graph. This flexibility is clearly an advantage, but can be time consuming and sometimes unneccesary. In
most cases GLE will do a reasonable job of producing a graph using the default settings.

!format.gle - Demonstrates the various format options for the axis of a graph
size 18 27
amove 1.3 14.5

begin graph
size 16 12
nobox !Formats the axis
xaxis min O max 20 dticks 4 dsubticks 1
xplaces 4 8 12 16 20
xnames "Sep 13" "Sep 23" "Oct 3" "Oct 13" "Oct 23"
xticks length 0.2
yticks length 0.2
yaxis min O max 75 dticks 10 dsubticks 5 nofirst
ytitle "Bud burst (%"
xtitle ""
data test.dat

!Draws the various data points
dl 1style 1 marker wcircle msize 0.3 key "Shelter row"
d2 lstyle 1 marker wsquare msize 0.3 key "Shelter row + H"
d3 lstyle 2 marker wcircle msize 0.3 key "Middle row"
d4 lstyle 2 marker wsquare msize 0.3 key "Middle row + H"

key pos tl hei 0.4 !Draws a key

5. The graph module

39

T
70| © —— Shelterrow v il
O —— Shelterrow +H [€)
| © - Midderow o 4
o - Middlerow +H ... ’
o%F 1
§
Baor R
=}
Q
Sa0t 4
[}

Sep 13 Sep 23 Oct 3 Oct 13 Oct 23

Flowers per cane at full bloom

Il Il Il Il
Nov 10 Nov 15 Nov 20 Nov 25 Nov 30

Figure 5: Influence of Hicane on the duration and timing of (a) bud burst and (b) flowering of
kiwifruit. (Note: this data has been made up)

end graph

rmove 12 9
set font rm hei 0.5
text (a)

amove 1.3 4
begin graph

size 16 12
nobox

!Labels graph (a)

!Draws the lower graph

'Formats the axis

xaxis min 0 max 20 dticks 4 dsubticks 1
xplaces 4 8 12 16 20
xnames "Nov 10" "Nov 15" "Nov 20" "Nov 25" "Nov 30"

xticks length 0.2
yticks length 0.2

yaxis min O max 110 dticks 10 dsubticks 5
ytitle "Flowers per cane at full bloom"

5. The graph module 40

xtitle ""

data test.dat

dl 1lstyle 1 marker circle msize 0.3 !Draws the various data points
d2 1lstyle 1 marker square msize 0.3

d3 1lstyle 2 marker circle msize 0.3

d4 lstyle 2 marker square msize 0.3

end graph

rmove 12 9 !Labels graph (b)

text (b)

set hei 0.4 !Adds an explanation of the data

amove 1.3 3

begin text width 16

Figure 5: Influence of Hicane on the duration and timing of (a) bud burst and (b)
flowering of kiwifruit. (Note: this data has been made up)

end text

5.2.1 Adding a simple key

There is a dedicated command module, similar to the graph module we are working with, that allow for the
construction of keys. If, however, we only want to add a simple key then we can add a command from within
the graph module. The key command has less formatting options available to it, but is simpler than the full
key module. We indicate that we wish a dataset to be included in the key by placing the key qualifier in the
data line followed by the title we wish the dataset to have,

d2 marker dot key "Observed values"

d3 line key "Predicted values"

We can change the position and format of the key by adding a subsequent key command,

key pos tl hei 0.4

This will draw the key in the top-left hand corner with text of height 0.4cm. We can remove the box that
GLE adds by default with the qualifier nobox, for example,

key pos br nobox

5.2.2 Formatting the axis

A graph in GLE consists of a number of separate parts, four axes, their corresponding labels, and various
titles. Each part has various formatting options that can be specified individually, or as a group. In this text
we have tried to use all the possible formatting options for a given command. It is normally unnecessary to
be so specific, as GLE will make reasonably sensible choices for most of the formatting.

The most important compontents, from the point of formatting, are the axes. These are referred to by the
labels xaxis, yaxis, x2axis, y2axis, where the last pair refer to the upper and right hand axis. We can
specify the formatting of these axis with the command,

5. The graph module 41

xaxis color red lwidth 0.2 font texcmss hei 0.5

The syntax for the qualifiers is the same as for line styles and text outside the graph module. The other
three axis can be specified in the same way,

y2axis color blue

By default all four axis will be drawn with labels only on the left and bottom. Changing the format of the
xaxis will also change the formatting of the x2axis.

x2axis color blue

xaxis color red

Will still draw both the xaxis and the x2axis in red, though the y-axis will be unaffected. To produce a
blue x2axis we would need to place the x2axis command after the xaxis one.

The axis commands control the overall format of the graph; they apply to the labeling, the title, and the
appearance of the axis graduations which we call ‘ticks’ and ‘sub-ticks’. Specifying a format option with the
xaxis command sets it as the default for all following commands. So if we write,

xaxis color green
xtitle "Voltage"

The title ‘Voltage’ will appear in green as opposed to black.

We may turn off the x2axis and the y2axis with the commands,

x2axis off

y2axis off

In this way the xaxis and yaxis may also, if we wish, be removed. For the sake of completeness we mention
that the command xaxis on will turn the x-axis back on again, though this can also be accomplished by
not turning it off in the first place.

We may change the format options of the axis lines themselves using the command,
xside color blue lwidth 0.2

There are similar commands for the other three axis. Using this command the ticks, subticks, and the axes
themselves will be changed, but the labels and title will remain intact. Again we may turn off the x-axis’
lines, or any other lines, with the command,

xside off

And back on again with xside on.

The ticks and subticks, refering to the large and small graduations on the axes, can also be formatted. There
are several commands that relate both to their positioning and to their appearence.

xticks 1lstyle 2 lwidth 0.01 length 0.2 color red

This will apply to the ticks and subticks on the top and bottom axes. We can specify the y axis as well.

5. The graph module 42

y2subticks lstyle 2 lwidth 0.1 length 0.1 color black

This will apply only to the subticks on the right hand y-axis. Again the order of commands is important, as
we may end up obliterating previous formatting by inadvertantly placing a xaxis command at the end of a
graph module.

Ticks and subticks are draw on the inside of the graph, if we wish to move them to the outside then we
simply specify a negative length.

x2subticks length -0.2

This will draw the top x-axis subticks on the outside of the axis.

The command xlabels formats both the data labels and the title of the x-axis, and the top x-axis. The
converse is not true, x2labels formats only the top x-axis and leaves the bottom x-axis untouched.

xlabels color blue hei 0.3 font tt
x2labels hei 0.1

x2labels on

Where the x21abels on command tells GLE to add the x2axis labels which will, by default, not appear
even if we attempt to format them. Again the x21abels format commmand must appear after the xlabels
command if it is to have any effect. The xlabels on command may appear anywhere within the graph
module, and we may include it in the format line: x21abels hei 0.1 on.

The ticks and subticks are allocated evenly accross the axes, but we can gain more control over the allocation
using an xaxis command. We write,

xaxis dticks 3 dsubticks 1.5
Which will produce ticks every 3cm, with subticks every 1.5cm. Alternatively we can write,
xaxis nticks 5 nsubticks 20

Now the spacing of the ticks is changed such that there are 5 ticks and 20 subticks along the axis. We can
combine the two commands by specifying a set number of ticks and a set distance between the subticks, but if
we specify both a nticks command and a dticks command the set distance command will take precedence.
Again the xaxis command will also set the format for the top x-axis.

When a graph is drawn the labels on the axes are assigned with each tick having an associated label, which
should produce a graph with an easily readable scale. If for some reason it does not, or we wish to relabel the
graph to draw attention to a particular region, then we may manually add the axes labels with the command
xplaces. If, for example, we have a data set that is asymptotic to x=1 then, assuming we have sufficient
resolution, we may write

xplaces 0 0.25 0.5 0.75 0.9 0.95 0.99

This will label the x-axis with the numbers 0, 0.25, 0.5, ..., 0.99, each number having a tick associated with
it. These ticks will remain in position even if we set a tick spacing.

xplaces 0 0.25 0.5 0.75 0.9 0.95 0.99

xaxis nticks 6

5. The graph module 43

The xaxis nticks command will not change the position of the labels on the bottom x-axis, we must remove
the xplaces command to do that, the top x-axis will have 6 ticks along it.

If we are not satisfied with the default labels supplied by GLE then we can substitute them for ones of our
own choosing.

xplaces 1 2467
xnames "Monday" "Tuesday" "Thursday"

xnames "Saturday" "Sunday"

The xnames commands allows us to supply any text variable to replace the labels used in the text. It also,
as in the example above, allows us to specify labeling with a non-uniform spacing. The xplaces command
is not required, without it GLE will apply the labels to the default placings. If there is insufficient space on
a single line for all the labels then separate xnames commands can be used for each individual label.

5.2.3 Fine tuning

There are a few remaining commmands that are useful for solving particular problems with the final graph.

The commands xaxis nofirst and xaxis nolast will remove the first or last labels on the x-axis, with
similar commands for the y-axis. If the labels are overlapping then the use of this command can be easier
than reformatting the entire axis.

xaxis shift 0.2 will shift the labels on the xaxis by 0.2cm from the left to the right. This can be used
when the labels refer to data between the labels rather than above them. Again an analogous command
exists for the y-axis.

If we wish to add a grid to our graph then we may use a dedicated command xaxis grid to produce one.
The command makes the x and y ticks as long and as tall as the graph itself. For example,

xticks lstyle 2
yticks 1lstyle 2
xaxis grid
yaxis grid

will produce a dotted grid underneath the data.

By default the text on the second y-axis will be written vertically upwards. If we wish to include the
graph within another application then to stop text appearing upside down we may need to reverse this
default setting. To do this we use the command y2title "Axis title" rotate, which will display the
text written vertically downwards instead. The command is specific to the second y-axis.

5.2.4 Logarithmic scales

We can produce graphs with logarithmic scales on the x-axis, or the y-axis, or both. Logaritmic scales no
longer have a constant spacing between the labels, so we should use the xaxis nticks command for changing
the spacing between the ticks. There are also some slight differences in the use of smoothing routines with
logarithmic scales.

5. The graph module

44

Voltage (V)

10°
1 2

3
Frequency (1x 10" Hz)

Figure 4b: Measured frequency dependence responce of target circuit

4 5 6

'log.gle - Demonstration of the use of logarithmic scales
size 14 12

amove 0 O

begin graph

nobox

size 14 12

data freq.dat !Reads data from freq.dat

yaxis log min 0.01 max 1 grid !Formats the axis and adds a grid

xaxis min 0 max 0.0006 grid

xlabels hei 0.2
ylabels hei 0.2
xplaces 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006
xnames "1" "2" "3" v4" "g" mg" 1labels the axis

yticks lstyle 2 !Changes the grid to a dotted line
ysubticks lstyle 2
xticks lstyle 2

5. The graph module 45

xtitle "Frequency (1\times 10~{4} Hz)" hei 0.3
ytitle "Voltage (V)" hei 0.3

dl marker circle msize 0.2 !Draws the data
end graph
amove 7 0.5 'Adds a title

set just CC hei 0.3

text Figure 4b: Measured frequency dependence responce of target circuit

As we can see from above, the command xaxis log either on its own or with other x-axis commands will tell
GLE to draw a logaritmic scale on the x-axis. A similar command, yaxis log, will produce a logarithmic
scale on the y-axis.

5.2.5 Filling between the lines

Another possible formatting option is the ability to fill the areas between datasets, or between a dataset and
an axis, with a solid block of colour.

!'fill.gle - Demonstrates the options for filling between lines
size 16 8
amove 0 O
begin graph
data fill.dat dl=c1,c2 d2=ci,cl
£ill x1,d2 color grey20
£ill d1,d2 color grey80 xmin 1 xmax 4
£ill y2,d1 color black ymin 20 ymax 25
£ill d1 color green
end graph

The £i11 command instructs GLE to fill the lines immediately following the command, these can be either
a dataset or one of the axes referred to with the labels, x1, x2, y1, and y2.

fill x2,d2 color green

5. The graph module 46

This will fill the area between the dataset d1 and the upper x-axis with a green colour. The fill style is
clipped according to the line joining the points. At the moment this means that both the line and the filling
appear as a jagged polygon; in later sections we will fit a smoothed line to the dataset, and in this case,
the filling will also be smoothed. We can also fill between a dataset and the y-axis, though in this case, the
filling will be clipped at the edge of the data and not necessarily at either y-axis. We can also specify a
maximum and minimum range of values to fill between using the xmin, xmax, ymin, and ymax commands.
It is normally a good idea to specify the limits, particularly when filling from the y-axis, as GLE may have
trouble interpreting some of the fill commands if the function is undefined at any point.

A final command allows us to fill between a data set itself,
£ill d3 color blue xmin 4 xmax 40

In this case the maximum and minimum points are joined by a straight line to form one or more closed
polygons. The fill colour is then applied to the inside of these shapes.

5.3 Plotting graphs from user defined formulae

Often it is necessary to reproduce the expected curve from a theory, or to demonstrate the behaviour of a
function. For this GLE provides the ability to generate graphs from a given function as well as from sets of
data.

o 5
~
— -
1
—~
) L
i
~— -
c LL
1 [r—TT Rt EEEEEEEEEEEEEEEEEEREREREREE
0 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

!gamma.gle
size 12 9

5. The graph module 47

set lwidth 0.05 !'Formats the text and line width

set font texcmss

begin graph

size 12 9

nobox !Defines data set from the value of gamma

let d1 = 1/(sqrt(1-x*x)) from 0.001 to 0.999 step 0.01

dl line

let d2 = 1.0 from 0 to 10 step 2 !Produces a comparison data set
d2 line lstyle 2

xaxis min 0.0 max 1.0 hei 0.8 !Formats the axis

yaxis min 0.0 max 7.0 hei 0.8
xplaces 0 0.2 0.4 0.6 0.8 1.0
yplaces 0 1 2 5

xlabels hei 0.2

ylabels hei 0.2

xtitle "\beta=v/c" hei 0.5 dist 0.3
ytitle "\gamma = (1-\beta~2)~{-1/2}" hei 0.5 dist 0.3
xticks length 0.2

xsubticks off

yticks length 0.2

x2ticks off

y2ticks off

end graph

We can define data sets from a mathematical function using the let command. We must also set the sample
rate and range as we would do if we were defining a programming loop. GLE reads the data into the set at
the rate and according to the same rules set out in the section on conditional logic. Any function that can
be used in a programming loop can also generate data for a graph.

The graph itself is made up of a number of straight line segments, which is why the sampling rate must be
set so high. In the next section we will look at ways of drawing smooth continuous curves through a section
of points, though even this will require a high sample rate if we are to have an accurate graph.

We can also create data sets that are functions of other data sets. For example, if we wish to take the average
of two data sets d1 and 42,

data experiment.dat dl d2
let d3 = (d1+d2)/2

dl line 1style 4

d2 line 1style 4

d3 line lstyle 1

Which will draw both data sets d1 and d2, and their average value d3.

Datasets can, and often are, created solely for the purpose of calculation and are never plotted on their own.
A combination of data sets should be defined over the same range if they are to be successfully combined.

5. The graph module

48

T T T T T T T
10+ 1
0.5 j]
00+ 1
-05+ 1
-10 ¢ 1
1 1 1 1
0 T 2 3 vy
Figure 7b: Synthesis of a square wave from harmonic components

!Square.gle - Example of combining datasets

size 18 20
pi = torad(180)

amove 0 O
begin graph

yaxis max 1.1 min -1.1

xaxis max 15 min O

let d1 = sin(x) from O to 15 step 0.1 !'The fundamental sine wave
let d2 = sgn(dl) !The square wave

let d3 = sin(3#*x) from O to 15 step 0.1 !Various harmonics over

5. The graph module 49

let d4 = sin(5*x) from O to 15 step 0.1 'the fundamental

let db = sin(7*x) from O to 15 step 0.1

let d6 = sin(9%x) from O to 15 step 0.1

let d10 = di1+(1/3)*d3 !'We take linear combinations
let d11 = d10+(1/5)*d4 'of the various frequencies
let d12 = d11+(1/7)*d5

let d13 = d12+(1/9)*d6

dl line color greyl0 !These could also be plotted
d2 line lstyle 2 'in different colors or line
d10 line color grey20 !styles to make the difference
d11 line color grey40 !clearer. A key may also help

d12 line color grey60
d13 line color grey80

xplaces 0 pi 2*pi 3*pi 4*pi !Labels the xaxis
xnames ||OII "\Pi" "2\Pi" "3\Pi" ||4\Pill
xsubticks off

end graph
set just cc hei 0.3 !Adds a title

amove 9 1

text Figure 7b: Synthesis of a square wave from harmonic components

Notice that we use the sgn() function to return a 1 if d1 is positive and a -1 if d1 is negative. We cannot
define the function piecewise with the commands,

let d2 = 1 from O to pi step 0.001

let d2 = -1 from pi to 2%pi step 0.001
let d2 = 1 from 2*pi to 3*pi step 0.001
let d2 = -1 from 3*pi tp 4*pi step 0.001

Each use of the let command will wipe any data previously stored in the dataset, the above commands would
produce a dataset that was defined to be -1 from 3{[pi |} to 4{[pi |} and undefined, that is zero, elsewhere.
We could, of course, have defined four datasets each with part of the function and then added them together
with the let command; though, in this case, we took a short cut and used the sgn() function.

5.4 Bar charts

The bar graph command is often complex, representing the number of possible options that we may choose
to plot. It exists as a subset of the graph module so that we can plot both bar and line data on the same
graph.

5.4.1 Combining lines and bars

5. The graph module

50

18
—— Gaussian approximation with N=100

16

14+

o
Ny

Frequency

Pz

O 1 1 1 1 1 1 1 1 1 1 1 1 1

41 4 47 50 53 56 50 62 65 68 71 74 77
Number of detected eventsin 5 second interval

!decay.gle - Demonstration of the bar command with data from radioactive decay

size 18 18
pi = 3.1415
mu = 59.51 !These are the parameters of the gaussian approximation

sigma = mu~0.5
N = 100 !The number of timed intervals

amove 0 O
begin graph
nobox
!Sets our Gaussian into both "continuous" and

!discrete forms

let d1 = ((N/3)/(((2%pi)~(0.5))))*exp(-((x-mu)~2)/(2*(sigma~2))) from 40 to 80 step 0.1

5. The graph module 51

let d2 = ((N/3)/(((2*pi)~(0.5))))*exp (- ((x-mu)~2)/(2*(sigma~2))) from 41 to 90 step 3
data decay.dat d3=cl,c2 !Data taken from the experiment

dl line 'Plots the approxmation and the data
d2 marker circle
bar d3 width 3 fill yellow

key hei 0.3 pos tr nobox 'Adds a key

dl key "Gaussian approximation with N=100"

'Formats the axis
xplaces 41 44 47 50 53 56 59 62 65 68 71 74 77
xaxis min 39 max 80 hei 0.3 dsubticks 1
yaxis min O max 18 hei 0.3
x2axis off

y2axis off

'Adds the title
xtitle "Number of detected events in 5 second interval"
ytitle "Frequency"
end graph

We have met much of the above before, the important command to notice is the bar command. The command
instructs GLE to draw a set of bars of width 3 units, with the position and height determined by the values
in dataset d3. The position is taken to be the midpoint of the graph so our data set must refer to the
midpoint values. Unfortunately it is not possible to use a second data set for individual widths, so we must
either settle for fixed widths or draw the chart as a combination of individual datasets, one for each different
width.

The format commands that apply to the bar charts are fairly straightforward,
bar di1 width 2 fill blue color green

This will draw bars of width 2 with a green outline and filled with blue. In the following sections we shall
see that there are other formatting commands that can produce more interesting effects.

5.4.2 Comparing data - grouped and 3D bar charts

We often need to present grouped data on a chart, to do this we can either display the bars side by side or
stacked on top of each other. We look at an example which shows the various option available, including the
ability to display a 3 dimensional representation of the data.

!bean.gle - Demonstrates the various formatting options for a bar chart
size 20 20

amove 0 10

5. The graph module

52

30 30
—— Natural Growth —— Natural Growth
— Grow-fast Fertilizer — Grow-fast Fertilizer
Super-grow Fertiliser Super-grow Fertiliser
2 25
20 20
T €
g AcA
E15 215
=2 (=
o] D
T T
10 10
5 5
0 0
0 4 6 10 4 6
No. weeks growth No. weeks growth
30 30

8

Height (cm)

10

—— Naturd Growth
—— Grow-fast Fertilizer
Super-grow Fertiliser

4 6
No. weeks growth

Height (cm)
&

—— Natural Growth
—— Grow-fast Fertilizer
Super-grow Fertiliser

4 6
No. weeks growth

begin graph

size 10

10

data bean.dat

d4 line
d5 line
d6é line

xaxis hei 0.2

yaxis hei 0.2 min 0 max 30

'by side
bar d1,d2,d3 fill green,red,yellow

!The first graph draws a set of bars side

!These help with the generation of the key

5. The graph module 53

xtitle "No. weeks growth"
ytitle "Height (cm)"

key pos tl hei 0.2 !The key uses the blank data sets - we can
!create more advanced keys using the key module

d4 key "Natural Growth" color green

d5 key "Grow-fast Fertilizer" color red

d6 key "Super-grow Fertiliser" color yellow

end graph

!The three following graphs have the same format and
!data as the previous - the only difference is the
!way the bars are plotted

amove 10 10

begin graph

size 10 10

data bean.dat
!This stacks one of the data sets ontop of the
'other two

bar d1,d2 fill green,red width 0.4,0.4 dist 0.4

bar d3 from d1 fill yellow width 0.8

bar d1,d2 fill green,red width 0.4,0.4 dist 0.4

d4 line
d5 line
d6 line

xaxis hei 0.2

yaxis hei 0.2 min 0 max 30

xtitle "No. weeks growth"
ytitle "Height (cm)"

key pos tl hei 0.2

d4 key "Natural Growth" color green

d5 key "Grow-fast Fertilizer" color red

d6 key "Super-grow Fertiliser" color yellow

end graph
amove 0 O
begin graph

size 10 10
data bean.dat

5. The graph module

54

!This changes the bars into 3D blocks
bar d1,d2,d3 fill green,red,yellow width 0.2,0.2,0.2 dist 0.3 34 0.5 0.3

d4 line
d5 line
d6é line

xaxis hei 0.2

yaxis hei 0.2 min 0 max 30

xtitle "No. weeks growth"
ytitle "Height (cm)"

key pos tl hei 0.2

d4 key "Natural Growth" color green

d5 key "Grow-fast Fertilizer" color red

d6 key "Super-grow Fertiliser" color yellow

end graph

amove 10 0O
begin graph
size 10 10
data bean.dat

!We can also stack a 3D bar graph
bar d1,d2 fill green,red width 0.4,0.4 dist 0.4 3d 0.5 0.3 side green,red
bar d3 from d1 fill yellow width 0.8 3d 0.5 0.3 side yellow top yellow
bar d1,d2 fill green,red width 0.4,0.4 dist 0.4 3d 0.5 0.3 side green,red top green,red

d4 line
d5 line
d6 line

xaxis hei 0.2

yaxis hei 0.2 min 0 max 30

xtitle "No. weeks growth"
ytitle "Height (cm)"

key pos tl hei 0.2

d4 key "Natural Growth" color green

d5 key "Grow-fast Fertilizer" color red

d6 key "Super-grow Fertiliser" color yellow

end graph

To group bars together on the same line we list the appropriate datasets under the same bar command.

5. The graph module 55

bar d1,d2 fill green,red width 1,2 color black,red

The datasets are separated by a single comma (without space). Each option that may be specified for a
single bar may be specified for grouped bars, but we separate the options with a comma and in the same
order as the datasets are listed. The example above fills the first dataset, d1, in green with a black outline
and a width of 1 unit on the x-axis.

We can also stack single bars on top of each other, and if we wish, stack grouped bars on top of each other
too.

bar di,d2
bar d3,d4 from d1,d2
bar d5,d6 from d3,d4

This will draw the datasets d1 and d2 next to each other, then d3 and d4 on top of these two, and finally, d5
and d6 at the very top. The bars are plotted sequentially so GLE will overwrite anything that has already
been plotted. In the program bean.gle we wrote,

bar d1,d2 fill green,red width 0.4,0.4 dist 0.4
bar d3 from di1 fill yellow width 0.8
bar d1,d2 fill green,red width 0.4,0.4 dist 0.4

This will plot the datasets d1 and d2, then partially obscure d2 as d3 is drawn (if you have a slow enough
postscript viewer then you can watch this happening). We need to redraw the first two data sets if we keep
the commands in this order. It is not however necessary to draw the two data sets first; we can remove the
first bar command to leave,

bar d3 from di1 fill yellow width 0.8
bar d1,d2 fill green,red width 0.4,0.4 dist 0.4

This will accomplish the same thing, although in a slightly less intuitive order.

3D bar charts are subsection of the bar command; to use these we tell GLE that we require a 3D plot by
adding the 3D command on the same line as the bar command.

bar d1 3d 0.5 0.3

The two numbers following the 3D command define the x and y vectors used to draw the receding lines, given
in terms of a fraction of the width of one bar. The pair of vectors control how ‘3D’ the graph appears: small
fractions give a very subtle effect, larger ones can cause the bars to overlap.

Charts with 3 dimensional bars can be stacked, grouped, and formatted in exactly the same way as the
ordinary 2 dimensional variety. Some of these effects are best used with caution since sometimes the results
can be confusing, both for the programmer and for the final audience. In addition to these, there are several
formatting options that apply specifically to the 3 dimensional case. A typical command may have the form,

bar d2,d3 3d 0.2 0.2 side green,blue top green,blue fill green,blue

The side command gives the colour to be used for the sides of the bars, if there are more than one then we
list the various colours separated by a comma as in the 2 dimensional case. Similarly the top command gives
the colours to be used for the tops of the bars. We can replace the top command with the notop command
which leaves the top of the bar open for use with stacked bar 3D bar charts.

5. The graph module 56

5.5 Scientific graphs

GLE is ideal for producing technical graphs for inclusion in reports and papers, with this in mind we look
more closely at some of the graph commands that are useful to scientists.

5.5.1 Treatment of errors

GLE allows for the errors in a set of data-points to be displayed with error bars that are taken from a second
dataset, or from a certain fractional or absolute error in each data point.

20

18

16

14t

[y
N

Resistance (2)
o 5

O 1 1 1 1 1 1 1 1
00 05 10 15 20 25 30 35 40 45 50
Voltage (V)

!error.gle - Example of the use of error bars
size 10 10

begin graph
data error.dat

let d2 = x~2 from 0 to 50 !Two different possible models
let d3 = 2*x+1 from O to 5
d3 lstyle 4

d2 line smooth

d3 line smooth

xaxis min O max 5
yaxis min O max 20
xtitle "Voltage (V)"

ytitle "Resistance (\Omega)" !Notice the difference between Omega and omega

5. The graph module 57

!Adds the markers and error bars
dl marker circle err 10% errwidth 0.2 herrleft 0.4 herrright 10%

end graph

There are two separate error bars, horizontal and vertical, which can can be formatted individually and
independently. We shall look mainly at the command options for the vertical bars, but the horizontal bars
can be formatted by very similar commands.

The simplest possible case would be if we had an absolute error in the y coordinate for each data point. We
assume, to start with, that the error is symmetrical such that the mean value is at the centre of the two
error bars.

dl err 10%

This will produce an error bar that extends above the data point for 10% of the absolute y value, and a
similar distance below. The command herr 10% will do the same for the horizontal bar, except the error
will be 10% of the absolute x value.

If we do not have a symmetric distribution of errors then we may specify individual errors for the up and
down error bars.

dl errup 10% errdown 5%

This will take 10% of the y value up, but only 5% down. For the horizontal bar we use the commands
herrleft 5% and herrright 10%.

We can also specify absolute errors using the same set of commands,

dl err 0.2
dl errup 0.2 errdown 0.2

These are commands that accomplish the same thing, the error bars extend for 0.2 y units above and below
the actual data point.

If we wish to we can control the size of the lines that terminate the error bars. The commands errwidth
0.5 and herrwidth 0.5 will set both the horizontal and vertical lines to 0.5 in their respective units.

Errors are an integal part of many technical graphs, and there are occasions when we need more control
over the displayed errors. We may, for example, wish to use a separate program to calculate the error on
each individual data point. If this is the case then we can use a second dataset to store the error values and
produce error bars that are unique to each point.

!Planck.gle - Demonstration of errors defined by separate dataset
size 12 12

amove 0 O
begin graph

yaxis min 6.623 max 6.6265 hei 0.2

5. The graph module

58

6.6265
6.626 |
@
w
3
S|
3 6.6255
8
B
-
Q
O 66251
1)
<
Q
&
o
B
O 66245
=]
3
>
8
15}
£ ooup
]
o
a
6.6235 1951 - Bearden and Watts
1955 - Cohen et al.
1963 - Condon
1973 - Cohen and Taylor
1988 - Cohen and Taylor
6.623 L L L L L
1951 1955 1963 1973 1988
Fig 4: How constant is constant?
xaxis hei 0.2
data planck.dat dl=cl,c2 d2=c1l,c3 'Reads the data and errors into
ltwo different data sets
dl line smooth err d2 !Uses the second data set to

IDefine the error on the first

ytitle "Experimental value of Plancks constant (\times 10~{-34} J\cdot s)"
xplaces 1951 1955 1963 1973 1988

xsubticks off

x2axis off

y2axis off

key pos br nobox hei 0.2 !We use undefined datasets to add
d3 key "1951 - Bearden and Watts" '!a key - Notice that the order is
d4 key "1955 - Cohen et al." !the same as the number of the

d5 key "1963 - Condon" !dataset, not the order on the page

d6 key "1973 - Cohen and Taylor"
d7 key "1988 - Cohen and Taylor"

5. The graph module 59

end graph

amove 3 0.75 'Adds a title
set hei 0.3 font rmb

text Fig 4:

amove xend() yend()

set font rm

text \glass How constant is constant?

This is the separate data file, the figure given in the third column is the absoulte error in each measurement.
For example, 6.2363 + 0.00016 Js.

19561 6.62363 0.00016
19656 6.62517 0.00023
1962 6.62560 0.00017
1973 6.626176 0.000036
1988 6.6260755 0.0000040

All the error commands can be used with a separate data set, except instead of specifying an absolute or
fractional error in every point we can now specify the individual errors.

dl errup d2 errdown d3 herr 10%

This will give a 10% error in the x coordinate and an error in the y coordinate dictated by the datasets d2
and d3.

5.5.2 Curve fitting

GLE contains two separate routines that allow for a discrete set of data to be connected by a smooth curve.
In the simplest possible case GLE will fit a third degree polynominal piecewise to a set of data points. To
do this we add the smooth command.

d3 line smooth

The command is useful if we either do not know the simple form of the equations that produced the data
points, or we know that a simple form does not exist. By using a high sampling rate and the smooth
command we can approximate most functions to an arbitarily high degree. GLE also provides a number
of fitting routines for commonly used functions. To use the routines we must define another dataset which
contains the approximation data; we can then plot the fitted dataset just as we would with any other set of
points.

let d4 = logefit d3 from 0 to 100

This will create data in d4 that best represents a logarithmic (base e) fit of the data in d3. There are three
other fitting routines available, log10fit uses a base 10 logarithm, 1infit a straight line, and powxfit a
power law.

The range of the data can either be defined explicitly as above, or we can choose the same range as the
original dataset with one of the following commands,

5. The graph module 60

let d4 = linfit d3 limit_data
let d4 = linfit d3 limit_data_x
let d4 = linfit d3 limit_data_y

limit_data_x gives the fitted data, d4, the same range as the x values in d3, 1imit_data_y gives the fitted
data the range of the y values in d3. limit_data will give d4 a range that can extend from the minimum x
or y value to the maximum x or y value, whichever option gives the greatest range.

5.5.3 Dealing with very large data sets

Although the steady evolution of computer hardware has rendered it less and less important GLE provides
a number of commands for dealing with very large data sets where the physical memory of the computer
becomes an issue.

N N
SRR
L]
1
.
+
L
H

=
©
1
[
-
-
.
-
-

PR
~N @
]
L]
-
.
[]
-
—t
H
-
.

=
o
-
.
[]
[}
]
[]
[}
[}

Position (x 10°)

[[FEg
ocrNwsmo w0 BERBRER
1

.

T

H

.

:

:

:

:

T

)

Position (x10%)
Distribution of palendromic sequencesin viral DNA

!dna.gle - Demonstrates the use of the bigfile command for use with large datasets
size 10 10

begin graph !dna.dat is a list of the positions of palendromic
!'sequences in a viruses DNA
dl bigfile "dna.dat,1,2" marker dot msize 0.2

!The position is represented by two columns, one is
!the position single units, the other in tens of
!thosands

xaxis min 0 max 10000 grid hei 0.2

5. The graph module 61

yaxis min O max 22 grid dticks 1 hei 0.2

yticks color grey20

xticks color grey20

ysubticks off

Xnames "Q'" "1'" "2" n3n wgn wpw ngh wyn ngn o ngw nign
xtitle "Position (\times 10~{3})"

ytitle "Position (\times 10~{5})"

end graph

amove 5 0.5
set just cc hei 0.3

text Distribution of palendromic sequences in viral DNA

The data file has the form,

...

5151 19
5221 19
5262 19
5835 19
6992 19
7022 19
7191 19
8195 19
8709 19
1023 20
1056 20
2198 20
4548 20
...

The first column represents the position in single units the second in tens of thousands so that the first
sequence is 195151.

The dataset in the example is only a few thousand lines long, this may have caused trouble a few years
ago but modern PCs are perfectly capable of dealing with datasets far in excess of this. Nevertheless it is
occasionally necessary to deal with extremely large data sets. If the DNA above was taken from a human
and not a virus we would have wanted to reduce the pressure on computing power as much as possible. The
bigfile command used above saves on memory by plotting the data point by point straight from the file
instead of being reading the data into memory and then plotting.

dl bigfile "data.dat,2,3" autoscale marker circle line

This will plot columns 2 and 3 from the file data.dat with circular markers and joined with straight lines.
The autoscale command pre-reads the data and scales the axes, before re-reading it and plotting. This
can be slow, but is useful if we do not know the exact extent of the data. Without the command we must
specify the minimum and maximum values of the x and y axes.

Virtually all of the graph module commands will work with the bigfile option. It is, however, impossible
to draw bar charts using the command, or to use the let command to create new datasets.

5. The graph module 62

5.6 The key module

Although it is perfectly possible to draw a key from within the graph module, GLE provides a dedicated set
of commands that allow the user to draw up a key of points for a graph.

5.6.1 A basic key

Each key follows the graph module to which it refers; we begin the module with a begin key command, and
end it with an end key command. In between these two lines a special command set applies.

Transmission fraction

- Finesse=2
------ Finesse=5
-——- Finesse =10
—— Finesse=20
— Finesse=50

) , |
¢ =0 ¢ =
Phase shift

Transmission fraction of the Fabry-Perot Etalon

!etalon.gle - Transmission function of the Fabry-Perot Etalon to demonstrate
!the use of the key module

size 18 18

pi = 3.1415

5. The graph module

f1 =2 !These define the finesse of each line
f2 =5
£3 = 10
f4 = 20
£5 = 50

amove 0 1
begin graph
nobox

size 18 18

!This is the transmission function for the etalon
let d1 = 1/(1+(4*(£f1)/pi)*((sin(x))~2)) from -2*pi to 2*pi step 0.001
let d2 = 1/(1+(4*(£2)/pi)*((sin(x))~2)) from -2*pi to 2*pi step 0.001
let d3 = 1/(1+(4*(£3)/pi)*((sin(x))~2)) from -2*pi to 2*pi step 0.001
let d4 = 1/(1+(4*(£f4)/pi)*((sin(x))~2)) from -2*pi to 2*pi step 0.001
let d5 = 1/(1+(4*(£5)/pi)*((sin(x))~2)) from -2*pi to 2*pi step 0.001

!We use a logarithmic scale to increase the contrast between
!the different values of finesse

yaxis min 0.01 max 1.1 log grid

xaxis min -1 max 4

xsubticks off

yticks color greylO

ysubticks color greyl0

xaxis hei 0.5

yaxis hei 0.5

xplaces 0 pi

xnames "\phi \: = 0" "\phi \: = \pi"
xtitle "Phase shift"

ytitle "Transmission fraction"

dl line lstyle !These commands draw the various lines
d2 line lstyle
d3 line lstyle
d4 line lstyle
d5 line lstyle

end graph

=0 W N

set just CC hei 0.5 'Adds a title
amove 9 1

text Transmission fraction of the Fabry-Perot Etalon

amove 11 4 !We move to where we want to draw the key

5. The graph module 64

begin key !'The key module
hei 0.4

offset 0.1 0.1

text "Finesse = 2" 1lstyle 4

text "Finesse = 5" l1lstyle 2

text "Finesse = 10" 1lstyle 3

text "Finesse = 20" lstyle 5

text "Finesse = 50" l1lstyle 1

end key

The key module is an extension of the key command we have used previously. Within the module we may
specify any formatting options that we used with the single line command, plus a few extra ones that we
could not.

begin graph
end graph
begin key
hei 0.5
positon tr

text "This is the first title" marker dot msize 0.2 mscale 0.5 color red fill blue lstyle 2
end key

This will produce a key in the top-right hand corner of the previous graph. The text command uses the
quoted text string as first line of the key, the qualifiers following this title represent the format of the line.
If we add a marker command then it will be displayed next to the title, with a size defined by the msize
command. The mscale command is similar except the size is taken to be a fraction (0.5 in the example
above) of the default size. If we define a line style with the text command then a line in the appropriate
style will also appear next to the title. The £i11 command adds a coloured box next to the title. The colour
of the text, the line, and the marker are all set by the color command.

5.6.2 The key syntax

The syntax of the key module is a little different to the rest of the GLE commands we have dealt with. We
shall classify commands into two types: those which relate to global features of the key module, and those
which relate to a specific dataset. The global commands in the key module are,

offset, nobox, hei, pos
Within the key module these can appear anywhere except on the start of a line that defines a new dataset.
begin key
offset 2 3 hei 2
text "abc" nobox

nobox text "abc'" !This line is not valid

end key

The single dataset commands are,

text, marker, msize, mscale, color, fill, lstyle, line, lwidth

5. The graph module 65

These must appear together on a single line corresponding to a single dataset, within this line the order is
not important.

begin key
marker circle text "abc" lstyle 2
lstyle 2 marker square

end key

The (entirely arbitrary) convention is to put the global commands at the start of the module, and follow
them by a single line for each line in the key.

5.7 Integrating graphs and diagrams

A single graph may form part of a larger diagram, even if that diagram contains only a few additional notes
or titles. To make the transition between lines drawn inside the graph module and those drawn outside as
seamless as possible we may use two commands, xg() and yg(), that refer to a point on a graph while we
are outside the main graph module.

Mean energy, Eq

Full width at half
maximum, AE

80 100 120 140 160 180 200
Energy (eV)

The energy spectrum of an isolated state with finite lifetime

0 20 40 60

!lorentzian.gle - Demonstrates the xg() and yg() commands

size 10 10
E = 100 !'This is the energy, E, and width, W, of the state
W =20

begin graph

5. The graph module 66

!These two datasets produce the Lorentzian profile
let d1 = (x-E)/(W/2) from O to 200 step 2
let d2 = 1/(1+((d1)"2))

!This formats the axis
yaxis min O max 1.2 hei 0.2
yaxis off '!Remove this line to add the y-axis
xaxis min O max 200 hei 0.2
yplaces 0 0.5 1
xtitle "Energy (eV)"
title "The energy spectrum of an isolated state with finite lifetime" hei 0.2 dist -8

d2 line smooth !Draws the profile and fills in the width at half maximum
fill x1,d2 xmin 90 xmax 110

end graph

set hei 0.5 !Labels the FWHM
amove xg(90) yg(0.5)

rline -0.4 0 arrow start

amove xg(110) yg(0.5)

rline 0.4 0 arrow start

set hei 0.2

amove xg(125) yg(0.5)
begin text width xg(190)-xg(130)
Full width at half maximum, \Delta E
end text
!Labels the mean energy of the state
set just center lstyle 2
amove xg(100) yg(0)
aline xg(100) yg(1.05)
text Mean energy, E_{0}

The commands xg(a) and yg(b) return the absolute x and y coordinates of a point (a,b) measured in the
x and y units of the most recently drawn graph. We may use these two functions to label points of interest
on a graph.

begin graph
...
end graph
amove xg(80.6) yg(1.2)
rline 0.5 0.25
text \glass \: Production of W~{+}

This will move to the point (80.2,1.2) on the graph, where the coordinates are in the same units units the x-
and y-axis, and add a label. We may also join two points on a graph using these commands, or use them to

6. More complex examples 67

format text. One of the uses may be to add complex mathematical curves, particularly those in cylindrical
coordinates, to a set of axes.

6 More complex examples

Having covered the majority of the commands needed to use successfully GLE we now turn to some of the
more specialized commands that may be useful in some applications.

6.1 Adding existing graphics to a GLE script

In many cases we may wish to include an existing graphic within a GLE file. It may be a supplied company
logo or advertisement, or it may be a file that has been drawn previously with GLE or another graphics
package. GLE can add graphics at any point on the page, provided the graphic files are in one of two common
formats, Postscript or TIFF.

6.2 Coordinate transforms

Within a GLE program it is often possible to denote a section of code that is referred to a different coordinate
system to take advantage of a symmetry within the diagram. The coordinate transforms all begin with a
begin command and end with an end command, everything in between these two lines is treated within the
separate system. At the end command GLE restores both the reference point and graphic state, including
line styles and font heights, that was present before the begin command.

We have already met the most basic coordinate transform, that of a translation. We used the begin origin
transform in the super-ellipse, it allows us to refer to an origin that differs from the origin of the page.
A useful command when we have a subroutine or need to draw something with amove and aline, we can
reposition the object just by moving to a different point before the begin origin command.

6.2.1 Rotations

The begin rotate command allows us to draw an object then rotate it by an angle.

&
& <
&
QZ"‘\\(\
A

L

6. More complex examples 68

!rotate.gle - Rotates some text
size 5 5
set hei 0.3
amove 1 2
begin rotate 40
text This text has been rotated

end rotate

This will rotate the given text by an angle of 40° anti-clockwise.

We look at a more concrete example that incorporates both of the above techniques and also produces a
useful image.

W \\\\\\\\\\\\llll‘iiii]ll///////// "
ant \ / "y,
\ 7
N 7,
\\\\\\ fb(} JJO /%
\\\\ O %, ////
S Z
S Q o =
S < . 7
\\\ © ////
e e Z
S (] B
= —=
SN B 2
s 52
s 5 o =
= @ ~ =
= © =
= 2 N =
= - g =
El NS
s &~
2 o N
= a A, N
= > A N
% o OO
% < NS
//{ OA/ Q/b’b k\\
Yy o \\\\\\
7, 09 4 N
“%¢/ £ o1 ogr et @ \NS®
<m " / \ o s
ST TN

!protrac.gle - Demonstrates the begin rotate and origin commands
size 18 18

set font plsr !Defines the variables for easy alterations
set hei 0.4

d=0.65

6. More complex examples

amove 9 9
begin origin !Sets the origin to 9 9

for i=0 to 359 !Draws the small unit angle ticks
begin rotate i

amove 0 a

rline 0 -b
end rotate

next i

!Draws the longer marks and labels every 10{deg} set color blue
for i=0 to 350 step 10
begin rotate i
amove 0 a
rline 0 -c
if i>0 then
rmove -0.2 -0.5
else
rmove -0.1 -0.5
end if
write i
end rotate

next i

!Draws the small 5{degl} marks

set color green
for i=5 to 355 step 10
begin rotate i

amove 0 a

rline 0 -d

end rotate
next i

!Draws the long central lines every 10{deg} set color red
for i=0 to 350 step 10
begin rotate i
amove 0 O
aline 0 g
end rotate
next i

!Draws a black circle in the middle
set color black
amove 0 O
circle 0.3
amove -f 0O

6. More complex examples 70

aline f O
amove 0 -f
aline O f

amove 0 O

end origin

We can see that the use of the rotate command greatly simplifies the drawing of the protractor - it is only
neccessary to draw the lines and labels on a single straight line, the rotate command takes care of the rest
of the shape.

6.2.2 Scaling

In the same way as we rotated objects we may also scale them in the x and y directions,

\ e

e

!scale.gle - demonstrates the scale command
size 10 10
amove 1 1
begin scale 3 1
begin rotate 30
text hello
end rotate

end scale

The numbers following the scale command represent the scaling factors in the x and y directions. A value
of 1 will leave the object unchanged, greater than 1 will increase the size, less than 1 will decrease it. The
example above rotates the text by 30°and then stretches it by a factor of 3 in the x direction. Notice that
the scale and rotate operations are entirely independent of each other, so we can only scale a rotated object
along its original axes. In the example above we talk of stretching along the ‘x direction’, but this direction
is actually orietated at 30° to the x axis.

We can use the scale command to create the impression of a three dimensional object. The geometry behind
these images, particularly if we wish to view an object from an arbritrary choice of angles, can get quite
complex, and the independence of the scale and rotate commands can make seemingly simple shapes quite
difficult to draw. The example below demonstrates a simple use of the scale command applied to a simple
cuboid. Notice that to simplify the mathematics we restrict the viewing to a single plane along the diagonal
of the object. More complex examples can be achieved but it must be said a dedicated 3-dimensional CAD
package may, in this case, prove more fruitful.

6. More complex examples

!cube.gle - Demonstrates the use of the scale command to generate 3D objects
size 10 10

pi=3.1415
sub top a b !This draws the top of each cuboid
gsave

x1=ax*cos(pi/4)
yl=a*sin(pi/4)
x2=bxcos(pi/4)
y2=bx*sin(pi/4)
save topl
rline x1 y1
save top2
rline -x2 y2
rline -x1 -y1
save top3
rline x2 -y2
grestore

end sub

sub bottom a b 'This draws the bottom of each cuboid
gsave
x1=axcos(pi/4)
yl=axsin(pi/4)
x2=bx*cos(pi/4)
y2=b*sin(pi/4)

gsave
save bottoml

6. More complex examples 72

rline x1 yi
save bottom2
grestore
rline -x2 y2
save bottom3
grestore

end sub

sub side !This joins the top and bottom of a cuboid
join topl - bottoml
join top2 - bottom2
join top3 - bottom3

end sub

sub drawcube ang !This combines the cuboid drawing into a single routine
!viewed from an angle theta above the bottom plane

begin scale 1 cos(ang)

Qtop 1 2

rmove 0 -1.5*tan(ang)
@bottom 1 2

end scale

@side

end sub

amove 0 O !Draws the cuboid from various angles
box 5 5

rmove 2.5 0.5+2*sin(1)
@drawcube 1

amove 0 5

box 5 5

rmove 2.5 0.5+2%sin(0.25)
@drawcube 0.25

amove 5 0

box 5 5

rmove 2.5 0.5+2*sin(1.4)
@drawcube 1.4

amove 5 5

box 5 5

rmove 2.5 0.5+2%sin(0.70)
@drawcube 0.70

Generally, the apperance of 3D images such as this can be improved by judicious use of colours and shading.
To add shading to anything other than a rectangle we need to know how to define an object, this is covered
in the section on path drawing.

6. More complex examples 73

6.3 Mathematical curves

Technical drawings may require curves that have a well defined mathematical shape. GLE has a set of
commonly used curves for this purpose, although it may sometimes be neccessary to add a particularly
unusual curve using the graph module.

6.3.1 A simple curve

The curve command will draw a smooth line through any number of points, with an initial and final gradient
that must also be supplied by the programmer.

Simple curves

!curve.gle - demonstrates the use of the curve function
size 12 8

set lstyle 2

aline 1 1 !Draws the points the curve follows
rline 0 4

rline 4 0

rline 0 -4

set lstyle O

amove 1 1 !The first and last two numbers represent the gradient,
!the others are the relative position of the guide points

curve 1104400 -411

amove 7 0
set lstyle 2

6. More complex examples 74

rline 0 5
rline 4 0
rline 0 -4

set lstyle O
amove 7 1 !Another curve with different initial and final gradients
curve 0104400 -40 -1

amove 6 7
set just cc
text Simple curves

The curve command has the following syntax,

curve 2 11112 -1 -1

The curve is drawn starting from the initial coordinates with a gradient defined by the first two values
following the curve command. In this case (2,1) represents an initial gradient of two units along the x axis
and 1 unit up the y axis or an elevation of arctan(1/2) above the x axis. With the exception of the final
pair, the numbers following the initial gradient represent the points the curve must pass through. They are
given in terms of relative position vectors from the last point so (1,0), (0,1), (-1,0), and (0,-1) would trace
out a square. The final pair of numbers gives the gradient the curve is to have as it passes through the final
point.

6.3.2 Bezier cubic sections

Bezier sections are mathematical curves that were first used for car bodywork design in the 70s. They have
a number of neat mathematical properties that make them particularly appropriate for computer graphics.
Most of the curve drawing commands in graphics packages are based around some sort of Bezier section,
and the design of computer fonts also relies heavily on them. GLE has a command that will draw a cubic
(3rd degree) Bezier curve to a set of four control points.

'bezier.gle - Demonstrates Bezier cubic sections
size 18 12

amove 1 6
set lstyle 2
aline 1 10
aline 5 10
aline 5 6

amove 1 6
set lstyle O
bezier 1 10 56 10 5 6

6. More complex examples

75

Bezier cubic sections

amove 11 11
set lstyle 2
aline 14 6
aline 15 11
aline 17 8

amove 11 11
set lstyle O
bezier 14 6 15 11 17 8

amove 1 1
set lstyle 2

rline 4 4
rline 3 -4
rline 4
rline 2 1
rline 1 -1
rline 1 1

amove 1 1

6. More complex examples 76

set lstyle O
rbezier 4 4 7 0 11 2
rbezier 2 1 304 1

amove 6 6
set hei 0.6
text Bezier cubic sections

There are two commands that can be used to draw bezier sections, the first, bezier, is followed by three
sets of absolute coordinates,

bezier 1 2 24 3 6

This will draw a third degree polynomial through the starting point and the final coordinate, the other two
control points define the form of the rest of the curve. The second command we can use is rbezier, this
performs the same operation except the points are now defined in terms of relative coordinates from the
start point.

rbezier 1 2 3 6 6 12

This will draw the same curve as the example above, but with relative coordinates. Notice that this is
different from the curve command, where the relative points were taken from the last point instead of the
overall start position.

A discussion of the mathematics behind Bezier sections is beyond our present purposes, an explanation can
be found in the Postscript Language Reference Manuel or in texts on computer graphics. With experience it
is fairly easy to see roughly where the final curve will lie. Because of the applications to computer graphics
there are several sites on the internet that offer interactive drawing routines to play with, for example try
http://www.cstc.org/data/resources/47/bezier.html .

Mathematically we can define a Bezier section with any number of control points, for each control point
the fitted polynomial gains an extra degree - 6 control points will give a 5th degree polynomial. In practice
we normally only use cubic sections (or parabolic sections) for most applications. More complex curves are
built up from a series of cubic sections joined together. This saves on processing power and also allows small
corrections to be made to a single point without affecting the entire curve.

We demonstrate the joining of two bezier sections in the last curve of the bezier.gle example. A continuous
curve is trivially made by starting a new bezier from the end point of the last one. To match the first
derivatives as well we note that the gradient at the beginning of the curve is given by the line joining the
first two control points, and that the gradient at the end is given by the line joining the last two control
points. The first derivative will then be continuous across the two Bezier sections if all three control points are
collinear. It is not generally possible to ensure continuity of the second derivative across a curve boundary.

6.3.3 Circular arcs
We have already looked at the simple example of the circle, we may extend this to draw a small arc of a
circle. GLE 3.5 (not 3.3) also supports a similar set of commands for drawing all, or portions, of an ellipse.

To draw a portion of a circle we use the arc command, where we must now specify the radius of the arc and
the angles that we wish to draw it between. For example,

6. More complex examples 77

arc 2 10 20

which will draw an arc of radius 2cm in an anti-clockwise direction between 10° and 20°. The angular
convention is as polar coordinates, with 0° at 3 o’clock and 90° at 12 o’clock. Angles can be given that are
greater than 360°, and can be either positive or negative.

To draw an arc in the opposite direction, which can simplify some diagrams and is important when con-

structing paths, we use the narc command.

narc 1 10 20

amove xend() yend()
This will draw a 1cm arc from 20° to 10°, then move to the end of the arc at 10°. Notice that the command,

arc 1 20 10
amove xend() yend()
would have draw the arc in the anti-clockwise direction all the way around the origin.

We demonstrate the use of the arc command with an example showing the conditions for Frauenhofer
diffraction.

For Fraunhofer diffraction we
required < \/10

'Frauenhofer.gle - The condition for frauenhofer diffraction
size 16 10

ang=17
radius=14

6. More complex examples 78

amove 15 5

arc 4 180-ang 180
narc radius 180+ang 180-ang
rline -radiusxcos(torad(ang)) radius*sin(torad(ang))

set lstyle 2

rline 0 -radius*sin(torad(ang))
save pointl

rline 0 -radius*sin(torad(ang))
set lstyle O

aline 15 5

set lstyle 3

rline -radius 0

save point2

set hei 0.5

join pointl <-> point2
rmove 0.2 0.1

text d

rmove radius/2 2.1
text R

amove 12 5.2
text \theta

amove 9 2

set hei 0.3

begin text width 4

For Fraunhofer diffraction we require d < \lambda/10

end text

Unfortunately GLE is not consistent in its use of radians or degrees. Generally, mathematical expressions
such as sin or tan require the input angle to be in radians, and the corresponding inverse hyperbolic functions
output angles in radians. Fractions of circular and elliptical arcs are, however, specified in degrees. There
are two useful functions that will convert between the two units, todeg and torad. Thus to find the sine of
a 10° angle we write,

sin(torad(10))
And to find an angle in degrees,
angle = todeg(acot(3/4)

will give the variable angle the value in degrees of arccotan(34)/;.

6. More complex examples 79

In the example above we choose to work mainly in degrees, the conversion ratios being forced upon us when
we use a combination of trigonometric ratios and amove commands. Such a combination may seem slightly
clumsy. Why, for example could we not have written,

narc radius 180+ang 180-ang
rline xend() yend()

The answer is, of course, is that it will not work. GLE does not, unfortunately, support the use of the
xend () and yend () command with either circular or elliptical arcs. On this occasion we are forced to resort
to trigonometry to produce the effect we require. It is important to be aware of the limitations of some of
the commands in GLE, as identifying unexpected errors caused by the failure of a command can be time
consuming.

6.3.4 The arcto command

An adaptation of the arc command performs a commonly used routine: the connecting of two points by an
arc of a given radius. We look at a simple example,

'arcto.gle - Demonstrates the arcto command

size 5 5

amove 1 1
set lstyle 2
aline 4 2
aline 1 4

amove 1 1
set lstyle O
arcto 31 -3 2 0.5

This compares the straight (dotted) lines drawn with the curved arc. The command uses relative movement,
with the qualifiers taking the form,

arcto x1 y1 x2 y2 rad

This draws a line from the current point to a point a vector (x1,y1) away, then another line a further vector
(x2,y2) away. The lines are then replaced with a partial arc of radius rad instead of the vertex at (x1,y1).

6. More complex examples 80

6.3.5 Ellipses

The ellipse command is very similar to the circle command, except we must now specify the eccentricity
of the ellipse. The syntax is,

ellipse 2 1 fill red

which will draw a red ellipse with major axis 2 and minor axis 1.

We look at a simple example of the use of ellipses that leads on to a more complex program in the following
section.

......
.....
. .

. ‘e
. .

Optical axis

.
. .
""""""

. .
...........

!light.gle - demonstrates the use of ellipses and circles in the propagation of light
size 10 10

set just br lwidth 0.01 hei 0.3

amove 5 0.5 'Draws a set of axis
aline 5 9.5 arrow end

text z

rmove 0.1 0.1

amove 0.5 5

aline 9.5 5 arrow end

rmove 0.1 0.1

text x

amove 5 5

6. More complex examples 81

set lwidth 0.05 !Draws the ellipse and circle that represent the
ellipse 4 3 !propagation of the o-ray and e-ray.

set lstyle 2

circle 3

set just cl !Adds the direction of the optical axis

amove 5 5
set lstyle O
rline 0 1 arrow end

text \glass \: Optical axis

amove 6 1.5 'Adds a key
rline 1 0

text \glass \: e-ray

amove 6 1

set lstyle 2

rline 1 0

text \glass \: o-ray

The diagram shows the propagation of wavefronts in a birefringent material, the o-ray represents the compo-
nent of the polarisation vector parallel to the y-axis (out of the page), and the e-ray represents the remaining
component perpendicular to both the direction of propagation and the y axis. Notice that for light propa-
gating along the optical axis the two polarisations are identical, but if there is a component of the electric
field along the optical axis then the propagation speed is (in our example) greater.

6.3.6 Elliptical arcs

To illustrate the commands we look at a diagram to illustrate the different directions of propagation of light
within a birefringent crystal. Such crystals have a directional anisotropy in the crystal binding forces, which
produces a similar anisotropic effect in the rate of propagation of light through the crystal - light that has
its polarisation vector in the direction of the anisotropy (the optical axis) will travel at a different speed
(faster in our example) than light polarised orthogonal to the optical axis. Using Huygens construction we
can represent the propagation of light through the crystal as a series of ellipses or circles. In practice, we
illuminate the crystal with natural light containing both polarisations, the birefringent material will split the
incoming light into two independent beams, one polarised along the optical axis and the other against it.

'oray.gle - Example of the use of ellipses and arcs

size 22 9.5

inclination=>b5 !Sets the inclination of the optical axis to the

!crystal clevage plane

sub arcdraw n space ang
gsave !Subroutine to draw an arc of a circle
set lwidth 0.001

6. More complex examples

82

rmove O (n-1)*space/2
for i =1 ton step 1
marker dot 0.2

arc 1 -ang ang

rmove 0 -space

next i

grestore

end sub

sub ellipsedraw n space ang inc
gsave

rmove O (n-1)*space/2 !Subroutine to draw an arc of an ellipse
set lwidth 0.001

begin rotate inc

for j =1 ton step 1

marker dot 0.2

elliptical_arc 1 0.6 -ang-10 ang+10
rmove 0 -space

next j

end rotate

grestore

end sub

sub drawcrystal !Subroutine to draw the crystal rhombus
set lwidth 0.05

rline 0 7

rline 5 2

rline 0 -7

rline -5 -2

rline 0 7

end sub

6. More complex examples 83

sub move inc
a=cos (torad(inc))
b=sin(torad(inc))
set lwidth 0.01
rline a b

set lwidth O

end sub

sub drawaxis size

gsave

!Subroutine to move along the crystal in a direction

!perpendicular to the optical axis

!Subroutine to draw a set of

'xyz axis, this is a commonly

set lstyle 1 lwidth 0.01 hei 0.3 just bl 'used routine and could

rline size 0 arrow end

text x
rmove -size size

text z

!probably be put in file

'on its own

rline 0 -size arrow start

rline size*((sqrt(3))/2) size/2 arrow end

text y
grestore

end sub

amove 3 0.25
Q@drawcrystal

amove 0 4.5

set lwidth 0.05
rline 2 0 arrow end
rline 1 0

set lwidth 0.01

Q@arcdraw 3 1 90
rline 1 0

@arcdraw 6 0.5 45
rline 1 0

Q@arcdraw 12 0.25 30
rline 1 0

Q@arcdraw 24 0.125 15
rline 2 0

set lwidth 0.05
rline 2 0 arrow end

amove 15 0.25

@drawcrystal

amove 12 4.5

!Draws the first o-ray crystal

!Draws the incoming light for the first crystal

!Draws the spherical wavelets for the o-ray

!Draws the outgoing wave for the o-ray crystal

!Draws the second (e-ray) crystal

!Draws the second incoming ray

6. More complex examples

84

set lwidth 0.05

rline 2 0 arrow end

rline 1 0
set lstyle 2 !Draws the expected direction of propagation for an
rline 5 0 !isotropic crystal

rmove -5 0
set lstyle 1 lwidth 0.01

Q@ellipsedraw 1 1 70 inclination !Draws the actual propagation
@move inclination 'using elliptical wavelets
Q@ellipsedraw 4 1 45 inclination

@move inclination

Q@ellipsedraw 8 0.5 40 inclination

@move inclination

Q@ellipsedraw 16 0.25 15 inclination

@move inclination

@move inclination

set lwidth 0.05 !Draws the outgoing ray

rline 2 0 arrow end

amove 15.5 1.25 !Adds the direction of optical axis to both crystals
rline -sin(torad(inclination)) cos(torad(inclination)) arrow end

amove 3.5 1.25

rline -sin(torad(inclination)) cos(torad(inclination)) arrow end

amove 15.6 1.25 'Adds the label to the optical axis
set just left hei 0.3

text optical axis

amove 3.6 1.25

text optical axis

set just tr

amove 2.8 4.2 !Adds labeling to the incoming and outgoing rays
begin text width 2.7
Incoming light polarised in the y direction

end text

amove 14.8 4.2
begin text width 2.7
Incoming light polarised in the z direction

end text

amove 9.9 4.2

6. More complex examples 85

begin text width 1.5
o-ray (polarised)

end text

amove 21.9 4.2
begin text width 1.5
e-ray (polarised)

end text

amove 0 4.6 !Draws two axis for both the rays
@drawaxis 1

amove 12 4.6

@drawaxis 1

amove 11 0 !Separates the two crystals with a solid line
set lstyle 1 lwidth 0.1
aline 11 10

6.4 Path drawing

Within GLE we can draw a set of lines that makes up an arbitrary shape, then use the begin path and end
path to define the shape and apply fill shades and line styles. The lines of code within the two commands will
be stored by GLE and used to draw the entire shape at once. Commands that refer to different coordinate
points will be linked by a line, for example if we were to include the code,

rline 1 0
rmove 0 1

rline 1 0

The rmove along the y-axis would be considered part of the boundary of the shape, though whether a line
is actually drawn connecting the two points is left as an option for the user.

Some of the commands used in conjunction with the path drawing routine are device sensitive, they can only
be guaranteed on postscript devices. Any other program may successfully interpret the postscript commands,
but it is usually best to avoid drawing diagrams that are heavily dependent upon these commands.

6.4.1 A simple path

There is no support within GLE for drawing pie-charts; the following subroutine file, and an example of its
use, can draw a pie wedge filled with any given colour.

!piesub.gle - Subroutine to draw a pie wedge between two supplied angles

sub pie angl ang2 radius colour$

begin path fill colour$ stroke

rmove 0 O !The rmove command is neccesary to set the beginning
arc radius angl ang?2 'of the path

closepath

6. More complex examples 86

end path
end sub

!drawpie.gle - Example of the use of the pie wedge routine
size 6 6

include piesub.gle

amove 3 2

@pie 0 10 2 "greyl0"
@pie 10 40 2 "grey20"
@pie 40 120 2 "blue"

A path within GLE must contain the elements begin path and end path. To the begin path command
we can affix qualifiers that determine the qualities of the finished shape. In the example above the stroke
command tells GLE to draw the lines that make up the shape in the currently selected line style and width.
The £i11 command fills the ‘inside’ of the shape with the selected fill pattern, which may take the form of
a text string as in the example above. What we mean by ‘inside’ the shape may seem elementary in the
example above, and indeed it is, but a more formal definition, for use with complex paths, will be given in
the following section. A further option, the clip command, will also be covered in the section on clipping.

The path drawn will be defined from the start of the first object drawn following the begin path command.
This is not, neccessarly, the same as the initial coordinate point. In the example above the rmove 0 0
commands defines the start of the path to be at the current coordinate point, without it the start of the path
would be at the beginning of the arc. The closepath commands returns to the beginnning of the shape;
useful, and often necessary, when drawing complex shapes, though in the example above there is nothing to
stop us completing the path manually using rmove command.

6.4.2 The zero winding rule

When filling complex shapes using the path commands we may often run into problems deciding which part
of the shape is to be filled and which is to be left blank. GLE uses the ‘Zero winding rule’ to decide, and
also provides a command that allows us to define for ourselves which the boundaries of the path.

6. More complex examples

87

!Zero.gle - Program to demonstrate the zero winding rule
size 18 10

sub drawbox a b !These subroutines draw the various boxes to size.
rline 0 b !Because the path command does not recognise the
rline a 0 tarrowed lines we must draw the boxes twice, once
rline 0 -b !for the path and once for the arrows.

rline -a 0
end sub

sub antidrawbox a b

rline a 0O

rline O b
rline -a 0
rline 0 -b
end sub

sub drawarrowbox a b
rline O b arrow end
rline a 0 arrow end
rline 0 -b arrow end
rline -a 0 arrow end
end sub

sub antidrawarrowbox a b
rline a 0 arrow end
rline O b arrow end
rline -a 0 arrow end
rline 0 -b arrow end

end sub

6. More complex examples

88

amove 1 0.5
set lwidth 0.1

begin path fill grey10
@drawbox 4.5 9
rmove 0.5 0.5
@drawbox 3.5 8
end path
@drawarrowbox 4.5 9
rmove 0.5 0.5

@drawarrowbox 3.5 8

amove 6.5 0.5

begin path fill grey10
@drawbox 4.5 9
rmove 0.5 0.5
@antidrawbox 3.5 8
end path

@drawarrowbox 4.5 9

rmove 0.5 0.5

@antidrawarrowbox 3.5 8

amove 12 0.5

begin path fill grey10
@drawbox 4.5 9
rmove 0.5 0.5
reverse
@drawbox 3.5 8
end path
O@drawarrowbox 4.5 9
rmove 0.5 0.5

@antidrawarrowbox 3.5 8

amove 0 5

set just cb hei 1.0 lwidth 0.05
rline 3.25 0 arrow end
rline 5.5 0 arrow end
rline 5.5 0 arrow end
rline 3.25 0 arrow end
set hei 0.5

amove 0.5 5.25

text O

rmove 0.75 0

text 1

rmove 2 0

text 2

!'This draws two boxes in the same direction

!This draws two boxes in opposite directions

!'This draws two boxes in the same direction
'but uses the reverse command to reverse the

!path direction

!The following adds some labels

6. More complex examples 89

rmove 2 0
text 1

rmove 0.75 0
text O

rmove 0.75 0
text 1

rmove 2 0
text 0

rmove 2 0
text 1

rmove 0.75 0
text O

rmove 0.75 0
text 1

rmove 2 0
text O

rmove 2 0
text 1

rmove 0.75 0
text O

The zero winding rule is applied as follows: An imaginary line is drawn across the object. Every time a line
of the path crosses the from left to right, one is added to a counter (initially set to zero); every time a line
of the object crosses from right to left, one is subtracted from the same counter. Everywhere the counter is
non-zero GLE assumes to be inside the object, everywhere else is considered to be outside.

When creating a complex filled shape from a path we must be aware of the direction we are drawing in. To
change direction we can either deliberately draw in the opposite direction to the rest of the shape, or else
use the reverse command which reverses the direction of the path of all the commands following it. The
latter is useful if we wish to reuse a subroutine, as we show above.

GLE treats the commands that constitute a path as an entirely separate entity from the rest of the program.
Notice that if we had not drawn the extra boxes on top of the path then there would have been no outline
to the box. If we do not add a stroke qualifier to the path command then any lines that are drawn in the
path will be ignored.

A problem also occurs in the use of arrow in path commands. If we specify any line or curve to begin or end
with an arrow then the fill style and stroke commands will not apply, that is the path commands will fail.

6.4.3 Clipping

Clipping is a technique that will display only a portion of a diagram. The displayed portion being outlined
using the path commands that we used in the previous section. Clipping is device sensitive and only works
with postscript devices.

!Clip.gle - Demonstrates the useage of the path clip command
size 10 10 !Formats the text
set hei 4

6. More complex examples 90

=

\\\\\\\\\

"
.....n\ I|||||||||||Ill\\ ..\ |

amove 2 2

begin clip
begin path clip
text GLE
amove 2 6
box 5 2
end path

amove 2 2
for x = 0.01 to 100 step 0.005
circle 1/x
next x
end clip
amove 5 5
rline 10 10

We can draw an arbitrary clipping region by defining a closed path within the commands begin path clip
and end path. We can use any arbitrary shape, but only Postscript fonts will currently work for this purpose.

The example defines a box and a line of text as the clipping region. We also draw a series of concentric
circles centered on (2,2), only the areas that are defined as being within the clipped path will show through.
The begin clip and end clip commands signify the end of the clipping region.

It is useful to define a clipping region when we wish to contain a set of commands to a given area. If we look
at the diagram of the propagation of light in the birefringent material then, if we were producing a diagram
for inclusion in a paper or thesis, it would have helped to define the crystal boundaries as a clipping region.
This would have prevented the intrusion of the wavelets into the area beyond the limit of the crystal. Of

7. Appendices 91

course this would of added an extra layer of complexity to the program, one which we did not need at the
time. It is important to balance the neatness of the clipping command with the added time taken and the
lack of compatibility with non-postscript devices.

6.5 File handling

It is possible to read and write to files using GLE using various file handling commands that look rather like
those used in C. fopen is used to open a file, fclose is used to close a file. This is perhaps best illustrated
by an example. Imagine that you have a datafile which contains 5 columns of numbers. You want to make
a new datafile with GLE that contains three columns of data (let’s call them x, y and yerr) according to a
particular algorithm (in this case, we ignore the first column of numbers, set x to be the second column, set
y to be the quotient of the fifth and third column, and work out yerr as the error assuming that column 4 is
the error for column 3, and column 6 is the error for column 5). Both the file to be read and the file to be
written must be assigned a channel. In the example below, we use inchan as the channel for the input file
(called "measured.dat") and outchan as the channel for the output file (called "calculated.dat").

fopen "measured.dat" inchan read

fopen "calculated.dat" outchan write

until feof (inchan)
fread inchan al a2 a3 a4 ab5 a6
x=a2
y=ab/a3
yerr=y*sqrt ((a6/ab) ~2+(a4/a3)~2)
fwriteln outchan x y yerr

next

fclose outchan

fclose inchan

This code has the desired effect and illustrates the use of the command fopen, fclose, fread, furite,
fwriteln, feof, and the until next loop.

7 Appendices

7.1 List of available functions

7.1.1 Text functions

time$ Returns current time.

date$ Returns current date.

left$(string$,4) Returns the first three characters of expression ‘str$’.
right$(str$,4) Returns the characters of ‘str$’ from the fourth letter.
seg$ (string$,2,5) Returns the characters from the second to the fifth.

num$ (4) Text representation of ‘4.

7. Appendices

92

numi$ (4)

val(string$)
pos(stringl$,sting2$,exp)
len(string$)

As above but with no spaces.
Value of string ‘string$’.

Position of ‘string2$’ in ‘stringl$’ from position
Returns the length of ‘string$’.

7.1.2 Mathematical functions

abs (exp)
acosh (exp)
acot (exp)
acoth (exp)
acsc (exp)
acsch(exp)
asec (exp)
asech (exp)
asinh (exp)
atn(exp)
atanh (exp)
cos (exp)
cosh (exp)
cot (exp)
coth(exp)
csc(exp)
csch(exp)
exp (exp)
fix(exp)
int (exp)
log(exp)
log10(exp)
sec(exp)
sech (exp)
sgn(exp)
sin(exp)
sinh (exp)
sqr (exp)
tan(exp)
tanh (exp)
todeg (exp)
torad (exp)
not (exp)
rnd (exp)
sqrt (exp)

7.1.3 Graphic functions

xend ()

Absolute value of ‘exp’.
Inverse hyperbolic cosine of ‘exp’.
¢

Inverse cotangent of ‘exp’.

Inverse hyperbolic cotangent of ‘exp’.

Inverse cosecant of ‘exp’.
Inverse hyperbolic cosecant of ‘exp’.
¢

Inverse secant of ‘exp’.

Inverse hyperbolic secant of ‘exp’.

Inverse hyperbolic sine of ‘exp’.
Arctangent of ‘exp’.

Inverse hyperbolic tangent of ‘exp’.
Cosine of ‘exp’.

¢

Hyperbolic cosine of ‘exp’.

Cotangent of ‘exp’.
3

Hyperbolic cotangent of ‘exp’.
Cosecant of ‘exp’.
Hyperbolic cosecant of ‘exp’.

Exponent of ‘exp’.

‘exp’ rounded towards zero.

Interger part of ‘exp’.
[3

Log to the base e of ‘exp’.

Log to the base 10 of ‘exp’.

4

Secant of ‘exp’.

¢

Hyperbolic secant of ‘exp’.

¢

exp’.

Returns +1 if ‘exp’ is positive and -1 if ‘exp’ is negative.

Sine of ‘exp’.
¢

Hyperbolic sine of ‘exp’.

‘exp’ squared.

Tangent of ‘exp’.
¢

Hyperbolic tangent of ‘exp’.

Converts radians to degrees.

Converts degrees to radians.

Logical not of ‘exp’.
Random number generated from seed ‘exp’.
4

Square root of ‘exp’.

The x coordinate of the end of a drawn text string.

7. Appendices

93

yend ()

xpos ()

ypos ()
twidth(string$)
theight (string$)
tdepth(string$)
xg (xexp)
yg(xexp)

The y coordinate of the end of a drawn text string.

The current x coordinate.
The current y coordinate.
The width of ‘string$’ in the current font.

The height of ‘string$’ in the current font.

The depth of ‘string$’ in the current font.
The x coordinate ‘xexp’ on the last graph.

The y coordinate ‘xexp’ on the last graph.

7.2 Special LaTeX characters

~{

{3

A\

_

\,

\:

\s

\char{22}
\chardef{a}{hello}
\def\v{hello?}
\movexy{2}{3}
\glass
\rule{2}{4}
\setfont{rmb}
\sethei{.3}
\setstretch{2}
\lineskipq{.1}
\linegap{-1}

Superscript

Subscript

Forced Newline

Underscore character

.bem (em = width of the letter ‘m’)
lem space

2em space

Any character in current font
Define a character as a macro
Defines a macro

Moves the current text point

Makes move/space work on beginning of line
Draws a filled in box, 2cm by 4cm
Sets the current text font

Sets the font height (in cm)

Scales the quantity of glue between words

Sets the default distance between lines of text

Sets the minimum required gap between lines

The remaining characters are shown in the diagrams below

7.3 Font list

rm
rmb
rmi
ss

ssb
ssi
tt

ttb
tti

texcmb

Roman

Roman Bold
Roman Italic

San Serif

San Serif Bold
San Serif Italic
Typewriter
Typewriter Bold
Typewrite Italic

Computer Modern Bold

7. Appendices

94

texcmex
texcmitt
texcmmi
texcmr
texcmss
texcmssb
texcmssi
texcmsy
texcmti

texcmtt

plba
plcc
plcg
plci
plcr
plcs
pldr
plge
plegg
plgi
plsa
plsg
plsr
plss
plsymil
plsym2
plti
pltr

psagb
psagbo
psagd
psagdo
psbd
psbdi
psbl
psbli
psc
pscb
pscbo
psco
psh
psgb
pshbo
psho
pshc

Computer Modern Extensible
Computer Modern Italic Typewriter
Computer Modern Maths Italic
Computer Modern Roman

Computer Modern Sans Serif
Computer Modern Sans Serif Bold
Computer Modern Sans Serif Italic
Computer Modern Symbol

Computer Modern Text Italic

Computer Modern Typewriter Text

Block Ascii
Complex Cartographic
Complex Gothic
Complex Italic
Complex Roman
Complex Script
Duplex Roman
Gothic English
Gothic German
Gothic Italian
Simplex Ascii
Simplex German
Simplex Roman
Simplex Script
Symbols one
Symbols two
Triplex Italic

Triplex Roman

AvantGarde-Book
AvantGarde-BookOblique
AvantGarde-Demi
AvantGarde-DemiOblique
Bookman-Demi
Bookman-Demiltalic
Bookman-Light
Bookman-LightItalic
Courier

Courier-Bold
Courer-BoldOblique
Courier-Oblique
Helvetica
Helvetica-Bold
Helvetica-BoldOblique
Helvetica-0Oblique

Helvetica-Condensed

7. Appendices

95

pshcb Helvetica-Condensed-Bold
pshcbo Helvetica-Condensed-BoldOblique
pshn Helvetica-Narrow

pshnb Helvetica-Narrow-Bold
pshnbo Helvetica-Narrow-BoldOblique
pshno Helvetica-NarrowOblique
psncsb NewCenturySchlbk-Bold
psncsbi NewCenturySchlbk-BoldItalic
psncsi NewCenturySchlbk-Italic
psncsr NewCenturySchlbk-Roman
pspb Palatino-Bold

pspbi Palatino-BoldItalic

pspi Palatino-Italic

pPSpr Palatino-Roman

pstr Times-Roman

psti Times-Italic

pstb Times-Bold

pstbi Times-BoldItalic

pszcmi ZapfChancery-MediumItalic
pszd ZapfDingbats

pssym Symbol

7.4 Command index

7.4.1 Basic commands

! comment

Indicates the start of a comment within a program script.

GLE will ignore everything from the

exclamation mark to the end of line. It is best not to place comments on the same line as a text or
similar command, as the exclamation mark is treated as part of the text.
=0 xxX

Executes the subroutine xxx. Subroutines should be defined at the start of a programming script.

aline x y [arrow start] [arrow end] [arrow both]
Draws a line from the current point to the absolute coordinates (x,y). The optional qualifiers will add
an arrow head to the line, the size of this head is defined by the current font size, not by the line-width.
amove X y

Moves to the absolute coordinates (x,y).

arc radius al a2
Draws an arc of a circle of given radius centred on the current coordinate point. The arc is drawn in
an anti-clockwise direction from and angle a1 to and angle a2, with both angles in degrees.

arcto x1 y1 x2 y2 rad

Draws a line from the current point to (x1,y1) then to (x2,y2), but with an arc of radius rad replacing
the vertex at (x1,y1).

7. Appendices 96

begin box [fill pattern] [add gap] [nobox] [name xyz]
Draws a box around everything between the commands begin box and end box. The add option
places an extra margin, of gap cm, around the graphics within the box commands. The nobox option
removes the outline of the box. The name command is used when we wish to refer again to the box in
a subsequent join command.

begin clip
This saves the region between the commands begin clip and end clip for use with the begin path
clip command.

begin origin
Sets the current point to behave like the origin, (0,0), all commands placed between the two commands
begin origin and end origin will be referred to this point. The command is useful when calling
subroutines or when drawing something with aline and amove commands.

begin path [stroke] [fill pattern] [clip]

Initializes the drawing of a filled shape. All the lines and curves generated from begin path to the
next end path command will be stored and then used to draw the shape. Stroke draws the outline
of the shape, £ill paints the inside of the shape in the given colour, and clip defines the region as a
clipping region for use with the begin clip command.

begin rotate angle

The coordinate system is rotated anti-clockwise about the current point an angle given in degrees.

begin scale x y
Scales the commands between begin scale and end scale by fractions x in the x direction and y in
the y direction.

begin table
This module is an alternative to the begin text module. It reads the spaces and tabs in the source
file and aligns the words accordingly.

begin text [width expl]
This module allows multiple lines of text to be displayed. The text within the module will be displayed

with the line breaks and spaces as it appears in the script, if a width option is also present then the
text will wrap around at this width. We can set the justification, font, and size with a previous set
command. Within the block of text we are free to use many of the special characters produced using
LaTeX commands.

begin translate x y

All the graphics within the translate block are moved by x units to the right and y units up.

bezier x1 y1 x2 y2 x3 y3
Draws a cubic Bezier section (3rd degree polynomial) from the current point to the point (x3,y3), with
control points at (x1,y1) and (x2,y2).

bigfile filename.gle

Reads the file ‘filename.gle’ and executes it line by line, this saves on memory and allows a file of any
size to be run, but some complex multi-line commands are not available.

7. Appendices 97

box x y [justify jtypel [fill color] [name xxx] [nobox]
Draws a box of width x and height y. The box is positioned with the justify command according to
the standard GLE handles, TL for top-left, CB for centre-bottom, etc. The name option is for later
use with the join command, and the nobox option removes the outline of the box.

circle radius [fill pattern]

Draws a circle of given radius centred on the current coordinate point.

closepath

Joins the current point to the beginning of the path.

curve ix iy [x1 y1 x2 y2 x3 y3 ... xn ynl] ex ey
Draws a smooth curve through the points [x1 y1 x2 y2 x3 y3 ... xn yn| with intial gradient (ix,iy) and
final gradient (ex,ey).

define marker markername subroutine-name
This defines a new marker called ‘markername’ which will call the subroutine ‘subroutine-name’ when-
ever it is used. It passes two parameters, the first is the size of the marker and the second is a value
from a secondary dataset which can vary the size or rotation of each marker plotted.

for var = expl to exp2 [step exp3] command [...] mnext var
The for. . .next structure repeats the commands contained within the block to be repeated while the
for expression is still valid.

grestore

Restores the most recently saved graphic state. It must be paired with a gsave command.

gsave
Saves the current graphic state including the current graphics transformation matrix, the current point
and the current font and colour settings.

if exp then command [...] else command [...] end if

If exp is evaluated to be true then the commands following then are executed, if it is false then the
commands following else are executed. Either way normal program execution resumes after the end
if command. Note that end if is not spelt endif.

include filename
The commands in the file ‘filename’ are read just as they would if they were written out in the program
script. This can help simplify complex programs and also allow common routines to be easily recycled.
join objectl.just sep object2.just

Joins two objects that have been named with either name commands or the save command. .just is
the justification that controls which point on the object is used. sep can be - for a single line, -> for
a single arrow, or <-> for a double arrow.

marker marker-name [scale-factor]

Draws the marker ‘marker-name’ at the current point. The marker size is proportional to the current
font size but scaled by the factor [scale factor]. There are a number of preset markers in GLE but
additional ones can be defined with the define marker command.

7. Appendices 98

postscript filename.eps width-exp height-exp

Includes an encapsulated postscript file into a GLE graphic. The postscript picture will be scaled
according to the width supplied such that the aspect ratio is maintained, the heigh supplied is used to
draw a rectangle on the screen.

rbezier x1 yl1 x2 y2 x3 y3

Identical to the bezier command except the points given are relative to the current coordinate point.
return exp">

reverse
Reverses the direction of the current path, this is useful when we are drawing complex objects and
need to indicate which part of the object is to be considered the ‘inside’.

rline x y [arrow end] [arrow start] [arrow both]

Draws a line form the current point to the relative coordinate (x,y), which then becomes the current
point. The optional qualifiers at the end will draw arrow heads at one or both of the line ends; the
size of the arrow head is proportional to the current font size.

rmove Xy

Moves to the relative coordinate (x,y).

save objectname

Saves the current point for use with a subsequent join command.

set cap butt | round | square

Determines the appearance of the end of a wide line.

set color col

Sets the colour for use with all future drawing commands.

set dashlen dashlen-exp

Sets the length of the smallest dash length that appears in the various line styles.

set font font-name

Sets the current font, a list of valid font names is given in the appendix.

set fontlwidth line-width

Sets the width of the lines in stroked (Plotter) fonts.

set hei character-size

Sets the height of the text in cm, though the actual size will be only 65% of this value.

set join mitre | round | bevel
Controls what happens at the join between two thick lines. For the command to work the lines must
form part of a continuous path.

set just left | center | right | tl | etc...

Controls the positioning of objects and text in relation to the current coordinate point.

7. Appendices 99

set lstyle line-style

Sets the line style for all subsequent lines.

set lwidth line-width

Sets the line width in c¢cm for all subsequent lines.

sub sub-name paramterl paramter2 etc

Defines a subroutine ‘subname’; all commands between the sub command and the end sub command
will form part of the subroutine and can be executed at any point using the @sub-name command. The
parameters are local variables for use within the subroutine and do not affect the variables defined in
the program body.

text unquoted-text-string

Prints text to the screen.

write string$

Prints the text variable ‘string$’ to the screen.

7.4.2 Functions for use within expresions

xg(948), yg(0.04)
Outputs the x and y coordinates of the point at x=948 and y=0.04 of the last graph drawn.

xend(), yend()
Moves to the end of the last thing drawn.

xpos(), ypos()

The x and y coordinates of the current point.

7.4.3 The graph module

bar d4 dist spacing
Draws a bar chart of the dataset d4, the bars are separated by a distance specified by the dist option.

bar dx,... from dy,...
Creates a stacked bar chart of the datasets dx,... on top of dy,....

bar dn,... width xunits,... fill col,... color col,...

Creates a grouped chart of the datasets dn,.... Each dataset has format options separated by commas
and in the same order as the dataset list.

data filename [dl d2 43 ...] [dl=cl,c3]

Reads the data from the file ‘filename’ into the datasets [d1 d2 d3 ...], by default the datasets will
contain the first and second columns , the first and third, the first and forth, etc. We can specify which
columns are read into which dataset using the d1=c1,c3 option, which will, for example, read the first
and third column into the dataset d1.

Appendices 100

dn

dn

dn

dn

dn

dn

dn

dn

dn

dn

In general we can refer to a dataset either by its number, d2 for example, or we can refer to all datasets
using the label dn. In the commands that follow we shall use dn to control the formatting of all of the
datasets. In each case we can replace dn with a the label for a single dataset.

bigfile "all.dat,xc,yc" [marker mname] [line]
This plots the data from the file ‘all.dat’ point by point. The operation uses less memory than the
data command but some of the more complex commands are unavailable.

err d5 errwidth width-exp errup nnj errdown d4
Adds either absoulte or relative vertical error bars to the dataset dn. errwidth controls the width of
the terminating line.

herr d5 herrwidth width-exp herrleft nnj, errright d4

Similar to the err command but the error bars are horizontal.

key "Dataset title"
Adds a dataset to the key, see the key command for the various format options that control the
appearence of the key.

line

Draws a series of straight lines connecting the data points that comprise the dataset.

1style line-style lwidth line-width color col

Sets the line style for any connecting lines of the dataset.

marker marker-name [msize marker-size] [mdata dn]
Adds markers at each point in the dataset. The mdata command allows us to pass parameters to a
marker defined with a subroutine.

nomiss

Connects all points in the dataset dn, even if there are one or more missing values.

smooth | smoothm
Draws a smooth (3rd degree polynominal) through the points in the dataset, smoothm is used for a
dataset with multiple y values for each x point.

xmin x-low xmax x-high ymin y-low ymax y-high

Controls the maximum and minimum plotted values of the dataset.

£ill [x1,d3 | d4,x2 | d3,d4 | d4] color col [xmin | ymin] val [xmax | ymax] val

Fills with colour col the area between two datasets, or between a dataset and one of the axes.

fullsize

Command shortcut that sets the vertical and horizontal scales to 1 and removes the bounding box.

hscale exp

Scales the horizontal width of the graph compared with the width defined in the size command. The
default is 0.7 (70%).

7. Appendices 101

key pos tl nobox hei exp offset xexp yexp

Controls the various formatting options available for the key.

let ds = exp [from low to high step exp]
Creates a dataset, ds, from an algebraic expression that may, or may not, be a function of other
datasets.

nobox

Removes the box that, by default, surrounds any graph drawn with the graph module.

size x y

Sets the size of the graph within the main GLE page.

title "title" [hei ch-hei] [color col] [font font] [dist cm]

Adds a title to the graph, dist sets the vertical positioning of the title.

vscale exp
Sets the height of the graph compared with the height defined in the size command. The default is
0.7 (70%).

x21abels on
Prints the labels on the upper x-axis.
Each of the four axes can be formatted individually, in the following we shall look only at the x-axis
commands, though a similar set of commands exists for the second x-axis and the two y-axes.

xaxis color col font font-name hei exp-cm lwidth exp-cm

Controls the formatting of the x-axis.
xaxis dsubticks sub-distance
Sets the spacing of the subticks.
xaxis grid
Makes the ticks and subticks cover the entire graph to create a grid.

xaxis log

Uses a logarithmic scale for the x-axis.

xaxis min low max high dpoints n
Sets the maximum and minimum displayed values on the x-axis. dpoints sets the number of decimal
places displayed in the labelling.

xaxis nofirst nolast

Removes the first or last label from a graph.

xaxis nticks number dticks distance

Sets either the number of ticks or spacing between ticks on the x-axis.

xaxis off

Turns off the x-axis.

7. Appendices 102

xaxis shift cm-exp

Moves the labeling on the x-axis to the left or right.

xlabels font font-name hei char-hei color col
Formats the labels on the x-axis.

"Xnames name name"

Adds the given labels to the x-axis. Use the xplaces command to set the spacing of the labels.

xplaces posl pos2 pos3 ...
Replaces the default labels with labels at pos1, pos2, pos3 and so on.

xside color col lwidth line-width off

Formats the appearance of the axis line itself.

ref id="xsubticks" name="xsubticks lstyle num lwidth exp length exp off

Formats the appearance of the x-axis subticks. xsubticks off will turn them off altogether.

xticks lstyle num lwidth exp length exp off

Formats the appearance of the x-axis ticks.

xtitle "title" [hei ch-hei] [color col] [font font] [dist cm]

adds a title to the x-axis.

y2title "text-string" [rotate]
Rotates the right-hand y-axis by 180°.

7.4.4 The key module

offset x-exp y-exp

Sets the position of the key as measured from the bottom left hand corner of the graph.
position justify-exp

Sets the position of the key according to the standard GLE justify handles.

text str-exp

This is the text that will be displayed in the key.

1style style-num

Controls the line style drawn on one line of the key.

marker marker-name

Sets the marker to appear on one line of the key.

msize exp

Sets the marker size.

mscale exp

Sets the factor that the marker is scaled by.

7. Appendices 103

OGBAE Mall Reference

© — circle T — dag
A — triangle I — ddag
[J — square * — asterisk
P 9229 ; i !
& — diamond & — oplus
® — fcircle © — ominus
A — ftriangle & — otimes
m— |width 0.2 |)i
— width 0.1 B — fsquare ® — odot
it 0.0% 4 — fdiamond A — trianglez
——— Iwidth 0.01 * — dot ¢ — diamondz
——— Iwidth 0.0001 : ! .
\width 0 X — cross O — wircle
% — club A — wtriangle
© — heart 0 — wsquare
rm Roman * — dtar) — wdiamond
rmi Roman Italic § — snake
rmb Roman Bold
rmbi Roman Bold Italic
tt Typewiter
ttb Typewriter Bold
ss Sans Serif
’ The GRID and SHADE patterns should only be used
ssb Sans Serif Bold for filling on Pos(Scrip(%rimers, the grey Izvels and
g ; B colors will work for both filling and color settings on
ss Sans Serif Italic any device.

psc Post Script Courier
psh PostScript Helvetica

psbd PostScript Bookman Demi g:eygg
psncsr PostScript New Century Schlblk Roman Grgyylo
pszemi PostScript ZapfChancery-MediumItalic Grey5
pszd Post Script ZapfDingbats Greyl
plitr Plotter Triplex Roman \é\llhitlf
pldr Plotter D.uplex Roman Yelafow
plsr Plotter Simplex Roman Magenta
plge Plotter @Gothic English Blue
plci Plotter Complex Italic Green
Red

PISS Plotlon, bimplea Seripl

wall.gle

color color-name

Controls the colour of the title, line and marker.

hei cm-exp

Sets the text height used in the key.

fill fill-pattern
Controls the fill style used on one line of the key.

7.5 GLE wall chart

The GLE wall chart, with marker and line styles and some of the common fonts. For reference here is the
program code,

7. Appendices 104

!wall.gle - Wall chart for gle
!Original code by Chris Pugmire (I think)

size 17 26 box ! this is for sticking on your wall

! it has fonts, lstyles, shading, colors, markers on it.

set hei 1 just center font plge
amove 9 24.5 125.5
text CGLE Wall Reference

set just left

set hei .3
amove .3 .4
text wall.gle
amove 2 4

sub sh f$

set just left

box -.5 .5 fill f$

RMOVE .2 .1
write £$
rmove -.2 .4
end sub

amove 9.5 10

set hei .3 font ss

begin box add .2

begin text width 7

The GRID and SHADE patterns should only be used for filling
on PostScript printers, the grey levels and colors will work
for both filling and color settings on any device.

end text

end box

set font rm

set hei .4
amove 11.5 2
Osh "Shade"
@sh "Shadel"
O@sh "Shade2"
Osh "Shade3"
Osh "Shade4"
@sh "Shadeb"
@sh "Grid"
@sh "Grid1i"
@sh "Grid2"

Osh "Grid3"

7. Appendices

105

@sh "Grid4"
@sh "Gridb"
amove 14.5 2
@sh "Red"
@sh "Green"
@sh "Blue"
Osh "Magenta"
@sh "Yellow"
@sh "Black"
@sh "White"
@sh "Greyl"
@sh "Greyb5"
@sh "Grey10"
@sh "Grey20"
@sh "Grey90"

sub mm name$
gsave
mk = mk+1

gsave

set lwidth .0001
set lstyle 1212

rmove 0 .4
rline 0 -.8
rmove 0 .4

grestore

marker name$ 1

rmove .3 O
rline .5 0
rmove .2 -.15
write name$
grestore
rmove 0 -.65

end sub

amove 9.5 22

Omm "circle"

Omm "triangle"

Omm "square"

Omm "diamond"

Omm "fcircle"

Omm "ftriangle"

Omm "fsquare"

Omm "fdiamond"

Omm "dot"

Omm "cross"

Omm "club"

7. Appendices

106

Omm
Omm

Omm

amov
Omm
Omm
Omm
Omm
Omm
Omm
Omm
Omm

@mm

"heart"
n Starll

"snake"

e 13.5 22
"dag"
"ddag"
"asterisk"
"oplus"
"ominus"
"otimes"
"odot"
"trianglez"
"diamondz"
"wcircle"
"wtriangle"
"wsquare"

"wdiamond"

sub fnt f$ n$

set

set

font rm

just right

write £$

rmove .5 0

set

just left font f$

write n$

rmove -.5 -.6

end sub

set hei .4

amove 2 14

@fnt "rm" "Roman"

@fnt "rmi" "Roman Italic"

@fnt "rmb" "Roman Bold"

0fnt "rmbi" "Roman Bold Italic"

@fnt "tt" "Typewriter"

ofnt "ttb" "Typewriter Bold"

@fnt "ss" "Sans Serif "

@fnt "ssb" "Sans Serif Bold"

@fnt "ssi" "Sans Serif Italic"

@fnt "psc" "PostScript Courier"

@fnt "psh" '"PostScript Helvetica"

@fnt "psbd" "PostScript Bookman Demi"

@fnt "psncsr" "PostScript New Century Schlblk Roman"
@fnt "pszcmi" "PostScript ZapfChancery-MediumItalic"

7. Appendices 107

@fnt "pszd" "PostScript ZapfDingbats"
@fnt "pltr" "Plotter Triplex Roman"
@fnt "pldr" "Plotter Duplex Roman"
@fnt "plsr" "Plotter Simplex Roman"
@fnt "plge" "Plotter Gothic English"
@fnt "plci" "Plotter Complex Italic"
@fnt "plss" "Plotter Simplex Script"

amove 2 20
box 6 3
begin origin
set hei .3 just left font rm
amove .5 2.5
for z = 0 to 4
set lstyle z
rline 2 0
rmove .1 O
write z
rmove -2.1 -.4

next z

amove 3.5 2.5

for z =5 to 9
set lstyle z
rline 2 0
rmove .1 O
write z
rmove -2.1 -.4

next z

amove .5 .2

set lstyle 9229
rline 3 0

rmove .1 0

text 9229

end origin

sub lw ww wn$
set lwidth ww
rline 1 0
rmove .2 -.1
write wn$
rmove -1.2 .5
end sub
set hei .3 just left font ss
amove 3 16
@lw O "lwidth O"

7. Appendices

108

0lw
Qlw
0lw
Qlw
Qlw
Qlw

.0001 "lwidth 0.0001"
.01 "lwidth 0.01"

.02 "lwidth 0.02"

.05 "lwidth 0.05"

.1 "lwidth 0.1"

.2 "lwidth 0.2"

