NumPy Reference
Release 1.8.1

Written by the NumPy community

March 26, 2014

CONTENTS

1 Array objects 3
1.1 The N-dimensional array (ndarray) . . . « v v v v v v i vt i i e e e e e e e e e 3
1.2 Scalars e e 71
1.3 Datatype objects (ALYPE) . v v v v v v i e e e e e e e e e e e e e e e e 87
L4 Indexing i i e e e e e e e e e e 102
1.5 Tterating Over ArraysS o i e e e e e e e e 107
1.6 Standard array subclasses 118
1.7 Masked arrays oL e e e e 233
1.8 The Array Interface L e e e e e 418
1.9 Datetimes and Timedeltas e e 423

2 Universal functions (ufunc) 431
2.1 Broadcasting e e e e e e e e e e e e e e e e e 431
2.2 Output type determination o v v v vt e 432
2.3 Useofinternal buffers o . . e e 432
24 Errorhandling L e 432
2.5 CastingRules e 435
2.6 UTUNC . o o e e e e e e e e e e e e e 437
2.7 Availableufuncs e e 446

3 Routines 451
3.1 Array creation TOULNES . . . v v v v v v v e 451
3.2 Array manipulation TOUtiNeS i e 484
33 Binary OperationS o oo e e e e e e e e e e e e e e e e 524
34 String Operations i e e e e e e e e e e e e 531
3.5 C-Types Foreign Function Interface (numpy .ctypeslib) 576
3.6 Datetime Support FUnctions e e e e e e e e e 577
3.7 Datatype roUtiNeS . . . v v v v v v e 582
3.8 Optionally Scipy-accelerated routines (numpy .dual)« o v v vt vt e e 600
3.9 Mathematical functions with automatic domain (numpy.emath) 601
3.10 Floating pointerrorhandling L o 601
3.11 Discrete Fourier Transform (numpy . ££t) e 608
3.12 Financial functions L e e e e 630
3.13 Functional programming v it e e e e e e e e e e e e e e e e e e e 640
3.14 Numpy-specific help functions e 645
3.15 Indexing routines e e e e 648
3.16 Inputand output L e e 680
3.17 Linear algebra (numpy . 1inalg) . . . o v v v v v it et e e e e e e e e e e e e e 703
318 Logic functions o o L e e e e e e e e e e e e e e 736

8

3.19
3.20
3.21
322
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33

Masked array Operations v v e
Mathematical functions L e e
Matrix library (numpy .mat1ib) o o o o e e e e e e e e e
Numarray compatibility (nUmpy . NUMATTAY) « .« o v v v v v v vt e e e e e e e
Old Numeric compatibility (numpy .oldnumeric) o o v v vt v vt i
Miscellaneous TOULINES v v v v v e
Padding Atrays e e e e e e e e e
Polynomials e e e e e e
Random sampling (numpy . random) e e e
SEtrOUtINeS v o v o e
Sorting, searching, and countingl
StatiStiCS o e e e e e e e e e
Test Support (NUMPY . £ESTING) + v v v v v v e
ASSEITS . . o o e e e e e e e

Packaging (numpy .distutils)

4.1
4.2
4.3

Modules in numpy . distutils o oL e e e e e e e
Building Installable C libraries 0. o i e e e
Conversion of .srcfiles e

Numpy C-API

5.1
5.2
53
54
5.5
5.6
5.7
5.8
59

Python Types and C-Structures L 0 i v it e e e e e e e e
System configuration L e e e e e e e e e e e
Data Type APL e e e e e e
Array APL . . . o e e e e
Array Iterator APT L e e
UFunc APL . . . o e e
Generalized Universal Function APT
Numpy core Ibraries o v e e e e e e e e e e e e e e e e e e
C APIDeprecations v v v v v it e e e e e e e e e e e e e e e e e e e

Numpy internals

6.1
6.2
6.3

Numpy C Code Explanations i v it e e e e e e e e e e e e e e
Internal organization of nUMpPY arrays oL e e e e e e e e e e e
Multidimensional Array Indexing Order Issues

Numpy and SWIG

7.1
7.2

Numpy.i: a SWIG Interface File for NumPy
Testing the numpy.i Typemaps e

Acknowledgements

Bibliography

Index

NumPy Reference, Release 1.8.1

Release
1.8

Date
March 26, 2014

This reference manual details functions, modules, and objects included in Numpy, describing what they are and what
they do. For learning how to use NumPy, see also user.

CONTENTS 1

NumPy Reference, Release 1.8.1

2 CONTENTS

CHAPTER
ONE

ARRAY OBJECTS

NumPy provides an N-dimensional array type, the ndarray, which describes a collection of “items” of the same type.
The items can be indexed using for example N integers.

All ndarrays are homogenous: every item takes up the same size block of memory, and all blocks are interpreted in
exactly the same way. How each item in the array is to be interpreted is specified by a separate data-type object, one
of which is associated with every array. In addition to basic types (integers, floats, efc.), the data type objects can also
represent data structures.

An item extracted from an array, e.g., by indexing, is represented by a Python object whose type is one of the array
scalar types built in Numpy. The array scalars allow easy manipulation of also more complicated arrangements of
data.

[gad | |
,.| data-type J = array

b

header TL ‘ ‘

ndarray

Figure 1.1: Figure Conceptual diagram showing the relationship between the three fundamental objects used to de-
scribe the data in an array: 1) the ndarray itself, 2) the data-type object that describes the layout of a single fixed-size
element of the array, 3) the array-scalar Python object that is returned when a single element of the array is accessed.

1.1 The N-dimensional array (ndarray)

An ndarray is a (usually fixed-size) multidimensional container of items of the same type and size. The number
of dimensions and items in an array is defined by its shape, which is a tuple of N positive integers that specify
the sizes of each dimension. The type of items in the array is specified by a separate data-type object (dtype), one of
which is associated with each ndarray.

As with other container objects in Python, the contents of an ndarray can be accessed and modified by indexing or
slicing the array (using, for example, N integers), and via the methods and attributes of the ndarray.

http://docs.python.org/dev/library/stdtypes.html#tuple

NumPy Reference, Release 1.8.1

Different ndarrays can share the same data, so that changes made in one ndarray may be visible in another. That
is, an ndarray can be a “view” to another ndarray, and the data it is referring to is taken care of by the “base” ndarray.
ndarrays can also be views to memory owned by Python st rings or objects implementing the buffer or array
interfaces.

Example
A 2-dimensional array of size 2 x 3, composed of 4-byte integer elements:

>>> x = np.array ([[1l, 2, 31, [4, 5, 6]], np.int32)
>>> type (x)

<type ’'numpy.ndarray’>

>>> x.shape

(2, 3)

>>> x.dtype

dtype (" int32")

The array can be indexed using Python container-like syntax:

>>> x[1,2] # i.e., the element of x in the #*secondx row, *thirdx
column, namely, 6.

For example slicing can produce views of the array:

>>> y = x[:,1]
>>> y
array ([2, 5])
>>> y[0] = 9 # this also changes the corresponding element in x
>>> y
array ([9, 51])
>>> x
array ([[1, 9, 31,
[4, 5, 6]1)

1.1.1 Constructing arrays

New arrays can be constructed using the routines detailed in Array creation routines, and also by using the low-level
ndarray constructor:

ndarray An array object represents a multidimensional, homogeneous array of fixed-size items.

class numpy .ndarray
An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)

Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The
parameters given here refer to a low-level method (ndarray(...)) for instantiating an array.

For more information, refer to the numpy module and examine the the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)

shape : tuple of ints

Shape of created array.

4 Chapter 1. Array objects

http://docs.python.org/dev/library/stdtypes.html#str

NumPy Reference, Release 1.8.1

dtype : data-type, optional
Any object that can be interpreted as a numpy data type.
buffer : object exposing buffer interface, optional
Used to fill the array with data.
offset : int, optional
Offset of array data in buffer.
strides : tuple of ints, optional
Strides of data in memory.
order : {‘C’, ‘F’}, optional
Row-major or column-major order.
See Also:
array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.
Notes
There are two modes of creating an array using ___new___
L.If buffer is None, then only shape, dt ype, and order are used.

2.If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new___ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier
ways of constructing an ndarray.

First mode, buffer is None:

>>> np.ndarray (shape=(2,2), dtype=float, order='F’)
array ([[-1.13698227e+002, 4.25087011e-3037,
[2.88528414e-306, 3.27025015e-30911) #random

Second mode:

>>> np.ndarray((2,), buffer=np.array([1l,2,3]),

offset=np.int_ () .itemsize,

dtype=int) # offset = l+itemsize, i.e. skip first element
array ([2, 31])

Attributes

1.1. The N-dimensional array (ndarray) 5

NumPy Reference, Release 1.8.1

T Same as self.transpose(), except that self is returned if self.ndim < 2.
data Python buffer object pointing to the start of the array’s data.

dtype Data-type of the array’s elements.

flags Information about the memory layout of the array.

flat A 1-D iterator over the array.

imag The imaginary part of the array.

real The real part of the array.

size Number of elements in the array.

itemsize Length of one array element in bytes.

nbytes Total bytes consumed by the elements of the array.

ndim Number of array dimensions.

shape Tuple of array dimensions.

strides Tuple of bytes to step in each dimension when traversing an array.
ctypes An object to simplify the interaction of the array with the ctypes module.
base Base object if memory is from some other object.

ndarray.T

Same as self.transpose(), except that self is returned if self.ndim < 2.

Examples
>>> x = np.array ([[1.,2.]1,[3.,4.]1])
>>> x
array ([[1., 2.1,
[3., 4.11)
>>> x.T
array ([[1., 3.1,
[2., 4.11)
>>> x = np.array([1.,2.,3.,4.1)

>>> x
array ([1., 2., 3., 4.1)
>>> x.T

array ([1., 2., 3., 4.1)

ndarray.data

Python buffer object pointing to the start of the array’s data.

ndarray.dtype

Data-type of the array’s elements.

Parameters
None

Returns
d : numpy dtype object

See Also:

numpy .dtype

Examples

>>> x

array ([[0, 117,
[2, 311)

>>> x.dtype
dtype (" int32")

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

>>> type (x.dtype)
<type ’numpy.dtype’>

ndarray.flags
Information about the memory layout of the array.

Notes

The £1ags object can be accessed dictionary-like (asin a.flags [/ WRITEABLE']), or by using low-
ercased attribute names (asin a . flags . writeable). Short flag names are only supported in dictionary
access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct
assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:
*UPDATEIFCOPY can only be set False.
*ALIGNED can only be set True if the data is truly aligned.

*WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the
memory exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional
arrays, but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbi-
trary if arr.shape[dim] == 1 or the array has no elements. It does not generally hold that
self.strides[-1] == self.itemsize for C-style contiguous arrays or self.strides[0]
== self.itemsize for Fortran-style contiguous arrays is true.

1.1. The N-dimensional array (ndarray) 7

NumPy Reference, Release 1.8.1

Attributes
C_CONTIGUQ(S data is in a single, C-style contiguous segment.
©)
F_CONTIGUOIKS data is in a single, Fortran-style contiguous segment.
F)
OWN- The array owns the memory it uses or borrows it from another object.
DATA
O)
WRITE- The data area can be written to. Setting this to False locks the data, making it read-only.
ABLE A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a
W) view of a writeable array may be subsequently locked while the base array remains

writeable. (The opposite is not true, in that a view of a locked array may not be made
writeable. However, currently, locking a base object does not lock any views that
already reference it, so under that circumstance it is possible to alter the contents of a
locked array via a previously created writeable view onto it.) Attempting to change a
non-writeable array raises a RuntimeError exception.

ALIGNED | The data and all elements are aligned appropriately for the hardware.

A)

UP- This array is a copy of some other array. When this array is deallocated, the base array
DATEIF- will be updated with the contents of this array.

COPY

%)

FNC F_CONTIGUOUS and not C_CONTIGUOUS.

FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).
BEHAVED | ALIGNED and WRITEABLE.

B)

CARRAY BEHAVED and C_CONTIGUOUS.

(CA)

FARRAY BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.
(FA)

ndarray.flat
A 1-D iterator over the array.

This is a numpy . f1atiter instance, which acts similarly to, but is not a subclass of, Python’s built-in
iterator object.

See Also:

flatten
Return a copy of the array collapsed into one dimension.

flatiter
Examples
>>> x = np.arange(l, 7).reshape(2, 3)
>>> x
array ([[1, 2, 31,
(4, 5, 6]11])
>>> x.flat[3]
4
>>> x.T
array ([[1, 4],
(2, 51,
[3, 611)

8 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

>>> x.T.flat[3]

5

>>> type(x.flat)

<type ’'numpy.flatiter’>

An assignment example:

>>> x.flat = 3;
array ([[3, 3, 3]
[3, 3, 3]
>>> x.flat[[1,4]
array ([[3, 1, 3]
[3, 1, 3]

ndarray.imag
The imaginary part of the array.

Examples

>>> x = np.sqrt ([1+073, 0+171)

>>> x.imag

array ([O. , 0.70710678])
>>> x.imag.dtype

dtype (' float64’)

ndarray.real
The real part of the array.

See Also:

numpy .real
equivalent function

Examples

>>> x = np.sqrt([1+03, 0+17])
>>> x.real

array ([1. , 0.70710678])
>>> x.real.dtype

dtype (" float64’)

ndarray.size
Number of elements in the array.

Equivalent to np.prod (a.shape), i.e., the product of the array’s dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complexl128)
>>> x.size

30

>>> np.prod(x.shape)

30

ndarray.itemsize
Length of one array element in bytes.

1.1. The N-dimensional array (ndarray) 9

NumPy Reference, Release 1.8.1

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize

8

>>> x = np.array([1l,2,3], dtype=np.complexl28)
>>> x.itemsize

16

ndarray.nbytes
Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complexl128)
>>> x.nbytes
480

>>> np.prod(x.shape) » x.itemsize
480

ndarray.ndim
Number of array dimensions.

Examples

>>> x = np.array([l, 2, 31)
>>> x.ndim
1

>>> y = np.zeros((2, 3, 4))
>>> y.ndim

ndarray.shape
Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not require a change in the total number of
elements

Examples

>>> x = np.array([1l, 2, 3, 41)

>>> x.shape

(4,)

>>> y = np.zeros((2, 3, 4))
>>> y.shape

(2, 3, 4)
>>> y.shape = (3, 8)
>>> y

array ([[0., O 0. . . . 0
ro., 0., 0., 0., 0., O., 0., 0.]
[0., 0., O. 0

>>> y.shape = (3, 6)

Traceback (most recent call last):

10 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

ndarray.strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (1 [0], i[1], ..., i[n]) inan array a is:

offset = sum(np.array (i) = a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.
See Also:

numpy.lib.stride_tricks.as_strided

Notes
Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 911, dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory).
The strides of an array tell us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20
bytes (5 values) to get to the same position in the next row. As such, the strides for the array x will be

(20, 4).

Examples

>>> y = np.reshape (np.arange (2x3%4), (2,3,4))
>>> y

array ([[, 1, 2, ’

0 3
4, 5, 6, 7
8, 9, 10, 11
(112, 13, 14, 15
16, 17, 18, 19],
(20, 21, 22, 23111)

>>> y.strides

(48, 16, 4)
>>> y[1,1,1]
17

>>> offset=sum(y.strides * np.array((1l,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape (np.arange (5x6%«7%8), (5,6,7,8)) .transpose(2,3,1,0)
>>> x.strides

(32, 4, 224, 1344)

>>> i = np.array([3,5,2,2])

>>> offset = sum(i » x.strides)

>>> x[3,5,2,2]

813

>>> offset / x.itemsize

813

ndarray.ctypes
An object to simplify the interaction of the array with the ctypes module.

1.1. The N-dimensional array (ndarray) 11

NumPy Reference, Release 1.8.1

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the
ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes
below) which themselves return ctypes objects that can be used as arguments to a shared library.

Parameters
None

Returns
¢ : Python object

Possessing attributes data, shape, strides, etc.
See Also:

numpy .ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have
omitted undocumented public attributes, as well as documented private attributes):

edata: A pointer to the memory area of the array as a Python integer. This memory area may contain

data that is not aligned, or not in correct byte-order. The memory area may not even be writeable.
The array flags and data-type of this array should be respected when passing this attribute to arbitrary
C-code to avoid trouble that can include Python crashing. User Beware! The value of this attribute is
exactly the same as self._array_interface_[’data’][0].

eshape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer
corresponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes
array contains the shape of the underlying array.

estrides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for

the shape attribute. This ctypes array contains the strides information from the underlying array.
This strides information is important for showing how many bytes must be jumped to get to the next
element in the array.

edata_as(obj): Return the data pointer cast to a particular c-types object. For example, calling
self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data
as a pointer to a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.c_double)).

eshape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

estrides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly. For
example, calling (a+b) .ctypes.data_as (ctypes.c_void_p) returns a pointer to memory that
is invalid because the array created as (a+b) is deallocated before the next Python statement. You can avoid
this problem using either c=a+b or ct=(a+b) . ctypes. In the latter case, ct will hold a reference to
the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful,
but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have
the as parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x

12

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

array ([[0, 17,

[2, 311)
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as (ctypes.
<ctypes.LP_c_long object at
>>> x.ctypes.data_as (ctypes.
c_long (0)
>>> x.ctypes.data_as (ctypes.
c_longlong (4294967296L)
>>> x.ctypes.shape

POINTER (ctypes.c_long))
0x01F01300>
POINTER (ctypes.c_long)) .contents

POINTER (ctypes.c_longlong)) .contents

<numpy.core._internal.c_long_Array_2 object at 0x01lFFD580>
>>> x.ctypes.shape_as (ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>

>>> x.ctypes.strides

<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as (ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

ndarray.base

Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

Methods

all([axis, out])

Returns True if all elements evaluate to True.

any([axis, out])

Returns True if any of the elements of a evaluate to True.

argmax([axis, out])

Return indices of the maximum values along the given axis.

argmin([axis, out])

Return indices of the minimum values along the given axis of a.

argpartition(kth[, axis, kind, order])

Returns the indices that would partition this array.

argsort([axis, kind, order])

Returns the indices that would sort this array.

astype(dtypel[, order, casting, subok, copy])

Copy of the array, cast to a specified type.

byteswap(inplace)

Swap the bytes of the array elements

choose(choices[, out, mode])

Use an index array to construct a new array from a set of choices.

clip(a_min, a_max[, out])

Return an array whose values are limited to [a_min, a_max].

compres s(condition[, axis, out])

Return selected slices of this array along given axis.

conij() Complex-conjugate all elements.
conjugate() Return the complex conjugate, element-wise.
copy([order]) Return a copy of the array.

cumprod([axis, dtype, out])

Return the cumulative product of the elements along the given axis.

cumsumn([axis, dtype, out])

Return the cumulative sum of the elements along the given axis.

diagonal([offset, axis1, axis2])

Return specified diagonals.

1.1. The N-dimensional array (ndarray)

13

NumPy Reference, Release 1.8.1

Table 1.3 — continued from previous page

dot (o[, out])

Dot product of two arrays.

dump(file) Dump a pickle of the array to the specified file.

dumps() Returns the pickle of the array as a string.

£111(value) Fill the array with a scalar value.

flatten([order]) Return a copy of the array collapsed into one dimension.

get field(dtype[, offset]) Returns a field of the given array as a certain type.

item(*args) Copy an element of an array to a standard Python scalar and return it.
itemset(*args) Insert scalar into an array (scalar is cast to array’s dtype, if possible)

max([axis, out])

Return the maximum along a given axis.

mean([axis, dtype, out])

Returns the average of the array elements along given axis.

min([axis, out])

Return the minimum along a given axis.

newbyteorder([new_order])

Return the array with the same data viewed with a different byte order.

nonzero()

Return the indices of the elements that are non-zero.

partition(kth[, axis, kind, order])

Rearranges the elements in the array in such a way that value of the element in kth pc

prod([axis, dtype, out])

Return the product of the array elements over the given axis

ptp([axis, out])

Peak to peak (maximum - minimum) value along a given axis.

put(indices, values[, mode])

Seta.flat[n] = values[n] forall nin indices.

ravel([order])

Return a flattened array.

repeat(repeats|, axis])

Repeat elements of an array.

reshape(shapel, order])

Returns an array containing the same data with a new shape.

resize(new_shape[, refcheck])

Change shape and size of array in-place.

round([decimals, out])

Return a with each element rounded to the given number of decimals.

searchsorted(v], side, sorter])

Find indices where elements of v should be inserted in a to maintain order.

set field(val, dtype[, offset])

Put a value into a specified place in a field defined by a data-type.

set flags([write, align, uic])

Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

sort([axis, kind, order])

Sort an array, in-place.

squeeze([axis])

Remove single-dimensional entries from the shape of a.

std([axis, dtype, out, ddof])

Returns the standard deviation of the array elements along given axis.

sum([axis, dtype, out])

Return the sum of the array elements over the given axis.

swapaxes(axisl, axis2)

Return a view of the array with axis/ and axis2 interchanged.

take(indices[, axis, out, mode])

Return an array formed from the elements of a at the given indices.

tofile(fid[, sep, format])

Write array to a file as text or binary (default).

tolist()

Return the array as a (possibly nested) list.

tostring([order])

Construct a Python string containing the raw data bytes in the array.

trace([offset, axisl, axis2, dtype, out])

Return the sum along diagonals of the array.

transpose(*axes)

Returns a view of the array with axes transposed.

var([axis, dtype, out, ddof])

Returns the variance of the array elements, along given axis.

view([dtype, type])

New view of array with the same data.

ndarray.all (axis=None, out=None)

Returns True if all elements evaluate to True.

Refer to numpy .all for full documentation.

See Also:

numpy.all
equivalent function

ndarray .any (axis=None, out=None)

Returns True if any of the elements of a evaluate to True.

Refer to numpy . any for full documentation.

14

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

See Also:

numpy . any
equivalent function

ndarray.argmax (axis=None, out=None)
Return indices of the maximum values along the given axis.
Refer to numpy . argmax for full documentation.
See Also:

numpy . argmax
equivalent function

ndarray .argmin (axis=None, out=None)
Return indices of the minimum values along the given axis of a.
Refer to numpy . argmin for detailed documentation.
See Also:

numpy .argmin
equivalent function

ndarray.argpartition (kth, axis=-1, kind="introselect’, order=None)
Returns the indices that would partition this array.
Refer to numpy . argpartition for full documentation. New in version 1.8.0.
See Also:

numpy .argpartition
equivalent function

ndarray.argsort (axis=-1, kind="quicksort’, order=None)
Returns the indices that would sort this array.
Refer to numpy . argsort for full documentation.
See Also:

numpy .argsort
equivalent function

ndarray.astype (dtype, order="K’, casting="unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters
dtype : str or dtype

Typecode or data-type to which the array is cast.

order : {‘C’, ‘F’, ‘A’, ‘K’ }, optional
Controls the memory layout order of the result. ‘C’ means C order, ‘F’ means Fortran
order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order otherwise,

and ‘K’ means as close to the order the array elements appear in memory as possible.
Default is ‘K’.

. The N-dimensional array (ndarray) 15

NumPy Reference, Release 1.8.1

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur. Defaults to ‘unsafe’ for backwards com-
patibility.

* ‘no’ means the data types should not be cast at all.
* ‘equiv’ means only byte-order changes are allowed.
 ‘safe’ means only casts which can preserve values are allowed.

* ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

* ‘unsafe’ means any data conversions may be done.
subok : bool, optional

If True, then sub-classes will be passed-through (default), otherwise the returned array
will be forced to be a base-class array.

copy : bool, optional

By default, astype always returns a newly allocated array. If this is set to false, and the
dtype, order, and subok requirements are satisfied, the input array is returned instead
of a copy.

Returns
arr_t : ndarray

Unless copy is False and the other conditions for returning the input array are satisfied
(see description for copy input paramter), arr_t is a new array of the same shape as the
input array, with dtype, order given by dt ype, order.

Raises
ComplexWarning

When casting from complex to float or int. To avoid this, one should use
a.real.astype(t).

Examples

>>> x = np.array([1l, 2, 2.5])
>>> x
array ([1. , 2., 2.51)

>>> x.astype (int)
array ([1, 2, 2])

ndarray .byteswap (inplace)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, option-
ally swapped in-place.

Parameters
inplace : bool, optional

If True, swap bytes in-place, defaultis False.

Returns
out : ndarray

The byteswapped array. If inplace is True, this is a view to self.

16 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Examples

>>> A = np.array([l, 256, 8755], dtype=np.intl6)
>>> map (hex, A)

["0x1’, "0x100’, ’'0x2233"]

>>> A.byteswap (True)

array ([256, 1, 13090], dtype=intlo)
>>> map (hex, A)

["0x100", "0x1’, ’'0x3322"]

Arrays of strings are not swapped

>>> A = np.array(['ceg’, "fac’])

>>> A.byteswap ()

array([’'ceg’, ’'fac’],
dtype=’[S3")

ndarray.choose (choices, out=None, mode="raise’)
Use an index array to construct a new array from a set of choices.
Refer to numpy . choose for full documentation.
See Also:

numpy . choose
equivalent function

ndarray.clip (a_min, a_max, out=None)
Return an array whose values are limited to [a_min, a_max].
Refer to numpy . c1ip for full documentation.
See Also:

numpy.clip
equivalent function

ndarray.compress (condition, axis=None, out=None)
Return selected slices of this array along given axis.
Refer to numpy . compress for full documentation.
See Also:

numpy . compress
equivalent function

ndarray.conj ()
Complex-conjugate all elements.
Refer to numpy . conjugate for full documentation.

See Also:

numpy . conjugate
equivalent function

ndarray.conjugate ()
Return the complex conjugate, element-wise.

1.1. The N-dimensional array (ndarray) 17

NumPy Reference, Release 1.8.1

Refer to numpy . conjugate for full documentation.
See Also:

numpy .conjugate
equivalent function

ndarray.copy (order="C’)
Return a copy of the array.

Parameters
order : {‘C’, ‘F’, ‘A’, ‘K’ }, optional

Controls the memory layout of the copy. ‘C’ means C-order, ‘F’ means F-order, ‘A’
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as
closely as possible. (Note that this function and :func:numpy.copy are very similar, but
have different default values for their order= arguments.)

See Also:

numpy . copy, numpy . copyto

Examples

>>> x = np.array([[l,2,3],[4,5,6]], order="F’)
>>>y = x.copy()

>>> x.£fi11(0)

>>> x
array ([[0, 0, 0],
[0, 0, O11)

>>> v
array ([[1, 2, 31,
(4, 5, 611)

>>> y.flags[’C_CONTIGUOUS']
True

ndarray.cumprod (axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy . cumprod for full documentation.
See Also:

numpy . cumprod
equivalent function

ndarray.cumsum (axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.
Refer to numpy . cumsum for full documentation.
See Also:

numpy . cumsum
equivalent function

18 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

ndarray.diagonal (offset=0, axis1=0, axis2=1)
Return specified diagonals.

Refer to numpy . diagonal for full documentation.
See Also:

numpy .diagonal
equivalent function

ndarray.dot (b, out=None)
Dot product of two arrays.
Refer to numpy . dot for full documentation.
See Also:
numpy .dot
equivalent function
Examples

>>> a = np.eye(2)

>>> b = np.ones((2, 2)) * 2

>>> a.dot (b)

array ([[2., 2.1,
[2., 2.11)

This array method can be conveniently chained:

>>> a.dot (b) .dot (b)
array ([[8., 8.1,
[8., 8.11)

ndarray .dump (file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters
file : str

A string naming the dump file.

ndarray.dumps ()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

Parameters
None

ndarray.£ill (value)
Fill the array with a scalar value.

Parameters
value : scalar

All elements of a will be assigned this value.

Examples

1.1. The N-dimensional array (ndarray) 19

NumPy Reference, Release 1.8.1

>>> a = np.array([1l, 2])
>>> a.fi11 (0)

>>> a

array ([0, 0])

>>> a = np.empty (2)

>>> a.fill (1)

>>> a

array ([1., 1.7)

ndarray.flatten (order="C’)

Return a copy of the array collapsed into one dimension.

Parameters
order : {‘C’, ‘F’, ‘A’}, optional
Whether to flatten in C (row-major), Fortran (column-major) order, or preserve the
C/Fortran ordering from a. The default is ‘C’.
Returns
y : ndarray

A copy of the input array, flattened to one dimension.

See Also:

ravel
Return a flattened array.

flat
A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,411)
>>> a.flatten()

array ([1, 2, 3, 41)

>>> a.flatten('F’)

array ([1, 3, 2, 41)

ndarray.getfield (dtype, offset=0)

Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits
in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with
a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters
dtype : str or dtype

The data type of the view. The dtype size of the view can not be larger than that of the
array itself.

offset : int

Number of bytes to skip before beginning the element view.

Examples

20

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

>>> x = np.diag([1.+1.73]%2)

>>> x[1, 1] = 2 + 4.9
>>> x
array ([[1.+1.7, 0.+0.73]

[0.40.3, 2.+4.311)
>>> x.getfield(np.float64)
array ([[1., 0.1,

[0., 2.11)

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array ([[1., 0.1,
[0., 4.11)

ndarray.item (*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters
*args : Arguments (variable number and type)

* none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

* int_type: this argument is interpreted as a flat index into the array, specifying which ele-
ment to copy and return.

* tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

Returns
z : Standard Python scalar object

A copy of the specified element of the array as a suitable Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned.
This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> x = np.random.randint (9, size=(3, 3))

>>> x

array ([[3, 1, 71,
(2, 8, 31,
[8, 5, 311)

>>> x.item(3)

2

>>> x.item(7)

5

>>> x.item((0, 1))

1

>>> x.item((2, 2))

3

1.1. The N-dimensional array (ndarray) 21

NumPy Reference, Release 1.8.1

ndarray.itemset (*args)

Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as ifem. Then, a.itemset (xargs) is
equivalent to but faster than a [args] = item. The item should be a scalar value and args must select
a single item in the array a.

Parameters
*args : Arguments

If one argument: a scalar, only used in case a is of size 1. If two arguments: the last
argument is the value to be set and must be a scalar, the first argument specifies a single
array element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, i temset provides some speed increase for placing a scalar into a particular
location in an ndarray, if you must do this. However, generally this is discouraged: among other
problems, it complicates the appearance of the code. Also, when using itemset (and item) inside a
loop, be sure to assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

Examples

>>> x = np.random.randint (9, size=(3, 3))
>>> x
array ([[3, 1, 71,
(2, 8, 31,
[8, 5, 311)
>>> x.itemset (4, 0)
>>> x.itemset ((2, 2), 9)

>>> x
array ([[3, 1, 71,
[2, 0, 31,
(8, 5, 911)

ndarray .max (axis=None, out=None)
Return the maximum along a given axis.

Refer to numpy . amax for full documentation.

See Also:

numpy . amax

equivalent function

ndarray .mean (axis=None, dtype=None, out=None)
Returns the average of the array elements along given axis.

Refer to numpy . mean for full documentation.

See Also:

numpy .mean

equivalent function

ndarray .min (axis=None, out=None)
Return the minimum along a given axis.

Refer to numpy . amin for full documentation.

See Also:

22

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

numpy . amin
equivalent function

ndarray.newbyteorder (new_order="S’)
Return the array with the same data viewed with a different byte order.
Equivalent to:

arr.view(arr.dtype.newbytorder (new_order))

Changes are also made in all fields and sub-arrays of the array data type.

Parameters
new_order : string, optional

Byte order to force; a value from the byte order specifications above. new_order codes
can be any of:

* 'S’ - swap dtype from current to opposite endian
* {’<", 'L’} - little endian

* {’>", "B’} - big endian

* {’='", 'N’} - native order

* {’]", "I'"} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order. The code does a
case-insensitive check on the first letter of new_order for the alternatives above. For
example, any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

Returns
new_arr : array

New array object with the dtype reflecting given change to the byte order.

ndarray.nonzero ()
Return the indices of the elements that are non-zero.

Refer to numpy . nonzero for full documentation.

See Also:

numpy .nonzero
equivalent function

ndarray.partition (kth, axis=-1, kind="introselect’, order=None)
Rearranges the elements in the array in such a way that value of the element in kth position is in the
position it would be in a sorted array. All elements smaller than the kth element are moved before this
element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined. New in version 1.8.0.

Parameters
kth : int or sequence of ints

Element index to partition by. The kth element value will be in its final sorted position

and all smaller elements will be moved before it and all equal or greater elements behind

it. The order all elements in the partitions is undefined. If provided with a sequence of

kth it will partition all elements indexed by kth of them into their sorted position at once.
axis : int, optional

Axis along which to sort. Default is -1, which means sort along the last axis.

1.1.

The N-dimensional array (ndarray) 23

NumPy Reference, Release 1.8.1

kind : {‘introselect’}, optional
Selection algorithm. Default is ‘introselect’.
order : list, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. Not all fields need be specified.

See Also:
numpy .partition
Return a parititioned copy of an array.

argpartition
Indirect partition.

sort
Full sort.
Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array ([3, 4, 2, 1])
>>> a.partition(a, 3)

>>> a

array ([2, 1, 3, 41)

>>> a.partition((1, 3))
array ([1, 2, 3, 41)

ndarray .prod (axis=None, dtype=None, out=None)
Return the product of the array elements over the given axis
Refer to numpy . prod for full documentation.
See Also:

numpy . prod
equivalent function

ndarray .ptp (axis=None, out=None)
Peak to peak (maximum - minimum) value along a given axis.
Refer to numpy . ptp for full documentation.
See Also:

numpy . ptp
equivalent function

ndarray .put (indices, values, mode="raise’)
Seta.flat[n] = values[n] forall n in indices.
Refer to numpy . put for full documentation.

See Also:

24 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

numpy . put
equivalent function

ndarray.ravel ([order])
Return a flattened array.
Refer to numpy . ravel for full documentation.
See Also:
numpy . ravel
equivalent function
ndarray. flat
a flat iterator on the array.
ndarray.repeat (repeats, axis=None)
Repeat elements of an array.
Refer to numpy . repeat for full documentation.
See Also:

numpy . repeat
equivalent function

ndarray.reshape (shape, order="C")
Returns an array containing the same data with a new shape.
Refer to numpy . reshape for full documentation.
See Also:

numpy . reshape
equivalent function

ndarray.resize (new_shape, refcheck=True)
Change shape and size of array in-place.

Parameters
new_shape : tuple of ints, or n ints

Shape of resized array.
refcheck : bool, optional
If False, reference count will not be checked. Default is True.

Returns
None

Raises
ValueError

If a does not own its own data or references or views to it exist, and the data memory
must be changed.

SystemError
If the order keyword argument is specified. This behaviour is a bug in NumPy.

See Also:

. The N-dimensional array (ndarray) 25

NumPy Reference, Release 1.8.1

resize
Return a new array with the specified shape.
Notes
This reallocates space for the data area if necessary.
Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples
Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and re-
shaped:
>>> a = np.array ([[0, 11, [2, 311, order='C’")
>>> a.resize((2, 1))
>>> a
array ([[0],
(111)
>>> a = np.array ([[0, 11, [2, 311, order="F’")
>>> a.resize((2, 1))
>>> a
array ([[0],
[211)

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 11, [2, 311)
>>> b.resize (2, 3) # new_shape parameter doesn’t have to be a tuple
>>> b

array ([[0, 1, 2],
[3, 0, 011)

Referencing an array prevents resizing...

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):

ValueError: cannot resize an array that has been referenced

Unless refcheck is False:

>>> a.resize((1l, 1), refcheck=False)

>>> a
array ([[0]])
>>> C
array ([[0]])

ndarray.round (decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy . around for full documentation.

See Also:

26

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

numpy .around
equivalent function

ndarray.searchsorted (v, side="left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.
For full documentation, see numpy . searchsorted
See Also:

numpy . searchsorted
equivalent function

ndarray.setfield (val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.
Place val into a‘s field defined by dt ype and beginning offset bytes into the field.

Parameters
val : object

Value to be placed in field.
dtype : dtype object

Data-type of the field in which to place val.
offset : int, optional

The number of bytes into the field at which to place val.

Returns

None
See Also:
getfield
Examples
>>> x = np.eye(3)
>>> x.getfield(np.float64)
array ([[1., 0., 0.7,

[0., 1., 0.1,

([0., 0., 1.10)
>>> x.setfield (3, np.int32)
>>> x.getfield(np.int32)
array ([[3, 3, 31,

(3, 3, 31,

(3, 3, 311)
>>> x
array ([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323],

[1.48219694e-323, 1.00000000e+000,
[1.48219694e-323, 1.48219694e-323,
>>> x.setfield(np.eye(3), np.int32)

1.48219694e-323]7,
1.00000000e+00011)

>>> x

array ([[1., 0., 0.1,
([0., 1., 0.1,
[0., 0., 1.11)

ndarray.setflags (write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

1.1.

The N-dimensional array (ndarray)

27

NumPy Reference, Release 1.8.1

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below).
The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The
UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the array
owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a
string. (The exception for string is made so that unpickling can be done without copying memory.)

Parameters
write : bool, optional

Describes whether or not a can be written to.
align : bool, optional

Describes whether or not a is aligned properly for its type.
uic : bool, optional

Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITE-
ABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the com-
piler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced by .base). When this array is
deallocated, the base array will be updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well as the full name.

Examples

>>> y

array ([[3, 1, 71,
(2, 0, 01,
(8, 5, 911)

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
>>> y.setflags (write=0, align=0)
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
UPDATEIFCOPY : False
>>> y.setflags (uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: cannot set UPDATEIFCOPY flag to True

28

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

ndarray.sort (axis=-1, kind="quicksort’, order=None)

Sort an array, in-place.

Parameters
axis : int, optional

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Axis along which to sort. Default is -1, which means sort along the last axis.

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

When a is an array with fields defined, this argument specifies which fields to compare

See Also:

first, second, etc. Not all fields need be specified.

numpy . sort

Return

argsort

a sorted copy of an array.

Indirect sort.

lexsort

Indirect stable sort on multiple keys.

searchsorted
Find elements in sorted array.

partition

Partial

Notes

See sort for notes on the different sorting algorithms.

sort.

Examples
>>> a = np.array ([[1,4], [3,111])
>>> a.sort (axis=1)
>>> a
array ([[1, 4],
(1, 311)
>>> a.sort (axis=0)
>>> a
array ([[1, 3]

(1, 411)

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a’, 2), ('¢c’, 1)1,
>>> a.sort (order="vy’)

>>> a
array ([(’

dtype=[("x", "|S1"), ('y', '<i4")])

c’, 1), ("a", 2)1,

ndarray.squeeze (axis=None)

Remove single-dimensional entries from the shape of a.

Refer to nu

mpy . squeeze for full documentation.

dtype=[("x", "s1"), ("y’, int)])

1.1. The N-dimensional array (ndarray)

29

NumPy Reference, Release 1.8.1

See Also:

numpy . squeeze
equivalent function

ndarray.std (axis=None, dtype=None, out=None, ddof=0)
Returns the standard deviation of the array elements along given axis.
Refer to numpy . std for full documentation.
See Also:

numpy . std
equivalent function

ndarray.sum (axis=None, dtype=None, out=None)
Return the sum of the array elements over the given axis.
Refer to numpy . sum for full documentation.
See Also:

numpy . sum
equivalent function

ndarray.swapaxes (axisl, axis2)
Return a view of the array with axis! and axis2 interchanged.

Refer to numpy . swapaxes for full documentation.
See Also:

numpy . swapaxes
equivalent function

ndarray .take (indices, axis=None, out=None, mode="raise’)
Return an array formed from the elements of a at the given indices.
Refer to numpy . t ake for full documentation.
See Also:

numpy . take
equivalent function

ndarray.tofile (fid, sep="", format=""%s")
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

Parameters
fid : file or str

An open file object, or a string containing a filename.
sep : str

Separator between array items for text output. If “’ (empty), a binary file is written,
equivalentto file.write (a.tostring()).

30 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

format : str
Format string for text file output. Each entry in the array is formatted to text by first
converting it to the closest Python type, and then using “format” % item.
Notes

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

ndarray.tolist ()
Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
Python type.

Parameters
none

Returns
y : list

The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

>>> a = np.array([1l, 2])

>>> a.tolist ()

(1, 2]

>>> a = np.array ([[1, 21, [3, 411)

>>> list (a)

l[array ([1, 2]1), array([3, 4]1)]
>>> a.tolist ()

(r1, 21, I3, 411

ndarray.tostring (order="C’)
Construct a Python string containing the raw data bytes in the array.

Constructs a Python string showing a copy of the raw contents of data memory. The string can be produced
in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order unless the
F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

Parameters
order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays: C, Fortran, or the same as for the original
array.

Returns
S . str

A Python string exhibiting a copy of a‘s raw data.

1.1.

The N-dimensional array (ndarray) 31

NumPy Reference, Release 1.8.1

Examples

>>> x = np.array([[0, 11, [2, 311)

>>> x.tostring ()
"\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00"
>>> x.tostring ('C’) == x.tostring/()

True

>>> x.tostring ('F’)
"\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00"

ndarray.trace (offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.
Refer to numpy . t race for full documentation.
See Also:

numpy .trace
equivalent function

ndarray.transpose (*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D ar-
ray into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided

and a.shape = (i[0], i[1], ... 1i[n-2], i[n-1]), then a.transpose () .shape
= (i[n-1]1, i[n-2], ... 1i[1]1, i[01]).
Parameters

axes : None, tuple of ints, or » ints
» None or no argument: reverses the order of the axes.

* tuple of ints: i in the j-th place in the tuple means a‘s i-th axis becomes a.transpose()s
Jj-th axis.

* nints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

Returns
out : ndarray

View of a, with axes suitably permuted.
See Also:

ndarray.T
Array property returning the array transposed.

Examples
>>> a = np.array ([[1, 21, [3, 411])
>>> a
array ([[1, 21,
(3, 411)
>>> a.transpose ()
array ([[1, 31,
(2, 411)
>>> a.transpose((1l, 0))
array ([[1, 31,

32

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

[2, 411)
>>> a.transpose(l, 0)
array ([[1, 31,

[2, 411)

ndarray .var (axis=None, dtype=None, out=None, ddof=0)
Returns the variance of the array elements, along given axis.

Refer to numpy . var for full documentation.

See Also:

numpy .var
equivalent function

ndarray.view (dtype=None, type=None)
New view of array with the same data.

Parameters
dtype : data-type or ndarray sub-class, optional

Data-type descriptor of the returned view, e.g., float32 or intl6. The default, None,
results in the view having the same data-type as a. This argument can also be specified
as an ndarray sub-class, which then specifies the type of the returned object (this is
equivalent to setting the t ype parameter).

type : Python type, optional

Type of the returned view, e.g., ndarray or matrix. Again, the default None results in
type preservation.

Notes
a.view () is used two different ways:

a.view (some_dtype) ora.view (dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view (ndarray_subclass) ora.view (type=ndarray_subclass) justreturns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinter-
pretation of the memory.

For a.view (some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print (a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a
slice or transpose, etc., the view may give different results.

Examples

>>> x = np.array ([(1, 2)], dtype=[("a’, np.int8), ('b’, np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.intl6, type=np.matrix)
>>> y

matrix ([[513]], dtype=intl6)

>>> print type (y)

<class ’'numpy.matrixlib.defmatrix.matrix’>

1.1. The N-dimensional array (ndarray) 33

NumPy Reference, Release 1.8.1

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[("a’, np.int8), ('b’, np.int8)])
>>> xv = x.view(dtype=np.int8) .reshape(-1,2)
>>> XV
array ([[1, 2],
[3, 4]1], dtype=int8)
>>> xv.mean (0)
array ([2., 3.1)

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print x
[(1, 20) (3, 4)]

Using a view to convert an array to a record array:

>>> z = x.view(np.recarray)
>>> z.a
array ([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.intl6)
>>> vy = x[:, 0:2]
>>> y
array ([[1, 21,
[4, 5]], dtype=intl6)
>>> y.view(dtype=[('width’, np.intl6), (’length’, np.intl6)])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width’, np.intl6), (’length’, np.intl6)])
array ([[(1, 2)1,
[(4, 5)]1], dtype=[('width’, ’'<i2’), ('length’, ’'<i2")1])

1.1.2 Indexing arrays

Arrays can be indexed using an extended Python slicing syntax, array [selection]. Similar syntax is also used
for accessing fields in a record array.

See Also:

Array Indexing.

1.1.3 Internal memory layout of an ndarray

An instance of class ndarray consists of a contiguous one-dimensional segment of computer memory (owned by the
array, or by some other object), combined with an indexing scheme that maps N integers into the location of an item

34 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

in the block. The ranges in which the indices can vary is specified by the shape of the array. How many bytes each
item takes and how the bytes are interpreted is defined by the data-type object associated with the array.

A segment of memory is inherently 1-dimensional, and there are many different schemes for arranging the items of
an N-dimensional array in a 1-dimensional block. Numpy is flexible, and ndarray objects can accommodate any
strided indexing scheme. In a strided scheme, the N-dimensional index (ng,n1,...,nny_1) corresponds to the offset
(in bytes):

N-1
Noffset = E SNk
k=0

from the beginning of the memory block associated with the array. Here, s; are integers which specify the st rides
of the array. The column-major order (used, for example, in the Fortran language and in Matlab) and row-major order
(used in C) schemes are just specific kinds of strided scheme, and correspond to memory that can be addressed by the
strides:

k—1 N-1
siolumn _ H dj; S};OW _ H dj~
j=0 j=k+1
where d; = self.itemsize * self.shape[j].

Both the C and Fortran orders are contiguous, i.e., single-segment, memory layouts, in which every part of the memory
block can be accessed by some combination of the indices.

While a C-style and Fortran-style contiguous array, which has the corresponding flags set, can be addressed with the
above strides, the actual strides may be different. This can happen in two cases:

1. If self.shape[k] == 1 then for any legal index index[k] == 0. This means that in the formula for
the offset ny = 0 and thus sinj; = 0 and the value of s = self.strides[k] is arbitrary.

2. If an array has no elements (self.size == 0) there is no legal index and the strides are never used. Any
array with no elements may be considered C-style and Fortran-style contiguous.

Point 1. means that self ‘and ‘‘self.squeeze () always have the same contiguity and aligned flags value.
This also means that even a high dimensional array could be C-style and Fortran-style contiguous at the same time.

An array is considered aligned if the memory offsets for all elements and the base offset itself is a multiple of
self.itemsize.

Note: Points (1) and (2) are not yet applied by default. Beginning with Numpy 1.8.0, they are applied consistently
only if the environment variable NPY_RELAXED_STRIDES_CHECKING=1 was defined when NumPy was built.
Eventually this will become the default.

You can check whether this option was enabled when your NumPy was built by looking at the value of
np.ones ((10,1), order='C’).flags.f_contiguous. If this is True, then your NumPy has relaxed
strides checking enabled.

Warning: It does not generally hold that se1f.strides[-1] == self.itemsize for C-style contiguous
arrays or self.strides[0] == self.itemsize for Fortran-style contiguous arrays is true.

Data in new ndarrays is in the row-major (C) order, unless otherwise specified, but, for example, basic array slicing
often produces views in a different scheme.

Note: Several algorithms in NumPy work on arbitrarily strided arrays. However, some algorithms require single-
segment arrays. When an irregularly strided array is passed in to such algorithms, a copy is automatically made.

1.1. The N-dimensional array (ndarray) 35

NumPy Reference, Release 1.8.1

1.1.4 Array attributes

Array attributes reflect information that is intrinsic to the array itself. Generally, accessing an array through its at-
tributes allows you to get and sometimes set intrinsic properties of the array without creating a new array. The exposed
attributes are the core parts of an array and only some of them can be reset meaningfully without creating a new array.
Information on each attribute is given below.

Memory layout

The following attributes contain information about the memory layout of the array:

ndarray.flags Information about the memory layout of the array.
ndarray.shape Tuple of array dimensions.

ndarray.strides Tuple of bytes to step in each dimension when traversing an array.
ndarray.ndim Number of array dimensions.

ndarray.data Python buffer object pointing to the start of the array’s data.
ndarray.size Number of elements in the array.

ndarray.itemsize Length of one array element in bytes.

ndarray.nbytes Total bytes consumed by the elements of the array.
ndarray.base Base object if memory is from some other object.

ndarray.flags

Information about the memory layout of the array.

Notes

The £1ags object can be accessed dictionary-like (asina.flags [’ WRITEABLE']), or by using lowercased
attribute names (asin a. flags.writeable). Short flag names are only supported in dictionary access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct assign-
ment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:
*UPDATEIFCOPY can only be set False.
*ALIGNED can only be set True if the data is truly aligned.

*WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the memory
exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional arrays,
but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbi-
trary if arr.shape[dim] == 1 or the array has no elements. It does nor generally hold that
self.strides[-1] == self.itemsize for C-style contiguous arrays or self.strides[0] ==
self.itemsize for Fortran-style contiguous arrays is true.

36

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Attributes

C_CONTIGUQOTHs data is in a single, C-style contiguous segment.

©

F_CONTIGUQURe data is in a single, Fortran-style contiguous segment.

(D)

OWNDATA | The array owns the memory it uses or borrows it from another object.

)

WRITE- The data area can be written to. Setting this to False locks the data, making it read-only. A

ABLE view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of a

(W) writeable array may be subsequently locked while the base array remains writeable. (The
opposite is not true, in that a view of a locked array may not be made writeable. However,
currently, locking a base object does not lock any views that already reference it, so under
that circumstance it is possible to alter the contents of a locked array via a previously
created writeable view onto it.) Attempting to change a non-writeable array raises a
RuntimeError exception.

ALIGNED The data and all elements are aligned appropriately for the hardware.

(A)

UPDATEIF- | This array is a copy of some other array. When this array is deallocated, the base array will

COPY be updated with the contents of this array.

)

FNC F_CONTIGUOUS and not C_CONTIGUOUS.

FORC F_CONTIGUOUS or C_CONTIGUOQOUS (one-segment test).

BEHAVED | ALIGNED and WRITEABLE.

B)

CARRAY BEHAVED and C_CONTIGUOUS.

(CA)

FARRAY BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

(FA)

ndarray.shape

Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not require a change in the total number of elements

Examples

>>> X

np.ar
>>> x.shape
(4,)
>>> y

np.ze

>>> y.shape
(2, 3, 4)

>>> y.shape
>>> y

array ([[O.

[O'!

[O.

>>> y.shape

Traceback (mo

File "<stdi

ValueError: t

’

’

ndarray.strides
Tuple of bytes to

ray([1, 2, 3, 41)
ros((2, 3, 4))
(3, 8)
6., 0., 0., 0., 0., 0., 0.1,
6., 0., 0., 0., 0., 0., 0.1,
0., 0., 0., 0., 0., 0., 0.101)
(3, 6)
st recent call last):
n>", line 1, in <module>
otal size of new array must be unchanged

step in each dimension when traversing an array.

1.1. The N-dimensional array (ndarray)

37

NumPy Reference, Release 1.8.1

The byte offset of element (1 [0], i[1], ..., 1i[n]) inanarrayais:

offset = sum(np.array(i) = a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.
See Also:

numpy.lib.stride_tricks.as_strided

Notes
Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([([0, 1, 2, 3, 41,
[5, 6, 7, 8, 911, dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory). The
strides of an array tell us how many bytes we have to skip in memory to move to the next position along a certain
axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20 bytes (5 values) to get
to the same position in the next row. As such, the strides for the array x will be (20, 4).

Examples

>>> y = np.reshape (np.arange (2+«3%4), (2,3,4))
>>> y

array ([[, 1, 2, ’

0 3
4, 5, 6, 17
8, 9, 10, 11
[[12, 13, 14, 15
16, 17, 18, 191,
[20, 21, 22, 23111)

>>> y.strides

(48, 1o, 4)
>>> y[1,1,1]
17

>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape (np.arange (5+«6+7%x8), (5,6,7,8)) .transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)

>>> i = np.array([3,5,2,2])

>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]

813

>>> offset / x.itemsize

813

ndarray.ndim

Number of array dimensions.

Examples

>>> x = np.array([l, 2, 31)
>>> x.ndim

1

>>> y = np.zeros((2, 3, 4))
>>> y.ndim

38

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

ndarray.data
Python buffer object pointing to the start of the array’s data.

ndarray.size
Number of elements in the array.

Equivalent to np.prod (a. shape), i.e., the product of the array’s dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complexl28)
>>> x.size

30

>>> np.prod(x.shape)

30

ndarray.itemsize
Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize

8

>>> x = np.array([1,2,3], dtype=np.complexl128)
>>> x.itemsize

16

ndarray.nbytes
Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complexl128)
>>> x.nbytes

480

>>> np.prod(x.shape) *» x.itemsize

480

ndarray.base
Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

1.1. The N-dimensional array (ndarray) 39

NumPy Reference, Release 1.8.1

Data type

See Also:
Data type objects

The data type object associated with the array can be found in the dt ype attribute:

ndarray.dtype

Data-type of the array’s elements.

ndarray.dtype

Data-type of the array’s elements.

Parameters
None

Returns

d : numpy dtype object

See Also:

numpy .dtype

Examples

>>> x

array ([[0, 17,
(2, 311

>>> x.dtype
dtype (" int32")

>>> type (x.dtype)
<type ’numpy.dtype’>

Other attributes

ndarray.T

Same as self.transpose(), except that self is returned if self.ndim < 2.

ndarray.real

The real part of the array.

ndarray.imag

The imaginary part of the array.

ndarray.flat

A 1-D iterator over the array.

ndarray.ctypes

An object to simplify the interaction of the array with the ctypes module.

__array_priority___

ndarray.T

Same as self.transpose(), except that self is returned if self.ndim < 2.

Examples
>>> x = np.array ([[1l.,2.
>>> x
array ([[1., 2.1,
[3., 4.11)
>>> x.T
array ([[1., 3.1,
[2., 4.11)
>>> x = np.array([1l.,2
>>> x

0 3.,4.1)

40

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

array ([1., 2., 3., 4.])
>>> x.T
array ([1., 2., 3., 4.17)

ndarray.real
The real part of the array.

See Also:

numpy .real
equivalent function

Examples

>>> x = np.sqrt ([1+073, 0+177)

>>> x.real

array ([1. , 0.70710678])
>>> x.real.dtype

dtype (' float64’)

ndarray.imag
The imaginary part of the array.

Examples

>>> x = np.sqrt ([1+073, 0+171)

>>> x.imag

array ([O. , 0.707106781])
>>> x.imag.dtype

dtype (' float64’)

ndarray.flat
A 1-D iterator over the array.

Thisis a numpy . flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator
object.

See Also:

flatten
Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(l, 7).reshape(2, 3)
>>> x
array ([[1, 2, 31,
(4, 5, 6]1)
>>> x.flat[3]
4
>>> x.T
array ([[1, 4]
[2, 5]
[3, 6]
>>> x.T.flat|
5

’

1)
3]

1.1. The N-dimensional array (ndarray) 41

NumPy Reference, Release 1.8.1

>>> type (x.flat)
<type ’"numpy.flatiter’>

An assignment example:

>>> x.flat = 3; x
array ([[3, 3, 31,
[3, 3, 311
>>> x.flat[[1,4]] = 1; x
array ([[3, 1, 31,
[3, 1, 311)

ndarray.ctypes
An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the ctypes
module. The returned object has, among others, data, shape, and strides attributes (see Notes below) which
themselves return ctypes objects that can be used as arguments to a shared library.

Parameters
None

Returns
¢ : Python object

Possessing attributes data, shape, strides, etc.
See Also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have omitted
undocumented public attributes, as well as documented private attributes):

edata: A pointer to the memory area of the array as a Python integer. This memory area may contain data
that is not aligned, or not in correct byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this attribute to arbitrary C-code to avoid
trouble that can include Python crashing. User Beware! The value of this attribute is exactly the same as
self._array_interface_[’data’][0].

eshape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corre-
sponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong depending
on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes array contains the
shape of the underlying array.

estrides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the

shape attribute. This ctypes array contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to get to the next element in the
array.

edata_as(obj): Return the data pointer cast to a particular c-types object. For example, calling
self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data as
a pointer to a ctypes array of floating-point data: self.data_as(ctypes. POINTER(ctypes.c_double)).

eshape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

estrides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

42 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly. For
example, calling (a+b) .ctypes.data_as (ctypes.c_void_p) returns a pointer to memory that is
invalid because the array created as (a+b) is deallocated before the next Python statement. You can avoid this
problem using either c=a+b or ct= (a+b) .ctypes. In the latter case, ct will hold a reference to the array
until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful, but
ctypes objects are not returned and errors may be raised instead. In particular, the object will still have the as
parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array ([[0, 17,
(2, 311
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_long)) .contents
c_long (0)
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_longlong)) .contents
c_longlong (4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at O0xOlFFD580>
>>> x.ctypes.shape_as (ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01lFCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01lFCE620>
>>> x.ctypes.strides_as (ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

Array interface

See Also:

The Array Interface.

array_interface

Python-side of the array interface

__array_struct___

C-side of the array interface

ctypes foreign function interface

ndarray.ctypes

An object to simplify the interaction of the array with the ctypes module.

ndarray.ctypes

An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the ctypes
module. The returned object has, among others, data, shape, and strides attributes (see Notes below) which
themselves return ctypes objects that can be used as arguments to a shared library.

Parameters
None

1.1. The N-dimensional array (ndarray) 43

NumPy Reference, Release 1.8.1

Returns
¢ : Python object

Possessing attributes data, shape, strides, etc.
See Also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have omitted
undocumented public attributes, as well as documented private attributes):

edata: A pointer to the memory area of the array as a Python integer. This memory area may contain data
that is not aligned, or not in correct byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this attribute to arbitrary C-code to avoid
trouble that can include Python crashing. User Beware! The value of this attribute is exactly the same as
self._array_interface_[’data’][0].

eshape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corre-
sponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong depending
on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes array contains the
shape of the underlying array.

estrides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the

shape attribute. This ctypes array contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to get to the next element in the
array.

edata_as(obj): Return the data pointer cast to a particular c-types object. For example, calling
self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data as
a pointer to a ctypes array of floating-point data: self.data_as(ctypes. POINTER(ctypes.c_double)).

eshape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

estrides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly. For
example, calling (a+b) .ctypes.data_as (ctypes.c_void_p) returns a pointer to memory that is
invalid because the array created as (a+b) is deallocated before the next Python statement. You can avoid this
problem using either c=a+b or ct= (a+b) .ctypes. In the latter case, ct will hold a reference to the array
until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful, but
ctypes objects are not returned and errors may be raised instead. In particular, the object will still have the as
parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array ([[0, 17,
(2, 311
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_long))
<ctypes.LP_c_long object at 0x01lF01300>
>>> x.ctypes.data_as (ctypes.POINTER(ctypes.c_long)) .contents

44

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

c_long (0)

>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_longlong)) .contents
c_longlong (4294967296L)

>>> x.ctypes.shape

<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>

>>> x.ctypes.shape_as (ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>

>>> x.ctypes.strides

<numpy.core._internal.c_long_Array_2 object at 0x01lFCE620>

>>> x.ctypes.strides_as (ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

1.1.5 Array methods

An ndarray object has many methods which operate on or with the array in some fashion, typically returning an
array result. These methods are briefly explained below. (Each method’s docstring has a more complete description.)

For the following methods there are also corresponding functions in numpy: all, any, argmax, argmin,
argpartition, argsort, choose, clip, compress, copy, cumprod, cumsum, diagonal, imag,
max, mean, min, nonzero, partition, prod, ptp, put, ravel, real, repeat, reshape, round,
searchsorted, sort, squeeze, std, sum, swapaxes, take, trace, transpose, var.

Array conversion

ndarray.item(*args) Copy an element of an array to a standard Python scalar and return it.
ndarray.tolist() Return the array as a (possibly nested) list.
ndarray.itemset(*args) Insert scalar into an array (scalar is cast to array’s dtype, if possible)
ndarray.setasflat

ndarray.tostring([order]) Construct a Python string containing the raw data bytes in the array.
ndarray.tofile(fid[, sep, format]) Write array to a file as text or binary (default).

ndarray . dump(file) Dump a pickle of the array to the specified file.

ndarray.dumps() Returns the pickle of the array as a string.
ndarray.astype(dtype[, order, casting, ...]) Copy of the array, cast to a specified type.
ndarray.byteswap(inplace) Swap the bytes of the array elements

ndarray.copy([order]) Return a copy of the array.

ndarray.view([dtype, type]) New view of array with the same data.
ndarray.getfield(dtypel, offset]) Returns a field of the given array as a certain type.

ndarray.set flags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.
ndarray.fill(value) Fill the array with a scalar value.

ndarray.item (*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters
*args : Arguments (variable number and type)

* none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

* int_type: this argument is interpreted as a flat index into the array, specifying which element
to copy and return.

* tuple of int_types: functions as does a single int_type argument, except that the argument is

1.1. The N-dimensional array (ndarray) 45

NumPy Reference, Release 1.8.1

interpreted as an nd-index into the array.

Returns
z : Standard Python scalar object

A copy of the specified element of the array as a suitable Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is no
available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless
fields are defined, in which case a tuple is returned.

itemis very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This can
be useful for speeding up access to elements of the array and doing arithmetic on elements of the array using
Python’s optimized math.

Examples

>>> x = np.random.randint (9, size=(3, 3))

>>> x

array ([[3, 1, 71,
(2, 8, 31,
[8, 5, 311)

>>> x.item(3)

2

>>> x.item(7)

5

>>> x.item((0, 1))

1

>>> x.item((2, 2))

3

ndarray.tolist ()

Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
Python type.

Parameters
none

Returns
y : list

The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

>>> a = np.array([1l, 2])

>>> a.tolist ()

[1, 2]

>>> a = np.array ([[1l, 2], [3, 411)

>>> list (a)

[array ([1, 2]), array([3, 4])]
>>> a.tolist ()

(L1, 21, [3, 41]

46

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

ndarray.itemset (*args)
Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as ifem. Then, a.itemset (xargs) is
equivalent to but faster than a [args] = item. The item should be a scalar value and args must select a
single item in the array a.

Parameters
*args : Arguments

If one argument: a scalar, only used in case a is of size 1. If two arguments: the last
argument is the value to be set and must be a scalar, the first argument specifies a single
array element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, itemset provides some speed increase for placing a scalar into a particular
location in an ndarray, if you must do this. However, generally this is discouraged: among other problems,
it complicates the appearance of the code. Also, when using itemset (and item) inside a loop, be sure to
assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

Examples
>>> x = np.random.randint (9, size=(3, 3))
>>> x
array ([[3, 1, 71,
[2, 8, 31,
[8, 5, 311)

>>> x.itemset (4, 0)
>>> x.itemset ((2, 2), 9)

>>> x
array ([[3, 1, 71,
[2, 0, 31,
[8, 5, 911

ndarray.tostring (order="C’)
Construct a Python string containing the raw data bytes in the array.

Constructs a Python string showing a copy of the raw contents of data memory. The string can be produced
in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order unless the
F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

Parameters
order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays: C, Fortran, or the same as for the original
array.

Returns
S : str

A Python string exhibiting a copy of a‘s raw data.

Examples

>>> X

np.array ([[0, 11, [2, 311)

>>> x.tostring()
"\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00"
>>> x.tostring(’C’) == x.tostring()

True

1.1. The N-dimensional array (ndarray) 47

NumPy Reference, Release 1.8.1

>>> x.tostring ('E’)
"\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00"

ndarray.tofile (fid, sep="", format=""%s")
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can be
recovered using the function fromfile().

Parameters
fid : file or str

An open file object, or a string containing a filename.
sep : str

Separator between array items for text output. If “’ (empty), a binary file is written,
equivalentto file.write (a.tostring()).

format : str
Format string for text file output. Each entry in the array is formatted to text by first
converting it to the closest Python type, and then using “format” % item.
Notes

This is a convenience function for quick storage of array data. Information on endianness and precision is lost,
so this method is not a good choice for files intended to archive data or transport data between machines with
different endianness. Some of these problems can be overcome by outputting the data as text files, at the expense
of speed and file size.

ndarray .dump (file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters
file : str

A string naming the dump file.

ndarray.dumps ()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an array.

Parameters
None

ndarray.astype (dtype, order="K’, casting="unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters
dtype : str or dtype

Typecode or data-type to which the array is cast.

order: {‘C’, ‘F’, ‘A’, ‘K’ }, optional
Controls the memory layout order of the result. ‘C’ means C order, ‘F° means Fortran
order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order otherwise,

and ‘K’ means as close to the order the array elements appear in memory as possible.
Default is ‘K.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur. Defaults to ‘unsafe’ for backwards com-
patibility.

48 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

* ‘no’ means the data types should not be cast at all.
* ‘equiv’ means only byte-order changes are allowed.
» ‘safe’ means only casts which can preserve values are allowed.

» ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

* ‘unsafe’ means any data conversions may be done.
subok : bool, optional

If True, then sub-classes will be passed-through (default), otherwise the returned array
will be forced to be a base-class array.

copy : bool, optional

By default, astype always returns a newly allocated array. If this is set to false, and the
dtype, order, and subok requirements are satisfied, the input array is returned instead
of a copy.

Returns
arr_t : ndarray

Unless copy is False and the other conditions for returning the input array are satisfied
(see description for copy input paramter), arr_t is a new array of the same shape as the
input array, with dtype, order given by dt ype, order.

Raises
ComplexWarning

When casting from complex to float or int. To avoid this, one should use
a.real.astype(t).

Examples

>>> x = np.array([1l, 2, 2.5])
>>> x
array ([1. , 2. 2.57)

>>> x.astype (int)
array ([1, 2, 21)

ndarray .byteswap (inplace)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally
swapped in-place.

Parameters
inplace : bool, optional

If True, swap bytes in-place, defaultis False.

Returns
out : ndarray

The byteswapped array. If inplace is True, this is a view to self.

Examples

1.1. The N-dimensional array (ndarray) 49

NumPy Reference, Release 1.8.1

>>> A = np.array([1l, 256, 8755], dtype=np.intl6)
>>> map (hex, A)

["0x1", "0x100", "0x2233"]

>>> A.byteswap (True)

array ([256, 1, 13090], dtype=intlo)

>>> map (hex, A)

[0x100", 7"0x1’", "0x3322"]

Arrays of strings are not swapped

>>> A = np.array([’ceg’, "fac’])

>>> A.byteswap ()

array([’ceg’, 'fac’],
dtype=’153")

ndarray.copy (order="C")
Return a copy of the array.
Parameters
order: {‘C’, ‘F’, ‘A’, ‘K’ }, optional

Controls the memory layout of the copy. ‘C’ means C-order, ‘F’ means F-order, ‘A’
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as
closely as possible. (Note that this function and :func:numpy.copy are very similar, but
have different default values for their order= arguments.)

See Also:

numpy . copy, numpy . copyto

Examples

>>> x = np.array([[1,2,3]1,14,5,6]1], order="F")
>>> y = x.copy ()

>>> x.fil11(0)

>>> x
array ([[0, 0, 0]

>>> y.flags[’C_CONTIGUOUS']
True

ndarray.view (dtype=None, type=None)
New view of array with the same data.

Parameters
dtype : data-type or ndarray sub-class, optional

Data-type descriptor of the returned view, e.g., float32 or int16. The default, None,
results in the view having the same data-type as a. This argument can also be specified
as an ndarray sub-class, which then specifies the type of the returned object (this is
equivalent to setting the t ype parameter).

type : Python type, optional

50 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Type of the returned view, e.g., ndarray or matrix. Again, the default None results in
type preservation.

Notes
a.view () is used two different ways:

a.view (some_dtype) ora.view (dtype=some_dtype) constructs a view of the array’s memory with
a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view (type=ndarray_subclass) just returns an instance of
ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpretation
of the memory.

For a.view (some_dtype), if some_dtype has a different number of bytes per entry than the previous
dtype (for example, converting a regular array to a structured array), then the behavior of the view cannot be
predicted just from the superficial appearance of a (shown by print (a)). It also depends on exactly how a
is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a slice or transpose,
etc., the view may give different results.

Examples

>>> x = np.array ([(1, 2)], dtype=[("a’, np.int8), ('b’, np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.intl6, type=np.matrix)
>>> y

matrix ([[513]], dtype=intl6)

>>> print type (y)

<class ’'numpy.matrixlib.defmatrix.matrix’>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[("a’, np.int8), ('b’, np.int8)])
>>> xv = x.view(dtype=np.int8) .reshape(-1,2)

>>> XV
array ([[1, 21,
[3, 4]], dtype=int8)
>>> xv.mean (0)
array ([2., 3.1)

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print x
(L, 20) (3, 4)]

Using a view to convert an array to a record array:

>>> z = x.view(np.recarray)
>>> z.a
array ([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

1.1. The N-dimensional array (ndarray) 51

NumPy Reference, Release 1.8.1

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.intl6)

>>> vy = x[:, 0:2]
>>> y
array ([[1, 2],

[4, 5]], dtype=intlo6)
>>> y.view(dtype=[('width’, np.intl16), (’length’, np.intl6)])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: new type not compatible with array.

>>> 7z = y.copy()
>>> z.view(dtype=[('width’, np.intl6), (’length’, np.intl6)])
array ([[(1, 2)1,

[(4, 5)]1], dtype=[('width’, ’'<i2’), (’length’, ’'<i2")1])
ndarray.getfield (dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the given
type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits in the array
dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with a 32-bit integer (4
bytes), the offset needs to be between 0 and 12 bytes.

Parameters
dtype : str or dtype

The data type of the view. The dtype size of the view can not be larger than that of the
array itself.

offset : int

Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1l.+1.73]%2)
>>> x[1, 1] = 2 + 4.7

>>> x

array ([[1.+1.73, 0.+0.73]

[0.40.3, 2.+4.7311)
>>> x.getfield(np.float64)
array ([[1., 0.1,

[0., 2.11)

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array ([[1., 0.1,
[0., 4.11)

ndarray.setflags (write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The
ALIGNED flag can only be set to True if the data is actually aligned according to the type. The UPDATEIF-
COPY flag can never be set to True. The flag WRITEABLE can only be set to True if the array owns its own
memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a string. (The exception
for string is made so that unpickling can be done without copying memory.)

52 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Parameters

write : bool, optional

Describes whether or not a can be written to.
align : bool, optional

Describes whether or not a is aligned properly for its type.
uic : bool, optional

Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There are
6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITEABLE, and

ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the compiler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced by .base). When this array is deallo-

cated, the base array will be updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well as the full name.

Examples

>>> Y

array ([[3, 1, 71,
(2, 0, 01,
[8, 5, 911)

>>> y.flags
C_CONTIGUOUS : True

F_CONTIGUOUS : False

OWNDATA : True
WRITEABLE : True
ALIGNED : True

UPDATEIFCOPY : False
>>> y.setflags (write=0,

>>> y.flags
C_CONTIGUOUS : True

F_CONTIGUOUS : False

OWNDATA : True
WRITEABLE : False
ALIGNED : False

UPDATEIFCOPY : False

>>> y.setflags (uic=1)

Traceback (most recent call last):
File "<stdin>", line 1,
ValueError: cannot set UPDATEIFCOPY flag to True

ndarray.£ill (value)

align=0)

Fill the array with a scalar value.

Parameters
value : scalar

All elements of a will be assigned this value.

in <module>

1.1. The N-dimensional array (ndarray)

53

NumPy Reference, Release 1.8.1

Examples

>>> a = np.array([1l, 2])
>>> a.fill (0)

>>> a

array ([0, 01])

>>> a = np.empty (2)

>>> a.fi11(1)

>>> a

array ([1., 1.1)

Shape manipulation

For reshape, resize, and transpose, the single tuple argument may be replaced with n integers which will be interpreted

as an n-tuple.

ndarray.reshape(shape[, order]) Returns an array containing the same data with a new shape.
ndarray.resize(new_shapel, refcheck]) Change shape and size of array in-place.
ndarray.transpose(*axes) Returns a view of the array with axes transposed.
ndarray.swapaxes(axisl, axis2) Return a view of the array with axis/ and axis2 interchanged.
ndarray . flatten([order]) Return a copy of the array collapsed into one dimension.
ndarray.ravel([order]) Return a flattened array.

ndarray.squeeze([axis]) Remove single-dimensional entries from the shape of a.

ndarray.reshape (shape, order="C’)
Returns an array containing the same data with a new shape.

Refer to numpy . reshape for full documentation.
See Also:

numpy . reshape
equivalent function

ndarray.resize (new_shape, refcheck=True)
Change shape and size of array in-place.

Parameters
new_shape : tuple of ints, or n ints

Shape of resized array.
refcheck : bool, optional
If False, reference count will not be checked. Default is True.

Returns
None

Raises
ValueError

If a does not own its own data or references or views to it exist, and the data memory
must be changed.

SystemError

If the order keyword argument is specified. This behaviour is a bug in NumPy.

54 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

See Also:

resize
Return a new array with the specified shape.
Notes
This reallocates space for the data area if necessary.
Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another Python
object and then reallocate the memory. However, reference counts can increase in other ways so if you are sure
that you have not shared the memory for this array with another Python object, then you may safely set refcheck
to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and reshaped:

>>> a = np.array([[0, 11, [2, 311, order='C’")
>>> a.resize((2, 1))
>>> a
array ([[0],
(111

>>> a = np.array ([[0, 1], [2, 3]], order='F’)
>>> a.resize((2, 1))

>>> a

array ([[0],

[211)

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array ([[0, 11, [2, 311)
>>> b.resize (2, 3) # new_shape parameter doesn’t have to be a tuple
>>> b
array ([[0, 1, 21,
[3, 0, 011)

Referencing an array prevents resizing...

>>> ¢ = a
>>> a.resize((1, 1))
Traceback (most recent call last):

ValueError: cannot resize an array that has been referenced

Unless refcheck is False:

>>> a.resize((1l, 1), refcheck=False)

>>> a
array ([[0]])
>>> ¢

array ([[0]])

ndarray.transpose (*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D array into a ma-
trix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes are given, their order in-

1.1. The N-dimensional array (ndarray) 55

NumPy Reference, Release 1.8.1

dicates how the axes are permuted (see Examples). If axes are not provided and a . shape = (1[0], i[1l],
i[n-2], i[n-1]), then a.transpose () .shape = (i[n-1], 1i[n-2], ... if[1],
i[01).
Parameters

axes : None, tuple of ints, or n ints
* None or no argument: reverses the order of the axes.

* tuple of ints: i in the j-th place in the tuple means a‘s i-th axis becomes a.transpose()‘s j-th
axis.

* nints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

Returns
out : ndarray

View of a, with axes suitably permuted.
See Also:

ndarray.T
Array property returning the array transposed.

Examples
>>> a = np.array([[1, 21, [3, 411)
>>> a
array ([[1, 21,
[3, 411)
>>> a.transpose ()
array ([[1, 31,
[2, 411)
>>> a.transpose ((1, 0))
array ([[1, 31,
[2, 411)
>>> a.transpose(l, 0)
array ([[1, 31,
[2, 411)

ndarray .swapaxes (axisl, axis2)
Return a view of the array with axis/ and axis2 interchanged.

Refer to numpy . swapaxes for full documentation.
See Also:

numpy . swapaxes
equivalent function

ndarray.flatten (order="C’)
Return a copy of the array collapsed into one dimension.

Parameters
order : {‘C’, ‘F’, ‘A’}, optional
Whether to flatten in C (row-major), Fortran (column-major) order, or preserve the
C/Fortran ordering from a. The default is ‘C’.

Returns
y : ndarray

56 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

A copy of the input array, flattened to one dimension.

See Also:
ravel
Return a flattened array.
flat
A 1-D flat iterator over the array.
Examples

>>> a = np.array([[1,2],
>>> a.flatten ()

[3,411)

array ([1, 2, 3,
>>> a.flatten ('F
array([1, 3, 2, 4

471)
")
1)
ndarray.ravel ([order])
Return a flattened array.
Refer to numpy . ravel for full documentation.

See Also:

numpy . ravel

equivalent function
ndarray. flat

a flat iterator on the array.

ndarray.squeeze (axis=None)

Remove single-dimensional entries from the shape of a.

Refer to numpy . squeeze for full documentation.

See Also:

numpy . squeeze
equivalent function

Item selection and manipulation

For array methods that take an axis keyword, it defaults to None. If axis is None, then the array is treated as a 1-D
array. Any other value for axis represents the dimension along which the operation should proceed.

ndarray .take(indices[, axis, out, mode]) Return an array formed from the elements of a at the given indices.
ndarray .put(indices, values[, mode]) Seta.flat[n] = values[n] forall nin indices.
ndarray.repeat(repeats[, axis]) Repeat elements of an array.

ndarray.choose(choices[, out, mode]) Use an index array to construct a new array from a set of choices.

ndarray . sort([axis, kind, order]) Sort an array, in-place.

ndarray.argsort([axis, kind, order]) Returns the indices that would sort this array.

ndarray.partition(kth[, axis, kind, order]) Rearranges the elements in the array in such a way that value of the element :
ndarray.argpartition(kth[, axis, kind, order]) Returns the indices that would partition this array.
ndarray.searchsorted(v], side, sorter]) Find indices where elements of v should be inserted in a to maintain order.
ndarray.nonzero() Return the indices of the elements that are non-zero.

1.1. The N-dimensional array (ndarray)

57

NumPy Reference, Release 1.8.1

Table 1.10 — continued from previous page

ndarray.compress(condition[, axis, out]) Return selected slices of this array along given axis.

ndarray.diagonal([offset, axisl, axis2]) Return specified diagonals.

ndarray .take (indices, axis=None, out=None, mode="raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy . t ake for full documentation.
See Also:

numpy . take
equivalent function

ndarray .put (indices, values, mode="raise’)
Seta.flat[n] = values[n] forall nin indices.
Refer to numpy . put for full documentation.
See Also:

numpy . put
equivalent function

ndarray.repeat (repeats, axis=None)
Repeat elements of an array.
Refer to numpy . repeat for full documentation.
See Also:

numpy . repeat
equivalent function

ndarray .choose (choices, out=None, mode="raise’)
Use an index array to construct a new array from a set of choices.
Refer to numpy . choose for full documentation.
See Also:

numpy . choose
equivalent function

ndarray.sort (axis=-1, kind="quicksort’, order=None)
Sort an array, in-place.

Parameters
axis : int, optional

Axis along which to sort. Default is -1, which means sort along the last axis.
kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.
order : list, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. Not all fields need be specified.

58 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

See Also:
numpy . sort
Return a sorted copy of an array.

argsort
Indirect sort.

lexsort
Indirect stable sort on multiple keys.

searchsorted
Find elements in sorted array.

partition
Partial sort.
Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.array ([[1,4]1, [3,111)
>>> a.sort (axis=1)

>>> a
array ([[1, 47,

[1, 311)
>>> a.sort (axis=0)
>>> a
array ([[1, 31,

[1, 411])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a’", 2), ('c’, 1)1, dtype=[("x", 'S1"), ('yv', int)])
>>> a.sort (order="vy’")

>>> a

array ([('c’, 1), ("a", 2)1,

dtype=[("x", "|S1"), ('y’, '<i4’)])

ndarray.argsort (axis=-1, kind="quicksort’, order=None)

Returns the indices that would sort this array.

Refer to numpy . argsort for full documentation.

See Also:

numpy .argsort
equivalent function

ndarray.partition (kth, axis=-1, kind="introselect’, order=None)

Rearranges the elements in the array in such a way that value of the element in kth position is in the position
it would be in a sorted array. All elements smaller than the kth element are moved before this element and all
equal or greater are moved behind it. The ordering of the elements in the two partitions is undefined. New in
version 1.8.0.

Parameters
kth : int or sequence of ints

1.1.

The N-dimensional array (ndarray) 59

NumPy Reference, Release 1.8.1

Element index to partition by. The kth element value will be in its final sorted position
and all smaller elements will be moved before it and all equal or greater elements behind
it. The order all elements in the partitions is undefined. If provided with a sequence of
kth it will partition all elements indexed by kth of them into their sorted position at once.

axis : int, optional

Axis along which to sort. Default is -1, which means sort along the last axis.
kind : {‘introselect’}, optional

Selection algorithm. Default is ‘introselect’.
order : list, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. Not all fields need be specified.

See Also:
numpy .partition
Return a parititioned copy of an array.

argpartition
Indirect partition.

sort
Full sort.
Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 11)
>>> a.partition(a, 3)

>>> a

array ([2, 1, 3, 41)

>>> a.partition((1, 3))
array ([1, 2, 3, 41)

ndarray.argpartition (kth, axis=-1, kind="introselect’, order=None)
Returns the indices that would partition this array.
Refer to numpy . argpartition for full documentation. New in version 1.8.0.
See Also:

numpy .argpartition
equivalent function

ndarray.searchsorted (v, side="left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.
For full documentation, see numpy . searchsorted

See Also:

numpy . searchsorted
equivalent function

60 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

ndarray.nonzero ()
Return the indices of the elements that are non-zero.

Refer to numpy . nonzero for full documentation.
See Also:

numpy . nonzero
equivalent function

ndarray.compress (condition, axis=None, out=None)
Return selected slices of this array along given axis.
Refer to numpy . compress for full documentation.
See Also:

numpy . compress
equivalent function

ndarray.diagonal (offset=0, axis]=0, axis2=1)
Return specified diagonals.

Refer to numpy .diagonal for full documentation.

See Also:

numpy .diagonal
equivalent function

Calculation

Many of these methods take an argument named axis. In such cases,

e If axis is None (the default), the array is treated as a 1-D array and the operation is performed over the entire
array. This behavior is also the default if self is a O-dimensional array or array scalar. (An array scalar is
an instance of the types/classes float32, float64, etc., whereas a O-dimensional array is an ndarray instance

containing precisely one array scalar.)

* If axis is an integer, then the operation is done over the given axis (for each 1-D subarray that can be created

along the given axis).

Example of the axis argument

A 3-dimensional array of size 3 x 3 x 3, summed over each of its three axes

, 16, 17
, 19, 20
21, 22, 231,
[24, 25, 26111)
>>> x.sum(axis=0)
array ([[27, 30, 331,
[36, 39, 427,

0]
3]
6]
9, 10, 11]
2, 13, 14]
5]
8]

]

]

1.1. The N-dimensional array (ndarray)

61

NumPy Reference, Release 1.8.1

[45, 48, 5111)

>>> # for sum, axis is the first keyword, so we may omit 1it,
>>> # specifying only its value

>>> x.sum(0), x.sum(l), x.sum(2)

(array ([[27, 30, 33]
36, 39, 427,
45, 48, 5111),
9, 12, 15]
6, 39, 42]
3, 66, 69]
3, 12, 21]
0, 39, 48],
7, 66, 7511))

The parameter dtype specifies the data type over which a reduction operation (like summing) should take place. The
default reduce data type is the same as the data type of self. To avoid overflow, it can be useful to perform the reduction
using a larger data type.

For several methods, an optional out argument can also be provided and the result will be placed into the output array
given. The out argument must be an ndarray and have the same number of elements. It can have a different data
type in which case casting will be performed.

ndarray.argmax([axis, out]) Return indices of the maximum values along the given axis.

ndarray.

min([axis, out])

Return the minimum along a given axis.

ndarray.argmin([axis, out]) Return indices of the minimum values along the given axis of a.
ndarray .ptp([axis, out]) Peak to peak (maximum - minimum) value along a given axis.
ndarray.clip(a_min, a_max[, out]) Return an array whose values are limited to [a_min, a_max].

ndarray.

conj()

Complex-conjugate all elements.

ndarray.round([decimals, out]) Return a with each element rounded to the given number of decimals.

ndarray.trace([offset, axisl, axis2, dtype, out]) Return the sum along diagonals of the array.

ndarray . sum([axis, dtype, out]) Return the sum of the array elements over the given axis.

ndarray . cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the given axis.

ndarray .mean([axis, dtype, out]) Returns the average of the array elements along given axis.

ndarray .var([axis, dtype, out, ddof]) Returns the variance of the array elements, along given axis.

ndarray . std([axis, dtype, out, ddof]) Returns the standard deviation of the array elements along given axis.

ndarray . prod([axis, dtype, out]) Return the product of the array elements over the given axis

ndarray.cumprod([axis, dtype, out]) Return the cumulative product of the elements along the given axis.

ndarray.all([axis, out]) Returns True if all elements evaluate to True.

ndarray .any([axis, out]) Returns True if any of the elements of a evaluate to True.

ndarray .argmax (axis=None, out=None)
Return indices of the maximum values along the given axis.

Refer to numpy . argmax for full documentation.
See Also:

numpy . argmax
equivalent function

ndarray .min (axis=None, out=None)
Return the minimum along a given axis.

Refer to numpy . amin for full documentation.

62 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

See Also:

numpy .amin
equivalent function

ndarray.argmin (axis=None, out=None)
Return indices of the minimum values along the given axis of a.
Refer to numpy . argmin for detailed documentation.
See Also:

numpy .argmin
equivalent function

ndarray .ptp (axis=None, out=None)
Peak to peak (maximum - minimum) value along a given axis.
Refer to numpy . ptp for full documentation.
See Also:

numpy . ptp
equivalent function

ndarray.clip (a_min, a_max, out=None)
Return an array whose values are limited to [a_min, a_max].
Refer to numpy . c1ip for full documentation.
See Also:

numpy.clip
equivalent function

ndarray.conj ()
Complex-conjugate all elements.
Refer to numpy . conjugate for full documentation.
See Also:

numpy . conjugate
equivalent function

ndarray.round (decimals=0, out=None)
Return a with each element rounded to the given number of decimals.
Refer to numpy . around for full documentation.
See Also:

numpy . around
equivalent function

ndarray .trace (offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

Refer to numpy . t race for full documentation.

1.1. The N-dimensional array (ndarray) 63

NumPy Reference, Release 1.8.1

See Also:

numpy .trace
equivalent function

ndarray . sum (axis=None, dtype=None, out=None)
Return the sum of the array elements over the given axis.
Refer to numpy . sum for full documentation.
See Also:

numpy . sum
equivalent function

ndarray .cumsum (axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.
Refer to numpy . cumsum for full documentation.
See Also:

numpy . cumsum
equivalent function

ndarray .mean (axis=None, dtype=None, out=None)
Returns the average of the array elements along given axis.
Refer to numpy . mean for full documentation.
See Also:

numpy .mean
equivalent function

ndarray .var (axis=None, dtype=None, out=None, ddof=0)
Returns the variance of the array elements, along given axis.
Refer to numpy . var for full documentation.
See Also:

numpy .var
equivalent function

ndarray.std (axis=None, dtype=None, out=None, ddof=0)
Returns the standard deviation of the array elements along given axis.
Refer to numpy . st d for full documentation.
See Also:

numpy .std
equivalent function

ndarray .prod (axis=None, dtype=None, out=None)
Return the product of the array elements over the given axis

Refer to numpy . prod for full documentation.

64 Chapter 1

. Array objects

NumPy Reference, Release 1.8.1

See Also:

numpy . prod
equivalent function

ndarray . cumprod (axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy . cumprod for full documentation.

See Also:

numpy . cumprod
equivalent function

ndarray.all (axis=None, out=None)
Returns True if all elements evaluate to True.

Refer to numpy .all for full documentation.

See Also:

numpy.all

equivalent function

ndarray .any (axis=None, out=None)
Returns True if any of the elements of a evaluate to True.

Refer to numpy . any for full documentation.

See Also:

numpy . any

equivalent function

1.1.6 Arithmetic and comparison operations

Arithmetic and comparison operations on ndarrays are defined as element-wise operations, and generally yield

ndarray objects as results.

Each of the arithmetic operations (+,

- %, /, //, %, divmod (), ** or pow (), <<, >>, &, *, |, ~) and the

comparisons (==, <, >, <=, >=, !=) is equivalent to the corresponding universal function (or ufunc for short) in
Numpy. For more information, see the section on Universal Functions.

Comparison operators:

ndarray.__1lt___
X.__lt__(y) <==>x<y

ndarray._ le_

ndarray._ 1t

It (y) <==>x<y

ndarray.__le_

le (y) <==>x<=y

ndarray._ gt

ndarray.__ge

_ge__(y) <==>x>=y

ndarray.__eq___

—eq_(y) <==> x==y

ndarray.__ne

X.
X.
X._ gt (y)<==>x>y
X.
X.
X.

_ne__(y)<==>xl=y

1.1. The N-dimensional array (ndarray)

65

NumPy Reference, Release 1.8.1

x._le_(y) <==> X<:y

ndarray.__gt___
X._ gt (y) <==>x>y

ndarray._ _ge_
X.__ge (y)<==>x>=y

ndarray.__eq
X_eq_(y) <==> X::y

ndarray._ _ne_
X._ne_ (y) <==>xl=y

Truth value of an array (boo1):

ndarray._ nonzero_ X._ nonzero_ () <==>x!=0

ndarray.__nonzero_
X.__nonzero__ () <==>x1=0

Note: Truth-value testing of an array invokes ndarray.__nonzero__, which raises an error if the number of
elements in the the array is larger than 1, because the truth value of such arrays is ambiguous. Use .any () and
.all () instead to be clear about what is meant in such cases. (If the number of elements is O, the array evaluates to
False.)

Unary operations:

ndarray.__neg___ X.__neg_ () <==>-x
ndarray._ _pos___ X.__pos__() <==>+x
ndarray.__ abs_ () <==> abs(x)
ndarray.__invert_ X.__invert_ () <==> ~x

ndarray._ _neg___
X.__neg_ () <==>-x

ndarray.__ _pos___
X.__pos__() <==>+x

ndarray.__abs__ () <==> abs(x)

ndarray.__invert_
X.__invert_ () <==> ~Xx

Arithmetic:

ndarray.__add _add__(y) <==> x+y

X.
ndarray.__sub___ X.__sub__(y) <==>x-y
ndarray._ mul___ X.__mul__(y) <==>x*y
ndarray.__div___ X.__div__(y) <==>x/ly
ndarray._ truediv__ X.__truediv__(y) <==>x/y
ndarray._ floordiv___ x.__floordiv__(y) <==>x/ly
ndarray.__mod X.__mod__(y) <==> x%y

ndarray.__divmod__ (y)<==>divmod(x, y)

Continued on next page ‘

66 Chapter 1. Array objects

http://docs.python.org/dev/library/functions.html#bool

NumPy Reference, Release 1.8.1

Table 1.15 — continued from previous page
ndarray.__pow__(y[, z]) <==> pow(Xx, yl[, z])

ndarray._ lshift_ x.__Ishift_ (y) <==> x<<y
ndarray.__rshift_ X.__rshift__(y) <==>x>>y
ndarray._ _and___ Xx.__and__(y) <==>x&y
ndarray.__ or___ X.__or__(y) <==>xly
ndarray._ xor___ X.__xor__(y) <==>x"y

ndarray.__add___

X.__add__(y) <==> x+y

ndarray.__sub___

X.__sub__(y) <==>x-y

ndarray._ mul

ndarray.__div

X.__mul__(y) <==> x*y

X.__div__(y) <==>xly

ndarray._ truediv_

X.__truediv__(y) <==>x/y

ndarray.__floordiv___

x.__floordiv__(y) <==>x/ly

ndarray._ mod

x._mod_(y)_<::> X%y

ndarray.__divmod__ (y) <==> divmod(x, y)

ndarray.__pow__ (¥[, z]) <==> pow(x, y[, z])

ndarray.__lshift_

X.__Ishift__(y) <==> x<<y

ndarray._ rshift

ndarray.__and

X.__rshift_ (y) <==>x>>y

X.__and__(y) <==>x&y

ndarray._ _or___

X._or__(y)<==>xly

ndarray.__xXor

X.__Xor__(y) <==>x"y

Note:

Any third argument to pow is silently ignored, as the underlying ufunc takes only two arguments.

The three division operators are all defined; div is active by default, t ruediv is active when ___future_

division is in effect.

Because ndarray is a built-in type (written in C), the __r{op}___ special methods are not directly defined.

The functions called to implement many arithmetic special methods for arrays can be modified using

set_numeric_ops.

1.1. The N-dimensional array (ndarray)

67

http://docs.python.org/dev/library/functions.html#pow
http://docs.python.org/dev/library/__future__.html#module-__future__

NumPy Reference, Release 1.8.1

Arithmetic, in-place:

ndarray.__iadd___ X.__iadd__(y) <==> x+=y
ndarray._ _isub_ X.__isub__(y) <==>x-=y
ndarray.__imul___ X.__imul__(y) <==> x*=y
ndarray._ idiv___ X.__idiv__(y) <==> x/=y
ndarray.__itruediv___ X.__itruediv__(y) <==> x/y
ndarray.__ifloordiv__ x.__ifloordiv__(y) <==>x/ly
ndarray._ _imod___ X.__imod__(y) <==> x%=y
ndarray.__ipow___ X.__ipow__(y) <==>x**=y
ndarray.__ilshift___ x.__ilshift_ (y) <==> x<<=y
ndarray._ irshift_ X.__irshift_ (y) <==> x>>=y
ndarray.__iand___ X.__dand__(y) <==> x&=y
ndarray.__ior_ X.__ior__(y) <==>xl=y
ndarray.__ixor___ X.__ixor__(y) <==>x"*=y

ndarray._ iadd_
X.__iadd__(y) <==> x+=y

ndarray.__isub___
X.__isub__(y) <==>x-=y

ndarray.__imul___
X.__imul__(y) <==> x*=y

ndarray.__idiv___
X.__idiv__(y) <==>x/=y

ndarray.__itruediv___
X.__itruediv__(y) <==>x/y

ndarray.__ifloordiv___
x.__ifloordiv__(y) <==> x//y

ndarray.__imod_
X.__imod__(y) <==> x%=y

ndarray.__ipow___
X._ipOW_(y) <==> x**:y

ndarray._ _ilshift
x.__ilshift__ (y) <==> x<<=y

ndarray._ _irshift_
X.__irshift__(y) <==> x>>=y

ndarray.__iand___
X.__dand__(y) <==>x&=y

ndarray __dor
X.__ior__(y) <==>xl=y
ndarray.__ixor___

X.__ixor__(y) <==>x"=y

68

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Warning: In place operations will perform the calculation using the precision decided by the data type of the
two operands, but will silently downcast the result (if necessary) so it can fit back into the array. Therefore,
for mixed precision calculations, A {op}= B canbe differentthanA = A {op} B.Forexample, suppose a =
ones ((3,3)).Then,a += 3jisdifferentthana = a + 33j: while they both perform the same computation,
a += 3 casts the result to fit back in a, whereas a = a + 37 re-binds the name a to the result.

1.1.7 Special methods

For standard library functions:

ndarray.__ copy__ ([order]) Return a copy of the array.
ndarray.__deepcopy__ (() -> Deep copy of array.) Used if copy.deepcopy is called on an array.
ndarray.__reduce__ () For pickling.

ndarray.__setstate__ (version, shape, dtype,...) For unpickling.

ndarray.__copy__ ([order])
Return a copy of the array.

Parameters
order : {‘C’, ‘F’, ‘A’}, optional

If order is ‘C’ (False) then the result is contiguous (default). If order is ‘Fortran’ (True)
then the result has fortran order. If order is ‘Any’ (None) then the result has fortran
order only if the array already is in fortran order.

ndarray.__deepcopy__ () — Deep copy of array.
Used if copy.deepcopy is called on an array.

ndarray._ reduce__ ()
For pickling.

ndarray.__setstate__ (version, shape, dtype, isfortran, rawdata)
For unpickling.

Parameters
version : int

optional pickle version. If omitted defaults to O.
shape : tuple
dtype : data-type
isFortran : bool
rawdata : string or list

a binary string with the data (or a list if ‘a’ is an object array)

Basic customization:

ndarray._ new__ ((S,...)
ndarray._ _array__ (..) Returns either a new reference to self if dtype is not given or a new array
ndarray._ array_wrap__ (..)

static ndarray.__new__ (S,...) — anew object with type S, a subtype of T

1.1. The N-dimensional array (ndarray) 69

NumPy Reference, Release 1.8.1

ndarray.__array__ (ldtype) — reference if type unchanged, copy otherwise.
Returns either a new reference to self if dtype is not given or a new array of provided data type if dtype is
different from the current dtype of the array.

ndarray.__array_wrap__ (obj) — Object of same type as ndarray object a.

Container customization: (see /ndexing)

ndarray._ len_ () <==>len(x)

ndarray._ getitem x.__getitem__(y) <==>x[y]
ndarray.__setitem___ X.__setitem__(i, y) <==> x[i]=y
ndarray._ _getslice_ x.__getslice__(i, j) <==> x[i]]
ndarray.__setslice_ x.__setslice__(i, j, y) <==> x[i:j]=y
ndarray.__contains_ X.__contains__(y) <==>yinXx

ndarray._ len__ () <==>len(x)

ndarray.__getitem_
x.__getitem__(y) <==>x[y]

ndarray.__setitem_
X.__setitem__(i, y) <==> x[i]=y

ndarray.__getslice_
x.__getslice__(i, j) <==> x[i]]

Use of negative indices is not supported.

ndarray.__setslice_
x.__setslice__(i, j, y) <==> x[i:j]=y

Use of negative indices is not supported.

ndarray.__contains___
X.__contains__(y) <==>yin x

Conversion; the operations complex, int, long, float, oct, and hex. They work only on arrays that have one
element in them and return the appropriate scalar.

__int_ () <==>int(x)
ndarray.__long__ () <==>long(x)
ndarray.__ float_ () <==>float(x)
oct__ () <==>oct(x)
hex__ () <==>hex(x)

ndarray.

ndarray.

ndarray.

ndarray._ _int__ () <==> int(x)

ndarray.__long__ () <==> long(x)

ndarray._ float__ () <==> float(x)

ndarray.__oct__ () <==> oct(x)

70 Chapter 1. Array objects

http://docs.python.org/dev/library/functions.html#complex
http://docs.python.org/dev/library/functions.html#int
http://docs.python.org/dev/library/functions.html#float
http://docs.python.org/dev/library/functions.html#oct
http://docs.python.org/dev/library/functions.html#hex

NumPy Reference, Release 1.8.1

__hex_ () <==> hex(x)

ndarray.

String representations:

ndarray._ str_ () <==>str(x)
ndarray.__repr_ () <==>repr(x)

ndarray._ _str_ () <==> str(x)

ndarray._ _repr__ () <==>repr(x)

1.2 Scalars

Python defines only one type of a particular data class (there is only one integer type, one floating-point type, etc.).
This can be convenient in applications that don’t need to be concerned with all the ways data can be represented in a
computer. For scientific computing, however, more control is often needed.

In NumPy, there are 24 new fundamental Python types to describe different types of scalars. These type descriptors
are mostly based on the types available in the C language that CPython is written in, with several additional types
compatible with Python’s types.

Array scalars have the same attributes and methods as ndarrays. ! This allows one to treat items of an array partly
on the same footing as arrays, smoothing out rough edges that result when mixing scalar and array operations.

Array scalars live in a hierarchy (see the Figure below) of data types. They can be detected using the hierarchy:
For example, isinstance (val, np.generic) will return True if val is an array scalar object. Alternatively,
what kind of array scalar is present can be determined using other members of the data type hierarchy. Thus, for
example isinstance (val, np.complexfloating) will return True if val is a complex valued type, while
isinstance (val, np.flexible) will return true if val is one of the flexible itemsize array types (string,
unicode, void).

1.2.1 Built-in scalar types

The built-in scalar types are shown below. Along with their (mostly) C-derived names, the integer, float, and complex
data-types are also available using a bit-width convention so that an array of the right size can always be ensured (e.g.
int8, float64, complex128). Two aliases (intp and uintp) pointing to the integer type that is sufficiently
large to hold a C pointer are also provided. The C-like names are associated with character codes, which are shown in
the table. Use of the character codes, however, is discouraged.

Some of the scalar types are essentially equivalent to fundamental Python types and therefore inherit from them as
well as from the generic array scalar type:

Array scalar type Related Python type
int_ IntType (Python 2 only)
float_ FloatType

complex_ ComplexType

str_ StringType
unicode_ UnicodeType

! However, array scalars are immutable, so none of the array scalar attributes are settable.

1.2. Scalars n

NumPy Reference, Release 1.8.1

¥ ¥ IR 2 \

bool_ object_ ' number : | flexible :

ﬁ integer j r inexact j + characte void

isignedintegtﬁ iunsignedintege;r flnatingé iccmple:-:ﬂcatind str_
;I _-I _] unicode |
—» byte > ubyte P half

- short | ushort | [single ¥ ceingle

= intc - uintc —P» float) complex|

> int_ > yint —» longfloat | dongfloat

—» longlong — ulonglong

Figure 1.2: Figure: Hierarchy of type objects representing the array data types. Not shown are the two integer types
intp and uintp which just point to the integer type that holds a pointer for the platform. All the number types can
be obtained using bit-width names as well.

72 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

The bool_ data type is very similar to the Python BooleanType but does not inherit from it because Python’s
BooleanType does not allow itself to be inherited from, and on the C-level the size of the actual bool data is not the
same as a Python Boolean scalar.

Warning: The bool_ type is not a subclass of the int_ type (the bool_ is not even a number type). This is
different than Python’s default implementation of bool as a sub-class of int.

Warning: The int_ type does not inherit from the int built-in under Python 3, because type int is no longer
a fixed-width integer type.

Tip: The default data type in Numpy is float_.

In the tables below, plat form? means that the type may not be available on all platforms. Compatibility with
different C or Python types is indicated: two types are compatible if their data is of the same size and interpreted in

the same way.

Booleans:

Type Remarks

Character code

bool_ | compatible: Python bool | 7 2’

bool8 | 8 bits

Integers:
byte compatible: C char "of
short compatible: C short "h’
intc compatible: C int rir
int_ compatible: Python int r1’
longlong | compatible: C long long rq’
intp large enough to fit a pointer | ' p’
int8 8 bits
intle 16 bits
int32 32 bits
int64 64 bits

Unsigned integers:
ubyte compatible: C unsigned char | ' B’
ushort compatible: C unsigned short | ’ H’
uintc compatible: C unsigned int "I’
uint compatible: Python int g
ulonglong | compatible: C long long rQ’
uintp large enough to fit a pointer rp’
uints8 8 bits
uintlé6 16 bits
uint32 32 bits
uint64 64 bits

Floating-point numbers:

1.2. Scalars

73

NumPy Reference, Release 1.8.1

14 4

half e
single compatible: C float rfr
double compatible: C double

float_ compatible: Python float | " d’
longfloat | compatible: C long float | ’ g’
floatlé 16 bits

float32 32 bits

floato4 64 bits

float96 96 bits, platform?

floatl28 128 bits, platform?

Complex floating-point numbers:

csingle !
complex_ compatible: Python complex | ’ D’
clongfloat "G’
complex64 two 32-bit floats
complex128 | two 64-bit floats
complex192 | two 96-bit floats, platform?
complex256 | two 128-bit floats, platform?

Any Python object:

| object_ | any Python object [0" |

Note: The data actually stored in object arrays (i.e., arrays having dtype ob ject_) are references to Python objects,
not the objects themselves. Hence, object arrays behave more like usual Python 11 st s, in the sense that their contents
need not be of the same Python type.

The object type is also special because an array containing ob ject_ items does not return an object_ object on
item access, but instead returns the actual object that the array item refers to.

The following data types are flexible. They have no predefined size: the data they describe can be of different length
in different arrays. (In the character codes # is an integer denoting how many elements the data type consists of.)

str_ compatible: Python str " SH#!
unicode_ | compatible: Python unicode | ' U#’
void "V#!

Warning: Numeric Compatibility: If you used old typecode characters in your Numeric code (which was never
recommended), you will need to change some of them to the new characters. In particular, the needed changes
arec —> S1,b -> B,1 -> b, s —> h,w —> H,and u —> I. These changes make the type character
convention more consistent with other Python modules such as the st ruct module.

1.2.2 Attributes

The array scalar objects have an array priority of NPY SCALAR PRIORITY (-1,000,000.0). They also do
not (yet) have a ct ypes attribute. Otherwise, they share the same attributes as arrays:

generic.flags integer value of flags
generic.shape tuple of array dimensions
generic.strides tuple of bytes steps in each dimension
generic.ndim number of array dimensions

Continued on next page ‘

74

Chapter 1. Array objects

http://docs.python.org/dev/library/stdtypes.html#list
http://docs.python.org/dev/library/struct.html#module-struct

NumPy Reference, Release 1.8.1

Table 1.22 — continued from previous page

generic.data

pointer to start of data

generic.size

number of elements in the gentype

generic.itemsize

length of one element in bytes

generic.base

base object

generic.dtype

get array data-descriptor

generic.real

real part of scalar

generic.imag

imaginary part of scalar

generic.flat

a 1-d view of scalar

generic.T

transpose

generic.__array_interface__ Array protocol: Python side
generic.__array_struct__ Array protocol: struct
generic.__array_priority_ Array priority.
generic.__array_wrap___ sc.__array_wrap__(obj) return scalar from array

generic.flags
integer value of flags

generic.shape
tuple of array dimensions

generic.strides
tuple of bytes steps in each dimension

generic.ndim
number of array dimensions

generic.data
pointer to start of data

generic.size
number of elements in the gentype

generic.itemsize
length of one element in bytes

generic.base
base object

generic.dtype
get array data-descriptor

generic.real
real part of scalar

generic.imag
imaginary part of scalar

generic.flat
a 1-d view of scalar

generic.T
transpose

generic.__array_interface_
Array protocol: Python side

generic.__array struct_
Array protocol: struct

1.2. Scalars

75

NumPy Reference, Release 1.8.1

generic.__array_priority

Array priority.

generic.__array wrap__ ()
sc.__array_wrap__(obj) return scalar from array

1.2.3 Indexing

See Also:

Indexing, Data type objects (dtype)

Array scalars can be indexed like O-dimensional arrays: if x is an array scalar,

e x[()] returns a O-dimensional ndarray

e x[’field-name’] returns the array scalar in the field field-name. (x can have fields, for example, when it
corresponds to a record data type.)

1.2.4 Methods

Array scalars have exactly the same methods as arrays. The default behavior of these methods is to internally convert
the scalar to an equivalent O-dimensional array and to call the corresponding array method. In addition, math operations
on array scalars are defined so that the same hardware flags are set and used to interpret the results as for ufunc, so that
the error state used for ufuncs also carries over to the math on array scalars.

The exceptions to the above rules are given below:

generic Base class for numpy scalar types.
generic.__array_ sc.__array__(Itype) return O-dim array
generic.__array_wrap___ sc.__array_wrap__(obj) return scalar from array
generic.squeeze Not implemented (virtual attribute)
generic.byteswap Not implemented (virtual attribute)
generic.__reduce_

generic.__ _setstate_

generic.setflags Not implemented (virtual attribute)

class numpy .generic

Base class for numpy scalar types.

Class from which most (all?) numpy scalar types are derived. For consistency, exposes the same API as
ndarray, despite many consequent attributes being either “get-only,” or completely irrelevant. This is the
class from which it is strongly suggested users should derive custom scalar types.

Attributes

T transpose

base base object

data pointer to start of data
dtype get array data-descriptor
flags integer value of flags
flat a 1-d view of scalar
imag imaginary part of scalar

Continued on next page \

76

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Table 1.24 — continued from previous page

itemsize

length of one element in bytes

nbytes length of item in bytes

ndim number of array dimensions

real real part of scalar

shape tuple of array dimensions

size number of elements in the gentype
strides tuple of bytes steps in each dimension

generic.T
transpose

generic.base
base object

generic.data

pointer to start of data

generic.dtype

get array data-descriptor

generic.flags

integer value of flags

generic.flat
a 1-d view of scalar

generic.imag

imaginary part of scalar

generic.itemsize

length of one element in bytes

generic.nbytes

length of item in bytes

generic.ndim

number of array dimensions

generic.real
real part of scalar

generic.shape

tuple of array dimensions

generic.size

number of elements in the gentype

generic.strides

tuple of bytes steps in each dimension

Methods
all Not implemented (virtual attribute)
any Not implemented (virtual attribute)
argmax Not implemented (virtual attribute)
argmin Not implemented (virtual attribute)
argsort Not implemented (virtual attribute)

Continued on next page |

1.2. Scalars

77

NumPy Reference, Release 1.8.1

Table 1.25 — continued from previous page

astype

Not implemented (virtual attribute)

byteswap

Not implemented (virtual attribute)

choose

Not implemented (virtual attribute)

clip

Not implemented (virtual attribute)

compress

Not implemented (virtual attribute)

conj

conjugate

Not implemented (virtual attribute)

CcCopy

Not implemented (virtual attribute)

cumprod

Not implemented (virtual attribute)

cumsum

Not implemented (virtual attribute)

diagonal

Not implemented (virtual attribute)

dump

Not implemented (virtual attribute)

dumps

Not implemented (virtual attribute)

fill

Not implemented (virtual attribute)

flatten

Not implemented (virtual attribute)

getfield

Not implemented (virtual attribute)

item

Not implemented (virtual attribute)

itemset

Not implemented (virtual attribute)

max

Not implemented (virtual attribute)

mean

Not implemented (virtual attribute)

min

Not implemented (virtual attribute)

newbyteorder([new_order])

Return a new dt ype with a different byte order.

nonzero

Not implemented (virtual attribute)

prod

Not implemented (virtual attribute)

ptp

Not implemented (virtual attribute)

put

Not implemented (virtual attribute)

ravel

Not implemented (virtual attribute)

repeat

Not implemented (virtual attribute)

reshape

Not implemented (virtual attribute)

resize

Not implemented (virtual attribute)

round

Not implemented (virtual attribute)

searchsorted

Not implemented (virtual attribute)

setfield

Not implemented (virtual attribute)

setflags

Not implemented (virtual attribute)

sort

Not implemented (virtual attribute)

squeeze

Not implemented (virtual attribute)

std

Not implemented (virtual attribute)

sum

Not implemented (virtual attribute)

sSwapaxes

Not implemented (virtual attribute)

take

Not implemented (virtual attribute)

tofile

Not implemented (virtual attribute)

tolist

Not implemented (virtual attribute)

tostring

Not implemented (virtual attribute)

trace

Not implemented (virtual attribute)

transpose

Not implemented (virtual attribute)

var

Not implemented (virtual attribute)

view

Not implemented (virtual attribute)

generic.all()

Not implemented (virtual attribute)

78

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform APL

See Also:
The

generic.any ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.argmax ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.argmin ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.argsort ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.astype ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.byteswap ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

all the

all the

all the

all the

all the

all the

all the

1.2. Scalars

79

NumPy Reference, Release 1.8.1

generic.choose ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

generic.clip ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

generic.compress ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

generic.conj ()

generic.conjugate ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform APIL.

See Also:

The

generic.copy ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

generic.cumprod /()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform APIL.

See Also:

The

generic.cumsum ()

Not implemented (virtual attribute)

80

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform APL

See Also:
The

generic.diagonal ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.dump ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.dumps ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.£fill ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.flatten ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.getfield ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

all the

all the

all the

all the

all the

all the

all the

1.2. Scalars

81

NumPy Reference, Release 1.8.1

generic.item()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

generic.itemset ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

generic.max ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

generic.mean ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

generic.min ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

generic.newbyteorder (new_order="S’)

Return a new dt ype with a different byte order.
Changes are also made in all fields and sub-arrays of the data type.
The new_order code can be any from the following:

o{‘<’, ‘L} - little endian

{>’, ‘B’} - big endian

«{‘=’, ‘N’ } - native order

*‘S’ - swap dtype from current to opposite endian

*{‘I’, ‘T'} - ignore (no change to byte order)

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

82

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Parameters
new_order : str, optional

Byte order to force; a value from the byte order specifications above. The default value
(‘S’) results in swapping the current byte order. The code does a case-insensitive check
on the first letter of new_order for the alternatives above. For example, any of ‘B’ or ‘b’
or ‘biggish’ are valid to specify big-endian.

Returns
new_dtype : dtype

New dt ype object with the given change to the byte order.
generic.nonzero ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.prod ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.ptp ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.put ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.ravel ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.repeat ()
Not implemented (virtual attribute)

all the

all the

all the

all the

all the

1.2. Scalars

83

NumPy Reference, Release 1.8.1

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform APL

See Also:
The

generic.reshape ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

generic.resize ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.round/()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

generic.searchsorted ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.setfield()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

generic.setflags ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

84

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

generic.sort ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.squeeze ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.std()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.sum/()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.swapaxes ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.take ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.tofile ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform APIL.

See Also:

1.2. Scalars 85

NumPy Reference, Release 1.8.1

The

generic.tolist ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.tostring()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.trace ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.transpose ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.var ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.view ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

generic.__array ()

sc.__array__(Itype) return O-dim array

generic.__array_wrap_ ()

sc.__array_wrap__(obj) return scalar from array

86

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

generic.squeeze ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the attributes
of the ndarray class so as to provide a uniform APL

See Also:
The

generic.byteswap ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the attributes
of the ndarray class so as to provide a uniform API.

See Also:
The
generic.__reduce__ ()

generic.__setstate_ ()

generic.setflags()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the attributes
of the ndarray class so as to provide a uniform API.

See Also:

The

1.2.5 Defining new types

There are two ways to effectively define a new array scalar type (apart from composing record dtypes from the built-in
scalar types): One way is to simply subclass the ndarray and overwrite the methods of interest. This will work to a
degree, but internally certain behaviors are fixed by the data type of the array. To fully customize the data type of an
array you need to define a new data-type, and register it with NumPy. Such new types can only be defined in C, using
the Numpy C-API.

1.3 Data type objects (dtype)

A data type object (an instance of numpy . dtype class) describes how the bytes in the fixed-size block of memory
corresponding to an array item should be interpreted. It describes the following aspects of the data:

1. Type of the data (integer, float, Python object, etc.)

2. Size of the data (how many bytes is in e.g. the integer)
3. Byte order of the data (little-endian or big-endian)
4

. If the data type is a record, an aggregate of other data types, (e.g., describing an array item consisting of an
integer and a float),

(a) what are the names of the “fields” of the record, by which they can be accessed,

(b) what is the data-type of each field, and

1.3. Data type objects (dtype) 87

NumPy Reference, Release 1.8.1

(c) which part of the memory block each field takes.
5. If the data type is a sub-array, what is its shape and data type.

To describe the type of scalar data, there are several built-in scalar types in Numpy for various precision of integers,
floating-point numbers, efc. An item extracted from an array, e.g., by indexing, will be a Python object whose type is
the scalar type associated with the data type of the array.

Note that the scalar types are not dt ype objects, even though they can be used in place of one whenever a data type
specification is needed in Numpy.

Struct data types are formed by creating a data type whose fields contain other data types. Each field has a name by
which it can be accessed. The parent data type should be of sufficient size to contain all its fields; the parent is nearly
always based on the void type which allows an arbitrary item size. Struct data types may also contain nested struct
sub-array data types in their fields.

Finally, a data type can describe items that are themselves arrays of items of another data type. These sub-arrays must,
however, be of a fixed size.

If an array is created using a data-type describing a sub-array, the dimensions of the sub-array are appended to the
shape of the array when the array is created. Sub-arrays in a field of a record behave differently, see Record Access.

Sub-arrays always have a C-contiguous memory layout.

Example

A simple data type containing a 32-bit big-endian integer: (see Specifying and constructing data types for details on
construction)

>>> dt np.dtype (' >14")
>>> dt.byteorder

I>V

>>> dt.itemsize

4

>>> dt.name

"int32’

>>> dt.type is np.int32
True

The corresponding array scalar type is int 32.

Example

A record data type containing a 16-character string (in field ‘name’) and a sub-array of two 64-bit floating-point
number (in field ‘grades’):

>>> dt np.dtype ([("name’, np.str_, 16), ('grades’, np.float64, (2,))])
>>> dt [/ name’]

dtype (' |S16")

>>> dt[’grades’]

dtype ((" float64d’, (2,)))

Items of an array of this data type are wrapped in an array scalar type that also has two fields:

>>> x = np.array ([(' Sarah’, (8.0, 7.0)), (/John’, (6.0, 7.0))]1, dtype=dt)
>>> x[1]

(" John’, [6.0, 7.0])

>>> x[1]["grades’]

array ([6., 7.1)

>>> type(x[1])

88 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

<type ’numpy.void’>
>>> type (x[1]["grades’])
<type ’numpy.ndarray’>

1.3.1 Specifying and constructing data types

Whenever a data-type is required in a NumPy function or method, either a dt ype object or something that can be
converted to one can be supplied. Such conversions are done by the dt ype constructor:

dtype Create a data type object.

class numpy . dtype
Create a data type object.

A numpy array is homogeneous, and contains elements described by a dtype object. A dtype object can be
constructed from different combinations of fundamental numeric types.

Parameters
obj

Object to be converted to a data type object.
align : bool, optional

Add padding to the fields to match what a C compiler would output for a similar C-
struct. Can be True only if 0bj is a dictionary or a comma-separated string. If a struct
dtype is being created, this also sets a sticky alignment flag i salignedstruct.

copy : bool, optional

Make a new copy of the data-type object. If False, the result may just be a reference
to a built-in data-type object.

See Also:

result_type

Examples
Using array-scalar type:

>>> np.dtype (np.intl6)
dtype ("int16’)

Record, one field name ‘f1°, containing int16:

>>> np.dtype ([(' £f1’, np.intl6)])

dtype ([(" £1", "<i2’)1])

Record, one field named ‘f1’, in itself containing a record with one field:

>>> np.dtype([(' £17, [("f1’, np.intl6)]1)1])
dtype ([(" £17, [("f1’, ’<i2")])])

Record, two fields: the first field contains an unsigned int, the second an int32:

>>> np.dtype ([(' £f1’, np.uint), ('£2’, np.int32)1])
dtype ([(" £1", ’"<u4d’), ("f2', ’'<id’')])

1.3. Data type objects (dtype) 89

NumPy Reference, Release 1.8.1

Using array-protocol type strings:

>>> np.dtype([(’a’,"£8"), ("b","510")1)

dtype ([("a’,

r<f87), ("b’, "1S10")1)

Using comma-separated field formats. The shape is (2,3):

>>> np.dtype("i4, (2,3)f8")

dtype ([(" £0",

r<id4r), ("f£17, '<£87, (2, 3))])

Using tuples. int is a fixed type, 3 the field’s shape. void is a flexible type, here of size 10:

>>> np.dtype ([(’hello’, (np.int,3)), ('world’ ,np.void, 10)1])
dtype ([("hello’, ’<i4’, 3), ('world’, " [|V10’)])

Subdivide int16 into 2 int8°s, called x and y. 0 and 1 are the offsets in bytes:

>>> np.dtype((np.intl6, {’'x’:(np.int8,0), 'y’ :(np.int8,1)}))

dtype (('<i2’,

LU=, 71117y, (Cy', "1417)1))

Using dictionaries. Two fields named ‘gender’ and ‘age’:

>>> np.dtype ({’names’ : ['gender’,’age’], ’'formats’:[’S1l’,np.uint8]})
dtype ([(‘gender’, ’[S1'), (’age’, ’|ul’)])

Offsets in bytes, here 0 and 25:

>>> np.dtype ({’ surname’ : (' S25’,0),"age’ : (np.uint8,25) })

dtype ([(' surname’, ' [S25"), ('age’, "|lul’)])
Attributes
base
descr Array-interface compliant full description of the data-type.
fields Dictionary of named fields defined for this data type, or None.
hasobject Boolean indicating whether this dtype contains any reference-counted objects in any fields or sub-dtypes.
isalignedstruct Boolean indicating whether the dtype is a struct which maintains field alignment.
isbuiltin Integer indicating how this dtype relates to the built-in dtypes.

isnative

Boolean indicating whether the byte order of this dtype is native

metadata

name A bit-width name for this data-type.

names Ordered list of field names, or None if there are no fields.

shape Shape tuple of the sub-array if this data type describes a sub-array,

str The array-protocol typestring of this data-type object.

subdtype Tuple (item_dtype, shape) if this dtype describes a sub-array, and
dtype.base

dtype.descr

Array-interface compliant full description of the data-type.

The format is that required by the ‘descr’ key in the __array_interface__ attribute.

dtype.fields

Dictionary of named fields defined for this data type, or None.

The dictionary is indexed by keys that are the names of the fields. Each entry in the dictionary is a tuple

90

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

fully describing the field:
(dtype, offset[, titlel])
If present, the optional title can be any object (if it is a string or unicode then it will also be a key in

the fields dictionary, otherwise it’s meta-data). Notice also that the first two elements of the tuple can be
passed directly as arguments to the ndarray.getfieldand ndarray.setfield methods.

See Also:

ndarray.getfield, ndarray.setfield

Examples

>>> dt = np.dtype ([('name’, np.str_, 16), ('grades’, np.float64, (2,))1])
>>> print dt.fields
{’grades’: (dtype((’float64’,(2,))), 16), ’'name’: (dtype(’[S16’), 0)}

dtype.hasobject
Boolean indicating whether this dtype contains any reference-counted objects in any fields or sub-dtypes.

Recall that what is actually in the ndarray memory representing the Python object is the memory address
of that object (a pointer). Special handling may be required, and this attribute is useful for distinguishing
data types that may contain arbitrary Python objects and data-types that won’t.

dtype.isalignedstruct
Boolean indicating whether the dtype is a struct which maintains field alignment. This flag is sticky, so
when combining multiple structs together, it is preserved and produces new dtypes which are also aligned.

dtype.isbuiltin
Integer indicating how this dtype relates to the built-in dtypes.

Read-only.

0 | if this is a structured array type, with fields

1 | if this is a dtype compiled into numpy (such as ints, floats etc)

2 | if the dtype is for a user-defined numpy type A user-defined type uses the numpy C-API
machinery to extend numpy to handle a new array type. See user.user-defined-data-types in the
Numpy manual.

Examples

>>> dt = np.dtype(’i2")
>>> dt.isbuiltin

1

>>> dt = np.dtype(’ £8")
>>> dt.isbuiltin

1

>>> dt = np.dtype ([(' fieldl’, 7"£87)])
>>> dt.isbuiltin

0

dtype.isnative
Boolean indicating whether the byte order of this dtype is native to the platform.

dtype .metadata

dtype.name
A bit-width name for this data-type.

Un-sized flexible data-type objects do not have this attribute.

1.3. Data type objects (dtype) 91

NumPy Reference, Release 1.8.1

dtype .names
Ordered list of field names, or None if there are no fields.

The names are ordered according to increasing byte offset. This can be used, for example, to walk through
all of the named fields in offset order.

Examples

>>> dt = np.dtype([('name’, np.str_, 16), ('grades’, np.float6d, (2,))1])
>>> dt.names
("name’, ’'grades’)

dtype.shape
Shape tuple of the sub-array if this data type describes a sub-array, and () otherwise.

dtype.str
The array-protocol typestring of this data-type object.

dtype.subdtype
Tuple (item_dtype, shape) if this dtype describes a sub-array, and None otherwise.

The shape is the fixed shape of the sub-array described by this data type, and item_dtype the data type of
the array.

If a field whose dtype object has this attribute is retrieved, then the extra dimensions implied by shape are
tacked on to the end of the retrieved array.

Methods

newbyteorder([new_order]) Return a new dtype with a different byte order.

dtype .newbyteorder (new_order="S’)
Return a new dtype with a different byte order.

Changes are also made in all fields and sub-arrays of the data type.

Parameters
new_order : string, optional

Byte order to force; a value from the byte order specifications below. The default value
(‘S’) results in swapping the current byte order. new_order codes can be any of:

* 'S’ - swap dtype from current to opposite endian
* {’<", 'L’} - little endian

* {’>", "B’} - big endian

* {’='", 'N’} - native order

* {’]", "I'"} - ignore (no change to byte order)

The code does a case-insensitive check on the first letter of new_order for these alterna-
tives. For example, any of ‘>’ or ‘B’ or ‘b’ or ‘brian’ are valid to specify big-endian.

Returns
new_dtype : dtype

New dtype object with the given change to the byte order.

Notes

Changes are also made in all fields and sub-arrays of the data type.

92 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Examples

>>> import sys

>>> sys_is_le = sys.byteorder == 'little’

>>> native_code = sys_is_le and '<’ or ’>’

>>> swapped_code = sys_is_le and >’ or ’'<’

>>> native_dt = np.dtype (native_code+’12")

>>> swapped_dt = np.dtype (swapped_code+’12")

>>> native_dt.newbyteorder (’'S’) == swapped_dt
True

>>> native_dt.newbyteorder () == swapped_dt

True

>>> native_dt == swapped_dt.newbyteorder (’S’)

True

>>> native_dt == swapped_dt.newbyteorder (’'=")

True

>>> native_dt == swapped_dt.newbyteorder ('N’)

True

>>> native_dt == native_dt.newbyteorder ('’ |”)

True

>>> np.dtype (/' <i2’) == native_dt.newbyteorder (’'<’)
True

>>> np.dtype (' <i2’) == native_dt.newbyteorder (L")
True

>>> np.dtype(’>12’) == native_dt.newbyteorder (’'>")
True

>>> np.dtype (’>12’) == native_dt.newbyteorder ('B’)
True

What can be converted to a data-type object is described below:

dtype object

Used as-is.

None

The default data type: float_.

Array-scalar types

The 24 built-in array scalar type objects all convert to an associated data-type object. This is true for their
sub-classes as well.

Note that not all data-type information can be supplied with a type-object: for example, flexible data-types
have a default itemsize of 0, and require an explicitly given size to be useful.

Example

>>> dt
>>> dt

np.dtype (np.1int32) # 32-bit integer
np.dtype (np.complexl128) # 128-bit complex floating-point number

Generic types

The generic hierarchical type objects convert to corresponding type objects according to the associations:

1.3. Data type objects (dtype) 93

NumPy Reference, Release 1.8.1

number, inexact, floating | float
complexfloating cfloat
integer, signedinteger int_
unsignedinteger uint
character string
generic, flexible void

Built-in Python types

Several python types are equivalent to a corresponding array scalar when used to generate a dt ype object:

int int_
bool bool__
float float_
complex | cfloat
str string
unicode | unicode_
buffer void

(all others) | object_

Example
>>> dt = np.dtype (float) # Python-compatible floating-point number
>>> dt = np.dtype (int) # Python-compatible integer

>>> dt = np.dtype (object) # Python object

Types with .dtype

Any type object with a dtype attribute: The attribute will be accessed and used directly. The attribute
must return something that is convertible into a dtype object.

Several kinds of strings can be converted. Recognized strings can be prepended with ’ >’ (big-endian), ' <’ (little-
endian), or ' =’ (hardware-native, the default), to specify the byte order.

One-character strings

Each built-in data-type has a character code (the updated Numeric typecodes), that uniquely identifies it.

Example

>>> dt = np.dtype('b’) # byte, native byte order

(
>>> dt = np.dtype(’>H’) # big-endian unsigned short
>>> dt = np.dtype('<f’) # little-endian single-precision float
>>> dt = np.dtype('d’) # double-precision floating-point number

Array-protocol type strings (see The Array Interface)

The first character specifies the kind of data and the remaining characters specify how many bytes of data.
The supported kinds are

"b’ Boolean

rir (signed) integer

ru’ unsigned integer

rfr floating-point

rc’ complex-floating point
"S’,7a’ | string

ru’ unicode

v’ raw data (void)

94 Chapter 1. Array objects

http://docs.python.org/dev/library/stdtypes.html#str

NumPy Reference, Release 1.8.1

Example

>>> dt
>>> dt
>>> dt
>>> dt

np.dtype (' 14")
np.dtype (' £8")
np.dtype('cl6’)
np.dtype (' a25”)

32-bit signed integer
64-bit floating-point number

128-bit complex floating-point number

25-character string

String with comma-separated fields

Numarray introduced a short-hand notation for specifying the format of a record as a comma-separated

string of basic formats.

A basic format in this context is an optional shape specifier followed by an array-protocol type string.
Parenthesis are required on the shape if it has more than one dimension. NumPy allows a modification
on the format in that any string that can uniquely identify the type can be used to specify the data-type
in a field. The generated data-type fields are named ’ £0’, 7 £1/, ..., * £<N-1>’ where N (>1) is the
number of comma-separated basic formats in the string. If the optional shape specifier is provided, then

the data-type for the corresponding field describes a sub-array.

Example

* field named £0 containing a 32-bit integer

¢ field named f1 containing a 2 x 3 sub-array of 64-bit floating-point numbers

* field named £2 containing a 32-bit floating-point number

>>> dt

np.dtype ("i4, (2,3)f8, f4")

* field named £0 containing a 3-character string

e field named £1 containing a sub-array of shape (3,) containing 64-bit unsigned integers

¢ field named £2 containing a 3 x 4 sub-array containing 10-character strings

>>> dt

np.dtype ("a3, 3u8,

(3,4)al0")

Type strings

Any string in numpy . sctypeDict.keys():

Example

>>> dt
>>> dt

np.dtype ("uint32’)
np.dtype ("Float64d’)

32-bit unsigned integer
64-bit floating-point number

(flexible_dtype, itemsize)

The first argument must be an object that is converted to a zero-sized flexible data-type object, the second

argument is an integer providing the desired itemsize.

Example

>>> dt
>>> dt
>>> dt

np.dtype ((void,
np.dtype ((str,
np.dtype (("U’,

10))
35))
10))

10-byte wide data block
35-character string
10-character unicode string

1.3.

Data type objects (dtype)

95

NumPy Reference, Release 1.8.1

(fixed_dtype, shape)

The first argument is any object that can be converted into a fixed-size data-type object. The second
argument is the desired shape of this type. If the shape parameter is 1, then the data-type object is
equivalent to fixed dtype. If shape is a tuple, then the new dtype defines a sub-array of the given shape.

Example

>>> dt = np.dtype((np.int32, (2,2))) # 2 x 2 integer sub-array

>>> dt = np.dtype((’S10", 1)) # l0-character string

>>> dt = np.dtype(('i4, (2,3)f8, £4’, (2,3))) # 2 x 3 record sub—-array
[(field_name, field dtype, field_shape), ...]

obj should be a list of fields where each field is described by a tuple of length 2 or 3. (Equivalent to the
descriteminthe array_interface_ attribute.)

The first element, field_name, is the field name (if this is ” then a standard field name, ’ £#", is assigned).
The field name may also be a 2-tuple of strings where the first string is either a “title” (which may be any
string or unicode string) or meta-data for the field which can be any object, and the second string is the
“name” which must be a valid Python identifier.

The second element, field_dtype, can be anything that can be interpreted as a data-type.

The optional third element field_shape contains the shape if this field represents an array of the data-type
in the second element. Note that a 3-tuple with a third argument equal to 1 is equivalent to a 2-tuple.

This style does not accept align in the dtype constructor as it is assumed that all of the memory is
accounted for by the array interface description.

Example
Data-type with fields big (big-endian 32-bit integer) and 1ittle (little-endian 32-bit integer):

>>> dt = np.dtype ([(‘big’, ’>i47), (’little’, ’<id’)])

Data-type with fields R, G, B, A, each being an unsigned 8-bit integer:

>>> dt = np.dtype ([('R’,’ul’), ('G’,’ul’), ('B’,"ul’), (‘A’," ul’)])

{"names’ : ..., "formats’: ..., 'offsets’: ..., 'titles’: ..., "itemsize’:

-}

This style has two required and three optional keys. The names and formats keys are required. Their
respective values are equal-length lists with the field names and the field formats. The field names must
be strings and the field formats can be any object accepted by dt ype constructor.

When the optional keys offsets and titles are provided, their values must each be lists of the same length
as the names and formats lists. The offsets value is a list of byte offsets (integers) for each field, while the
titles value is a list of titles for each field (None can be used if no title is desired for that field). The titles
can be any string or unicode object and will add another entry to the fields dictionary keyed by the
title and referencing the same field tuple which will contain the title as an additional tuple member.

The itemsize key allows the total size of the dtype to be set, and must be an integer large enough so all the
fields are within the dtype. If the dtype being constructed is aligned, the itemsize must also be divisible
by the struct alignment.

Example

96 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Data type with fields r, g, b, a, each being a 8-bit unsigned integer:

>>> dt = np.dtype({’names’: ["r’,’g’",'b","a’"],
"formats’: [uint8, uint8, uint8, uint8]})

Data type with fields r and b (with the given titles), both being 8-bit unsigned integers, the first at byte
position 0 from the start of the field and the second at position 2:

>>> dt = np.dtype({’'names’: ["r’,’b"], ’"formats’: ["ul’, ’"ul’'l,
"offsets’: [0, 2],
"titles’: ['Red pixel’, ’'Blue pixel’]})

{"fieldl’: ..., ’'field2’: ey e}

This usage is discouraged, because it is ambiguous with the other dict-based construction method. If you
have a field called ‘names’ and a field called ‘formats’ there will be a conflict.

This style allows passing in the fields attribute of a data-type object.

obj should contain string or unicode keys that refer to (data-type, offset) or (data-type,
offset, title) tuples.

Example

Data type containing field col1 (10-character string at byte position 0), co12 (32-bit float at byte posi-
tion 10), and col3 (integers at byte position 14):

>>> dt = np.dtype({’coll’: (’S10’, 0), 'col2’: (float32, 10),
"col3’: (int, 14)})

(base_dtype, new_dtype)

This usage is discouraged. In NumPy 1.7 and later, it is possible to specify struct dtypes with overlapping
fields, functioning like the ‘union’ type in C. The union mechanism is preferred.

Both arguments must be convertible to data-type objects in this case. The base_dtype is the data-type
object that the new data-type builds on. This is how you could assign named fields to any built-in data-
type object.

Example

32-bit integer, whose first two bytes are interpreted as an integer via field real, and the following two
bytes via field imag.

>>> dt = np.dtype((np.int32,{’real’ :(np.intl6, 0),’imag’ : (np.intl6, 2)})

32-bit integer, which is interpreted as consisting of a sub-array of shape (4,) containing 8-bit integers:

>>> dt = np.dtype((np.int32, (np.int8, 4)))

32-bit integer, containing fields r, g, b, a that interpret the 4 bytes in the integer as four unsigned integers:

>>> dt = np.dtype(("1i4", [('x","ul’), ("g","ul”), (b’ ,"ul’"), ("a’,’ul’)]1))

1.3.2 dtype

Numpy data type descriptions are instances of the dt ype class.

1.3. Data type objects (dtype) 97

NumPy Reference, Release 1.8.1

Attributes

The type of the data is described by the following dt ype attributes:

dtype.type The type object used to instantiate a scalar of this data-type.
dtype.kind A character code (one of ‘biufcSUV’) identifying the general kind of data.
dtype.char A unique character code for each of the 21 different built-in types.
dtype.num A unique number for each of the 21 different built-in types.

dtype.str The array-protocol typestring of this data-type object.

dtype.type
The type object used to instantiate a scalar of this data-type.

dtype.kind
A character code (one of ‘biufcSUV”’) identifying the general kind of data.

dtype.char
A unique character code for each of the 21 different built-in types.

dtype.num
A unique number for each of the 21 different built-in types.

These are roughly ordered from least-to-most precision.

dtype.str
The array-protocol typestring of this data-type object.

Size of the data is in turn described by:

dtype.name A bit-width name for this data-type.
dtype.itemsize The element size of this data-type object.

dtype.name
A bit-width name for this data-type.

Un-sized flexible data-type objects do not have this attribute.

dtype.itemsize
The element size of this data-type object.

For 18 of the 21 types this number is fixed by the data-type. For the flexible data-types, this number can be
anything.

Endianness of this data:

dtype.byteorder A character indicating the byte-order of this data-type object.

dtype .byteorder
A character indicating the byte-order of this data-type object.

One of:
‘=" | native
‘<’ | little-endian
>’ | big-endian
‘" | not applicable

All built-in data-type objects have byteorder either ‘=" or ‘I’

98 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Examples

>>> dt = np.dtype(’i2")

>>> dt.byteorder

>>> # endian 1is not relevant for 8 bit numbers
>>> np.dtype(’1l’) .byteorder

I‘I

>>> # or ASCII strings

>>> np.dtype (' S2’) .byteorder

I‘I

>>> # Even 1f specific code is given, and it 1is native
>>> # /=’ 1is the byteorder

>>> import sys

>>> sys_is_le = sys.byteorder == ’'little’
>>> native_code = sys_is_le and "<’ or ’>’
>>> swapped_code = sys_is_le and '>’ or ’<’

>>> dt = np.dtype (native_code + "127")
>>> dt.byteorder

>>> # Swapped code shows up as itself
>>> dt = np.dtype (swapped_code + "12")
>>> dt.byteorder == swapped_code

True

Information about sub-data-types in a record:

dtype.fields Dictionary of named fields defined for this data type, or None.
dtype.names Ordered list of field names, or None if there are no fields.

dtype.fields
Dictionary of named fields defined for this data type, or None.

The dictionary is indexed by keys that are the names of the fields. Each entry in the dictionary is a tuple fully
describing the field:

(dtype, offset[, titlel])

If present, the optional title can be any object (if it is a string or unicode then it will also be a key in the fields
dictionary, otherwise it’s meta-data). Notice also that the first two elements of the tuple can be passed directly
as arguments to the ndarray.getfield and ndarray.setfield methods.

See Also:

ndarray.getfield, ndarray.setfield

Examples

>>> dt = np.dtype([('name’, np.str_, 16), (’'grades’, np.float64, (2,))])
>>> print dt.fields
{’grades’: (dtype((’float64’,(2,))), 16), ’'name’: (dtype(’[S16’), 0)}

dtype.names
Ordered list of field names, or None if there are no fields.

The names are ordered according to increasing byte offset. This can be used, for example, to walk through all
of the named fields in offset order.

1.3. Data type objects (dtype) 99

NumPy Reference, Release 1.8.1

Examples

>>> dt = np.dtype ([('name’, np.str_, 16), ('grades’, np.float64, (2,))])
>>> dt.names
("name’, ’'grades’)

For data types that describe sub-arrays:

dtype.subdtype Tuple (item_dtype, shape) if this dtype describes a sub-array, and
dtype.shape Shape tuple of the sub-array if this data type describes a sub-array,

dtype.subdtype
Tuple (item_dtype, shape) if this dtype describes a sub-array, and None otherwise.

The shape is the fixed shape of the sub-array described by this data type, and item_dtype the data type of the
array.

If a field whose dtype object has this attribute is retrieved, then the extra dimensions implied by shape are tacked
on to the end of the retrieved array.

dtype.shape
Shape tuple of the sub-array if this data type describes a sub-array, and () otherwise.

Attributes providing additional information:

dtype.hasobject Boolean indicating whether this dtype contains any reference-counted objects in any fields or sub-dtypes.

dtype.flags Bit-flags describing how this data type is to be interpreted.

dtype.isbuiltin Integer indicating how this dtype relates to the built-in dtypes.

dtype.isnative Boolean indicating whether the byte order of this dtype is native

dtype.descr Array-interface compliant full description of the data-type.

dtype.alignment The required alignment (bytes) of this data-type according to the compiler.

dtype.hasobject
Boolean indicating whether this dtype contains any reference-counted objects in any fields or sub-dtypes.

Recall that what is actually in the ndarray memory representing the Python object is the memory address of that
object (a pointer). Special handling may be required, and this attribute is useful for distinguishing data types
that may contain arbitrary Python objects and data-types that won’t.

dtype.flags
Bit-flags describing how this data type is to be interpreted.

Bit-masks are in numpy.core.multiarray as the constants ITEM_HASOBJECT, LIST_PICKLE,
ITEM_IS_POINTER, NEEDS_INIT, NEEDS_PYAPI, USE_GETITEM, USE_SETITEM. A full explanation of
these flags is in C-API documentation; they are largely useful for user-defined data-types.

dtype.isbuiltin
Integer indicating how this dtype relates to the built-in dtypes.

Read-only.

0 | if this is a structured array type, with fields

1 | if this is a dtype compiled into numpy (such as ints, floats etc)

2 | if the dtype is for a user-defined numpy type A user-defined type uses the numpy C-API machinery to
extend numpy to handle a new array type. See user.user-defined-data-types in the Numpy manual.

100 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Examples

>>> dt = np.dtype(’i2")
>>> dt.isbuiltin

1

>>> dt = np.dtype (' £8")
>>> dt.isbuiltin

>>> dt = np.dtype ([(' fieldl’, 7£8")1)
>>> dt.isbuiltin
0

dtype.isnative
Boolean indicating whether the byte order of this dtype is native to the platform.

dtype.descr
Array-interface compliant full description of the data-type.

The format is that required by the ‘descr’ key in the __array_interface__ attribute.

dtype.alignment
The required alignment (bytes) of this data-type according to the compiler.

More information is available in the C-API section of the manual.

Methods

Data types have the following method for changing the byte order:

dtype.newbyteorder([new_order]) Return a new dtype with a different byte order.

dtype .newbyteorder (new_order=’S")
Return a new dtype with a different byte order.

Changes are also made in all fields and sub-arrays of the data type.

Parameters
new_order : string, optional

Byte order to force; a value from the byte order specifications below. The default value
(‘S’) results in swapping the current byte order. new_order codes can be any of:

*= 'S’ - swap dtype from current to opposite endian
* {’<', 'L"} - little endian

* {’>", "B’} - big endian

* {’=', "N’} - native order

= {"]', '"I"} - ignore (no change to byte order)

The code does a case-insensitive check on the first letter of new_order for these alter-
natives. For example, any of >’ or ‘B’ or ‘b’ or ‘brian’ are valid to specify big-endian.

Returns
new_dtype : dtype

New dtype object with the given change to the byte order.
Notes

Changes are also made in all fields and sub-arrays of the data type.

1.3. Data type objects (dtype) 101

NumPy Reference, Release 1.8.1

Examples

>>> import sys

>>> sys_is_le = sys.byteorder == ’"little’

>>> native_code = sys_is_le and '<’ or ’>’

>>> swapped_code = sys_is_le and ">’ or <’

>>> native_dt = np.dtype (native_code+’i2")

>>> swapped_dt = np.dtype (swapped_code+’i2")

>>> native_dt.newbyteorder ('S’) == swapped_dt
True

>>> native_dt.newbyteorder () == swapped_dt

True

>>> native_dt == swapped_dt.newbyteorder (’S’)

True

>>> native_dt == swapped_dt.newbyteorder ('=")

True

>>> native_dt == swapped_dt.newbyteorder ('N’)

True

>>> native_dt == native_dt.newbyteorder (' |”)

True

>>> np.dtype (' <i2’) == native_dt.newbyteorder ('<’)
True

>>> np.dtype (' <i2’) == native_dt.newbyteorder (’'L")
True

>>> np.dtype(’>12’) == native_dt.newbyteorder (’>")
True

>>> np.dtype(’>12’) == native_dt.newbyteorder ('B’)
True

The following methods implement the pickle protocol:

dtype._ _reduce_
dtype._ _setstate_

dtype.__reduce__ ()

dtype.__setstate__ ()

1.4 Indexing

ndarrays can be indexed using the standard Python x [obj] syntax, where x is the array and obj the selection.
There are three kinds of indexing available: record access, basic slicing, advanced indexing. Which one occurs
depends on obj.

Note: In Python, x[(expl, exp2, ..., expN)] is equivalent to x[expl, exp2, ..., expN]; the
latter is just syntactic sugar for the former.

1.4.1 Basic Slicing

Basic slicing extends Python’s basic concept of slicing to N dimensions. Basic slicing occurs when obj is a slice
object (constructed by start : stop:step notation inside of brackets), an integer, or a tuple of slice objects and

102 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

integers. E11lipsis and newaxis objects can be interspersed with these as well. In order to remain backward
compatible with a common usage in Numeric, basic slicing is also initiated if the selection object is any sequence
(such as a 1ist) containing s1ice objects, the E11ipsis object, or the newaxis object, but no integer arrays or
other embedded sequences.

The simplest case of indexing with N integers returns an array scalar representing the corresponding item. As in
Python, all indices are zero-based: for the i-th index n;, the valid range is 0 < n; < d; where d; is the i-th element
of the shape of the array. Negative indices are interpreted as counting from the end of the array (i.e., if i < 0, it means
n; + 7).

All arrays generated by basic slicing are always views of the original array.

The standard rules of sequence slicing apply to basic slicing on a per-dimension basis (including using a step index).
Some useful concepts to remember include:

* The basic slice syntax is i : j: k where i is the starting index, j is the stopping index, and k is the step (k # 0).
This selects the m elements (in the corresponding dimension) with index values i, i + k, ..., i + (m - 1) k where
m = ¢+ (r # 0) and ¢ and r are the quotient and remainder obtained by dividing j - iby k: j-i =gk + r, so
thati + (m- 1) k <j.

Example

>>> x np.array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 91)
7:2]
14

3, 51)

>>> x[1:
array ([1

* Negative i and j are interpreted as n + i and n + j where n is the number of elements in the corresponding
dimension. Negative k makes stepping go towards smaller indices.

Example

>>> x[-2:10]

array ([8, 9])

>>> x[-3:3:-1]
array ([7, 6, 5, 4])

* Assume 7 is the number of elements in the dimension being sliced. Then, if i is not given it defaults to O for k >
0 and n for k < 0. If j is not given it defaults to n for k > 0 and -1 for k < 0 . If k is not given it defaults to 1.
Note that : : is the same as : and means select all indices along this axis.

Example

>>> x[5:]
[

array ([5, 6, 7, 8, 91)

« If the number of objects in the selection tuple is less than N , then : is assumed for any subsequent dimensions.

Example

>>> x = np.array ([[[1],[2], (311, [[4],[5]1,([6111)
>>> x.shape

(2, 3, 1)
>>> x[1:2]
array ([[[4],

1.4. Indexing 103

http://docs.python.org/dev/library/stdtypes.html#list

NumPy Reference, Release 1.8.1

(51,
(6111)

* Ellipsis expand to the number of : objects needed to make a selection tuple of the same length as x . ndim.
Only the first ellipsis is expanded, any others are interpreted as :.

Example

>>> x[...,0]
array ([[1, 2, 3]

* Each newaxis object in the selection tuple serves to expand the dimensions of the resulting selection by one
unit-length dimension. The added dimension is the position of the newaxis object in the selection tuple.

Example
>>> x[:,np.newaxis, :, :].shape
(2, 1, 3, 1)

* An integer, i, returns the same values as i : i+1 except the dimensionality of the returned object is reduced by 1.
In particular, a selection tuple with the p-th element an integer (and all other entries :) returns the corresponding
sub-array with dimension N - /. If N = I then the returned object is an array scalar. These objects are explained
in Scalars.

* If the selection tuple has all entries : except the p-th entry which is a slice object i : j:k, then the returned
array has dimension N formed by concatenating the sub-arrays returned by integer indexing of elements i, i+k,
ol +(m-1)k<],

¢ Basic slicing with more than one non-: entry in the slicing tuple, acts like repeated application of slicing using
a single non-: entry, where the non-: entries are successively taken (with all other non-: entries replaced by
:). Thus, x [indl, ..., ind2, :] actslike x [ind1] [..., ind2, :] under basic slicing.

Warning: The above is not true for advanced slicing.

* You may use slicing to set values in the array, but (unlike lists) you can never grow the array. The size of the
value to be setin x [obj] = wvalue must be (broadcastable) to the same shape as x [obj].

Note: Remember that a slicing tuple can always be constructed as obj and used in the x [obj] notation. Slice objects
can be used in the construction in place of the [start:stop:step] notation. For example, x [1:10:5, : : 1]
can also be implemented as obj = (slice(1,10,5), slice(None,None,-1)); x[obj] . This can be
useful for constructing generic code that works on arrays of arbitrary dimension.

numpy .newaxis
The newaxis object can be used in all slicing operations as discussed above. None can also be used instead
of newaxis.

1.4.2 Advanced indexing

Advanced indexing is triggered when the selection object, 0bj, is a non-tuple sequence object, an ndarray (of data
type integer or bool), or a tuple with at least one sequence object or ndarray (of data type integer or bool). There are
two types of advanced indexing: integer and Boolean.

104 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Advanced indexing always returns a copy of the data (contrast with basic slicing that returns a view).

Integer

Integer indexing allows selection of arbitrary items in the array based on their N-dimensional index. This kind of
selection occurs when advanced indexing is triggered and the selection object is not an array of data type bool. For the
discussion below, when the selection object is not a tuple, it will be referred to as if it had been promoted to a 1-tuple,
which will be called the selection tuple. The rules of advanced integer-style indexing are:

If the length of the selection tuple is larger than N an error is raised.
All sequences and scalars in the selection tuple are converted to intp indexing arrays.
All selection tuple objects must be convertible to intp arrays, s1ice objects, or the E11ipsis object.

The first E11ipsis object will be expanded, and any other E11ipsis objects will be treated as full slice (:)
objects. The expanded E11ipsis object is replaced with as many full slice (:) objects as needed to make the
length of the selection tuple V.

If the selection tuple is smaller than N, then as many : objects as needed are added to the end of the selection
tuple so that the modified selection tuple has length N.

All the integer indexing arrays must be broadcastable to the same shape.
The shape of the output (or the needed shape of the object to be used for setting) is the broadcasted shape.

After expanding any ellipses and filling out any missing : objects in the selection tuple, then let /Ny be the
number of indexing arrays, and let Ny = N — N, be the number of slice objects. Note that N; > 0 (or we
wouldn’t be doing advanced integer indexing).

If Ny = 0 then the M-dimensional result is constructed by varying the index tuple (i_1, ..., 1i_M) over
the range of the result shape and for each value of the index tuple (ind_1, ..., ind_M):
resultf(i_1, ..., i_M] == x[ind_1[(4i_1, ..., i_M], ind_2[4i_1, ..., 1i_M],
., ind_N[4i_1, ..., i_M]]
Example

Suppose the shape of the broadcasted indexing arrays is 3-dimensional and N is 2. Then the result is found by
letting i, j, k run over the shape found by broadcasting ind_1 and ind_2, and each i, j, k yields:

result(i, j, k] = x[ind_1[i,],k], ind_2[1i, 3, k]]

If Ny > 0, then partial indexing is done. This can be somewhat mind-boggling to understand, but if you think
in terms of the shapes of the arrays involved, it can be easier to grasp what happens. In simple cases (i.e.
one indexing array and N - [slice objects) it does exactly what you would expect (concatenation of repeated
application of basic slicing). The rule for partial indexing is that the shape of the result (or the interpreted shape
of the object to be used in setting) is the shape of x with the indexed subspace replaced with the broadcasted
indexing subspace. If the index subspaces are right next to each other, then the broadcasted indexing space
directly replaces all of the indexed subspaces in x. If the indexing subspaces are separated (by slice objects),
then the broadcasted indexing space is first, followed by the sliced subspace of x.

Example

Suppose x.shape is (10,20,30) and ind is a (2,3,4)-shaped indexing intp array, then result =
x[...,1ind, :]1 has shape (10,2,3,4,30) because the (20,)-shaped subspace has been replaced with a
(2,3,4)-shaped broadcasted indexing subspace. If we let i, j, k loop over the (2,3,4)-shaped subspace then

1.4.

Indexing 105

NumPy Reference, Release 1.8.1

result[...,1i,3,k,:] = x[...,ind[1i,3,k],:]1. This example produces the same result as
x.take (ind, axis=-2).

Example

Now let x . shape be (10,20,30,40,50) and suppose ind_1 and ind_2 are broadcastable to the shape (2,3,4).
Then x[:,ind_1, ind_2] has shape (10,2,3,4,40,50) because the (20,30)-shaped subspace from X has
been replaced with the (2,3,4) subspace from the indices. However, x[:, ind_1, :, ind_2] has shape
(2,3,4,10,30,50) because there is no unambiguous place to drop in the indexing subspace, thus it is tacked-
on to the beginning. It is always possible to use .transpose () to move the subspace anywhere desired.
(Note that this example cannot be replicated using t ake.)

Boolean

This advanced indexing occurs when obj is an array object of Boolean type (such as may be returned from com-
parison operators). It is always equivalent to (but faster than) x [obj.nonzero ()] where, as described above,
obj.nonzero () returns a tuple (of length obj.ndim) of integer index arrays showing the True elements of obj.

The special case when obj.ndim == x.ndim is worth mentioning. In this case x [obj] returns a 1-dimensional
array filled with the elements of x corresponding to the True values of obj. The search order will be C-style (last
index varies the fastest). If obj has True values at entries that are outside of the bounds of x, then an index error will
be raised.

You can also use Boolean arrays as element of the selection tuple. In such instances, they will always be interpreted
as nonzero (obj) and the equivalent integer indexing will be done.

Warning: The definition of advanced indexing means that x[(1,2, 3),] is fundamentally different than
x[(1,2,3)]. The latter is equivalent to x[1, 2, 3] which will trigger basic selection while the former will
trigger advanced indexing. Be sure to understand why this is occurs.

Also recognize that x[[1, 2, 3]] will trigger advanced indexing, whereas x[[1,2, slice (None)]] will
trigger basic slicing.

1.4.3 Record Access

See Also:
Data type objects (dtype), Scalars

If the ndarray object is a record array, i.e. its data type is a record data type, the fields of the array can be accessed
by indexing the array with strings, dictionary-like.

Indexing x [field-name’] returns a new view to the array, which is of the same shape as x (except when the field
is a sub-array) but of data type x.dtype [’ field-name’] and contains only the part of the data in the specified
field. Also record array scalars can be “indexed” this way.

Indexing into a record array can also be done with a list of field names, e.g.
x[[’field-namel’,’ field-name2’]]. Currently this returns a new array containing a copy of the
values in the fields specified in the list. As of NumPy 1.7, returning a copy is being deprecated in favor of
returning a view. A copy will continue to be returned for now, but a FutureWarning will be issued when writing
to the copy. If you depend on the current behavior, then we suggest copying the returned array explicitly, i.e. use
x[[’field-namel’, field-name2’]].copy(). This will work with both past and future versions of NumPy.

If the accessed field is a sub-array, the dimensions of the sub-array are appended to the shape of the result.

106 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Example

>>> x = np.zeros((2,2), dtype=[("a’, np.int32), ('b’, np.float64d, (3,3))])
>>> x[’a’].shape

(2, 2)

>>> x[’a’].dtype
dtype (" int32")
>>> x[’'b’].shape
(2, 2, 3, 3)

>>> x[’b’].dtype
dtype (' float64’)

1.4.4 Flat lterator indexing

x.flat returns an iterator that will iterate over the entire array (in C-contiguous style with the last index varying
the fastest). This iterator object can also be indexed using basic slicing or advanced indexing as long as the selection
object is not a tuple. This should be clear from the fact that x . f1at is a 1-dimensional view. It can be used for integer
indexing with 1-dimensional C-style-flat indices. The shape of any returned array is therefore the shape of the integer
indexing object.

1.5 Iterating Over Arrays

The iterator object nditer, introduced in NumPy 1.6, provides many flexible ways to visit all the elements of one
or more arrays in a systematic fashion. This page introduces some basic ways to use the object for computations on
arrays in Python, then concludes with how one can accelerate the inner loop in Cython. Since the Python exposure of
nditer is arelatively straightforward mapping of the C array iterator API, these ideas will also provide help working
with array iteration from C or C++.

1.5.1 Single Array lteration

The most basic task that can be done with the nditer is to visit every element of an array. Each element is provided
one by one using the standard Python iterator interface.

Example

>>> a = np.arange(6) .reshape (2, 3)
>>> for x in np.nditer(a):
print x,

012345

An important thing to be aware of for this iteration is that the order is chosen to match the memory layout of the array
instead of using a standard C or Fortran ordering. This is done for access efficiency, reflecting the idea that by default
one simply wants to visit each element without concern for a particular ordering. We can see this by iterating over the
transpose of our previous array, compared to taking a copy of that transpose in C order.

Example

>>> a = np.arange (6) .reshape (2, 3)
>>> for x in np.nditer(a.T):

1.5. lterating Over Arrays 107

NumPy Reference, Release 1.8.1

print x,
012345

>>> for x in np.nditer(a.T.copy(order="C")):
print x,

031425

The elements of both a and a.T get traversed in the same order, namely the order they are stored in memory, whereas
the elements of a.T.copy(order="C’) get visited in a different order because they have been put into a different memory
layout.

Controlling Iteration Order

There are times when it is important to visit the elements of an array in a specific order, irrespective of the layout of the
elements in memory. The nditer object provides an order parameter to control this aspect of iteration. The default,
having the behavior described above, is order="K’ to keep the existing order. This can be overridden with order="C’
for C order and order="F’ for Fortran order.

Example

>>> a = np.arange (6) .reshape (2, 3)

>>> for x in np.nditer(a, order='F’):
print x,

031425

>>> for x in np.nditer(a.T, order='C’"):
print x,

031425

Modifying Array Values

By default, the nditer treats the input array as a read-only object. To modify the array elements, you must specify
either read-write or write-only mode. This is controlled with per-operand flags.

Regular assignment in Python simply changes a reference in the local or global variable dictionary instead of modifying
an existing variable in place. This means that simply assigning to x will not place the value into the element of the
array, but rather switch x from being an array element reference to being a reference to the value you assigned. To
actually modify the element of the array, x should be indexed with the ellipsis.

Example

>>> a = np.arange (6) .reshape (2, 3)

>>> a
array ([[0, 1, 2],
[3, 4, 511)
>>> for x in np.nditer(a, op_flags=[’readwrite’]):
x[...] = 2 % x

>>> a

108 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Using an External Loop

In all the examples so far, the elements of a are provided by the iterator one at a time, because all the looping logic is
internal to the iterator. While this is simple and convenient, it is not very efficient. A better approach is to move the
one-dimensional innermost loop into your code, external to the iterator. This way, NumPy’s vectorized operations can
be used on larger chunks of the elements being visited.

The nditer will try to provide chunks that are as large as possible to the inner loop. By forcing ‘C* and ‘F’ order,
we get different external loop sizes. This mode is enabled by specifying an iterator flag.

Observe that with the default of keeping native memory order, the iterator is able to provide a single one-dimensional
chunk, whereas when forcing Fortran order, it has to provide three chunks of two elements each.

Example

>>> a = np.arange (6) .reshape (2, 3)
>>> for x in np.nditer(a, flags=['external loop’]):
print x,

[001 2 3 4 5]

>>> for x in np.nditer(a, flags=[’external loop’], order='F’):
print x,

[0 31 [1 4] [2 3]

Tracking an Index or Multi-Index

During iteration, you may want to use the index of the current element in a computation. For example, you may want
to visit the elements of an array in memory order, but use a C-order, Fortran-order, or multidimensional index to look
up values in a different array.

The Python iterator protocol doesn’t have a natural way to query these additional values from the iterator, so we
introduce an alternate syntax for iterating with an nditer. This syntax explicitly works with the iterator object itself,
so its properties are readily accessible during iteration. With this looping construct, the current value is accessible by
indexing into the iterator, and the index being tracked is the property index or multi_index depending on what was
requested.

The Python interactive interpreter unfortunately prints out the values of expressions inside the while loop during each
iteration of the loop. We have modified the output in the examples using this looping construct in order to be more
readable.

Example

>>> a = np.arange (6) .reshape (2, 3)

>>> it = np.nditer(a, flags=['f_index’])
>>> while not it.finished:
print " <g2d>" % (it [0], it.index),

it.iternext ()

1.5. lterating Over Arrays 109

NumPy Reference, Release 1.8.1

0 <0> 1 <2> 2 <4> 3 <1> 4 <3> 5 <5>

>>> it = np.nditer(a, flags=[’multi_index’])
>>> while not it.finished:
print "2d <g%s>" % (it [0], it.multi_index),

it.iternext ()

0 <(0, 0)> 1 <(0, 1)> 2 <(0, 2)> 3 <(1, 0)> 4 <(1, 1)> 5 <(1, 2)>

>>> it = np.nditer(a, flags=['multi_index’], op_flags=['writeonly’])
>>> while not it.finished:
it[0] = it.multi_index[1] - it.multi_index[0]

it.iternext ()

Tracking an index or multi-index is incompatible with using an external loop, because it requires a different index
value per element. If you try to combine these flags, the nditer object will raise an exception

Example
>>> a = np.zeros((2,3))
>>> it = np.nditer(a, flags=[’c_index’, ’external_loop’])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: Iterator flag EXTERNAL_LOOP cannot be used if an index or multi-index is being tracked

Buffering the Array Elements

When forcing an iteration order, we observed that the external loop option may provide the elements in smaller chunks
because the elements can’t be visited in the appropriate order with a constant stride. When writing C code, this is
generally fine, however in pure Python code this can cause a significant reduction in performance.

By enabling buffering mode, the chunks provided by the iterator to the inner loop can be made larger, significantly
reducing the overhead of the Python interpreter. In the example forcing Fortran iteration order, the inner loop gets to
see all the elements in one go when buffering is enabled.

Example

>>> a = np.arange (6) .reshape (2, 3)
>>> for x in np.nditer(a, flags=[’external_ loop’], order='F'):
print x,

[0 3] [1 4] [2 5]

>>> for x in np.nditer(a, flags=[’external_ loop’,’buffered’], order='F’):
print x,

[0 3142 5]

110 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Iterating as a Specific Data Type

There are times when it is necessary to treat an array as a different data type than it is stored as. For instance, one
may want to do all computations on 64-bit floats, even if the arrays being manipulated are 32-bit floats. Except when
writing low-level C code, it’s generally better to let the iterator handle the copying or buffering instead of casting the
data type yourself in the inner loop.

There are two mechanisms which allow this to be done, temporary copies and buffering mode. With temporary copies,
a copy of the entire array is made with the new data type, then iteration is done in the copy. Write access is permitted
through a mode which updates the original array after all the iteration is complete. The major drawback of temporary
copies is that the temporary copy may consume a large amount of memory, particularly if the iteration data type has a
larger itemsize than the original one.

Buffering mode mitigates the memory usage issue and is more cache-friendly than making temporary copies. Except
for special cases, where the whole array is needed at once outside the iterator, buffering is recommended over tem-
porary copying. Within NumPy, buffering is used by the ufuncs and other functions to support flexible inputs with
minimal memory overhead.

In our examples, we will treat the input array with a complex data type, so that we can take square roots of negative
numbers. Without enabling copies or buffering mode, the iterator will raise an exception if the data type doesn’t match
precisely.

Example

>>> a = np.arange(6) .reshape(2,3) - 3
>>> for x in np.nditer(a, op_dtypes=['complex128’7):
print np.sqgrt(x),

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Iterator operand required copying or buffering, but neither copying nor buffering was enal

In copying mode, ‘copy’ is specified as a per-operand flag. This is done to provide control in a per-operand fashion.
Buffering mode is specified as an iterator flag.

Example

>>> a = np.arange (6) .reshape(2,3) - 3
>>> for x in np.nditer(a, op_flags=[’readonly’,’copy’],
op_dtypes=[’'complex128’]):
print np.sqgrt (x),

1.732050807579 1.414213562375 19 03 (1+03) (1.41421356237+07)

>>> for x in np.nditer(a, flags=['buffered’], op_dtypes=[’complex128’1]):
print np.sqgrt (x),

1.732050807579 1.414213562379 19 09 (1+03) (1.41421356237+07)

The iterator uses NumPy’s casting rules to determine whether a specific conversion is permitted. By default, it enforces
‘safe’ casting. This means, for example, that it will raise an exception if you try to treat a 64-bit float array as a 32-bit
float array. In many cases, the rule ‘same_kind’ is the most reasonable rule to use, since it will allow conversion from
64 to 32-bit float, but not from float to int or from complex to float.

Example

1.5. lterating Over Arrays 111

NumPy Reference, Release 1.8.1

>>> a = np.arange(6.)
>>> for x in np.nditer(a, flags=['buffered’], op_dtypes=[’'float32’]):
print x,

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Iterator operand 0 dtype could not be cast from dtype(’float64d’) to dtype(’float32’) acco:

>>> for x in np.nditer(a, flags=[’buffered’], op_dtypes=[’'float32’],
casting='same_kind’) :
print x,

0.0 1.0 2.0 3.0 4.0 5.0

>>> for x in np.nditer(a, flags=['buffered’], op_dtypes=[’int32’], casting=’same_kind’):
print x,

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Iterator operand 0 dtype could not be cast from dtype(’float64’) to dtype(’int32’) accord:

One thing to watch out for is conversions back to the original data type when using a read-write or write-only operand.
A common case is to implement the inner loop in terms of 64-bit floats, and use ‘same_kind’ casting to allow the other
floating-point types to be processed as well. While in read-only mode, an integer array could be provided, read-write
mode will raise an exception because conversion back to the array would violate the casting rule.

Example

>>> a = np.arange (6)
>>> for x in np.nditer(a, flags=[’buffered’], op_flags=['readwrite’],
op_dtypes=[’'float64’], casting=’same_kind’):
x[...] = x / 2.0

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
TypeError: Iterator requested dtype could not be cast from dtype(’float64’) to dtype(’int64’), the oj

1.5.2 Broadcasting Array lteration

NumPy has a set of rules for dealing with arrays that have differing shapes which are applied whenever functions take
multiple operands which combine element-wise. This is called broadcasting. The nditer object can apply these
rules for you when you need to write such a function.

As an example, we print out the result of broadcasting a one and a two dimensional array together.

Example

>>> a = np.arange (3)

>>> b = np.arange (6) .reshape (2, 3)

>>> for x, y in np.nditer([a,b]):
print "2d:d" % (x,V),

0:0 1:1 2:2 0:3 1:4 2:5

112 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

When a broadcasting error occurs, the iterator raises an exception which includes the input shapes to help diagnose
the problem.

Example

>>> a = np.arange (2)

>>> b = np.arange (6) .reshape (2, 3)

>>> for x, y in np.nditer([a,b]):
print " : S (X,Y),

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operands could not be broadcast together with shapes (2) (2,3)

Iterator-Allocated Output Arrays

A common case in NumPy functions is to have outputs allocated based on the broadcasting of the input, and addition-
ally have an optional parameter called ‘out” where the result will be placed when it is provided. The nditer object
provides a convenient idiom that makes it very easy to support this mechanism.

‘We’ll show how this works by creating a function square which squares its input. Let’s start with a minimal function
definition excluding ‘out’ parameter support.

Example

>>> def square(a):

it = np.nditer([a, None])
for x, y in it:
yl...] = x*xx

return it.operands[1]

>>> square([1,2,3])
array ([1, 4, 9])

By default, the nditer uses the flags ‘allocate’ and ‘writeonly’ for operands that are passed in as None. This means
we were able to provide just the two operands to the iterator, and it handled the rest.

When adding the ‘out’ parameter, we have to explicitly provide those flags, because if someone passes in an array as
‘out’, the iterator will default to ‘readonly’, and our inner loop would fail. The reason ‘readonly’ is the default for input
arrays is to prevent confusion about unintentionally triggering a reduction operation. If the default were ‘readwrite’,
any broadcasting operation would also trigger a reduction, a topic which is covered later in this document.

While we’re at it, let’s also introduce the ‘no_broadcast’ flag, which will prevent the output from being broadcast.
This is important, because we only want one input value for each output. Aggregating more than one input value
is a reduction operation which requires special handling. It would already raise an error because reductions must
be explicitly enabled in an iterator flag, but the error message that results from disabling broadcasting is much more
understandable for end-users. To see how to generalize the square function to a reduction, look at the sum of squares
function in the section about Cython.

For completeness, we’ll also add the ‘external_loop” and ‘buffered’ flags, as these are what you will typically want for
performance reasons.

Example

1.5. lterating Over Arrays 113

NumPy Reference, Release 1.8.1

>>> def square(a, out=None):

it = np.nditer([a, out],
flags = [’"external_loop’, ’'buffered’],
op_flags = [[’'readonly’'],

["writeonly’, ’"allocate’, ’'no_broadcast’]])
for x, y in it:
yv[i...] = x*xx
return it.operands[1]

>>> square([1,2,3])
array ([1, 4, 9])

>>> b = np.zeros((3,))
>>> square([1,2,3], out=b)
array ([1., 4., 9.])

>>> b

array ([1., 4., 9.1)

>>> square (np.arange (6) .reshape (2, 3), out=b)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 4, in square

ValueError: non-broadcastable output operand with shape (3) doesn’t match the broadcast shape

Outer Product Iteration

Any binary operation can be extended to an array operation in an outer product fashion like in outer, and the nditer
object provides a way to accomplish this by explicitly mapping the axes of the operands. It is also possible to do this
with newaxis indexing, but we will show you how to directly use the nditer op_axes parameter to accomplish this
with no intermediate views.

We’ll do a simple outer product, placing the dimensions of the first operand before the dimensions of the second
operand. The op_axes parameter needs one list of axes for each operand, and provides a mapping from the iterator’s
axes to the axes of the operand.

Suppose the first operand is one dimensional and the second operand is two dimensional. The iterator will have three
dimensions, so op_axes will have two 3-element lists. The first list picks out the one axis of the first operand, and is
-1 for the rest of the iterator axes, with a final result of [0, -1, -1]. The second list picks out the two axes of the second
operand, but shouldn’t overlap with the axes picked out in the first operand. Its list is [-1, O, 1]. The output operand
maps onto the iterator axes in the standard manner, so we can provide None instead of constructing another list.

The operation in the inner loop is a straightforward multiplication. Everything to do with the outer product is handled
by the iterator setup.

Example

>>> a = np.arange (3)

>>> b = np.arange (8) .reshape (2, 4)

>>> it = np.nditer([a, b, None], flags=[’external_ loop’],

.. op_axes=[[0, -1, -1], [-1, O, 1], Nonel)
>>> for x, y, z in it:
z[...] = xxy

>>> it.operands([2]
array ([[[O, 0, 0, 01,

114 Chapter 1. Array objects

(2,3)

NumPy Reference, Release 1.8.1

[o, 0, 0, 011,
[ro, 1, 2, 31,

[4, 5, 6, 711,
[r o, 2, 4, 671,

[8, 10, 12, 14111)

Reduction Iteration

Whenever a writeable operand has fewer elements than the full iteration space, that operand is undergoing a reduction.
The nditer object requires that any reduction operand be flagged as read-write, and only allows reductions when
‘reduce_ok’ is provided as an iterator flag.

For a simple example, consider taking the sum of all elements in an array.

Example

>>> a = np.arange (24) .reshape(2,3,4)
>>> b = np.array(0)
>>> for x, y in np.nditer([a, bl, flags=[’reduce_ok’, ’'external loop’],

op_flags=[[’'readonly’], ['readwrite’]]):
v L] ot=E x
>>> b
array (276)
>>> np.sum(a)
276

Things are a little bit more tricky when combining reduction and allocated operands. Before iteration is started, any
reduction operand must be initialized to its starting values. Here’s how we can do this, taking sums along the last axis
of a.

Example

>>> a = np.arange (24) .reshape(2,3,4)
>>> it = np.nditer([a, None], flags=[’reduce_ok’, ’'external loop’],
op_flags=[[’'readonly’], [’readwrite’, "allocate’]l],
. op_axes=[None, [0,1,-111)
>>> it.operands[l][...] = 0
>>> for x, y in it:
y[i...] += x

>>> it.operands([1l]
array ([[6, 22, 38],
[54, 70, 86]1])
>>> np.sum(a, axis=2)
array ([[6, 22, 381,
[54, 70, 86]1])

To do buffered reduction requires yet another adjustment during the setup. Normally the iterator construction involves
copying the first buffer of data from the readable arrays into the buffer. Any reduction operand is readable, so it may
be read into a buffer. Unfortunately, initialization of the operand after this buffering operation is complete will not be
reflected in the buffer that the iteration starts with, and garbage results will be produced.

1.5. lterating Over Arrays 115

NumPy Reference, Release 1.8.1

The iterator flag “delay_bufalloc” is there to allow iterator-allocated reduction operands to exist together with buffer-
ing. When this flag is set, the iterator will leave its buffers uninitialized until it receives a reset, after which it will be

ready for regular iteration. Here’s how the previous example looks if we also enable buffering.

Example
>>> a = np.arange (24) .reshape(2,3,4)
>>> it = np.nditer([a, None], flags=[’reduce_ok’, ’'external_loop’,
"buffered’, ’'delay_bufalloc’],
op_flags=[['readonly’], [’'readwrite’, "allocate’]l],
. op_axes=[None, [0,1,-111)
>>> it.operands([1l][...] = 0

>>> it.reset ()
>>> for x, y in it:
y[i...] += x

>>> it .operands[1]
array ([[6, 22, 38],
[54, 70, 8611)

1.5.3 Putting the Inner Loop in Cython

Those who want really good performance out of their low level operations should strongly consider directly using the
iteration API provided in C, but for those who are not comfortable with C or C++, Cython is a good middle ground with
reasonable performance tradeoffs. For the nditer object, this means letting the iterator take care of broadcasting,

dtype conversion, and buffering, while giving the inner loop to Cython.

For our example, we’ll create a sum of squares function. To start, let’s implement this function in straightforward
Python. We want to support an ‘axis’ parameter similar to the numpy sum function, so we will need to construct a list

for the op_axes parameter. Here’s how this looks.

Example

>>> def axis_to_axeslist (axis, ndim) :
if axis is None:
return [-1] * ndim

else:
if type(axis) is not tuple:
axis = (axis,)
axeslist = [1] = ndim
for i in axis:
axeslist[i] = -1
ax = 0
for i in range (ndim):
if axeslist[i] != -1:
axeslist[i] = ax
ax += 1

return axeslist

>>> def sum_squares_py(arr, axis=None, out=None) :
axeslist = axis_to_axeslist (axis, arr.ndim)

it = np.nditer([arr, out], flags=[’reduce_ok’, ’external_ loop’,
"buffered’, ’'delay_bufalloc’],
op_flags=[[’'readonly’], [’readwrite’, ’'allocate’]],

op_axes=[None, axeslist],

116 Chapter 1

. Array objects

NumPy Reference, Release 1.8.1

op_dtypes=["
it.operands[1][...] = 0
it.reset ()
for x, y in it:
yvIi...] += x*x
return it.operands[1]

floate4d’, "float6d’])

>>> a = np.arange (6) .reshape (2, 3)
>>> sum_squares_py (a)

array (55.0)
>>> sum_squares_py (a, axis=-1)
array ([5., 50.1)

To Cython-ize this function, we replace the inner loop (y[...] +=x*x) with Cython code that’s specialized for the float64
dtype. With the ‘external_loop’ flag enabled, the arrays provided to the inner loop will always be one-dimensional, so
very little checking needs to be done.

Here’s the listing of sum_squares.pyx:

import numpy as np
cimport numpy as np
cimport cython

def axis_to_axeslist (axis, ndim):
if axis is None:
return [-1] * ndim
else:
if type(axis) is not tuple:
axis = (axis,)
axeslist [1] * ndim
for i in axis:
axeslist[i] = -1
ax = 0
for i in range (ndim) :
if axeslist[i] != -1:
axeslist[i] = ax

ax += 1
return axeslist

@cython.boundscheck (False)
def sum_squares_cy (arr, axis=None, out=None):
cdef np.ndarray[double] x
cdef np.ndarray[double] y
cdef int size
cdef double value

axeslist = axis_to_axeslist (axis, arr.ndim)
it = np.nditer([arr, out], flags=[’reduce_ok’, ’'external_ loop’,
"buffered’, ’"delay_bufalloc’],
op_flags=[[’'readonly’], [’readwrite’, "allocate’]l],

op_axes=[None, axeslist],
op_dtypes=[’'floate4d’, ’"float64d’])

it.operands[l][...] =0
it.reset ()
for xarr, yarr in it:

X = xarr

y = yarr

size = x.shape[0]

1.5. lterating Over Arrays 117

NumPy Reference, Release 1.8.1

for i in range(size):
value = x[1i]
y[i] = y[i] + value * value
return it.operands([1l]

On this machine, building the .pyx file into a module looked like the following, but you may have to find some Cython
tutorials to tell you the specifics for your system configuration.:

$ cython sum_squares.pyx
$ gcc -shared -pthread -fPIC -fwrapv -02 -Wall -I/usr/include/python2.7 -fno-strict-aliasing -o sum_:

Running this from the Python interpreter produces the same answers as our native Python/NumPy code did.

Example

>>> from sum_squares import sum_squares_cy
>>> a = np.arange (6) .reshape (2, 3)
>>> sum_squares_cy (a)

array (55.0)
>>> sum_squares_cy (a, axis=-1)
array ([5., 50.1)

Doing a little timing in IPython shows that the reduced overhead and memory allocation of the Cython inner loop is
providing a very nice speedup over both the straightforward Python code and an expression using NumPy’s built-in
sum function.:

>>> a = np.random.rand(1000,1000)

>>> timeit sum_squares_py(a, axis=-1)
10 loops, best of 3: 37.1 ms per loop

>>> timeit np.sum(arxa, axis=-1)
10 loops, best of 3: 20.9 ms per loop

>>> timeit sum_squares_cy(a, axis=-1)
100 loops, best of 3: 11.8 ms per loop

>>> np.all(sum_squares_cy(a, axis=-1) == np.sum(axa, axis=-1))
True
>>> np.all(sum_squares_py(a, axis=-1) == np.sum(axa, axis=-1))
True

1.6 Standard array subclasses

The ndarray in NumPy is a “new-style” Python built-in-type. Therefore, it can be inherited from (in Python or in
C) if desired. Therefore, it can form a foundation for many useful classes. Often whether to sub-class the array object
or to simply use the core array component as an internal part of a new class is a difficult decision, and can be simply a
matter of choice. NumPy has several tools for simplifying how your new object interacts with other array objects, and
so the choice may not be significant in the end. One way to simplify the question is by asking yourself if the object
you are interested in can be replaced as a single array or does it really require two or more arrays at its core.

Note that asarray always returns the base-class ndarray. If you are confident that your use of the array object can
handle any subclass of an ndarray, then asanyarray can be used to allow subclasses to propagate more cleanly
through your subroutine. In principal a subclass could redefine any aspect of the array and therefore, under strict

118 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

guidelines, asanyarray would rarely be useful. However, most subclasses of the arrayobject will not redefine
certain aspects of the array object such as the buffer interface, or the attributes of the array. One important example,
however, of why your subroutine may not be able to handle an arbitrary subclass of an array is that matrices redefine
the “*”” operator to be matrix-multiplication, rather than element-by-element multiplication.

1.6.1 Special attributes and methods

See Also:
Subclassing ndarray
Numpy provides several hooks that subclasses of ndarray can customize:

numpy.__array finalize_ (self)
This method is called whenever the system internally allocates a new array from obj, where obj is a subclass
(subtype) of the ndarray. It can be used to change attributes of self after construction (so as to ensure
a 2-d matrix for example), or to update meta-information from the “parent.” Subclasses inherit a default
implementation of this method that does nothing.

numpy.__array_prepare__ (array, context=None)
At the beginning of every ufunc, this method is called on the input object with the highest array priority, or the
output object if one was specified. The output array is passed in and whatever is returned is passed to the ufunc.
Subclasses inherit a default implementation of this method which simply returns the output array unmodified.
Subclasses may opt to use this method to transform the output array into an instance of the subclass and update
metadata before returning the array to the ufunc for computation.

numpy.__array_wrap__ (array, context=None)
At the end of every ufunc, this method is called on the input object with the highest array priority, or the output
object if one was specified. The ufunc-computed array is passed in and whatever is returned is passed to the
user. Subclasses inherit a default implementation of this method, which transforms the array into a new instance
of the object’s class. Subclasses may opt to use this method to transform the output array into an instance of the
subclass and update metadata before returning the array to the user.

numpy.__array_priority
The value of this attribute is used to determine what type of object to return in situations where there is more
than one possibility for the Python type of the returned object. Subclasses inherit a default value of 1.0 for this
attribute.

numpy.__array__ ([dtype])
If a class having the __array__ method is used as the output object of an ufunc, results will be written to the
object returned by __array_ .

1.6.2 Matrix objects

mat rix objects inherit from the ndarray and therefore, they have the same attributes and methods of ndarrays. There
are six important differences of matrix objects, however, that may lead to unexpected results when you use matrices
but expect them to act like arrays:

1. Matrix objects can be created using a string notation to allow Matlab-style syntax where spaces separate columns
and semicolons (‘;”) separate rows.

2. Matrix objects are always two-dimensional. This has far-reaching implications, in that m.ravel() is still two-
dimensional (with a 1 in the first dimension) and item selection returns two-dimensional objects so that sequence
behavior is fundamentally different than arrays.

1.6. Standard array subclasses 119

NumPy Reference, Release 1.8.1

3. Matrix objects over-ride multiplication to be matrix-multiplication. Make sure you understand this for func-
tions that you may want to receive matrices. Especially in light of the fact that asanyarray(m) returns a
matrix when m is a matrix.

4. Matrix objects over-ride power to be matrix raised to a power. The same warning about using power inside a
function that uses asanyarray(...) to get an array object holds for this fact.

5. The default __array_priority__ of matrix objects is 10.0, and therefore mixed operations with ndarrays always
produce matrices.

6. Matrices have special attributes which make calculations easier. These are

matrix.T transpose

matrix.H hermitian (conjugate) transpose
matrix.I inverse

matrix.A base array

matrix.T
transpose

matrix.H
hermitian (conjugate) transpose

matrix.I
inverse

matrix.A
base array

Warning: Matrix objects over-ride multiplication, ‘*’, and power, “**’, to be matrix-multiplication and matrix
power, respectively. If your subroutine can accept sub-classes and you do not convert to base- class arrays, then
you must use the ufuncs multiply and power to be sure that you are performing the correct operation for all inputs.

The matrix class is a Python subclass of the ndarray and can be used as a reference for how to construct your own
subclass of the ndarray. Matrices can be created from other matrices, strings, and anything else that can be converted
to an ndarray . The name “mat “is an alias for “matrix “in NumPy.

matrix Returns a matrix from an array-like object, or from a string of data.
asmatrix(data[, dtype]) Interpret the input as a matrix.
bmat (objl, 1dict, gdict]) Build a matrix object from a string, nested sequence, or array.

class numpy .matrix
Returns a matrix from an array-like object, or from a string of data. A matrix is a specialized 2-D array that
retains its 2-D nature through operations. It has certain special operators, such as » (matrix multiplication) and
** (matrix power).

Parameters
data : array_like or string

If data is a string, it is interpreted as a matrix with commas or spaces separating
columns, and semicolons separating rows.

dtype : data-type
Data-type of the output matrix.

copy : bool

120 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

If data is already an ndarray, then this flag determines whether the data is copied

(the default), or whether a view is constructed.

See Also:

array

Examples

>>> a = np.matrix(’1 2; 3 47)
>>> print a

[[1 2]

[3 4]]

>>> np.matrix ([[1, 21, [3, 411)

matrix ([[1, 21,
(3, 411)
Attributes
A base array
Al 1-d base array
H hermitian (conjugate) transpose
I inverse
T transpose
base Base object if memory is from some other object.
ctypes An object to simplify the interaction of the array with the ctypes module.
data Python buffer object pointing to the start of the array’s data.
dtype Data-type of the array’s elements.
flags Information about the memory layout of the array.
flat A 1-D iterator over the array.
imag The imaginary part of the array.
itemsize Length of one array element in bytes.
nbytes Total bytes consumed by the elements of the array.
ndim Number of array dimensions.
real The real part of the array.
shape Tuple of array dimensions.
size Number of elements in the array.

strides Tuple of bytes to step in each dimension when traversing an array.

matrix.A
base array

matrix.Al
1-d base array

matrix.H
hermitian (conjugate) transpose

matrix.I
inverse

matrix.T
transpose

matrix.base

Base object if memory is from some other object.

1.6.

Standard array subclasses

121

NumPy Reference, Release 1.8.1

Examples
The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.pbase is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

matrix.ctypes
An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the
ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes
below) which themselves return ctypes objects that can be used as arguments to a shared library.

Parameters
None

Returns
¢ : Python object

Possessing attributes data, shape, strides, etc.
See Also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have
omitted undocumented public attributes, as well as documented private attributes):

edata: A pointer to the memory area of the array as a Python integer. This memory area may contain

data that is not aligned, or not in correct byte-order. The memory area may not even be writeable.
The array flags and data-type of this array should be respected when passing this attribute to arbitrary
C-code to avoid trouble that can include Python crashing. User Beware! The value of this attribute is
exactly the same as self._array_interface_[’data’][0].

eshape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer
corresponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes
array contains the shape of the underlying array.

estrides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for

the shape attribute. This ctypes array contains the strides information from the underlying array.
This strides information is important for showing how many bytes must be jumped to get to the next
element in the array.

edata_as(obj): Return the data pointer cast to a particular c-types object. For example, calling
self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data
as a pointer to a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.c_double)).

eshape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

estrides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

122

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly. For
example, calling (a+b) .ctypes.data_as (ctypes.c_void_p) returns a pointer to memory that
is invalid because the array created as (a+b) is deallocated before the next Python statement. You can avoid
this problem using either c=a+b or ct= (a+b) .ctypes. In the latter case, ct will hold a reference to
the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful,
but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have
the as parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array ([[0, 171,
[2, 311
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_long)) .contents
c_long (0)
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_longlong)) .contents
c_longlong (4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as (ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as (ctypes.c_longlong)
<numpy.core._internal.c_longlong Array_2 object at 0x01F01300>

matrix.data
Python buffer object pointing to the start of the array’s data.

matrix.dtype
Data-type of the array’s elements.

Parameters
None

Returns
d : numpy dtype object

See Also:

numpy .dtype

Examples

>>> x
array ([[0, 17,

[2, 311
>>> x.dtype
dtype (" int32")
>>> type (x.dtype)
<type ’numpy.dtype’>

matrix.flags
Information about the memory layout of the array.

1.6. Standard array subclasses 123

NumPy Reference, Release 1.8.1

Notes

The £1ags object can be accessed dictionary-like (asin a.flags [’ WRITEABLE']), or by using low-
ercased attribute names (asina. flags.writeable). Short flag names are only supported in dictionary
access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct
assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:
*UPDATEIFCOPY can only be set False.
*ALIGNED can only be set True if the data is truly aligned.

*WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the
memory exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional
arrays, but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbi-
trary if arr.shape[dim] == 1 or the array has no elements. It does not generally hold that
self.strides[-1] == self.itemsize for C-style contiguous arrays or self.strides[0]
== self.itemsize for Fortran-style contiguous arrays is true.

Attributes
C_CONTIGUQOS data is in a single, C-style contiguous segment.
©)
F_CONTIGUOIhS data is in a single, Fortran-style contiguous segment.
(F)
OWN- The array owns the memory it uses or borrows it from another object.
DATA
(&)
WRITE- The data area can be written to. Setting this to False locks the data, making it read-only.
ABLE A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a
W) view of a writeable array may be subsequently locked while the base array remains

writeable. (The opposite is not true, in that a view of a locked array may not be made
writeable. However, currently, locking a base object does not lock any views that
already reference it, so under that circumstance it is possible to alter the contents of a
locked array via a previously created writeable view onto it.) Attempting to change a
non-writeable array raises a RuntimeError exception.

ALIGNED | The data and all elements are aligned appropriately for the hardware.

A)

UP- This array is a copy of some other array. When this array is deallocated, the base array
DATEIF- will be updated with the contents of this array.

COPY

U)

ENC F_CONTIGUOUS and not C_CONTIGUOUS.

FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).
BEHAVED | ALIGNED and WRITEABLE.

B)

CARRAY BEHAVED and C_CONTIGUOUS.

(CA)

FARRAY BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.
(FA)

124 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

matrix.flat
A 1-D iterator over the array.

This is a numpy . f1atiter instance, which acts similarly to, but is not a subclass of, Python’s built-in
iterator object.

See Also:

flatten
Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(l, 7).reshape(2, 3)

>>> x

array ([[1, 2, 31,
[4, 5, 6]11)

>>> x.flat[3]

4

>>> x.T

array ([[1, 4]
[2, 51,
[3, 611)

>>> x.T.flat [3]

5

>>> type (x.flat)

<type ’'numpy.flatiter’>

’

An assignment example:

>>> x.flat = 3;
array ([[3, 3, 3]
[3, 3, 3]
>>> x.flat[[1,4]
array ([[3, 1, 3]
[3, 1, 3]

matrix.imag
The imaginary part of the array.

Examples

>>> x = np.sqgrt ([1+07, 0+171])

>>> x.imag

array ([O. , 0.7071067817)
>>> x.imag.dtype

dtype (' float64d’)

matrix.itemsize
Length of one array element in bytes.

Examples

>>> x = np.array([1l,2,3], dtype=np.float64)
>>> x.itemsize

8

>>> x = np.array([1l,2,3], dtype=np.complexl28)

1.6. Standard array subclasses 125

NumPy Reference, Release 1.8.1

>>> x.itemsize
16

matrix.nbytes
Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complexl28)
>>> x.nbytes

480

>>> np.prod(x.shape) * x.itemsize

480

matrix.ndim
Number of array dimensions.

Examples

>>> x = np.array([l, 2, 31)
>>> x.ndim

1

>>> y = np.zeros ((2, 3, 4))
>>> y.ndim

3

matrix.real
The real part of the array.

See Also:

numpy .real
equivalent function

Examples

>>> x = np.sqrt ([1+07, 0+17])
>>> x.real

array ([1. , 0.70710678])
>>> x.real.dtype

dtype (' float64’)

matrix.shape
Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not require a change in the total number of
elements

Examples

>>> x = np.array([1l, 2, 3, 41])
>>> x.shape

(4,)

>>> y = np.zeros((2, 3, 4))

126 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

>>> y.shape

(2, 3, 4)

>>> y.shape = (3, 8)

>>> y

array ([[0., - , 0., 0., 0., 0., 1,

0 0. . . .
r o., 0., 0., 0., 0., 0., O.,
[0., O 0.
>>> y.shape = (3, 6)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

o O O

matrix.size
Number of elements in the array.

Equivalent to np.prod (a.shape), i.e., the product of the array’s dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complexl28)
>>> x.size

30

>>> np.prod(x.shape)

30

matrix.strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i [0], i[1l], ..., 1i[n]) inanarrayais:

offset = sum(np.array (i) = a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.
See Also:

numpy.lib.stride_tricks.as_strided

Notes
Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 911, dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory).
The strides of an array tell us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20
bytes (5 values) to get to the same position in the next row. As such, the strides for the array x will be

(20, 4).

Examples

>>> y = np.reshape (np.arange (2x3%4), (2,3,4))
>>> y

array ([[, 1, 2, ’

0 3
4, 5, 6, 1
8, 9, 10, 11
2, 13, 14, 15
6, 17, 18, 191,
0, 21, 22, 2311])

1.6. Standard array subclasses 127

NumPy Reference, Release 1.8.1

>>> y.strides

(48, 16, 4)
>>> y[1,1,1]
17

>>> offset=sum(y.strides x np.array((1,1,1)))

>>> offset/y.itemsize

(5,6,7,8)) .transpose(2,3,1,0)

17

>>> x = np.reshape (np.arange (5x6*7%8),
>>> x.strides

(32, 4, 224, 1344)

>>> 1 = np.array([3,5,2,2])

>>> offset =
>>> x[3,5,2,2]

813

>>> offset / x.itemsize
813

Methods

sum (i * x.strides)

all([axis, out])

Test whether all matrix elements along a given axis evaluate to True.

any([axis, out])

Test whether any array element along a given axis evaluates to True.

argmax([axis, out])

Indices of the maximum values along an axis.

argmin([axis, out])

Return the indices of the minimum values along an axis.

argpartition(kth[, axis, kind, order])

Returns the indices that would partition this array.

argsort([axis, kind, order])

Returns the indices that would sort this array.

astype(dtype[, order, casting, subok, copy])

Copy of the array, cast to a specified type.

byteswap(inplace)

Swap the bytes of the array elements

choose(choices[, out, mode])

Use an index array to construct a new array from a set of choices.

clip(a_min, a_max[, out])

Return an array whose values are limited to [a_min, a_max].

compres s(condition[, axis, out])

Return selected slices of this array along given axis.

conj() Complex-conjugate all elements.
conjugate() Return the complex conjugate, element-wise.
copy([order]) Return a copy of the array.

cumprod([axis, dtype, out])

Return the cumulative product of the elements along the given axis.

cumsum([axis, dtype, out])

Return the cumulative sum of the elements along the given axis.

diagonal([offset, axis1, axis2])

Return specified diagonals.

dot(b[, out])

Dot product of two arrays.

dump(file) Dump a pickle of the array to the specified file.

dumps() Returns the pickle of the array as a string.

£1i11(value) Fill the array with a scalar value.

flatten([order]) Return a copy of the array collapsed into one dimension.

getA() Return self as an ndarray object.

getAl() Return self as a flattened ndarray.

getH() Returns the (complex) conjugate transpose of self.

getI() Returns the (multiplicative) inverse of invertible self.

getT() Returns the transpose of the matrix.

get field(dtype[, offset]) Returns a field of the given array as a certain type.

item(*args) Copy an element of an array to a standard Python scalar and return it.
itemset(*args) Insert scalar into an array (scalar is cast to array’s dtype, if possible)

max([axis, out])

Return the maximum value along an axis.

mean([axis, dtype, out])

Returns the average of the matrix elements along the given axis.

min([axis, out])

Return the minimum value along an axis.

128

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Table 1.40 — continued from previous page

newbyteorder([new_order])

Return the array with the same data viewed with a different byte order.

nonzero()

Return the indices of the elements that are non-zero.

partition(kth[, axis, kind, order])

Rearranges the elements in the array in such a way that value of the element in kth pc

prod([axis, dtype, out])

Return the product of the array elements over the given axis.

ptp([axis, out])

Peak-to-peak (maximum - minimum) value along the given axis.

put(indices, values[, mode])

Seta.flat[n] = values[n] forall nin indices.

ravel([order])

Return a flattened array.

repeat(repeats|, axis])

Repeat elements of an array.

reshape(shapel[, order])

Returns an array containing the same data with a new shape.

resize(new_shape[, refcheck])

Change shape and size of array in-place.

round([decimals, out])

Return a with each element rounded to the given number of decimals.

searchsorted(v], side, sorter])

Find indices where elements of v should be inserted in a to maintain order.

set field(val, dtype[, offset])

Put a value into a specified place in a field defined by a data-type.

set f lags([write, align, uic])

Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

sort([axis, kind, order])

Sort an array, in-place.

squeeze([axis])

Remove single-dimensional entries from the shape of a.

std([axis, dtype, out, ddof])

Return the standard deviation of the array elements along the given axis.

sum([axis, dtype, out])

Returns the sum of the matrix elements, along the given axis.

swapaxes(axisl, axis2)

Return a view of the array with axis! and axis2 interchanged.

take(indices[, axis, out, mode])

Return an array formed from the elements of a at the given indices.

tofile(fid[, sep, format])

Write array to a file as text or binary (default).

tolist()

Return the matrix as a (possibly nested) list.

tostring([order])

Construct a Python string containing the raw data bytes in the array.

trace([offset, axis1, axis2, dtype, out])

Return the sum along diagonals of the array.

transpose(*axes)

Returns a view of the array with axes transposed.

var([axis, dtype, out, ddof])

Returns the variance of the matrix elements, along the given axis.

view([dtype, type])

New view of array with the same data.

matrix.all (axis=None, out=None)
Test whether all matrix elements along a given axis evaluate to True.

Parameters

See ‘numpy.all‘ for complete descriptions

See Also:

numpy.all

Notes

This is the same as ndarray.all, but it returns a mat rix object.

Examples

>>> x = np.matrix (np.arange (12) .reshape((3,4))); x

matrix ([[O, 1, 2,
[4, 5, 6,
[8, 9, 10,

>>> vy = x[0]; y

matrix([[0, 1, 2,

>>> (x == vY)

matrix ([[True, True,
[False, False,
[False, False,

>>> (x == y).all()

311)

3]/
71,
1111)

True,
False,
False,

True],
False],
False]], dtype=bool)

1.6. Standard array subclasses

129

NumPy Reference, Release 1.8.1

False

>>> (x == vy).all(0)

matrix ([[False, False, False, False]], dtype=bool)
>>> (x == y).all(l)

matrix ([[Truel,

False],

[
[False]], dtype=bool)

matrix.any (axis=None, out=None)
Test whether any array element along a given axis evaluates to True.
Refer to numpy . any for full documentation.

Parameters
axis : int, optional

Axis along which logical OR is performed
out : ndarray, optional

Output to existing array instead of creating new one, must have same shape as expected
output

Returns
any : bool, ndarray

Returns a single bool if axis is None; otherwise, returns ndarray

matrix.argmax (axis=None, out=None)
Indices of the maximum values along an axis.

Parameters
See ‘numpy.argmax‘ for complete descriptions

See Also:

numpy . argmax

Notes

This is the same as ndarray .argmax, but returns a matrix object where ndarray.argmax would
return an ndarray.

Examples
>>> x = np.matrix(np.arange(12) .reshape((3,4))); x
matrix([[O, 1, 2, 3],

[4, 5, 6, 711,
[8, 9, 10, 1111)
>>> x.argmax ()
11
>>> x.argmax (0)
matrix([[2, 2, 2, 2]1)
>>> x.argmax (1)
matrix ([[3],
(31,
[311)

matrix.argmin (axis=None, out=None)
Return the indices of the minimum values along an axis.

Parameters
See ‘numpy.argmin‘ for complete descriptions.

130 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

See Also:

numpy.argmin

Notes

This is the same as ndarray.argmin, but returns a matrix object where ndarray.argmin would
return an ndarray.

Examples
>>> x = -np.matrix(np.arange(l2) .reshape((3,4))); x
matrix([[O, -1, -2, =371,

[_4/ _5/ _6/ _7}1
[-8, -9, -10, -11]1])
>>> x.argmin ()

11
>>> x.argmin (0)
matrix ([[2, 2, 2, 2]1)
>>> x.argmin (1)
matrix ([[3],

(31,

[311)

matrix.argpartition (kth, axis=-1, kind="introselect’, order=None)

Returns the indices that would partition this array.

Refer to numpy . argpartition for full documentation. New in version 1.8.0.

See Also:

numpy .argpartition
equivalent function

matrix.argsort (axis=-1, kind="quicksort’, order=None)

Returns the indices that would sort this array.

Refer to numpy . argsort for full documentation.

See Also:

numpy .argsort
equivalent function

matrix.astype (dtype, order="K’, casting="unsafe’, subok=True, copy=True)

Copy of the array, cast to a specified type.

Parameters
dtype : str or dtype

Typecode or data-type to which the array is cast.
order : {‘C’, ‘F’, ‘A’, ‘K’ }, optional

Controls the memory layout order of the result. ‘C’ means C order, ‘F’ means Fortran
order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order otherwise,
and ‘K’ means as close to the order the array elements appear in memory as possible.
Default is ‘K’.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’ }, optional

1.6.

Standard array subclasses 131

NumPy Reference, Release 1.8.1

Controls what kind of data casting may occur. Defaults to ‘unsafe’ for backwards com-
patibility.

* ‘no’ means the data types should not be cast at all.
* ‘equiv’ means only byte-order changes are allowed.
* ‘safe’ means only casts which can preserve values are allowed.

* ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

* ‘unsafe’ means any data conversions may be done.

subok : bool, optional

If True, then sub-classes will be passed-through (default), otherwise the returned array
will be forced to be a base-class array.

copy : bool, optional

By default, astype always returns a newly allocated array. If this is set to false, and the
dtype, order, and subok requirements are satisfied, the input array is returned instead
of a copy.

Returns
arr_t : ndarray

Unless copy is False and the other conditions for returning the input array are satisfied
(see description for copy input paramter), arr_t is a new array of the same shape as the
input array, with dtype, order given by dtype, order.

Raises
ComplexWarning

When casting from complex to float or int. To avoid this, one should use
a.real.astype (t).

Examples
>>> x = np.array([1l, 2, 2.5])
>>> x

array ([1. , 2., 2.51)

>>> x.astype (int)
array ([1, 2, 21)

matrix.byteswap (inplace)

Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, option-
ally swapped in-place.

Parameters
inplace : bool, optional

If True, swap bytes in-place, default is False.

Returns
out : ndarray

The byteswapped array. If inplace is True, this is a view to self.

132 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Examples

>>> A = np.array([l, 256, 8755], dtype=np.intl6)
>>> map (hex, A)

["0x1’, "0x100’, ’'0x2233"]

>>> A.byteswap (True)

array ([256, 1, 13090], dtype=intlo)
>>> map (hex, A)

["0x100", "0x1’, ’'0x3322"]

Arrays of strings are not swapped

>>> A = np.array(['ceg’, "fac’])

>>> A.byteswap ()

array([’'ceg’, ’'fac’],
dtype=’[S3")

matrix.choose (choices, out=None, mode="raise’)
Use an index array to construct a new array from a set of choices.
Refer to numpy . choose for full documentation.
See Also:

numpy . choose
equivalent function

matrix.elip (a_min, a_max, out=None)
Return an array whose values are limited to [a_min, a_max].
Refer to numpy . c1ip for full documentation.
See Also:

numpy.clip
equivalent function

matrix.compress (condition, axis=None, out=None)
Return selected slices of this array along given axis.
Refer to numpy . compress for full documentation.
See Also:

numpy . compress
equivalent function

matrix.conj ()
Complex-conjugate all elements.
Refer to numpy . conjugate for full documentation.

See Also:

numpy . conjugate
equivalent function

matrix.conjugate ()
Return the complex conjugate, element-wise.

1.6. Standard array subclasses 133

NumPy Reference, Release 1.8.1

Refer to numpy . conjugate for full documentation.
See Also:

numpy .conjugate
equivalent function

matrix.copy (order="C’)
Return a copy of the array.

Parameters
order : {‘C’, ‘F’, ‘A’, ‘K’ }, optional

Controls the memory layout of the copy. ‘C’ means C-order, ‘F’ means F-order, ‘A’
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as
closely as possible. (Note that this function and :func:numpy.copy are very similar, but
have different default values for their order= arguments.)

See Also:

numpy . copy, numpy . copyto

Examples

>>> x = np.array([[l,2,3],[4,5,6]], order="F’)
>>>y = x.copy()

>>> x.£fi11(0)

>>> x
array ([[0, 0, 0],
[0, 0, O11)

>>> v
array ([[1, 2, 31,
(4, 5, 611)

>>> y.flags[’C_CONTIGUOUS']
True

matrix.cumprod (axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy . cumprod for full documentation.
See Also:

numpy . cumprod
equivalent function

matrix.cumsum (axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.
Refer to numpy . cumsum for full documentation.
See Also:

numpy . cumsum
equivalent function

134 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

matrix.diagonal (offset=0, axis]=0, axis2=1)
Return specified diagonals.

Refer to numpy . diagonal for full documentation.
See Also:

numpy .diagonal
equivalent function

matrix.dot (b, out=None)
Dot product of two arrays.
Refer to numpy . dot for full documentation.
See Also:
numpy .dot
equivalent function
Examples

>>> a = np.eye(2)

>>> b = np.ones((2, 2)) * 2

>>> a.dot (b)

array ([[2., 2.1,
[2., 2.11)

This array method can be conveniently chained:

>>> a.dot (b) .dot (b)
array ([[8., 8.1,
[8., 8.11)

matrix.dump (file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters
file : str

A string naming the dump file.

matrix.dumps ()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

Parameters
None

matrix.£ill (value)
Fill the array with a scalar value.

Parameters
value : scalar

All elements of a will be assigned this value.

Examples

. Standard array subclasses 135

NumPy Reference, Release 1.8.1

>>> a = np.array([1l, 2])
>>> a.fi11 (0)

>>> a

array ([0, 0])

>>> a = np.empty (2)

>>> a.fill (1)

>>> a

array ([1., 1.7)

matrix.£flatten (order="C’)

Return a copy of the array collapsed into one dimension.

Parameters
order : {‘C’, ‘F’, ‘A’}, optional

Whether to flatten in C (row-major), Fortran (column-major) order, or preserve the

C/Fortran ordering from a. The default is ‘C’.

Returns
y : ndarray

A copy of the input array, flattened to one dimension.

See Also:

ravel
Return a flattened array.

flat
A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,411)
>>> a.flatten()

array ([1, 2, 3, 41)

>>> a.flatten('F’)

array ([1, 3, 2, 41)

matrix.getA()

Return self as an ndarray object.
Equivalent to np.asarray (self).

Parameters
None

Returns
ret : ndarray

self as an ndarray

Examples

>>> x = np.matrix(np.arange (12) .reshape((3,4)));
matrix([[O, 1, 2, 3],

[4, 5, 6, 71,

[8 9, 10, 1111])

>>> x.getA()
array([[0, 1, 2, 31,

X

136

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

matrix.getAl ()
Return self as a flattened ndarray.

Equivalent to np.asarray (x) .ravel ()

Parameters
None

Returns
ret : ndarray

self, 1-D, as an ndarray

Examples
>>> x = np.matrix(np.arange(12) .reshape((3,4))); x
matrix([[O, 1, 2, 31,

[4, 5, 6, 71,
[8 9 10, 1111)
>>> x.getAl ()
array ([O, i, 2, 3, 4, 5, 6, 7, 8, 9, 10, 111)

matrix.getH()
Returns the (complex) conjugate transpose of self.
Equivalent to np.transpose (self) if self is real-valued.

Parameters
None

Returns
ret : matrix object

complex conjugate transpose of self

Examples

>>> x = np.matrix(np.arange(12) .reshape((3,4)))
>>> z = x — 1j*x; z

matrix([[0. +0.7, 1. -1.73, 2. =2.7, 3. =-3.31,
[4. -4.43, 5. =5.7, 6. —6.73, 7. =7.31,
[8. -8.7, 9. -9.73, 10.-10.3, 11.-11.311)
>>> z.getH()
matrix([[0. +0.7, 4. +4.7, 8. +8.71,
[1. +1.73, 5. +5.7, 9. +9.31,
[2. +2.73, 6. +6.3, 10.+10.73],
[3. +3.7, 7. +7.7, 11.+11.311)

matrix.getI ()
Returns the (multiplicative) inverse of invertible self.

Parameters
None

Returns
ret : matrix object

If self is non-singular, ret is such that ret % self == self % ret ==
np.matrix (np.eye (self [0, :].size) all return True.

1.6.

Standard array subclasses

137

NumPy Reference, Release 1.8.1

Raises
numpy.linalg.LinAlgError: Singular matrix

If self is singular.

See Also:

linalg.inv

Examples
>>> m = np.matrix (' [1, 2; 3, 4]7); m
matrix ([[1, 2],
(3, 411)
>>> m.getI()
matrix ([[-2. , 1.1,
[1.5, =-0.511)
>>> m.getI() * m
matrix([[1., 0.],
[0., 1.11)

matrix.getT ()
Returns the transpose of the matrix.

Does not conjugate! For the complex conjugate transpose, use get H.

Parameters
None

Returns
ret : matrix object

The (non-conjugated) transpose of the matrix.
See Also:

transpose, getH

Examples
>>> m = np.matrix (' [1, 2; 3, 417)
>>> m
matrix ([[1, 21,
(3, 411)
>>> m.getT ()
matrix ([[1, 3]

(2, 411)

matrix.getfield (dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits
in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with
a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters
dtype : str or dtype

The data type of the view. The dtype size of the view can not be larger than that of the
array itself.

offset : int

138 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1l.+1.7]1+%2)
>>> x[1, 1] = 2 + 4.7

>>> x

array ([[1.+1.7, 0.+0.73]

[0.40.3, 2.+4.7311)
>>> x.getfield(np.float64)
array ([[1., 0.7,

[0., 2.101)

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array ([[1., ©0.71,
[0., 4.11)

matrix.item (*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters
*args : Arguments (variable number and type)

* none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

* int_type: this argument is interpreted as a flat index into the array, specifying which ele-
ment to copy and return.

* tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

Returns
z : Standard Python scalar object

A copy of the specified element of the array as a suitable Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned.
This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples
>>> x = np.random.randint (9, size=(3, 3))
>>> x
array ([[3, 1, 71,
(2, 8, 31,
(8, 5, 311)
>>> x.1ltem(3)
2
>>> x.item(7)
5

>>> x.item((0, 1))

1.6. Standard array subclasses 139

NumPy Reference, Release 1.8.1

1
>>> x.item((2, 2))
3

matrix.itemset (*args)

Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as ifem. Then, a.itemset (xargs) is
equivalent to but faster than a [args] = item. The item should be a scalar value and args must select
a single item in the array a.

Parameters
*args : Arguments

If one argument: a scalar, only used in case a is of size 1. If two arguments: the last
argument is the value to be set and must be a scalar, the first argument specifies a single
array element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, i temset provides some speed increase for placing a scalar into a particular
location in an ndarray, if you must do this. However, generally this is discouraged: among other
problems, it complicates the appearance of the code. Also, when using itemset (and item) inside a
loop, be sure to assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

Examples
>>> x = np.random.randint (9, size=(3, 3))
>>> x

array ([[3, 1, 71,
(2, 8, 31,
[8, 5, 311)
>>> x.itemset (4, 0)
>>> x.itemset ((2, 2), 9)
>>> x
array ([[3, 1, 71,
(2, 0, 31,
[8, 5, 911)

matrix.max (axis=None, out=None)

Return the maximum value along an axis.

Parameters
See ‘amax‘ for complete descriptions

See Also:

amax, ndarray.max

Notes

This is the same as ndarray .max, but returns a mat rix object where ndarray .max would return an
ndarray.

Examples
>>> x = np.matrix(np.arange(12) .reshape((3,4))); x
matrix([[O, 1, 2, 31,

0

[4, 5, 6, 71,
8, 9, 10, 1111)
)

140

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

11

matrix.mean (axis=None, dtype=None, out=None)
Returns the average of the matrix elements along the given axis.

Refer to numpy . mean for full documentation.

See Also:

numpy .mean

Notes

Same as ndarray .mean except that, where that returns an ndarray, this returns a mat rix object.

Examples

>>> x = np.matrix(np.arange (12) .reshape ((3, 4)))
>>> x
matrix ([[O, 1, 2, 3],
[4, 5, 6, 71
[8
>>> x.mean (
5.5
>>> x.mean

)

matrix ([[

matrix.min (axis=None, out=None)
Return the minimum value along an axis.

Parameters
See ‘amin‘ for complete descriptions.

See Also:

amin, ndarray.min

Notes

This is the same as ndarray .min, but returns a mat rix object where ndarray .min would return an
ndarray.

Examples

>>> x = —np.matrix(np.arange(12) .reshape((3,4))); x

OI -1, _21 _3}7
74/ 75/ 761 77}!
8, -9, -10, -1111)

1.6. Standard array subclasses 141

NumPy Reference, Release 1.8.1

matrix([[-8, -9, -10, -1111)
>>> x.min (1)
matrix ([[-31,

[=71,

(-1111)

matrix.newbyteorder (new_order="S’)
Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder (new_order))

Changes are also made in all fields and sub-arrays of the array data type.

Parameters
new_order : string, optional

Byte order to force; a value from the byte order specifications above. new_order codes
can be any of:

* 'S’ - swap dtype from current to opposite endian
{r<", 'L’} - little endian

* {’>", "B’} - big endian

* {’='", "N’} - native order

= {"]’”, "I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order. The code does a
case-insensitive check on the first letter of new_order for the alternatives above. For
example, any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

Returns
new_arr : array

New array object with the dtype reflecting given change to the byte order.

matrix.nonzero ()
Return the indices of the elements that are non-zero.

Refer to numpy . nonzero for full documentation.

See Also:

numpy . nonzero
equivalent function

matrix.partition (kth, axis=-1, kind="introselect’, order=None)
Rearranges the elements in the array in such a way that value of the element in kth position is in the
position it would be in a sorted array. All elements smaller than the kth element are moved before this
element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined. New in version 1.8.0.

Parameters
kth : int or sequence of ints

Element index to partition by. The kth element value will be in its final sorted position
and all smaller elements will be moved before it and all equal or greater elements behind
it. The order all elements in the partitions is undefined. If provided with a sequence of
kth it will partition all elements indexed by kth of them into their sorted position at once.

axis : int, optional

142 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Axis along which to sort. Default is -1, which means sort along the last axis.
kind : {‘introselect’}, optional

Selection algorithm. Default is ‘introselect’.
order : list, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. Not all fields need be specified.

See Also:
numpy .partition
Return a parititioned copy of an array.

argpartition
Indirect partition.

sort
Full sort.
Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array ([3, 4, 2, 11])
>>> a.partition(a, 3)

>>> a

array ([2, 1, 3, 41)

>>> a.partition((1, 3))
array ([1, 2, 3, 41)

matrix.prod (axis=None, dtype=None, out=None)
Return the product of the array elements over the given axis.
Refer to prod for full documentation.

See Also:

prod, ndarray.prod

Notes

Same as ndarray .prod, except, where that returns an ndarray, this returns a mat r i x object instead.

Examples
>>> x = np.matrix(np.arange(12) .reshape((3,4))); x
matrix([[O, 1, 2, 3],

[9, 10, 1111)
>>> x.prod
0
>>> x.prod(0)
matrix([[0, 45, 120, 23111)
>>> x.prod(1l)
matrix ([[01,

[8407,

[792011)

0

[4, 5, 6, 171,
8
(

)

1.6. Standard array subclasses 143

NumPy Reference, Release 1.8.1

matrix.ptp (axis=None, out=None)
Peak-to-peak (maximum - minimum) value along the given axis.

Refer to numpy . ptp for full documentation.

See Also:
numpy .ptp
Notes
Same as ndarray.ptp, except, where that would return an ndarray object, this returns a mat rix
object.
Examples
>>> x = np.matrix(np.arange (12) .reshape((3,4))); x
matrix ([[O, 1, 2, 3],
[4, 5, 6, 7],
[8 9, 10, 1111)
>>> x.ptp ()
11

>>> x.ptp (0)
matrix ([[8, 8, 8, 8]1)
>>> x.ptp (1)
matrix ([[3],
[31,
[311)
matrix.put (indices, values, mode="raise’)
Seta.flat[n] = values[n] forall n in indices.

Refer to numpy . put for full documentation.
See Also:

numpy . put
equivalent function

matrix.ravel ([order])
Return a flattened array.
Refer to numpy . ravel for full documentation.
See Also:
numpy . ravel
equivalent function
ndarray.flat
a flat iterator on the array.
matrix.repeat (repeats, axis=None)
Repeat elements of an array.
Refer to numpy . repeat for full documentation.

See Also:

144 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

numpy . repeat
equivalent function

matrix.reshape (shape, order="C’)
Returns an array containing the same data with a new shape.
Refer to numpy . reshape for full documentation.
See Also:

numpy . reshape
equivalent function

matrix.resize (new_shape, refcheck=True)
Change shape and size of array in-place.

Parameters
new_shape : tuple of ints, or n ints

Shape of resized array.
refcheck : bool, optional
If False, reference count will not be checked. Default is True.

Returns
None

Raises
ValueError

If a does not own its own data or references or views to it exist, and the data memory
must be changed.

SystemError
If the order keyword argument is specified. This behaviour is a bug in NumPy.
See Also:
resize
Return a new array with the specified shape.
Notes
This reallocates space for the data area if necessary.
Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and re-
shaped:

>>> a = np.array([[0, 11, [2, 311, order='C’")
>>> a.resize((2, 1))
>>> a

. Standard array subclasses 145

NumPy Reference, Release 1.8.1

array ([[0]

[(111)
>>> a = np.array([[0, 1], [2, 3]], order="F')
>>> a.resize((2, 1))
>>> a
array ([[0]

(211)

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array ([[0, 1], [2, 311)

>>> b.resize (2, 3) # new_shape parameter doesn’t have to be a tuple

>>> Db
array ([[0, 1, 21,
(3, 0, 011)
Referencing an array prevents resizing...

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):

ValueError: cannot resize an array that has been referenced

Unless refcheck is False:

>>> a.resize((1l, 1), refcheck=False)
>>> a

array ([[0]])
>>> ¢

array ([[0]])

matrix.round (decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy . around for full documentation.
See Also:

numpy . around
equivalent function

matrix.searchsorted (v, side="left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy . searchsorted
See Also:

numpy . searchsorted
equivalent function

matrix.setfield (val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.
Place val into a‘s field defined by dt ype and beginning offset bytes into the field.

Parameters
val : object

146 Chapter 1

. Array objects

NumPy Reference, Release 1.8.1

Value to be placed in field.
dtype : dtype object

Data-type of the field in which to place val.
offset : int, optional

The number of bytes into the field at which to place val.

Returns
None

See Also:
getfield
Examples
>>> x = np.eye(3)
>>> x.getfield(np.float64)
array ([[1., 0., 0.1,

[0., 1., 0.1,

[0., 0., 1.11)
>>> x.setfield (3, np.int32)
>>> x.getfield(np.int32)
array ([[3, 3, 31,

[3, 3, 31,

[3, 3, 311
>>> x
array ([[1.00000000e+000, 1.48219694e-323, 1.48219694e-3237,

[1.48219694e-323, 1.00000000e+000, 1.48219694e-3237,
[1.48219694e-323, 1.48219694e-323, 1.00000000e+0007]17)
>>> x.setfield(np.eye(3), np.int32)

>>> x

array ([[1., 0., 0.1,
[0., 1., 0.1,
[0., 0., 1.11)

matrix.setflags (write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below).
The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The
UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the array
owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a
string. (The exception for string is made so that unpickling can be done without copying memory.)

Parameters
write : bool, optional

Describes whether or not a can be written to.
align : bool, optional

Describes whether or not a is aligned properly for its type.
uic : bool, optional

Describes whether or not a is a copy of another “base” array.

1.6. Standard array subclasses 147

NumPy Reference, Release 1.8.1

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITE-
ABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the com-
piler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced by .base). When this array is
deallocated, the base array will be updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well as the full name.

Examples

>>> v

array ([[3, 1, 71,
(2, 0, 01,
(8, 5, 911)

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
>>> y.setflags (write=0, align=0)
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
UPDATEIFCOPY : False
>>> y.setflags (uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: cannot set UPDATEIFCOPY flag to True

matrix.sort (axis=-1, kind="quicksort’, order=None)
Sort an array, in-place.

Parameters
axis : int, optional

Axis along which to sort. Default is -1, which means sort along the last axis.
kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.
order : list, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. Not all fields need be specified.

See Also:

numpy . sort
Return a sorted copy of an array.

148 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

argsort
Indirect sort.

lexsort
Indirect stable sort on multiple keys.

searchsorted
Find elements in sorted array.

partition
Partial sort.
Notes

See sort for notes on the different sorting algorithms.

Examples
>>> a = np.array ([[1,4], [3,111])
>>> a.sort (axis=1)
>>> a
array ([[1, 47,
[1, 311)
>>> a.sort (axis=0)
>>> a

array ([[1, 31,
[1, 411)

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([("a’, 2), ('c’, 1)1, dtype=[("x", ’S1"), ('y’, int)])
>>> a.sort (order="vy")

>>> a

array ([('c’, 1), ("a’, 2)]1,

dtype=[("x", "[S1"), ('y', '<i4")])
matrix.squeeze (axis=None)
Remove single-dimensional entries from the shape of a.
Refer to numpy . squeeze for full documentation.
See Also:

numpy . squeeze
equivalent function

matrix.std (axis=None, dtype=None, out=None, ddof=0)
Return the standard deviation of the array elements along the given axis.
Refer to numpy . st d for full documentation.
See Also:

numpy.std

Notes

This is the same as ndarray . std, except that where an ndarray would be returned, a mat rix object
is returned instead.

1.6. Standard array subclasses 149

NumPy Reference, Release 1.8.1

Examples

>>> x = np.matrix(np.arange (12) .reshape ((3, 4)))
>>> x
matrix([[O, 1, 2, 37,
[4, 5, 6, 71,
[8 9, 10, 1111)
>>> x.std ()
3.4520525295346629
>>> x.std (0)
matrix ([[3.26598632, 3.26598632, 3.26598632, 3.26598632]11)
>>> x.std (1)
matrix ([[1.11803399],
[1.11803399]

[1.1180339911)

matrix.sum (axis=None, dtype=None, out=None)
Returns the sum of the matrix elements, along the given axis.

Refer to numpy . sum for full documentation.

See Also:

numpy . sum

Notes

This is the same as ndarray . sum, except that where an ndarray would be returned, a mat rix object
is returned instead.

Examples

>>> x = np.matrix ([[1, 21, [4, 311)
>>> x.sum/()
10
>>> x.sum(axis=1)
matrix ([[3],
[711)
>>> x.sum(axis=1, dtype=’float’)
matrix ([[3.1,
[7.1D)
>>> out = np.zeros((1l, 2), dtype=’'float’)
>>> x.sum(axis=1, dtype=’float’, out=out)
matrix ([[3.7,

[7.11)

matrix.swapaxes (axisl, axis2)
Return a view of the array with axis/ and axis2 interchanged.

Refer to numpy . swapaxes for full documentation.
See Also:

numpy . swapaxes
equivalent function

matrix.take (indices, axis=None, out=None, mode="raise’)
Return an array formed from the elements of a at the given indices.
Refer to numpy . t ake for full documentation.

See Also:

150 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

numpy . take
equivalent function

matrix.tofile (fid, sep="", format="%s")
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

Parameters
fid : file or str

An open file object, or a string containing a filename.
sep : str

Separator between array items for text output. If “’ (empty), a binary file is written,
equivalentto file.write (a.tostring()).

format : str

Format string for text file output. Each entry in the array is formatted to text by first
converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

matrix.tolist ()
Return the matrix as a (possibly nested) list.

See ndarray.tolist for full documentation.

See Also:

ndarray.tolist

Examples
>>> x = np.matrix(np.arange(12) .reshape((3,4))); x
matrix([[O, 1, 2, 31,

[4, 5, 6, 71,
[8 9, 10, 1111)
>>> x.tolist ()
(o, 1, 2, 31, I[4, 5, 6, 71, [8, 9, 10, 111]1]

matrix.tostring (order="C’)
Construct a Python string containing the raw data bytes in the array.

Constructs a Python string showing a copy of the raw contents of data memory. The string can be produced
in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order unless the
F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

Parameters
order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays: C, Fortran, or the same as for the original
array.

1.6. Standard array subclasses 151

NumPy Reference, Release 1.8.1

Returns
S str

A Python string exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 11, [2, 311)

>>> x.tostring()
"\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00"
>>> x.tostring ('C’) == x.tostring()

True

>>> x.tostring ('F’)
"\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00"

matrix.trace (offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.
Refer to numpy . t race for full documentation.
See Also:

numpy .trace
equivalent function

matrix.transpose (*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D ar-
ray into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided

and a.shape = (i[0], i[1], ... 1[n-2], i[n-1]), then a.transpose () .shape
= (i[n-1], i[n-2], ... i[1], 1[0]).
Parameters

axes : None, tuple of ints, or » ints
» None or no argument: reverses the order of the axes.

e tuple of ints: i in the j-th place in the tuple means a‘s i-th axis becomes a.transpose()‘s
Jj-th axis.

* nints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

Returns
out : ndarray

View of a, with axes suitably permuted.
See Also:

ndarray.T
Array property returning the array transposed.

Examples
>>> a = np.array ([[1, 2], [3, 411)
>>> a
array ([[1, 2],
[3, 411)

152

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

>>> a.transpose ()

array ([[1, 31,

(2, 411)
>>> a.transpose((1, 0))
array ([[1, 31,

(2, 411)
>>> a.transpose(l, 0)
array ([[1, 31,

(2, 411)

matrix.var (axis=None, dtype=None, out=None, ddof=0)
Returns the variance of the matrix elements, along the given axis.

Refer to numpy . var for full documentation.

See Also:

numpy .var

Notes

This is the same as ndarray . var, except that where an ndarray would be returned, a mat rix object
is returned instead.

Examples

>>> x = np.matrix(np.arange (12) .reshape((3, 4)))
>>> x

matrix ([, 1, 2, 31,

[
[
[

>>> x.var ()
11.916666666666666
>>> x.var (0)

0
4, 5, 6, 71,
8, 9, 10, 1111)

matrix([[10.66666667, 10.66666667, 10.66666667, 10.66666667]11])
>>> x.var (1)
matrix ([[1.257],

[1.25],

[1.25]])

matrix.view (dtype=None, type=None)
New view of array with the same data.

Parameters
dtype : data-type or ndarray sub-class, optional

Data-type descriptor of the returned view, e.g., float32 or intl6. The default, None,
results in the view having the same data-type as a. This argument can also be specified
as an ndarray sub-class, which then specifies the type of the returned object (this is
equivalent to setting the t ype parameter).

type : Python type, optional

Type of the returned view, e.g., ndarray or matrix. Again, the default None results in
type preservation.

Notes

a.view () is used two different ways:

1.6. Standard array subclasses 153

NumPy Reference, Release 1.8.1

a.view (some_dtype) ora.view (dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view (ndarray_subclass) ora.view (type=ndarray_subclass) justreturns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinter-
pretation of the memory.

For a.view (some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print (a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a
slice or transpose, etc., the view may give different results.

Examples

>>> x = np.array ([(1, 2)], dtype=[("a’, np.int8), ('b’, np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.intl6, type=np.matrix)
>>> y

matrix ([[513]], dtype=intl6)

>>> print type (y)

<class ’'numpy.matrixlib.defmatrix.matrix’>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array ([(1, 2),(3,4)], dtype=[("a’, np.int8), ('b’, np.int8)])
>>> xv = x.view(dtype=np.int8) .reshape(-1,2)

>>> XV
array ([[1, 2],
[3, 4]], dtype=int38)
>>> xv.mean (0)
array ([2., 3.1)

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print x
((1, 20) (3, 4)]

Using a view to convert an array to a record array:

>>> 7z = x.view(np.recarray)
>>> z.a
array ([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.intl6)

>>> vy = x[:, 0:2]
>>> y
array ([[1, 2],

[4, 5]], dtype=intl6)

154

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

>>> y.view(dtype=[('width’, np.intl6), (’length’, np.intl6)])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width’, np.intl6), (’length’, np.intl6)])
array ([[(1, 2)],
[(4, 5)]11, dtype=[('width’, ’<i2’), (’length’, ’<i2’)])

numpy . asmatrix (data, dtype=None)
Interpret the input as a matrix.

Unlike matrix, asmatrix does not make a copy if the input is already a matrix or an ndarray. Equivalent to
matrix (data, copy=False).

Parameters
data : array_like

Input data.

Returns
mat : matrix

data interpreted as a matrix.

Examples

>>> x = np.array ([[1, 2], [3, 411])

>>> m = np.asmatrix(x)
>>> x[0,0] =5
>>> m
matrix ([[5, 2],
(3, 411)

numpy . bmat (0bj, ldict=None, gdict=None)
Build a matrix object from a string, nested sequence, or array.

Parameters
obj : str or array_like

Input data. Names of variables in the current scope may be referenced, even if 0bj is a
string.

Returns
out : matrix

Returns a matrix object, which is a specialized 2-D array.

See Also:

matrix

Examples

>>> A = np.mat (1 1; 1 17)
>>> B = np.mat ("2 2; 2 27)
>>> C = np.mat ('3 4; 5 6")
>>> D = np.mat ("7 8; 9 0")

1.6. Standard array subclasses 155

NumPy Reference, Release 1.8.1

All the following expressions construct the same block matrix:

>>> np.bmat ([[A, B], [C, DI]1)
matrix ([[1, 1, 2, 2],

(1, 1, 2, 21,

(3, 4, 7, 81,

[5, 6, 9, 011)
>>> np.bmat (np.r_[np.c_[A, B], np.c_[C, D]])
matrix ([[1, 1, 2, 2],

(1, 1, 2, 21,

(3, 4, 7, 81,

[5, 6, 9, 011)
>>> np.bmat ("A,B; C,D")
matrix ([[1, 1, 2, 2],

(1, 1, 2, 21,

(3, 4, 7, 81,

[5, 6, 9, 011)

Example 1: Matrix creation from a string

>>> ag=mat (1 2 3; 4 5 37)

>>> print (axa.T).I

[[0.2924 -0.1345]
[-0.1345 0.0819]]

Example 2: Matrix creation from nested sequence

>>> mat ([[1,5,10],[1.0,3,47311])
matrix([[1.+0.7, 5.+0.7,
[1.+40.7, 3.+40.7,

10.40. 73]

0.+4.411)

Example 3: Matrix creation from an array

>>> mat (random.rand(3,3)).T

matrix([[0.7699, 0.7922, 0.3294],
[0.2792, 0.0101, 0.9219],
[0.3398, 0.7571, 0.819711)

1.6.3 Memory-mapped file arrays

Memory-mapped files are useful for reading and/or modifying small segments of a large file with regular layout,
without reading the entire file into memory. A simple subclass of the ndarray uses a memory-mapped file for the data
buffer of the array. For small files, the over-head of reading the entire file into memory is typically not significant,
however for large files using memory mapping can save considerable resources.

Memory-mapped-file arrays have one additional method (besides those they inherit from the ndarray): .flush ()
which must be called manually by the user to ensure that any changes to the array actually get written to disk.

Note: Memory-mapped arrays use the the Python memory-map object which (prior to Python 2.5) does not allow
files to be larger than a certain size depending on the platform. This size is always < 2GB even on 64-bit systems.

memmap
memmap . flush()

Create a memory-map to an array stored in a binary file on disk.
Write any changes in the array to the file on disk.

class numpy . memmap
Create a memory-map to an array stored in a binary file on disk.

156 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Memory-mapped files are used for accessing small segments of large files on disk, without reading the entire
file into memory. Numpy’s memmap’s are array-like objects. This differs from Python’s mmap module, which
uses file-like objects.

This subclass of ndarray has some unpleasant interactions with some operations, because it doesn’t quite fit
properly as a subclass. An alternative to using this subclass is to create the mmap object yourself, then create an
ndarray with ndarray.__new__ directly, passing the object created in its ‘buffer=" parameter.

This class may at some point be turned into a factory function which returns a view into an mmap buffer.

Parameters
filename : str or file-like object

The file name or file object to be used as the array data buffer.
dtype : data-type, optional
The data-type used to interpret the file contents. Default is uint8.

mode : {‘r+’, ‘r’, ‘w+’, ‘c’}, optional

The file is opened in this mode:

[

r Open existing file for reading only.
r+’ | Open existing file for reading and writing.
w+’| Create or overwrite existing file for reading and writing.

c Copy-on-write: assignments affect data in memory, but changes are not saved
to disk. The file on disk is read-only.

3

3)

Default is ‘r+’.
offset : int, optional

In the file, array data starts at this offset. Since offset is measured in bytes, it should
normally be a multiple of the byte-size of dt ype. When mode != ’r’, even posi-
tive offsets beyond end of file are valid; The file will be extended to accommodate the
additional data. The default offset is 0.

shape : tuple, optional

The desired shape of the array. If mode == ’r’ and the number of remaining bytes
after offset is not a multiple of the byte-size of dt ype, you must specify shape. By
default, the returned array will be 1-D with the number of elements determined by file
size and data-type.

order : {‘C’, ‘F’}, optional
Specify the order of the ndarray memory layout: C (row-major) or Fortran (column-
major). This only has an effect if the shape is greater than 1-D. The default order is
‘C.
Notes

The memmap object can be used anywhere an ndarray is accepted. Given a memmap fp, isinstance (fp,
numpy .ndarray) returns True.

Memory-mapped arrays use the Python memory-map object which (prior to Python 2.5) does not allow files to
be larger than a certain size depending on the platform. This size is always < 2GB even on 64-bit systems.

Examples

>>> data = np.arange(l2, dtype='float32’)
>>> data.resize ((3,4))

1.6. Standard array subclasses 157

NumPy Reference, Release 1.8.1

This example uses a temporary file so that doctest doesn’t write files to your directory. You would use a ‘normal’
filename.

>>> from tempfile import mkdtemp
>>> import os.path as path
>>> filename = path.join (mkdtemp (), 'newfile.dat’)

Create a memmap with dtype and shape that matches our data:

>>> fp = np.memmap (filename, dtype=’'float32’, mode="w+’, shape=(3,4))

>>> fp

memmap ([[0., 0., 0., 0.1,

[0., 0., 0., 0.1,
0 .11, dtype=float32)

~
o

~
o

~
o

Write data to memmap array:

>>> fp[:] = datal:]

>>> fp
memmap ([[0., 1., 2., 3.1,
[4., 5., 6., 7.1,
[8., 9., 10., 11.]], dtype=float32)
>>> fp.filename == path.abspath (filename)
True

Deletion flushes memory changes to disk before removing the object:

>>> del fp

Load the memmap and verify data was stored:

>>> newfp = np.memmap (filename, dtype='float32’, mode=’'r’, shape=(3,4))

>>> newfp

memmap ([[0., 1., 2., 3.1,
[4., 5., 6., 7.1,
[8., 9., 10., 11.]], dtype=float32)

Read-only memmap:

>>> fpr = np.memmap (filename, dtype=’float32’, mode="r’, shape=(3,4))
>>> fpr.flags.writeable
False

Copy-on-write memmap:

>>> fpc = np.memmap (filename, dtype=’'float32’, mode=’'c’, shape=(3,4))
>>> fpc.flags.writeable
True

It’s possible to assign to copy-on-write array, but values are only written into the memory copy of the array, and
not written to disk:

>>> fpc
memmap ([[0., 1., 2., 3.1,
[4., 5., 6., 7.1,
[8., 9., 10., 11.11, dtype=float32)
>>> fpc[0,:] = 0
>>> fpc
memmap ([[0., 0., 0., 0.1,

158 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

[4., 5., 6., 7.1,
[8., 9., 10., 11.]], dtype=float32)

File on disk is unchanged:

>>> fpr
memmap ([[0., 1., 2., 3.1,
[4., 5., 6., 7.1,
[8., 9., 10., 11.]], dtype=float32)

Offset into a memmap:

>>> fpo = np.memmap (filename, dtype=’float32’, mode=’'r’, offset=106)

>>> fpo
memmap ([4., 5., 6., 7., 8., 9., 10., 11.]1, dtype=float32)
Attributes
filename | (str) Path to the mapped file.
offset (int) Offset position in the file.
mode (str) File mode.
Methods

flush() Write any changes in the array to the file on disk.

memmap . flush ()
Write any changes in the array to the file on disk.

For further information, see memmap.

Parameters
None

See Also:

memmap

| close | Close the memmap file.

memmap . £flush ()
Write any changes in the array to the file on disk.

For further information, see memmap.

Parameters
None

See Also:
memmap
Example:

>>> a = memmap ('newfile.dat’, dtype=float, mode="w+’, shape=1000)
>>> a[l10] = 10.0

>>> a[30] = 30.0

>>> del a

>>> b = fromfile('newfile.dat’, dtype=float)

>>> print b[10], b[30]

10.0 30.0

1.6. Standard array subclasses 159

NumPy Reference, Release 1.8.1

>>> a = memmap ('newfile.dat’, dtype=float)
>>> print a[l10], a[30]
10.0 30.0

1.6.4 Character arrays (numpy . char)

See Also:

Creating character arrays (numpy.char)

Note: The chararray class exists for backwards compatibility with Numarray, it is not recommended for new
development. Starting from numpy 1.4, if one needs arrays of strings, it is recommended to use arrays of dtype
object_, string_ or unicode_, and use the free functions in the numpy .char module for fast vectorized
string operations.

These are enhanced arrays of either string_ type or unicode_ type. These arrays inherit from the ndarray,
but specially-define the operations +, *, and % on a (broadcasting) element-by-element basis. These operations are
not available on the standard ndarray of character type. In addition, the chararray has all of the standard
string (and unicode) methods, executing them on an element-by-element basis. Perhaps the easiest way to create
a chararray is to use self.view (chararray) where self is an ndarray of str or unicode data-type. However, a
chararray can also be created using the numpy . chararray constructor, or via the numpy . char . array function:

chararray Provides a convenient view on arrays of string and unicode values.

core.defchararray.array(obj[, itemsize, ...]) Create a chararray.

class numpy . chararray
Provides a convenient view on arrays of string and unicode values.

Note: The chararray class exists for backwards compatibility with Numarray, it is not recommended for
new development. Starting from numpy 1.4, if one needs arrays of strings, it is recommended to use arrays of
dtype object_, string_ or unicode_, and use the free functions in the numpy . char module for fast
vectorized string operations.

Versus a regular Numpy array of type st r or unicode, this class adds the following functionality:
1.values automatically have whitespace removed from the end when indexed
2.comparison operators automatically remove whitespace from the end when comparing values

3.vectorized string operations are provided as methods (e.g. endswith) and infix operators (e.g. "+",

"*", "%")

chararrays should be created using numpy . char.array or numpy.char.asarray, rather than this con-
structor directly.

This constructor creates the array, using buffer (with offset and strides) if it is not None. If buffer
is None, then constructs a new array with strides in “C order”, unless both len (shape) >= 2 and
order='Fortran’, in which case st rides is in “Fortran order”.

Parameters
shape : tuple

Shape of the array.

itemsize : int, optional

160 Chapter 1. Array objects

http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str

NumPy Reference, Release 1.8.1

Length of each array element, in number of characters. Default is 1.
unicode : bool, optional

Are the array elements of type unicode (True) or string (False). Default is False.
buffer : int, optional

Memory address of the start of the array data. Default is None, in which case a new
array is created.

offset : int, optional

Fixed stride displacement from the beginning of an axis? Default is 0. Needs to be >=0.
strides : array_like of ints, optional

Strides for the array (see ndarray.strides for full description). Default is None.
order : {‘C’, ‘F’}, optional

The order in which the array data is stored in memory: ‘C’ -> “row major” order (the
default), ‘F’ -> “column major” (Fortran) order.

Examples

>>> charar = np.chararray((3, 3))
>>> charar[:] = "a’

>>> charar

chararray([["a’, "a’, "a’']l,

[IaI’ IaI’ Ial},
[IaI, IaI’ Ial}],
dtype=’151")

>>> charar = np.chararray (charar.shape, itemsize=5)
>>> charar[:] = "abc’

>>> charar

chararray ([["abc’, "abc’, ’'abc’],

["abc’, ’"abc’, "abc’],
["abc’, ’"abc’, 'abc’ll],
dtype=’155")

Attributes
T Same as self.transpose(), except that self is returned if self.ndim < 2.
base Base object if memory is from some other object.
ctypes An object to simplify the interaction of the array with the ctypes module.
data Python buffer object pointing to the start of the array’s data.
dtype Data-type of the array’s elements.
flags Information about the memory layout of the array.
flat A 1-D iterator over the array.
imag The imaginary part of the array.
itemsize Length of one array element in bytes.
nbytes Total bytes consumed by the elements of the array.
ndim Number of array dimensions.
real The real part of the array.
shape Tuple of array dimensions.
size Number of elements in the array.

strides Tuple of bytes to step in each dimension when traversing an array.

1.6. Standard array subclasses 161

NumPy Reference, Release 1.8.1

chararray.T

Same as self.transpose(), except that self is returned if self.ndim < 2.

Examples
>>> x = np.array([[1.,2.],[3.,4.11)
>>> x
array ([[1., 2.1,
[3., 4.11)
>>> x.T
array ([[1., 3.1,
[2., 4.11)
>>> x = np.array([1.,2.,3.,4.1)
>>> x
array ([1., 2., 3., 4.1)
>>> x.T

array ([1., 2., 3., 4.1)

chararray.base

Base object if memory is from some other object.

Examples
The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base 1is x
True

chararray.ctypes

An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the
ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes
below) which themselves return ctypes objects that can be used as arguments to a shared library.

Parameters
None

Returns
¢ : Python object

Possessing attributes data, shape, strides, etc.
See Also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have
omitted undocumented public attributes, as well as documented private attributes):

edata: A pointer to the memory area of the array as a Python integer. This memory area may contain
data that is not aligned, or not in correct byte-order. The memory area may not even be writeable.
The array flags and data-type of this array should be respected when passing this attribute to arbitrary

162

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

C-code to avoid trouble that can include Python crashing. User Beware! The value of this attribute is
exactly the same as self._array_interface_[’data’][0].

eshape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer
corresponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes
array contains the shape of the underlying array.

estrides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for

the shape attribute. This ctypes array contains the strides information from the underlying array.
This strides information is important for showing how many bytes must be jumped to get to the next
element in the array.

edata_as(obj): Return the data pointer cast to a particular c-types object. For example, calling
self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data
as a pointer to a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.c_double)).

eshape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

estrides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly. For
example, calling (a+b) .ctypes.data_as (ctypes.c_void_p) returns a pointer to memory that
is invalid because the array created as (a+b) is deallocated before the next Python statement. You can avoid
this problem using either c=a+b or ct=(a+b) . ctypes. In the latter case, ct will hold a reference to
the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful,
but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have
the as parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array ([[0, 17,
(2, 311)
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_long)) .contents
c_long (0)
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_longlong)) .contents
c_longlong (4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as (ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01lFCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as (ctypes.c_longlong)
<numpy.core._internal.c_longlong Array_2 object at 0x01F01300>

chararray.data
Python buffer object pointing to the start of the array’s data.

1.6. Standard array subclasses 163

NumPy Reference, Release 1.8.1

chararray.dtype

Data-type of the array’s elements.

Parameters
None

Returns
d : numpy dtype object

See Also:

numpy .dtype

Examples

>>> x

array ([[0, 17,
(2, 311)

>>> x.dtype

dtype (" int327)

>>> type (x.dtype)
<type ’numpy.dtype’>

chararray.flags

Information about the memory layout of the array.

Notes

The f1ags object can be accessed dictionary-like (asin a.flags [/ WRITEABLE']), or by using low-
ercased attribute names (asin a. flags.writeable). Short flag names are only supported in dictionary
access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct
assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:
*UPDATEIFCOPY can only be set False.
*ALIGNED can only be set True if the data is truly aligned.

*WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the
memory exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional
arrays, but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbi-
trary if arr.shape[dim] == 1 or the array has no elements. It does not generally hold that
self.strides[-1] == self.itemsize for C-style contiguous arrays or self.strides[0]
== self.itemsize for Fortran-style contiguous arrays is true.

164

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Attributes

C_CONTIGUQ(S data is in a single, C-style contiguous segment.

©

F_CONTIGUOIKS data is in a single, Fortran-style contiguous segment.

)

OWN- The array owns the memory it uses or borrows it from another object.

DATA

©)

WRITE- The data area can be written to. Setting this to False locks the data, making it read-only.

ABLE A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a

W) view of a writeable array may be subsequently locked while the base array remains
writeable. (The opposite is not true, in that a view of a locked array may not be made
writeable. However, currently, locking a base object does not lock any views that
already reference it, so under that circumstance it is possible to alter the contents of a
locked array via a previously created writeable view onto it.) Attempting to change a
non-writeable array raises a RuntimeError exception.

ALIGNED | The data and all elements are aligned appropriately for the hardware.

A)

UP- This array is a copy of some other array. When this array is deallocated, the base array

DATEIF- will be updated with the contents of this array.

COPY

%)

FNC F_CONTIGUOUS and not C_CONTIGUOUS.

FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

BEHAVED | ALIGNED and WRITEABLE.

B)

CARRAY BEHAVED and C_CONTIGUOUS.

(CA)

FARRAY BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

(FA)

chararray.flat

A 1-D iterator over the array.

This is a numpy . f1atiter instance, which acts similarly to, but is not a subclass of, Python’s built-in

iterator object.

See Also:

flatten

Return a copy of the array collapsed into one dimension.

flatiter
Examples
>>> x = np.arange(l, 7).reshape(2, 3)
>>> x
array ([[1, 2, 31,
(4, 5, 6]11])
>>> x.flat[3]
4
>>> x.T
array ([[1, 4],
(2, 51,
[3, 611)

1.6. Standard array subclasses

165

NumPy Reference, Release 1.8.1

>>> x.T.flat[3]

5

>>> type(x.flat)

<type ’'numpy.flatiter’>

An assignment example:

>>> x.flat = 3; x
array ([[3, 3, 31,
[3, 3, 311)
>>> x.flat[[1,4]1] = 1; x
array ([[3, 1, 31,
[3, 1, 311

chararray.imag
The imaginary part of the array.

Examples

>>> x = np.sqrt ([1+073, 0+171)

>>> x.imag

array ([O. , 0.70710678])
>>> x.imag.dtype

dtype (' float64’)

chararray.itemsize
Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize

8

>>> x = np.array([1l,2,3], dtype=np.complexl28)
>>> x.itemsize

16

chararray.nbytes
Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complexl28)
>>> x.nbytes

480

>>> np.prod(x.shape) * x.itemsize

480

chararray.ndim
Number of array dimensions.

Examples

>>> x = np.array([1l, 2, 3])
>>> x.ndim
1

166 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

chararray.real
The real part of the array.

See Also:

numpy .real
equivalent function

Examples

>>> x = np.sqrt ([1+073, 0+171)

>>> x.real

array ([1. , 0.707106787)
>>> x.real.dtype

dtype (' float64’)

chararray.shape
Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not require a change in the total number of

elements

Examples

>>> x = np.array([1l, 2, 3, 41)

>>> x.shape

(4,)

>>> y = np.zeros((2, 3, 4))

>>> y.shape

(2, 3, 4)

>>> y.shape = (3, 8)

>>> v

array([[0., ©0., 0., 0., 0., 0., 0., 0.1,
ro., o., 0., 0., 0., O., 0., 0.7,
[0., 0., 0., 0., 0., 0., 0., 0.11)

>>> y.shape = (3, 6)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

chararray.size
Number of elements in the array.

Equivalent to np.prod (a.shape), i.e., the product of the array’s dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complexl28)
>>> x.size

30

>>> np.prod(x.shape)

30

1.6. Standard array subclasses 167

NumPy Reference, Release 1.8.1

chararray.strides

Tuple of bytes to step in each dimension when traversing an array.
The byte offset of element (1 [0], i[l], ..., i[n]) inan array ais:

offset = sum(np.array (i) = a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.
See Also:

numpy.lib.stride_tricks.as_strided

Notes
Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 41,
[5, 6, 7, 8, 911, dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory).
The strides of an array tell us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20
bytes (5 values) to get to the same position in the next row. As such, the strides for the array x will be
(20, 4).

Examples

>>> y = np.reshape (np.arange (2x3%4), (2,3,4))
>>> y

array ([[, 1, 2, ’

0 3
4, 5, 6, 7
8, 9, 10, 11
[[12, 13, 14, 15
16, 17, 18, 191,
[20, 21, 22, 23111)

>>> y.strides

(48, 16, 4)
>>> y[1,1,1]
17

>>> offset=sum(y.strides np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape (np.arange (5x6%«7%«8), (5,6,7,8)) .transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)

>>> i = np.array([3,5,2,2])

>>> offset = sum(i » x.strides)
>>> x[3,5,2,2]

813

>>> offset / x.itemsize

813

Methods

astype(dtype[, order, casting, subok, copy]) Copy of the array, cast to a specified type.

copy([order]) Return a copy of the array.

168

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Table 1.45 — continued

count(subl, start, end])

Returns an array with the number of non-overlapping occurrences of substring sub in

decode([encoding, errors])

Calls str.decode element-wise.

dump(file)

Dump a pickle of the array to the specified file.

dumps()

Returns the pickle of the array as a string.

encode([encoding, errors])

Calls st r.encode element-wise.

endswith(suffix[, start, end])

Returns a boolean array which is True where the string element

expandtabs([tabsize])

Return a copy of each string element where all tab characters are replaced by one or 1

£111(value) Fill the array with a scalar value.
find(subl, start, end]) For each element, return the lowest index in the string where substring sub is found.
flatten([order]) Return a copy of the array collapsed into one dimension.

get field(dtypel[, offset])

Returns a field of the given array as a certain type.

index(subl, start, end])

Like find, but raises ValueError when the substring is not found.

isalnum() Returns true for each element if all characters in the string are alphanumeric and ther
isalpha() Returns true for each element if all characters in the string are alphabetic and there is
isdecimal() For each element in self, return True if there are only

isdigit() Returns true for each element if all characters in the string are digits and there is at le
islower() Returns true for each element if all cased characters in the string are lowercase and tt
isnumeric() For each element in self, return True if there are only

isspace() Returns true for each element if there are only whitespace characters in the string and
istitle() Returns true for each element if the element is a titlecased string and there is at least
isupper() Returns true for each element if all cased characters in the string are uppercase and tt
item(*args) Copy an element of an array to a standard Python scalar and return it.

join(seq) Return a string which is the concatenation of the strings in the sequence seq.

1 just(width[, fillchar]) Return an array with the elements of self left-justified in a string of length width.
lower() Return an array with the elements of self converted to lowercase.

1strip([chars]) For each element in self, return a copy with the leading characters removed.
nonzero() Return the indices of the elements that are non-zero.

put(indices, values[, mode]) Seta.flat[n] = values[n] for all n in indices.

rave1([order]) Return a flattened array.

repeat(repeats|, axis])

Repeat elements of an array.

replace(old, new[, count])

For each element in self, return a copy of the string with all occurrences of substring

reshape(shapel, order])

Returns an array containing the same data with a new shape.

resize(new_shape[, refcheck])

Change shape and size of array in-place.

rfind(subl, start, end])

For each element in self, return the highest index in the string where substring sub is

rindex(subl, start, end])

Like r find, but raises ValueError when the substring sub is

rjust(width[, fillchar])

Return an array with the elements of self right-justified in a string of length width.

rsplit([sep, maxsplit])

For each element in self, return a list of the words in the string, using sep as the delin

rstrip([chars])

For each element in self, return a copy with the trailing characters removed.

searchsorted(v], side, sorter])

Find indices where elements of v should be inserted in a to maintain order.

setfield(val, dtype[, offset])

Put a value into a specified place in a field defined by a data-type.

set flags([write, align, uic])

Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

sort([axis, kind, order])

Sort an array, in-place.

split([sep, maxsplit])

For each element in self, return a list of the words in the string, using sep as the delin

splitlines([keepends])

For each element in self, return a list of the lines in the element, breaking at line bour

squeeze([axis])

Remove single-dimensional entries from the shape of a.

startswith(prefix[, start, end])

Returns a boolean array which is True where the string element

st rip([chars])

For each element in self, return a copy with the leading and trailing characters remov

swapaxes(axisl, axis2)

Return a view of the array with axis! and axis2 interchanged.

swapcase()

For each element in self, return a copy of the string with uppercase characters conver

take(indices[, axis, out, mode])

Return an array formed from the elements of a at the given indices.

1.6. Standard array subclasses

169

http://docs.python.org/dev/library/stdtypes.html#str.encode

NumPy Reference, Release 1.8.1

Table 1.45 — continued

title() For each element in self, return a titlecased version of the string: words start with upy
tofile(fid[, sep, format]) Write array to a file as text or binary (default).

tolist() Return the array as a (possibly nested) list.

tostring([order]) Construct a Python string containing the raw data bytes in the array.
translate(table[, deletechars]) For each element in self, return a copy of the string where all characters occurring in
transpose(*axes) Returns a view of the array with axes transposed.

upper() Return an array with the elements of self converted to uppercase.

view([dtype, type]) New view of array with the same data.

zf£i11(width) Return the numeric string left-filled with zeros in a string of length width.

chararray.astype (dtype, order="K’, casting="unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters
dtype : str or dtype

Typecode or data-type to which the array is cast.

order : {‘C’, ‘F’, ‘A’, ‘K’ }, optional
Controls the memory layout order of the result. ‘C’ means C order, ‘F’ means Fortran
order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order otherwise,

and ‘K’ means as close to the order the array elements appear in memory as possible.
Default is ‘K.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur. Defaults to ‘unsafe’ for backwards com-
patibility.

* ‘no’ means the data types should not be cast at all.
* ‘equiv’ means only byte-order changes are allowed.
 ‘safe’ means only casts which can preserve values are allowed.

* ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

* ‘unsafe’ means any data conversions may be done.
subok : bool, optional

If True, then sub-classes will be passed-through (default), otherwise the returned array
will be forced to be a base-class array.

copy : bool, optional

By default, astype always returns a newly allocated array. If this is set to false, and the
dtype, order, and subok requirements are satisfied, the input array is returned instead
of a copy.

Returns
arr_t : ndarray

Unless copy is False and the other conditions for returning the input array are satisfied
(see description for copy input paramter), arr_t is a new array of the same shape as the
input array, with dtype, order given by dt ype, order.

Raises
ComplexWarning

170 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

When casting from complex to float or int. To avoid this, one should use
a.real.astype(t).

Examples

>>> x = np.array([1l, 2, 2.5])
>>> x
array ([1. , 2., 2.51)

>>> x.astype (int)
array ([1, 2, 2])

chararray.copy (order="C’)
Return a copy of the array.
Parameters
order : {‘C’, ‘F’, ‘A’, ‘K’ }, optional

Controls the memory layout of the copy. ‘C’ means C-order, ‘F’ means F-order, ‘A’
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as
closely as possible. (Note that this function and :func:numpy.copy are very similar, but
have different default values for their order= arguments.)

See Also:

numpy . copy, tumpy . copyto

Examples
>>> x = np.array([[1,2,3]1,[4,5,6]], order="F")
>>> y = x.copy()

>>> x.£111(0)

>>> x
array ([[0, O, 0],
(0, 0, 011)

>>> vy
array ([[1, 2, 31,
(4, 5, 6]11])

>>> y.flags[’C_CONTIGUOUS']
True

chararray.count (sub, start=0, end=None)
Returns an array with the number of non-overlapping occurrences of substring sub in the range [start,
end].

See Also:
char.count

chararray.decode (encoding=None, errors=None)
Calls str.decode element-wise.

See Also:

char.decode

1.6. Standard array subclasses 171

NumPy Reference, Release 1.8.1

chararray.dump (file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters
file : str

A string naming the dump file.

chararray.dumps ()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

Parameters
None

chararray.encode (encoding=None, errors=None)
Calls st r.encode element-wise.

See Also:
char.encode

chararray.endswith (suffix, start=0, end=None)
Returns a boolean array which is True where the string element in self ends with suffix, otherwise False.

See Also:
char.endswith

chararray.expandtabs (fabsize=8)
Return a copy of each string element where all tab characters are replaced by one or more spaces.

See Also:
char.expandtabs

chararray.£ill (value)
Fill the array with a scalar value.

Parameters
value : scalar

All elements of a will be assigned this value.

Examples

>>> a = np.array([1l, 2])
>>> a.fil1(0)

>>> a

array ([0, 0])

>>> a = np.empty(2)

>>> a.fill (1)

>>> a

array ([1., 1.])

chararray. £ind (sub, start=0, end=None)
For each element, return the lowest index in the string where substring sub is found.
See Also:
char.find

chararray.flatten (order="C’)
Return a copy of the array collapsed into one dimension.

172 Chapter 1. Array objects

http://docs.python.org/dev/library/stdtypes.html#str.encode

NumPy Reference, Release 1.8.1

Parameters
order : {‘C’, ‘F’, ‘A’}, optional

Whether to flatten in C (row-major), Fortran (column-major) order, or preserve the
C/Fortran ordering from a. The default is ‘C’.

Returns
y : ndarray

A copy of the input array, flattened to one dimension.

See Also:

ravel
Return a flattened array.

flat
A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]1])
>>> a.flatten ()

array ([1, 2, 3, 41)

>>> a.flatten('F’)

array ([1, 3, 2, 41)

chararray.getfield (dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits
in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with
a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters
dtype : str or dtype

The data type of the view. The dtype size of the view can not be larger than that of the
array itself.

offset : int

Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([l.+1.73]%2)
>>> x[1, 1] = 2 + 4.7

>>> x

array ([[1.+1.7, 0.+0.73]

[0.40.3, 2.44.311)
>>> x.getfield(np.float64)
array ([[1., 0.7,

[0., 2.101)

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array ([[1., 0.1,
[0., 4.11)

1.6. Standard array subclasses 173

NumPy Reference, Release 1.8.1

chararray.index (sub, start=0, end=None)
Like find, but raises ValueError when the substring is not found.

See Also:
char.index

chararray.isalnum/()
Returns true for each element if all characters in the string are alphanumeric and there is at least one
character, false otherwise.

See Also:
char.isalnum

chararray.isalpha ()
Returns true for each element if all characters in the string are alphabetic and there is at least one character,
false otherwise.

See Also:
char.isalpha

chararray.isdecimal ()
For each element in self, return True if there are only decimal characters in the element.

See Also:
char.isdecimal

chararray.isdigit ()
Returns true for each element if all characters in the string are digits and there is at least one character,
false otherwise.

See Also:
char.isdigit

chararray.islower ()
Returns true for each element if all cased characters in the string are lowercase and there is at least one
cased character, false otherwise.

See Also:
char.islower

chararray.isnumeric ()
For each element in self, return True if there are only numeric characters in the element.

See Also:
char.isnumeric

chararray.isspace ()
Returns true for each element if there are only whitespace characters in the string and there is at least one
character, false otherwise.

See Also:
char.isspace

chararray.istitle()
Returns true for each element if the element is a titlecased string and there is at least one character, false
otherwise.

See Also:

174

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

char.istitle

chararray.isupper ()
Returns true for each element if all cased characters in the string are uppercase and there is at least one
character, false otherwise.

See Also:
char.isupper

chararray.item (*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters
*args : Arguments (variable number and type)

* none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

* int_type: this argument is interpreted as a flat index into the array, specifying which ele-
ment to copy and return.

* tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

Returns
z : Standard Python scalar object

A copy of the specified element of the array as a suitable Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to al[args], except, instead of an array scalar, a standard Python scalar is returned.
This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> x = np.random.randint (9, size=(3, 3))

>>> x

array ([[3, 1, 71,
(2, 8, 31,
(8, 5, 311)

>>> x.item(3)

2

>>> x.item(7)

5

>>> x.item((0, 1))

1

>>> x.item((2, 2))

3

chararray. join (seq)
Return a string which is the concatenation of the strings in the sequence seq.

See Also:

char.join

1.6. Standard array subclasses 175

NumPy Reference, Release 1.8.1

chararray.ljust (width, fillchar=""*)
Return an array with the elements of self left-justified in a string of length width.

See Also:
char.ljust

chararray.lower ()
Return an array with the elements of self converted to lowercase.

See Also:
char.lower

chararray.lstrip (chars=None)
For each element in self, return a copy with the leading characters removed.

See Also:
char.lstrip

chararray.nonzero ()
Return the indices of the elements that are non-zero.

Refer to numpy . nonzero for full documentation.
See Also:

numpy . nonzero
equivalent function

chararray.put (indices, values, mode="raise’)
Seta.flat[n] = values[n] forall nin indices.
Refer to numpy . put for full documentation.
See Also:

numpy . put
equivalent function

chararray.ravel ([order])
Return a flattened array.
Refer to numpy . ravel for full documentation.
See Also:
numpy . ravel
equivalent function
ndarray. flat
a flat iterator on the array.
chararray.repeat (repeats, axis=None)
Repeat elements of an array.
Refer to numpy . repeat for full documentation.
See Also:

numpy . repeat
equivalent function

176

Chapter 1

. Array objects

NumPy Reference, Release 1.8.1

chararray.replace (0ld, new, count=None)

For each element in self, return a copy of the string with all occurrences of substring old replaced by new.
See Also:

char.replace

chararray.reshape (shape, order="C’)

Returns an array containing the same data with a new shape.
Refer to numpy . reshape for full documentation.
See Also:

numpy . reshape
equivalent function

chararray.resize (new_shape, refcheck=True)

Change shape and size of array in-place.

Parameters
new_shape : tuple of ints, or n ints

Shape of resized array.
refcheck : bool, optional
If False, reference count will not be checked. Default is True.

Returns
None

Raises
ValueError

If a does not own its own data or references or views to it exist, and the data memory
must be changed.

SystemError
If the order keyword argument is specified. This behaviour is a bug in NumPy.
See Also:
resize
Return a new array with the specified shape.
Notes
This reallocates space for the data area if necessary.
Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and re-
shaped:

1.6.

Standard array subclasses 177

NumPy Reference, Release 1.8.1

>>> a = np.array([[0, 11, [2, 311, order='C’")
>>> a.resize((2, 1))
>>> a
array ([[0],
[(111)
>>> a = np.array ([[0, 11, [2, 3]], order="F")
>>> a.resize((2, 1))
>>> a
array ([[0],
[(211)

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 11, [2, 311)
>>> b.resize (2, 3) # new_shape parameter doesn’t have to be a tuple
>>> b
array ([[0, 1, 21,
(3, 0, 011)

Referencing an array prevents resizing...

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):

ValueError: cannot resize an array that has been referenced

Unless refcheck is False:

>>> a.resize((1l, 1), refcheck=False)

>>> a
array ([[0]])
>>> ¢
array ([[0]])

chararray.rfind (sub, start=0, end=None)
For each element in self, return the highest index in the string where substring sub is found, such that sub
is contained within [start, end].

See Also:
char.rfind

chararray.rindex (sub, start=0, end=None)
Like r find, but raises ValueError when the substring sub is not found.

See Also:
char.rindex

chararray.rjust (width, fillchar=""*)
Return an array with the elements of self right-justified in a string of length width.

See Also:
char.rjust

chararray.rsplit (sep=None, maxsplit=None)
For each element in self, return a list of the words in the string, using sep as the delimiter string.

See Also:

178 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

char.rsplit

chararray.rstrip (chars=None)
For each element in self, return a copy with the trailing characters removed.

See Also:
char.rstrip

chararray.searchsorted (v, side="left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy . searchsorted
See Also:

numpy . searchsorted
equivalent function

chararray.setfield (val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.
Place val into a‘s field defined by dt ype and beginning offset bytes into the field.

Parameters
val : object

Value to be placed in field.
dtype : dtype object
Data-type of the field in which to place val.
offset : int, optional
The number of bytes into the field at which to place val.

Returns
None

See Also:

getfield

Examples

>>> x = np.eye
>>> x.getfield

3)
np.float64)

(
(
array ([[1., 0., 0.1,

[0., 1., 0.1,

[0., 0., 1.10)
>>> x.setfield (3, np.int32)
>>> x.getfield(np.int32)
array ([[3, 3, 31,

[3, 3, 31,

[3, 3, 311
>>> x
array ([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323],

[1.48219694e-323, 1.00000000e+000, 1.48219694e-3237,
[1.48219694e-323, 1.48219694e-323, 1.00000000e+000717)
>>> x.setfield(np.eye(3), np.int32)
>>> x
array ([[1., 0., 0.],

. Standard array subclasses 179

NumPy Reference, Release 1.8.1

[0., 1., 0.1,
[0., 0., 1.11)

chararray.setflags (write=None, align=None, uic=None)

Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below).
The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The
UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the array
owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a
string. (The exception for string is made so that unpickling can be done without copying memory.)

Parameters
write : bool, optional

Describes whether or not a can be written to.
align : bool, optional

Describes whether or not a is aligned properly for its type.
uic : bool, optional

Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITE-
ABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the com-
piler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced by .base). When this array is
deallocated, the base array will be updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well as the full name.

Examples

>>> y
array ([[3, 1, 71,
[2, 0, 0],
(8, 5, 911)
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
>>> y.setflags (write=0, align=0)
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
UPDATEIFCOPY : False

180

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

>>> y.setflags (uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError:

chararray.sort (axis=-1, kind="quicksort’, order=None)

Sort an array, in-place.

Parameters

ax

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

is : int, optional

cannot set UPDATEIFCOPY flag to True

Axis along which to sort. Default is -1, which means sort along the last axis.

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

See Also:

When a is an array with fields defined, this argument specifies which fields to compare

first, second, etc. Not all fields need be specified.

numpy . sort

Return

argsort

a sorted copy of an array.

Indirect sort.

lexsort

Indirect stable sort on multiple keys.

searchsorted
Find elements in sorted array.

partition

Partial

Notes

See sort for notes on the different sorting algorithms.

sort.

Examples
>>> a = np.array ([[1,4], [3,111])
>>> a.sort (axis=1)
>>> a
array ([[1, 47,
(1, 311)
>>> a.sort (axis=0)
>>> a
array ([[1, 31,

(1, 411)

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a’, 2), ('c’', 1)1,
>>> a.sort (order="vy’)

>>> a
array ([(’

dtype=[("x", "[S1"), ("y", "<i4")])

C’, l), (,a’r 2)}!

dtype=[("x", "S1"), ("y’, int)])

1.6. Standard array

subclasses

181

NumPy Reference, Release 1.8.1

chararray.split (sep=None, maxsplit=None)
For each element in self, return a list of the words in the string, using sep as the delimiter string.

See Also:
char.split

chararray.splitlines (keepends=None)
For each element in self, return a list of the lines in the element, breaking at line boundaries.

See Also:
char.splitlines

chararray.squeeze (axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy . squeeze for full documentation.
See Also:

numpy . squeeze
equivalent function

chararray.startswith (prefix, start=0, end=None)
Returns a boolean array which is 7True where the string element in self starts with prefix, otherwise False.
See Also:
char.startswith

chararray.strip (chars=None)
For each element in self, return a copy with the leading and trailing characters removed.

See Also:
char.strip

chararray.swapaxes (axisl, axis2)
Return a view of the array with axis/ and axis2 interchanged.

Refer to numpy . swapaxes for full documentation.
See Also:

numpy . swapaxes
equivalent function

chararray.swapcase ()
For each element in self, return a copy of the string with uppercase characters converted to lowercase and
vice versa.

See Also:
char.swapcase

chararray.take (indices, axis=None, out=None, mode="raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy . take for full documentation.

See Also:

182 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

numpy . take
equivalent function

chararray.title()
For each element in self, return a titlecased version of the string: words start with uppercase characters, all
remaining cased characters are lowercase.

See Also:
char.title

”

chararray.tofile (fid, sep="", format="%s")
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

Parameters
fid : file or str

An open file object, or a string containing a filename.
sep : str

Separator between array items for text output. If “”’ (empty), a binary file is written,
equivalentto file.write (a.tostring()).

format : str
Format string for text file output. Each entry in the array is formatted to text by first
converting it to the closest Python type, and then using “format” % item.
Notes

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

chararray.tolist ()
Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
Python type.

Parameters
none

Returns
y : list

The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

>>> a = np.array([1l, 21])

>>> a.tolist ()

(1, 2]

>>> a = np.array([[1, 2], [3, 411)

1.6.

Standard array subclasses 183

NumPy Reference, Release 1.8.1

>>> list (a)

l[array ([1, 2]), array([3, 41)]
>>> a.tolist ()

(r1, 21, (3, 41]

chararray.tostring (order="C")
Construct a Python string containing the raw data bytes in the array.

Constructs a Python string showing a copy of the raw contents of data memory. The string can be produced
in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order unless the
F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

Parameters
order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays: C, Fortran, or the same as for the original
array.

Returns
S str

A Python string exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 11, [2, 311)

>>> x.tostring()
"\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00"
>>> x.tostring ('C’) == x.tostring/()

True

>>> x.tostring ('F’)
"\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00"

chararray.translate (table, deletechars=None)
For each element in self, return a copy of the string where all characters occurring in the optional argument
deletechars are removed, and the remaining characters have been mapped through the given translation
table.

See Also:
char.translate

chararray.transpose (*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D ar-
ray into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided

and a.shape = (i[0], i[1], ... 1i[n-2], i[n-1]), then a.transpose () .shape
= (i[n-1], i[n-21, ... i[1l], if[01).
Parameters

axes : None, tuple of ints, or n ints
» None or no argument: reverses the order of the axes.

* tuple of ints: i in the j-th place in the tuple means a‘s i-th axis becomes a.transpose()‘s
Jj-th axis.

* nints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

184 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Returns
out : ndarray

View of a, with axes suitably permuted.
See Also:

ndarray.T
Array property returning the array transposed.

Examples
>>> a = np.array([[1, 2], [3, 411)
>>> a
array ([[1, 27,
(3, 411)
>>> a.transpose ()
array ([[1, 31,
(2, 411)
>>> a.transpose((1, 0))
array ([[1, 31,
(2, 411)
>>> a.transpose(l, 0)
array ([[1, 31,
(2, 411)

chararray.upper ()
Return an array with the elements of self converted to uppercase.

See Also:
char.upper

chararray.view (dtype=None, type=None)
New view of array with the same data.

Parameters
dtype : data-type or ndarray sub-class, optional

Data-type descriptor of the returned view, e.g., float32 or intl6. The default, None,
results in the view having the same data-type as a. This argument can also be specified
as an ndarray sub-class, which then specifies the type of the returned object (this is
equivalent to setting the t ype parameter).

type : Python type, optional

Type of the returned view, e.g., ndarray or matrix. Again, the default None results in
type preservation.

Notes

a.view () is used two different ways:

a.view (some_dtype) ora.view (dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view (ndarray_subclass) ora.view (type=ndarray_subclass) justreturns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinter-
pretation of the memory.

For a.view (some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view

1.6. Standard array subclasses 185

NumPy Reference, Release 1.8.1

cannot be predicted just from the superficial appearance of a (shown by print (a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a
slice or transpose, etc., the view may give different results.

Examples

>>> x = np.array ([(1, 2)], dtype=[('a’, np.int8), ('b’, np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.intl6, type=np.matrix)
>>> y

matrix ([[513]], dtype=intl6)

>>> print type(y)

<class 'numpy.matrixlib.defmatrix.matrix’>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array ([(1, 2),(3,4)], dtype=[("a’, np.int8), ('b’, np.int8)])

>>> xv = x.view(dtype=np.int8) .reshape(-1,2)

>>> XV

array ([[1, 2]
[3, 4]

>>> xv.mean (0

], dtype=int8)
)
array ([2., 3.1])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print x
((1, 20) (3, 4)]

Using a view to convert an array to a record array:

>>> z = x.view(np.recarray)
>>> z.a
array ([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3]1,[4,5,6]], dtype=np.intl6)
>>> vy = x[:, 0:2]
>>> y
array ([[1, 2],
[4, 5]]1, dtype=intl6)
>>> y.view (dtype=[('width’, np.intl6), (’length’, np.intl6)])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width’, np.intl6), (’length’, np.intl6)])
array ([[(1, 2)1,
[(4, 5)]1], dtype=[(’width’, ’<i2’), (’length’, ’'<i2’)])

186

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

chararray.z£ill (width)
Return the numeric string left-filled with zeros in a string of length width.

See Also:
char.zfill
Cargsort ||

numpy . core.defchararray.array (0bj, itemsize=None, copy=True, unicode=None, order=None)
Create a chararray.

Note: This class is provided for numarray backward-compatibility. New code (not concerned with numarray
compatibility) should use arrays of type string_ or unicode_ and use the free functions in numpy . char
for fast vectorized string operations instead.

Versus a regular Numpy array of type str or unicode, this class adds the following functionality:
1.values automatically have whitespace removed from the end when indexed
2.comparison operators automatically remove whitespace from the end when comparing values

3.vectorized string operations are provided as methods (e.g. strendswith) and infix operators (e.g. +, *

%)

14

Parameters
obj : array of str or unicode-like

itemsize : int, optional

itemsize is the number of characters per scalar in the resulting array. If itemsize is
None, and o0bj is an object array or a Python list, the itemsize will be automatically
determined. If itemsize is provided and obj is of type str or unicode, then the obj string
will be chunked into itemsize pieces.

copy : bool, optional

If true (default), then the object is copied. Otherwise, a copy will only be made if
__array__ returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy
any of the other requirements (itemsize, unicode, order, etc.).

unicode : bool, optional

When true, the resulting chararray can contain Unicode characters, when false only
8-bit characters. If unicode is None and obj is one of the following:

* achararray,
* an ndarray of type str or unicode
* a Python str or unicode object,
then the unicode setting of the output array will be automatically determined.
order : {‘C’, ‘F’, ‘A’}, optional
Specify the order of the array. If order is ‘C’ (default), then the array will be in C-
contiguous order (last-index varies the fastest). If order is ‘F’, then the returned array
will be in Fortran-contiguous order (first-index varies the fastest). If order is ‘A’, then

the returned array may be in any order (either C-, Fortran-contiguous, or even discon-
tiguous).

1.6. Standard array subclasses 187

NumPy Reference, Release 1.8.1

Another difference with the standard ndarray of str data-type is that the chararray inherits the feature introduced by
Numarray that white-space at the end of any element in the array will be ignored on item retrieval and comparison
operations.

1.6.5 Record arrays (numpy . rec)

See Also:
Creating record arrays (numpy.rec), Data type routines, Data type objects (dtype).

Numpy provides the recarray class which allows accessing the fields of a record/structured array as attributes, and
a corresponding scalar data type object record.

recarray Construct an ndarray that allows field access using attributes.
record A data-type scalar that allows field access as attribute lookup.

class numpy . recarray
Construct an ndarray that allows field access using attributes.

Arrays may have a data-types containing fields, analogous to columns in a spread sheet. An example is [(x,
int), (y, float)], whereeach entryinthe arrayis apairof (int, float).Normally, these attributes
are accessed using dictionary lookups suchas arr [’ x’] and arr [’ y’]. Record arrays allow the fields to be
accessed as members of the array, using arr.x and arr.y.

Parameters
shape : tuple

Shape of output array.
dtype : data-type, optional

The desired data-type. By default, the data-type is determined from formats, names,
titles, aligned and byteorder.

formats : list of data-types, optional

A list containing the data-types for the different columns, e.g. [’i4’, ’'f8’,
714" 1. formats does not support the new convention of using types directly, i.e.
(int, float, int). Note that formats must be a list, not a tuple. Given that
formats is somewhat limited, we recommend specifying dt ype instead.

names : tuple of str, optional
The name of each column, e.g. ("x’, 'y’, "z’).
buf : buffer, optional

By default, a new array is created of the given shape and data-type. If buf is specified
and is an object exposing the buffer interface, the array will use the memory from the
existing buffer. In this case, the offser and st rides keywords are available.

Returns
rec : recarray

Empty array of the given shape and type.

Other Parameters
titles : tuple of str, optional

188 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Aliases for column names. For example, if names were ('x’, ’'vy’, ’z’) and
titles is (' x_coordinate’, ’y_coordinate’, ’z_coordinate’), then
arr[’x’] isequivalentto both arr.x and arr.x_coordinate.

byteorder : {‘<’, ©>’, ‘="}, optional

Byte-order for all fields.
aligned : bool, optional

Align the fields in memory as the C-compiler would.
strides : tuple of ints, optional

Buffer (buf) is interpreted according to these strides (strides define how many bytes
each array element, row, column, etc. occupy in memory).

offset : int, optional
Start reading buffer (buf) from this offset onwards.
order : {‘C’, ‘F’}, optional
Row-major or column-major order.
See Also:
rec. fromrecords
Construct a record array from data.

record
fundamental data-type for recarray.

format_parser
determine a data-type from formats, names, titles.
Notes

This constructor can be compared to empty: it creates a new record array but does not fill it with data. To create
a record array from data, use one of the following methods:

1.Create a standard ndarray and convert it to a record array, using arr .view (np.recarray)
2.Use the buf keyword.

3.Use np.rec.fromrecords.

Examples
Create an array with two fields, x and y:

>>> x = np.array([(1.0, 2), (3.0, 4)], dtype=[('x", float), ("y’, int)])
>>> X
array ([(1.0, 2), (3.0, 4)1,

dtype=[('x', '<f8’), ('y’', ’'<id4’)1)

>>> x["x"]

array ([1., 3.1)

View the array as a record array:

>>> x = x.view(np.recarray)

1.6. Standard array subclasses 189

NumPy Reference, Release 1.8.1

>>> X.X

array ([1., 3.1])

>>> x.y

47)

array ([2,

Create a new, empty record array:

>>> np.recarray((2,),

dtype=[("x",

(3471280,

dtype=[("x’,

int),
rec.array ([(-1073741821,
1.2134086255804012e-316,

("y", float), ('z’, int)])
1.2249118382103472e-301,
0)1,

("z’,

24547520),

r<idn), ('y', '<£87), r<i4r)])

Attributes
T Same as self.transpose(), except that self is returned if self.ndim < 2.
base Base object if memory is from some other object.
ctypes An object to simplify the interaction of the array with the ctypes module.
data Python buffer object pointing to the start of the array’s data.
dtype Data-type of the array’s elements.
flags Information about the memory layout of the array.
flat A 1-D iterator over the array.
imag The imaginary part of the array.

itemsize

Length of one array element in bytes.

nbytes Total bytes consumed by the elements of the array.

ndim Number of array dimensions.

real The real part of the array.

shape Tuple of array dimensions.

size Number of elements in the array.

strides Tuple of bytes to step in each dimension when traversing an array.

recarray.T

Same as self.transpose(), except that self is returned if self.ndim < 2.

Examples
>>> x = np.array ([[1.,2.]1,[3.,4.]1])
>>> x
array ([[1., 2.1,
[3., 4.11)
>>> x.T
array ([[1., 3.1,
[2., 4.11)
>>> x = np.array([1.,2.,3.,4.1)
>>> x
array ([1., 2., 3., 4.])
>>> x.T
array ([1., 2., 3., 4.])

recarray.base

Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

190

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

>>> x = np.array([1,2,3,4])
>>> x.pbase is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

recarray.ctypes
An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the
ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes
below) which themselves return ctypes objects that can be used as arguments to a shared library.

Parameters
None

Returns
¢ : Python object

Possessing attributes data, shape, strides, etc.
See Also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have
omitted undocumented public attributes, as well as documented private attributes):

edata: A pointer to the memory area of the array as a Python integer. This memory area may contain

data that is not aligned, or not in correct byte-order. The memory area may not even be writeable.
The array flags and data-type of this array should be respected when passing this attribute to arbitrary
C-code to avoid trouble that can include Python crashing. User Beware! The value of this attribute is
exactly the same as self._array_interface_[’data’][0].

eshape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer
corresponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes
array contains the shape of the underlying array.

estrides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for

the shape attribute. This ctypes array contains the strides information from the underlying array.
This strides information is important for showing how many bytes must be jumped to get to the next
element in the array.

edata_as(obj): Return the data pointer cast to a particular c-types object. For example, calling
self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data
as a pointer to a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.c_double)).

eshape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

estrides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly. For
example, calling (a+b) .ctypes.data_as (ctypes.c_void_p) returns a pointer to memory that

1.6.

Standard array subclasses 191

NumPy Reference, Release 1.8.1

is invalid because the array created as

(a+b) is deallocated before the next Python statement. You can avoid

this problem using either c=a+b or ct=(a+b) . ctypes. In the latter case, ct will hold a reference to
the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful,
but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have
the as parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array ([[0, 17,

[2, 311
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as (ctypes.
<ctypes.LP_c_long object at
>>> x.ctypes.data_as (ctypes.
c_long (0)
>>> x.ctypes.data_as (ctypes.
c_longlong (4294967296L)
>>> x.ctypes.shape

POINTER (ctypes.c_long))
0x01F01300>
POINTER (ctypes.c_long)) .contents

POINTER (ctypes.c_longlong)) .contents

<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as (ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>

>>> x.ctypes.strides

<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as (ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

recarray.data

Python buffer object pointing to the start of the array’s data.

recarray.dtype
Data-type of the array’s elements.

Parameters
None

Returns
d : numpy dtype object

See Also:

numpy .dtype

Examples

>>> X

array ([[0, 17,
[2, 311

>>> x.dtype
dtype (" int32")

>>> type (x.dtype)
<type ’numpy.dtype’>

recarray.flags

Information about the memory layout of the array.

192

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Notes

The £1ags object can be accessed dictionary-like (asin a.flags [’ WRITEABLE']), or by using low-
ercased attribute names (asina. flags.writeable). Short flag names are only supported in dictionary
access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct
assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:
*UPDATEIFCOPY can only be set False.
*ALIGNED can only be set True if the data is truly aligned.

*WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the
memory exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional
arrays, but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbi-
trary if arr.shape[dim] == 1 or the array has no elements. It does not generally hold that
self.strides[-1] == self.itemsize for C-style contiguous arrays or self.strides[0]
== self.itemsize for Fortran-style contiguous arrays is true.

Attributes
C_CONTIGUQOS data is in a single, C-style contiguous segment.
©)
F_CONTIGUOIhS data is in a single, Fortran-style contiguous segment.
(F)
OWN- The array owns the memory it uses or borrows it from another object.
DATA
(&)
WRITE- The data area can be written to. Setting this to False locks the data, making it read-only.
ABLE A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a
W) view of a writeable array may be subsequently locked while the base array remains

writeable. (The opposite is not true, in that a view of a locked array may not be made
writeable. However, currently, locking a base object does not lock any views that
already reference it, so under that circumstance it is possible to alter the contents of a
locked array via a previously created writeable view onto it.) Attempting to change a
non-writeable array raises a RuntimeError exception.

ALIGNED | The data and all elements are aligned appropriately for the hardware.

A)

UP- This array is a copy of some other array. When this array is deallocated, the base array
DATEIF- will be updated with the contents of this array.

COPY

U)

ENC F_CONTIGUOUS and not C_CONTIGUOUS.

FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).
BEHAVED | ALIGNED and WRITEABLE.

B)

CARRAY BEHAVED and C_CONTIGUOUS.

(CA)

FARRAY BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.
(FA)

1.6. Standard array subclasses 193

NumPy Reference, Release 1.8.1

recarray.flat
A 1-D iterator over the array.

This is a numpy . f1atiter instance, which acts similarly to, but is not a subclass of, Python’s built-in
iterator object.

See Also:

flatten
Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(l, 7).reshape(2, 3)

>>> x

array ([[1, 2, 31,
[4, 5, 6]11)

>>> x.flat[3]

4

>>> x.T

array ([[1, 4]
[2, 51,
[3, 611)

>>> x.T.flat [3]

5

>>> type (x.flat)

<type ’'numpy.flatiter’>

’

An assignment example:

>>> x.flat = 3;
array ([[3, 3, 3]
[3, 3, 3]
>>> x.flat[[1,4]
array ([[3, 1, 3]
[3, 1, 3]

recarray.imag
The imaginary part of the array.

Examples

>>> x = np.sqgrt ([1+07, 0+171])

>>> x.imag

array ([O. , 0.7071067817)
>>> x.imag.dtype

dtype (' float64d’)

recarray.itemsize
Length of one array element in bytes.

Examples

>>> x = np.array([1l,2,3], dtype=np.float64)
>>> x.itemsize

8

>>> x = np.array([1l,2,3], dtype=np.complexl28)

194 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

>>> x.itemsize
16

recarray.nbytes
Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complexl28)
>>> x.nbytes

480

>>> np.prod(x.shape) * x.itemsize

480

recarray.ndim
Number of array dimensions.

Examples

>>> x = np.array([l, 2, 31)
>>> x.ndim

1

>>> y = np.zeros ((2, 3, 4))
>>> y.ndim

3

recarray.real
The real part of the array.

See Also:

numpy .real
equivalent function

Examples

>>> x = np.sqrt ([1+07, 0+17])
>>> x.real

array ([1. , 0.70710678])
>>> x.real.dtype

dtype (' float64’)

recarray.shape
Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not require a change in the total number of
elements

Examples

>>> x = np.array([1l, 2, 3, 41])
>>> x.shape

(4,)

>>> y = np.zeros((2, 3, 4))

1.6. Standard array subclasses 195

NumPy Reference, Release 1.8.1

>>> y.shape

(2, 3, 4)

>>> y.shape = (3, 8)

>>> y

array([[0., ©0., 0., 0., 0., 0., 0., 0.1,
r o., 0., 0., 0., 0., 0., 0., 0.1,
r o., 0., 0., 0., 0., 0., 0., 0.11)

>>> y.shape = (3, 6)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

recarray.size
Number of elements in the array.

Equivalent to np.prod (a.shape), i.e., the product of the array’s dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complexl28)
>>> x.size

30

>>> np.prod(x.shape)

30

recarray.strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i [0], i[l], ..., 1i[n]) inanarrayais:

offset = sum(np.array (i) = a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.
See Also:

numpy.lib.stride_tricks.as_strided

Notes
Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 911, dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory).
The strides of an array tell us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20
bytes (5 values) to get to the same position in the next row. As such, the strides for the array x will be

(20, 4).

Examples

>>> y = np.reshape (np.arange (2x3%4), (2,3,4))
>>> y

array ([[, 1, 2, ’

0 3
4, 5, 6, 1
8, 9, 10, 11
2, 13, 14, 15
6, 17, 18, 191,
0, 21, 22, 2311])

196 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

>>> y.strides

(48, 16, 4)
>>> y[1,1,1]
17

>>> offset=sum(y.strides x np.array((1,1,1)))

>>> offset/y.itemsize

(5,6,7,8)) .transpose(2,3,1,0)

17

>>> x = np.reshape (np.arange (5x6*7%8),
>>> x.strides

(32, 4, 224, 1344)

>>> 1 = np.array([3,5,2,2])

>>> offset =
>>> x[3,5,2,2]

813

>>> offset / x.itemsize
813

Methods

sum (i * x.strides)

all([axis, out])

Returns True if all elements evaluate to True.

any([axis, out])

Returns True if any of the elements of a evaluate to True.

argmax([axis, out])

Return indices of the maximum values along the given axis.

argmin([axis, out])

Return indices of the minimum values along the given axis of a.

argpartition(kth[, axis, kind, order])

Returns the indices that would partition this array.

argsort([axis, kind, order])

Returns the indices that would sort this array.

astype(dtype[, order, casting, subok, copy])

Copy of the array, cast to a specified type.

byteswap(inplace)

Swap the bytes of the array elements

choose(choices[, out, mode])

Use an index array to construct a new array from a set of choices.

clip(a_min, a_max[, out])

Return an array whose values are limited to [a_min, a_max].

compres s(condition[, axis, out])

Return selected slices of this array along given axis.

conj() Complex-conjugate all elements.
conjugate() Return the complex conjugate, element-wise.
copy([order]) Return a copy of the array.

cumprod([axis, dtype, out])

Return the cumulative product of the elements along the given axis.

cumsum([axis, dtype, out])

Return the cumulative sum of the elements along the given axis.

diagonal([offset, axis1, axis2])

Return specified diagonals.

dot(b[, out])

Dot product of two arrays.

dump(file) Dump a pickle of the array to the specified file.

dumps() Returns the pickle of the array as a string.

field(attr[, val])

£111(value) Fill the array with a scalar value.

flatten([order]) Return a copy of the array collapsed into one dimension.

get field(dtype[, offset]) Returns a field of the given array as a certain type.

item(*args) Copy an element of an array to a standard Python scalar and return it.
itemset(*args) Insert scalar into an array (scalar is cast to array’s dtype, if possible)

max([axis, out])

Return the maximum along a given axis.

mean([axis, dtype, out])

Returns the average of the array elements along given axis.

min([axis, out])

Return the minimum along a given axis.

newbyteorder([new_order])

Return the array with the same data viewed with a different byte order.

nonzero()

Return the indices of the elements that are non-zero.

partition(kth[, axis, kind, order])

Rearranges the elements in the array in such a way that value of the element in kth pc

prod([axis, dtype, out])

Return the product of the array elements over the given axis

1.6. Standard array subclasses

197

NumPy Reference, Release 1.8.1

Table 1.48 — continued from previous page

ptp([axis, out])

Peak to peak (maximum - minimum) value along a given axis.

put(indices, values[, mode])

Seta.flat[n] = values[n] for all n in indices.

ravel([order])

Return a flattened array.

repeat(repeats|, axis])

Repeat elements of an array.

reshape(shapel, order])

Returns an array containing the same data with a new shape.

resize(new_shape[, refcheck])

Change shape and size of array in-place.

round([decimals, out])

Return a with each element rounded to the given number of decimals.

searchsorted(v], side, sorter])

Find indices where elements of v should be inserted in a to maintain order.

set field(val, dtype[, offset])

Put a value into a specified place in a field defined by a data-type.

set flags([write, align, uic])

Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

sort([axis, kind, order])

Sort an array, in-place.

squeeze([axis])

Remove single-dimensional entries from the shape of a.

std([axis, dtype, out, ddof])

Returns the standard deviation of the array elements along given axis.

sum([axis, dtype, out])

Return the sum of the array elements over the given axis.

swapaxes(axisl, axis2)

Return a view of the array with axis/ and axis2 interchanged.

take(indices[, axis, out, mode])

Return an array formed from the elements of a at the given indices.

tofile(fid[, sep, format])

Write array to a file as text or binary (default).

tolist()

Return the array as a (possibly nested) list.

tostring([order])

Construct a Python string containing the raw data bytes in the array.

trace([offset, axis1, axis2, dtype, out])

Return the sum along diagonals of the array.

transpose(*axes)

Returns a view of the array with axes transposed.

var([axis, dtype, out, ddof])

Returns the variance of the array elements, along given axis.

view([dtype, type])

recarray.all (axis=None, out=None)

Returns True if all elements evaluate to True.

Refer to numpy . all for full documentation.

See Also:

numpy.all
equivalent function

recarray .any (axis=None, out=None)

Returns True if any of the elements of a evaluate to True.

Refer to numpy . any for full documentation.

See Also:

numpy . any
equivalent function

recarray.argmax (axis=None, out=None)
Return indices of the maximum values along the given axis.

Refer to numpy . argmax for full documentation.

See Also:

numpy . argmax
equivalent function

198

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

recarray.argmin (axis=None, out=None)
Return indices of the minimum values along the given axis of a.

Refer to numpy . argmin for detailed documentation.

See Also:

numpy .argmin
equivalent function

recarray.argpartition (kth, axis=-1, kind="introselect’, order=None)
Returns the indices that would partition this array.

Refer to numpy . argpartition for full documentation. New in version 1.8.0.

See Also:

numpy .argpartition
equivalent function

recarray.argsort (axis=-1, kind="quicksort’, order=None)
Returns the indices that would sort this array.

Refer to numpy . argsort for full documentation.

See Also:

numpy .argsort
equivalent function

recarray .astype (dtype, order="K’, casting="unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters
dtype : str or dtype

Typecode or data-type to which the array is cast.
order : {‘C’, ‘F’, ‘A’, ‘K’ }, optional
Controls the memory layout order of the result. ‘C’ means C order, ‘F’ means Fortran

order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order otherwise,

and ‘K’ means as close to the order the array elements appear in memory as possible.
Default is ‘K’.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur. Defaults to ‘unsafe’ for backwards com-
patibility.

* ‘no’ means the data types should not be cast at all.
* ‘equiv’ means only byte-order changes are allowed.
* ‘safe’ means only casts which can preserve values are allowed.

» ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

* ‘unsafe’ means any data conversions may be done.

subok : bool, optional

1.6.

Standard array subclasses 199

NumPy Reference, Release 1.8.1

If True, then sub-classes will be passed-through (default), otherwise the returned array
will be forced to be a base-class array.

copy : bool, optional

By default, astype always returns a newly allocated array. If this is set to false, and the
dtype, order, and subok requirements are satisfied, the input array is returned instead
of a copy.

Returns
arr_t : ndarray

Unless copy is False and the other conditions for returning the input array are satisfied
(see description for copy input paramter), arr_t is a new array of the same shape as the
input array, with dtype, order given by dt ype, order.

Raises
ComplexWarning

When casting from complex to float or int. To avoid this, one should use
a.real.astype(t).

Examples

>>> x = np.array([1l, 2, 2.5])
>>> x
array ([1. , 2. , 2.51)

>>> x.astype (int)
array ([1, 2, 21])

recarray .byteswap (inplace)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, option-
ally swapped in-place.

Parameters
inplace : bool, optional

If True, swap bytes in-place, defaultis False.

Returns
out : ndarray

The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> A = np.array([l, 256, 8755], dtype=np.intl6)
>>> map (hex, A)

[70x1’, "0x100’, ’'0x2233"]

>>> A.byteswap (True)

array ([256, 1, 13090], dtype=intlo)

>>> map (hex, A)

[70x100", "0x1’, ’'0x3322"]

Arrays of strings are not swapped

>>> A = np.array(['ceg’, "fac’])
>>> A.byteswap ()

200 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

array([’'ceg’, ’'fac’],
dtype=’|3S3")

recarray .choose (choices, out=None, mode="raise’)

Use an index array to construct a new array from a set of choices.

Refer to numpy . choose for full documentation.

See Also:

numpy . choose
equivalent function

recarray.clip (a_min, a_max, out=None)

Return an array whose values are limited to [a_min, a_max].

Refer to numpy . c11ip for full documentation.
See Also:

numpy.clip
equivalent function

recarray .compress (condition, axis=None, out=None)
Return selected slices of this array along given axis.
Refer to numpy . compress for full documentation.
See Also:

numpy . compress
equivalent function

recarray.conj ()
Complex-conjugate all elements.
Refer to numpy . conjugate for full documentation.
See Also:

numpy . conjugate
equivalent function

recarray.conjugate ()
Return the complex conjugate, element-wise.
Refer to numpy . conjugate for full documentation.
See Also:

numpy .conjugate
equivalent function

recarray.copy (order="C’)
Return a copy of the array.

Parameters
order : {‘C’, ‘F’, ‘A’, ‘K’ }, optional

1.6.

Standard array subclasses

201

NumPy Reference, Release 1.8.1

3

Controls the memory layout of the copy. ‘C’ means C-order, ‘F* means F-order, ‘A’
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as
closely as possible. (Note that this function and :func:numpy.copy are very similar, but
have different default values for their order= arguments.)

See Also:

numpy . copy, numpy . copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order="F’)

>>> y = x.copy ()

>>> x.fi11(0)

>>> x
array ([[0, 0O, 0],
[0, 0, 011

>>> y
array ([[1, 2, 31,
(4, 5, 611])

>>> y.flags[’C_CONTIGUOUS']
True

recarray .cumprod (axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy . cumprod for full documentation.
See Also:

numpy . cumprod
equivalent function

recarray .cumsum (axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.
Refer to numpy . cumsum for full documentation.

See Also:

numpy . cumsum
equivalent function

recarray .diagonal (offset=0, axisl=0, axis2=1)
Return specified diagonals.
Refer to numpy . diagonal for full documentation.
See Also:

numpy .diagonal
equivalent function

202 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

recarray .dot (b, out=None)
Dot product of two arrays.

Refer to numpy . dot for full documentation.

See Also:

numpy .dot
equivalent function

Examples

>>> a = np.eye(2)

>>> b = np.ones((2, 2)) *= 2

>>> a.dot (b)

array ([[2., 2.1,
[2., 2.11)

This array method can be conveniently chained:

>>> a.dot (b) .dot (b)
array ([[8., 8.1,
[8., 8.11)

recarray .dump (file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters
file : str

A string naming the dump file.

recarray.dumps ()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

Parameters
None

recarray . field (attr, val=None)

recarray.fill (value)
Fill the array with a scalar value.

Parameters
value : scalar

All elements of a will be assigned this value.

Examples

>>> a = np.array([1l, 21])
>>> a.f111 (0)

>>> a

array ([0, 0])

>>> a = np.empty (2)

>>> a.fill (1)

>>> a

array ([1., 1.1)

1.6. Standard array subclasses 203

NumPy Reference, Release 1.8.1

recarray.flatten (order="C’)

Return a copy of the array collapsed into one dimension.

Parameters
order : {‘C’, ‘F’, ‘A’}, optional
Whether to flatten in C (row-major), Fortran (column-major) order, or preserve the
C/Fortran ordering from a. The default is ‘C’.

Returns
y : ndarray

A copy of the input array, flattened to one dimension.

See Also:

ravel
Return a flattened array.

flat
A 1-D flat iterator over the array.

Examples

>>> a = np.array ([[1,2], [3,411])
>>> a.flatten ()

array ([1, 2, 3, 41)

>>> a.flatten('F’)

array ([1, 3, 2, 41)

recarray.getfield (diype, offset=0)

Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits
in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with
a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters
dtype : str or dtype

The data type of the view. The dtype size of the view can not be larger than that of the
array itself.

offset : int

Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.3]%2)
>>> x[1, 1] = 2 + 4.7

>>> x

array ([[1.+1.73, 0.40.73]

[0.40.3, 2.+4.311)
>>> x.getfield(np.float64)
array ([[1., 0.1,

[0., 2.11)

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

204

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

>>> x.getfield(np.float64, offset=8)
array ([[1., 0.1,
[0., 4.11)

recarray.item (*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters
*args : Arguments (variable number and type)

* none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

* int_type: this argument is interpreted as a flat index into the array, specifying which ele-
ment to copy and return.

* tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

Returns
z : Standard Python scalar object

A copy of the specified element of the array as a suitable Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to af[args], except, instead of an array scalar, a standard Python scalar is returned.
This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> x = np.random.randint (9, size=(3, 3))

>>> x

array ([[3, 1, 71,
(2, 8, 31,
(8, 5, 311)

>>> x.item(3)

2

>>> x.item(7)

5

>>> x.item((0, 1))

1

>>> x.item((2, 2))

3

recarray.itemset (*args)
Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as ifem. Then, a.itemset (xargs) is
equivalent to but faster than a [args] = item. The item should be a scalar value and args must select
a single item in the array a.

Parameters
*args : Arguments

1.6. Standard array subclasses 205

NumPy Reference, Release 1.8.1

If one argument: a scalar, only used in case a is of size 1. If two arguments: the last
argument is the value to be set and must be a scalar, the first argument specifies a single
array element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, i temset provides some speed increase for placing a scalar into a particular
location in an ndarray, if you must do this. However, generally this is discouraged: among other
problems, it complicates the appearance of the code. Also, when using itemset (and item) inside a
loop, be sure to assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

Examples

>>> x = np.random.randint (9, size=(3, 3))
>>> x
array ([[3, 1, 71,
[2, 8, 31,
[8, 5, 311)
>>> x.itemset (4, 0)
>>> x.itemset ((2, 2), 9)
>>> x
array ([[3, 1, 71,
(2, 0, 31,
[8, 5, 911)

recarray .max (axis=None, out=None)
Return the maximum along a given axis.
Refer to numpy . amax for full documentation.
See Also:

numpy . amax
equivalent function

recarray .mean (axis=None, dtype=None, out=None)
Returns the average of the array elements along given axis.
Refer to numpy . mean for full documentation.
See Also:

numpy .mean
equivalent function

recarray.min (axis=None, out=None)
Return the minimum along a given axis.
Refer to numpy . amin for full documentation.
See Also:

numpy .amin
equivalent function

recarray.newbyteorder (new_order='S’)
Return the array with the same data viewed with a different byte order.

Equivalent to:

206 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

arr.view(arr.dtype.newbytorder (new_order))

Changes are also made in all fields and sub-arrays of the array data type.

Parameters
new_order : string, optional

Byte order to force; a value from the byte order specifications above. new_order codes
can be any of:

* 'S’ - swap dtype from current to opposite endian
* {’<", 'L’} - little endian

* {’>", "B’} - big endian

* {’=", 'N’} - native order

* {’]", "I'"} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order. The code does a
case-insensitive check on the first letter of new_order for the alternatives above. For
example, any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

Returns
new_arr : array
New array object with the dtype reflecting given change to the byte order.

recarray.nonzero ()
Return the indices of the elements that are non-zero.

Refer to numpy . nonzero for full documentation.

See Also:

numpy . nonzero
equivalent function

recarray.partition (kth, axis=-1, kind="introselect’, order=None)
Rearranges the elements in the array in such a way that value of the element in kth position is in the
position it would be in a sorted array. All elements smaller than the kth element are moved before this
element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined. New in version 1.8.0.

Parameters
kth : int or sequence of ints

Element index to partition by. The kth element value will be in its final sorted position
and all smaller elements will be moved before it and all equal or greater elements behind
it. The order all elements in the partitions is undefined. If provided with a sequence of
kth it will partition all elements indexed by kth of them into their sorted position at once.

axis : int, optional

Axis along which to sort. Default is -1, which means sort along the last axis.
kind : {‘introselect’}, optional

Selection algorithm. Default is ‘introselect’.
order : list, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. Not all fields need be specified.

1.6.

Standard array subclasses 207

NumPy Reference, Release 1.8.1

See Also:
numpy .partition
Return a parititioned copy of an array.

argpartition
Indirect partition.

sort
Full sort.
Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 11)
>>> a.partition(a, 3)

>>> a

array ([2, 1, 3, 41)

>>> a.partition((1, 3))
array ([1, 2, 3, 41)

recarray .prod (axis=None, dtype=None, out=None)
Return the product of the array elements over the given axis
Refer to numpy . prod for full documentation.
See Also:

numpy . prod
equivalent function

recarray.ptp (axis=None, out=None)
Peak to peak (maximum - minimum) value along a given axis.
Refer to numpy . ptp for full documentation.
See Also:

numpy .ptp
equivalent function

recarray .put (indices, values, mode="raise’)
Seta.flat[n] = values[n] forall nin indices.
Refer to numpy . put for full documentation.
See Also:

numpy . put
equivalent function

recarray.ravel ([order])
Return a flattened array.
Refer to numpy . ravel for full documentation.

See Also:

208 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

numpy . ravel
equivalent function

ndarray. flat
a flat iterator on the array.
recarray .repeat (repeats, axis=None)
Repeat elements of an array.
Refer to numpy . repeat for full documentation.
See Also:

numpy . repeat
equivalent function

recarray .reshape (shape, order="C’)
Returns an array containing the same data with a new shape.
Refer to numpy . reshape for full documentation.
See Also:

numpy . reshape
equivalent function

recarray .resize (new_shape, refcheck=True)
Change shape and size of array in-place.

Parameters
new_shape : tuple of ints, or n ints

Shape of resized array.
refcheck : bool, optional
If False, reference count will not be checked. Default is True.

Returns
None

Raises
ValueError

If a does not own its own data or references or views to it exist, and the data memory
must be changed.

SystemError
If the order keyword argument is specified. This behaviour is a bug in NumPy.
See Also:
resize
Return a new array with the specified shape.
Notes
This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

1.6.

Standard array subclasses 209

NumPy Reference, Release 1.8.1

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and re-
shaped:

>>> a = np.array ([[0, 1], [2, 3]], order='C’)
>>> a.resize((2, 1))

>>> a

array ([[0],

[(111)

>>> a = np.array([[0, 11, [2, 3]], order="F’)
>>> a.resize((2, 1))

>>> a

array ([[0],

[(211)

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array ([[0, 11, [2, 311)
>>> b.resize (2, 3) # new_shape parameter doesn’t have to be a tuple
>>> b

array ([[0, 1, 21,
(3, 0, 011)

Referencing an array prevents resizing...

>>> ¢c = a
>>> a.resize((1, 1))
Traceback (most recent call last):

ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)

>>> a
array ([[0]])
>>> C
array ([[0]])

recarray . round (decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy . around for full documentation.
See Also:

numpy . around
equivalent function

recarray.searchsorted (v, side=’left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy . searchsorted

210 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

See Also:

numpy . searchsorted
equivalent function

recarray.setfield (val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.
Place val into a‘s field defined by dt ype and beginning offset bytes into the field.

Parameters
val : object

Value to be placed in field.
dtype : dtype object

Data-type of the field in which to place val.
offset : int, optional

The number of bytes into the field at which to place val.

Returns
None

See Also:
getfield
Examples
>>> x = np.eye(3)
>>> x.getfield(np.float64)
array ([[1., 0., 0.1,

[0., 1., 0.1,

[0., 0., 1.11)
>>> x.setfield (3, np.int32)
>>> x.getfield(np.int32)
array ([[3, 3, 31,

(3, 3, 31,

[3, 3, 311)
>>> x
array ([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323]7,

[1.48219694e-323, 1.00000000e+000, 1.48219694e-3237,
[1.48219694e-323, 1.48219694e-323, 1.00000000e+0007]17)
>>> x.setfield(np.eye(3), np.int32)

>>> x

array ([[1., 0., 0.],
[0., 1., 0.1,
[0., O., 1.11)

recarray.setflags (write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below).
The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The
UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the array
owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a
string. (The exception for string is made so that unpickling can be done without copying memory.)

1.6. Standard array subclasses 211

NumPy Reference, Release 1.8.1

Parameters
write : bool, optional

Describes whether or not a can be written to.
align : bool, optional

Describes whether or not a is aligned properly for its type.
uic : bool, optional

Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITE-
ABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the com-
piler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced by .base). When this array is
deallocated, the base array will be updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well as the full name.

Examples

>>> y
array ([[3, 1, 71,
(2, 0, 01,
(8, 5, 911)

>>> y.flags

C_CONTIGUOUS : True

F_CONTIGUOUS : False

OWNDATA : True

WRITEABLE : True

ALIGNED : True

UPDATEIFCOPY : False
>>> y.setflags (write=0, align=0)
>>> y.flags

C_CONTIGUOUS : True

F_CONTIGUOUS : False

OWNDATA : True

WRITEABLE : False

ALIGNED : False

UPDATEIFCOPY : False
>>> y.setflags (uic=1)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: cannot set UPDATEIFCOPY flag to True

recarray .sort (axis=-1, kind="quicksort’, order=None)
Sort an array, in-place.

Parameters
axis : int, optional

Axis along which to sort. Default is -1, which means sort along the last axis.

212 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

When a is an array with fields defined, this argument specifies which fields to compare

See Also:

first, second, etc. Not all fields need be specified.

numpy . sort

Return

argsort

a sorted copy of an array.

Indirect sort.

lexsort

Indirect stable sort on multiple keys.

searchsorted
Find elements in sorted array.

partition

Partial

Notes

See sort for notes on the different sorting algorithms.

sort.

Examples
>>> a = np.array ([[1,4], [3,111])
>>> a.sort (axis=1)
>>> a
array ([[1, 4],
(1, 311)
>>> a.sort (axis=0)
>>> a
array ([[1, 31,

[

1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a’, 2), (‘c’, 1)1,
>>> a.sort (order="vy’)

>>> a

array ([(’

dtype=[("x", "[S1"), ("y", '<i4")])

C’, l), (’a’r 2)}1

recarray .squeeze (axis=None)

Remove single-dimensional entries from the shape of a.

Refer to nu

See Also:

mpy . squeeze for full documentation.

numpy . squeeze
equivalent function

dtype=[("x", ’'s1’), ("y’, int)1])

1.6. Standard array

subclasses

213

NumPy Reference, Release 1.8.1

recarray .std (axis=None, dtype=None, out=None, ddof=0)
Returns the standard deviation of the array elements along given axis.

Refer to numpy . st d for full documentation.
See Also:

numpy . std
equivalent function

recarray . sum (axis=None, dtype=None, out=None)
Return the sum of the array elements over the given axis.
Refer to numpy . sum for full documentation.
See Also:

numpy . sum
equivalent function

recarray .swapaxes (axisl, axis2)
Return a view of the array with axis/ and axis2 interchanged.

Refer to numpy . swapaxes for full documentation.
See Also:

numpy . swapaxes
equivalent function

recarray .take (indices, axis=None, out=None, mode="raise’)
Return an array formed from the elements of a at the given indices.
Refer to numpy . t ake for full documentation.
See Also:

numpy . take
equivalent function

”

recarray.tofile (fid, sep="", format="%s")
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

Parameters
fid : file or str

An open file object, or a string containing a filename.
sep : str

Separator between array items for text output. If “”’ (empty), a binary file is written,
equivalentto file.write (a.tostring()).

format : str

Format string for text file output. Each entry in the array is formatted to text by first
converting it to the closest Python type, and then using “format” % item.

214 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

recarray.tolist ()
Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
Python type.

Parameters
none

Returns
y : list

The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

>>> a = np.array([1l, 21])

>>> a.tolist ()

(1, 2]

>>> a = np.array ([[1, 2], [3, 411)

>>> list (a)

[array ([1, 2]), array([3, 4]1)]
>>> a.tolist ()

(r1, 21, I3, 411

recarray.tostring (order="C’)
Construct a Python string containing the raw data bytes in the array.

Constructs a Python string showing a copy of the raw contents of data memory. The string can be produced
in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order unless the
F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

Parameters
order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays: C, Fortran, or the same as for the original
array.

Returns
S . str

A Python string exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array ([[0, 11, [2, 311)

>>> x.tostring()
"\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00"
>>> x.tostring(’C’) == x.tostring()

True

1.6. Standard array subclasses 215

NumPy Reference, Release 1.8.1

>>> x.tostring ('E’)
"\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00"

recarray .trace (offset=0, axisI1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.
Refer to numpy . t race for full documentation.
See Also:

numpy .trace
equivalent function

recarray.transpose (*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D ar-
ray into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided

and a.shape = (i[0], i[1], ... 1i[n-2], i[n-1]), then a.transpose () .shape
= (i[n-1], i[n-2], ... if[1]1, 41i[0]).
Parameters

axes : None, tuple of ints, or n ints
* None or no argument: reverses the order of the axes.

e tuple of ints: i in the j-th place in the tuple means a‘s i-th axis becomes a.transpose()‘s
Jj-th axis.

* pnints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

Returns
out : ndarray

View of a, with axes suitably permuted.
See Also:

ndarray.T
Array property returning the array transposed.

Examples
>>> a = np.array ([[1, 2], [3, 411)
>>> a
array ([[1, 21,
[3, 411)
>>> a.transpose ()
array ([[1, 31,
(2, 411)
>>> a.transpose((1, 0))
array ([[1, 31,
(2, 411)
>>> a.transpose(l, 0)
array ([[1, 31,
(2, 411)

216

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

recarray .var (axis=None, dtype=None, out=None, ddof=0)
Returns the variance of the array elements, along given axis.

Refer to numpy . var for full documentation.

See Also:

numpy .var
equivalent function

recarray.view (dtype=None, type=None)

class numpy . record
A data-type scalar that allows field access as attribute lookup.

Attributes
T transpose
base base object
data pointer to start of data
dtype dtype object
flags integer value of flags
flat a 1-d view of scalar
imag imaginary part of scalar
itemsize length of one element in bytes
nbytes length of item in bytes
ndim number of array dimensions
real real part of scalar
shape tuple of array dimensions
size number of elements in the gentype
strides tuple of bytes steps in each dimension
record.T
transpose

record.base
base object

record.data
pointer to start of data

record.dtype
dtype object

record. flags
integer value of flags

record. flat
a 1-d view of scalar

record.imag
imaginary part of scalar

record.itemsize
length of one element in bytes

1.6. Standard array subclasses 217

NumPy Reference, Release 1.8.1

record.nbytes
length of item in bytes

record.ndim
number of array dimensions

record.real
real part of scalar

record.shape
tuple of array dimensions

record.size
number of elements in the gentype

record.strides
tuple of bytes steps in each dimension

Methods

all Not implemented (virtual attribute)
any Not implemented (virtual attribute)
argmax Not implemented (virtual attribute)
argmin Not implemented (virtual attribute)
argsort Not implemented (virtual attribute)
astype Not implemented (virtual attribute)
byteswap Not implemented (virtual attribute)
choose Not implemented (virtual attribute)
clip Not implemented (virtual attribute)
compress Not implemented (virtual attribute)
con’j

conjugate

Not implemented (virtual attribute)

copy Not implemented (virtual attribute)
cumprod Not implemented (virtual attribute)
cumsum Not implemented (virtual attribute)
diagonal Not implemented (virtual attribute)
dump Not implemented (virtual attribute)
dumps Not implemented (virtual attribute)
fill Not implemented (virtual attribute)
flatten Not implemented (virtual attribute)
getfield

item Not implemented (virtual attribute)
itemset Not implemented (virtual attribute)
max Not implemented (virtual attribute)
mean Not implemented (virtual attribute)
min Not implemented (virtual attribute)
newbyteorder([new_order]) Return a new dtype with a different byte order.
nonzero Not implemented (virtual attribute)
pprint() Pretty-print all fields.

prod Not implemented (virtual attribute)
ptp Not implemented (virtual attribute)
put Not implemented (virtual attribute)
ravel Not implemented (virtual attribute)
repeat Not implemented (virtual attribute)

Continued on next page |

218

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Table 1.50 — continued from previous page

reshape

Not implemented (virtual attribute)

resize

Not implemented (virtual attribute)

round

Not implemented (virtual attribute)

searchsorted

Not implemented (virtual attribute)

setfield

setflags

Not implemented (virtual attribute)

sort

Not implemented (virtual attribute)

squeeze

Not implemented (virtual attribute)

std

Not implemented (virtual attribute)

sum

Not implemented (virtual attribute)

swapaxes

Not implemented (virtual attribute)

take

Not implemented (virtual attribute)

tofile

Not implemented (virtual attribute)

tolist

Not implemented (virtual attribute)

tostring

Not implemented (virtual attribute)

trace

Not implemented (virtual attribute)

transpose

Not implemented (virtual attribute)

var

Not implemented (virtual attribute)

view

Not implemented (virtual attribute)

record.all ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform APIL

See Also:
The

record.any ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

record.argmax ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform APIL

See Also:
The

record.argmin ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

1.6. Standard array subclasses

219

NumPy Reference, Release 1.8.1

record.argsort ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

record.astype ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

record.byteswap ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

record.choose ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

record.clip ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

record.compress ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

record.conj ()

record.conjugate ()

Not implemented (virtual attribute)

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

220

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform APL

See Also:
The

record.copy ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

record.cumprod ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

record.cumsum ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

record.diagonal ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

record.dump ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

record.dumps ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

all the

all the

all the

all the

all the

all the

all the

1.6. Standard array subclasses

221

NumPy Reference, Release 1.8.1

record.£ill ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

record.flatten ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

record.getfield()

record.item()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

record.itemset ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform APIL.

See Also:

The

record.max ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

record.mean ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform APIL.

See Also:

The

record.min ()

Not implemented (virtual attribute)

222

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform APL

See Also:
The

record.newbyteorder (new_order="S’)
Return a new dt ype with a different byte order.

Changes are also made in all fields and sub-arrays of the data type.
The new_order code can be any from the following:

o{‘<’, ‘L’} - little endian

{>’, ‘B’} - big endian

o{‘=", ‘N’} - native order

‘S’ - swap dtype from current to opposite endian

*{‘I’, T’} - ignore (no change to byte order)

Parameters

new_order : str, optional

Byte order to force; a value from the byte order specifications above. The default value
(‘S’) results in swapping the current byte order. The code does a case-insensitive check
on the first letter of new_order for the alternatives above. For example, any of ‘B’ or ‘b’
or ‘biggish’ are valid to specify big-endian.

Returns
new_dtype : dtype

New dtype object with the given change to the byte order.
record.nonzero ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform APL

See Also:
The

record.pprint ()
Pretty-print all fields.

record.prod()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

record.ptp ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

1.6. Standard array subclasses 223

NumPy Reference, Release 1.8.1

See Also:

The

record.put ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

record.ravel ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

record.repeat ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

record.reshape ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

record.resize ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

record.round ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

record.searchsorted ()

Not implemented (virtual attribute)

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

224

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the

attributes of the ndarray class so as to provide a uniform APL
See Also:
The

record.setfield()

record.setflags ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

record.sort ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

record.squeeze ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

record.std ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

record.sum/()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

record.swapaxes ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform APIL.

See Also:

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

all the

all the

all the

all the

all the

all the

1.6. Standard array subclasses

225

NumPy Reference, Release 1.8.1

The

record.take ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

record.tofile ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

record.tolist ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

record.tostring()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

record.trace ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:

The

record.transpose ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

record.var ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

226

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

See Also:
The

record.view ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See Also:
The

1.6.6 Masked arrays (numpy .ma)

See Also:

Masked arrays

1.6.7 Standard container class

For backward compatibility and as a standard “container “class, the UserArray from Numeric has been brought over to
NumPy and named numpy . 1ib.user_array.container The container class is a Python class whose self.array
attribute is an ndarray. Multiple inheritance is probably easier with numpy.lib.user_array.container than with the
ndarray itself and so it is included by default. It is not documented here beyond mentioning its existence because you
are encouraged to use the ndarray class directly if you can.

numpy.lib.user_array.container(datal,...])

class numpy.lib.user_array.container (data, dtype=None, copy=True)

Methods

astype(typecode)
byteswap()

copy()
tostring()

container.astype (typecode)

container.byteswap ()

container.copy ()

container.tostring()

1.6. Standard array subclasses 227

NumPy Reference, Release 1.8.1

1.6.8 Array lterators

Iterators are a powerful concept for array processing. Essentially, iterators implement a generalized for-loop. If myiter
is an iterator object, then the Python code:

for val in myiter:

some code involving val

callsval = myiter.next () repeatedly until StopIteration israised by the iterator. There are several ways
to iterate over an array that may be useful: default iteration, flat iteration, and /N-dimensional enumeration.

Default iteration

The default iterator of an ndarray object is the default Python iterator of a sequence type. Thus, when the array object
itself is used as an iterator. The default behavior is equivalent to:

for i in range(arr.shapel[0]):
val = arr[i]

This default iterator selects a sub-array of dimension N — 1 from the array. This can be a useful construct for defining
recursive algorithms. To loop over the entire array requires N for-loops.

>>> a = arange (24) .reshape(3,2,4)+10
>>> for val in a:
c. print ’'item:’, val
item: [[10 11 12 13]
[14 15 16 17]]
item: [[18 19 20 21]
[22 23 24 25]]
item: [[26 27 28 29]
[30 31 32 33]]

Flat iteration

ndarray.flat A 1-Diterator over the array.

ndarray.flat
A 1-D iterator over the array.

Thisis a numpy . £ latiter instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator
object.

See Also:

flatten
Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(l, 7).reshape(2, 3)
>>> x

228 Chapter 1. Array objects

http://docs.python.org/dev/library/exceptions.html#StopIteration

NumPy Reference, Release 1.8.1

array ([[1, 2, 31,
(4, 5, 611)

>>> x.flat[3]

4

>>> x.T

array ([[1, 4],
[2, 5]
[3, 6]

>>> x.T.flat|

5

>>> type (x.flat)

<type ’'numpy.flatiter’>

1)
3]

An assignment example:

>>> x.flat 3

14

= X
array ([[3, 3 ,
[3, 3, 1)
[1,4]1]
1
1

14

>>> x.flat[
array ([[3,
[3I

3]
3]
4] = 1; x
3] 4
, 311)
As mentioned previously, the flat attribute of ndarray objects returns an iterator that will cycle over the entire array in
C-style contiguous order.

>>> for i, val in enumerate(a.flat):
.. if i1%5 == 0: print i, val

0 10
5 15
10 20
15 25
20 30

Here, I’ve used the built-in enumerate iterator to return the iterator index as well as the value.

N-dimensional enumeration

ndenumerate(arr) Multidimensional index iterator.

class numpy . ndenumerate (arr)
Multidimensional index iterator.

Return an iterator yielding pairs of array coordinates and values.

Parameters
a : ndarray

Input array.
See Also:

ndindex, flatiter

Examples

>>> a = np.array ([[1, 21, [3, 411)
>>> for index, x in np.ndenumerate(a):
print index, x

1.6. Standard array subclasses 229

NumPy Reference, Release 1.8.1

(0, 0) 1
(0, 1) 2
(1, 0) 3
(1, 1) 4
Methods

next() Standard iterator method, returns the index tuple and array value.

ndenumerate.next ()
Standard iterator method, returns the index tuple and array value.

Returns
coords : tuple of ints

The indices of the current iteration.
val : scalar
The array element of the current iteration.
Sometimes it may be useful to get the N-dimensional index while iterating. The ndenumerate iterator can achieve this.

>>> for i, val in ndenumerate (a):

C.. if sum(i)%5 == 0: print i, val
(0, 0, 0) 10
(1, 1, 3) 25
(2, 0, 3) 29
(2, 1, 2) 32

~

Iterator for broadcasting

broadcast Produce an object that mimics broadcasting.

class numpy .broadcast
Produce an object that mimics broadcasting.

Parameters
inl, in2, ... : array_like

Input parameters.

Returns
b : broadcast object

Broadcast the input parameters against one another, and return an object that encapsu-
lates the result. Amongst others, it has shape and nd properties, and may be used as
an iterator.

Examples
Manually adding two vectors, using broadcasting:

>>> x = np.array ([[1], [2], [311)
>>> y = np.array([4, 5, 6])
>>> b = np.broadcast (x, V)

230 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

>>> out = np.empty (b.shape)

>>> out.flat = [ut+v for (u,v) in b]
>>> out
array ([[5., 6., 7.1,

[6., 7., 8.1,

[7., 8., 9.11)

Compare against built-in broadcasting:

>>> X +y
array ([[5, 6, 71,

(e, 7, 81,
[7, 8, 911)
Attributes

index current index in broadcasted result

Cq 66

iters tuple of iterators along self‘s “components.”

shape Shape of broadcasted result.

size Total size of broadcasted result.

broadcast .index
current index in broadcasted result

Examples

>>> x = np.array ([[1], [2]1, [311])
y np.array([4, 5, 6])

>>> b = np.broadcast (x, V)

>>> Db

0

>>> b.next (), b.next (), b.next /()
(1, 4), (1, 5, (1, 6))

>>> b.index

3

>>>

.index

broadcast.iters
tuple of iterators along self‘s “components.”

Returns a tuple of numpy . f1atiter objects, one for each “component” of self.

See Also:

numpy.flatiter

Examples

>>> x = np.array([l, 2, 3])
>>> y = np.array ([[4], [5], [6]1])
>>> b = np.broadcast (x, y)

>>> row, col = b.iters
>>> row.next (), col.next ()
(1, 4)

broadcast .shape
Shape of broadcasted result.

1.6. Standard array subclasses

231

NumPy Reference, Release 1.8.1

Examples
>>> x = np.array([l, 2, 31)
>>> y = np.array ([[4], [5], [6]])
>>> b = np.broadcast (x, y)
>>> b.shape
(3, 3)
broadcast.size
Total size of broadcasted result.
Examples
>>> = np.array([1l, 2, 31)
>>> = np.array([[4], [5], [6]1])

x
Yy

>>> b = np.broadcast (x, V)
b.

x.next() -> the next value, or raise Stoplteration

>>> size
9
Methods
next
reset()

Reset the broadcasted result’s iterator(s).

broadcast .next

x.next() -> the next value, or raise Stoplteration

broadcast.reset ()

Reset the broadcasted result’s iterator(s).

Parameters
None

Returns
None

Examples

>>> x = np.array([1,

>>> y = np.array ([[4],

2, 31)

(51, [611]

>>> b = np.broadcast (x, y)

>>> b.index
0

>>> b.next (), b.next (), b.next /()

(1, 4), (2, 4), (3,
>>> b.index

3

>>> b.reset ()

>>> b.index

0

4))

The general concept of broadcasting is also available from Python using the broadcast iterator. This object takes
N objects as inputs and returns an iterator that returns tuples providing each of the input sequence elements in the

broadcasted result.

>>> for val in broadcast([[1,0]1,[2,311,10,1]):
. print val

(1, 0)

(0, 1)

232

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

1.7 Masked arrays

Masked arrays are arrays that may have missing or invalid entries. The numpy . ma module provides a nearly work-
alike replacement for numpy that supports data arrays with masks.

1.7.1 The numpy .ma module

Rationale

Masked arrays are arrays that may have missing or invalid entries. The numpy . ma module provides a nearly work-
alike replacement for numpy that supports data arrays with masks.

What is a masked array?

In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor
may have failed to record a data, or recorded an invalid value. The numpy . ma module provides a convenient way to
address this issue, by introducing masked arrays.

A masked array is the combination of a standard numpy . ndarray and a mask. A mask is either noma sk, indicating
that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated
array whether the value is valid or not. When an element of the mask is False, the corresponding element of the
associated array is valid and is said to be unmasked. When an element of the mask is True, the corresponding element
of the associated array is said to be masked (invalid).

The package ensures that masked entries are not used in computations.
As an illustration, let’s consider the following dataset:

>>> import numpy as np
>>> import numpy.ma as ma
>>> x = np.array([l, 2, 3, -1, 51)

We wish to mark the fourth entry as invalid. The easiest is to create a masked array:

>>> mx = ma.masked_array(x, mask=[0, 0, 0, 1, 0])

We can now compute the mean of the dataset, without taking the invalid data into account:

>>> mx.mean ()
2.75

The numpy .ma module

The main feature of the numpy . ma module is the MaskedArray class, which is a subclass of numpy .ndarray.
The class, its attributes and methods are described in more details in the MaskedArray class section.

The numpy . ma module can be used as an addition to numpy:

>>> import numpy as np
>>> import numpy.ma as ma

1.7. Masked arrays 233

NumPy Reference, Release 1.8.1

To create an array with the second element invalid, we would do:

>>> y = ma.array([1l, 2, 3], mask = [0, 1, O0])

To create a masked array where all values close to 1.e20 are invalid, we would do:

>>> z = masked_values([1.0, 1.e20, 3.0, 4.0], 1.e20)

For a complete discussion of creation methods for masked arrays please see section Constructing masked arrays.

1.7.2 Using humpy.ma

Constructing masked arrays

There are several ways to construct a masked array.
* A first possibility is to directly invoke the MaskedArray class.

¢ A second possibility is to use the two masked array constructors, array and masked_array.

array(data[, dtype, copy, order, mask, ...]) An array class with possibly masked values.
masked_array An array class with possibly masked values.

numpy .ma .array (data, dtype=None, copy=False, order=False, mask=False, fill_value=None,

keep_mask=True, hard_mask="False, shrink=True, subok=True, ndmin=0)
An array class with possibly masked values.

Masked values of True exclude the corresponding element from any computation.

Construction:
x = MaskedArray (data, mask=nomask, dtype=None,
copy=False, subok=True, ndmin=0, fill_value=None,
keep_mask=True, hard_mask=None, shrink=True)
Parameters

data : array_like
Input data.
mask : sequence, optional

Mask. Must be convertible to an array of booleans with the same shape as data. True
indicates a masked (i.e. invalid) data.

dtype : dtype, optional

Data type of the output. If dtype is None, the type of the data argument (data .dtype)
is used. If dtype is not None and different from data . dtype, a copy is performed.

copy : bool, optional
Whether to copy the input data (True), or to use a reference instead. Default is False.
subok : bool, optional

Whether to return a subclass of MaskedArray if possible (True) or a plain
MaskedArray. Default is True.

ndmin : int, optional

234 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Minimum number of dimensions. Default is O.
fill_value : scalar, optional

Value used to fill in the masked values when necessary. If None, a default based on the
data-type is used.

keep_mask : bool, optional

Whether to combine mask with the mask of the input data, if any (True), or to use only
mask for the output (False). Default is True.

hard_mask : bool, optional

Whether to use a hard mask or not. With a hard mask, masked values cannot be un-
masked. Default is False.

shrink : bool, optional
Whether to force compression of an empty mask. Default is True.
numpy .ma .masked_array
alias of MaskedArray

* A third option is to take the view of an existing array. In that case, the mask of the view is set to nomask if the
array has no named fields, or an array of boolean with the same structure as the array otherwise.

>>> x = np.array([1l, 2, 31)
>>> x.view (ma.MaskedArray)
masked_array(data = [1 2 3],

mask = False,
fill _value = 999999)

>>> x = np.array ([(1, 1.), (2, 2.)], dtype=[("a’,int), ('b’, float)])
>>> x.view(ma.MaskedArray)

masked_array(data = [(1, 1.0) (2, 2.0)],
mask = [(False, False) (False, False)],
fill_value = (999999, 1le+20),
dtype = [("a’, ’'<id"), ('b’, "<f8')1])

* Yet another possibility is to use any of the following functions:

asarray(al, dtype, order]) Convert the input to a masked array of the given data-type.
asanyarray(al, dtype]) Convert the input to a masked array, conserving subclasses.
fix_invalid(a[, mask, copy, fill_value]) Return input with invalid data masked and replaced by a fill value.
masked_equal(x, value[, copy]) Mask an array where equal to a given value.
masked_greater(x, value[, copy]) Mask an array where greater than a given value.
masked_greater_equal(X, value[, copy]) Mask an array where greater than or equal to a given value.
masked_inside(x, vl, v2[, copy]) Mask an array inside a given interval.
masked_invalid(al, copy]) Mask an array where invalid values occur (NaNs or infs).
masked_less(x, value[, copy]) Mask an array where less than a given value.
masked_less_equal(x, value[, copy]) Mask an array where less than or equal to a given value.
masked_not_equal(x, value[, copy]) Mask an array where not equal to a given value.
masked_object(x, value[, copy, shrink]) Mask the array x where the data are exactly equal to value.
masked_outside(x, vl, v2[, copy]) Mask an array outside a given interval.
masked_values(x, value[, rtol, atol, copy, ...]) Mask using floating point equality.
masked_where(condition, a[, copy]) Mask an array where a condition is met.

numpy .ma .asarray (a, dtype=None, order=None)
Convert the input to a masked array of the given data-type.

1.7. Masked arrays 235

NumPy Reference, Release 1.8.1

No copy is performed if the input is already an ndarray. If a is a subclass of MaskedArray, a base class
MaskedArray is returned.

Parameters
a: array_like

Input data, in any form that can be converted to a masked array. This includes lists, lists
of tuples, tuples, tuples of tuples, tuples of lists, ndarrays and masked arrays.

dtype : dtype, optional
By default, the data-type is inferred from the input data.
order : {‘C’, ‘F’}, optional

Whether to use row-major (‘C’) or column-major (‘FORTRAN’) memory representa-
tion. Default is ‘C’.

Returns
out : MaskedArray

Masked array interpretation of a.

See Also:

asanyarray
Similar to asarray, but conserves subclasses.

Examples

>>> x = np.arange(10.) .reshape (2, 5)
>>> x

array ([[0., 1., 2., 3.,]

4.7,
[5., 6., 7., 8., 9.11)
>>> np.ma.asarray (x)
masked_array (data =
[0. 1. 2. 3. 4.]
[5. 6. 7. 8. 9.11,
mask =
False,
fill_value = 1le+20)
>>> type(np.ma.asarray (x))
<class ’'numpy.ma.core.MaskedArray’>

numpy .ma .asanyarray (a, dtype=None)
Convert the input to a masked array, conserving subclasses.

If a is a subclass of MaskedArray, its class is conserved. No copy is performed if the input is already
an ndarray.

Parameters
a: array_like

Input data, in any form that can be converted to an array.
dtype : dtype, optional

By default, the data-type is inferred from the input data.
order : {‘C’, ‘F’}, optional

Whether to use row-major (‘C’) or column-major (‘FORTRAN’) memory representa-
tion. Default is ‘C’.

236 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

Returns
out : MaskedArray

MaskedArray interpretation of a.
See Also:

asarray
Similar to asanyarray, but does not conserve subclass.

Examples

>>> x = np.arange (10.) .reshape (2, 5)
>>> x

array ([[0., 1., 2., 3.,]

4.1,
[5., 6., 7., 8., 9.11)
>>> np.ma.asanyarray (x)
masked_array (data =
[0. 1. 2. 3. 4.]
[5. 6. 7. 8. 9.11,
mask =
False,
fill value = 1le+20)
>>> type (np.ma.asanyarray (x))
<class ’'numpy.ma.core.MaskedArray’>

numpy .ma . £fix_invalid (a, mask=False, copy=True, fill_value=None)
Return input with invalid data masked and replaced by a fill value.
Invalid data means values of nan, inf, etc.

Parameters
a: array_like

Input array, a (subclass of) ndarray.
copy : bool, optional

Whether to use a copy of a (True) or to fix a in place (False). Default is True.
fill_value : scalar, optional

Value used for fixing invalid data. Default is None, in which casethe a.fill_value
is used.

Returns
b : MaskedArray

The input array with invalid entries fixed.

Notes

A copy is performed by default.

Examples

>>> x = np.ma.array([l., -1, np.nan, np.inf], mask=[1] + [0]%*3)
>>> x

masked_array(data = [-— -1.0 nan inf],

mask = [True False False False],
fill_value = 1le+20)
>>> np.ma.fix_invalid(x)

1.7.

Masked arrays 237

NumPy Reference, Release 1.8.1

masked_array(data = [-—- -1.0 —— —-],
mask = [True False True True],
fill _value = 1e+20)

>>> fixed = np.ma.fix_invalid (x)
>>> fixed.data
array ([1.00000000e+00, -1.00000000e+00, 1.00000000e+20,

1.00000000e+207)
>>> x.data
array ([1., -1., NaN, Inf])

numpy .ma .masked_equal (x, value, copy=True)
Mask an array where equal to a given value.

This function is a shortcut to masked_where, with condition = (x == value). For floating point arrays,
consider using masked_values (x, value).

See Also:
masked where
Mask where a condition is met.

masked values
Mask using floating point equality.

Examples

>>> import numpy.ma as ma
>>> a = np.arange (4)

>>> a

array ([0, 1, 2, 31)
>>> ma.masked_equal (a, 2)
masked_array(data = [0 1 -- 37,
mask = [False False True False],
fill_value=999999)

numpy .ma .masked_greater (x, value, copy=True)
Mask an array where greater than a given value.

This function is a shortcut to masked_where, with condition = (x > value).
See Also:

masked_where
Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange (4)

>>> a

array ([0, 1, 2, 31)
>>> ma.masked_greater (a, 2)
masked_array(data = [0 1 2 ——],
mask = [False False False True],
fill_value=999999)

numpy .ma .masked_greater_equal (x, value, copy=True)
Mask an array where greater than or equal to a given value.

238 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

This function is a shortcut to masked_where, with condition = (x >= value).

See Also:

masked where
Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange (4)

>>> a

array ([0, 1, 2, 31)
>>> ma.masked_greater_equal (a, 2)
masked_array(data = [0 1 -—— —-],
mask = [False False True True],
fill_value=999999)

numpy .ma .masked_inside (x, vI, v2, copy=True)
Mask an array inside a given interval.

Shortcut to masked_where, where condition is True for x inside the interval [v1,v2] (vl <= x <= v2).
The boundaries v/ and v2 can be given in either order.

See Also:

masked where
Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

Examples

>>> import numpy.ma as ma

>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]

>>> ma.masked_inside(x, -0.3, 0.3)

masked_array(data = [0.31 1.2 —— —— -0.4 -1.1],
mask = [False False True True False False],

fill_value=1e+20)

The order of v/ and v2 doesn’t matter.

>>> ma.masked_inside(x, 0.3, -0.3)

masked_array(data = [0.31 1.2 —— —— -0.4 -1.1],
mask = [False False True True False False],
fill_value=1le+20)

numpy .ma .masked_invalid (a, copy=True)
Mask an array where invalid values occur (NaNs or infs).

This function is a shortcut to masked_where, with condition = ~(np.isfinite(a)). Any pre-existing mask
is conserved. Only applies to arrays with a dtype where NaNs or infs make sense (i.e. floating point types),
but accepts any array_like object.

See Also:

masked_where
Mask where a condition is met.

1.7. Masked arrays 239

NumPy Reference, Release 1.8.1

Examples

>>> import numpy.ma as ma
>>> a = np.arange (5, dtype=np.float)

>>> a[2] = np.NaN
>>> a[3] = np.PINF
>>> a
array ([O., 1., DNaN, 1Inf, 4.7)
>>> ma.masked_invalid (a)
masked_array(data = [0.0 1.0 —— —— 4.0],
mask = [False False True True False],

fill value=le+20)

numpy .ma .masked_less (x, value, copy=True)
Mask an array where less than a given value.
This function is a shortcut to masked_where, with condition = (x < value).
See Also:

masked_ where
Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange (4)

>>> a

array ([0, 1, 2, 31)
>>> ma.masked_less(a, 2)
masked_array(data = [-- —— 2 3],
mask = [True True False False],
fill_value=999999)

numpy .ma .masked_less_equal (x, value, copy=True)
Mask an array where less than or equal to a given value.

This function is a shortcut to masked_where, with condition = (x <= value).
See Also:

masked_where
Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange (4)

>>> a

array ([0, 1, 2, 31)
>>> ma.masked_less_equal (a, 2)
masked_array (data = [-— —— —— 31,
mask = [True True True False],
fill_value=999999)

numpy .ma .masked_not_equal (x, value, copy=True)
Mask an array where not equal to a given value.

This function is a shortcut to masked_where, with condition = (x != value).

See Also:

240 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

masked_where
Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange (4)

>>> a

array ([0, 1, 2, 31)
>>> ma.masked_not_equal (a, 2)
masked_array(data = [-— —— 2 ——],
mask = [True True False True],
fill_value=999999)

numpy .ma .masked_object (x, value, copy=True, shrink=True)
Mask the array x where the data are exactly equal to value.

This function is similar to masked_values, but only suitable for object arrays: for floating point, use
masked_values instead.

Parameters
x : array_like

Array to mask
value : object
Comparison value
copy : {True, False}, optional
Whether to return a copy of x.
shrink : {True, False}, optional
Whether to collapse a mask full of False to nomask

Returns
result : MaskedArray

The result of masking x where equal to value.

See Also:

masked_where
Mask where a condition is met.

masked_equal
Mask where equal to a given value (integers).

masked_values
Mask using floating point equality.

Examples

>>> import numpy.ma as ma

>>> food = np.array([’green_eggs’, ’'ham’], dtype=object)

>>> # don’t eat spoiled food

>>> eat = ma.masked_object (food, ’'green_eggs’)

>>> print eat

[-— ham]

>>> # plain ol' ham is boring

>>> fresh_food = np.array ([’ cheese’, "ham’, ’pineapple’], dtype=object)

Masked arrays 241

NumPy Reference, Release 1.8.1

>>> eat = ma.masked_object (fresh_food, ’'green_eggs’)
>>> print eat
[cheese ham pineapple]

Note that mask is set to nomask if possible.

>>> eat

masked_array (data = [cheese ham pineapple],
mask = False,
fill value=?)

numpy .ma .masked_outside (x, vI, v2, copy=True)

Mask an array outside a given interval.

Shortcut to masked_where, where condition is True for x outside the interval [v1,v2] (x < v])I(x > v2).
The boundaries v/ and v2 can be given in either order.

See Also:

masked_where
Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

Examples
>>> import numpy.ma as ma
>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_outside(x, -0.3, 0.3)
masked_array(data = [--— -—— 0.01 0.2 —— —=],
mask = [True True False False True Truel,

fill_value=1e+20)

The order of vI and v2 doesn’t matter.

>>> ma.masked_outside(x, 0.3, -0.3)
masked_array(data = [--— -—— 0.01 0.2 —— —-=],
mask = [True True False False True Truel,
fill value=1e+20)

numpy .ma .masked_values (x, value, rtol=1e-05, atol=1e-08, copy=True, shrink=True)

Mask using floating point equality.

Return a MaskedArray, masked where the data in array x are approximately equal to value, i.e. where the
following condition is True

(abs(x - value) <= atol+rtol*abs(value))

The fill_value is set to value and the mask is set to nomask if possible. For integers, consider using
masked_equal.

Parameters
x : array_like

Atrray to mask.
value : float

Masking value.

242

Chapter 1. Array objects

NumPy Reference, Release 1.8.1

rtol : float, optional
Tolerance parameter.
atol : float, optional
Tolerance parameter (1e-8).
copy : bool, optional
Whether to return a copy of x.
shrink : bool, optional
Whether to collapse a mask full of False to nomask.

Returns
result : MaskedArray

The result of masking x where approximately equal to value.

See Also:

masked_where
Mask where a condition is met.

masked_equal
Mask where equal to a given value (integers).

Examples

>>> import numpy.ma as ma
>>> x = np.array([(1, 1.1, 2, 1.1, 31])
>>> ma.masked_values(x, 1.1)
masked_array(data = [1.0 -—— 2.0 —— 3.0],
mask = [False True False True False],
fill value=1.1)

Note that mask is set to nomask if possible.

>>> ma.masked_values (x, 1.5)

masked_array(data = [1. 1.1 2. 1.1 3. 1,
mask = False,
fill_value=1.5)

For integers, the fill value will be different in general to the result of masked_equal.

>>> x = np.arange (5)

>>> x

array ([0, 1, 2, 3, 41)

>>> ma.masked_values (x, 2)

masked_array(data = [0 1 ——- 3 4],
mask = [False False True False False],
fill_value=2)

>>> ma.masked_equal (x, 2)

masked_array(data = [0 1 -- 3 4],
mask = [False False True False False],
fill_value=999999)

numpy .ma .masked_where (condition, a, copy=True)
Mask an array where a condition is met.

1.7. Masked arrays 243

NumPy Reference, Release 1.8.1

Return a as an array masked where condition is True. Any masked values of a or condition are also masked

in the output.

Parameters
condition : array_like

Masking condition. When condition tests floating point values for equality, consider

using masked_values instead.
a : array_like
Array to mask.

copy : bool

If True (default) make a copy of a in the result. If False modify a in place and return a

View.

Returns
result : MaskedArray

The result of masking a where condition is True.
See Also:
masked values
Mask using floating point equality.

masked_equal
Mask where equal to a given value.

masked_not_equal
Mask where not equal to a given value.

masked_less_equal
Mask where less than or equal to a given value.

masked_greater_equal
Mask where greater than or equal to a given value.

masked_less
Mask where less than a given value.

masked_greater
Mask where greater than a given value.

masked_inside
Mask inside a given interval.

masked outside
Mask outside a given interval.

masked_invalid
Mask invalid values (NaNs or infs).

Examples

>>> import numpy.ma as ma
>>> a = np.arange (4)

>>> a

array ([0, 1, 2, 31)
>>> ma.masked_where(a <= 2, a)
masked_array(data = [-—- —— —— 31,

244

Chapter 1

. Array objects

NumPy Reference, Release 1.8.1

mask = [True True True False],
fill_value=999999)

Mask array b conditional on a.

>>>pb = ["a’, 'b’, 'c', 'd"]
>>> ma.masked_where(a == 2, Db)
masked_array(data = [a b —— d],

mask = [False False True False],

fill_value=N/A)

Effect of the copy argument.

>>> c = ma.masked_where(a <= 2, a)

>>> ¢

masked_array(data = [-— -—— —-— 3],
mask = [True True True False],
fill_value=999999)

>>> ¢c[0] = 99

>>> ¢

masked_array (data = [99 —— —— 31,
mask = [False True True False],
fill_value=999999)

>>> a

array ([0, 1, 2, 3])
>>> ¢ = ma.masked_where(a <= 2, a, copy=False)

>>> c[0] = 99

>>> ¢

masked_array(data = [99 —— —— 3],
mask = [False True True False],
fill_value=999999)

>>> a

array ([99, 1, 2, 37)

When condition or a contain masked values.

>>> a = np.arange (4)
>>> a = ma.masked_where(a == 2, a)
>>> a
masked_array(data = [0 1 —— 3],
mask = [False False True False],

fill_value=999999)
>>> b = np.arange (4)

>>> b = ma.masked_where(b == 0, b)
>>> Db
masked_array(data = [-— 1 2 3],
mask = [True False False False],
fill _value=999999)
>>> ma.masked_where(a == 3, b)
masked_array(data = [-—— 1 —— ——1,
mask = [True False True Truel,

fill value=999999)

Accessing the data

The underlying data of a masked array can be accessed in several ways:

1.7. Masked arrays 245

NumPy Reference, Release 1.8.1

e through the data attribute. The output is a view of the array as a numpy . ndarray or one of its subclasses,
depending on the type of the underlying data at the masked array creation.

e through the __array__ method. The output is then a numpy .ndarray.

* by directly taking a view of the masked array as a numpy . ndarray or one of its subclass (which is actually
what using the dat a attribute does).

* by using the getdata function.

None of these methods is completely satisfactory if some entries have been marked as invalid. As a general rule,
where a representation of the array is required without any masked entries, it is recommended to fill the array with the
filled method.

Accessing the mask

The mask of a masked array is accessible through its mask attribute. We must keep in mind that a True entry in the
mask indicates an invalid data.

Another possibility is to use the getmask and getmaskarray functions. getmask (x) outputs the mask of x if
x is a masked array, and the special value nomask otherwise. getmaskarray (x) outputs the mask of x if x is a
masked array. If x has no invalid entry or is not a masked array, the function outputs a boolean array of False with
as many elements as x.

Accessing only the valid entries
To retrieve only the valid entries, we can use the inverse of the mask as an index. The inverse of the mask can be
calculated with the numpy . logical_not function or simply with the ~ operator:

>>> x = ma.array ([[1, 2], [3, 4]1], mask=[[0, 1], [1, O11)
>>> x[~x.mask]

masked_array (data = [1 4],
mask = [False False],
fill_value = 999999)

Another way to retrieve the valid data is to use the compre s sed method, which returns a one-dimensional ndarray
(or one of its subclasses, depending on the value of the baseclass attribute):

>>> x.compressed ()
array ([1, 4])

Note that the output of compressed is always 1D.

Modifying the mask

Masking an entry

The recommended way to mark one or several specific entries of a masked array as invalid is to assign the special
value masked to them:

>>> x = ma.array([1l, 2, 31)
>>> x[0] = ma.masked
>>> x
masked_array (data = [-— 2 3],
mask = [True False False],

fill value = 999999)
>>> vy = ma.array([[1, 2, 3], [4, 5, 6], [7, 8, 911)

246 Chapter 1. Array objects

NumPy Reference, Release 1.8.1

>>> y[(0, 1, 2), (1, 2, 0)] = ma.masked
>>> y
masked_array (data =
[[1 -- 3]
[4 5 ——]
[-— 8 911,

mask =
[[False True False]
[False False True]
[True False Falsel]],
fill_value = 999999)

>>> z = ma.array([1, 2, 3, 41)
>>> z[:-2] = ma.masked
>>> 7z

masked_array (data [-—— —— 3 47,
mask [True True False False],
fill_value = 999999)

A second possibility is to modify the mask directly, but this usage is discouraged.

Note: When creating a new masked array with a simple, non-structured datatype, the mask is initially set to the
special value nomask, that corresponds roughly to the boolean False. Trying to set an element of nomask will fail
with a TypeError exception, as a boolean does not support item assignment.

All the entries of an array can be masked at once by assigning True to the mask:

>>> x = ma.array([l, 2, 3], mask=[0, 0, 1])
>>> x.mask = True
>>> x
masked_array(data = [-—— —— ——],
mask = [True True True],
fill_value = 999999)

Finally, specific entries can be masked and/or unmasked by assigning to the mask a s