SciPy Reference Guide
Release 0.16.1

Written by the SciPy community

October 24, 2015

1 SciPy Tutorial

1.1 Introduction e
1.2 Basicfunctions
1.3 Special functions (scipy.special) v i it
1.4 Integration (scipy.integrate)
1.5 Optimization (scipy.optimize). v v v v v v v i vt i e
1.6 Interpolation (scipy.interpolate),
1.7 Fourier Transforms (scipy.fftpack)
1.8 Signal Processing (scipy.signal) v v vttt
1.9 Linear Algebra (scipy.linalg) oo v v it i
1.10 Sparse Eigenvalue Problems with ARPACK
1.11 Compressed Sparse Graph Routines (scipy.sparse.csgraph)

1.12 Spatial data structures and algorithms (scipy.spatial)
1.13 Statistics (scipy.stats) o v i it e
1.14 Multidimensional image processing (scipy.ndimage)
1.15 FileIO (SCipy.10) . « v v v i i e e e e e e e e e e e e e e e e e
1.16 Weave (SCIpY.WEAVE) . . v v v v v it e e e e e e e e e e e e e

2 Contributing to SciPy

2.1 Contributingnew code e e e
2.2 Contributing by helping maintain existingcode
2.3 Otherwaystocontribute Lo
2.4 Recommended developmentsetup Lo e
2.5 SciPystructure
2.6 Useful links, FAQ, checklist
3 API - importing from Scipy
3.1 Guidelines for importing functions from Scipy
3.2 APIdefinition
4 Release Notes
4.1 SciPy 0.16.1 Release Notes it i i
42 SciPy0.16.0Release Notes v i i v it e e
43 SciPyO.15.1 Release Notes i ittt
44 SciPy0.15.0Release Notes
4.5 SciPy0.14.1 Release Notes it
4.6 SciPy0.14.0Release Notesottt
4.7 SciPy 0.13.2Release Noteso i it
4.8 SciPy0.13.1 Release Notes i v vttt it
49 SciPy0.13.0Release Notes it
4.10 SciPy 0.12.1 Release Notes

CONTENTS

4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

SciPy 0.12.0 Release Notes i i i e e e
SciPy O0.11.0 Release NOtES o v i i i e et e e e e e e e e e e e e e e
SciPy 0.10.1 Release NOtES o v i v i i e e e e e e e e e e e e e e e
SciPy 0.10.0 Release Notes e
SciPy 0.9.0 Release NOtes o i i ittt e e e e e e
SciPy 0.8.0 Release Notes i e e e
SciPy 0.7.2 Release NOteS o v v i i e e e e e e e e e e e e e e e e e
SciPy 0.7.1 Release NOtes o v i i e e e e e e e e e e
SciPy 0.7.0 Release Notes e

Reference

5.1

52

53

54

5.5

5.6

5.7

5.8

59

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36

Clustering package (scipy.cluster) i i v i i i ittt e e e
K-means clustering and vector quantization (scipy.cluster.vq)
Hierarchical clustering (scipy.cluster.hierarchy)
Constants (sCcipy.constants) . . . v . v v i i v i e e e e e e e e e e e e e e e e
Discrete Fourier transforms (scipy.fftpack) o . o it i i i e e e e
Integration and ODEs (scipy.integrate) v v i i i it i i i e
Interpolation (scipy.interpolate) i i v i it e e
Inputand output (scipy.i0) o oL e
Linear algebra (scipy.linalg) o v v i i ittt e e e
Low-level BLAS functions o e
Finding functions o e e e e e e e e e e
BLAS Level 1 functions e
BLAS Level 2 functions 0 . i e e e e e e e e e e e e e e e e e
BLAS Level 3 functions o 0 e e e e e e e e e e e e e
Low-level LAPACK functions 0 o it e e e
Finding functions o e e e e e e e e e e
ALLfunctions e e e e e
BLAS Functions for Cython e
LAPACK functions for Cython e
Interpolative matrix decomposition (scipy.linalg.interpolative)
Miscellaneous routines (SCipy.MiSC) . . v v v v it i e e e e e e e e e e e e e e e e e
Multi-dimensional image processing (scipy.ndimage) . .« . . v v v v v v v vt e e e
Orthogonal distance regression (scipy.odr) o o o e
Optimization and root finding (scipy.optimize) o e
Routines e e e e e e
Examples oL e e
Signal processing (SCipy.SIignal) .« v v v v v v v v vt i e e e e e e e e e e e e e
Sparse matrices (SCIPY . SPATSE) « v v v v v v v v e e e e e e e e e e e e e e e e e e e
Sparse linear algebra (scipy.sparse.linalg) oo v v i i it it
Compressed Sparse Graph Routines (scipy.sparse.csgraph).
Spatial algorithms and data structures (scipy.spatial)
Distance computations (scipy.spatial.distance) v it
Special functions (scipy.special) . . . v v v v v v i i e e e e e e e e e
Statistical functions (scipy.stats) o i i e e e
Statistical functions for masked arrays (scipy.stats.mstats)
C/C++1integration (SCIPY . WEAVE) . v v v v v v v vt e e et e e e e e e e e

Bibliography

Python Module Index

Index

269
269
269
273
288
303
318
338
408
420
479
479
480
495
506
514
514
514
592
597
634
643
654
709
718
799
799
801
949
1051
1082
1094
1129
1144
1201
1523
1550

1555

1571

1573

SciPy Reference Guide, Release 0.16.1

Release 0.16.1
Date October 24, 2015

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and engineering.

CONTENTS 1

SciPy Reference Guide, Release 0.16.1

2 CONTENTS

CHAPTER
ONE

SCIPY TUTORIAL

1.1 Introduction

Contents

* Introduction
— SciPy Organization
— Finding Documentation

SciPy is a collection of mathematical algorithms and convenience functions built on the Numpy extension of Python. It
adds significant power to the interactive Python session by providing the user with high-level commands and classes for
manipulating and visualizing data. With SciPy an interactive Python session becomes a data-processing and system-
prototyping environment rivaling sytems such as MATLAB, IDL, Octave, R-Lab, and SciL.ab.

The additional benefit of basing SciPy on Python is that this also makes a powerful programming language available
for use in developing sophisticated programs and specialized applications. Scientific applications using SciPy benefit
from the development of additional modules in numerous niche’s of the software landscape by developers across the
world. Everything from parallel programming to web and data-base subroutines and classes have been made available
to the Python programmer. All of this power is available in addition to the mathematical libraries in SciPy.

This tutorial will acquaint the first-time user of SciPy with some of its most important features. It assumes that the
user has already installed the SciPy package. Some general Python facility is also assumed, such as could be acquired
by working through the Python distribution’s Tutorial. For further introductory help the user is directed to the Numpy
documentation.

For brevity and convenience, we will often assume that the main packages (numpy, scipy, and matplotlib) have been
imported as:

>>> import numpy as np
>>> import matplotlib as mpl
>>> import matplotlib.pyplot as plt

These are the import conventions that our community has adopted after discussion on public mailing lists. You will

see these conventions used throughout NumPy and SciPy source code and documentation. While we obviously don’t
require you to follow these conventions in your own code, it is highly recommended.

1.1.1 SciPy Organization

SciPy is organized into subpackages covering different scientific computing domains. These are summarized in the
following table:

SciPy Reference Guide, Release 0.16.1

Subpackage Description

cluster Clustering algorithms

constants Physical and mathematical constants
fftpack Fast Fourier Transform routines
integrate Integration and ordinary differential equation solvers
interpolate | Interpolation and smoothing splines

io Input and Output

linalg Linear algebra

ndimage N-dimensional image processing

odr Orthogonal distance regression
optimize Optimization and root-finding routines
signal Signal processing

sparse Sparse matrices and associated routines
spatial Spatial data structures and algorithms
special Special functions

stats Statistical distributions and functions
weave C/C++ integration

Scipy sub-packages need to be imported separately, for example:

>>> from scipy import linalg, optimize

Because of their ubiquitousness, some of the functions in these subpackages are also made available in the scipy
namespace to ease their use in interactive sessions and programs. In addition, many basic array functions from numpy
are also available at the top-level of the scipy package. Before looking at the sub-packages individually, we will first
look at some of these common functions.

1.1.2 Finding Documentation

SciPy and NumPy have documentation versions in both HTML and PDF format available at http://docs.scipy.org/, that
cover nearly all available functionality. However, this documentation is still work-in-progress and some parts may be
incomplete or sparse. As we are a volunteer organization and depend on the community for growth, your participation
- everything from providing feedback to improving the documentation and code - is welcome and actively encouraged.

Python’s documentation strings are used in SciPy for on-line documentation. There are two methods for reading
them and getting help. One is Python’s command help in the pydoc module. Entering this command with no
arguments (i.e. >>> help) launches an interactive help session that allows searching through the keywords and
modules available to all of Python. Secondly, running the command help(obj) with an object as the argument displays
that object’s calling signature, and documentation string.

The pydoc method of he1p is sophisticated but uses a pager to display the text. Sometimes this can interfere with the
terminal you are running the interactive session within. A numpy/scipy-specific help system is also available under
the command numpy . info. The signature and documentation string for the object passed to the help command
are printed to standard output (or to a writeable object passed as the third argument). The second keyword argument
of numpy . info defines the maximum width of the line for printing. If a module is passed as the argument to help
than a list of the functions and classes defined in that module is printed. For example:

>>> np.info (optimize.fmin)
fmin (func, x0, args=(), xtol=0.0001,
full_output=0, disp=1l, retall=0,

ftol=0.0001, maxiter=None,
callback=None)

maxfun=None,

Minimize a function using the downhill simplex algorithm.

Parameters

func callable func(x,*args)

4 Chapter 1. SciPy Tutorial

http://docs.python.org/dev/library/io.html#module-io
http://docs.python.org/dev/library/signal.html#module-signal
http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://docs.scipy.org/
http://docs.python.org/dev/library/functions.html#help
http://docs.python.org/dev/library/pydoc.html#module-pydoc

SciPy Reference Guide, Release 0.16.1

The objective function to be minimized.
x0 : ndarray
Initial guess.
args : tuple
Extra arguments passed to func, i.e. ‘‘f(x,*args)
callback : callable
Called after each iteration, as callback(xk), where xk is the
current parameter vector.

AU

Returns
xopt : ndarray
Parameter that minimizes function.
fopt : float
Value of function at minimum: *‘fopt = func(xopt) ‘‘.
iter : int
Number of iterations performed.
funcalls : int
Number of function calls made.
warnflag : int

1 : Maximum number of function evaluations made.
2 : Maximum number of iterations reached.
allvecs : list

Solution at each iteration.

Other parameters
xtol : float

Relative error in xopt acceptable for convergence.
ftol : number

Relative error in func(xopt) acceptable for convergence.
maxiter : int

Maximum number of iterations to perform.
maxfun : number

Maximum number of function evaluations to make.
full_output : bool

Set to True if fopt and warnflag outputs are desired.
disp : bool

Set to True to print convergence messages.
retall : bool

Set to True to return list of solutions at each iteration.

Uses a Nelder-Mead simplex algorithm to find the minimum of function of
one or more variables.

Another useful command is source. When given a function written in Python as an argument, it prints out a listing
of the source code for that function. This can be helpful in learning about an algorithm or understanding exactly what
a function is doing with its arguments. Also don’t forget about the Python command di r which can be used to look
at the namespace of a module or package.

1.2 Basic functions

1.2. Basic functions 5

SciPy Reference Guide, Release 0.16.1

Contents

* Basic functions

— Interaction with Numpy

% Index Tricks

Shape manipulation
Polynomials
Vectorizing functions (vectorize)
Type handling
Other useful functions

* ¥k X X %

1.2.1 Interaction with Numpy

Scipy builds on Numpy, and for all basic array handling needs you can use Numpy functions:

>>> import numpy as np
>>> np.some_function ()

Rather than giving a detailed description of each of these functions (which is available in the Numpy Reference Guide
or by using the help, info and source commands), this tutorial will discuss some of the more useful commands
which require a little introduction to use to their full potential.

To use functions from some of the Scipy modules, you can do:

>>> from scipy import some_module
>>> some_module.some_function ()

The top level of scipy also contains functions from numpy and numpy . 1ib.scimath. However, it is better to
use them directly from the numpy module instead.

Index Tricks

There are some class instances that make special use of the slicing functionality to provide efficient means for array
construction. This part will discuss the operation of np.mgrid , np.ogrid, np.r_ , and np.c_ for quickly
constructing arrays.

For example, rather than writing something like the following

>>> concatenate (([3], [0]*5,arange(-1,1.002,2/9.0)))

with the r_ command one can enter this as

>>> r_[3,[0]x5,-1:1:107]

which can ease typing and make for more readable code. Notice how objects are concatenated, and the slicing syntax
is (ab)used to construct ranges. The other term that deserves a little explanation is the use of the complex number
10j as the step size in the slicing syntax. This non-standard use allows the number to be interpreted as the number of
points to produce in the range rather than as a step size (note we would have used the long integer notation, 10L, but
this notation may go away in Python as the integers become unified). This non-standard usage may be unsightly to
some, but it gives the user the ability to quickly construct complicated vectors in a very readable fashion. When the
number of points is specified in this way, the end- point is inclusive.

The “r” stands for row concatenation because if the objects between commas are 2 dimensional arrays, they are stacked
by rows (and thus must have commensurate columns). There is an equivalent command c__ that stacks 2d arrays by
columns but works identically to r__for 1d arrays.

6 Chapter 1. SciPy Tutorial

http://docs.python.org/dev/library/functions.html#help
http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://docs.scipy.org/doc/numpy/reference/routines.emath.html#module-numpy.lib.scimath
http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

SciPy Reference Guide, Release 0.16.1

Another very useful class instance which makes use of extended slicing notation is the function mgrid. In the simplest
case, this function can be used to construct 1d ranges as a convenient substitute for arange. It also allows the use of
complex-numbers in the step-size to indicate the number of points to place between the (inclusive) end-points. The real
purpose of this function however is to produce N, N-d arrays which provide coordinate arrays for an N-dimensional
volume. The easiest way to understand this is with an example of its usage:

>>> mgrid[0:

~
(@)
w

array ([[[0,

~
~
~
~

4

~
~
~
~

’

~
~
~
~

’

~
~
~

o~
~

4

[
0
1
2
3
4
0,
0
0
0
0
[

~
~

[

’

~
~
~
~

4

~
~
~
~

’

~
~
~

~

>>> mgri
array ([[

(& e N e U S SR e IS
<
oo oD D2 S0
<

e N

\

LN DD NN WD - O

< ~

o

e DWW W W WM O
N

N N N N N N N S S =)

e~

iy

.6667,
.3333,

’

.6667,
.3333,
.3333,
.3333,
.3333,
.3333,

.6667
.3333

N
~

.6667,
.6667,
.6667,
.6667,

[

~

4

d
[
[
(
[
[
(
[
[
[
[
[
[
[
[
[
[
[
[

Coo0Oo0 U Wr o o-~
e e H‘; W o v
WWwwwoweo
P e e

11)

Having meshed arrays like this is sometimes very useful. However, it is not always needed just to evaluate some N-
dimensional function over a grid due to the array-broadcasting rules of Numpy and SciPy. If this is the only purpose for
generating a meshgrid, you should instead use the function ogrid which generates an “open” grid using newaxis
judiciously to create N, N-d arrays where only one dimension in each array has length greater than 1. This will save
memory and create the same result if the only purpose for the meshgrid is to generate sample points for evaluation of
an N-d function.

Shape manipulation

In this category of functions are routines for squeezing out length- one dimensions from N-dimensional arrays, ensur-
ing that an array is at least 1-, 2-, or 3-dimensional, and stacking (concatenating) arrays by rows, columns, and “pages
“(in the third dimension). Routines for splitting arrays (roughly the opposite of stacking arrays) are also available.

Polynomials

There are two (interchangeable) ways to deal with 1-d polynomials in SciPy. The first is to use the poly1d class from
Numpy. This class accepts coefficients or polynomial roots to initialize a polynomial. The polynomial object can then
be manipulated in algebraic expressions, integrated, differentiated, and evaluated. It even prints like a polynomial:

>>> p = polyld([3,4,5])
>>> print p
2
3 x+4x + 5
>>> print p#p
4 3 2
9 x + 24 x + 46 x + 40 x + 25
>>> print p.integ(k=6)
3 2
X+ 2x+5x+ 6

1.2. Basic functions 7

SciPy Reference Guide, Release 0.16.1

>>> print p.deriv ()
6 x + 4

>>> p([4,5])
array ([69, 1007)

The other way to handle polynomials is as an array of coefficients with the first element of the array giving the
coefficient of the highest power. There are explicit functions to add, subtract, multiply, divide, integrate, differentiate,
and evaluate polynomials represented as sequences of coefficients.

Vectorizing functions (vectorize)

One of the features that NumPy provides is a class vectorize to convert an ordinary Python function which accepts
scalars and returns scalars into a “vectorized-function” with the same broadcasting rules as other Numpy functions
(i.e. the Universal functions, or ufuncs). For example, suppose you have a Python function named addsubtract
defined as:

>>> def addsubtract (a,b):
if a > b:
return a - b
else:
return a + b

which defines a function of two scalar variables and returns a scalar result. The class vectorize can be used to “vectorize
“this function so that

>>> vec_addsubtract = vectorize (addsubtract)

returns a function which takes array arguments and returns an array result:

>>> vec_addsubtract ([0,3,6,91,[1,3,5,7])
array ([1, 6, 1, 21)

This particular function could have been written in vector form without the use of vectorize . But, what if the
function you have written is the result of some optimization or integration routine. Such functions can likely only be
vectorized using vectorize.

Type handling

Note the difference between np.iscomplex/np.isreal and np.iscomplexobj/np.isrealobj. The for-
mer command is array based and returns byte arrays of ones and zeros providing the result of the element-wise test.
The latter command is object based and returns a scalar describing the result of the test on the entire object.

Often it is required to get just the real and/or imaginary part of a complex number. While complex numbers and arrays
have attributes that return those values, if one is not sure whether or not the object will be complex-valued, it is better
to use the functional forms np.real and np.imag . These functions succeed for anything that can be turned into
a Numpy array. Consider also the function np.real_if_close which transforms a complex-valued number with
tiny imaginary part into a real number.

Occasionally the need to check whether or not a number is a scalar (Python (long)int, Python float, Python complex,
or rank-0 array) occurs in coding. This functionality is provided in the convenient function np.isscalar which
returnsa 1 ora 0.

Finally, ensuring that objects are a certain Numpy type occurs often enough that it has been given a convenient interface
in SciPy through the use of the np . cast dictionary. The dictionary is keyed by the type it is desired to cast to and
the dictionary stores functions to perform the casting. Thus, np.cast [’ £/] (d) returns an array of np. float32
from d. This function is also useful as an easy way to get a scalar of a certain type:

8 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

>>> np.cast[’'f’] (np.pi)
array (3.1415927410125732, dtype=float32)

Other useful functions

There are also several other useful functions which should be mentioned. For doing phase processing, the functions
angle, and unwrap are useful. Also, the 1inspace and logspace functions return equally spaced samples in a
linear or log scale. Finally, it’s useful to be aware of the indexing capabilities of Numpy. Mention should be made of
the function select which extends the functionality of where to include multiple conditions and multiple choices.
The calling convention is select (condlist, choicelist,default=0). select is a vectorized form of
the multiple if-statement. It allows rapid construction of a function which returns an array of results based on a list
of conditions. Each element of the return array is taken from the array in a choicelist corresponding to the first
condition in condlist that is true. For example

>>> x = r_[-2:3]

>>> x

array ([-2, -1, 0, 1, 21)

>>> np.select([x > 3, x >= 0],1[0,x+2])
array ([0, 0, 2, 3, 41)

Some additional useful functions can also be found in the module scipy.misc. For example the factorial and
comb functions compute n! and n!/k!(n — k)! using either exact integer arithmetic (thanks to Python’s Long integer
object), or by using floating-point precision and the gamma function. Another function returns a common image used
in image processing: lena.

Finally, two functions are provided that are useful for approximating derivatives of functions using discrete-differences.
The function central_diff_weights returns weighting coefficients for an equally-spaced /N-point approxima-
tion to the derivative of order o. These weights must be multiplied by the function corresponding to these points and
the results added to obtain the derivative approximation. This function is intended for use when only samples of the
function are avaiable. When the function is an object that can be handed to a routine and evaluated, the function
derivative can be used to automatically evaluate the object at the correct points to obtain an N-point approxima-
tion to the o-th derivative at a given point.

1.3 Special functions (scipy.special)

The main feature of the scipy.special package is the definition of numerous special functions of mathematical
physics. Available functions include airy, elliptic, bessel, gamma, beta, hypergeometric, parabolic cylinder, mathieu,
spheroidal wave, struve, and kelvin. There are also some low-level stats functions that are not intended for general
use as an easier interface to these functions is provided by the st at s module. Most of these functions can take array
arguments and return array results following the same broadcasting rules as other math functions in Numerical Python.
Many of these functions also accept complex numbers as input. For a complete list of the available functions with a
one-line description type >>> help (special) . Each function also has its own documentation accessible using
help. If you don’t see a function you need, consider writing it and contributing it to the library. You can write the
function in either C, Fortran, or Python. Look in the source code of the library for examples of each of these kinds of
functions.

1.3.1 Bessel functions of real order(jn, jn_zeros)
Bessel functions are a family of solutions to Bessel’s differential equation with real or complex order alpha:

d?y dy
207y ay 2 2\
xdx2—|—xdx+(x a’)y=0

1.3. Special functions (scipy.special) 9

http://docs.python.org/dev/library/select.html#module-select
http://docs.python.org/dev/library/select.html#module-select

SciPy Reference Guide, Release 0.16.1

Among other uses, these functions arise in wave propagation problems such as the vibrational modes of a thin drum
head. Here is an example of a circular drum head anchored at the edge:

>>> from scipy import special
>>> def drumhead_height (n, k, distance, angle, t):
kth_zero = special.jn_zeros(n, k) [-1]
.. return np.cos(t) % np.cos(nxangle) % special.jn(n, distancexkth_zero)
>>> theta = np.r_[0:2xnp.pi:507]

>>> radius = np.r_[0:1:507]

>>> x = np.array([r » np.cos(theta) for r in radius])

>>> y = np.array([r » np.sin(theta) for r in radius])

>>> 7z = np.array ([drumhead_height (1, 1, r, theta, 0.5) for r in radius])

>>> import matplotlib.pyplot as plt

>>> from mpl_toolkits.mplot3d import Axes3D
>>> from matplotlib import cm

>>> fig = plt.figure()
>>> ax = Axes3D(fig)
>>> ax.plot_surface (x,
>>> ax.set_xlabel ("X")
>>> ax.set_ylabel ('Y")
>>> ax.set_zlabel ('72")
>>> plt.show ()

y, z, rstride=1l, cstride=1, cmap=cm. jet)

1n=1.0

1.4 Integration (scipy.integrate)

The scipy.integrate sub-package provides several integration techniques including an ordinary differential
equation integrator. An overview of the module is provided by the help command:

>>> help (integrate)
Methods for Integrating Functions given function object.

quad —— General purpose integration.

dblquad —— General purpose double integration.

tplguad —-— General purpose triple integration.

fixed_quad —-— Integrate func(x) using Gaussian quadrature of order n.

10 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

quadrature —-— Integrate with given tolerance using Gaussian quadrature.
romberg —-— Integrate func using Romberg integration.

Methods for Integrating Functions given fixed samples.

trapz —— Use trapezoidal rule to compute integral from samples.
cumtrapz —— Use trapezoidal rule to cumulatively compute integral.
simps —— Use Simpson’s rule to compute integral from samples.
romb —— Use Romberg Integration to compute integral from

(2xxk + 1) evenly-spaced samples.

See the special module’s orthogonal polynomials (special) for Gaussian
quadrature roots and weights for other weighting factors and regions.

Interface to numerical integrators of ODE systems.

odeint —— General integration of ordinary differential equations.
ode —-— Integrate ODE using VODE and ZVODE routines.

1.4.1 General integration (quad)

The function quad is provided to integrate a function of one variable between two points. The points can be +oo (£
inf) to indicate infinite limits. For example, suppose you wish to integrate a bessel function jv (2.5, x) along the
interval [0, 4.5].

4.5
1 :/ J2'5 ((ﬂ) dx.
0

This could be computed using quad:

>>> result = integrate.quad(lambda x: special.jv(2.5,x), 0, 4.5)
>>> print result
(1.1178179380783249, 7.8663172481899801e-09)

>>> T = sqrt(2/pi) *(18.0/27+sqrt (2) xcos(4.5)-4.0/27+sqrt (2)xsin(4.5)+
sqrt (2+pi) *special.fresnel (3/sqrt (pi)) [0])

>>> print I

1.117817938088701

>>> print abs (result[0]-I)
1.03761443881le-11

The first argument to quad is a “callable” Python object (i.e a function, method, or class instance). Notice the use of a
lambda- function in this case as the argument. The next two arguments are the limits of integration. The return value
is a tuple, with the first element holding the estimated value of the integral and the second element holding an upper
bound on the error. Notice, that in this case, the true value of this integral is

I— % (;iﬁcos (4.5) %ﬁsin (4.5) + V2rSi <\;’%>> :

where

Si (z) = /Ow sin (gﬁ) dt.

is the Fresnel sine integral. Note that the numerically-computed integral is within 1.04 x 10~'! of the exact result —
well below the reported error bound.

1.4. Integration (scipy.integrate) 11

SciPy Reference Guide, Release 0.16.1

If the function to integrate takes additional parameters, the can be provided in the args argument
following integral shall be calculated:

1
I(a,b) z/ az® + bde.
0

This integral can be evaluated by using the following code:

>>> from scipy.integrate import quad
>>> def integrand(x, a, b):
return a * x + b

>>> a = 2

>> b =1

>>> I = quad(integrand, 0, 1, args=(a,b))
>>> I = (2.0, 2.220446049250313e-14)

. Suppose that the

Infinite inputs are also allowed in quad by using &+ inf as one of the arguments. For example, suppose that a

numerical value for the exponential integral:

is desired (and the fact that this integral can be computed as special.expn (n, x) is forgotten)

. The functionality

of the function special.expn can be replicated by defining a new function vec_expint based on the routine

quad:

>>> from scipy.integrate import quad
>>> def integrand(t, n, x):
return exp (-x*t) / tx*n

>>> def expint (n, x):
return quad(integrand, 1, Inf, args=(n, x))[0]

>>> vec_expint = vectorize (expint)

>>> vec_expint (3,arange(1.0,4.0,0.5))

array ([0.1097, 0.0567, 0.0301, 0.0163, 0.0089, 0.00497)
>>> special.expn(3,arange(1.0,4.0,0.5))

array ([0.1097, 0.0567, 0.0301, 0.0163, 0.0089, 0.00491)

The function which is integrated can even use the quad argument (though the error bound may underestimate the error

due to possible numerical error in the integrand from the use of quad). The integral in this case is
e e} e e] e—wt 1
I, = / / ——dtdr = —.
o J1 " n

>>> result = quad(lambda x: expint (3, x), 0, inf)
>>> print result
(0.33333333324560266, 2.8548934485373678e-09)

>>> I3 = 1.0/3.0
>>> print I3

0.333333333333

>>> print I3 - result[0]
8.77306560731e-11

This last example shows that multiple integration can be handled using repeated calls to quad.

12 Chapter 1

. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

1.4.2 General multiple integration (dblquad, tplquad, nquad)

The mechanics for double and triple integration have been wrapped up into the functions dblgquad and tplquad.
These functions take the function to integrate and four, or six arguments, respecively. The limits of all inner integrals
need to be defined as functions.

An example of using double integration to compute several values of I,, is shown below:

>>> from scipy.integrate import quad, dblquad
>>> def I(n):
return dblquad(lambda t, x: exp(-x*t)/t*xn, 0, Inf, lambda x: 1, lambda x: Inf)

>>> print I (4)
(0.25000000000435768, 1.0518245707751597e-09)
>>> print I(3)
(0.33333333325010883, 2.8604069919261191e-09)
>>> print I(2)
(0.49999999999857514, 1.8855523253868967e-09)

As example for non-constant limits consider the integral

1/2 pl-2y 1
1= / / zydrdy = —.
y=0 Ja=0 96

This integral can be evaluated using the expression below (Note the use of the non-constant lambda functions for the
upper limit of the inner integral):

>>> from scipy.integrate import dblgquad

>>> area = dblquad(lambda x, y: x*y, 0, 0.5, lambda x: 0, lambda x: 1-2%Xx)
>>> area

(0.010416666666666668, 1.1564823173178715e-16)

For n-fold integration, scipy provides the function nquad. The integration bounds are an iterable object: either a
list of constant bounds, or a list of functions for the non-constant integration bounds. The order of integration (and
therefore the bounds) is from the innermost integral to the outermost one.

oo Ooefwt
n=f %
o J1 ¢t

>>> from scipy import integrate

The integral from above

1
dtder = —
n

can be calculated as

>>> N = 5
>>> def f(t, x):
>>> return np.exp (-x*t) / t*x*N

>>> integrate.nquad(f, [[1l, np.inf], [0, np.inf]])
(0.20000000000002294, 1.2239614263187945e-08)

Note that the order of arguments for f must match the order of the integration bounds; i.e. the inner integral with
respect to ¢ is on the interval [1, co] and the outer integral with respect to x is on the interval [0, co].

Non-constant integration bounds can be treated in a similar manner; the example from above

1/2 pl-2y 1
1= / / zydrdy = —.
y=0 Jax=0 96

can be evaluated by means of

1.4. Integration (scipy.integrate) 13

SciPy Reference Guide, Release 0.16.1

>>> from scipy import integrate

>>> def f(x, y):

>>> return xxy

>>> def bounds_y () :

>>> return [0, 0.5]

>>> def bounds_x(y):

>>> return [0, 1-2xy]

>>> integrate.nquad(f, [bounds_x, bounds_y])
(0.010416666666666668, 4.101620128472366e-16)

which is the same result as before.

1.4.3 Gaussian quadrature

A few functions are also provided in order to perform simple Gaussian quadrature over a fixed interval. The first
is fixed_quad which performs fixed-order Gaussian quadrature. The second function is quadrature which
performs Gaussian quadrature of multiple orders until the difference in the integral estimate is beneath some tolerance
supplied by the user. These functions both use the module special.orthogonal which can calculate the roots
and quadrature weights of a large variety of orthogonal polynomials (the polynomials themselves are available as
special functions returning instances of the polynomial class —e.g. special.legendre).

1.4.4 Romberg Integration

Romberg’s method [WPR] is another method for numerically evaluating an integral. See the help function for
rombe rg for further details.

1.4.5 Integrating using Samples

If the samples are equally-spaced and the number of samples available is 2¢ + 1 for some integer k, then Romberg
romb integration can be used to obtain high-precision estimates of the integral using the available samples. Romberg
integration uses the trapezoid rule at step-sizes related by a power of two and then performs Richardson extrapolation
on these estimates to approximate the integral with a higher-degree of accuracy.

In case of arbitrary spaced samples, the two functions trapz (defined in numpy [NPT]) and simps are available.
They are using Newton-Coates formulas of order 1 and 2 respectively to perform integration. The trapezoidal rule
approximates the function as a straight line between adjacent points, while Simpson’s rule approximates the function
between three adjacent points as a parabola.

For an odd number of samples that are equally spaced Simpson’s rule is exact if the function is a polynomial of order
3 or less. If the samples are not equally spaced, then the result is exact only if the function is a polynomial of order 2
or less.

>>> from scipy.integrate import simps
>>> import numpy as np
>>> def f(x):
R return xxx2
>>> def f2(x):
return xxx3
>>> x = np.array([1,3,4])
>>> yl = f1(x)

>>> I1 = integrate.simps(yl, x)
>>> print (I1)
21.0

14 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

This corresponds exactly to

4
/ z?dr = 21,
1

whereas integrating the second function

>>> y2 = f2(x)

>>> I2 = integrate.simps(y2, x)
>>> print (I2)
61.5

does not correspond to
4
/ z® dx = 63.75
1

because the order of the polynomial in f2 is larger than two.

1.4.6 Faster integration using Ctypes

A user desiring reduced integration times may pass a C function pointer through ctypes to quad, dblquad,
tplquad or nquad and it will be integrated and return a result in Python. The performance increase here arises from
two factors. The primary improvement is faster function evaluation, which is provided by compilation. This can also
be achieved using a library like Cython or F2Py that compiles Python. Additionally we have a speedup provided by
the removal of function calls between C and Python in quad - this cannot be achieved through Cython or F2Py. This
method will provide a speed increase of ~2x for trivial functions such as sine but can produce a much more noticeable
increase (10x+) for more complex functions. This feature then, is geared towards a user with numerically intensive
integrations willing to write a little C to reduce computation time significantly.

ctypes integration can be done in a few simple steps:

1.) Write an integrand function in C with the function signature double f (int n, double args[n]), where
args is an array containing the arguments of the function f.

//testlib.c
double f (int n, double args[n]) {
return args[0] - args([l] * args([2]; //corresponds to x0 — xl1 x x2

}

2.) Now compile this file to a shared/dynamic library (a quick search will help with this as it is OS-dependent). The
user must link any math libraries, etc. used. On linux this looks like:

$ gcc —-shared -o testlib.so —-fPIC testlib.c

The output library will be referred to as test1ib. so, but it may have a different file extension. A library has now
been created that can be loaded into Python with ct ypes.

3.) Load shared library into Python using ct ypes and set restypes and argtypes - this allows Scipy to interpret
the function correctly:

>>> import ctypes

>>> from scipy import integrate

>>> 1lib = ctypes.CDLL(’/+x/testlib.so’) # Use absolute path to testlib
>>> func = lib.f # Assign specific function to name func (for simplicity)
>>> func.restype ctypes.c_double

>>> func.argtypes = (ctypes.c_int, ctypes.c_double)

1.4. Integration (scipy.integrate) 15

http://docs.python.org/dev/library/ctypes.html#module-ctypes
http://docs.python.org/dev/library/ctypes.html#module-ctypes
http://docs.python.org/dev/library/ctypes.html#module-ctypes
http://docs.python.org/dev/library/ctypes.html#module-ctypes

SciPy Reference Guide, Release 0.16.1

Note that the argtypes will always be (ctypes.c_int, ctypes.c_double) regardless of the number of
parameters, and restype will always be ctypes.c_double.

4.) Now integrate the library function as normally, here using nquad:

>>> integrate.nquad(func, [[0,10],[-10,01,[-1,111)
(1000.0, 1.1102230246251565e-11)

And the Python tuple is returned as expected in a reduced amount of time. All optional parameters can be used with
this method including specifying singularities, infinite bounds, etc.

1.4.7 Ordinary differential equations (odeint)

Integrating a set of ordinary differential equations (ODEs) given initial conditions is another useful example. The
function odeint is available in SciPy for integrating a first-order vector differential equation:

dy
— =1 (y,t
o =),
given initial conditions y (0) = yo, where y is a length IV vector and f is a mapping from R to R . A higher-order
ordinary differential equation can always be reduced to a differential equation of this type by introducing intermediate
derivatives into the y vector.

For example suppose it is desired to find the solution to the following second-order differential equation:

dPw

12 zw(z) =0
with initial conditions w (0) = \s/gf%r(z) and % |Z_0 = —\3[3%(1). It is known that the solution to this differential
3 = 3

equation with these boundary conditions is the Airy function
w = Ai(z),
which gives a means to check the integrator using special.airy.

First, convert this ODE into standard form by setting y = [‘é—f, w] and ¢ = z. Thus, the differential equation becomes
dl o ty1 o 0 t Yo o 0 t
i |y | (10w]| T[1o0]”

f(y,t)=A()y.

As an interesting reminder, if A (¢) commutes with fot A (7) d7 under matrix multiplication, then this linear differen-
tial equation has an exact solution using the matrix exponential:

In other words,

v =en ([AGr)y0).

However, in this case, A (t) and its integral do not commute.

There are many optional inputs and outputs available when using odeint which can help tune the solver. These ad-
ditional inputs and outputs are not needed much of the time, however, and the three required input arguments and
the output solution suffice. The required inputs are the function defining the derivative, fprime, the initial conditions
vector, y0, and the time points to obtain a solution, ¢, (with the initial value point as the first element of this sequence).
The output to odeint is a matrix where each row contains the solution vector at each requested time point (thus, the
initial conditions are given in the first output row).

The following example illustrates the use of odeint including the usage of the Dfun option which allows the user to
specify a gradient (with respect to y) of the function, f (y, ¢).

16 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

>>> from scipy.integrate import odeint
>>> from scipy.special import gamma, airy
>>> y1_0 = 1.0 / 3%x%(2.0/3.0) / gamma(2.0/3.0)
>>> y0_0 = -1.0 / 3%%x(1.0/3.0) / gamma(1.0/3.0)
>>> y0 = [y0_0, yl1_0]
>>> def func(y, t):

return [txy[1],yI[0]]

>>> def gradient(y, t):
return [[0,t], [1,0]]

>>> x = arange (0, 4.0, 0.01)

>>> t = x

>>> ychk = airy(x) [0]

>>> y = odeint (func, y0, t)

>>> y2 = odeint (func, y0, t, Dfun=gradient)

>>> print ychk[:36:6]
[0.355028 0.339511 0.324068 0.308763 0.293658 0.278806]

>>> print y[:36:6,1]
[0.355028 0.339511 0.324067 0.308763 0.293658 0.278806]

>>> print y2[:36:6,1]
[0.355028 0.339511 0.324067 0.308763 0.293658 0.278806]

References
1.5 Optimization (scipy.optimize)

The scipy.optimize package provides several commonly used optimization algorithms. A detailed listing is
available: scipy.optimize (can also be found by help (scipy.optimize)).

The module contains:

1. Unconstrained and constrained minimization of multivariate scalar functions (mninimize) using a variety of
algorithms (e.g. BFGS, Nelder-Mead simplex, Newton Conjugate Gradient, COBYLA or SLSQP)

Global (brute-force) optimization routines (e.g. basinhopping, differential_evolution)
Least-squares minimization (least sq) and curve fitting (curve_ fit) algorithms

Scalar univariate functions minimizers (minimize_scalar) and root finders (newt on)

A

Multivariate equation system solvers (root) using a variety of algorithms (e.g. hybrid Powell, Levenberg-
Marquardt or large-scale methods such as Newton-Krylov).

Below, several examples demonstrate their basic usage.

1.5.1 Unconstrained minimization of multivariate scalar functions (minimize)

The minimize function provides a common interface to unconstrained and constrained minimization algo-
rithms for multivariate scalar functions in scipy.optimize. To demonstrate the minimization function con-
sider the problem of minimizing the Rosenbrock function of N variables: f(x) = Zf\;l 100 (:ri - xf_l)z +
(1- xi,l)Q T heminimumualueo fthis functionisOwhichisachievedwhenx; = 1.

1.5. Optimization (scipy.optimize) 17

SciPy Reference Guide, Release 0.16.1

Note that the Rosenbrock function and its derivatives are included in scipy.optimize. The implementations
shown in the following sections provide examples of how to define an objective function as well as its jacobian and
hessian functions.

Nelder-Mead Simplex algorithm (method='Nelder-Mead’)

In the example below, the minimize routine is used with the Nelder-Mead simplex algorithm (selected through the
method parameter):

>>> import numpy as np
>>> from scipy.optimize import minimize

>>> def rosen(x):

mwn

"""The Rosenbrock function
return sum(100.0% (x[1l:]-x[:-1]1%%2.0)%%2.0 + (l-x[:-1])*x2.0)

>>> x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.21)
>>> res = minimize (rosen, x0, method='"nelder-mead’,
Ce options={’xtol’: le-8, ’'disp’: True})
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 339
Function evaluations: 571

>>> print (res.x)
[1. 1. 1. 1. 1.]

The simplex algorithm is probably the simplest way to minimize a fairly well-behaved function. It requires only
function evaluations and is a good choice for simple minimization problems. However, because it does not use any
gradient evaluations, it may take longer to find the minimum.

Another optimization algorithm that needs only function calls to find the minimum is Powell‘s method available by
setting method='"powell’ inminimize.

Broyden-Fletcher-Goldfarb-Shanno algorithm (method='BFGS’)

In order to converge more quickly to the solution, this routine uses the gradient of the objective function. If the gradient
is not given by the user, then it is estimated using first-differences. The Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method typically requires fewer function calls than the simplex algorithm even when the gradient must be estimated.

To demonstrate this algorithm, the Rosenbrock function is again used. The gradient of the Rosenbrock function is the
vector:

9f

N
9 = 2200 (xi—xf_l) (6i,j —211_152‘_17]') _2(1_:172'—1)51'—1,]"
i i=1

200 (z; — 27_,) — 400z; (zj41 — xf) —2(1—2aj).

Jj—1

This expression is valid for the interior derivatives. Special cases are

of
i —400z (21 — 25) —2(1 — z0),
of
Brn s 200 (;vN,l — 1%\,72) .

A Python function which computes this gradient is constructed by the code-segment:

18 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

>>> def rosen_der (x):
xm = x[1:-1]
xm_ml = x[:-2]
xm_pl = x[2:]
der = np.zeros_like (x)

der[l:-1] = 200% (xm—xm_mlxx2) — 400%(xm_pl — xm**2)xxm — 2% (l-xm)
der[0] = -400*x[0]*(X[1]-x[0]**2) — 2% (1-x[07)
der[-1] = 200 (x[-1]-x[-2]*%2)

return der

This gradient information is specified in the minimi ze function through the jac parameter as illustrated below.

>>> res = minimize (rosen, x0, method=’BFGS’, jac=rosen_der,
Ce options={’disp’: True})
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 51
Function evaluations: 63
Gradient evaluations: 63
>>> print (res.x)
[1. 1. 1. 1. 1.1

Newton-Conjugate-Gradient algorithm (method='Newton-CG’)

The method which requires the fewest function calls and is therefore often the fastest method to minimize
functions of many variables uses the Newton-Conjugate Gradient algorithm. This method is a modified New-
ton’s method and uses a conjugate gradient algorithm to (approximately) invert the local Hessian. Newton’s
method is based on fitting the function locally to a quadratic form: f(x) ~ f(xo) + Vf(x0) - (x —x0) +
%(x —xO)TH(xo) (x — xq) .whereH (xg) is a matrix of second-derivatives (the Hessian). If the Hessian is
positive definite then the local minimum of this function can be found by setting the gradient of the quadratic
form to zero, resulting in Xop = x¢ — H ™'V f.TheinverseoftheHessianisevaluatedusingtheconjugate —
gradientmethod. Anexampleo femployingthismethodtominimizingthe Rosenbrock functionisgivenbelow.Totake fulladvantc
CGmethod, a functionwhichcomputesthe Hessianmustbeprovided. T he Hessianmatrizitsel f doesnotneedtobeconstructed, on

Full Hessian example:
The Hessian of the Rosenbrock function is
0% f

*J 8xi8a:j

200 ((51"]' — 2xi716i717j) — 400561 (6i+1,j — 2.%1(517]) — 40057,1] (ZL’Z'Jrl — .’E?) + 25i,j7
= (202 + 120027 — 400z;11) &; j — 400z;6;41,; — 400z;_10;_1 5,

ifi,j € [1, N — 2] with¢,j € [0, N — 1] defining the N X N matrix. Other non-zero entries of the matrix are

2
% = 120023 — 4002, + 2,
0
0% f 0% f
= = 74
8$08$1 81‘18%‘0 OO:L'O’
0% f 0% f
= = 74 —_
OzxN_10xN_2 OxN_20TN_1 002N -2,
82
TN-1

1.5. Optimization (scipy.optimize) 19

SciPy Reference Guide, Release 0.16.1

1200x3 —400x1 + 2 —400x 0 0

—400x¢ 202 + 120022 — 400z —400x1 0

For example, the Hessian when N = 5is H= 0 —400z, 202 + 1200:13% — 400x3 —40!
0 —400x2 202 + 1200:

0 0 0 —40

CGmethodisshowninthe f ollowingexample :

>>> def rosen_hess(x):

X = np.asarray (x)
H = np.diag(-400%x[:-1],1) — np.diag(400*x[:-1],-1)
diagonal = np.zeros_like (x)
diagonal[0] = 1200%x[0]**2-400%xx[1]+2
diagonal[-1] = 200
diagonal[l:-1] = 202 + 1200xx[1l:=1]1%%2 — 400%x[2:]
H = H + np.diag(diagonal)
return H
>>> res = minimize (rosen, x0, method=’"Newton-CG’,

jac=rosen_der, hess=rosen_hess,

.. options={’'xtol’: 1le-8, ’'disp’: True})
Optimization terminated successfully.

Current function value: 0.000000

Iterations: 19

Function evaluations: 22

Gradient evaluations: 19

Hessian evaluations: 19
>>> print (res.x)
[1. 1. 1. 1. 1.]

Hessian product example:

For larger minimization problems, storing the entire Hessian matrix can consume considerable time and memory. The
Newton-CG algorithm only needs the product of the Hessian times an arbitrary vector. As a result, the user can supply
code to compute this product rather than the full Hessian by giving a hess function which take the minimization
vector as the first argument and the arbitrary vector as the second argument (along with extra arguments passed to the
function to be minimized). If possible, using Newton-CG with the Hessian product option is probably the fastest way
to minimize the function.

In this case, the product of the Rosenbrock Hessian with an arbitrary vector is not dif-
ficult to compute. If p is the arbitrary vector, then H(x)p has elements: H(x)p =
(120023 — 400z + 2) po — 400zp1

—400xz; _1p;—1 + (202 + 12002912 — 4()0:U1-+1) p; —400z;p; 41 | .Codewhichmakesuseo fthisH essianproducttominimizethel

—400z ny_2pN—2 + 200pN_1

>>> def rosen_hess_p(x, p):

X = np.asarray (x)

Hp = np.zeros_like (x)

Hp[0] = (1200%x[0]**2 — 400*x[1] + 2)*p[0] — 400xx[0]*p[1]

Hp[l:-1] = —400*x[:-2]1*p[:=2]+(202+1200%x[1:-1]1%%x2-400*x[2:])*p[Ll:=1] \
—400xx[1l:-1]*p[2:]

Hp[-1] = —-400*xx[-2]*p[-2] + 200xp[—-1]

return Hp

>>> res = minimize (rosen, x0, method=’"Newton-CG’,
jac=rosen_der, hessp=rosen_hess_p,

20 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

.. options={'xtol’: l1le-8, ’disp’: True})
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 20
Function evaluations: 23
Gradient evaluations: 20
Hessian evaluations: 44
>>> print (res.x)
1. 1. 1. 1. 1.]

1.5.2 Constrained minimization of multivariate scalar functions (minimize)

The minimize function also provides an interface to several constrained minimization algorithm. As an example,
the Sequential Least SQuares Programming optimization algorithm (SLSQP) will be considered here. This algorithm
allows to deal with constrained minimization problems of the form:

min F'(z)
subject to C;(X) =0, ji=1,...,MEQ
Ci(x) >0, j=MEQ+1,...M
XL<zx<XU, I=1,..,N

As an example, let us consider the problem of maximizing the function: f(x, y) = 2 xy + 2 x - x? —

2% subjecttoanequalityandaninequalityconstraintsde finedas :to 2> —y=0
y — 1 > 0The objective function and its derivative are defined as follows.

>>> def func(x, sign=1.0):
""" Objective function
return sign# (2+x[0]*x[1] + 2%x[0] — x[0]#*%2 — 2%x[1]*%2)

mown

>>> def func_deriv(x, sign=1.0):
""" Derivative of objective function
dfdx0 = sign«* (-2*x[0] + 2xx[1] + 2)
dfdxl = sign* (2xx[0] - 4xx[1])
return np.array ([dfdx0, dfdxl])

mmn

Note that since minimize only minimizes functions, the sign parameter is introduced to multiply the objective
function (and its derivative) by -1 in order to perform a maximization.

Then constraints are defined as a sequence of dictionaries, with keys type, fun and jac.

>>> cons = ({’'type’: 'eq’,
"fun’ : lambda x: np.array ([x[0]**3 - x[1]11]),
"Jac’ : lambda x: np.array([3.0%x(x[0]x%x2.0), -1.01)1},
{"type’: "ineq’,
"fun’ : lambda x: np.array([x[1] - 117)
"Jac’ : lambda x: np.array([0.0, 1.01])

— ~

)

Now an unconstrained optimization can be performed as:

>>> res = minimize (func, [-1.0,1.0], args=(-1.0,), jac=func_deriv,
C.. method=’SLSQP’, options={’disp’: True})
Optimization terminated successfully. (Exit mode 0)

Current function value: -2.0

Iterations: 4
Function evaluations: 5
Gradient evaluations: 4

1.5. Optimization (scipy.optimize) 21

SciPy Reference Guide, Release 0.16.1

>>> print (res.x)
[2. 1.]

and a constrained optimization as:

>>> res = minimize (func, [-1.0,1.0], args=(-1.0,), jac=func_deriv,
C.. constraints=cons, method=’SLSQP’, options={’disp’: True})
Optimization terminated successfully. (Exit mode 0)

Current function value: -1.00000018311
Iterations: 9
Function evaluations: 14
Gradient evaluations: 9
>>> print (res.x)
[1.00000009 1.]

1.5.3 Least-square fitting (Leastsq)

All of the previously-explained minimization procedures can be used to solve a least-squares problem provided

the appropriate objective function is constructed. For example, suppose it is desired to fit a set of data {x;,y;}

to a known model, y = f (x,p) where p is a vector of parameters for the model that need to be found. A

common method for determining which parameter vector gives the best fit to the data is to minimize the sum

of squares of the residuals. The residual is usually defined for each observed data-point as e; (p,y:,X;) =

lly: — £ (x:, P)|| Anobjective functiontopasstoanyo fthepreviousminizationalgorithmstoobtainaleast -

squaresfitis.J (p) = Z?;Bl e? (p) .Theleastsqalgorithmper formsthissquaringandsummingo ftheresidual sautomaticall
and returns the value of p which minimizes .J (p) = e”'e directly. The user is also encouraged to provide the Jacobian

matrix of the function (with derivatives down the columns or across the rows). If the Jacobian is not provided, it is

estimated.

An example should clarify the usage. Suppose it is believed some measured data follow a sinusoidal pat-

tern y; = Asin (2nkx; + 0) wheretheparametersA, k , and 0 are unknown. The residual vector is e; =

ly; — Asin (2wka; + 0)| .Byde fininga functiontocomputetheresidual sand(selectinganappropriatestartingposition), theleast
squares fitroutinecanbeusedto findthebest — fitparametersfi, k, 6. This is shown in the following example:

>>> from numpy import arange, sin, pi, random, array
>>> x = arange (0, 6e-2, 6e-2 / 30)

>>> A, k, theta = 10, 1.0 / 3e-2, pi / 6

>>> y_true = A * sin(2 « pi x* k * x + theta)

>>> y_meas = y_true + 2xrandom.randn(len (x))

>>> def residuals(p, vy, X):
A, k, theta =p
err =y — A * sin(2 » pi * k » x + theta)
return err

>>> def peval (x, p):
return p[0] * sin(2 * pi % p[l] * x + p[2])

>>> p0 = [8, 1 / 2.3e-2, pi / 3]
>>> print (array (p0))
[8. 43.4783 1.0472]

>>> from scipy.optimize import leastsqg

>>> plsqg = leastsqg(residuals, p0, args=(y_meas, X))
>>> print (plsq[0])

[10.9437 33.3605 0.5834]

22 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

>>> print (array ([A, k, thetal))
[10. 33.3333 0.5236]

>>> import matplotlib.pyplot as plt

>>> plt.plot (x, peval(x, plsql0]),x,y_meas,’o’,x,y_true)
>>> plt.title(’Least-squares fit to noisy data’)

>>> plt.legend([’Fit’, ’'Noisy’, ’'True’])

>>> plt.show ()

Least-squares fit to noisy data
15 T T T ‘ T T

® o — Fit

_15 | | |

0.00 0.01 0.02 0.03 0.04 0.05 0.06

1.5.4 Univariate function minimizers (minimize_scalar)

Often only the minimum of an univariate function (i.e. a function that takes a scalar as input) is needed. In these
circumstances, other optimization techniques have been developed that can work faster. These are accessible from the
minimize_scalar function which proposes several algorithms.

Unconstrained minimization (method='brent’)

There are actually two methods that can be used to minimize an univariate function: brent and golden, but
golden isincluded only for academic purposes and should rarely be used. These can be respectively selected through
the method parameter in minimize_scalar. The brent method uses Brent’s algorithm for locating a minimum.
Optimally a bracket (the bs parameter) should be given which contains the minimum desired. A bracket is a triple
(a,b,c) such that f (a) > f(b) < f(c) and a < b < c. If this is not given, then alternatively two starting points can
be chosen and a bracket will be found from these points using a simple marching algorithm. If these two starting points
are not provided 0 and / will be used (this may not be the right choice for your function and result in an unexpected
minimum being returned).

Here is an example:

>>> from scipy.optimize import minimize_scalar
>>> f = lambda x: (x — 2) * (X + 1)*%*2

>>> res = minimize_scalar (f, method='brent’)
>>> print (res.x)
1.0

1.5. Optimization (scipy.optimize) 23

SciPy Reference Guide, Release 0.16.1

Bounded minimization (method='bounded’)

Very often, there are constraints that can be placed on the solution space before minimization occurs. The bounded
method in minimize_scalar is an example of a constrained minimization procedure that provides a rudimentary
interval constraint for scalar functions. The interval constraint allows the minimization to occur only between two
fixed endpoints, specified using the mandatory bs parameter.

For example, to find the minimum of .J; (z) near x = 5, minimize_scalar can be called using the interval [4, 7]
as a constraint. The result iS Z;, = 5.3314 :

>>> from scipy.special import jl

>>> res = minimize_scalar (jl, bs=(4, 7), method='"bounded’)
>>> print (res.x)

5.33144184241

1.5.5 Custom minimizers

Sometimes, it may be useful to use a custom method as a (multivariate or univariate) minimizer, for example when
using some library wrappers of minimize (e.g. basinhopping).

We can achieve that by, instead of passing a method name, we pass a callable (either a function or an object imple-
menting a __call__ method) as the method parameter.

Let us consider an (admittedly rather virtual) need to use a trivial custom multivariate minimization method that will
just search the neighborhood in each dimension independently with a fixed step size:

>>> def custmin (fun, x0, args=(), maxfev=None, stepsize=0.1,
maxiter=100, callback=None, =**options):

bestx = x0
besty = fun/(
funcalls = 1
niter = 0
improved = True
stop = False

x0)

while improved and not stop and niter < maxiter:
improved = False
niter += 1
for dim in range (np.size (x0)):
for s in [bestx[dim] - stepsize, bestx[dim] + stepsize]:
testx = np.copy (bestx)
testx[dim] = s
testy = fun(testx, =*args)
funcalls += 1
if testy < besty:
besty = testy
bestx = testx
improved = True
if callback is not None:
callback (bestx)
if maxfev is not None and funcalls >= maxfev:
stop = True
break

return OptimizeResult (fun=besty, x=bestx, nit=niter,
. nfev=funcalls, success=(niter > 1))
>>> x0 = [1.35, 0.9, 0.8, 1.1, 1.2]
>>> res = minimize (rosen, x0, method=custmin, options=dict (stepsize=0.05))

24 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

>>> res.x
[1. 1. 1. 1. 1.]

This will work just as well in case of univariate optimization:

>>> def custmin (fun, bracket, args=(), maxfev=None, stepsize=0.1,
maxiter=100, callback=None, =**options):
bestx = (bracket[l] + bracket[0]) / 2.0
besty = fun (bestx)
funcalls = 1
niter = 0
improved = True
stop = False

while improved and not stop and niter < maxiter:
improved = False
niter += 1
for testx in [bestx - stepsize, bestx + stepsize]:
testy = fun(testx, =xargs)
funcalls += 1
if testy < besty:
besty = testy
bestx = testx
improved = True
if callback is not None:
callback (bestx)
if maxfev is not None and funcalls >= maxfev:
stop = True
break

return OptimizeResult (fun=besty, x=bestx, nit=niter,
.. nfev=funcalls, success=(niter > 1))
>>> res = minimize_scalar (f, bracket=(-3.5, 0), method=custmin,
options=dict (stepsize = 0.05))
>>> res.x
-2.0

1.5.6 Root finding

Scalar functions

If one has a single-variable equation, there are four different root finding algorithms that can be tried. Each of these
algorithms requires the endpoints of an interval in which a root is expected (because the function changes signs). In
general brentq is the best choice, but the other methods may be useful in certain circumstances or for academic
purposes.

Fixed-point solving

A problem closely related to finding the zeros of a function is the problem of finding a fixed-point of a function. A
fixed point of a function is the point at which evaluation of the function returns the point: g (z) = x. Clearly the fixed
point of g is the root of f (z) = g (z) — =. Equivalently, the root of f is the fixed_point of g (z) = f (z) + =. The
routine fixed_point provides a simple iterative method using Aitkens sequence acceleration to estimate the fixed
point of g given a starting point.

1.5. Optimization (scipy.optimize) 25

SciPy Reference Guide, Release 0.16.1

Sets of equations

Finding a root of a set of non-linear equations can be achieve using the root function. Several methods are available,
amongst which hybr (the default) and 1m which respectively use the hybrid method of Powell and the Levenberg-
Marquardt method from MINPACK.

The following example considers the single-variable transcendental equation x+2cos () =
0, arooto fwhichcanbe foundas follows :

>>> import numpy as np
>>> from scipy.optimize import root
>>> def func(x):
return x + 2 % np.cos(x)
>>> sol = root (func, 0.3)
>>> sol.x
array ([-1.02986653])
>>> sol.fun
array ([—-6.66133815e-16])

Consider now a set of non-linear equations
xocos(x1) = 4,
o1 — X1 = 5.

We define the objective function so that it also returns the Jacobian and indicate this by setting the jac parameter to
True. Also, the Levenberg-Marquardt solver is used here.

>>> def func2(x):

f = [x[0] * np.cos(x[1l]) - 4,
x[1]1*x[0] - x[1] — 5]
df = np.array([[np.cos(x[1]), —-x[0] * np.sin(x[1])],
[x[1], x[0] - 111)

.. return f, df

>>> sol = root (func2, [1, 1], jac=True, method=’'1m’)
>>> sol.x

array ([6.50409711, 0.90841421])

Root finding for large problems

Methods hybr and 1min root cannot deal with a very large number of variables (N), as they need to calculate and
invert a dense N x N Jacobian matrix on every Newton step. This becomes rather inefficient when N grows.

Consider for instance the following problem: we need to solve the following integrodifferential equation on the square
[0, 1] x [0, 1]:
2

11
(8%+8§)P+5(/0 /0 cosh(P)da:dy) =0

with the boundary condition P(x, 1) = 1 on the upper edge and P = 0 elsewhere on the boundary of the square. This
can be done by approximating the continuous function P by its values on a grid, P, ,, ~ P(nh, mh), with a small
grid spacing h. The derivatives and integrals can then be approximated; for instance 2P (x,y) ~ (P(z + h,y) —
2P(z,y) + P(z — h,y))/h?. The problem is then equivalent to finding the root of some function residual (P),
where P is a vector of length N, V.

Now, because NN, can be large, methods hybr or 1min root will take a long time to solve this problem. The
solution can however be found using one of the large-scale solvers, for example krylov, broyden2, or anderson.
These use what is known as the inexact Newton method, which instead of computing the Jacobian matrix exactly, forms
an approximation for it.

26 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

The problem we have can now be solved as follows:

import numpy as np
from scipy.optimize import root

from numpy import cosh, zeros_like, mgrid,

parameters

nx, ny = 75, 75

hx, hy = 1./(nx-1), 1./ (ny-1)

P_left, P_right = 0, O

P_top, P_bottom = 1, O

def residual (P):
d2x = zeros_like (P)
d2y = zeros_like (P)
d2x[1l:-1] = (P[2:] - 2+%P[1:-1] + P[:-2])
d2x[0] = (P[1] - 2%P[0]
d2x[-1] = (P_right - 2xP[-1]
d2y[:,1:-1]1 = (P[:,2:] — 2%P[:,1:-1]
d2y[:,0] = (P[:,1] - 2%P[:,0]
dzy[:,-1] = (P_top - 2%P[:,-1]

return d2x + d2y + 5xcosh(P) .mean () =2

solve
guess = zeros((nx, ny),
sol = root (residual, guess,
#sol = root (residual,
#sol = root (residual,
print (' Residual:

float)

guess,
guess,

visualize

import matplotlib.pyplot as plt

x, v = mgrid[0:1: (nxx173), O0:1l:(ny*173)]
plt.pcolor(x, y, sol.x)

plt.colorbar ()

plt.show()

method="krylov’,
method=’"broyden2’,
method="anderson’,
2g’ % abs(residual (sol.x)) .max())

zZzeros

/ hx/hx

+ P_left) /hx/hx
+ P[-2]) /hx/hx

+ P[:,:-2])/hy/hy
+ P_bottom) /hy/hy
+ P[:,-2])/hy/hy

True})
True,
True,

options={’disp’:
options={’disp’:
options={’disp”’:

"max_rank’ :
‘M7 10})

50})

1.5. Optimization (scipy.optimize)

27

SciPy Reference Guide, Release 0.16.1

0.90
0.75
0.60
0.45
0.30
0.15

Still too slow? Preconditioning.

When looking for the zero of the functions f;(x) = 0,i = 1, 2, ..., N, the krylov solver spends most of its time
inverting the Jacobian matrix,

_0fi

Jij = 61‘]‘ .

If you have an approximation for the inverse matrix M ~ .J~!, you can use it for preconditioning the linear inversion
problem. The idea is that instead of solving Js = y one solves M Js = My: since matrix M J is “closer” to the
identity matrix than J is, the equation should be easier for the Krylov method to deal with.

The matrix M can be passed to root with method krylov as an op-
tion options [’ jac_options’] [’ inner_M’]. It can be a (sparse) matrix or a
scipy.sparse.linalg.LinearOperator instance.

For the problem in the previous section, we note that the function to solve consists of two parts: the first one is
application of the Laplace operator, [02 + GS]P, and the second is the integral. We can actually easily compute the
Jacobian corresponding to the Laplace operator part: we know that in one dimension

-2 1 0
1

_ o O

=h; %L

so that the whole 2-D operator is represented by
S =024 0; ~h*Lol+h*I®L

The matrix Jo of the Jacobian corresponding to the integral is more difficult to calculate, and since all of it entries
are nonzero, it will be difficult to invert. J; on the other hand is a relatively simple matrix, and can be inverted by
scipy.sparse.linalg.splu (or the inverse can be approximated by scipy.sparse.linalg.spilu).
So we are content to take M = .J; ' and hope for the best.

In the example below, we use the preconditioner M = J; 1

28 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

import numpy as np

from scipy.optimize import root

from scipy.sparse import spdiags, kron

from scipy.sparse.linalg import spilu, LinearOperator
from numpy import cosh, zeros_like, mgrid, =zeros, eye

parameters
nx, ny = 75, 75
hx, hy 1./(nx-1), 1./ (ny-1)

P_left, P_right = 0, O
P_top, P_bottom = 1, O

def get_preconditioner () :
"""Compute the preconditioner M"""

diags_x = zeros((3, nx))
diags_x[0,:] = 1/hx/hx
diags_x[1,:] = -2/hx/hx
diags_x[2,:] = 1/hx/hx

Lx = spdiags(diags_x, [-1,0,1], nx, nx)

diags_y = zeros((3, ny))
diags_y[0,:] = 1/hy/hy
diags_yl[1l,:] = -2/hy/hy
diags_yI[2,:]1 = 1/hy/hy

Ly = spdiags(diags_y, [-1,0,1], ny, ny)
Jl = kron(Lx, eye(ny)) + kron(eye(nx), Ly)

Now we have the matrix ‘J_1'. We need to find its inverse 'M' ——
however, since an approximate inverse 1is enough, we can use
the xincomplete LU* decomposition

Jl_ilu = spilu(Jl)

This returns an object with a method .solve() that evaluates
the corresponding matrix-vector product. We need to wrap it into
a LinearOperator before it can be passed to the Krylov methods:

M = LinearOperator (shape=(nx*ny, nxsny), matvec=J1_ilu.solve)
return M

def solve(preconditioning=True) :
"""Compute the solution"""
count = [0]

def residual (P):
count [0] += 1

d2x = zeros_like (P)
d2y = zeros_like (P)

d2x[1:-1] = (P[2:] - 2+%P[1:-1] + P[:-2])/hx/hx
d2x[0] (P[1] - 2xP[0] + P_left) /hx/hx
d2x[-1] = (P_right - 2xP[-1] + P[-2]1) /hx/hx
d2y[:,1:-1] = (P[:,2:] - 2%P[:,1:-1] + P[:,:-2])/hy/hy
d2y[:,0] = (P[:,1] - 2%P[:,0] + P_bottom) /hy/hy

1.5. Optimization (scipy.optimize) 29

SciPy Reference Guide, Release 0.16.1

d2y[:,-1] = (P_top - 2%P[:,-1] + P[:,

return d2x + d2y + 5%cosh(P) .mean () «*2

preconditioner
if preconditioning:
M = get_preconditioner ()

else:
M = None
solve
guess = zeros((nx, ny), float)
sol = root (residual, guess, method="krylov’,

options={’disp’: True,
"jac_options’: {’inner_M’:
print ’'Residual’, abs(residual(sol.x)) .max()
print ’'Evaluations’, count[0]

return sol.x

def main() :
sol = solve(preconditioning=True)

visualize
import matplotlib.pyplot as plt
X, v = mgrid[0:1: (nx*173), O0:1:(ny*17)]
plt.clf ()
plt.pcolor(x, y, sol)
plt.clim(0, 1)
plt.colorbar ()
plt.show ()
if _ name_ == "__main_ ":
main ()

Resulting run, first without preconditioning:

0: |[F(x)| = 803.614; step 1; tol 0.000257947

1: |[F(x)| = 345.912; step 1; tol 0.166755

2 [F(x)| = 139.159; step 1; tol 0.145657

3: |[F(x)| = 27.3682; step 1; tol 0.0348109

4: [F(x)| = 1.03303; step 1; tol 0.00128227

5: [F(x)| = 0.0406634; step 1; tol 0.00139451
6: [F(x)| = 0.00344341; step 1; tol 0.00645373
7 [F(x)| = 0.000153671; step 1; tol 0.00179246
8: |[F(x)| = 6.7424e-06; step 1; tol 0.00173256

Residual 3.57078908664e-07
Evaluations 317

and then with preconditioning:

0: |[F(x)] = 136.993; step 1; tol 7.49599e-06
1: |[F(x)|] = 4.80983; step 1; tol 0.00110945
2: |[F(x)] = 0.195942; step 1; tol 0.00149362
3: [F(x)| = 0.000563597; step 1; tol 7.44604e-06
4: [F(x)] = 1.00698e-09; step 1; tol 2.87308e-12

Residual 9.29603061195e-11
Evaluations 77

-21) /hy/hy

M} 1)

30

Chapter 1

. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

Using a preconditioner reduced the number of evaluations of the residual function by a factor of 4. For problems
where the residual is expensive to compute, good preconditioning can be crucial — it can even decide whether the
problem is solvable in practice or not.

Preconditioning is an art, science, and industry. Here, we were lucky in making a simple choice that worked reasonably
well, but there is a lot more depth to this topic than is shown here.

References

Some further reading and related software:

1.6 Interpolation (scipy.interpolate)

Contents

* Interpolation (scipy.interpolate)
— 1-D interpolation (interpld)
— Multivariate data interpolation (griddata)
— Spline interpolation
* Spline interpolation in 1-d: Procedural (interpolate.splXXX)
* Spline interpolation in 1-d: Object-oriented (UnivariateSpline)
+ Two-dimensional spline representation: Procedural (bisplrep)
* Two-dimensional spline representation: Object-oriented (BivariateSpline)
— Using radial basis functions for smoothing/interpolation
* 1-d Example
* 2-d Example

There are several general interpolation facilities available in SciPy, for data in 1, 2, and higher dimensions:
* A class representing an interpolant (interpld) in 1-D, offering several interpolation methods.

» Convenience function griddata offering a simple interface to interpolation in N dimensions (N =1, 2, 3, 4,
...). Object-oriented interface for the underlying routines is also available.

* Functions for 1- and 2-dimensional (smoothed) cubic-spline interpolation, based on the FORTRAN library
FITPACK. There are both procedural and object-oriented interfaces for the FITPACK library.

* Interpolation using Radial Basis Functions.

1.6.1 1-D interpolation (interpld)

The interpld class in scipy.interpolate is a convenient method to create a function based on fixed data
points which can be evaluated anywhere within the domain defined by the given data using linear interpolation. An
instance of this class is created by passing the 1-d vectors comprising the data. The instance of this class defines a
__call__ method and can therefore by treated like a function which interpolates between known data values to obtain
unknown values (it also has a docstring for help). Behavior at the boundary can be specified at instantiation time. The
following example demonstrates its use, for linear and cubic spline interpolation:

>>> from scipy.interpolate import interpld

>>> x = np.linspace (0, 10, num=11, endpoint=True)
>>> y = np.cos (-x*x2/9.0)

>>> f = interpld(x, V)

>>> f2 = interpld(x, y, kind=’cubic’)

1.6. Interpolation (scipy.interpolate) 31

SciPy Reference Guide, Release 0.16.1

>>> xnew = np.linspace (0, 10, num=41, endpoint=True)

>>> import matplotlib.pyplot as plt

>>> plt.plot(x, y, 'o’, xnew, f(xnew), ’'-’, xnew, f2(xnew), '—-7")
>>> plt.legend([’data’, ’'linear’, ’cubic’], loc="best’)

>>> plt.show ()

15 T T T I

1.0

0.5

0.0

-0.5

® @ data

_1.0H — linear VE
— - cubic
_15 1 1 1 1
0 2 4 6 8 10

1.6.2 Multivariate data interpolation (griddata)

Suppose you have multidimensional data, for instance for an underlying function f{x, y) you only know the values at
points (x[i], y[i]) that do not form a regular grid.

Suppose we want to interpolate the 2-D function

>>> def func(x, y):
>>> return x+ (1-X)+*np.cos (4+np.pi*x) + np.sin(4+np.pixy++2)**2

on a grid in [0, 1]x[0, 1]
>>> grid_x, grid_y = np.mgrid[0:1:1007j, 0:1:2007]

but we only know its values at 1000 data points:

>>> points = np.random.rand (1000, 2)
>>> values = func(points[:,0], points[:,1])

This can be done with griddata —below we try out all of the interpolation methods:

>>> from scipy.interpolate import griddata

>>> grid_z0 = griddata(points, values, (grid_x, grid_y), method=’'nearest’)
>>> grid_zl = griddata(points, wvalues, (grid_x, grid_y), method=’linear’)
>>> grid_z2 = griddata(points, values, (grid_x, grid_y), method=’cubic’)

One can see that the exact result is reproduced by all of the methods to some degree, but for this smooth function the
piecewise cubic interpolant gives the best results:

>>> import matplotlib.pyplot as plt
>>> plt.subplot (221)
>>> plt.imshow (func(grid_x, grid_y).T, extent=(0,1,0,1), origin=’"lower’)

32 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

plt
plt

plt.
plt.
.title (' Nearest’)

plt

plt.
plt.
.title (' Linear’)

plt

plt.
plt.
.title (' Cubic’)
plt.
plt.

plt

.plot (points([:, 0],
.title (' Original’)

subplot (222)
imshow (grid_z0.T,

subplot (223)
imshow (grid_z1.T,

subplot (224)
imshow (grid_z2.T,

points([:, 1],

extent=(0,1,0,1),

extent=(0,1,0,1),

extent=(0,1,0,1),

gcf () .set_size_inches (6, 6)

show ()

1.0

Original

"k.

c3..

X
5

..l' PEREY
B
S

0.0:ﬁ : R [

0.0 0.2 4 0.6 0.8
Linear
~ -
-
l l l
0.4 0.6 0.8 1.0

", ms=1)

origin=’lower’)

origin=’lower’)

origin=’"lower’)

1.0 “N.‘ie?h

0.8} *,’“ L
oo W w .
SR Al B

Cubic

0.0 | | | |
0.0 0.2 04 0.6 0.8 1.0
1.0

031 - - -
ol M - -

0.2} =

0-0 | | | |
0.0 0.2 04 0.6 0.8 1.0

1.6. Interpolation (scipy

.interpolate)

33

SciPy Reference Guide, Release 0.16.1

1.6.3 Spline interpolation
Spline interpolation in 1-d: Procedural (interpolate.spIXXX)

Spline interpolation requires two essential steps: (1) a spline representation of the curve is computed, and (2) the spline
is evaluated at the desired points. In order to find the spline representation, there are two different ways to represent
a curve and obtain (smoothing) spline coefficients: directly and parametrically. The direct method finds the spline
representation of a curve in a two- dimensional plane using the function splrep. The first two arguments are the
only ones required, and these provide the z and y components of the curve. The normal output is a 3-tuple, (¢,¢, k) ,
containing the knot-points, ¢ , the coefficients ¢ and the order % of the spline. The default spline order is cubic, but this
can be changed with the input keyword, k.

For curves in N -dimensional space the function splprep allows defining the curve parametrically. For this function
only 1 input argument is required. This input is a list of [V -arrays representing the curve in /N -dimensional space. The
length of each array is the number of curve points, and each array provides one component of the N -dimensional data
point. The parameter variable is given with the keword argument, u, which defaults to an equally-spaced monotonic
sequence between 0 and 1 . The default output consists of two objects: a 3-tuple, (¢,c¢, k) , containing the spline
representation and the parameter variable u.

The keyword argument, s , is used to specify the amount of smoothing to perform during the spline fit. The default
value of s is s = m — v/2m where m is the number of data-points being fit. Therefore, if no smoothing is desired a
value of s = 0 should be passed to the routines.

Once the spline representation of the data has been determined, functions are available for evaluating the spline
(splev) and its derivatives (splev, spalde) at any point and the integral of the spline between any two points
(splint). In addition, for cubic splines (£ = 3) with 8 or more knots, the roots of the spline can be estimated (
sproot). These functions are demonstrated in the example that follows.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate

Cubic-spline

>>> x = np.arange (0, 2*np.pi+np.pi/4, 2+np.pi/8)

>>> y = np.sin(x)

>>> tck = interpolate.splrep(x, y, s=0)

>>> xnew = np.arange(0,2+np.pi,np.pi/50)

>>> ynew = interpolate.splev(xnew, tck, der=0)

>>> plt.figure ()

>>> plt.plot(x, y, ’'x’, xnew, ynew, xnew, np.sin(xnew), x, y, 'b’")
>>> plt.legend ([’ Linear’, ’Cubic Spline’, ’"True’])

>>> plt.axis([-0.05, 6.33, —-1.05, 1.051)

>>> plt.title(’Cubic-spline interpolation’)

>>> plt.show ()

34 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

Cubic-spline interpolation

1.0F

X X Linear
— Cubic Spline
— True

0.0
-0.5
-1.0
0 1 2 3 4 5 6
Derivative of spline
>>> yder = interpolate.splev(xnew, tck, der=1)
>>> plt.figure()
>>> plt.plot (xnew, yder, xnew, np.cos (xnew) , " ——")
>>> plt.legend ([’ Cubic Spline’, ’'True’l])
>>> plt.axis([-0.05, 6.33, -1.05, 1.05])
>>> plt.title(’'Derivative estimation from spline’)
>>> plt.show()
Derivative estimation from spline
1.0 T T T T T =
— Cubic Spline
— - True
0.5
0.0 _
-0.5} .
_1.01‘ | —
0 6

Integral of spline

>>> def integ(x, tck, constant=-1):

>>>
>>>
>>>
>>>
>>>

X = np
out =

.atleast_1d(x)
np.zeros (x.shape,

dtype=x.dtype)

for n in xrange(len(out)):
t[n] = interpolate.splint (0, x[n], tck)

ou
out +=

constant

1.6. Interpolation (scipy.interpolate)

35

SciPy Reference Guide, Release 0.16.1

>>> return out
>>>
>>> yint = integ(xnew, tck)

>>> plt.figure()

>>> plt.plot (xnew, yint, xnew, -np.cos(xnew), '——')
>>> plt.legend([’Cubic Spline’, ’'True’])

>>> plt.axis([-0.05, 6.33, -1.05, 1.05])

>>> plt.title(’ Integral estimation from spline’)
>>> plt.show/()

Integral estimation from spline

10 T T T | —
— Cubic Spline
— - True
0.5
0.0 g
-0.5 i
_10 1 1 1
4 5 6

Roots of spline

>>> print (interpolate.sproot (tck))
[O. 3.1416]

Parametric spline

>>> t = np.arange (0, 1.1, .1)

>>> x = np.sin(2+np.pi*t)

>>> y = np.cos (2+ np.pixt)

>>> tck,u = interpolate.splprep([x,y], s=0)

>>> unew = np.arange (0, 1.01, 0.01)

>>> out = interpolate.splev (unew, tck)

>>> plt.figure()

>>> plt.plot(x, y, ’'x’, out[0], out[l], np.sin(2+np.pi*unew), np.cos(2+np.pixunew), x, y, 'b")
>>> plt.legend ([’ Linear’, ’Cubic Spline’, ’"True’])

>>> plt.axis([-1.05, 1.05, -1.05, 1.051])

>>> plt.title(’Spline of parametrically-defined curve’)
>>> plt.show()

36 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

Spline of parametrically-defined curve

1.0F T -
X X Linear
— Cubic Spline
0.5} H
— True
0.0} i
—-0.5} —
_1.0 1 1

-1.0 -0.5 0.0 0.5 1.0

Spline interpolation in 1-d: Object-oriented (UnivariateSpline)

The spline-fitting capabilities described above are also available via an objected-oriented interface. The one dimen-
sional splines are objects of the UnivariateSpline class, and are created with the £ and y components of the
curve provided as arguments to the constructor. The class defines __call__, allowing the object to be called with
the x-axis values at which the spline should be evaluated, returning the interpolated y-values. This is shown in the
example below for the subclass InterpolatedUnivariateSpline. The integral, derivatives, and
roots methods are also available on UnivariateSpline objects, allowing definite integrals, derivatives, and
roots to be computed for the spline.

The UnivariateSpline class can also be used to smooth data by providing a non-zero value of the smoothing parameter
s, with the same meaning as the s keyword of the splrep function described above. This results in a spline that
has fewer knots than the number of data points, and hence is no longer strictly an interpolating spline, but rather a
smoothing spline. If this is not desired, the InterpolatedUnivariateSpline classis available. It is a subclass
of UnivariateSpline that always passes through all points (equivalent to forcing the smoothing parameter to 0).
This class is demonstrated in the example below.

The LSQUnivariateSpline class is the other subclass of UnivariateSpline. It allows the user to specify
the number and location of internal knots explicitly with the parameter 7. This allows creation of customized splines
with non-linear spacing, to interpolate in some domains and smooth in others, or change the character of the spline.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate

InterpolatedUnivariateSpline

>>> x = np.arange (0, 2+np.pi+np.pi/4, 2*np.pi/8)

>>> y = np.sin(x)

>>> s = interpolate.InterpolatedUnivariateSpline(x, V)
>>> xnew = np.arange (0, 2xnp.pi, np.pi/50)

>>> ynew = s (xnew)

>>> plt.figure()

>>> plt.plot(x, y, ’'x’, xnew, ynew, xnew, np.sin(xnew), x, y, 'b’")
>>> plt.legend([’Linear’, ’"InterpolatedUnivariateSpline’, ’'True’])
>>> plt.axis([-0.05, 6.33, -1.05, 1.057)

1.6. Interpolation (scipy.interpolate) 37

SciPy Reference Guide, Release 0.16.1

>>> plt.title ('’ InterpolatedUnivariateSpline’)
>>> plt.show ()

InterpolatedUnivariateSpline

1.0F T T T T T —
X X Linear
— InterpolatedUnivariateSpline

0.5} H
— True

0.0

—-0.5}

_1.01' 1 1

0 1 2

LSQUnivarateSpline with non-uniform knots

>>> t = [np.pi/2-.1, np.pi/2+.1, 3*np.pi/2-.1, 3*np.pi/2+.1]
>>> s = interpolate.LSQUnivariateSpline(x, vy, t, k=2)
>>> ynew = s (xnew)

>>> plt.figure()

>>> plt.plot(x, y, ’'x’, xnew, ynew, xnew, np.sin(xnew), x, y, 'b’")
>>> plt.legend ([’ Linear’, ’'LSQUnivariateSpline’, ’'True’])

>>> plt.axis([-0.05, 6.33, -1.05, 1.05])

>>> plt.title(’Spline with Specified Interior Knots’)

>>> plt.show ()

Spline with Specified Interior Knots

1.0F T T T T T —
X X Linear
— LSQUnivariateSpline
0.5} -
— True
0.0
—-0.5F -
_1.01‘ l l l l |
0 1 2 3 4 5 6

38 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

Two-dimensional spline representation: Procedural (bisplrep)

For (smooth) spline-fitting to a two dimensional surface, the function bisplrep is available. This function takes as
required inputs the 1-D arrays x, y, and z which represent points on the surface z = f (z,y) . The default output is a
list [tx, ty, ¢, kx, ky] whose entries represent respectively, the components of the knot positions, the coefficients of the
spline, and the order of the spline in each coordinate. It is convenient to hold this list in a single object, #ck, so that
it can be passed easily to the function bisplev. The keyword, s, can be used to change the amount of smoothing
performed on the data while determining the appropriate spline. The default value is s = m — v/2m where m is the
number of data points in the x, y, and z vectors. As a result, if no smoothing is desired, then s = 0 should be passed to
bisplrep.

To evaluate the two-dimensional spline and it’s partial derivatives (up to the order of the spline), the function bisplev
is required. This function takes as the first two arguments two 1-D arrays whose cross-product specifies the domain
over which to evaluate the spline. The third argument is the zck list returned from bisplrep. If desired, the fourth
and fifth arguments provide the orders of the partial derivative in the = and y direction respectively.

It is important to note that two dimensional interpolation should not be used to find the spline representation of images.
The algorithm used is not amenable to large numbers of input points. The signal processing toolbox contains more
appropriate algorithms for finding the spline representation of an image. The two dimensional interpolation commands
are intended for use when interpolating a two dimensional function as shown in the example that follows. This example
uses the mgrid command in NumPy which is useful for defining a “mesh-grid” in many dimensions. (See also the
ogrid command if the full-mesh is not needed). The number of output arguments and the number of dimensions of
each argument is determined by the number of indexing objects passed in mgrid.

>>> import numpy as np
>>> from scipy import interpolate
>>> import matplotlib.pyplot as plt

Define function over sparse 20x20 grid

>>> x, y = np.mgrid[-1:1:207, -1:1:207]
>>> 7z = (xty) * np.exp(—6.0x% (x*x+y*y))

>>> plt.figure()

>>> plt.pcolor(x, y, 2z)

>>> plt.colorbar ()

>>> plt.title("Sparsely sampled function.")
>>> plt.show ()

Sparsely sampled function.

1.0 :
0.20
0.15

0.5 1 Ho.10
0.05

0.0k 1 Ho.00
~0.05

ol | H-o.10
~0.15
~0.20

-1.0]]]

210 -05 0.0 0.5 1.0

1.6. Interpolation (scipy.interpolate) 39

http://docs.scipy.org/doc/numpy/reference/generated/numpy.mgrid.html#numpy.mgrid
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ogrid.html#numpy.ogrid
http://docs.scipy.org/doc/numpy/reference/generated/numpy.mgrid.html#numpy.mgrid

SciPy Reference Guide, Release 0.16.1

Interpolate function over new 70x70 grid

>>> xnew, ynew = np.mgrid[-1:1:7073, -1:1:707]
>>> tck = interpolate.bisplrep(x, vy, z, s=0)
>>> znew = interpolate.bisplev(xnew[:,0], ynew[O,:], tck)

>>> plt.figure()

>>> plt.pcolor (xnew, ynew, znew)

>>> plt.colorbar()

>>> plt.title("Interpolated function.")
>>> plt.show()

Interpolated function.

10 T 1 T
0.20
0.15

03¢ i 0.10
0.05

0.0F E 0.00
—-0.05

_osl _ -0.10
-0.15
-0.20

-1.0 L L L

-1.0 -0.5 0.0 0.5 1.0

Two-dimensional spline representation: Object-oriented (BRivariateSpline)

The BivariateSpline class is the 2-dimensional analog of the UnivariateSpline class. It and its subclasses
implement the FITPACK functions described above in an object oriented fashion, allowing objects to be instantiated
that can be called to compute the spline value by passing in the two coordinates as the two arguments.

1.6.4 Using radial basis functions for smoothing/interpolation

Radial basis functions can be used for smoothing/interpolating scattered data in n-dimensions, but should be used with
caution for extrapolation outside of the observed data range.

1-d Example

This example compares the usage of the Rbf and UnivariateSpline classes from the scipy.interpolate module.

>>> import numpy as np
>>> from scipy.interpolate import Rbf, InterpolatedUnivariateSpline
>>> import matplotlib.pyplot as plt

>>> # setup data

>>> x = np.linspace (0, 10, 9)
>>> y = np.sin(x)

>>> xi = np.linspace (0, 10, 101)

40 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>

>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>

use fitpack2 method

ius = InterpolatedUnivariateSpline(x, V)
yi = ius(xi)
plt.subplot (2, 1, 1)

plt.plot(x, y, ’"bo’")

plt.plot(xi, vi, "g’)

plt.plot (xi, np.sin(xi), ’'r’")

plt.title(’ Interpolation using univariate spline’)

use RBF method
rbf = Rbf(x, vy)
fi = rbf (x1i)

plt.subplot (2, 1, 2)

plt.plot(x, y, "bo’)

plt.plot(xi, fi, 'g’)

plt.plot(xi, np.sin(xi), ’"r’)
plt.title (' Interpolation using RBF - multiquadrics’)
plt.show ()

Interpolation using univariate spline

1.0

2-d Example

This example shows how to interpolate scattered 2d data.

>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>

import numpy as np

from scipy.interpolate import Rbf
import matplotlib.pyplot as plt
from matplotlib import cm

2-d tests - setup scattered data
x = np.random.rand (100)*4.0-2.0

y = np.random.rand(100)*4.0-2.0

Z = XANP.eXP (—X**2-y*x*x2)

ti = np.linspace(-2.0, 2.0, 100)
XI, YI = np.meshgrid(ti, ti)

1.6.

Interpolation (scipy.interpolate)

41

SciPy Reference Guide, Release 0.16.1

>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

1.7 Fourier Transforms (scipy. fftpack)

use RBF
rbf = Rbf(x, vy, z, epsilon=2)
72I = rbf (XI, YI)

plot the result

n = plt.normalize(-2., 2.)

plt.subplot (1, 1, 1)

plt.pcolor(XI, YI, ZI, cmap=cmn.jet)
plt.scatter(x, y, 100, z, cmap=cm.jet)
plt.title ('RBF interpolation - multiquadrics’)
plt.xlim(-2, 2)

plt.ylim (-2, 2)

plt.colorbar ()

50 RBF interpolation - multiquadrics
. T

LB e U@cg |

1.0 q
0.5 2 E e A
-0.5 4 4 « E |

-1.0

-1.5 4
-2.0 () ! [@) | €> C
-2.0-15-1.0-050.0 05 1.0 1.5 2.0

0.4
0.3
0.2
0.1
0.0
-0.1
-0.2
-0.3
-0.4

42

Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

Contents

* Fourier Transforms (scipy.fftpack)
— Fast Fourier transforms
One dimensional discrete Fourier transforms
Two and n-dimensional discrete Fourier transforms
x FFT convolution
Discrete Cosine Transforms
+* Type I DCT
* Type I DCT
* Type III DCT
DCT and IDCT
* BExample
Discrete Sine Transforms
* Type I DST
* Type II DST
* Type III DST
x DST and IDST
Cache Destruction
References

Fourier analysis is a method for expressing a function as a sum of periodic components, and for recovering the signal
from those components. When both the function and its Fourier transform are replaced with discretized counterparts,
it is called the discrete Fourier transform (DFT). The DFT has become a mainstay of numerical computing in part
because of a very fast algorithm for computing it, called the Fast Fourier Transform (FFT), which was known to
Gauss (1805) and was brought to light in its current form by Cooley and Tukey [CT65]. Press et al. [NR] provide an
accessible introduction to Fourier analysis and its applications.

1.7.1 Fast Fourier transforms
One dimensional discrete Fourier transforms

The FFT y/[k] of length IV of the length-/N sequence x/n] is defined as

k
E e~ 2 JGLx

and the inverse transform is defined as follows

These transforms can be calculated by means of £ £t and i fft, respectively as shown in the following example.

>>> from scipy.fftpack import fft, ifft
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.57])

>>> y = fft (x)

>>> y

[4.50000000+0.73 2.08155948-1.651098767 —-1.83155948+1.608220417
-1.83155948-1.608220413 2.08155948+1.651098767]

>>> yinv = 1ifft (y)

>>> yinv
[1.040.3 2.0+40.3 1.040.3 -1.040.3 1.5+0.7]

1.7. Fourier Transforms (scipy. £ftpack) 43

SciPy Reference Guide, Release 0.16.1

From the definition of the FFT it can be seen that

N-1

ylo] = Y z[n].

n=0
In the example

>>> np.sum(x)
4.5

which corresponds to y[0]. For N even, the elements y[1]...y[N/2 — 1] contain the positive-frequency terms, and the
elements y[N/2]...y[N — 1] contain the negative-frequency terms, in order of decreasingly negative frequency. For N
odd, the elements y[1]...y[(N — 1)/2] contain the positive- frequency terms, and the elements y[(N +1)/2]...y[N —1]
contain the negative- frequency terms, in order of decreasingly negative frequency.

In case the sequence x is real-valued, the values of y[n] for positive frequencies is the conjugate of the values y[n]
for negative frequencies (because the spectrum is symmetric). Typically, only the FFT corresponding to positive
frequencies is plotted.

The example plots the FFT of the sum of two sines.

>>> from scipy.fftpack import fft

>>> # Number of samplepoints
>>> N = 600

>>> # sample spacing

>>> T = 1.0 / 800.0

>>> x = np.linspace (0.0, NxT, N)

>>> y = np.sin(50.0 * 2.0xnp.pi*x) + 0.5%xnp.sin(80.0 % 2.0+np.pixx)
>>> yf = fft(y)

>>> xf = np.linspace (0.0, 1.0/(2.0+T), N/2)

>>> import matplotlib.pyplot as plt

>>> plt.plot(xf, 2.0/N % np.abs(yf[0:N/2]))

>>> plt.grid()

>>> plt.show ()

0.8 ! ! ! ! ! ! !
0.7 i SRR R S SRR SR

N I S S B
100 150 200 250 300 350 400

The FFT input signal is inherently truncated. This truncation can be modelled as multiplication of an inifinte signal
with a rectangular window function. In the spectral domain this multiplication becomes convolution of the signal
spectrum with the window function spectrum, being of form sin(x)/x. This convolution is the cause of an effect
called spectral leakage (see [WPW]). Windowing the signal with a dedicated window function helps mitigate spectral

44 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

leakage. The example below uses a Blackman window from scipy.signal and shows the effect of windowing (the zero
component of the FFT has been truncated illustrative purposes).

>>> from scipy.fftpack import fft
>>> Number of samplepoints
>>> = 600

>>> sample spacing

#
N
#
>> T = 1.0 / 800.0
x
Yy
Y

>>> = np.linspace (0.0, NxT, N)

>>> = np.sin(50.0 % 2.0xnp.pi*x) + 0.5%np.sin(80.0 = 2.0+np.pixx)
>>> yf = fft(y)

>>> from scipy.signal import blackman

>>> w = blackman (N)

>>> ywf = fft (y*w)

>>> xf = np.linspace (0.0, 1.0/(2.0+T), N/2)

>>> import matplotlib.pyplot as plt

>>> plt.semilogy (xf[1:N/2], 2.0/N * np.abs(yf[1:N/2]), ’"-b’")
>>> plt.semilogy (xf[1:N/2], 2.0/N * np.abs(ywf[1:N/2]), '-r’)
>>> plt.legend (['FFT’, "FFT w. window’])

>>> plt.grid()

>>> plt.show()

F . _ _ ' E
107 b R fi e T FFT ;
102 B i | NG FFT w. window |3

e b T
0 50 100 150 200 250 300 350 400

In case the sequence x is complex-valued, the spectrum is no longer symmetric. To simplify working wit the FFT
functions, scipy provides the following two helper functions.

The function f ft freq returns the FFT sample frequency points.

>>> from scipy.fftpack import fftfreqg
>>> freq = fftfreg(np.arange(8), 0.125)
[0. 1. 2. 3. —-4. -3. -2. -1.]

In a similar spirit, the function £ ft shift allows swapping the lower and upper halves of a vector, so that it becomes
suitable for display.

>>> from scipy.fftpack import fftfreq
>>> x = np.arange(8)

>>> sf.fftshift (x)

[4 567012 3]

The example below plots the FFT of two complex exponentials; note the asymmetric spectrum.

1.7. Fourier Transforms (scipy. £ftpack) 45

SciPy Reference Guide, Release 0.16.1

>>> from scipy.fftpack import fft, fftfreq, fftshift
>>> # number of signal points

>>> N = 400

>>> # sample spacing

>>> T = 1.0 / 800.0

>>> x = np.linspace (0.0, NxT, N)

>>> vy = np.exp(50.0 » 1. » 2.0xnp.pixx) + 0.5+np.exp(-80.0 » 1.3 % 2.0xnp.pi*x)
>>> yf fft (y)

>>> xf fftfreq(N, T)

>>> xf = fftshift (xf)

>>> yplot = fftshift (yf)

>>> import matplotlib.pyplot as plt

>>> plt.plot(xf, 1.0/N % np.abs(yplot))

>>> plt.grid()

>>> plt.show()

W77

SINEN U B R
0 O
9/ T T

02

T G G

0.0
—400 —300 —200 -100 O 100 200 300 400

The function rfft calculates the FFT of a real sequence and outputs the FFT coefficients y[n] with separate real
and imaginary parts. In case of N being even: [y[0], Re(y[1]), Im(y[1]), ..., Re(y[N/2])]; in case N being odd

[y[0, Re(y[1]), Im(y[1]), ..., Re(y[N/2]), Im(y[N/2])].
The corresponding function ir £ £t calculates the IFFT of the FFT coefficients with this special ordering.

>>> from scipy.fftpack import fft, rfft, irfft

>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5, 1.0])

>>> fft (x)

[5.50+0.7 2.25-0.43301273 -2.75-1.299038113 1.50+40.7
-2.75+1.299038113 2.25+0.43301277 |

>>> yr = rfft (x)

[5.5 2.25 -0.4330127 -2.75 -1.29903811 1.5]
>>> irfft (yr)

[1. 2. 1. -1. 1.5 1.]

>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.57])

>>> fft (x)

[4.50000000+0.7 2.08155948-1.651098767 —-1.83155948+1.608220417

-1.83155948-1.608220417 2.08155948+1.651098767]
>>> yr = rfft (x)
[4.5 2.08155948 -1.65109876 -1.83155948 1.60822041]

46 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

Two and n-dimensional discrete Fourier transforms

The functions ££t2 and 1 fft2 provide 2-dimensional FFT, and IFFT, respectively. Similar, fftn and ifftn

provide n-dimensional FFT, and IFFT, respectively.

The example below demonstrates a 2-dimensional IFFT and plots the resulting (2-dimensional) time-domain signals.

>>>
>>>

from scipy.fftpack import ifftn
import matplotlib.pyplot as plt

>>> import matplotlib.cm as cm

>>> N = 30

>>> f, ((axl, ax2, ax3), (ax4, ax5,
>>> xf = np.zeros((N,N))

>>> xf[0, 5] =1

>>> xf[0, N-5] = 1

>>> 7 = ifftn(xf)

>>> axl.imshow (xf, cmap=cm.

>>> ax4.imshow (np.real(Z2),

>>> xf = np.zeros ((N, N))
>>> xf[5, O] =1
>>> xf[N- 0] =1

>>> 7 = 1fftn(xf)

>>> ax2.imshow (xf, cmap=cmn.

>>> ax5.imshow (np.real(2),

>>> xf = np.zeros ((N, N))
>>> xf[5, 10] =1

>>> xf[N-5, N-10] = 1
>>> 7 = ifftn(xf)

>>> ax3.imshow (xf, cmap=cmn.

>>> ax6.imshow (np.real(Z2),
>>> plt.show()

Reds)
cmap=cm.binary)

Reds)
cmap=cm.binary)

Reds)
cmap=cm.binary)

plt.subplots (2,

NN =
UoO U1 o
T T T T
I I I I

0 510152025

FFT convolution

scipy.fftpack.convolve performs a convolution of two one-dimensional arrays in frequency domain.

0 510152025

0 510152025

="row’)

1.7. Fourier Transforms (scipy. £ftpack)

47

SciPy Reference Guide, Release 0.16.1

1.7.2 Discrete Cosine Transforms

Scipy provides a DCT with the function dct and a corresponding IDCT with the function idct. There are 8 types of
the DCT [WPC], [Mak]; however, only the first 3 types are implemented in scipy. “The” DCT generally refers to DCT
type 2, and “the” Inverse DCT generally refers to DCT type 3. In addition, the DCT coefficients can be normalized
differently (for most types, scipy provides None and ortho). Two parameters of the dct/idct function calls allow
setting the DCT type and coefficient normalization.

For a single dimension array x, dct(x, norm="ortho’) is equal to MATLAB dct(x).
Type | DCT
Scipy uses the following definition of the unnormalized DCT-I (norm='None’):

mnk
N -1

N-2
y[k]x0+(1)kxN_1+2Zx[n]cos(), 0<k<N.
n=1

Only None is supported as normalization mode for DCT-I1. Note also that the DCT-I is only supported for input size >
1

Type Il DCT

Scipy uses the following definition of the unnormalized DCT-II (norm='None’):

N—-1
ylk =2 3" afn] cos <”(27;;1)k) 0<k<N.

In case of the normalized DCT (norm=' ortho"), the DCT coefficients y[k] are multiplied by a scaling factor f:

[VIJaN), ifk=0
= V1/(2N), otherwise -

In this case, the DCT “base functions” ¢y [n] = 2f cos (W) become orthonormal:
N-1
> oulnlguln] = o
n=0

Type I DCT

Scipy uses the following definition of the unnormalized DCT-III (norm=' None’):

48 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

DCT and IDCT

The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up to a factor 2N. The orthonormalized
DCT-III is exactly the inverse of the orthonormalized DCT- II. The function idct performs the mappings between
the DCT and IDCT types.

The example below shows the relation between DCT and IDCT for different types and normalizations.

>>> from scipy.fftpack import dct, idct

>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.57])

>>> dct (dct (x, type=2, norm=’'ortho’), type=3, norm='ortho’)
(1.0, 2.0, 1.0, -1.0, 1.5]

>>> # scaling factor 2+N = 10

>>> idct (dct (x, type=2), type=2)

[10. 20. 10. -10. 15.]

>>> # no scaling factor

>>> idct (dct (x, type=2, norm=’ortho’), type=2, norm=’'ortho’)
[1. 2. 1. -1. 1.5]

>>> # scaling factor 2+N = 10

>>> idct (dct (x, type=3), type=3)

[10. 20. 10. -10. 15.]

>>> # no scaling factor

>>> idct (dct (x, type=3, norm=’ortho’), type=3, norm=’'ortho’)
[1. 2. 1. -1. 1.5]

>>> # scaling factor 2+ (N-1) = 8

>>> idct (dct (x, type=1l), type=1l)

[8. 1l6. 8. -8. 12.]

Example

The DCT exhibits the “energy compaction property”, meaning that for many signals only the first few DCT coefficients
have significant magnitude. Zeroing out the other coefficients leads to a small reconstruction error, a fact which is
exploited in lossy signal compression (e.g. JPEG compression).

The example below shows a signal x and two reconstructions (x2¢ and x15)from the signal’s DCT coefficients. The
signal 9 is reconstructed from the first 20 DCT coefficients, x15 is reconstructed from the first 15 DCT coefficients.
It can be seen that the relative error of using 20 coefficients is still very small (~0.1%), but provides a five-fold
compression rate.

>>> from scipy.fftpack import dct, idct
>>> import matplotlib.pyplot as plt

>>> N = 100

>>> t = np.linspace(0,20,N)

>>> x = np.exp(-t/3)+np.cos (2xt)

>>> y = dct (x, norm=’ortho’)

>>> window = np.zeros (N)

>>> window[:20] = 1

>>> yr = idct (y*window, norm=’ortho’)

>>> sum(abs (x-yr) *x2) / sum(abs (x) «*2)
0.0010901402257

>>> plt.plot(t, x, "-bx")

>>> plt.plot(t, yr, 'ro’)

>>> window = np.zeros (N)
>>> window[:15] = 1
>>> yr = idct (y*window, norm=’ortho’)

>>> sum(abs (x-yr)*«x2) / sum(abs (x)**2)
0.0718818065008
>>> plt.plot(t, yr, 'g+’)

1.7. Fourier Transforms (scipy. £ftpack) 49

SciPy Reference Guide, Release 0.16.1

>>> plt.legend([’'x", ’"x_{20}", "Sx_{15}3"1])
>>> plt.grid()
>>> plt.show ()

1.7.3 Discrete Sine Transforms

Scipy provides a DST [Mak] with the function dst and a corresponding IDST with the function idst.

There are theoretically 8 types of the DST for different combinations of even/odd boundary conditions and boundary
off sets [WPS], only the first 3 types are implemented in scipy.

Type | DST
DST-I assumes the input is odd around n=-1 and n=N. Scipy uses the following definition of the unnormalized DST-I

(norm='None’):

y[k]:2z_x[n]sin<W>, 0<k<N.

Only None is supported as normalization mode for DST-I. Note also that the DST-I is only supported for input size >
1. The (unnormalized) DST-I is its own inverse, up to a factor 2(N+1).

Type Il DST

DST-II assumes the input is odd around n=-1/2 and even around n=N. Scipy uses the following definition of the
unnormalized DST-II (norm=' None"):

N-1
ylk =2 3 afn]sin (”(“ 1/13)(’” ”) . 0<k<N.
n=0

50 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

Type 1l DST

DST-IIT assumes the input is odd around n=-1 and even around n=N-1. Scipy uses the following definition of the
unnormalized DST-III (norm='"None’):

N-2
ylk] = (~1)F 2N = 1] +2 3 wln]sin (”(” a ”ka a 1/2)) . 0<k<A.

n=0

DST and IDST

The example below shows the relation between DST and IDST for different types and normalizations.

>>> from scipy.fftpack import dst, idst

>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.57])

>>> # scaling factor 2+N = 10

>>> idst (dst (x, type=2), type=2)

[10. 20. 10. -10. 15.]

>>> # no scaling factor

>>> idst (dst (x, type=2, norm=’ortho’), type=2, norm='ortho’)
[1. 2. 1. 1. 1.5]

>>> # scaling factor 2+N = 10

>>> idst (dst (x, type=3), type=3)

[10. 20. 10. -10. 15.]

>>> # no scaling factor

>>> idst (dst (x, type=3, norm=’ortho’), type=3, norm='ortho’)

[1. 2. 1. -1. 1.5]

>>> # scaling factor 2+ (N+1) = 8
>>> idst (dst (x, type=1l), type=1l)

[8. 1e6. 8. -—-8. 12.]

1.7.4 Cache Destruction

To accelerate repeat transforms on arrays of the same shape and dtype, scipy.fftpack keeps a cache of the prime
factorization of length of the array and pre-computed trigonometric functions. These caches can be destroyed by
calling the appropriate function in scipy.fftpack._fftpack. dst(type=1) and idst(type=1) share a cache
(xdst1l_cache). As do dst(type=2), dst(type=3), idst(type=3), and idst(type=3) (xdst2_cache).

1.7.5 References

1.8 Signal Processing (scipy.signal)

The signal processing toolbox currently contains some filtering functions, a limited set of filter design tools, and a few
B-spline interpolation algorithms for one- and two-dimensional data. While the B-spline algorithms could technically
be placed under the interpolation category, they are included here because they only work with equally-spaced data and
make heavy use of filter-theory and transfer-function formalism to provide a fast B-spline transform. To understand
this section you will need to understand that a signal in SciPy is an array of real or complex numbers.

1.8.1 B-splines

A B-spline is an approximation of a continuous function over a finite- domain in terms of B-spline coefficients and knot
points. If the knot- points are equally spaced with spacing Az , then the B-spline approximation to a 1-dimensional

1.8. Signal Processing (scipy.signal) 51

SciPy Reference Guide, Release 0.16.1

function is the finite-basis expansion.
x
x) & ciB° (— —) .
y (z) Z i \(Ap
J
In two dimensions with knot-spacing Az and Ay , the function representation is

T . Y
R kB — — N-——-k]).
S =N e (55 -1)5 (2 -+)
In these expressions, 5° () is the space-limited B-spline basis function of order, o . The requirement of equally-
spaced knot-points and equally-spaced data points, allows the development of fast (inverse-filtering) algorithms for

determining the coefficients, ¢; , from sample-values, y,, . Unlike the general spline interpolation algorithms, these
algorithms can quickly find the spline coefficients for large images.

The advantage of representing a set of samples via B-spline basis functions is that continuous-domain operators
(derivatives, re- sampling, integral, etc.) which assume that the data samples are drawn from an underlying con-
tinuous function can be computed with relative ease from the spline coefficients. For example, the second-derivative
of a spline is

V)= Y e ().
J

Using the property of B-splines that
d*8° (w)

) R (1) = 2677 (w) + 57 (w - 1)

it can be seen that

y' (z) = A%UQZCJ- [5"_2 (Aix—jJrl) — 24072 (Aia:_j) + o2 (Aix_j_l)]'

J

If o = 3, then at the sample points,

2
AP Y (2)|ympne = D CiOn—gi1 — 26500 + €001,
J
= Cp+1 — 2Cn +cCp—1.

Thus, the second-derivative signal can be easily calculated from the spline fit. if desired, smoothing splines can be
found to make the second-derivative less sensitive to random-errors.

The savvy reader will have already noticed that the data samples are related to the knot coefficients via a convolution
operator, so that simple convolution with the sampled B-spline function recovers the original data from the spline coef-
ficients. The output of convolutions can change depending on how boundaries are handled (this becomes increasingly
more important as the number of dimensions in the data- set increases). The algorithms relating to B-splines in the
signal- processing sub package assume mirror-symmetric boundary conditions. Thus, spline coefficients are computed
based on that assumption, and data-samples can be recovered exactly from the spline coefficients by assuming them
to be mirror-symmetric also.

Currently the package provides functions for determining second- and third- order cubic spline coefficients from
equally spaced samples in one- and two- dimensions (gsplineld, gspline2d, csplineld, cspline2d). The
package also supplies a function (bspline) for evaluating the bspline basis function, /3° () for arbitrary order
and x. For large o , the B-spline basis function can be approximated well by a zero-mean Gaussian function with
standard-deviation equal to o, = (0 + 1) /12:

87 (2) ~ ——— o
Tr) =~ 27{_0-2 eXp 20_0 .

52 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

A function to compute this Gaussian for arbitrary = and o is also available (gauss_spline). The following code
and Figure uses spline-filtering to compute an edge-image (the second-derivative of a smoothed spline) of Lena’s face
which is an array returned by the command misc.lena. The command sepfir2d was used to apply a separable
two-dimensional FIR filter with mirror- symmetric boundary conditions to the spline coefficients. This function is
ideally suited for reconstructing samples from spline coefficients and is faster than convolve2d which convolves
arbitrary two-dimensional filters and allows for choosing mirror-symmetric boundary conditions.

>>> import numpy as np
>>> from scipy import signal, misc
>>> import matplotlib.pyplot as plt

>>> image = misc.lena() .astype(np.float32)

>>> derfilt = np.array([1.0, -2, 1.0], dtype=np.float32)

>>> ck = signal.cspline2d(image, 8.0)

>>> deriv = (signal.sepfir2d(ck, derfilt, [1]) +
signal.sepfir2d(ck, [1], derfilt))

Alternatively we could have done:

laplacian = np.array([[0,1,0], [1,-4,11, [0,1,0]1], dtype=np.float32)
deriv2 = signal.convolve2d(ck, laplacian,mode=’same’ ,boundary="symm’)

>>> plt.figure()

>>> plt.imshow (image)

>>> plt.gray()

>>> plt.title(’Original image’)
>>> plt.show()

Original image

0 100 200 300 400 500

>>> plt.figure()

>>> plt.imshow (deriv)

>>> plt.gray()

>>> plt.title (' Output of spline edge filter’)
>>> plt.show()

1.8. Signal Processing (scipy.signal) 53

SciPy Reference Guide, Release 0.16.1

0 Output of spline edge filter

1.8.2 Filtering

Filtering is a generic name for any system that modifies an input signal in some way. In SciPy a signal can be thought
of as a Numpy array. There are different kinds of filters for different kinds of operations. There are two broad kinds
of filtering operations: linear and non-linear. Linear filters can always be reduced to multiplication of the flattened
Numpy array by an appropriate matrix resulting in another flattened Numpy array. Of course, this is not usually the
best way to compute the filter as the matrices and vectors involved may be huge. For example filtering a 512 x 512
image with this method would require multiplication of a 5122 x 5122 matrix with a 5122 vector. Just trying to store the
5122 x 5122 matrix using a standard Numpy array would require 68,719, 476, 736 elements. At 4 bytes per element
this would require 256GB of memory. In most applications most of the elements of this matrix are zero and a different
method for computing the output of the filter is employed.

Convolution/Correlation

Many linear filters also have the property of shift-invariance. This means that the filtering operation is the same at
different locations in the signal and it implies that the filtering matrix can be constructed from knowledge of one row
(or column) of the matrix alone. In this case, the matrix multiplication can be accomplished using Fourier transforms.

Let z [n] define a one-dimensional signal indexed by the integer n. Full convolution of two one-dimensional signals
can be expressed as

y[n] = Z x[klhn—k].

k=—o0

This equation can only be implemented directly if we limit the sequences to finite support sequences that can be stored
in a computer, choose n = 0 to be the starting point of both sequences, let K + 1 be that value for which y [n] = 0
forall n > K + 1 and M + 1 be that value for which z [n] = 0 for all n > M + 1, then the discrete convolution
expression is

min(n,K)

y[n] = Z x[klhn—k].

k=max(n—M,0)

54 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

For convenience assume /K > M. Then, more explicitly the output of this operation is

yl0] = =z[0]nr[0]
y[1] = x[0]A[]+=[1]A[0)
y[2] = z[0]h[2]+x[1]h[1]+x[2]R][0]
yM] = z[0]h[M]+z[1]h[M —1]+ -+ 2z [M]h[0]
yM+1] = z[l]hM]+z2]h[M —1]+ -+ x[M + 1] h[0]
y[Kj : ;E[K—M]h[M]—k---%—x[K h (0]
y[K+1] = z[K+1—-Mh[M]+---+z[K]h[1]
y[K+M—1j : .x[K—l}h[M]—i—x[K]h[M—l]
y[K+M] = z[K]h[M].

Thus, the full discrete convolution of two finite sequences of lengths K + 1 and M + 1 respectively results in a finite
sequence of length K + M +1=(K+1)+ (M +1) — 1.

One dimensional convolution is implemented in SciPy with the function convolve. This function takes as inputs
the signals x, h , and an optional flag and returns the signal y. The optional flag allows for specification of which part
of the output signal to return. The default value of ‘full’ returns the entire signal. If the flag has a value of ‘same’ then
only the middle K values are returned starting at y H%H so that the output has the same length as the first input. If
the flag has a value of ‘valid’ then only the middle K — M + 1 = (K + 1) — (M + 1) + 1 output values are returned
where z depends on all of the values of the smallest input from % [0] to & [M] . In other words only the values y [M] to

y [K] inclusive are returned.
The code below shows a simple example for convolution of 2 sequences

>>> x = np.array([1.0, 2.0, 3.0])

>>> h = np.array([(0.0, 1.0, 0.0, 0.0, 0.07])
>>> signal.convolve (x, h)

[0. 1. 2. 3. 0. 0. 0.]

>>> signal.convolve(x, h, ’same’)

[2. 3. 0.]

This same function convolve can actually take N -dimensional arrays as inputs and will return the N -dimensional
convolution of the two arrays as is shown in the code example below. The same input flags are available for that case
as well.

>>> x = np.array([([(1., 1., 0., O0.],(1., 1., O., O0.],10., O., O., 0.1,[0., O., O., 0.10)
>>> h = np.array([[1l., 0., ., 0.1,10., 0., 0., 0.1,10., O., 1., 0.1,10., O., O., 0.101)
>>> signal.convolve (x, h)

(1 1 1. 0. 0. 0. O 0.]

[1 1. 0. 0. 0. 0. 0.]

[0. 0. 1. 1. 0. O 0.]

[0. 0. 1. 1. 0. O 0.]

[0 0. 0. 0. 0. O 0.]

[0 0. 0. 0. 0. O 0.]

[0 0. 0. 0. 0. O 0.7]

Correlation is very similar to convolution except for the minus sign becomes a plus sign. Thus

oo

wln) = Y ykazh+k

k=—o00

1.8. Signal Processing (scipy.signal) 55

SciPy Reference Guide, Release 0.16.1

is the (cross) correlation of the signals y and x. For finite-length signals with y [n] = 0 outside of the range [0, K] and
a [n] = 0 outside of the range [0, M|, the summation can simplify to

min(K,M—n)
wil= S ylkah k.
k=max(0,—n)
Assuming again that K > M this is
wi-K] = y[K]a)
w[—K +1] y|[K —1]z[0] +y [K]z[1]
w[M — K] y[K —M]z[0]+y[K —M+1z[l]+ - +y[K]z[M]
wM-K+1 = yl[K-—M-1z[0]+ - +y[K—1]z[M]
wl=1] = y[Jz[0]+y2Jz[l]+---+y[M+1]z[M]
wl0] = y[0]=[0] +y[]z[l]+---+y[M]z[M]
wll] = yOlz[l]+y[]z2]+--+y[M—1]z[M]
w2l = yOlz2]+y[]z 8]+ +y[M -2z [M]
w[M -1 = y[0]z[M—1]+y[1]z[M]
w[M] = y[0]x[M].

The SciPy function correlate implements this operation. Equivalent flags are available for this operation to return
the full K + M + 1 length sequence (‘full’) or a sequence with the same size as the largest sequence starting at

w [—

K + | M=11] (‘same’) or a sequence where the values depend on all the values of the smallest sequence (‘valid’).

This final option returns the K’ — M + 1 values w [M — K] to w [0] inclusive.

The function correlate can also take arbitrary N -dimensional arrays as input and return the N -dimensional
convolution of the two arrays on output.

When N = 2, correlate and/or convolve can be used to construct arbitrary image filters to perform actions
such as blurring, enhancing, and edge-detection for an image.

>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>

import numpy as np
from scipy import signal, misc
import matplotlib.pyplot as plt

image = misc.lenaf()
w = np.zeros((50, 50))

w[0][0] = 1.0

w[49][25] = 1.0

image_new = signal.fftconvolve (image, w)

plt.
plt.
plt.

plt

figure ()
imshow (image)
gray ()

.title(’Original image’)
plt.

show ()

56

Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

Original image

0 100 200 300 400 500

>>> plt.figure ()

>>> plt.imshow (image_new)

>>> plt.gray()

>>> plt.title('Filtered image’)
>>> plt.show()

Filtered image

200
300
400

500

0 100 200 300 400 500

Using convolve in the above example would take quite long to run. Calculating the convolution in the time domain
as above is mainly used for filtering when one of the signals is much smaller than the other (K > M), otherwise
linear filtering is more efficiently calculated in the frequency domain provided by the function fftconvolve.

If the filter function w[n, m| can be factored according to
h[n,m] = hq[n]ha[m],

convolution can be calculated by means of the function sepfir2d. As an example we consider a Gaussian filter
gaussian

hln,m] x P P

1.8. Signal Processing (scipy.signal) 57

SciPy Reference Guide, Release 0.16.1

which is often used for blurring.

>>>
>>>
>>>

>>>
>>>
>>>

import numpy as np
from scipy import signal, misc
import matplotlib.pyplot as plt

image = misc.lena()
signal.gaussian (50, 5.0)

w =

image_new =

signal.sepfir2d(image, w, w)

>>> plt.figure()
>>> plt.imshow (image)
>>> plt.gray()
>>> plt.title('Original image’)
>>> plt.show()
0 Original image

100

200

300

400 %

500 li

0 100 200 300 400 500

>>> plt.figure()
>>> plt.imshow (image_new)
>>> plt.gray()
>>> plt.title('Filtered image’)
>>> plt.show()
58 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

Filtered image

0 100 200 300 400 500

Difference-equation filtering

A general class of linear one-dimensional filters (that includes convolution filters) are filters described by the difference
equation

Zaky[n—k] = Zbkx[n—k]
k=0 k=0

where z [n] is the input sequence and y [n] is the output sequence. If we assume initial rest so that y [n] = 0 forn < 0
, then this kind of filter can be implemented using convolution. However, the convolution filter sequence h [n] could
be infinite if a; # 0 for & > 1. In addition, this general class of linear filter allows initial conditions to be placed on
y [n] for n < 0 resulting in a filter that cannot be expressed using convolution.

The difference equation filter can be thought of as finding y [n] recursively in terms of it’s previous values
apy[n] = —aryn—1—---—anyy[n—N|+---+boz [n] + -+ bpyx [n — M].

Often agp = 1 is chosen for normalization. The implementation in SciPy of this general difference equation filter is
a little more complicated then would be implied by the previous equation. It is implemented so that only one signal
needs to be delayed. The actual implementation equations are (assuming ag = 1).

y[n] = box[n]+ z[n—1]
z0[n] = bzn]+z1n—1]—ary[n]
zi[n] = baxn]+ 22 [n — 1] — agy [n]
zk—2[n] = brx_ix[n]+zx_1[n—1]—ax_1y[n]
zk-1[n] = brzn]—axylnl,

where K = max (N, M) . Note that by = 0if K > M and ax = 0if K > N. In this way, the output at time n
depends only on the input at time n and the value of z; at the previous time. This can always be calculated as long as
the K values zg [n — 1] ... zx_1 [n — 1] are computed and stored at each time step.

The difference-equation filter is called using the command 1filter in SciPy. This command takes as inputs the
vector b, the vector, a, a signal x and returns the vector y (the same length as x) computed using the equation given

1.8. Signal Processing (scipy.signal) 59

SciPy Reference Guide, Release 0.16.1

above. If z is N -dimensional, then the filter is computed along the axis provided. If, desired, initial conditions
providing the values of zg [—1] to zx —1 [—1] can be provided or else it will be assumed that they are all zero. If initial
conditions are provided, then the final conditions on the intermediate variables are also returned. These could be used,
for example, to restart the calculation in the same state.

Sometimes it is more convenient to express the initial conditions in terms of the signals z [n] and y [n] . In other words,
perhaps you have the values of 2: [— M| to 2 [—1] and the values of y [—N] to y [—1] and would like to determine what
values of z,, [—1] should be delivered as initial conditions to the difference-equation filter. It is not difficult to show
that for 0 < m < K,

K—m-—1

Zm [n] = Z (bmtp+12 [0 = P] = @mypr1y [0 —p)).

Using this formula we can find the initial condition vector zo [—1] to zx 1 [—1] given initial conditions on y (and x).
The command 1fi1tic performs this function.

As an example consider the following system:

1 1 1
yln] = goln] + galn — 1]+ gyl — 1]
The code calculates the signal y[n] for a given signal x[n]; first for initial condiditions y[—1] = 0 (default case), then
fory[—1] =2bymeansof 1filtic.

>>> import numpy as np
>>> from scipy import signal

>>> x = np.array([1l., 0., 0., 0.])

>>> b = np.array([1.0/2, 1.0/47)

>>> a = np.array([1.0, -1.0/31)

>>> signal.lfilter (b, a, x)

[0.5 0.41666667 0.13888889 0.0462963]
>>> zi = signal.lfiltic(b, a, y=[2.])

>>> signal.lfilter (b, a, x, zi=zi)

[1.16666667, 0.63888889, 0.21296296, 0.07098765]

Note that the output signal y[n] has the same length as the length as the input signal z[n].

Analysis of Linear Systems

Linear system described a linear difference equation can be fully described by the coefficient vectors a and b as was
done above; an alternative representation is to provide a factor k, N, zeros z; and N, poles py,, respectively, to describe
the system by means of its transfer function H (z) according to

(z—2z1)(z — z2)...(z — 2n.)
(z = p1)(z —p2)...(2 = pn,)

H(z)=k

This alternative representation can be obtain wit hthe scipy function t £ 2 zpk; the inverse is provided by zpk2t f.
For the example from above we have

>>> b = np.array([1.0/2, 1.0/41)
>>> a = np.array([1.0, -1.0/31)
>>> signal.tf2zpk (b, a)

[-0.5] [0.33333333] 0.5

i.e. the system has a zero at z = —1/2 and a pole at z = 1/3.

The scipy function freqgz allows calculation of the frequency response of a system described by the coeffcients ay,
and by. See the help of the freqz function of a comprehensive example.

60 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

Filter Design

Time-discrete filters can be classified into finite response (FIR) filters and infinite response (IIR) filters. FIR filters pro-
vide a linear phase response, whereas IIR filters do not exhibit this behaviour. Scipy provides functions for designing
both types of filters.

FIR Filter

The function £irwin designs filters according to the window method. Depending on the provided arguments, the
function returns different filter types (e.g. low-pass, band-pass...).

The example below designs a low-pass and a band-stop filter, respectively.

>>> import numpy as np

>>> import scipy.signal as signal

>>>

import matplotlib.pyplot as plt

>>> bl = signal.firwin (40, 0.5)
>>> b2 = signal.firwin(41, [0.3, 0.8])
>>> wl, hl = signal.freqgz (bl)
>>> w2, h2 = signal.freqgz (b2)
>>> plt.title(’'Digital filter frequency response’)
>>> plt.plot(wl, 20+np.logl0 (np.abs(hl)), ’"b’)
>>> plt.plot (w2, 20+np.logl0 (np.abs(h2)), ’"r’)
>>> plt.ylabel ('Amplitude Response (dB)’)
>>> plt.xlabel (' Frequency (rad/sample)’)
>>> plt.grid()
>>> plt.show()
Digital filter frequency response
20 T T T T T T
) ; ; ' ' : : i
z 0 :
© -20} : -
S —40 :
a Y : i
0 60 :
4 [~ ; 1
) .
g —8o} \ .
=) .
= 100} : .
g— .
—-120} : i
< : : : : : :
_140 | | | | | |
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Frequency (rad/sample)

Note that firwin uses per default a normalized frequency defined such that the value 1 corresponds to the Nyquist
frequency, whereas the function freqgz is defined such that the value 7 corresponds to the Nyquist frequency.

The function £irwin?2 allows design of almost arbitrary frequency responses by specifying an array of corner fre-
quencies and corresponding gains, respectively.

The example below designs a filter with such an arbitrary amplitude response.

1.8. Signal Processing (scipy.signal) 61

SciPy Reference Guide, Release 0.16.1

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> b = signal.firwin2(150, [0.0, 0.3, 0.6, 1.0]1, [1.0, 2.0, 0.5, 0.01])
>>> w, h = signal.freqgz(b)

>>> plt.title('Digital filter frequency response’)
>>> plt.plot (w, np.abs(h))

>>> plt.title(’Digital filter frequency response’)
>>> plt.ylabel ('Amplitude Response’)

>>> plt.xlabel (' Frequency (rad/sample)’)

>>> plt.grid()

>>> plt.show ()

Digital filter frequency response
2.0 — A~

1.5

1.0

0.5

Amplitude Response

ol
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Frequency (rad/sample)

Note the linear scaling of the y-axis and the different definition of the Nyquist frequency in £irwin2 and freqgz (as
explained above).

IIR Filter

Scipy provides two functions to directly design [IR i irdesign and iirfilter where the filter type (e.g. elliptic)
is passed as an argument and several more filter design functions for specific filter types; e.g. el 1ip.

The example below designs an elliptic low-pass filter with defined passband and stopband ripple, respectively. Note
the much lower filter order (order 4) compared with the FIR filters from the examples above in order to reach the same
stop-band attenuation of ~ 60 dB.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.iirfilter (4, Wn=0.2, rp=5, rs=60, btype=’lowpass’, ftype='ellip’)
>>> w, h = signal.freqgz (b, a)

>>> plt.title('Digital filter frequency response’)
>>> plt.plot(w, 20*np.logl0(np.abs(h)))

>>> plt.title(’Digital filter frequency response’)
>>> plt.ylabel (' Amplitude Response [dB]’)

62 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

>>> plt.xlabel ('Frequency (rad/sample)’)
>>> plt.grid()
>>> plt.show()

Digital filter frequency response
20 ! ! ! ! ! !

-20
—40
—60
—80

-100

Amplitude Response [dB]

I I T N R
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Frequency (rad/sample)

Other filters

The signal processing package provides many more filters as well.

Median Filter

A median filter is commonly applied when noise is markedly non-Gaussian or when it is desired to preserve edges. The
median filter works by sorting all of the array pixel values in a rectangular region surrounding the point of interest.
The sample median of this list of neighborhood pixel values is used as the value for the output array. The sample
median is the middle array value in a sorted list of neighborhood values. If there are an even number of elements in
the neighborhood, then the average of the middle two values is used as the median. A general purpose median filter
that works on N-dimensional arrays is medfilt . A specialized version that works only for two-dimensional arrays
is available as medfilt2d.

Order Filter

A median filter is a specific example of a more general class of filters called order filters. To compute the output at a
particular pixel, all order filters use the array values in a region surrounding that pixel. These array values are sorted
and then one of them is selected as the output value. For the median filter, the sample median of the list of array values
is used as the output. A general order filter allows the user to select which of the sorted values will be used as the
output. So, for example one could choose to pick the maximum in the list or the minimum. The order filter takes an
additional argument besides the input array and the region mask that specifies which of the elements in the sorted list
of neighbor array values should be used as the output. The command to perform an order filter is order_filter.

Wiener filter

The Wiener filter is a simple deblurring filter for denoising images. This is not the Wiener filter commonly described
in image reconstruction problems but instead it is a simple, local-mean filter. Let « be the input signal, then the output

is
y:{ Z—;mz—l-(l—g—;)x o

2
€T
My a§< 2

Z 07,

1.8. Signal Processing (scipy.signal) 63

SciPy Reference Guide, Release 0.16.1

where m,, is the local estimate of the mean and o2 is the local estimate of the variance. The window for these estimates
is an optional input parameter (default is 3 x 3). The parameter o2 is a threshold noise parameter. If ¢ is not given
then it is estimated as the average of the local variances.

Hilbert filter

The Hilbert transform constructs the complex-valued analytic signal from a real signal. For example if © = coswn
then y = hilbert (z) would return (except near the edges) y = exp (jwn). In the frequency domain, the hilbert
transform performs

Y=XH

where H is 2 for positive frequencies, 0 for negative frequencies and 1 for zero-frequencies.

Analog Filter Design

The functions iirdesign, iirfilter, and the filter design functions for specific filter types (e.g. el1lip) all
have a flag analog which allows design of analog filters as well.

The example below designs an analog (IIR) filter, obtains via t £2zpk the poles and zeros and plots them in the
complex s-plane. The zeros at w ~ 150 and w =~ 300 can be clearly seen in the amplitude response.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.iirdesign(wp=100, ws=200, gpass=2.0, gstop=40., analog=True)
>>> w, h = signal.freqgs(b, a)

>>> plt.title(’Analog filter frequency response’)
>>> plt.plot(w, 20*np.logll(np.abs(h)))

>>> plt.ylabel (' Amplitude Response [dB]’)

>>> plt.xlabel ('Frequency’)

>>> plt.grid()

>>> plt.show()

Analog filter frequency response

0 ! ! ! !
= - - - -]
S
(O] |
0
C
(@] .
o
()]
(0] _
o
V] .
©
2
-]
€ _
<
200 400 600 800 1000
Frequency

64 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

>>> z, p, k = signal.tf2zpk(b, a)

>>> plt.plot(np.real(z), np.imag(z), ’"xb’)
>>> plt.plot(np.real(p), np.imag(p), ’or’)
>>> plt.legend ([’ Zeros’, '"Poles’], loc=2)

>>> plt.title('Pole / Zero Plot’)
>>> plt.ylabel ('Real’)

>>> plt.xlabel (' Imaginary’)

>>> plt.grid()

>>> plt.show()

Pole / Zero Plot

400 ' ! I I
300} % X Zeros|. S SR X
200__" () f%ﬂes é“"'“'é ________ ; ________ é _________ é _______ ~

: : : : : X
100f------- REREEEEEE SRR R AR IEEE R REEEEE -

© e
S ool ® o iihhh]

[od e : : : : :
S100 e

: : : : : X
=200 R e SR e
=300 P S S X

_400 I I I I | |
-30 -25 -20 -15 -10 -5 0 5

Imaginary

1.8.3 Spectral Analysis

Periodogram Measurements

The scipy function periodogram provides a method to estimate the spectral density using the periodogram method.

The example below calculates the periodogram of a sine signal in white Gaussian noise.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> fs = 10e3

>>> N = leb

>>> amp 2*np.sqrt (2)

>>> freq = 1270.0

>>> noise_power = 0.001 % fs / 2

>>> time = np.arange(N) / fs

>>> x = amp*np.sin(2+xnp.pixfregrtime)

>>> x += np.random.normal (scale=np.sqgrt (noise_power), size=time.shape)

>>> f, Pper_spec = signal.periodogram(x, fs, ’flattop’, scaling=’spectrum’)

1.8. Signal Processing (scipy.signal)

SciPy Reference Guide, Release 0.16.1

>>>
>>>
>>>
>>>
>>>

plt.semilogy (f, Pper_spec)
plt.xlabel (' frequency [Hz]")
plt.ylabel ("PSD")

plt.grid()

plt.show ()

10 ! ! ! !

PSD

0 1000 2000 3000 4000 5000
frequency [HZz]

Spectral Analysis using Welch’s Method

An improved method, especially with respect to noise immunity, is Welch’s method which is implemented by the scipy
function welch.

The example below estimates the spectrum using Welch’s method and uses the same parameters as the example above.
Note the much smoother noise floor of the spectogram.

>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>

>>>

import numpy as np
import scipy.signal as signal
import matplotlib.pyplot as plt

fs = 10e3
N = 1leb5
amp = 2*np.sqrt (2)

freq = 1270.0

noise_power = 0.001 = fs / 2

time = np.arange(N) / fs

X = amp#*np.sin(2*np.pixfregxtime)

x += np.random.normal (scale=np.sqrt (noise_power), size=time.shape)

f, Pwelch_spec = signal.welch(x, fs, scaling=’spectrum’)

plt.semilogy (f, Pwelch_spec)

>>> plt.xlabel (' frequency [Hz]’)

>>> plt.ylabel ("PSD")

>>> plt.grid()

>>> plt.show/()

66 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

PSD

102 ; ; ; ;

0 1000 2000 3000 4000 5000
frequency [HZz]

Lomb-Scargle Periodograms (Lombscargle)

Least-squares spectral analysis (LSSA) is a method of estimating a frequency spectrum, based on a least squares fit
of sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science,
generally boosts long-periodic noise in long gapped records; LSSA mitigates such problems.

The Lomb-Scargle method performs spectral analysis on unevenly sampled data and is known to be a powerful way
to find, and test the significance of, weak periodic signals.

For a time series comprising NV; measurements X; = X (¢;) sampled at times ¢; where (j = 1,...,N;), assumed
to have been scaled and shifted such that its mean is zero and its variance is unity, the normalized Lomb-Scargle
periodogram at frequency f is

2 2
1 [Z;Vt X cosw(t; — T):| {Z;Vt X;sinw(t; —7)

> +
2] SMcos2w(t; —7) S sin?w(t; — 1)

P (f)

Here, w = 27 f is the angular frequency. The frequency dependent time offset 7 is given by

N
> sin2wt;

N; :
> " cos2wt;

tan 2wt =

The 1ombscargle function calculates the periodogram using a slightly modified algorithm due to Townsend ' which
allows the periodogram to be calculated using only a single pass through the input arrays for each frequency.

The equation is refactored as:

Pu(f) = 1 (e, XC +5,X8)? n (c; XS — 5, XC)?
"2 2CC + 2¢,8,C8 + 5285 288 — 2¢,5,CS + s2CC
and
tan 2wt = 205
-~ CC-8S’

I R.H.D. Townsend, “Fast calculation of the Lomb-Scargle periodogram using graphics processing units.”, The Astrophysical Journal Supple-
ment Series, vol 191, pp. 247-253, 2010

1.8. Signal Processing (scipy.signal) 67

SciPy Reference Guide, Release 0.16.1

Here,
Cr = COSWT, S, = sinwTt

while the sums are

Ny

XC = ZXj cos wt;
J
Nt

XS = ZXj sinwt;
J
Nt

cC = Zcos2 wt;

J
Ny

SS = Z sin? wt;
J

Ny
CS = Z cos wt; sinwt;.

J

This requires N (2N, + 3) trigonometric function evaluations giving a factor of ~ 2 speed increase over the straight-

forward implementation.

1.8.4 Detrend

Scipy provides the function det rend to remove a constant or linear trend in a data series in order to see effect of

higher order.

The example below removes the constant and linear trend of a 2-nd order polynomial time series and plots the remain-

ing signal components.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> t = np.linspace(-10, 10, 20)

>>> vy =1 + t + 0.01+tx*2

>>> yconst = signal.detrend(y, type=’constant’)
>>> ylin = signal.detrend(y, type=’linear’)

>>> plt.plot
>>> plt.plot
>>> plt.plot
>>> plt.grid
>>> plt.legen
>>> plt.show(

r Yr ’—IX')
, yconst, ’-bo’)

(t
(t
(t, ylin, ’"—-k+")
()
d
)

(["signal’, ’const. detrend’, ’linear detrend’])

68

Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

15 ! ! '

; o | =< signal
L0 e R AR EEETET TR T, ---| @@ const. detrend
' . |+ linear detrend

R

References

Some further reading and related software:

1.9 Linear Algebra (scipy.linalg)

When SciPy is built using the optimized ATLAS LAPACK and BLAS libraries, it has very fast linear algebra capabil-
ities. If you dig deep enough, all of the raw lapack and blas libraries are available for your use for even more speed.
In this section, some easier-to-use interfaces to these routines are described.

All of these linear algebra routines expect an object that can be converted into a 2-dimensional array. The output of
these routines is also a two-dimensional array.

scipy.linalg contains all the functions in numpy . linalg. plus some other more advanced ones not contained
in numpy.linalg

Another advantage of using scipy.linalg over numpy.linalg is that it is always compiled with
BLAS/LAPACK support, while for numpy this is optional. Therefore, the scipy version might be faster depending
on how numpy was installed.

Therefore, unless you don’t want to add scipy as a dependency to your numpy program, use scipy.linalg
instead of numpy.linalg

1.9.1 numpy.matrix vs 2D numpy.ndarray

The classes that represent matrices, and basic operations such as matrix multiplications and transpose are a part of
numpy. For convenience, we summarize the differences between numpy . mat rix and numpy .ndarray here.

numpy .mat rix is matrix class that has a more convenient interface than numpy . ndarray for matrix operations.
This class supports for example MATLAB-like creation syntax via the, has matrix multiplication as default for the
operator, and contains I and T members that serve as shortcuts for inverse and transpose:

>>> import numpy as np

>>> A = np.mat (' [1 2;3 4]")
>>> A

matrix ([[1, 21,

1.9. Linear Algebra (scipy.linalg) 69

SciPy Reference Guide, Release 0.16.1

(3, 411)
>>> A.T
matrix ([[-2. , 1.1,
[1.5, =-0.511)
>>> b = np.mat (' [5 6]")
>>> Db
matrix ([[5, 6]11)
>>> b.T
matrix ([[5],
[611)
>>> A«b.T
matrix ([[17],
[3911)

Despite its convenience, the use of the numpy .matrix class is discouraged, since it adds nothing that cannot be
accomplished with 2D numpy .ndarray objects, and may lead to a confusion of which class is being used. For
example, the above code can be rewritten as:

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1,2],13,411)

>>> A
array ([[1, 2],
[3, 411])
>>> linalg.inv (A)
array ([[-2. , 1.1,
[1.5, -0.511)
>>> b = np.array([[5,6]]) #2D array
>>> Db
array ([[5, 611)
>>> b.T
array ([[5],
[611)
>>> Axb #not matrix multiplication!
array([[5, 127,
[15, 24]1])
>>> A.dot (b.T) #matrix multiplication
array ([[17],
[3911)
>>> b = np.array([5,6]) #I1D array
>>> Db

array ([5, 6])

>>> b.T #not matrix transpose!

array ([5, 61)

>>> A.dot (b) #does not matter for multiplication
array ([17, 391])

scipy.linalg operations can be applied equally to numpy .matrix or to 2D numpy .ndarray objects.

1.9.2 Basic routines

Finding Inverse

The inverse of a matrix A is the matrix B such that AB = I where I is the identity matrix consisting of ones down
the main diagonal. Usually B is denoted B = A~! . In SciPy, the matrix inverse of the Numpy array, A, is obtained

70 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

using linalg.inv (A) ,orusing A. I if A is a Matrix. For example, let

1 3 5
A=12 51
2 3 8

then
1 =37 9 22 —1.48 0.36 0.88
Al = % 14 2 -9 | = 0.56 0.08 —0.36
4 -3 1 0.16 —-0.12 0.04

The following example demonstrates this computation in SciPy

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array ([[1,2]1,103,411)

array ([[1, 2],
[3, 411)
>>> linalg.inv (A)
array ([[-2. , 1.1,
[1.5, -0.511)
>>> A.dot (linalg.inv (A)) #double check
array ([[1.00000000e+00, 0.00000000e+00]

[4.44089210e-16, 1.00000000e+007]

Solving linear system

Solving linear systems of equations is straightforward using the scipy command 1inalg.solve. This command
expects an input matrix and a right-hand-side vector. The solution vector is then computed. An option for entering a
symmetrix matrix is offered which can speed up the processing when applicable. As an example, suppose it is desired
to solve the following simultaneous equations:

r+3y+52 = 10
2c+5y+z = 8
2c+3y+82 = 3

We could find the solution vector using a matrix inverse:

—1

z 1 3 5 10 1 —232 —9.28
y|=1]12 5 1 8 | = 5 129 = 5.16
z 2 3 8 3 19 0.76

However, it is better to use the linalg.solve command which can be faster and more numerically stable. In this case it
however gives the same answer as shown in the following example:

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array ([[1,2],13,411)

>>> A
array ([[1, 21,
[3, 411])
>>> b = np.array ([[5],[6]1])
>>> b
array ([[5]

[611)
>>> linalg.inv (A) .dot (b) #slow

1.9. Linear Algebra (scipy.linalg) 71

SciPy Reference Guide, Release 0.16.1

array ([[-4. 1,

[4.5]]
>>> A.dot (linalg.inv (A) .dot (b)) -b #check
array ([[8.88178420e-16],

[2.66453526e-15]11)
>>> np.linalg.solve (A,b) #fast

array ([[-4. 1,

[4.51])
>>> A.dot (np.linalg.solve(A,b))-b #check
array ([[0.1,

[0.11)

Finding Determinant

The determinant of a square matrix A is often denoted |A| and is a quantity often used in linear algebra. Suppose a;;
are the elements of the matrix A and let M;; = |A;;| be the determinant of the matrix left by removing the i row
and j column from A . Then for any row i,

Al = (-1 ay My,
J
This is a recursive way to define the determinant where the base case is defined by accepting that the determinant of a

1 x 1 matrix is the only matrix element. In SciPy the determinant can be calculated with 1inalg.det . For example,
the determinant of

is

5 1 2 1 5
U R PRI R
= 1(5-8-3-1)-3(2-8-2-1)+5(2-3-2-5)=-25

In SciPy this is computed as shown in this example:

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array ([[1,2]1,103,411)

>>> A

array ([[1, 2],
[3, 411)

>>> linalg.det (A)

-2.0

Computing horms

Matrix and vector norms can also be computed with SciPy. A wide range of norm definitions are available using
different parameters to the order argument of 1inalg.norm . This function takes a rank-1 (vectors) or a rank-2
(matrices) array and an optional order argument (default is 2). Based on these inputs a vector or matrix norm of the
requested order is computed.

72 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

For vector x , the order parameter can be any real number including inf or —inf. The computed norm is

max |x;| ord = inf
min || ord = —inf

ord 1/ord
> il lord| < 0.

For matrix A the only valid values for norm are 42, +1, 4 inf, and ‘fro’ (or ‘f’) Thus,

[l =

max;) |a;;| ord =inf
mini Zj |aij\ ord = —inf
max; Zl |aij| ord =1
|A| = min; Y. |a;;| ord = —1
max o; ord = 2
min o; ord = -2
trace (A7 A) ord = fro’

where o; are the singular values of A .
Examples:

>>> import numpy as np
>>> from scipy import linalg
>>> A=np.array ([[1,2],[3,411])
>>> A
array ([[1, 2],
[3, 411)
>>> linalg.norm(A)
5.4772255750516612
>>> linalg.norm(A,’ fro’) # frobenius norm is the default
5.4772255750516612
>>> linalg.norm(A,1l) # L1 norm (max column sum)
6
>>> linalg.norm(A,-1)
4
>>> linalg.norm(A,inf) # L inf norm (max row sum)
5

Solving linear least-squares problems and pseudo-inverses

Linear least-squares problems occur in many branches of applied mathematics. In this problem a set of linear scaling
coefficients is sought that allow a model to fit data. In particular it is assumed that data y; is related to data x; through
a set of coefficients ¢; and model functions f; (x;) via the model

Yi = chfj (%) + €
J

where ¢; represents uncertainty in the data. The strategy of least squares is to pick the coefficients ¢; to minimize

2

J(e) = |vi— chfj (zi)

%

Theoretically, a global minimum will occur when

oJ
oct,

=0= Z Yi — chfj (i) | (—=fn (21))

1.9. Linear Algebra (scipy.linalg) 73

SciPy Reference Guide, Release 0.16.1

or

Do fi@) fiw) = D wid ()

AfAc = Afly
where
(A} =i (@)
When AP A is invertible, then
c=(A7A) T Afly = Aly
where AT is called the pseudo-inverse of A.. Notice that using this definition of A the model can be written
y =Ac+e

The command 1inalg.lstsqg will solve the linear least squares problem for ¢ given A and y . In addition
linalg.pinv or linalg.pinv2 (uses a different method based on singular value decomposition) will find Af
given A.

The following example and figure demonstrate the use of 1inalg.lstsqgand 1inalg.pinv for solving a data-
fitting problem. The data shown below were generated using the model:

Yi = c1e” "+ cawy

where x; = 0.1ifori =1...10,c; = 5, and co = 4. Noise is added to y; and the coefficients c¢; and c» are estimated
using linear least squares.

>>> import numpy as np
>>> from scipy import linalg
>>> import matplotlib.pyplot as plt

>>> ¢cl, c2 = 5.0, 2.0

>>> 1 = np.r_[1:11]

>>> xi = 0.1+1

>>> yi = clxnp.exp(-—xi) + c2xxi

>>> zi = yi + 0.05 » np.max(yi) » np.random.randn(len(yi))
>>> A = np.c_[np.exp(-x1i)[:, np.newaxis], xi[:, np.newaxis]]
>>> ¢, resid, rank, sigma = linalg.lstsqg(A, zi)

>>> xi2 = np.r_[0.1:1.0:1007]
>>> yi2 = c[0]*np.exp(-xi2) + c[l]+*xi2

>>> plt.plot(xi,zi, ' x’,x12,yi2)

>>> plt.axis([0,1.1,3.0,5.51)

>>> plt.xlabel (' x_1")

>>> plt.title(’Data fitting with linalg.lstsqg’)
>>> plt.show ()

74 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

55 Data fitting with linalg.Istsq

5.0 .

4.0}

3.5} .

3.0 | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

Generalized inverse

The generalized inverse is calculated using the command 1inalg.pinvor linalg.pinv2. These two commands
differ in how they compute the generalized inverse. The first uses the linalg.Istsq algorithm while the second uses
singular value decomposition. Let A be an M x N matrix, then if M > N the generalized inverse is

AT = (AA)"AH
while if M < N matrix the generalized inverse is
A* = AT (AAT)T
In both cases for M = N , then
AT=A%=A""

as long as A is invertible.

1.9.3 Decompositions

In many applications it is useful to decompose a matrix using other representations. There are several decompositions
supported by SciPy.

Eigenvalues and eigenvectors

The eigenvalue-eigenvector problem is one of the most commonly employed linear algebra operations. In one popular
form, the eigenvalue-eigenvector problem is to find for some square matrix A scalars A and corresponding vectors v
such that

Av =)v.
For an N x N matrix, there are N (not necessarily distinct) eigenvalues — roots of the (characteristic) polynomial

|A — M| = 0.

1.9. Linear Algebra (scipy.linalg) 75

SciPy Reference Guide, Release 0.16.1

The eigenvectors, v , are also sometimes called right eigenvectors to distinguish them from another set of left eigen-
vectors that satisfy

H _ H
Vi A =Av]
or
AHVL =)*VL.

With it’s default optional arguments, the command 1inalg.eig returns A and v. However, it can also return vy, and
just A by itself (1inalg.eigvals returns just A as well).
In addition, 1inalg.eig can also solve the more general eigenvalue problem

Av = J)\Bv

AHVL =)*BHVL

for square matrices A and B. The standard eigenvalue problem is an example of the general eigenvalue problem for
B = I. When a generalized eigenvalue problem can be solved, then it provides a decomposition of A as

A =BVAV!

where V is the collection of eigenvectors into columns and A is a diagonal matrix of eigenvalues.

By definition, eigenvectors are only defined up to a constant scale factor. In SciPy, the scaling factor for the eigenvec-
tors is chosen so that |[v|* = 3, v? = 1.

;=

As an example, consider finding the eigenvalues and eigenvectors of the matrix
1 5 2
A=1|2 41
3 6 2
The characteristic polynomial is

|A — |

(1-=MN[A-N(2-A)—6]-
5[2(2—X\) —3]+2[12—-3(4—\)]
= A 4+7\24+8)\-3.

The roots of this polynomial are the eigenvalues of A :

A= T7.9579
Ay = —1.2577
Az = 0.2997.

The eigenvectors corresponding to each eigenvalue can be found using the original equation. The eigenvectors associ-
ated with these eigenvalues can then be found.

>>> import numpy as np

>>> from scipy import linalg

>>> A = np.array ([[1,2],1[3,411])

>>> la,v = linalg.eig(A)

>>> 11,12 = la

>>> print 11, 12 #eigenvalues
(-0.372281323269+07) (5.37228132327+07)

>>> print v[:,0] #first eigenvector
[-0.82456484 0.56576746]
>>> print v([:,1] #second eigenvector

76 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

[-0.41597356 -0.90937671]

>>> print np.sum(abs(v+x*2),axis=0) #eigenvectors are unitary
[1. 1.]

>>> vl = np.array(v[:,0]).T

>>> print linalg.norm(A.dot (vl)-11xvl) #check the computation
3.23682852457e-16

Singular value decomposition

Singular Value Decomposition (SVD) can be thought of as an extension of the eigenvalue problem to matrices that are
not square. Let A be an M x N matrix with M and N arbitrary. The matrices A A and AA¥ are square hermitian
matrices * of size N x N and M x M respectively. It is known that the eigenvalues of square hermitian matrices are
real and non-negative. In addition, there are at most min (M, N) identical non-zero eigenvalues of A A and AA*.
Define these positive eigenvalues as o2. The square-root of these are called singular values of A. The eigenvectors of
A A are collected by columns into an N x N unitary * matrix V while the eigenvectors of AAX are collected by
columns in the unitary matrix U , the singular values are collected in an M x N zero matrix 3 with main diagonal
entries set to the singular values. Then

A =UxVa

is the singular-value decomposition of A. Every matrix has a singular value decomposition. Sometimes, the singular
values are called the spectrum of A. The command 1inalg.svd will return U , VH and o, as an array of the
singular values. To obtain the matrix 3 use 1linalg.diagsvd. The following example illustrates the use of
linalg.svd.

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1,2,31,[4,5,611)

,S$,Vh = linalg.svd(A)
ig = linalg.diagsvd(s,M,N)
>>> U, Vh = U, Vh

>>> U

array ([[-0.3863177 , -0.92236578],
[-0.92236578, 0.3863177 11)

>>> Sig

array ([[9.508032 , O. p 0. 1,
[0. , 0.77286964, 0. 11)

>>> Vh

array ([[-0.42866713, -0.56630692, -0.703%9467 7,

[

[0.80596391, 0.11238241, -0.58119908],
[0.40824829, -0.81649658, 0.40824829]1])
>>> U.dot (Sig.dot (Vh)) #check computation
array ([[1., 2., 3.1,

[4., 5., 6.11)

LU decomposition

The LU decomposition finds a representation for the M x N matrix A as

A=PLU

2 A hermitian matrix D satisfies DY = D.
3 A unitary matrix D satisfies DHFD =TI = DD sothat D~ = D,

1.9. Linear Algebra (scipy.linalg) 77

SciPy Reference Guide, Release 0.16.1

where P is an M x M permutation matrix (a permutation of the rows of the identity matrix), L is in M x K lower
triangular or trapezoidal matrix (K = min (M, N)) with unit-diagonal, and U is an upper triangular or trapezoidal
matrix. The SciPy command for this decomposition is 1inalg.lu.

Such a decomposition is often useful for solving many simultaneous equations where the left-hand-side does not
change but the right hand side does. For example, suppose we are going to solve

AXi = bz
for many different b; . The LU decomposition allows this to be written as
PLUXZ' = bz

Because L is lower-triangular, the equation can be solved for Ux; and finally x; very rapidly using forward- and
back-substitution. An initial time spent factoring A allows for very rapid solution of similar systems of equa-
tions in the future. If the intent for performing LU decomposition is for solving linear systems then the command
linalg.lu_factor should be used followed by repeated applications of the command 1inalg.lu_solve to
solve the system for each new right-hand-side.

Cholesky decomposition

Cholesky decomposition is a special case of LU decomposition applicable to Hermitian positive definite matrices.
When A = A" and x¥ Ax > 0 for all x, then decompositions of A can be found so that

A = Ufu
A = LLY”

where L is lower-triangular and U is upper triangular. Notice that L = U . The command 1inalg.cholesky
computes the cholesky factorization. For using cholesky factorization to solve systems of equations there are also
linalg.cho_factor and 1inalg.cho_solve routines that work similarly to their LU decomposition coun-
terparts.

QR decomposition

The QR decomposition (sometimes called a polar decomposition) works for any M x N array and finds an M x M
unitary matrix Q and an M x N upper-trapezoidal matrix R such that

A =QR.
Notice that if the SVD of A is known then the QR decomposition can be found
A =UxV? =QR
implies that @ = U and R = V¥ Note, however, that in SciPy independent algorithms are used to find QR and

SVD decompositions. The command for QR decompositionis 1inalg.qr .

Schur decomposition

For a square N x NN matrix, A , the Schur decomposition finds (not-necessarily unique) matrices T and Z such that
A =7TZ"

where Z is a unitary matrix and T is either upper-triangular or quasi-upper triangular depending on whether or not a
real schur form or complex schur form is requested. For a real schur form both T and Z are real-valued when A is
real-valued. When A is a real-valued matrix the real schur form is only quasi-upper triangular because 2 x 2 blocks

78 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

extrude from the main diagonal corresponding to any complex- valued eigenvalues. The command 1inalg.schur
finds the Schur decomposition while the command 1inalg.rsf2csf converts T and Z from a real Schur form to
a complex Schur form. The Schur form is especially useful in calculating functions of matrices.

The following example illustrates the schur decomposition:

>>> from scipy import linalg

>>> A =mat (' [1 3 2; 1 4 5;, 2 3 6]")

>>> T,7Z = linalg.schur (A)

>>> T1,7Z1 = linalg.schur (A,’ complex’)

>>> T2,722 = linalg.rsf2csf (T, 7)

>>> print T

[[9.90012467 1.78947961 -0.65498528]
[0. 0.54993766 —-1.57754789]
[0. 0.51260928 0.54993766]]

>>> print T2

[[9.90012467 +0.00000000e+007 —-0.32436598 +1.55463542e+007

0.88619748 +5.69027615e-017]

0.00000000 +0.00000000e+003 0.54993766 +8.99258408e-017

1.06493862 +1.37016050e-177]

0.00000000 +0.00000000e+00j 0.00000000 +0.00000000e+007

0.54993766 -8.99258408e-017]]

>>> print abs (T1-T2) # different

[[1.24357637e-14 2.09205364e+00 6.56028192e-01]
[0.00000000e+00 4.00296604e-16 1.83223097e+00]
[0.00000000e+00 0.00000000e+00 4.57756680e-16]]

>>> print abs (Z21-Z2) # different

[[0.06833781 1.10591375 0.23662249]
[0.11857169 0.5585604 0.29617525]
[0.12624999 0.75656818 0.22975038]]

>>> T7,72,T1,21,T2,722 = map(mat, (T,2,T1,21,T2,722))

>>> print abs (A-Z+xTxZ.H) # same

[[1.11022302e-16 4.44089210e-16 4.44089210e-16]
[4.44089210e-16 1.33226763e-15 8.88178420e-16]
[8.88178420e-16 4.44089210e-16 2.66453526e-15]]

>>> print abs (A-Z1xT1xZ1.H) # same

[[1.00043248e-15 2.22301403e-15 5.55749485e-15]
[2.88899660e-15 8.44927041e-15 9.77322008e-15]
[3.11291538e-15 1.15463228e-14 1.15464861e-141]]

>>> print abs (A-Z2xT2xZ2.H) # same

[[3.34058710e-16 8.88611201e-16 4.18773089%9e-18]
[1.48694940e-16 8.95109973e-16 8.92966151e-16]
[1.33228956e-15 1.33582317e-15 3.55373104e-15]1]

Interpolative Decomposition

scipy.linalg.interpolative contains routines for computing the interpolative decomposition (ID) of a ma-
trix. For a matrix A € C"™*" of rank k < min{m, n} this is a factorization

All = [AIl; Al = AIlL [I T,

where IT = [II;,II,] is a permutation matrix with IT; € {0,1}"** ie., ATl = AII;T. This can equivalently be
written as A = BP, where B = AIl; and P = [I, T|II" are the skeleton and interpolation matrices, respectively.

See also:

scipy.linalg.interpolative — for more information.

1.9. Linear Algebra (scipy.linalg) 79

SciPy Reference Guide, Release 0.16.1

1.9.4 Matrix Functions
Consider the function f (z) with Taylor series expansion
_SM(0)
k=0
A matrix function can be defined using this Taylor series for the square matrix A as

O (k)
k=0 ’

While, this serves as a useful representation of a matrix function, it is rarely the best way to calculate a matrix function.

Exponential and logarithm functions

The matrix exponential is one of the more common matrix functions. It can be defined for square matrices as

— 1
et = Z HA’“.
k=0
The command 1linalg.expm3 uses this Taylor series definition to compute the matrix exponential. Due to poor
convergence properties it is not often used.
Another method to compute the matrix exponential is to find an eigenvalue decomposition of A :
A=VAV™!
and note that
er =Vertv?

where the matrix exponential of the diagonal matrix A is just the exponential of its elements. This method is imple-
mented in 1inalg.expm?2 .

The preferred method for implementing the matrix exponential is to use scaling and a Padé approximation for e” .
This algorithm is implemented as 1inalg.expm.

The inverse of the matrix exponential is the matrix logarithm defined as the inverse of the matrix exponential.
A =exp (log (A)).

The matrix logarithm can be obtained with 1inalg.logm.

Trigonometric functions

The trigonometric functions sin , cos , and tan are implemented for matrices in 1inalg.sinm, linalg.cosm,
and 1inalg.tanm respectively. The matrix sin and cosine can be defined using Euler’s identity as

JA _ o—iA
sin(A) = S —°¢
2j
JA —JjA
cos(A) = erte’™
2
The tangent is
tan (z) = i;r; Ei)) = [cos ()] " sin (z)

and so the matrix tangent is defined as

[cos (A)] 'sin (A).

80 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

Hyperbolic trigonometric functions

The hyperbolic trigonemetric functions sinh , cosh , and tanh can also be defined for matrices using the familiar
definitions:

A _—A
sinh (A) = & 26
A —A
cosh (A) = %
tanh (A) = [cosh(A)] 'sinh(A).

These matrix functions can be found using 1inalg.sinhm, 1inalg.coshm,and 1inalg.tanhm.

Arbitrary function

Finally, any arbitrary function that takes one complex number and returns a complex number can be called as a matrix
function using the command 1inalg. funm. This command takes the matrix and an arbitrary Python function. It
then implements an algorithm from Golub and Van Loan’s book “Matrix Computations “to compute function applied
to the matrix using a Schur decomposition. Note that the function needs to accept complex numbers as input in order
to work with this algorithm. For example the following code computes the zeroth-order Bessel function applied to a
matrix.

>>> from scipy import special, random, linalg
>>> A = random.rand (3, 3)
>>> B = linalg.funm(A,lambda x: special.jv(0,x))
>>> print A
[[0.72578091 0.34105276 0.79570345]
[0.65767207 0.73855618 0.541453]
[0.78397086 0.68043507 0.4837898 1]
>>> print B
[[0.72599893 -0.20545711 -0.22721101]
[-0.27426769 0.77255139 -0.23422637]
[-0.27612103 -0.21754832 0.7556849 1]
>>> print linalg.eigvals (A)
[1.91262611+0.3 0.21846476+0.7 -0.18296399+0.7]
>>> print special.jv (0, linalg.eigvals(d))
[0.27448286+0.7 0.98810383+0.3 0.99164854+0.7]
>>> print linalg.eigvals (B)
[0.27448286+0.7 0.98810383+0.3 0.99164854+0.7]

Note how, by virtue of how matrix analytic functions are defined, the Bessel function has acted on the matrix eigen-
values.

1.9.5 Special matrices

SciPy and NumPy provide several functions for creating special matrices that are frequently used in engineering and
science.

1.9. Linear Algebra (scipy.linalg) 81

SciPy Reference Guide, Release 0.16.1

Type Function Description

block diagonal | scipy.linalg.block_diag | Create a block diagonal matrix from the provided arrays.
circulant scipy.linalg.circulant Construct a circulant matrix.

companion scipy.linalg.companion Create a companion matrix.

Hadamard scipy.linalg.hadamard Construct a Hadamard matrix.

Hankel scipy.linalg.hankel Construct a Hankel matrix.

Hilbert scipy.linalg.hilbert Construct a Hilbert matrix.

Inverse Hilbert | scipy.linalg.invhilbert | Construct the inverse of a Hilbert matrix.
Leslie scipy.linalg.leslie Create a Leslie matrix.

Pascal scipy.linalg.pascal Create a Pascal matrix.

Toeplitz scipy.linalg.toeplitz Construct a Toeplitz matrix.

Van der Monde | numpy.vander Generate a Van der Monde matrix.

For examples of the use of these functions, see their respective docstrings.

1.10 Sparse Eigenvalue Problems with ARPACK

1.10.1 Introduction

ARPACK is a Fortran package which provides routines for quickly finding a few eigenvalues/eigenvectors of large
sparse matrices. In order to find these solutions, it requires only left-multiplication by the matrix in question. This
operation is performed through a reverse-communication interface. The result of this structure is that ARPACK is able
to find eigenvalues and eigenvectors of any linear function mapping a vector to a vector.

All of the functionality provided in ARPACK is contained within the two high-level interfaces
scipy.sparse.linalg.eigs and scipy.sparse.linalg.eigsh. eigs provides interfaces to
find the eigenvalues/vectors of real or complex nonsymmetric square matrices, while eigsh provides interfaces for
real-symmetric or complex-hermitian matrices.

1.10.2 Basic Functionality

ARPACK can solve either standard eigenvalue problems of the form
Ax = Mx
or general eigenvalue problems of the form
Ax = AMx

The power of ARPACK is that it can compute only a specified subset of eigenvalue/eigenvector pairs. This is accom-
plished through the keyword which. The following values of which are available:

e which = /LM’ : Eigenvalues with largest magnitude (eigs, eigsh), that is, largest eigenvalues in the
euclidean norm of complex numbers.

e which = ’SM’ : Eigenvalues with smallest magnitude (eigs, eigsh), that is, smallest eigenvalues in the
euclidean norm of complex numbers.

* which = /LR’ : Eigenvalues with largest real part (eigs)

e which = /SR’ : Eigenvalues with smallest real part (eigs)

e which = ’LI’ :Eigenvalues with largest imaginary part (eigs)
e which = ’SI’ :FEigenvalues with smallest imaginary part (eigs)

82 Chapter 1. SciPy Tutorial

http://docs.scipy.org/doc/numpy/reference/generated/numpy.vander.html#numpy.vander

SciPy Reference Guide, Release 0.16.1

e which = ’LA’ : Eigenvalues with largest algebraic value (eigsh), that is, largest eigenvalues inclusive of
any negative sign.

* which = ’SA’ : Eigenvalues with smallest algebraic value (eigsh), that is, smallest eigenvalues inclusive
of any negative sign.

e which = ’BE’ : Eigenvalues from both ends of the spectrum (eigsh)

Note that ARPACK is generally better at finding extremal eigenvalues: that is, eigenvalues with large magnitudes. In
particular, using which = ’SM’ may lead to slow execution time and/or anomalous results. A better approach is to
use shift-invert mode.

1.10.3 Shift-Invert Mode
Shift invert mode relies on the following observation. For the generalized eigenvalue problem
Ax = AMx
it can be shown that
(A—oM)'Mx =vx

where

1.10.4 Examples

Imagine you’d like to find the smallest and largest eigenvalues and the corresponding eigenvectors for a
large matrix. ARPACK can handle many forms of input: dense matrices such as numpy.ndarray in-
stances, sparse matrices such as scipy.sparse.csr_matrix, or a general linear operator derived from
scipy.sparse.linalg.LinearOperator. For this example, for simplicity, we’ll construct a symmetric,
positive-definite matrix.

>>> import numpy as np

>>> from scipy.linalg import eigh

>>> from scipy.sparse.linalg import eigsh

>>> np.set_printoptions (suppress=True)

>>>

>>> np.random.seed(0)

>>> X = np.random.random((100,100)) - 0.5

>>> X np.dot (X, X.T) #create a symmetric matrix

We now have a symmetric matrix X with which to test the routines. First compute a standard eigenvalue decomposition
using eigh:

>>> evals_all, evecs_all = eigh (X)

As the dimension of X grows, this routine becomes very slow. Especially if only a few eigenvectors and eigenvalues
are needed, ARPACK can be a better option. First let’s compute the largest eigenvalues (which = ’LM’) of X and
compare them to the known results:

>>> evals_large, evecs_large = eigsh (X, 3, which="1LM")
>>> print evals_all[-3:]

[29.1446102 30.05821805 31.19467646]

>>> print evals_large

[29.1446102 30.05821805 31.19467646]

1.10. Sparse Eigenvalue Problems with ARPACK 83

SciPy Reference Guide, Release 0.16.1

>>> print np.dot (evecs_large.T, evecs_all[:,-3:1])
[[-1. 0. 0.]

[0. 1. 0.]

[-0. 0. -1.11]

The results are as expected. ARPACK recovers the desired eigenvalues, and they match the previously known results.
Furthermore, the eigenvectors are orthogonal, as we’d expect. Now let’s attempt to solve for the eigenvalues with
smallest magnitude:

>>> evals_small, evecs_small = eigsh (X, 3, which=’SM")
scipy.sparse.linalg.eigen.arpack.arpack.ArpackNoConvergence:
ARPACK error -1: No convergence (1001 iterations, 0/3 eigenvectors converged)

Oops. We see that as mentioned above, ARPACK is not quite as adept at finding small eigenvalues. There are a few
ways this problem can be addressed. We could increase the tolerance (to1l) to lead to faster convergence:

>>> evals_small, evecs_small = eigsh (X, 3, which=’"SM’, tol=1E-2)
>>> print evals_all[:3]

[0.0003783 0.00122714 0.00715878]

>>> print evals_small

[0.00037831 0.00122714 0.00715881]

>>> print np.dot (evecs_small.T, evecs_all[:,:3])

[[0.99999999 0.00000024 -0.00000049]
[-0.00000023 0.99999999 0.00000056]
[0.00000031 -0.00000037 0.999998527]

This works, but we lose the precision in the results. Another option is to increase the maximum number of iterations
(maxiter) from 1000 to 5000:

>>> evals_small, evecs_small = eigsh (X, 3, which=’"SM’, maxiter=5000)
>>> print evals_all[:3]

[0.0003783 0.00122714 0.00715878]

>>> print evals_small

[0.0003783 0.00122714 0.00715878]

>>> print np.dot (evecs_small.T, evecs_all[:,:3])

[l 1. 0. 0.]
[-0. 1. 0.]
[0. 0. -1.1]

We get the results we’d hoped for, but the computation time is much longer. Fortunately, ARPACK contains a mode that
allows quick determination of non-external eigenvalues: shift-invert mode. As mentioned above, this mode involves
transforming the eigenvalue problem to an equivalent problem with different eigenvalues. In this case, we hope to find
eigenvalues near zero, so we’ll choose sigma = 0. The transformed eigenvalues will then satisfy v = 1/(0 — A\) =
1/, so our small eigenvalues X become large eigenvalues v.

>>> evals_small, evecs_small = eigsh(X, 3, sigma=0, which="1M")
>>> print evals_all[:3]

[0.0003783 0.00122714 0.00715878]

>>> print evals_small

[0.0003783 0.00122714 0.00715878]

>>> print np.dot (evecs_small.T, evecs_all[:,:3])

[[1. 0. 0.]
[0. -1. -0.]
[-0. -0. 1.1]

We get the results we were hoping for, with much less computational time. Note that the transformation from v — A
takes place entirely in the background. The user need not worry about the details.

The shift-invert mode provides more than just a fast way to obtain a few small eigenvalues. Say you desire to find

84 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

internal eigenvalues and eigenvectors, e.g. those nearest to A = 1. Simply set sigma = 1 and ARPACK takes care
of the rest:

>>> evals_mid, evecs_mid = eigsh(X, 3, sigma=1, which=’1M")
>>> i_sort = np.argsort(abs(l. / (1 - evals_all)))[-3:]

>>> print evals_all[i_sort]

[1.16577199 0.85081388 1.06642272]

>>> print evals_mid

[0.85081388 1.06642272 1.16577199]

>>> print np.dot (evecs_mid.T, evecs_all[:,i_sort])

[[-0. 1. 0.]
[-0. -0. 1.]
[1. 0. 0.7]

The eigenvalues come out in a different order, but they’re all there. Note that the shift-invert mode requires
the internal solution of a matrix inverse. This is taken care of automatically by eigsh and eigs, but the
operation can also be specified by the user. See the docstring of scipy.sparse.linalg.eigsh and
scipy.sparse.linalg.eigs for details.

1.10.5 References
1.11 Compressed Sparse Graph Routines (scipy.sparse.csgraph)

1.11.1 Example: Word Ladders

A Word Ladder is a word game invented by Lewis Carroll in which players find paths between words by switching
one letter at a time. For example, one can link “ape” and “man” in the following way:

ape — apt — ait — bit — big — bag — mag — man

Note that each step involves changing just one letter of the word. This is just one possible path from “ape” to “man”,
but is it the shortest possible path? If we desire to find the shortest word ladder path between two given words, the
sparse graph submodule can help.

First we need a list of valid words. Many operating systems have such a list built-in. For example, on linux, a word
list can often be found at one of the following locations:

/usr/share/dict
/var/lib/dict

Another easy source for words are the scrabble word lists available at various sites around the internet (search with
your favorite search engine). We’ll first create this list. The system word lists consist of a file with one word per line.
The following should be modified to use the particular word list you have available:

>>> word_list = open(’/usr/share/dict/words’) .readlines ()
>>> word_list = map(str.strip, word_list)

We want to look at words of length 3, so let’s select just those words of the correct length. We’ll also eliminate words
which start with upper-case (proper nouns) or contain non alpha-numeric characters like apostrophes and hyphens.
Finally, we’ll make sure everything is lower-case for comparison later:

>>> word_list = [word for word in word_list if len(word) == 3]
>>> word_list = [word for word in word_list if word[0].islower ()]
>>> word_list = [word for word in word_list if word.isalpha()]
>>> word_list = map(str.lower, word_list)

>>> len (word_list)

586

1.11. Compressed Sparse Graph Routines (scipy.sparse.csgraph) 85

http://en.wikipedia.org/wiki/Word_ladder

SciPy Reference Guide, Release 0.16.1

Now we have a list of 586 valid three-letter words (the exact number may change depending on the particular list
used). Each of these words will become a node in our graph, and we will create edges connecting the nodes associated
with each pair of words which differs by only one letter.

There are efficient ways to do this, and inefficient ways to do this. To do this as efficiently as possible, we’re going to
use some sophisticated numpy array manipulation:

>>> import numpy as np

>>> word_list = np.asarray(word_list)

>>> word_list.dtype

dtype (/ |S3")

>>> word_list.sort () # sort for quick searching later

We have an array where each entry is three bytes. We’d like to find all pairs where exactly one byte is different. We’ll
start by converting each word to a three-dimensional vector:

>>> word_bytes = np.ndarray ((word_list.size, word_list.itemsize),
dtype=’1int8’,

C buffer=word_list.data)

>>> word_bytes.shape
(586, 3)

Now we’ll use the Hamming distance between each point to determine which pairs of words are connected. The
Hamming distance measures the fraction of entries between two vectors which differ: any two words with a hamming
distance equal to 1/N, where N is the number of letters, are connected in the word ladder:

>>> from scipy.spatial.distance import pdist, squareform

>>> from scipy.sparse import csr_matrix

>>> hamming_dist = pdist (word_bytes, metric=’hamming’)

>>> graph = csr_matrix (squareform(hamming_dist < 1.5 / word_list.itemsize))

When comparing the distances, we don’t use an equality because this can be unstable for floating point values. The
inequality produces the desired result as long as no two entries of the word list are identical. Now that our graph is set
up, we’ll use a shortest path search to find the path between any two words in the graph:

>>> il = word_list.searchsorted(’ape’)
>>> 12 = word_list.searchsorted('man’)
>>> word_list[il]

4 aper

>>> word_list[i2]

"man’

‘We need to check that these match, because if the words are not in the list that will not be the case. Now all we need
is to find the shortest path between these two indices in the graph. We’ll use dijkstra’s algorithm, because it allows us
to find the path for just one node:

>>> from scipy.sparse.csgraph import dijkstra

>>> distances, predecessors = dijkstra(graph, indices=il,

.. return_predecessors=True)
>>> print distances[i2]
5.0

So we see that the shortest path between ‘ape’ and ‘man’ contains only five steps. We can use the predecessors returned
by the algorithm to reconstruct this path:

>>> path = []

>>> i = 1i2

>>> while i != 1il:

>>> path.append (word_list[i])
>>> i = predecessors[i]

86 Chapter 1. SciPy Tutorial

http://en.wikipedia.org/wiki/Hamming_distance

SciPy Reference Guide, Release 0.16.1

>>> path.append (word_list[il])
>>> print path[::-1]
["ape’, "apt’, ’'opt’, ’'ocat’, 'mat’, ’'man’]

This is three fewer links than our initial example: the path from ape to man is only five steps.

Using other tools in the module, we can answer other questions. For example, are there three-letter words which are
not linked in a word ladder? This is a question of connected components in the graph:

>>> from scipy.sparse.csgraph import connected_components

>>> N_components, component_list = connected_components (graph)
>>> print N_components

15

In this particular sample of three-letter words, there are 15 connected components: that is, 15 distinct sets of words with
no paths between the sets. How many words are in each of these sets? We can learn this from the list of components:

>>> [np.sum(component_list == i) for i in range(15)]
(712, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

There is one large connected set, and 14 smaller ones. Let’s look at the words in the smaller ones:

>>> [list (word_list[np.where (component_list == 1i)]) for i in range(l, 15)]
[["aha'],
"chi’],
"ebb’],

0]
3
@)

"emu’],

Q
o]
[

o I
(e ENO]
ooN B

c o c.Q
B T Q o
5 n oW

~

[
[
[
[
[
[
[
[
[
[
[
[
[

o
<
j\)

]
These are all the three-letter words which do not connect to others via a word ladder.

We might also be curious about which words are maximally separated. Which two words take the most links to
connect? We can determine this by computing the matrix of all shortest paths. Note that by convention, the distance
between two non-connected points is reported to be infinity, so we’ll need to remove these before finding the maximum:

>>> distances, predecessors = dijkstra(graph, return_predecessors=True)
>>> np.max (distances[~np.isinf (distances)])
13.0

So there is at least one pair of words which takes 13 steps to get from one to the other! Let’s determine which these
are:

>>> 11, 12 = np.where(distances == 13)
>>> zip(word_list[il], word_list[i2])
[("imp’, 'ohm’),

1.11. Compressed Sparse Graph Routines (scipy.sparse.csgraph) 87

SciPy Reference Guide, Release 0.16.1

("ump’, "ohm’),
("ump’, ’"ohs’)]

We see that there are two pairs of words which are maximally separated from each other: ‘imp’ and ‘ump’ on one
hand, and ‘ohm’ and ‘ohs’ on the other hand. We can find the connecting list in the same way as above:

>>> path = []

>>> 1 = 1i2[0]

>>> while i != i1[0]:

>>> path.append (word_list[i])
>>> i = predecessors[il1[0], 1i]
>>> path.append (word_list[i1[0]])
>>> print path[::-1]

["imp’, ’'amp’, "asp’, ’ask’, ’'ark’, 'are’, 'aye’, ’'rye’, ’'roe’, 'woe’, ’"woo’, ’'who’, ’'oho’, ’ohm’]

This gives us the path we desired to see.

Word ladders are just one potential application of scipy’s fast graph algorithms for sparse matrices. Graph theory
makes appearances in many areas of mathematics, data analysis, and machine learning. The sparse graph tools are
flexible enough to handle many of these situations.

1.12 Spatial data structures and algorithms (scipy.spatial)

scipy.spatial can compute triangulations, Voronoi diagrams, and convex hulls of a set of points, by leveraging
the Qhull library.

Moreover, it contains KDTree implementations for nearest-neighbor point queries, and utilities for distance compu-
tations in various metrics.

1.12.1 Delaunay triangulations

The Delaunay triangulation is a subdivision of a set of points into a non-overlapping set of triangles, such that no point
is inside the circumcircle of any triangle. In practice, such triangulations tend to avoid triangles with small angles.

Delaunay triangulation can be computed using scipy.spatial as follows:

>>> from scipy.spatial import Delaunay
>>> points = np.array([[0O, O], [O, 1.11, [1, O], [1, 111)
>>> tri = Delaunay (points)

We can visualize it:

>>> import matplotlib.pyplot as plt
>>> plt.triplot (points[:,0], points[:,1], tri.simplices.copy())
>>> plt.plot (points[:,0], points([:,1], ’0o’)

And add some further decorations:

>>> for j, p in enumerate (points):

plt.text (p[0]1-0.03, p[1l]1+0.03, Jj, ha="right’) # label the points
>>> for j, s in enumerate (tri.simplices):

p = points([s].mean (axis=0)
. plt.text(p[0], pl[l], "#2%d’ % Jj, ha=’center’) # label triangles
>>> plt.xlim(-0.5, 1.5); plt.ylim(-0.5, 1.5)
>>> plt.show()

88 Chapter 1. SciPy Tutorial

http://qhull.org/

SciPy Reference Guide, Release 0.16.1

1.5 T T 1
1
1.0F 3 i
#1
05} 1
#0

0.0F 0 Z]

_0.5 | | |
~0.5 0.0 0.5 1.0 15

The structure of the triangulation is encoded in the following way: the simplices attribute contains the indices of
the points in the point s array that make up the triangle. For instance:

>> i =1

>>> tri.simplices[i, :]

array ([3, 1, 0], dtype=int32)
>>> points[tri.simplices[i, :]]

array ([[1. , 1. 1,
[0., 1.1],
[0., 0.10

Moreover, neighboring triangles can also be found out:

>>> tri.neighbors([i]

array ([-1, 0, -1], dtype=int32)

What this tells us is that this triangle has triangle #0 as a neighbor, but no other neighbors. Moreover, it tells us that
neighbor 0 is opposite the vertex 1 of the triangle:

>>> points[tri.simplices([i, 1]]

array ([0. , 1.11)

Indeed, from the figure we see that this is the case.

Qhull can also perform tesselations to simplices also for higher-dimensional point sets (for instance, subdivision into
tetrahedra in 3-D).

Coplanar points

It is important to note that not all points necessarily appear as vertices of the triangulation, due to numerical precision
issues in forming the triangulation. Consider the above with a duplicated point:

>>> points = np.array([[O0O, O], [O, 11, [1, O], [1, 11, [1, 111)
>>> tri = Delaunay (points)

>>> np.unique (tri.simplices.ravel())

array ([0, 1, 2, 3], dtype=int32)

Observe that point #4, which is a duplicate, does not occur as a vertex of the triangulation. That this happened is
recorded:

1.12. Spatial data structures and algorithms (scipy.spatial) 89

SciPy Reference Guide, Release 0.16.1

>>> tri.coplanar
array ([[4, 0, 3]], dtype=int32)

This means that point 4 resides near triangle 0 and vertex 3, but is not included in the triangulation.

Note that such degeneracies can occur not only because of duplicated points, but also for more complicated geometrical
reasons, even in point sets that at first sight seem well-behaved.

However, Qhull has the “QJ” option, which instructs it to perturb the input data randomly until degeneracies are
resolved:

>>> tri = Delaunay (points, ghull_options="QJ Pp")
>>> points[tri.simplices]
array ([[[1, 11,

=
~
o

~ N~ 0~

~

~ 0~

~

PR OORFR ORREREO
<
P PR OR R ORREO

~

~

Two new triangles appeared. However, we see that they are degenerate and have zero area.

1.12.2 Convex hulls

Convex hull is the smallest convex object containing all points in a given point set.
These can be computed via the Qhull wrappers in scipy.spatial as follows:

>>> from scipy.spatial import ConvexHull
>>> points = np.random.rand (30, 2) # 30 random points in 2-D
>>> hull = ConvexHull (points)

The convex hull is represented as a set of N-1 dimensional simplices, which in 2-D means line segments. The storage
scheme is exactly the same as for the simplices in the Delaunay triangulation discussed above.

We can illustrate the above result:

>>> import matplotlib.pyplot as plt

>>> plt.plot (points[:,0], points[:,1], ’'o’)

>>> for simplex in hull.simplices:

>>> plt.plot (points[simplex, 0], points[simplex, 1], "k-7")
>>> plt.show ()

90 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

The same can be achieved with scipy.spatial.convex_hull_plot_2d.

1.12.3 Voronoi diagrams

A Voronoi diagram is a subdivision of the space into the nearest neighborhoods of a given set of points.

There are two ways to approach this object using scipy.spatial. First, one can use the KDTree to answer the
question “which of the points is closest to this one”, and define the regions that way:

>>> from scipy.spatial import KDTree

>>> points = np.array([([(o, 01, (0, 11, [0, 2], [, O, T[1, 11, [1, 2],
[2, 01, 12, 11, [2, 211)

>>> tree = KDTree (points)
>>> tree.query ([0.1, 0.117)
(0.14142135623730953, 0)

So the point (0.1, 0.1) belongs to region 0. In color:

>>> x = np.linspace(-0.5, 2.5, 31)

>>> y = np.linspace(-0.5, 2.5, 33)

>>> xx, yy = np.meshgrid(x, vy)

>>> xy = np.c_[xx.ravel(), yy.ravel()]

>>> import matplotlib.pyplot as plt

>>> plt.pcolor(x, y, tree.query(xy)[l].reshape (33, 31))
>>> plt.plot (points[:,0], points[:,1], "ko’)

>>> plt.show ()

This does not, however, give the Voronoi diagram as a geometrical object.
The representation in terms of lines and points can be again obtained via the Qhull wrappers in scipy.spatial:

>>> from scipy.spatial import Voronoi

>>> vor = Voronoi (points)
>>> vor.vertices
array ([[0.5, 0.5],

[1.5, 0.51,

[0.5, 1.57,

[1.5 1.511)

’

1.12. Spatial data structures and algorithms (scipy.spatial) 91

SciPy Reference Guide, Release 0.16.1

The Voronoi vertices denote the set of points forming the polygonal edges of the Voronoi regions. In this case, there
are 9 different regions:

>>> vor.regions
[[_17 O]/ [_17 1]/ [lr _17 O]I [37 _17 2]/ [_11 3}7 [_lr 2}7 [31 1! Or 2]! [21 _17 O]I

Negative value —1 again indicates a point at infinity. Indeed, only one of the regions, [3, 1, 0, 2], is bounded.
Note here that due to similar numerical precision issues as in Delaunay triangulation above, there may be fewer
Voronoi regions than input points.

The ridges (lines in 2-D) separating the regions are described as a similar collection of simplices as the convex hull
pieces:

>>> vor.ridge_vertices
[[_lr O]/ [_17 O]/ [_1/ 1}! [_ll 1}! [OI 1}/ [_11 3}! [—1, 2]! [21 3J! [—1, 3]! [_l! 2]/
These numbers indicate indices of the Voronoi vertices making up the line segments. —1 is again a point at infinity —

only four of the 12 lines is a bounded line segment while the others extend to infinity.

The Voronoi ridges are perpendicular to lines drawn between the input points. Which two points each ridge corre-
sponds to is also recorded:

>>> vor.ridge_points
array ([[0, 31,

~
=

~

~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~

SO N o O U U woy oY O
~
P P DN 0o J W

~

N

, dtype=int32)

This information, taken together, is enough to construct the full diagram.
We can plot it as follows. First the points and the Voronoi vertices:

>>> plt.plot (points[:,0], points[:,1], '0o’)
>>> plt.plot (vor.vertices[:,0], vor.vertices([:,1], "*")
>>> plt.xlim(-1, 3); plt.ylim(-1, 3)

Plotting the finite line segments goes as for the convex hull, but now we have to guard for the infinite edges:

>>> for simplex in vor.ridge_vertices:

>>> simplex = np.asarray (simplex)
>>> if np.all(simplex >= 0):
>>> plt.plot (vor.vertices[simplex, 0], vor.vertices[simplex,1], "k-")

The ridges extending to infinity require a bit more care:

>>> center = points.mean (axis=0)

>>> for pointidx, simplex in zip(vor.ridge_points, vor.ridge_vertices):
>>> simplex = np.asarray (simplex)

>>> if np.any(simplex < 0):

>>> i = simplex[simplex >= 0][0] # finite end Voronol vertex
>>> t = points[pointidx[1]] - points[pointidx[0]] # tangent
>>> t /= np.linalg.norm(t)

>>> n = np.array([-t[1], t[0]]) # normal

92 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

>>> midpoint = points[pointidx] .mean (axis=0)
>>> far_point = vor.vertices[i] + np.sign(np.dot (midpoint - center, n)) » n = 100
>>> plt.plot ([vor.vertices[i,0], far_point[0]],

[vor.vertices[i,1], far_point[1l]], "k--7")

>>> plt.show ()

This plot can also be created using scipy.spatial.voronoi_plot_2d.

1.13 Statistics (scipy.stats)

1.13.1 Introduction

In this tutorial we discuss many, but certainly not all, features of scipy.stats. The intention here is to provide a
user with a working knowledge of this package. We refer to the reference manual for further details.

Note: This documentation is work in progress.

1.13.2 Random Variables

There are two general distribution classes that have been implemented for encapsulating continuous random variables
and discrete random variables . Over 80 continuous random variables (RVs) and 10 discrete random variables have
been implemented using these classes. Besides this, new routines and distributions can easily added by the end user.
(If you create one, please contribute it).

All of the statistics functions are located in the sub-package scipy.stats and a fairly complete listing of these
functions can be obtained using info (stats). The list of the random variables available can also be obtained from
the docstring for the stats sub-package.

In the discussion below we mostly focus on continuous RVs. Nearly all applies to discrete variables also, but we point
out some differences here: Specific Points for Discrete Distributions.

Getting Help

First of all, all distributions are accompanied with help functions. To obtain just some basic information we can call

>>> from scipy import stats
>>> from scipy.stats import norm
>>> print norm.__doc

To find the support, i.e., upper and lower bound of the distribution, call:

[}

>>> print ’'bounds of distribution lower: , upper: " % (norm.a,norm.b)
bounds of distribution lower: —-inf, upper: inf

We can list all methods and properties of the distribution with dir (norm). As it turns out, some of the methods
are private methods although they are not named as such (their name does not start with a leading underscore), for
example veccdf, are only available for internal calculation (those methods will give warnings when one tries to use
them, and will be removed at some point).

To obtain the real main methods, we list the methods of the frozen distribution. (We explain the meaning of a frozen
distribution below).

1.13. Statistics (scipy.stats) 93

http://docs.scipy.org/doc/scipy/reference/stats.html

SciPy Reference Guide, Release 0.16.1

>>> rv = norm()
>>> dir (rv) # reformatted
["_class__ ', '__delattr__ ', ’'__dict__ ', ’'__doc__', ’"__getattribute_ ',

" __hash__’, ' init__ ", ’'__module_ ', '__new__ ' ’ reduce__ ', ’'_ reduce_ex_ ',

—_ —

’

' __repr__ ', '__setattr__ ', '_str__ ', '__weakref_ ', ’"args’, ’'cdf’, ’dist’,
"entropy’, 'isf’, ’"kwds’, 'moment’, ’'pdf’, ’'pmf’, 'ppf’, ’'rvs’, ’'sf’, ’'stats’]
Finally, we can obtain the list of available distribution through introspection:

>>> import warnings
>>> warnings.simplefilter (’ ignore’, DeprecationWarning)

>>> dist_continu = [d for d in dir (stats) if
isinstance (getattr(stats,d), stats.rv_continuous)]
>>> dist_discrete = [d for d in dir(stats) if

C.. isinstance (getattr (stats,d), stats.rv_discrete)]
>>> print 'number of continuous distributions:’, len(dist_continu)
number of continuous distributions: 84

>>> print 'number of discrete distributions: ’, len(dist_discrete)
number of discrete distributions: 12

Common Methods

The main public methods for continuous RVs are:
* rvs: Random Variates
* pdf: Probability Density Function
e cdf: Cumulative Distribution Function
e sf: Survival Function (1-CDF)
* ppf: Percent Point Function (Inverse of CDF)
e isf: Inverse Survival Function (Inverse of SF)
e stats: Return mean, variance, (Fisher’s) skew, or (Fisher’s) kurtosis
* moment: non-central moments of the distribution
Let’s take a normal RV as an example.

>>> norm.cdf (0)
0.5

To compute the cdf at a number of points, we can pass a list or a numpy array.

>>> norm.cdf ([-1., O, 11])

array ([0.15865525, 0.5 , 0.841344757)
>>> import numpy as np

>>> norm.cdf (np.array([-1., 0, 11]))

array ([0.15865525, 0.5 , 0.841344757)

Thus, the basic methods such as pdf, cdf, and so on are vectorized with np.vectorize.
Other generally useful methods are supported too:

>>> norm.mean (), norm.std(), norm.var ()
(0.0, 1.0, 1.0)

>>> norm.stats (moments = "mv")

(array (0.0), array(1.0))

94 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

To find the median of a distribution we can use the percent point function pp £, which is the inverse of the cdf:

>>> norm.ppf (0.5)
0.0

To generate a sequence of random variates, use the size keyword argument:

>>> norm.rvs (size=5)
array ([-0.35687759, 1.34347647, -0.11710531, -1.00725181, -0.51275702])

Don’t think that norm. rvs (5) generates 5 variates:

>>> norm.rvs (5)
7.131624370075814

Here, 5 with no keyword is being interpreted as the first possible keyword argument, 1oc, which is the first of a pair
of keyword arguments taken by all continuous distributions. This brings us to the topic of the next subsection.

Shifting and Scaling
All continuous distributions take 1oc and scale as keyword parameters to adjust the location and scale of the
distribution, e.g. for the standard normal distribution the location is the mean and the scale is the standard deviation.

>>> norm.stats(loc = 3, scale = 4, moments = "mv")
(array (3.0), array(16.0))

In many cases the standardized distribution for a random variable X is obtained through the transformation (X -
loc) / scale. The default values are loc = 0 and scale = 1.

Smart use of 1oc and scale can help modify the standard distributions in many ways. To illustrate the scaling
further, the cdf of an exponentially distributed RV with mean 1/ is given by

F(z) =1—exp(—Ax)

By applying the scaling rule above, it can be seen that by taking scale = 1./lambda we get the proper scale.

>>> from scipy.stats import expon
>>> expon.mean (scale=3.)
3.0

Note: Distributions that take shape parameters may require more than simple application of 1oc and/or scale to
achieve the desired form. For example, the distribution of 2-D vector lengths given a constant vector of length R

perturbed by independent N(0, o) deviations in each component is rice(R /o, scale= o). The first argument is a shape
parameter that needs to be scaled along with z.

The uniform distribution is also interesting:

>>> from scipy.stats import uniform
>>> uniform.cdf ([0, 1, 2, 3, 4, 5], loc = 1, scale = 4)
array([0. , 0. , 0.25, 0.5, 0.75, 1. 1)

Finally, recall from the previous paragraph that we are left with the problem of the meaning of norm.rvs (5). As it
turns out, calling a distribution like this, the first argument, i.e., the 5, gets passed to set the 1oc parameter. Let’s see:

>>> np.mean (norm.rvs (5, size=500))
4.983550784784704

Thus, to explain the output of the example of the last section: norm. rvs (5) generates a single normally distributed
random variate with mean 1oc=>5, because of the default size=1.

1.13. Statistics (scipy.stats) 95

SciPy Reference Guide, Release 0.16.1

We recommend that you set 1oc and scale parameters explicitly, by passing the values as keywords rather than as
arguments. Repetition can be minimized when calling more than one method of a given RV by using the technique of
Freezing a Distribution, as explained below.

Shape Parameters

While a general continuous random variable can be shifted and scaled with the 1oc and scale parameters, some
distributions require additional shape parameters. For instance, the gamma distribution, with density

A(A‘r)ail —Az

v(z,a) = Wa)

requires the shape parameter a. Observe that setting A can be obtained by setting the scale keyword to 1/A.

Let’s check the number and name of the shape parameters of the gamma distribution. (We know from the above that
this should be 1.)

>>> from scipy.stats import gamma
>>> gamma.numargs

1

>>> gamma.shapes

Ial

Now we set the value of the shape variable to 1 to obtain the exponential distribution, so that we compare easily
whether we get the results we expect.

>>> gamma(l, scale=2.).stats (moments="mv")
(array (2.0), array(4.0))

Notice that we can also specify shape parameters as keywords:

>>> gamma (a=1, scale=2.).stats (moments="mv")
(array (2.0), array(4.0))

Freezing a Distribution
Passing the 1oc and scale keywords time and again can become quite bothersome. The concept of freezing a RV is
used to solve such problems.

>>> rv = gamma (l, scale=2.)

By using rv we no longer have to include the scale or the shape parameters anymore. Thus, distributions can be used
in one of two ways, either by passing all distribution parameters to each method call (such as we did earlier) or by
freezing the parameters for the instance of the distribution. Let us check this:

>>> rv.mean (), rv.std()
(2.0, 2.0)

This is indeed what we should get.

Broadcasting

The basic methods pdf and so on satisfy the usual numpy broadcasting rules. For example, we can calculate the
critical values for the upper tail of the t distribution for different probabilites and degrees of freedom.

96 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

>>> stats.t.isf([0.1, 0.05, 0.011, [[10], [11]11)
array ([[1.37218364, 1.81246112, 2.76376946],
[1.36343032, 1.79588482, 2.71807918]11)

Here, the first row are the critical values for 10 degrees of freedom and the second row for 11 degrees of freedom
(d.o.f.). Thus, the broadcasting rules give the same result of calling i s f twice:

>>> stats.t.isf([0.1, 0.05, 0.01]1, 10)
array ([1.37218364, 1.81246112, 2.76376946])
>>> stats.t.isf([0.1, 0.05, 0.01], 11)
array ([1.36343032, 1.79588482, 2.71807918])

If the array with probabilities, i.e, [0.1, 0.05, 0.01] and the array of degrees of freedom i.e., (10, 11,
121, have the same array shape, then element wise matching is used. As an example, we can obtain the 10% tail for
10 d.of., the 5% tail for 11 d.o.f. and the 1% tail for 12 d.o.f. by calling

>>> stats.t.isf([0.1, 0.05, 0.011, [10, 11, 121)
array ([1.37218364, 1.79588482, 2.68099799])

Specific Points for Discrete Distributions

Discrete distribution have mostly the same basic methods as the continuous distributions. However pdf is replaced
the probability mass function pmf, no estimation methods, such as fit, are available, and scale is not a valid keyword
parameter. The location parameter, keyword 1oc can still be used to shift the distribution.

The computation of the cdf requires some extra attention. In the case of continuous distribution the cumulative distri-
bution function is in most standard cases strictly monotonic increasing in the bounds (a,b) and has therefore a unique
inverse. The cdf of a discrete distribution, however, is a step function, hence the inverse cdf, i.e., the percent point
function, requires a different definition:

ppf(g) = min{x : cdf(x) >= g, x integer}

For further info, see the docs here.
We can look at the hypergeometric distribution as an example

>>> from scipy.stats import hypergeom
>>> [M, n, N] = [20, 7, 12]

If we use the cdf at some integer points and then evaluate the ppf at those cdf values, we get the initial integers back,
for example

>>> x = np.arange (4) x2

>>> x

array ([0, 2, 4, 61)

>>> prb = hypergeom.cdf (x, M, n, N)

>>> prb

array ([0.0001031991744066, 0.0521155830753351, 0.6083591331269301,
0.98978328173373861])

>>> hypergeom.ppf (prb, M, n, N)

array ([0., 2., 4., 6.])

If we use values that are not at the kinks of the cdf step function, we get the next higher integer back:

>>> hypergeom.ppf (prb + 1le-8, M, n, N)
array ([1., 3., 5., 7.1)
>>> hypergeom.ppf (prb - 1e-8, M, n, N)
array ([0., 2., 4., 6.])

1.13. Statistics (scipy.stats) 97

http://docs.scipy.org/doc/scipy/reference/tutorial/stats/discrete.html#percent-point-function-inverse-cdf

SciPy Reference Guide, Release 0.16.1

Fitting Distributions

The main additional methods of the not frozen distribution are related to the estimation of distribution parameters:

e fit: maximum likelihood estimation of distribution parameters, including location
and scale

* fit_loc_scale: estimation of location and scale when shape parameters are given
 nnlf: negative log likelihood function

 expect: Calculate the expectation of a function against the pdf or pmf

Performance Issues and Cautionary Remarks

The performance of the individual methods, in terms of speed, varies widely by distribution and method. The results of
a method are obtained in one of two ways: either by explicit calculation, or by a generic algorithm that is independent
of the specific distribution.

Explicit calculation, on the one hand, requires that the method is directly specified for the given distribution, either
through analytic formulas or through special functions in scipy.special or numpy . random for rvs. These are
usually relatively fast calculations.

The generic methods, on the other hand, are used if the distribution does not specify any explicit calcula-
tion. To define a distribution, only one of pdf or cdf is necessary; all other methods can be derived using nu-
meric integration and root finding. However, these indirect methods can be very slow. As an example, rgh =
stats.gausshyper.rvs (0.5, 2, 2, 2, size=100) creates random variables in a very indirect way and
takes about 19 seconds for 100 random variables on my computer, while one million random variables from the
standard normal or from the t distribution take just above one second.

Remaining Issues
The distributions in scipy.stats have recently been corrected and improved and gained a considerable test suite,
however a few issues remain:

* the distributions have been tested over some range of parameters, however in some corner ranges, a few incorrect
results may remain.

¢ the maximum likelihood estimation in fit does not work with default starting parameters for all distributions
and the user needs to supply good starting parameters. Also, for some distribution using a maximum likelihood
estimator might inherently not be the best choice.

1.13.3 Building Specific Distributions

The next examples shows how to build your own distributions. Further examples show the usage of the distributions
and some statistical tests.

Making a Continuous Distribution, i.e., Subclassing rv_continuous

Making continuous distributions is fairly simple.

>>> from scipy import stats
>>> class deterministic_gen (stats.rv_continuous) :
def _cdf (self, x):
return np.where(x < 0, 0., 1.)

98 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

def stats(self):
return 0., 0., 0., O.

>>> deterministic = deterministic_gen (name="deterministic™)
>>> deterministic.cdf (np.arange (-3, 3, 0.5))
array ([0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1.1)

Interestingly, the pdf is now computed automatically:

>>> deterministic.pdf (np.arange (-3, 3, 0.5))

array ([0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00,
5.83333333e+04, 4.16333634e-12,
4.16333634e-12, 4.16333634e-12,

.00000000e+00,
.00000000e+00,
.16333634e-12,
.16333634e-127)

Do O O

Be aware of the performance issues mentions in Performance Issues and Cautionary Remarks. The computation of
unspecified common methods can become very slow, since only general methods are called which, by their very nature,
cannot use any specific information about the distribution. Thus, as a cautionary example:

>>> from scipy.integrate import quad
>>> quad(deterministic.pdf, -le-1, le-1)
(4.163336342344337e-13, 0.0)

But this is not correct: the integral over this pdf should be 1. Let’s make the integration interval smaller:

>>> quad(deterministic.pdf, -1le-3, 1le-3) # warning removed
(1.000076872229173, 0.0010625571718182458)

This looks better. However, the problem originated from the fact that the pdf is not specified in the class definition of
the deterministic distribution.

Subclassing rv_discrete

In the following we use stats.rv_discrete to generate a discrete distribution that has the probabilities of the
truncated normal for the intervals centered around the integers.

General Info

From the docstring of rv_discrete, i.e.,

>>> from scipy.stats import rv_discrete
>>> help (rv_discrete)

we learn that:

“You can construct an aribtrary discrete rv where P{X=xk} = pk by passing to the rv_discrete initialization
method (through the values= keyword) a tuple of sequences (xk, pk) which describes only those values of X
(xk) that occur with nonzero probability (pk).”

Next to this, there are some further requirements for this approach to work:
* The keyword name is required.
* The support points of the distribution xk have to be integers.
* The number of significant digits (decimals) needs to be specified.

In fact, if the last two requirements are not satisfied an exception may be raised or the resulting numbers may be
incorrect.

An Example

1.13. Statistics (scipy.stats) 99

SciPy Reference Guide, Release 0.16.1

Let’s do the work. First

>>> npoints = 20 # number of integer support points of the distribution minus 1
>>> npointsh = npoints / 2

>>> npointsf = float (npoints)

>>> nbound = 4 # bounds for the truncated normal

>>> normbound = (l1+1/npointsf) % nbound # actual bounds of truncated normal

>>> grid = np.arange (—npointsh, npointsh+2, 1) # integer grid

>>> gridlimitsnorm = (grid-0.5) / npointsh » nbound # bin limits for the truncnorm
>>> gridlimits = grid - 0.5 # used later in the analysis

>>> grid = grid[:-1]

>>> probs = np.diff(stats.truncnorm.cdf (gridlimitsnorm, -normbound, normbound))
>>> gridint = grid

And finally we can subclass rv_discrete:

>>> no

rmdiscrete =

np.round (probs,

stats.rv_discrete(values=(gridint,
decimals=7)),

name=’'normdiscrete’)

Now that we have defined the distribution, we have access to all common methods of discrete distributions.

>>> print 'mean = %6.4f, variance =
. normdiscrete.stats (moments
mean = -0.0000, variance = 6.3302,

>>> nd_std =

Testing the Implementation

skew

np.sqrt (normdiscrete.stats (moments='v"))

.4f, skew = %6.4f, kurtosis = %6.4f"% \
"mvsk’)
= 0.0000, kurtosis = -0.0076

Let’s generate a random sample and compare observed frequencies with the probabilities.

>>>
>>>
>>> rv
>>> rv
>>> f,
>>> sf
>>>
[[—-1.
-9.
-8.
=7.
-6.
-5.
-4
-3.
-2.
-1.

o

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

O 0 J o U W N

n_
np.random.seed (87655678)
normdiscrete.rvs (size=n_sample)

sample = 500
s =

snd = rvs

1 = np.histogram(rvs,
np.vstack ([gridint,
print sfreq

req =

00000000e+01
00000000e+00
00000000e+00
00000000e+00
00000000e+00
00000000e+00

.00000000e+00

00000000e+00
00000000e+00
00000000e+00

.00000000e+00
.00000000e+00
.00000000e+00
.00000000e+00
.00000000e+00
.00000000e+00
.00000000e+00
.00000000e+00
.00000000e+00
.00000000e+00
.00000000e+01

O O O W P Ul Ul o ~JJ0 W wuwkEDMNMOO O

.00000000e+00
.00000000e+00
.00000000e+00
.00000000e+00
.00000000e+00
.00000000e+00
.60000000e+01
.70000000e+01
.10000000e+01
.10000000e+01
.40000000e+01
.90000000e+01
.50000000e+01
.00000000e+01
.70000000e+01
.10000000e+01
.00000000e+00
.00000000e+00
.00000000e+00
.00000000e+00
.00000000e+00

NP O sRFPEDNDWOUO I dJ0 WP S 2 oD

bins=gridlimits)
f, probsxn_sample]).T

.95019349e-02]
.32294142e-01]
.06497902e-01]
.65568919e+00]
.62125309e+00]
.10137298e+01]
.24137683e+01]
.89503370e+01]
.78004747e+01]
.32455414e+01]
.92618251e+01]
.32455414e+01]
.78004747e+01]
.89503370e+01]
.24137683e+01]
.10137298e+01]
.62125309e+00]
.65568919e+00]
.06497902e-01]
.32294142e-01]
.95019349e-0211]

fix the seed for replicability

100

Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

0.18 Frequency and Probability of normdiscrete

0.16} Bl true |
0.14} B sample
0.12} s
0.10f :
0.08} s
0.06 :
0.04 :
0.02} s
0.00

Frequency

109-8-7-6-5-4-3-2-10123456 78910

Cumulative Frequency and CDF of normdiscrete

1~0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
El true
B sample

0.8}

0.6

cdf

0.4

0.2

0.0
-109-8-7-6-5-4-3-2-10123456 78910

Next, we can test, whether our sample was generated by our normdiscrete distribution. This also verifies whether the
random numbers are generated correctly.

The chisquare test requires that there are a minimum number of observations in each bin. We combine the tail bins
into larger bins so that they contain enough observations.

>>> f2 = np.hstack ([f[:5].sum(), f£[5:-5], f£[-5:].sum()])
>>> p2 = np.hstack ([probs[:5].sum(), probs[5:-5], probs[-5:].sum()])

>>> ch2, pval = stats.chisquare(f2, p2+n_sample)
>>> print ’‘chisquare for normdiscrete: chi2 = pvalue = " % (ch2, pval)
chisquare for normdiscrete: chi2 = 12.466 pvalue = 0.4090

The pvalue in this case is high, so we can be quite confident that our random sample was actually generated by the
distribution.

1.13. Statistics (scipy.stats) 101

SciPy Reference Guide, Release 0.16.1

1.13.4 Analysing One Sample

First, we create some random variables. We set a seed so that in each run we get identical results to look at. As an
example we take a sample from the Student t distribution:

>>> np.random.seed (282629734)
>>> x = stats.t.rvs (10, size=1000)

Here, we set the required shape parameter of the t distribution, which in statistics corresponds to the degrees of
freedom, to 10. Using size=1000 means that our sample consists of 1000 independently drawn (pseudo) random
numbers. Since we did not specify the keyword arguments /oc and scale, those are set to their default values zero and
one.

Descriptive Statistics

X is a numpy array, and we have direct access to all array methods, e.g.

>>> print x.max (), x.min() # equivalent to np.max(x), np.min(x)
5.26327732981 -3.78975572422

>>> print x.mean(), x.var() # equivalent to np.mean(x), np.var(x)
0.0140610663985 1.28899386208

How do the some sample properties compare to their theoretical counterparts?

>>> m, v, s, k = stats.t.stats (10, moments='mvsk’)
>>> n, (smin, smax), sm, sv, ss, sk = stats.describe (x)

>>> print ’‘distribution:’,

distribution:

>>> sstr = 'mean = , variance = , skew = , kurtosis = ’
>>> print sstr % (m, v, s ,k)

mean = 0.0000, variance = 1.2500, skew = 0.0000, kurtosis = 1.0000

>>> print ’'sample: r,

sample:

>>> print sstr % (sm, sv, ss, sk)

mean = 0.0141, variance = 1.2903, skew = 0.2165, kurtosis = 1.0556

Note: stats.describe uses the unbiased estimator for the variance, while np.var is the biased estimator.

For our sample the sample statistics differ a by a small amount from their theoretical counterparts.

T-test and KS-test
We can use the t-test to test whether the mean of our sample differs in a statistcally significant way from the theoretical
expectation.

>>> print 't-statistic = pvalue = " % stats.ttest_lsamp(x, m)
t-statistic = 0.391 pvalue = 0.6955

The pvalue is 0.7, this means that with an alpha error of, for example, 10%, we cannot reject the hypothesis that the
sample mean is equal to zero, the expectation of the standard t-distribution.

As an exercise, we can calculate our ttest also directly without using the provided function, which should give us the
same answer, and so it does:

>>> tt = (sm-m)/np.sqgrt(sv/float (n)) # t-statistic for mean
>>> pval = stats.t.sf(np.abs(tt), n-1)*2 # two-sided pvalue = Prob(abs(t)>tt)

102 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

>>> print 't-statistic = pvalue = "% (tt, pval)
t-statistic = 0.391 pvalue = 0.6955

The Kolmogorov-Smirnov test can be used to test the hypothesis that the sample comes from the standard t-distribution

>>> print ’'KS-statistic D = pvalue = " % stats.kstest (x, 't’, (10,))
KS-statistic D = 0.016 pvalue = 0.9606

Again the p-value is high enough that we cannot reject the hypothesis that the random sample really is distributed
according to the t-distribution. In real applications, we don’t know what the underlying distribution is. If we perform
the Kolmogorov-Smirnov test of our sample against the standard normal distribution, then we also cannot reject the
hypothesis that our sample was generated by the normal distribution given that in this example the p-value is almost
40%.

>>> print ’'KS-statistic D = pvalue = " % stats.kstest (x, norm’)
KS-statistic D = 0.028 pvalue = 0.3949

However, the standard normal distribution has a variance of 1, while our sample has a variance of 1.29. If we stan-
dardize our sample and test it against the normal distribution, then the p-value is again large enough that we cannot
reject the hypothesis that the sample came form the normal distribution.

>>> d, pval = stats.kstest((x-x.mean())/x.std(), ’'norm’)
>>> print 'KS-statistic D = pvalue = "% (d, pval)
KS-statistic D = 0.032 pvalue = 0.2402

Note: The Kolmogorov-Smirnov test assumes that we test against a distribution with given parameters, since in the
last case we estimated mean and variance, this assumption is violated, and the distribution of the test statistic on which
the p-value is based, is not correct.

Tails of the distribution

Finally, we can check the upper tail of the distribution. We can use the percent point function ppf, which is the inverse
of the cdf function, to obtain the critical values, or, more directly, we can use the inverse of the survival function

>>> crit0l, crit05, critl0 = stats.t.ppf([1-0.01, 1-0.05, 1-0.10], 10)

>>> print ’‘critical values from ppf at 1%%, 5 and 10 "% (crit0l, crit05,

critical values from ppf at 1%, 5% and 10% 2.7638 1.8125 1.3722

critl0

>>> print ‘critical values from isf at 1%%, 5 and 10 "% tuple(stats.t.isf ([0.01

critical values from isf at 1%, $ and 10% 2.7638 1.8125 1.3722

>>> freqg0l = np.sum(x>crit0l) / float(n) » 100

>>> freg05 = np.sum(x>crit05) / float(n) = 100

>>> freql0 = np.sum(x>critl0) / float(n) * 100

>>> print ’'sample —-frequency at 1%%, 5 and 10 tail "% (freq0l, freqg05,
sample %-frequency at 1%, 5% and 10% tail 1.4000 5.8000 10.5000

In all three cases, our sample has more weight in the top tail than the underlying distribution. We can briefly check
a larger sample to see if we get a closer match. In this case the empirical frequency is quite close to the theoretical
probability, but if we repeat this several times the fluctuations are still pretty large.

>>> freq051 = np.sum(stats.t.rvs (10, size=10000) > crit05) / 10000.0 = 100
>>> print ’larger sample —-frequency at 5 tail "% freqg051
larger sample %$-frequency at 5% tail 4.8000

We can also compare it with the tail of the normal distribution, which has less weight in the tails:

1.13. Statistics (scipy.stats) 103

freqlO

SciPy Reference Guide, Release 0.16.1

oe
-

>>> print 'tail prob. of normal at 1%%, 5 and 10 4
.. tuple (stats.norm.sf ([crit0l, crit05, critl0])+100)
tail prob. of normal at 1%, 5% and 10% 0.2857 3.4957 8.5003

The chisquare test can be used to test, whether for a finite number of bins, the observed frequencies differ significantly
from the probabilites of the hypothesized distribution.

>>> quantiles = [0.0, 0.01, 0.05, 0.1, 1-0.10, 1-0.05, 1-0.01, 1.0]
>>> crit = stats.t.ppf(quantiles, 10)
>>> print crit

[-Inf -2.76376946 -1.81246112 -1.37218364 1.37218364 1.81246112
2.76376946 Inf]

>>> n_sample = x.size

>>> freqcount = np.histogram(x, bins=crit) [0]

>>> tprob = np.diff (quantiles)
>>> nprob = np.diff (stats.norm.cdf (crit))

>>> tch, tpval = stats.chisquare (freqcount, tprobxn_sample)

>>> nch, npval = stats.chisquare (fregcount, nprobxn_sample)

>>> print ’'chisquare for t: chiz = pvalue = " % (tch, tpval)
chisquare for t: chi2 = 2.300 pvalue = 0.8901

>>> print ’‘chisquare for normal: chi2 = pvalue = " % (nch, npval)

chisquare for normal: chi2 = 64.605 pvalue = 0.0000

We see that the standard normal distribution is clearly rejected while the standard t-distribution cannot be rejected.
Since the variance of our sample differs from both standard distribution, we can again redo the test taking the estimate
for scale and location into account.

The fit method of the distributions can be used to estimate the parameters of the distribution, and the test is repeated
using probabilites of the estimated distribution.

>>> tdof, tloc, tscale = stats.t.fit (x)

>>> nloc, nscale = stats.norm.fit (x)

>>> tprob = np.diff (stats.t.cdf(crit, tdof, loc=tloc, scale=tscale))
>>> nprob = np.diff (stats.norm.cdf (crit, loc=nloc, scale=nscale))

>>> tch, tpval = stats.chisquare (freqcount, tprobxn_sample)

>>> nch, npval = stats.chisquare (fregcount, nprobxn_sample)

>>> print ’'chisquare for t: chi2z = pvalue = " % (tch, tpval)
chisquare for t: chi2 = 1.577 pvalue = 0.9542

>>> print ’‘chisquare for normal: chi2 = pvalue = " % (nch, npval)

chisquare for normal: chi2 = 11.084 pvalue = 0.0858
Taking account of the estimated parameters, we can still reject the hypothesis that our sample came from a normal

distribution (at the 5% level), but again, with a p-value of 0.95, we cannot reject the t distribution.

Special tests for normal distributions

Since the normal distribution is the most common distribution in statistics, there are several additional functions
available to test whether a sample could have been drawn from a normal distribution

First we can test if skew and kurtosis of our sample differ significantly from those of a normal distribution:

>>> print ’'normal skewtest teststat = pvalue = " % stats.skewtest (x)

normal skewtest teststat = 2.785 pvalue = 0.0054

>>> print ’'normal kurtosistest teststat = pvalue = " % stats.kurtosistest (x)
normal kurtosistest teststat = 4.757 pvalue = 0.0000

These two tests are combined in the normality test

104 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

o

>>> print ’'normaltest teststat = pvalue = ' % stats.normaltest (x)
normaltest teststat = 30.379 pvalue = 0.0000

In all three tests the p-values are very low and we can reject the hypothesis that the our sample has skew and kurtosis
of the normal distribution.

Since skew and kurtosis of our sample are based on central moments, we get exactly the same results if we test the
standardized sample:

oe

\

Ce. stats.normaltest ((x—-x.mean())/x.std())
normaltest teststat = 30.379 pvalue = 0.0000

>>> print ‘normaltest teststat = pvalue = !

Because normality is rejected so strongly, we can check whether the normaltest gives reasonable results for other
cases:

>>> print 'normaltest teststat = pvalue = " % stats.normaltest (stats.t.rvs (10, size=100))
normaltest teststat = 4.698 pvalue = 0.0955
>>> print ’‘normaltest teststat = pvalue = " % stats.normaltest (stats.norm.rvs (size=1000))
normaltest teststat = 0.613 pvalue = 0.7361

When testing for normality of a small sample of t-distributed observations and a large sample of normal distributed
observation, then in neither case can we reject the null hypothesis that the sample comes from a normal distribution.
In the first case this is because the test is not powerful enough to distinguish a t and a normally distributed random
variable in a small sample.

1.13.5 Comparing two samples

In the following, we are given two samples, which can come either from the same or from different distribution, and
we want to test whether these samples have the same statistical properties.

Comparing means

Test with sample with identical means:

>>> rvsl = stats.norm.rvs(loc=5, scale=10, size=500)
>>> rvs2 = stats.norm.rvs(loc=5, scale=10, size=500)
>>> stats.ttest_ind(rvsl, rvs2)
(-0.54890361750888583, 0.5831943748663857)

Test with sample with different means:

>>> rvs3 = stats.norm.rvs (loc=8, scale=10, size=500)
>>> stats.ttest_ind(rvsl, rvs3)
(-4.5334142901750321, 6.507128186505895e-006)

Kolmogorov-Smirnov test for two samples ks_2samp
For the example where both samples are drawn from the same distribution, we cannot reject the null hypothesis since
the pvalue is high

>>> stats.ks_2samp (rvsl, rvs2)
(0.025999999999999995, 0.99541195173064878)

In the second example, with different location, i.e. means, we can reject the null hypothesis since the pvalue is below
1%

1.13. Statistics (scipy.stats) 105

SciPy Reference Guide, Release 0.16.1

>>> stats.ks_2samp (rvsl, rvs3)
(0.11399999999999999, 0.0027132103661283141)

1.13.6 Kernel Density Estimation

A common task in statistics is to estimate the probability density function (PDF) of a random variable from a set
of data samples. This task is called density estimation. The most well-known tool to do this is the histogram. A
histogram is a useful tool for visualization (mainly because everyone understands it), but doesn’t use the available data
very efficiently. Kernel density estimation (KDE) is a more efficient tool for the same task. The gaussian_kde
estimator can be used to estimate the PDF of univariate as well as multivariate data. It works best if the data is

unimodal.

Univariate estimation

We start with a minimal amount of data in order to see how gaussian_kde works, and what the different options
for bandwidth selection do. The data sampled from the PDF is show as blue dashes at the bottom of the figure (this is

called a rug plot):

>>> from scipy import stats
>>> import matplotlib.pyplot as plt

>>> x1 = np.array([-7, -5, 1, 4, 5], dtype=np.float)
>>> kdel = stats.gaussian_kde (x1)
>>> kde2 = stats.gaussian_kde (x1l, bw_method=’silverman’)

>>> fig = plt.figure()
>>> ax = fig.add_subplot (111)

>>> ax.plot(x1l, np.zeros(xl.shape), 'b+t’, ms=20) # rug plot
>>> x_eval = np.linspace(-10, 10, num=200)

>>> ax.plot (x_eval, kdel(x_eval), ’"k-", label="Scott’s Rule")
(

>>> ax.plot (x_eval, kdel(x_eval), 'r-’, label="Silverman’s Rule")

>>> plt.show ()

0.06

0.05

0.04

0.03

0.02

0.01F i

0.00 ||
~10 _5 0 5 10

106

Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

We see that there is very little difference between Scott’s Rule and Silverman’s Rule, and that the bandwidth selection
with a limited amount of data is probably a bit too wide. We can define our own bandwidth function to get a less
smoothed out result.

>>> def my_kde_bandwidth (obj, fac=1./5):
"""We use Scott’s Rule, multiplied by a constant factor."""
return np.power (obj.n, -1./(obj.d+4)) = fac

>>> fig = plt.figure()
>>> ax = fig.add_subplot (111)

>>> ax.plot (xl, np.zeros(xl.shape), 'b+’, ms=20) # rug plot
>>> kde3 = stats.gaussian_kde (x1l, bw_method=my_kde_bandwidth)
>>> ax.plot (x_eval, kde3(x_eval), 'g-’, label="With smaller BW")

>>> plt.show()

0.18 T T T

0.16 -
0.14 -
0.12F -
0.10 .
0.08 .
0.06 - -
0.04 - -
0.02F -

0.00 | | |
-10 -5 0 5 10

We see that if we set bandwidth to be very narrow, the obtained estimate for the probability density function (PDF) is
simply the sum of Gaussians around each data point.

We now take a more realistic example, and look at the difference between the two available bandwidth selection rules.
Those rules are known to work well for (close to) normal distributions, but even for unimodal distributions that are
quite strongly non-normal they work reasonably well. As a non-normal distribution we take a Student’s T distribution
with 5 degrees of freedom.

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

np.random.seed (12456)

x1 = np.random.normal (size=200) # random data, normal distribution
xs = np.linspace(xl.min()-1, xl.max()+1, 200)

kdel = stats.gaussian_kde (x1)

kde2 = stats.gaussian_kde (x1, bw_method=’silverman’)

fig = plt.figure(figsize=(8, 6))

1.13. Statistics (scipy.stats) 107

SciPy Reference Guide, Release 0.16.1

axl = fig.add_subplot (211)

axl.plot (x1, np.zeros(xl.shape), ’"b+’, ms=12) # rug plot
axl.plot (xs, kdel(xs), "k-", label="Scott’s Rule")
axl.plot (xs, kde2(xs), 'b-", label="Silverman’s Rule")
axl.plot (xs, stats.norm.pdf(xs), 'r——', label="True PDF")

axl.set_xlabel ("x")

axl.set_ylabel (' Density’)

axl.set_title("Normal (top) and Student’s TS$_{df=5}$ (bottom) distributions")
axl.legend(loc=1)

x2 = stats.t.rvs (5, size=200) # random data, T distribution
Xs = np.linspace(x2.min() - 1, x2.max() + 1, 200)
kde3 = stats.gaussian_kde (x2)

kded4 = stats.gaussian_kde (x2, bw_method=’silverman’)

ax2 = fig.add_subplot (212)

ax2.plot (x2, np.zeros(x2.shape), ’"b+’, ms=12) # rug plot
ax2.plot (xs, kde3(xs), ’"k-", label="Scott’s Rule")
ax2.plot (xs, kded(xs), ’"b-", label="Silverman’s Rule™)
ax2.plot (xs, stats.t.pdf(xs, 5), "r——', label="True PDF")

ax2.set_xlabel ("x")
ax2.set_ylabel (' Density’)

plt.show ()

108 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

0.40 T

Normal (top) and Student's T,
T T T

5 (bottom) distributions

0.35F
0.30F
0.25F
0.20F
0.15f
0.10F
0.05f

Density

T T T
Scott's Rule |

Silverman's Rule ||
True PDF

7 ~

\ I

0.00 . 1

0.40

0.35f
0.30F
0.25}F
0.20F
0.15f
0.10F
0.05}f

Density

0.00
-6

We now take a look at a bimodal distribution with one wider and one narrower Gaussian feature. We expect that this
will be a more difficult density to approximate, due to the different bandwidths required to accurately resolve each

feature.

>>> from functools import partial

>>> locl, scalel, sizel = (-2, 1,
>>> loc2, scale2, sizez = (2, 0.2,
>>> x2 =

>>> x_eval = np.linspace (x2.min ()
>>> kde = stats.gaussian_kde (x2)
>>> kde2 = stats.gaussian_kde (x2,
>>> kde3 = stats.gaussian_kde (x2,
>>> kded4 = stats.gaussian_kde (x2,
>>> pdf = stats.norm.pdf

>>> bimodal_pdf = pdf(x_eval,

pdf (x_eval,
>>> plt.figure (figsize=(8,
fig.add_subplot (111)

fig =

>>> ax =

np.concatenate ([np.random.normal (loc=locl,
np.random.normal (loc=loc2,

loc=1locl,
loc=loc?2,

175)
50)
size=sizel)

scale=scalel, ,
size=size2)])

scale=scale?2,
500)

-1, x2.max () + 1,

bw_method=’silverman’)
bw_method=partial (my_kde_bandwidth,
bw_method=partial (my_kde_bandwidth,

fac=0.2))
fac=0.5))

/ x2.size + \
/ x2.size

« float (sizel)
« float (size2)

scale=scalel)
scale=scale?2)

6))

1.13. Statistics (scipy.stats)

109

SciPy Reference Guide, Release 0.16.1

>>> ax.plot (x2, np.zeros(x2.shape), ’'b+’, ms=12)

>>> ax.plot (x_eval, kde(x_eval), "k-", label="Scott’s Rule'")

>>> ax.plot (x_eval, kde2(x_eval), 'b-", label="Silverman’s Rule")
>>> ax.plot (x_eval, kde3(x_eval), ’'g-’, label="Scott » 0.2")

>>> ax.plot (x_eval, kde4d (x_eval), ’'c-’, label="Scott %= 0.5")

>>> ax.plot (x_eval, bimodal_pdf, 'r—-", label="Actual PDE")

>>> ax.set_xlim([x_eval.min(), x_eval.max()])
>>> ax.legend(loc=2)

>>> ax.set_xlabel ('x")

>>> ax.set_ylabel ('Density’)

>>> plt.show()

0.5 T T T T
— Scott's Rule
— Silverman's Rule
— Scott * 0.2
0.4H — Scott* 0.5 :
— - Actual PDF

Density

As expected, the KDE is not as close to the true PDF as we would like due to the different characteristic size of the
two features of the bimodal distribution. By halving the default bandwidth (Scott * 0.5) we can do somewhat
better, while using a factor 5 smaller bandwidth than the default doesn’t smooth enough. What we really need though
in this case is a non-uniform (adaptive) bandwidth.

Multivariate estimation
With gaussian_kde we can perform multivariate as well as univariate estimation. We demonstrate the bivariate
case. First we generate some random data with a model in which the two variates are correlated.

>>> def measure (n):
"""Measurement model, return two coupled measurements."""

110 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

ml = np.random.normal (size=n)
m2 = np.random.normal (scale=0.5, size=n)
return ml+m2, ml-m2

>>> ml, m2 = measure(2000)

>>> xmin ml.min ()
>>> xmax = ml.max ()
>>> ymin = m2.min ()
>>> ymax = m2.max ()

Then we apply the KDE to the data:

>>> X, Y = np.mgrid[xmin:xmax:1007, ymin:ymax:1007]

>>> positions = np.vstack([X.ravel(), Y.ravel()])

>>> values = np.vstack([ml, m2])

>>> kernel = stats.gaussian_kde (values)

>>> 7 = np.reshape (kernel.evaluate (positions) .T, X.shape)

Finally we plot the estimated bivariate distribution as a colormap, and plot the individual data points on top.

>>> fig = plt.figure(figsize=(8, 6))
>>> ax = fig.add_subplot (111)

>>> ax.imshow (np.rot90(Z), cmap=plt.cm.gist_earth_r,
extent=[xmin, xmax, ymin, ymax])
>>> ax.plot(ml, m2, ’"k.’, markersize=2)

>>> ax.set_xlim([xmin, xmax])
>>> ax.set_ylim([ymin, ymax])

>>> plt.show ()

1.13. Statistics (scipy.stats) 111

SciPy Reference Guide, Release 0.16.1

1.14 Multidimensional image processing (scipy.ndimage)

1.14.1 Introduction

Image processing and analysis are generally seen as operations on two-dimensional arrays of values. There are how-
ever a number of fields where images of higher dimensionality must be analyzed. Good examples of these are medical
imaging and biological imaging. numpy is suited very well for this type of applications due its inherent multidimen-
sional nature. The scipy.ndimage packages provides a number of general image processing and analysis functions
that are designed to operate with arrays of arbitrary dimensionality. The packages currently includes functions for lin-
ear and non-linear filtering, binary morphology, B-spline interpolation, and object measurements.

1.14.2 Properties shared by all functions

All functions share some common properties. Notably, all functions allow the specification of an output array with the
output argument. With this argument you can specify an array that will be changed in-place with the result with the
operation. In this case the result is not returned. Usually, using the output argument is more efficient, since an existing
array is used to store the result.

The type of arrays returned is dependent on the type of operation, but it is in most cases equal to the type of the input.
If, however, the output argument is used, the type of the result is equal to the type of the specified output argument.

112 Chapter 1. SciPy Tutorial

http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

SciPy Reference Guide, Release 0.16.1

If no output argument is given, it is still possible to specify what the result of the output should be. This is done by
simply assigning the desired numpy type object to the output argument. For example:

>>> correlate (np.arange(10), [1, 2.5])

array ([0, 2, 6, 9, 13, 16, 20, 23, 27, 301)

>>> correlate (np.arange(10), [1, 2.5], output=np.float64d)

array ([0. , 2.5, 6. , 9.5, 13. , 1le6.5, 20. , 23.5, 27. , 30.5])

1.14.3 Filter functions

The functions described in this section all perform some type of spatial filtering of the input array: the elements
in the output are some function of the values in the neighborhood of the corresponding input element. We refer to
this neighborhood of elements as the filter kernel, which is often rectangular in shape but may also have an arbitrary
footprint. Many of the functions described below allow you to define the footprint of the kernel, by passing a mask
through the footprint parameter. For example a cross shaped kernel can be defined as follows:

>>> footprint = array([[0,1,0],[1,1,1]1,([0,1,011)
>>> footprint
array ([[0, 1, 0],

[1, 1, 11,

[0, 1, 0]1)

Usually the origin of the kernel is at the center calculated by dividing the dimensions of the kernel shape by two.
For instance, the origin of a one-dimensional kernel of length three is at the second element. Take for example the
correlation of a one-dimensional array with a filter of length 3 consisting of ones:

>>> a = [0, O, O, 1, 0, 0, 0]
>>> correlateld(a, [1, 1, 1])
array ([0, 0, 1, 1, 1, 0, 0])

Sometimes it is convenient to choose a different origin for the kernel. For this reason most functions support the origin
parameter which gives the origin of the filter relative to its center. For example:

>>> a = [0, O, O, 1, O, 0, O]
>>> correlateld(a, [1, 1, 1], origin = -1)
array ([0 1 1 1 0 0 0])

The effect is a shift of the result towards the left. This feature will not be needed very often, but it may be useful
especially for filters that have an even size. A good example is the calculation of backward and forward differences:

>>> a = [0, O, 1, 1, 1, 0, 0]

>>> correlateld(a, [-1, 11) # backward difference
array([0 0 1 0 0 -1 01])

>>> correlateld(a, [-1, 1], origin = -1) # forward difference

array([0 1 0 0 -1 0 01)

We could also have calculated the forward difference as follows:

>>> correlateld(a, [0, -1, 11)
array([0 1 0 0 -1 0 01])

However, using the origin parameter instead of a larger kernel is more efficient. For multidimensional kernels origin
can be a number, in which case the origin is assumed to be equal along all axes, or a sequence giving the origin along
each axis.

Since the output elements are a function of elements in the neighborhood of the input elements, the borders of the
array need to be dealt with appropriately by providing the values outside the borders. This is done by assuming that
the arrays are extended beyond their boundaries according certain boundary conditions. In the functions described

1.14. Multidimensional image processing (scipy.ndimage) 113

http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

SciPy Reference Guide, Release 0.16.1

below, the boundary conditions can be selected using the mode parameter which must be a string with the name of the
boundary condition. Following boundary conditions are currently supported:

“nearest” Use the value at the boundary [123]>[11233]
“wrap” Periodically replicate the array [123]>[31231]
“reflect” Reflect the array at the boundary [123]>[11233]
“constant” | Use a constant value, defaultis 0.0 | [123]->[01230]

The “constant” mode is special since it needs an additional parameter to specify the constant value that should be used.

Note: The easiest way to implement such boundary conditions would be to copy the data to a larger array and extend
the data at the borders according to the boundary conditions. For large arrays and large filter kernels, this would be

very memory consuming, and the functions described below therefore use a different approach that does not require
allocating large temporary buffers.

Correlation and convolution

The correlateld function calculates a one-dimensional correlation along the given axis. The lines of the ar-
ray along the given axis are correlated with the given weights. The weights parameter must be a one-dimensional
sequences of numbers.

The function correlate implements multidimensional correlation of the input array with a given kernel.
The convolveld function calculates a one-dimensional convolution along the given axis. The lines of the
array along the given axis are convoluted with the given weights. The weights parameter must be a one-
dimensional sequences of numbers.

Note: A convolution is essentially a correlation after mirroring the kernel. As a result, the origin parameter
behaves differently than in the case of a correlation: the result is shifted in the opposite directions.

The function convolve implements multidimensional convolution of the input array with a given kernel.

Note: A convolution is essentially a correlation after mirroring the kernel. As a result, the origin parameter
behaves differently than in the case of a correlation: the results is shifted in the opposite direction.

Smoothing filters

The gaussian_filterld function implements a one-dimensional Gaussian filter. The standard-deviation
of the Gaussian filter is passed through the parameter sigma. Setting order = 0 corresponds to convolution with
a Gaussian kernel. An order of 1, 2, or 3 corresponds to convolution with the first, second or third derivatives of
a Gaussian. Higher order derivatives are not implemented.

The gaussian_filter function implements a multidimensional Gaussian filter. The standard-deviations of
the Gaussian filter along each axis are passed through the parameter sigma as a sequence or numbers. If sigma
is not a sequence but a single number, the standard deviation of the filter is equal along all directions. The order
of the filter can be specified separately for each axis. An order of 0 corresponds to convolution with a Gaussian
kernel. An order of 1, 2, or 3 corresponds to convolution with the first, second or third derivatives of a Gaussian.
Higher order derivatives are not implemented. The order parameter must be a number, to specify the same order
for all axes, or a sequence of numbers to specify a different order for each axis.

Note: The multidimensional filter is implemented as a sequence of one-dimensional Gaussian filters. The
intermediate arrays are stored in the same data type as the output. Therefore, for output types with a lower

precision, the results may be imprecise because intermediate results may be stored with insufficient precision.
This can be prevented by specifying a more precise output type.

114

Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

The uniform_filterld function calculates a one-dimensional uniform filter of the given size along the
given axis.

The uniform_filter implements a multidimensional uniform filter. The sizes of the uniform filter are given
for each axis as a sequence of integers by the size parameter. If size is not a sequence, but a single number, the
sizes along all axis are assumed to be equal.

Note: The multidimensional filter is implemented as a sequence of one-dimensional uniform filters. The
intermediate arrays are stored in the same data type as the output. Therefore, for output types with a lower

precision, the results may be imprecise because intermediate results may be stored with insufficient precision.
This can be prevented by specifying a more precise output type.

Filters based on order statistics

The minimum_filterld function calculates a one-dimensional minimum filter of given size along the given
axis.

The maximum_filterld function calculates a one-dimensional maximum filter of given size along the given
axis.

The minimum_filter function calculates a multidimensional minimum filter. Either the sizes of a rectangu-
lar kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of
sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The footprint,
if provided, must be an array that defines the shape of the kernel by its non-zero elements.

The maximum_filter function calculates a multidimensional maximum filter. Either the sizes of a rectangu-
lar kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of
sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The footprint,
if provided, must be an array that defines the shape of the kernel by its non-zero elements.

The rank_filter function calculates a multidimensional rank filter. The rank may be less then zero, i.e.,
rank = -1 indicates the largest element. Either the sizes of a rectangular kernel or the footprint of the kernel must
be provided. The size parameter, if provided, must be a sequence of sizes or a single number in which case the
size of the filter is assumed to be equal along each axis. The footprint, if provided, must be an array that defines
the shape of the kernel by its non-zero elements.

The percentile_filter function calculates a multidimensional percentile filter. The percentile may be
less then zero, i.e., percentile = -20 equals percentile = 80. Either the sizes of a rectangular kernel or the
footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of sizes or a single
number in which case the size of the filter is assumed to be equal along each axis. The footprint, if provided,
must be an array that defines the shape of the kernel by its non-zero elements.

The median_filter function calculates a multidimensional median filter. Either the sizes of a rectangular
kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of
sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The footprint
if provided, must be an array that defines the shape of the kernel by its non-zero elements.

Derivatives

Derivative filters can be constructed in several ways. The function gaussian_filter1ld described in Smoothing
filters can be used to calculate derivatives along a given axis using the order parameter. Other derivative filters are the
Prewitt and Sobel filters:

The prewitt function calculates a derivative along the given axis.
The sobel function calculates a derivative along the given axis.

The Laplace filter is calculated by the sum of the second derivatives along all axes. Thus, different Laplace filters
can be constructed using different second derivative functions. Therefore we provide a general function that takes a
function argument to calculate the second derivative along a given direction and to construct the Laplace filter:

1.14. Multidimensional image processing (scipy.ndimage) 115

SciPy Reference Guide, Release 0.16.1

The function generic_laplace calculates a laplace filter using the function passed through derivative?2
to calculate second derivatives. The function derivative?2 should have the following signature:

derivative?2 (input, axis, output, mode, cval, xextra_arguments, +*xextra_keywords)

It should calculate the second derivative along the dimension axis. If output is not None it should use that for
the output and return None, otherwise it should return the result. mode, cval have the usual meaning.

The extra_arguments and extra_keywords arguments can be used to pass a tuple of extra arguments and a dic-
tionary of named arguments that are passed to derivative?2 at each call.

For example:

>>> def d2(input, axis, output, mode, cval):
return correlateld(input, [1, -2, 1], axis, output, mode, cval, 0)

>>> a = zeros ((5, 5))

>>> a2, 2] =1

>>> generic_laplace(a, d2)

array ([[O., 0., 0., 0., 0.7,
[o., 0., 1., 0., 0.1,
[o., 1., -4., 1., 0.1,
[o., 0., 1., 0., 0.1,
[o., 0., 0., 0., 0.11)

To demonstrate the use of the extra_arguments argument we could do:

>>> def d2(input, axis, output, mode, cval, weights):
return correlateld(input, weights, axis, output, mode, cval, 0,)

>>> a = zeros ((5, 5))

>>> a2, 2] =1
>>> generic_laplace(a, d2, extra_arguments = ([1, -2, 11,))
array([([0., ©0., 0., 0., 0.],

r o., 0., 1., 0., 0.1,

[0., 1., -4., 1., 0.],

r o., 0., 1., 0., 0.1,

[o., 0., 0., 0., 0.11)
or:
>>> generic_laplace(a, d2, extra_keywords = {’weights’: [1, -2, 11})
array ([[0., 0., 0., 0., 0.7,

r o., 0., 1., 0., 0.1,

[o., 1., -4., 1., 0.7,

[0., 0., 1., 0., 0.1,

[0., 0., O. 0. 0.11)

’

The following two functions are implemented using generic_laplace by providing appropriate functions for the
second derivative function:

The function 1aplace calculates the Laplace using discrete differentiation for the second derivative (i.e. con-
volution with [1, -2, 11]).

The function gaussian_laplace calculates the Laplace using gaussian_filter tocalculate the second
derivatives. The standard-deviations of the Gaussian filter along each axis are passed through the parameter
sigma as a sequence or numbers. If sigma is not a sequence but a single number, the standard deviation of the
filter is equal along all directions.

The gradient magnitude is defined as the square root of the sum of the squares of the gradients in all directions. Similar
to the generic Laplace function there is a generic_gradient_magnitude function that calculated the gradient
magnitude of an array:

The function generic_gradient_magnitude calculates a gradient magnitude using the function passed
through derivative to calculate first derivatives. The function derivative should have the following

116 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

signature:
derivative (input, axis, output, mode, cval, *extra_arguments, xxextra_keywords)

It should calculate the derivative along the dimension axis. If output is not None it should use that for the output
and return None, otherwise it should return the result. mode, cval have the usual meaning.

The extra_arguments and extra_keywords arguments can be used to pass a tuple of extra arguments and a dic-
tionary of named arguments that are passed to derivative at each call.

For example, the sobel function fits the required signature:

>>> a = zeros ((5, 5))

>>> a2, 2] =1

>>> generic_gradient_magnitude (a, sobel)

array ([[O. , 0. , 0. , 0. , 0. 1,
[0. , 1.41421356, 2. , 1.41421356, 0. 1,
[O. ;2. , 0. , 2. , 0. 1,
[O. , 1.41421356, 2. , 1.41421356, 0. 1,
[O. , 0. , 0. , 0. , 0. 11)

See the documentation of generic_laplace for examples of using the extra_arguments and extra_keywords
arguments.

The sobel and prewitt functions fit the required signature and can therefore directly be used with
generic_gradient_magnitude. The following function implements the gradient magnitude using Gaussian
derivatives:

The function gaussian_gradient_magnitude calculates the gradient magnitude using
gaussian_filter to calculate the first derivatives. The standard-deviations of the Gaussian filter
along each axis are passed through the parameter sigma as a sequence or numbers. If sigma is not a sequence
but a single number, the standard deviation of the filter is equal along all directions.

Generic filter functions

To implement filter functions, generic functions can be used that accept a callable object that implements the filtering
operation. The iteration over the input and output arrays is handled by these generic functions, along with such
details as the implementation of the boundary conditions. Only a callable object implementing a callback function
that does the actual filtering work must be provided. The callback function can also be written in C and passed using
aPyCObject (see Extending ndimage in C for more information).

The generic_filterld function implements a generic one-dimensional filter function, where the actual
filtering operation must be supplied as a python function (or other callable object). The generic_filterld
function iterates over the lines of an array and calls function at each line. The arguments that are passed to
function are one-dimensional arrays of the tFloat 64 type. The first contains the values of the current line.
It is extended at the beginning end the end, according to the filter_size and origin arguments. The second array
should be modified in-place to provide the output values of the line. For example consider a correlation along
one dimension:

>>> a = arange (12) .reshape (3, 4)
>>> correlateld(a, [1, 2, 3])
array ([[3, 8, 14, 171,

[27, 32, 38, 41],

[51, 56, 62, 65]1)

The same operation can be implemented using generic_filterld as follows:
>>> def fnc(iline, oline):

oline[...] = iline[:-2] + 2 % iline[l:-1] + 3 % iline[2:]

>>> generic_filterld(a, fnc, 3)
array ([[3, 8, 14, 171,

1.14. Multidimensional image processing (scipy.ndimage) 117

SciPy Reference Guide, Release 0.16.1

[27, 32, 38, 4117,
[51, 56, 62, 65]1])

Here the origin of the kernel was (by default) assumed to be in the middle of the filter of length 3. Therefore,
each input line was extended by one value at the beginning and at the end, before the function was called.
Optionally extra arguments can be defined and passed to the filter function. The extra_arguments and ex-
tra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments
that are passed to derivative at each call. For example, we can pass the parameters of our filter as an argument:

>>> def fnc(iline, oline, a, Db):

oline[...] = iline[:-2] + a % iline[l:-1] + b * 1iline[2:]
>>> generic_filterld(a, fnc, 3, extra_arguments = (2, 3))
array ([[3, 8, 14, 171,

(27, 32, 38, 411,
[51, 56, 62, 651])

or:
>>> generic_filterld(a, fnc, 3, extra_keywords = {’a’:2, "b’:3})
array ([[3, 8, 14, 17],

[27, 32, 38, 4117,
[51, 56, 62, 65]1)

The generic_filter function implements a generic filter function, where the actual filtering operation must
be supplied as a python function (or other callable object). The generic_filter function iterates over the
array and calls function at each element. The argument of function is a one-dimensional array of the
tFloat 64 type, that contains the values around the current element that are within the footprint of the filter.
The function should return a single value that can be converted to a double precision number. For example
consider a correlation:

>>> a = arange (12) .reshape (3, 4)
>>> correlate(a, [[1, 0], [0, 311)
array ([[O, 3, 7, 111,

[12, 15, 19, 23],
(28, 31, 35, 3911)

The same operation can be implemented using generic_filter as follows:

>>> def fnc(buffer):

return (buffer x array([l, 3])).sum()
>>> generic_filter(a, fnc, footprint = [[1, 0], [0, 111)
array ([[0 3 7 117,

[12 15 19 23],
[28 31 35 39]11)

Here a kernel footprint was specified that contains only two elements. Therefore the filter function receives a
buffer of length equal to two, which was multiplied with the proper weights and the result summed.

When calling generic_filter, either the sizes of a rectangular kernel or the footprint of the kernel must be
provided. The size parameter, if provided, must be a sequence of sizes or a single number in which case the size
of the filter is assumed to be equal along each axis. The footprint, if provided, must be an array that defines the
shape of the kernel by its non-zero elements.

Optionally extra arguments can be defined and passed to the filter function. The extra_arguments and ex-
tra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments
that are passed to derivative at each call. For example, we can pass the parameters of our filter as an argument:

>>> def fnc(buffer, weights):
weights = asarray(weights)
return (buffer x weights) .sum()

118

Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

>>> generic_filter(a, fnc, footprint =

array ([[0, 3,
[12, 15,
[28, 31,
or:

7, 111,

19, 23],
35, 3911)

>>> generic_filter(a, fnc, footprint =

array ([[O, 3,
[12, 15,
[28, 31,

7, 117,

19, 23],
35, 3911)

(o,

111, extra_arguments = ([1, 31,))

111, extra_keywords= {’weights’:

These functions iterate over the lines or elements starting at the last axis, i.e. the last index changes the fastest. This
order of iteration is guaranteed for the case that it is important to adapt the filter depending on spatial location. Here
is an example of using a class that implements the filter and keeps track of the current coordinates while iterating.
It performs the same filter operation as described above for generic_filter, but additionally prints the current

coordinates:

>>> a = arange (12) .reshape (3, 4)
>>>

>>> class fnc class:

>>>

>>>
Lo,
[OI
[Or
Lo,
[ll
[lr
[1,
[ll
[21
[z,
[21
[21

def _ init_ (self, shape):

store the shape:
self.shape = shape
initialize the coordinates:
self.coordinates = [0]

def filter(self, buffer):

result =

(buffer % array(I[1,
print self.coordinates

* len (shape)

calculate the next coordinates:
axes = range (len(self.shape))
axes.reverse ()

for jj in axes:

if self.coordinates[J]]
self.coordinates[j7j]

break

else:

self.coordinates[Jj] =
return result

fnc = fnc_class (shape = (3,4))

generic_filter (a,
0]

=

WNEFEOWNDREOWNDN

fnc.filter,

array ([[0, 3, 7, 117,
[12, 15, 19, 23],

[28, 31, 35, 3

911)

footprint

1

31)) .sum()

(e,

01,

< self.shapel[jj] -
4=

1l:

1.14. Multidimensional image processing (scipy.ndimage)

119

SciPy Reference Guide, Release 0.16.1

For the generic_filterld function the same approach works, except that this function does not iterate over the
axis that is being filtered. The example for generic_filterld then becomes this:

>>> a = arange (12) .reshape (3, 4)
>>>
>>> class fncld class:
def _ _init__ (self, shape, axis = -1):
store the filter axis:
self.axis = axis

store the shape:

self.shape = shape

initialize the coordinates:
self.coordinates = [0] » len(shape)

def filter(self, iline, oline):
oline[...] = iline[:-2] + 2 % iline[l:-1] + 3 % iline[2:]
print self.coordinates
calculate the next coordinates:
axes = range(len(self.shape))
skip the filter axis:
del axes[self.axis]
axes.reverse ()
for jj in axes:

if self.coordinates[jj] < self.shape[jj] - 1:
self.coordinates[jj] += 1
break

else:
self.coordinates[jj] = 0

>>> fnc = fncld_class (shape = (3,4))
>>> generic_filterld(a, fnc.filter, 3)
[0, 0]

[1, O]

[2, O]

array ([[3, 8, 14, 17],

[27, 32, 38, 417,
[51, 56, 62, 6511)

Fourier domain filters

The functions described in this section perform filtering operations in the Fourier domain. Thus, the input array
of such a function should be compatible with an inverse Fourier transform function, such as the functions from the
numpy . £ £t module. We therefore have to deal with arrays that may be the result of a real or a complex Fourier
transform. In the case of a real Fourier transform only half of the of the symmetric complex transform is stored.
Additionally, it needs to be known what the length of the axis was that was transformed by the real fft. The functions
described here provide a parameter n that in the case of a real transform must be equal to the length of the real
transform axis before transformation. If this parameter is less than zero, it is assumed that the input array was the
result of a complex Fourier transform. The parameter axis can be used to indicate along which axis the real transform
was executed.

The fourier_shift function multiplies the input array with the multidimensional Fourier transform of a
shift operation for the given shift. The shift parameter is a sequences of shifts for each dimension, or a single
value for all dimensions.

The fourier_gaussian function multiplies the input array with the multidimensional Fourier transform of
a Gaussian filter with given standard-deviations sigma. The sigma parameter is a sequences of values for each
dimension, or a single value for all dimensions.

120 Chapter 1. SciPy Tutorial

http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft

SciPy Reference Guide, Release 0.16.1

The fourier_uniform function multiplies the input array with the multidimensional Fourier transform of a
uniform filter with given sizes size. The size parameter is a sequences of values for each dimension, or a single
value for all dimensions.

The fourier_ellipsoid function multiplies the input array with the multidimensional Fourier transform of
a elliptically shaped filter with given sizes size. The size parameter is a sequences of values for each dimension,
or a single value for all dimensions. This function is only implemented for dimensions 1, 2, and 3.

1.14.4 Interpolation functions

This section describes various interpolation functions that are based on B-spline theory. A good introduction to B-
splines can be found in: M. Unser, “Splines: A Perfect Fit for Signal and Image Processing,” IEEE Signal Processing
Magazine, vol. 16, no. 6, pp. 22-38, November 1999.

Spline pre-filters

Interpolation using splines of an order larger than 1 requires a pre- filtering step. The interpolation functions described
in section Interpolation functions apply pre-filtering by calling spline_filter, but they can be instructed not to
do this by setting the prefilter keyword equal to False. This is useful if more than one interpolation operation is done
on the same array. In this case it is more efficient to do the pre-filtering only once and use a prefiltered array as the
input of the interpolation functions. The following two functions implement the pre-filtering:

The spline_filterld function calculates a one-dimensional spline filter along the given axis. An output
array can optionally be provided. The order of the spline must be larger then 1 and less than 6.
The spline_filter function calculates a multidimensional spline filter.

Note: The multidimensional filter is implemented as a sequence of one-dimensional spline filters. The inter-
mediate arrays are stored in the same data type as the output. Therefore, if an output with a limited precision is

requested, the results may be imprecise because intermediate results may be stored with insufficient precision.
This can be prevented by specifying a output type of high precision.

Interpolation functions

Following functions all employ spline interpolation to effect some type of geometric transformation of the input array.
This requires a mapping of the output coordinates to the input coordinates, and therefore the possibility arises that input
values outside the boundaries are needed. This problem is solved in the same way as described in Filter functions for
the multidimensional filter functions. Therefore these functions all support a mode parameter that determines how the
boundaries are handled, and a cval parameter that gives a constant value in case that the ‘constant’ mode is used.

The geometric_transformfunction applies an arbitrary geometric transform to the input. The given map-
ping function is called at each point in the output to find the corresponding coordinates in the input. mapping
must be a callable object that accepts a tuple of length equal to the output array rank and returns the correspond-
ing input coordinates as a tuple of length equal to the input array rank. The output shape and output type can
optionally be provided. If not given they are equal to the input shape and type.

For example:

>>> a = arange (12) .reshape (4, 3) .astype (np.float64)
>>> def shift_func (output_coordinates):
return (output_coordinates([0] - 0.5, output_coordinates[1l] - 0.5)

>>> geometric_transform(a, shift_func)
array ([[O. , 0. , 0. 1,
[0. , 1.3625, 2.73757],

1.14. Multidimensional image processing (scipy.ndimage) 121

SciPy Reference Guide, Release 0.16.1

[0. , 4.8125, 6.1875]7,
[O. , 8.2625, 9.6375]11])

Optionally extra arguments can be defined and passed to the filter function. The extra_arguments and ex-
tra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments
that are passed to derivative at each call. For example, we can pass the shifts in our example as arguments:

>>> def shift_func (output_coordinates, s0, sl):

return (output_coordinates[0] - s0, output_coordinates[l] - sl)
>>> geometric_transform(a, shift_func, extra_arguments = (0.5, 0.5))
array ([[O. , 0. , 0. 1,

[O. , 1.3625, 2.73757,

[0. , 4.8125, 6.1875],

[O , 8.2625, 9.6375]])
or:
>>> geometric_transform(a, shift_func, extra_keywords = {’s0’: 0.5, "sl’: 0.5})
array ([[O. , 0. , 0. 1,

[O. , 1.3625, 2.7375]7,

[0. , 4.8125, 6.1875],

[0 , 8.2625, 9.6375]1])

Note: The mapping function can also be written in C and passed using a PyCOb ject. See Extending ndimage
in C for more information.

The function map_coordinates applies an arbitrary coordinate transformation using the given array of
coordinates. The shape of the output is derived from that of the coordinate array by dropping the first axis. The
parameter coordinates is used to find for each point in the output the corresponding coordinates in the input.
The values of coordinates along the first axis are the coordinates in the input array at which the output value is
found. (See also the numarray coordinates function.) Since the coordinates may be non- integer coordinates,
the value of the input at these coordinates is determined by spline interpolation of the requested order. Here is
an example that interpolates a 2D array at (0.5, 0.5) and (1, 2):

>>> a = arange (12) .reshape (4, 3) .astype (np.float64)

>>> a
array ([[O., 1., 2.1,
[3., 4., 5.7,

[6., 7., 8.1
[9., 10., 11.11)

[

>>> map_coordinates(a, [
array ([1.3625 7. 1)

The affine_transform function applies an affine transformation to the input array. The given transforma-
tion matrix and offset are used to find for each point in the output the corresponding coordinates in the input. The
value of the input at the calculated coordinates is determined by spline interpolation of the requested order. The
transformation matrix must be two-dimensional or can also be given as a one-dimensional sequence or array. In
the latter case, it is assumed that the matrix is diagonal. A more efficient interpolation algorithm is then applied
that exploits the separability of the problem. The output shape and output type can optionally be provided. If
not given they are equal to the input shape and type.

The shift function returns a shifted version of the input, using spline interpolation of the requested order.
The zoom function returns a rescaled version of the input, using spline interpolation of the requested order.
The rotate function returns the input array rotated in the plane defined by the two axes given by the parameter
axes, using spline interpolation of the requested order. The angle must be given in degrees. If reshape is true,
then the size of the output array is adapted to contain the rotated input.

122

Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

1.14.5 Morphology

Binary morphology

Binary morphology (need something to put here).

The generate_binary_structure functions generates a binary structuring element for use in binary
morphology operations. The rank of the structure must be provided. The size of the structure that is returned is
equal to three in each direction. The value of each element is equal to one if the square of the Euclidean distance
from the element to the center is less or equal to connectivity. For instance, two dimensional 4-connected and
8-connected structures are generated as follows:

>>> generate_binary_structure (2, 1)
array ([[False, True, False],

[True, True, Truel,

[False, True, False]], dtype=bool)
>>> generate_binary_structure (2, 2)
array ([[True, True, Truel,

[True, True, Truel,

[True, True, True]], dtype=bool)

Most binary morphology functions can be expressed in terms of the basic operations erosion and dilation:

The binary_erosion function implements binary erosion of arrays of arbitrary rank with the given struc-
turing element. The origin parameter controls the placement of the structuring element as described in Filter
Jfunctions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The border_value parameter gives the value of the array outside bound-
aries. The erosion is repeated iterations times. If iterations is less than one, the erosion is repeated until the result
does not change anymore. If a mask array is given, only those elements with a true value at the corresponding
mask element are modified at each iteration.

The binary_dilation function implements binary dilation of arrays of arbitrary rank with the given struc-
turing element. The origin parameter controls the placement of the structuring element as described in Filter
Jfunctions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The border_value parameter gives the value of the array outside bound-
aries. The dilation is repeated iterations times. If iterations is less than one, the dilation is repeated until the
result does not change anymore. If a mask array is given, only those elements with a true value at the corre-
sponding mask element are modified at each iteration.

Here is an example of using binary_dilation to find all elements that touch the border, by repeatedly
dilating an empty array from the border using the data array as the mask:

>>> struct = array([[O, 1, O], [1, 1, 11, [0, 1, 0O11)
>>> a = array([(:,o,0,0,01, (,1,0,1,01, [0,0,1,1,0], [0,0,0,0,011)
>>> a
array([([1, O, O, 0, O],

[, 1, o, 1, o1,

o, o, 1, 1, 01,

[o, o, o, 0, 011)
>>> binary_dilation(zeros (a.shape), struct, -1, a, border_value=1)
array([[True, False, False, False, False],

[True, True, False, False, False]
[False, False, False, False, False]
[False, False, False, False, False]

’
1, dtype=bool)

The binary_erosion and binary_dilation functions both have an iterations parameter which allows the
erosion or dilation to be repeated a number of times. Repeating an erosion or a dilation with a given structure n times
is equivalent to an erosion or a dilation with a structure that is n-/ times dilated with itself. A function is provided that
allows the calculation of a structure that is dilated a number of times with itself:

1.14. Multidimensional image processing (scipy.ndimage) 123

SciPy Reference Guide, Release 0.16.1

The iterate_structure function returns a structure by dilation of the input structure iteration - 1 times
with itself. For instance:

>>> struct = generate_binary_structure (2, 1)
>>> struct
array ([[False, True, False],

[True, True, True],

[False, True, False]], dtype=bool)
>>> iterate_structure (struct, 2)
array ([[False, False, True, False, False],

[False, True, True, True, False],

[True, True, True, True, Truel,

[False, True, True, True, False],

[False, False, True, False, False]], dtype=bool)

If the origin of the original structure is equal to 0, then it is also equal to O for the iterated structure. If not,
the origin must also be adapted if the equivalent of the iterations erosions or dilations must be achieved with
the iterated structure. The adapted origin is simply obtained by multiplying with the number of iterations. For
convenience the iterate_structure also returns the adapted origin if the origin parameter is not None:

>>> iterate_structure (struct, 2, -1)
(array ([[False, False, True, False, False],
False, True, True, True, False],
True, True, True, True, True]
False, True, True, True, False]
False, False, True, False, False]

[
[’
[’

[], dtype=bool), [-2, -2])

Other morphology operations can be defined in terms of erosion and d dilation. Following functions provide a few of
these operations for convenience:

The binary_opening function implements binary opening of arrays of arbitrary rank with the given struc-
turing element. Binary opening is equivalent to a binary erosion followed by a binary dilation with the same
structuring element. The origin parameter controls the placement of the structuring element as described in Fil-
ter functions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The iterations parameter gives the number of erosions that is performed
followed by the same number of dilations.

The binary_closing function implements binary closing of arrays of arbitrary rank with the given struc-
turing element. Binary closing is equivalent to a binary dilation followed by a binary erosion with the same
structuring element. The origin parameter controls the placement of the structuring element as described in Fil-
ter functions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The iterations parameter gives the number of dilations that is performed
followed by the same number of erosions.

The binary_fill holes function is used to close holes in objects in a binary image, where the structure
defines the connectivity of the holes. The origin parameter controls the placement of the structuring element as
described in Filter functions. If no structuring element is provided, an element with connectivity equal to one is
generated using generate_binary_ structure.

The binary_hit_or_miss function implements a binary hit-or-miss transform of arrays of arbitrary rank
with the given structuring elements. The hit-or-miss transform is calculated by erosion of the input with
the first structure, erosion of the logical not of the input with the second structure, followed by the logi-
cal and of these two erosions. The origin parameters control the placement of the structuring elements as
described in Filter functions. If origin2 equals None it is set equal to the originl parameter. If the first
structuring element is not provided, a structuring element with connectivity equal to one is generated using
generate_binary_structure, if structure2 is not provided, it is set equal to the logical not of struc-
turel.

124

Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

Grey-scale morphology

Grey-scale morphology operations are the equivalents of binary morphology operations that operate on arrays with
arbitrary values. Below we describe the grey-scale equivalents of erosion, dilation, opening and closing. These
operations are implemented in a similar fashion as the filters described in Filter functions, and we refer to this section
for the description of filter kernels and footprints, and the handling of array borders. The grey-scale morphology
operations optionally take a structure parameter that gives the values of the structuring element. If this parameter
is not given the structuring element is assumed to be flat with a value equal to zero. The shape of the structure
can optionally be defined by the footprint parameter. If this parameter is not given, the structure is assumed to be
rectangular, with sizes equal to the dimensions of the structure array, or by the size parameter if structure is not given.
The size parameter is only used if both structure and footprint are not given, in which case the structuring element
is assumed to be rectangular and flat with the dimensions given by size. The size parameter, if provided, must be a
sequence of sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The
footprint parameter, if provided, must be an array that defines the shape of the kernel by its non-zero elements.

Similar to binary erosion and dilation there are operations for grey-scale erosion and dilation:

The grey_erosion function calculates a multidimensional grey- scale erosion.
The grey_dilation function calculates a multidimensional grey- scale dilation.

Grey-scale opening and closing operations can be defined similar to their binary counterparts:

The grey_opening function implements grey-scale opening of arrays of arbitrary rank. Grey-scale opening
is equivalent to a grey-scale erosion followed by a grey-scale dilation.

The grey_closing function implements grey-scale closing of arrays of arbitrary rank. Grey-scale opening
is equivalent to a grey-scale dilation followed by a grey-scale erosion.

The morphological_gradient function implements a grey-scale morphological gradient of arrays of
arbitrary rank. The grey-scale morphological gradient is equal to the difference of a grey-scale dilation and a
grey-scale erosion.

The morphological_laplace function implements a grey-scale morphological laplace of arrays of arbi-
trary rank. The grey-scale morphological laplace is equal to the sum of a grey-scale dilation and a grey-scale
erosion minus twice the input.

The white_tophat function implements a white top-hat filter of arrays of arbitrary rank. The white top-hat
is equal to the difference of the input and a grey-scale opening.

The black_tophat function implements a black top-hat filter of arrays of arbitrary rank. The black top-hat
is equal to the difference of the a grey-scale closing and the input.

1.14.6 Distance transforms

Distance transforms are used to calculate the minimum distance from each element of an object to the background.
The following functions implement distance transforms for three different distance metrics: Euclidean, City Block,
and Chessboard distances.

The function distance_transform_cdt uses a chamfer type algorithm to calculate the distance trans-
form of the input, by replacing each object element (defined by values larger than zero) with the shortest dis-
tance to the background (all non-object elements). The structure determines the type of chamfering that is
done. If the structure is equal to ‘cityblock’ a structure is generated using generate_binary_structure
with a squared distance equal to 1. If the structure is equal to ‘chessboard’, a structure is generated using
generate_binary_structure with a squared distance equal to the rank of the array. These choices cor-
respond to the common interpretations of the cityblock and the chessboard distancemetrics in two dimensions.
In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result. The return_distances, and return_indices flags
can be used to indicate if the distance transform, the feature transform, or both must be returned.

The distances and indices arguments can be used to give optional output arrays that must be of the correct size
and type (both Int32).

1.14. Multidimensional image processing (scipy.ndimage) 125

SciPy Reference Guide, Release 0.16.1

The basics of the algorithm used to implement this function is described in: G. Borgefors, “Distance transfor-
mations in arbitrary dimensions.”, Computer Vision, Graphics, and Image Processing, 27:321-345, 1984.

The function distance_transform_edt calculates the exact euclidean distance transform of the input, by
replacing each object element (defined by values larger than zero) with the shortest euclidean distance to the
background (all non-object elements).

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result. The return_distances, and return_indices flags
can be used to indicate if the distance transform, the feature transform, or both must be returned.

Optionally the sampling along each axis can be given by the sampling parameter which should be a sequence of
length equal to the input rank, or a single number in which the sampling is assumed to be equal along all axes.
The distances and indices arguments can be used to give optional output arrays that must be of the correct size
and type (Float 64 and Int32).

The algorithm used to implement this function is described in: C. R. Maurer, Jr., R. Qi, and V. Raghavan, “A lin-
ear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions.
IEEE Trans. PAMI 25, 265-270, 2003.

The function distance_transform_bf uses a brute-force algorithm to calculate the distance transform of
the input, by replacing each object element (defined by values larger than zero) with the shortest distance to the
background (all non-object elements). The metric must be one of “euclidean”, “cityblock”, or “chessboard”.

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result. The return_distances, and return_indices flags
can be used to indicate if the distance transform, the feature transform, or both must be returned.

Optionally the sampling along each axis can be given by the sampling parameter which should be a sequence of
length equal to the input rank, or a single number in which the sampling is assumed to be equal along all axes.
This parameter is only used in the case of the euclidean distance transform.

The distances and indices arguments can be used to give optional output arrays that must be of the correct size
and type (Float 64 and Int32).

Note: This function uses a slow brute-force algorithm, the function distance_transform_cdt
can be used to more efficiently calculate cityblock and chessboard distance transforms. The function

distance_transform_edt can be used to more efficiently calculate the exact euclidean distance trans-
form.

1.14.7 Segmentation and labeling

Segmentation is the process of separating objects of interest from the background. The most simple approach is
probably intensity thresholding, which is easily done with numpy functions:

>>> a = array([([1,2,2,1,1,0],
(0,2,3,1,2,0],
[1,1,1,3,3,21,
C [(1,1,1,1,2,111)
>>> where(a > 1, 1, 0)
array(([([O, 1, 1, O, O, O],
o, 1, 1, o, 1, 01,
(o, o, o, 1, 1, 11,
[, o, o, o, 1, 011

’ ’

~

The result is a binary image, in which the individual objects still need to be identified and labeled. The function
label generates an array where each object is assigned a unique number:

The 1abel function generates an array where the objects in the input are labeled with an integer index. It returns
a tuple consisting of the array of object labels and the number of objects found, unless the output parameter is
given, in which case only the number of objects is returned. The connectivity of the objects is defined by a
structuring element. For instance, in two dimensions using a four-connected structuring element gives:

126 Chapter 1. SciPy Tutorial

http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

SciPy Reference Guide, Release 0.16.1

>>> a = array([(o,1,1,0,0,01,1(10,1,1,0,1,03,10,0,0,1,1,11,1(00,0,0,0,1,011)

>>> s = [[0, 1, 0], [1,1,11, [0,1,01]

>>> label (a, s)

(array([([o, 1, 1, 0, O,
o, 1, 1, o, 2, 0
[o, o, 0, 2, 2, 2
o, o, o, 0o, 2, 0

01,
]I
1,
11, 2)

These two objects are not connected because there is no way in which we can place the structuring element such
that it overlaps with both objects. However, an 8-connected structuring element results in only a single object:

>>> a = array(((o,1:,10,0,01,100,1,1,0,1,01, 10,0,0,1,1,11, (0,0,0,0,1,0]1)
>>> s = [[11111] [1/111]/ [111!1]]

>>> label (a, s) [0]

array([[0O, 1, 1, 0, 0, O],
¢, 1, 1, o, 1, 01,
o, o, o, 1, 1, 11,
(o, o, o, o, 1, 011

If no structuring element is provided, one is generated by calling generate_binary_structure (see
Binary morphology) using a connectivity of one (which in 2D is the 4-connected structure of the first example).
The input can be of any type, any value not equal to zero is taken to be part of an object. This is useful if you
need to ‘re-label’ an array of object indices, for instance after removing unwanted objects. Just apply the label
function again to the index array. For instance:

>>> 1, n = label([1, 0, 1, 0, 11)

>>> 1

array([1 0 2 0 31])

>>> 1 = where(l '= 2, 1, 0)
>>> 1

array([1 0 0 0 31])
>>> label (1) [0]
array ([1 0 0 0 21])

Note: The structuring element used by 1abel is assumed to be symmetric.

There is a large number of other approaches for segmentation, for instance from an estimation of the borders of
the objects that can be obtained for instance by derivative filters. One such an approach is watershed segmentation.
The function watershed_ift generates an array where each object is assigned a unique label, from an array that
localizes the object borders, generated for instance by a gradient magnitude filter. It uses an array containing initial
markers for the objects:

The watershed_ift function applies a watershed from markers algorithm, using an Iterative Forest Trans-
form, as described in: P. Felkel, R. Wegenkittl, and M. Bruckschwaiger, “Implementation and Complexity of the
Watershed-from-Markers Algorithm Computed as a Minimal Cost Forest.”, Eurographics 2001, pp. C:26-35.
The inputs of this function are the array to which the transform is applied, and an array of markers that designate
the objects by a unique label, where any non-zero value is a marker. For instance:

>>> input = array(([([0, O, O, O, O, O, 01,

o, 1, 1, 1, 1, 1, 01,

(o, 1, o, o, o, 1, 01,

ro, 1, o, o, o, 1, 01,

o, 1, o, o, o, 1, 01,

(¢, 1, 1, 1, 1, 1, 0]
C (o, o, o, o, 0, 0, 0] np.uint8)
>>> markers = array ([[1, , , , , , ,

4

~
~
~

’

~

~
o O O O
~
O O O O
~
N O O O
~
o O O O
o O O O
~
O O O O — >~
[P EE
~

~
~
~

’

~

1.14. Multidimensional image processing (scipy.ndimage) 127

SciPy Reference Guide, Release 0.16.1

>>> watershed_ift

array ([[1,
1,
’
’

’

e e

[
[
[
[
[
[

’

1, 1,

’ 4

14 14
14 ’
’ ’

14 4

RN NN
NN NN

14 ’

(
1/
2,
2/
2/
2,
2/
1

’

in

~ S Qo
+ o o o
SN SN SR R

~

~

DN N R
~

~

=
~

~‘
=
~

~

1
;1
;1
Il!

111,

’

dtype=int8)

Here two markers were used to designate an object (marker = 2) and the background (marker = 1). The order
in which these are processed is arbitrary: moving the marker for the background to the lower right corner of the
array yields a different result:

>>> markers

= array ([

>>> watershed_ift

array ([[1,
ll
14
’

’

[
[
[
[
[
[

I e

’

ut

’

’

’
’

’

p
1
1
2,
2
2
1
1

e N e e

’

-
=
~

~

1
, 1
;1
, 1
1

’

o, 0, 0, 01,

o, o, o, 01,

o, o0, o0, 01,

2, 0, 0, 01,

o, o, o0, 01,

o, o0, o0, 01,

0, 0, 0, 111, np.int8)
s)

dtype=int8)

The result is that the object (marker = 2) is smaller because the second marker was processed earlier. This
may not be the desired effect if the first marker was supposed to designate a background object. Therefore
watershed_ift treats markers with a negative value explicitly as background markers and processes them
after the normal markers. For instance, replacing the first marker by a negative marker gives a result similar to
the first example:

>>> markers

>>> watershed_ift

array ([[-1,
14
’
14

[-1
[-1
[-1
[-1
[-1
[-1

’

= array ([[O0,
[OI

[Ol

[OI

[OI

[Ol

[OI

(input,

-1, -1, -1,
-1, 2, 2,
2, 2, 2,
2, 2, 2,
2, 2, 2,
-1, 2, 2,
-1, -1, -1,

o0, 0,
0, 0,
o0, 0,
o0, 0,
o0, 0,
o0, 0,
0, 0,
marker
-1, -1,
2, -1,
2, 2,
2, 2,
2, 2,
2, -1,
-1, -1,

I4

~
~

’

~
~

4

~

O O O O O O o
~

O O O O O O o
~

’

~
~

~
O O O O O O

4

~
~

|
=}
e}
-
o}
=3
[ee]

~

0
0
0
2,
0
0
0
S

The connectivity of the objects is defined by a structuring element. If no structuring element is provided, one
is generated by calling generate_binary_structure (see Binary morphology) using a connectivity of
one (which in 2D is a 4-connected structure.) For example, using an 8-connected structure with the last example
yields a different object:

128

Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

>>> watershed_ift (input, markers,

structure = [[1,1,1], [1,1,11, [1,1,111)

array(([-1, -1, -1, -1, -1, -1, -17,

-, 2, 2, 2, 2, 2, -11,

-1, 2, 2, 2, 2, 2, -11,

-, 2, 2, 2, 2, 2, -11,

-, 2, 2, 2, 2, 2, -11,

-1, 2, 2, 2, 2, 2, -11,

[-1, -1, -1, -1, -1, -1, -1]], dtype=int38)

Note: The implementation of watershed_ift limits the data types of the input to UInt 8 and UInt16.

1.14.8 Object measurements

Given an array of labeled objects, the properties of the individual objects can be measured. The find_objects
function can be used to generate a list of slices that for each object, give the smallest sub-array that fully contains the
object:

The £ind_objects function finds all objects in a labeled array and returns a list of slices that correspond to
the smallest regions in the array that contains the object. For instance:

>>> a = array([(o,1,1,0,0,01,1(10,1,1,0,1,01,10,0,0,1,1,11,1(00,0,0,0,1,011)

>>> 1, n = label (a)

>>> f =

>>> al[f
[

4 1’ 1]’
1, 011)

find_objects returns slices for all objects, unless the max_label parameter is larger then zero, in which case
only the first max_label objects are returned. If an index is missing in the label array, None is return instead of
a slice. For example:

>>> find_objects([1, 0, 3, 4], max_label = 3)
[(slice (0, 1, None),), None, (slice(2, 3, None),)]

The list of slices generated by find_objects is useful to find the position and dimensions of the objects in the
array, but can also be used to perform measurements on the individual objects. Say we want to find the sum of the
intensities of an object in image:

>>> image = arange (4 * 6).reshape (4, 6)

>>> mask = array(([0,1,1,0,0,0],10,1,1,0,1,0},(0,0,0,1,21,17,10,0,0,0,1,011)
>>> labels = label (mask) [0]

>>> slices = find_objects(labels)

Then we can calculate the sum of the elements in the second object:

>>> where (labels([slices[1]] == 2, image[slices[1]], 0).sum()
80

That is however not particularly efficient, and may also be more complicated for other types of measurements. There-
fore a few measurements functions are defined that accept the array of object labels and the index of the object to be
measured. For instance calculating the sum of the intensities can be done by:

1.14. Multidimensional image processing (scipy.ndimage) 129

SciPy Reference Guide, Release 0.16.1

>>> sum(image, labels, 2)
80

For large arrays and small objects it is more efficient to call the measurement functions after slicing the array:

>>> sum(image([slices[1]], labels[slices[1]], 2)
80

Alternatively, we can do the measurements for a number of labels with a single function call, returning a list of results.
For instance, to measure the sum of the values of the background and the second object in our example we give a list
of labels:

>>> sum(image, labels, [0, 2])
array ([178.0, 80.01])

The measurement functions described below all support the index parameter to indicate which object(s) should be
measured. The default value of index is None. This indicates that all elements where the label is larger than zero
should be treated as a single object and measured. Thus, in this case the labels array is treated as a mask defined by
the elements that are larger than zero. If index is a number or a sequence of numbers it gives the labels of the objects
that are measured. If index is a sequence, a list of the results is returned. Functions that return more than one result,
return their result as a tuple if index is a single number, or as a tuple of lists, if index is a sequence.

The sum function calculates the sum of the elements of the object with label(s) given by index, using the labels
array for the object labels. If index is None, all elements with a non-zero label value are treated as a single
object. If label is None, all elements of input are used in the calculation.

The mean function calculates the mean of the elements of the object with label(s) given by index, using the
labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation.

The variance function calculates the variance of the elements of the object with label(s) given by index, using
the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation.

The standard_deviation function calculates the standard deviation of the elements of the object with
label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-
zero label value are treated as a single object. If label is None, all elements of input are used in the calculation.
The minimum function calculates the minimum of the elements of the object with label(s) given by index, using
the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation.

The maximum function calculates the maximum of the elements of the object with label(s) given by index, using
the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation.

The minimum_position function calculates the position of the minimum of the elements of the object with
label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero
label value are treated as a single object. If label is None, all elements of input are used in the calculation.

The maximum_position function calculates the position of the maximum of the elements of the object with
label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero
label value are treated as a single object. If label is None, all elements of input are used in the calculation.

The extrema function calculates the minimum, the maximum, and their positions, of the elements of the
object with label(s) given by index, using the labels array for the object labels. If index is None, all elements
with a non-zero label value are treated as a single object. If label is None, all elements of input are used in
the calculation. The result is a tuple giving the minimum, the maximum, the position of the minimum and the
postition of the maximum. The result is the same as a tuple formed by the results of the functions minimum,
maximum, minimum_position, and maximum_position that are described above.

The center_of_mass function calculates the center of mass of the of the object with label(s) given by index,
using the labels array for the object labels. If index is None, all elements with a non-zero label value are treated
as a single object. If label is None, all elements of input are used in the calculation.

130 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

The histogram function calculates a histogram of the of the object with label(s) given by index, using the
labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation. Histograms are defined by their
minimum (min), maximum (max) and the number of bins (bins). They are returned as one-dimensional arrays
of type Int32.

1.14.9 Extending ndimage in C

A few functions in the scipy.ndimage take a call-back argument. This can be a python function, but also a
PyCObject containing a pointer to a C function. To use this feature, you must write your own C extension that
defines the function, and define a Python function that returns a PyCOb ject containing a pointer to this function.

An example of a function that supports this is geometric_transform (see Interpolation functions). You can pass
it a python callable object that defines a mapping from all output coordinates to corresponding coordinates in the input
array. This mapping function can also be a C function, which generally will be much more efficient, since the overhead
of calling a python function at each element is avoided.

For example to implement a simple shift function we define the following function:

static int
_shift_function (int xoutput_coordinates, doublex input_coordinates,
int output_rank, int input_rank, wvoid xcallback_data)

int ii;
/#+ get the shift from the callback data pointer: */
double shift = * (doublex*)callback_data;
/* calculate the coordinates: */
for(ii = 0; 1i < irank; ii++)
icoor[ii] = ocoor[ii] - shift;
/+ return OK status: =/
return 1;

}

This function is called at every element of the output array, passing the current coordinates in the output_coordinates
array. On return, the input_coordinates array must contain the coordinates at which the input is interpolated. The ranks
of the input and output array are passed through output_rank and input_rank. The value of the shift is passed through
the callback_data argument, which is a pointer to void. The function returns an error status, in this case always 1,
since no error can occur.

A pointer to this function and a pointer to the shift value must be passed to geometric_transform. Both are
passed by a single PyCOb ject which is created by the following python extension function:

static PyObject =
py_shift_function (PyObject +obj, PyObject xargs)
{
double shift = 0.0;
if (!PyArg_ParseTuple(args, "d", &shift)) {
PyErr_SetString (PyExc_RuntimeError, "invalid parameters");
return NULL;

} else {
/#* assign the shift to a dynamically allocated location: =/
double *cdata = (doublex)malloc (sizeof (double));

+cdata = shift;

/* wrap function and callback_data in a CObject: #*/

return PyCObject_FromVoidPtrAndDesc (_shift_function, cdata,
_destructor);

1.14. Multidimensional image processing (scipy.ndimage) 131

SciPy Reference Guide, Release 0.16.1

The value of the shift is obtained and then assigned to a dynamically allocated memory location. Both this data pointer
and the function pointer are then wrapped in a PyCOb ject, which is returned. Additionally, a pointer to a destructor
function is given, that will free the memory we allocated for the shift value when the PyCOb ject is destroyed. This
destructor is very simple:

static void
_destructor (voidx cobject, wvoid xcdata)
{
if (cdata)
free (cdata);

}

To use these functions, an extension module is built:

static PyMethodDef methods[] = {
{"shift_ function", (PyCFunction)py_shift_function, METH_VARARGS, ""},
{NULL, NULL, 0, NULL}

i

void
initexample (void)
{
Py_InitModule ("example", methods);
}

This extension can then be used in Python, for example:

>>> import example

>>> array = arange (l2) .reshape=(4, 3).astype(np.float64)
>>> fnc = example.shift_function(0.5)

>>> geometric_transform(array, fnc)

array ([[O. 0. 0. 1,
[O. 1.3625 2.7375],
[O. 4.8125 6.1875],
[O. 8.2625 9.6375]11])

C callback functions for use with ndimage functions must all be written according to this scheme. The next section
lists the ndimage functions that acccept a C callback function and gives the prototype of the callback function.

1.14.10 Functions that support C callback functions

The ndimage functions that support C callback functions are described here. Obviously, the prototype of the func-
tion that is provided to these functions must match exactly that what they expect. Therefore we give here the pro-
totypes of the callback functions. All these callback functions accept a void callback_data pointer that must be
wrapped in a PyCOb ject using the Python PyCOb ject_FromVoidPtrAndDesc function, which can also ac-
cept a pointer to a destructor function to free any memory allocated for callback_data. If callback_data is not needed,
PyCObject_FromVoidPtr may be used instead. The callback functions must return an integer error status that is
equal to zero if something went wrong, or 1 otherwise. If an error occurs, you should normally set the python error
status with an informative message before returning, otherwise, a default error message is set by the calling function.

The function generic_filter (see Generic filter functions) accepts a callback function with the following proto-
type:

The calling function iterates over the elements of the input and output arrays, calling the callback function at
each element. The elements within the footprint of the filter at the current element are passed through the buffer
parameter, and the number of elements within the footprint through filter_size. The calculated valued should be
returned in the refurn_value argument.

132 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

The function generic_filterld (see Generic filter functions) accepts a callback function with the following
prototype:

The calling function iterates over the lines of the input and output arrays, calling the callback function at each
line. The current line is extended according to the border conditions set by the calling function, and the result is
copied into the array that is passed through the input_line array. The length of the input line (after extension) is
passed through input_length. The callback function should apply the 1D filter and store the result in the array
passed through output_line. The length of the output line is passed through output_length.

The function geometric_transform (see Interpolation functions) expects a function with the following proto-
type:

The calling function iterates over the elements of the output array, calling the callback function at each element.
The coordinates of the current output element are passed through output_coordinates. The callback function
must return the coordinates at which the input must be interpolated in input_coordinates. The rank of the input
and output arrays are given by input_rank and output_rank respectively.

1.15 File 10 (scipy.io)

See also:

numpy-reference.routines.io (in numpy)

1.15.1 MATLAB files

loadmat(file_name[, mdict, appendmat]) Load MATLAB file :Parameters: file_name : str Name of the mat file (do not need .r
savemat (file_name, mdict[, appendmat, ...]) Save a dictionary of names and arrays into a MATLAB-style .mat file.
whosmat(file_name[, appendmat]) List variables inside a MATLAB file :Parameters: file_name : str Name of the mat fil

The basic functions

We’ll start by importing scipy . io and calling it sio for convenience:

>>> import scipy.io as sio

If you are using IPython, try tab completing on sio. Among the many options, you will find:

sio.loadmat
sio.savemat
sio.whosmat

These are the high-level functions you will most likely use when working with MATLAB files. You’ll also find:

sio.matlab

This is the package from which 1oadmat, savemat and whosmat are imported. Within sio.matlab, you will
find the mio module This module contains the machinery that 1loadmat and savemat use. From time to time you
may find yourself re-using this machinery.

How do | start?

You may have a .mat file that you want to read into Scipy. Or, you want to pass some variables from Scipy / Numpy
into MATLAB.

1.15. File 10 (scipy.io) 133

SciPy Reference Guide, Release 0.16.1

To save us using a MATLAB license, let’s start in Octave. Octave has MATLAB-compatible save and load functions.
Start Octave (octave at the command line for me):

octave:1> a = 1:12

octave:2> a = reshape(a, [1 3 41])

ans(:,:,1) =

ans(:,:,3) =

ans(:,:,4) =

10 11 12

octave:3> save -6 octave_a.mat a % MATLAB 6 compatible
octave:4> 1s octave_a.mat

octave_a.mat

Now, to Python:

>>> mat_contents = sio.loadmat (‘'octave_a.mat’)
>>> mat_contents
{"a’: array ([[[1., 4., 7., 10.71,

[2., 5., 8., 11.1,

[3., 6., 9., 12.111),

' __version_ '": "1.0'",
" __header__': "MATLAB 5.0 MAT-file, written Dby
Octave 3.6.3, 2013-02-17 21:02:11 UTC’,

"_globals__": []}
>>> oct_a = mat_contents[’a’]
>>> oct_a
array ([[[1., 4., 7., 10.71,

[2., 5., 8., 11.71,

[3., 6., 9., 12.111)
>>> oct_a.shape
(1, 3, 4)

Now let’s try the other way round:

>>> import numpy as np

>>> vect = np.arange(10)
>>> vect.shape
(10,)

>>> sio.savemat (' np_vector.mat’, {’vect’:vect})

Then back to Octave:

134 Chapter 1. SciPy Tutorial

http://www.gnu.org/software/octave

SciPy Reference Guide, Release 0.16.1

octave:8> load np_vector.mat
octave: 9> vect
vect =

octave:10> size (vect)
ans =

1 10

If you want to inspect the contents of a MATLAB file without reading the data into memory, use the whosmat
command:

>>> sio.whosmat (octave_a.mat’)
[("ra", (1, 3, 4), "double’)]

whosmat returns a list of tuples, one for each array (or other object) in the file. Each tuple contains the name, shape
and data type of the array.

MATLAB structs

MATLAB structs are a little bit like Python dicts, except the field names must be strings. Any MATLAB object can be
a value of a field. As for all objects in MATLAB, structs are in fact arrays of structs, where a single struct is an array
of shape (1, 1).

octave:11> my_struct = struct(’fieldl’, 1, ’"field2’, 2)
my_struct =
{
fieldl =
field2 =

|
N =

octave:12> save -6 octave_struct.mat my_struct

We can load this in Python:

>>> mat_contents = sio.loadmat ("octave struct.mat’)
>>> mat_contents
{'my_struct’: array ([[([[1.0]], [[2.011)11,

dtype=|[(' fieldl’, "0'"), (’field2’, ’'0")1), ’'_version_ '": '1.0’, ’'__header_ ’": 'MATLAB 5.0 MAT-

>>> oct_struct = mat_contents[’'my_struct’]
>>> oct_struct.shape

(1, 1)

>>> val = oct_struct[0,0]

>>> val

([rx.011, [(12.011)

>>> val[’/ fieldl’]

array ([[1.11)
>>> val[’/ field2’]
array ([[2.11)

>>> val.dtype
dtype ([(' fieldl’, '0"), (’field2’, 70')1])

In versions of Scipy from 0.12.0, MATLAB structs come back as numpy structured arrays, with fields named for the
struct fields. You can see the field names in the dt ype output above. Note also:

1.15. File 10 (scipy.io) 135

SciPy Reference Guide, Release 0.16.1

>>> val = oct_struct[0,0]

and:

octave:13> size (my_struct)
ans =

So, in MATLAB, the struct array must be at least 2D, and we replicate that when we read into Scipy. If you want all

length 1 dimensions squeezed out, try this:

>>> mat_contents = sio.loadmat (' octave_struct.mat’, squeeze_me=True)
>>> oct_struct = mat_contents[’my_struct’]
>>> oct_struct. shape

0

Sometimes, it’s more convenient to load the MATLAB structs as python objects rather than numpy structured ar-
rays - it can make the access syntax in python a bit more similar to that in MATLAB. In order to do this, use the

struct_as_record=False parameter setting to loadmat.

>>> mat_contents = sio.loadmat (' octave_struct.mat’, struct_as_record=False)
>>> oct_struct = mat_contents[’my_struct’]

>>> oct_struct[0,0].fieldl

array ([[1.11)

struct_as_record=False works nicely with squeeze_me:

>>> mat_contents = sio.loadmat (' octave_struct.mat’, struct_as_record=False,
>>> oct_struct = mat_contents[’my_struct’]
>>> oct_struct.shape # but no - it’s a scalar
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: ’'mat_struct’ object has no attribute ’shape’
>>> type (oct_struct)
<class ’scipy.io.matlab.mio5_params.mat_struct’>
>>> oct_struct.fieldl
1.0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: ’'mat_struct’ object has no attribute ’shape’

Saving struct arrays can be done in various ways. One simple method is to use dicts:

>>> a_dict = {’fieldl’: 0.5, "field2’: "a string’}
>>> sio.savemat (' saved_struct.mat’, {’a_dict’: a_dict})

loaded as:

octave:21> load saved_struct
octave:22> a_dict
a_dict =

scalar structure containing the fields:

field2 = a string
fieldl 0.50000

You can also save structs back again to MATLAB (or Octave in our case) like this:

squeeze_me=True)

136 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

>>> dt = [('f1", "£8"), ('f2’, "S10")]
>>> arr = np.zeros((2,), dtype=dt)
>>> arr
array ([(0.0, "7), (0.0, "")71,

dtype=[('f1’, "<£f8"), ("f2’, "S10")1])
>>> arr[0]["f1"] = 0.5
>>> arr[0]["£2"] = "python’
>>> arr[1] [’] = 99

1

fl
>>> arr[1] [’ 2’ = '"not perl’

>>> sio.savemat ('np_struct_arr.mat’, {’arr’: arr})

MATLAB cell arrays

Cell arrays in MATLAB are rather like python lists, in the sense that the elements in the arrays can contain any type
of MATLAB object. In fact they are most similar to numpy object arrays, and that is how we load them into numpy.

octave:14> my_cells = {1, [2, 31}
my_cells =
{

[1,1]1 = 1

[1,2]

octave:15> save -6 octave_cells.mat my_cells

Back to Python:

>>> mat_contents = sio.loadmat ("octave _cells.mat’)
>>> oct_cells = mat_contents[’'my_cells’]
>>> print (oct_cells.dtype)

object

>>> val = oct_cells[0,0]
>>> val

array ([[1.11)

>>> print (val.dtype)
floato64

Saving to a MATLAB cell array just involves making a numpy object array:

>>> obj_arr = np.zeros((2,), dtype=np.object)

>>> obj_arr[0] = 1

>>> obj_arr[l] = "a string’

>>> obj_arr

array ([1l, ’'a string’], dtype=object)

>>> sio.savemat ('np_cells.mat’, {’obj_arr’:o0bj_arr})

octave:16> load np_cells.mat
octave:17> obj_arr

obj_arr =
{
[1,1] =1
[2,1] = a string

1.15. File 10 (scipy.io)

137

SciPy Reference Guide, Release 0.16.1

1.15.2 IDL files

readsav(file_name[, idict, python_dict, ...]) Read an IDL .sav file :Parameters: file_name : str Name of the IDL save file.

1.15.3 Matrix Market files

mminfo(source) Queries the contents of the Matrix Market file ‘filename’ to extract size and storag
mmread(source) Reads the contents of a Matrix Market file ‘filename’ into a matrix.
mmwr ite(target, a[, comment, field, precision]) Writes the sparse or dense array a to a Matrix Market formatted file.

1.15.4 Wav sound files (scipy.io.wavfile)

read(filename[, mmap]) Return the sample rate (in samples/sec) and data from a WAV file :Parameters: filename : string or ope
write(filename, rate, data) Write a numpy array as a WAV file :Parameters: filename : string or open file handle Output wav file r

1.15.5 Arff files (scipy.io.arff)

Module to read ARFF files, which are the standard data format for WEKA.

ARFF is a text file format which support numerical, string and data values. The format can also represent missing data
and sparse data.

See the WEKA website for more details about arff format and available datasets.

Examples

>>> from scipy.io import arff
>>> from cStringIO import StringIO
>>> content = """
@relation foo
@attribute width numeric
@attribute height numeric
@attribute color ({red,green,blue,yellow,black}
@data
5.0,3.25,blue
4.5,3.75,green
3.0,4.00, red
>>> f = StringIO(content)
>>> data, meta = arff.loadarff (f)
>>> data
array ([(5.0, 3.25, ’"blue’), (4.5, 3.75, 'green’), (3.0, 4.0, ’'red’)1,
dtype=[('width’, ’"<£f8’), (’'height’, ’<£f8’), ('color’, "]S6’)1])
>>> meta
Dataset: foo
width’s type is numeric
height’s type 1is numeric
color’s type is nominal, range is (’'red’, ’green’, ’'blue’, ’'yellow’, ’'black’)

loadarff(f) Read an arff file.

138 Chapter 1. SciPy Tutorial

http://weka.wikispaces.com/ARFF

SciPy Reference Guide, Release 0.16.1

1.15.6 Netcdf (scipy.io.netcdf)

netcdf_file(filename[, mode, mmap, version]) A file object for NetCDF data.

Allows reading of NetCDF files (version of pupynere package)

1.16 Weave (scipy.weave)

1.16.1 Outline

1.16. Weave (scipy.weave) 139

http://pypi.python.org/pypi/pupynere/

SciPy Reference Guide, Release 0.16.1

Contents

* Weave (scipy.weave)
— Outline
Introduction
Requirements
Installation
Testing
% Testing Notes:
Benchmarks
Inline
* More with printf
* More examples
- Binary search
- Dictionary Sort
- NumPy — cast/copy/transpose
- wxPython
Keyword Option
Inline Arguments
Distutils keywords
- Keyword Option Examples
- Returning Values
- The issue with 1ocals ()
- A quick look at the code
Technical Details
Passing Variables in/out of the C/C++ code
Type Conversions
- NumPy Argument Conversion
- String, List, Tuple, and Dictionary Conversion
- File Conversion
- Callable, Instance, and Module Conversion
- Customizing Conversions
The Catalog
- Function Storage
- Catalog search paths and the PYTHONCOMPILED variable

* ¥ ¥

¥ ¥ ¥

*

- Blitz
* Requirements
* Limitations
* NumPy efficiency issues: What compilation buys you
* The Tools
- Parser
- Blitz and NumPy
Type definitions and coersion
Cataloging Compiled Functions
Checking Array Sizes
* Creating the Extension Module
— Extension Modules
#* A Simple Example
* Fibonacci Example
— Customizing Type Conversions — Type Factories
— Things I wish weave did

* % ¥

140 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

1.16.2 Introduction

The scipy.weave (below just weave) package provides tools for including C/C++ code within in Python code.
This offers both another level of optimization to those who need it, and an easy way to modify and extend any supported
extension libraries such as wxPython and hopefully VTK soon. Inlining C/C++ code within Python generally results
in speed ups of 1.5x to 30x speed-up over algorithms written in pure Python (However, it is also possible to slow things
down...). Generally algorithms that require a large number of calls to the Python API don’t benefit as much from the
conversion to C/C++ as algorithms that have inner loops completely convertable to C.

There are three basic ways to use weave. The weave.inline () function executes C code directly within Python,
and weave.blitz () translates Python NumPy expressions to C++ for fast execution. blitz () was the original
reason weave was built. For those interested in building extension libraries, the ext_t ools module provides classes
for building extension modules within Python.

Most of weave’ s functionality should work on Windows and Unix, although some of its functionality requires gcc
or a similarly modern C++ compiler that handles templates well. Up to now, most testing has been done on Windows
2000 with Microsoft’s C++ compiler (MSVC) and with gcc (mingw32 2.95.2 and 2.95.3-6). All tests also pass on
Linux (RH 7.1 with gcc 2.96), and I’ve had reports that it works on Debian also (thanks Pearu).

The inline and blitz provide new functionality to Python (although I’ve recently learned about the Pylnline
project which may offer similar functionality to inline). On the other hand, tools for building Python extension
modules already exists (SWIG, SIP, pycpp, CXX, and others). As of yet, I'm not sure where weave fits in this
spectrum. It is closest in flavor to CXX in that it makes creating new C/C++ extension modules pretty easy. However,
if you’re wrapping a gaggle of legacy functions or classes, SWIG and friends are definitely the better choice. weave
is set up so that you can customize how Python types are converted to C types in weave. This is great for inline (),
but, for wrapping legacy code, it is more flexible to specify things the other way around — that is how C types map to
Python types. This weave does not do. I guess it would be possible to build such a tool on top of weave, but with
good tools like SWIG around, I'm not sure the effort produces any new capabilities. Things like function overloading
are probably easily implemented in weave and it might be easier to mix Python/C code in function calls, but nothing
beyond this comes to mind. So, if you're developing new extension modules or optimizing Python functions in C,
weave.ext_tools () might be the tool for you. If you're wrapping legacy code, stick with SWIG.

The next several sections give the basics of how to use weave. We’ll discuss what’s happening under the covers in
more detail later on. Serious users will need to at least look at the type conversion section to understand how Python
variables map to C/C++ types and how to customize this behavior. One other note. If you don’t know C or C++ then
these docs are probably of very little help to you. Further, it’d be helpful if you know something about writing Python
extensions. weave does quite a bit for you, but for anything complex, you’ll need to do some conversions, reference
counting, etc.

Note: weave is actually part of the SciPy package. However, it also works fine as a standalone package (you can
install from scipy/weave with python setup.py install). The examples here are given as if it is used as

a stand alone package. If you are using from within scipy, you can use from scipy import weave and the
examples will work identically.

1.16.3 Requirements

e Python
T'use 2.1.1. Probably 2.0 or higher should work.
e C++ compiler

weave uses distutils to actually build extension modules, so it uses whatever compiler was originally
used to build Python. weave itself requires a C++ compiler. If you used a C++ compiler to build Python, your
probably fine.

1.16. Weave (scipy.weave) 141

http://pyinline.sourceforge.net/
http://www.scipy.org

SciPy Reference Guide, Release 0.16.1

On Unix gcc is the preferred choice because I've done a little testing with it. All testing has been done with gcc,
but I expect the majority of compilers should work for inline and ext_tools. The one issue I'm not sure
about is that I’ve hard coded things so that compilations are linked with the stdc++ library. Is this standard
across Unix compilers, or is this a gcc-ism?

Forblitz (), you’ll need a reasonably recent version of gcc. 2.95.2 works on windows and 2.96 looks fine on
Linux. Other versions are likely to work. Its likely that KAI’s C++ compiler and maybe some others will work,
but I haven’t tried. My advice is to use gcc for now unless your willing to tinker with the code some.

On Windows, either MSVC or gcc (mingw32) should work. Again, you’ll need gcc forblitz () asthe MSVC
compiler doesn’t handle templates well.

I have not tried Cygwin, so please report success if it works for you.
e NumPy

The python NumPy module is required for b1itz () to work and for numpy.distutils which is used by weave.

1.16.4 Installation

There are currently two ways to get weave. First, weave is part of SciPy and installed automatically (as a sub-
package) whenever SciPy is installed. Second, since weave is useful outside of the scientific community, it has been
setup so that it can be used as a stand-alone module.

The stand-alone version can be downloaded from here. Instructions for installing should be found there as well.
setup.py file to simplify installation.

1.16.5 Testing

Once weave is installed, fire up python and run its unit tests.

>>> import weave
>>> weave.test ()
runs long time... spews tons of output and a few warnings

Ran 184 tests in 158.418s
OK
>>>

This takes a while, usually several minutes. On Unix with remote file systems, I’ve had it take 15 or so minutes. In the
end, it should run about 180 tests and spew some speed results along the way. If you get errors, they’ll be reported at
the end of the output. Please report errors that you find. Some tests are known to fail at this point.

If you only want to test a single module of the package, you can do this by running test() for that specific module.

>>> import weave.scalar_spec
>>> weave.scalar_spec.test ()

Ran 7 tests in 23.284s

142 Chapter 1. SciPy Tutorial

http://www.mingw.org%3Ewww.mingw.org
http://numeric.scipy.org/
http://www.scipy.org/Weave

SciPy Reference Guide, Release 0.16.1

Testing Notes:

¢ Windows 1

I’ve had some test fail on windows machines where I have msvc, gec-2.95.2 (in c:gcc-2.95.2), and gec-2.95.3-6
(in c:gcc) all installed. My environment has c:gcc in the path and does not have c:gcc-2.95.2 in the path. The test
process runs very smoothly until the end where several test using gcc fail with cpp0O not found by g++. If I check
os.system(‘gcc -v’) before running tests, I get gcc-2.95.3-6. If I check after running tests (and after failure), I
get gcc-2.95.2. ?77huh??. The os.environ[’PATH’] still has c:gcc first in it and is not corrupted (msvc/distutils
messes with the environment variables, so we have to undo its work in some places). If anyone else sees this, let
me know - - it may just be an quirk on my machine (unlikely). Testing with the gcc- 2.95.2 installation always
works.

Windows 2

If you run the tests from PythonWin or some other GUI tool, you’ll get a ton of DOS windows popping up
periodically as weave spawns the compiler multiple times. Very annoying. Anyone know how to fix this?

wxPython

wxPython tests are not enabled by default because importing wxPython on a Unix machine without access to a
X-term will cause the program to exit. Anyone know of a safe way to detect whether wxPython can be imported

and whether a display exists on a machine?

1.16.6 Benchmarks

This section has not been updated from old scipy weave and Numeric....

This section has a few benchmarks — thats all people want to see anyway right? These are mostly taken from running
files in the weave /example directory and also from the test scripts. Without more information about what the test
actually do, their value is limited. Still, their here for the curious. Look at the example scripts for more specifics about
what problem was actually solved by each run. These examples are run under windows 2000 using Microsoft Visual
C++ and python2.1 on a 850 MHz PIII laptop with 320 MB of RAM. Speed up is the improvement (degredation)
factor of weave compared to conventional Python functions. The blitz () comparisons are shown compared to

NumPy.

Table 1.7: inline and ext_tools

Algorithm Speed up
binary search 1.50
fibonacci (recursive) | 82.10
fibonacci (loop) 9.17
return None 0.14

map 1.20
dictionary sort 2.54
vector quantization 37.40

Table 1.8: blitz — double precision

Algorithm Speed up
a=b+c512x512 3.05
a=b+c+d512x512 4.59
5 pt avg. filter, 2D Image 512x512 9.01
Electromagnetics (FDTD) 100x100x100 | 8.61

The benchmarks shown b1itz in the best possible light. NumPy (at least on my machine) is significantly worse for
double precision than it is for single precision calculations. If your interested in single precision results, you can pretty

much divide the double precision speed up by 3 and you’ll be close.

1.16. Weave (scipy.weave)

143

SciPy Reference Guide, Release 0.16.1

1.16.7 Inline

inline () compiles and executes C/C++ code on the fly. Variables in the local and global Python scope are also
available in the C/C++ code. Values are passed to the C/C++ code by assignment much like variables are passed into
a standard Python function. Values are returned from the C/C++ code through a special argument called return_val.
Also, the contents of mutable objects can be changed within the C/C++ code and the changes remain after the C code
exits and returns to Python. (more on this later)

Here’s a trivial print £ example using inline ():

>>> import weave

>>> a =1

>>> weave.inline (/printf ("2d\\n",a);’,["a’])
1

In this, its most basic form, inline (c_code, wvar_list) requires two arguments. c_code is a string of valid
C/C++ code. var_list is a list of variable names that are passed from Python into C/C++. Here we have a simple
printf statement that writes the Python variable a to the screen. The first time you run this, there will be a pause
while the code is written to a .cpp file, compiled into an extension module, loaded into Python, cataloged for future
use, and executed. On windows (850 MHz PIII), this takes about 1.5 seconds when using Microsoft’s C++ compiler
(MSVC) and 6-12 seconds using gcc (mingw32 2.95.2). All subsequent executions of the code will happen very
quickly because the code only needs to be compiled once. If you kill and restart the interpreter and then execute the
same code fragment again, there will be a much shorter delay in the fractions of seconds range. This is because weave
stores a catalog of all previously compiled functions in an on disk cache. When it sees a string that has been compiled,
it loads the already compiled module and executes the appropriate function.

Note: If you try the printf example in a GUI shell such as IDLE, PythonWin, PyShell, etc., you’re unlikely to
see the output. This is because the C code is writing to stdout, instead of to the GUI window. This doesn’t mean that

inline doesn’t work in these environments — it only means that standard out in C is not the same as the standard out for
Python in these cases. Non input/output functions will work as expected.

Although effort has been made to reduce the overhead associated with calling inline, it is still less efficient for simple
code snippets than using equivalent Python code. The simple printf example is actually slower by 30% or so
than using Python print statement. And, it is not difficult to create code fragments that are 8-10 times slower
using inline than equivalent Python. However, for more complicated algorithms, the speedup can be worthwhile —
anywhere from 1.5-30 times faster. Algorithms that have to manipulate Python objects (sorting a list) usually only see
a factor of 2 or so improvement. Algorithms that are highly computational or manipulate NumPy arrays can see much
larger improvements. The examples/vq.py file shows a factor of 30 or more improvement on the vector quantization
algorithm that is used heavily in information theory and classification problems.

More with printf

MSVC users will actually see a bit of compiler output that distutils does not suppress the first time the code executes:

>>> weave.inline (r'printf ("2d\n",a);’,["a’])
sc_e013937dbc8c647ac62438874e5795131.cpp
Creating library C:\DOCUME~1\eric\LOCALS~I1\Temp\python2l_ compiled\temp
\Release\sc_e013937dbc8c647ac62438874e5795131.1ib and
object C:\DOCUME~1\eric\LOCALS~1\Temp\python2l_compiled\temp\Release\sc_e013937dbc8c647ac62438874c¢
1

Nothing bad is happening, its just a bit annoying. * Anyone know how to turn this off?*

This example also demonstrates using ‘raw strings’. The r preceding the code string in the last example denotes that
this is a ‘raw string’. In raw strings, the backslash character is not interpreted as an escape character, and so it isn’t
necessary to use a double backslash to indicate that the ‘n’ is meant to be interpreted in the C printf statement

144 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

instead of by Python. If your C code contains a lot of strings and control characters, raw strings might make things
easier. Most of the time, however, standard strings work just as well.

The print £ statement in these examples is formatted to print out integers. What happens if a is a string? inline
will happily, compile a new version of the code to accept strings as input, and execute the code. The result?

>>> a = ’'string’
>>> weave.inline (r’printf (" \n",a);’",["a’"]l)
32956972

In this case, the result is non-sensical, but also non-fatal. In other situations, it might produce a compile time error
because a is required to be an integer at some point in the code, or it could produce a segmentation fault. Its possible
to protect against passing inline arguments of the wrong data type by using asserts in Python.

>>> a = ’'string’
>>> def protected_printf(a):
assert (type (a) == type(l))

.. weave.inline (r’printf (" \n",a);’",["a’"]l)
>>> protected_printf (1)

1
>>> protected_printf ('string’)
AssertError...

For printing strings, the format statement needs to be changed. Also, weave doesn’t convert strings to char*. Instead
it uses CXX Py::String type, so you have to do a little more work. Here we convert it to a C++ std::string and then ask
cor the char* version.

>>> a = ’'string’

>>> weave.inline (r’printf ("%s\n",std::string(a).c_str());",["a’])
string

XXX

This is a little convoluted. Perhaps strings should convert to std: : string objects instead of CXX objects. Or
maybe to charx.

As in this case, C/C++ code fragments often have to change to accept different types. For the given printing task,
however, C++ streams provide a way of a single statement that works for integers and strings. By default, the stream
objects live in the std (standard) namespace and thus require the use of std: :.

>>> weave.inline (' std::cout << a << std::endl;’,["a’]l)

1

>>> a = ’string’

>>> weave.inline (' std::cout << a << std::endl;’,["a’]l)
string

Examples using print f and cout are included in examples/print_example.py.

More examples

This section shows several more advanced uses of inline. It includes a few algorithms from the Python Cookbook
that have been re-written in inline C to improve speed as well as a couple examples using NumPy and wxPython.

Binary search

Lets look at the example of searching a sorted list of integers for a value. For inspiration, we’ll use Kalle Svensson’s
binary_search() algorithm from the Python Cookbook. His recipe follows:

1.16. Weave (scipy.weave) 145

http://aspn.activestate.com/ASPN/Cookbook/Python
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/81188

SciPy Reference Guide, Release 0.16.1

def binary_search(seq, t):
min = 0; max = len(seq) - 1
while 1:
if max < min:
return -1

m = (min + max) / 2
if segm] < t:

min = m + 1
elif seg[m] > t:

max = m - 1
else:

return m

This Python version works for arbitrary Python data types. The C version below is specialized to handle integer values.
There is a little type checking done in Python to assure that we’re working with the correct data types before heading
into C. The variables seq and t don’t need to be declared because weave handles converting and declaring them in
the C code. All other temporary variables such asmin, max, etc. must be declared — it is C after all. Here’s the new
mixed Python/C function:

def c_int_binary_search(seq,t):
do a little type checking in Python
assert (type (t) == type(l))
assert (type (seq) == type([]))

now the C code

code = """
#line 29 "binary_search.py"
int val, m, min = 0;
int max = seqg.length() - 1;
PyObject xpy_val;
for(;;)

{
if (max < min)

{

return_val = Py::new_reference_to(Py::Int(-1));
break;

}

m = (min + max) /2;

val = py_to_int (PyList_GetItem(seqg.ptr(),m),"val");
if (val < t)
min = m + 1;
else 1if (val > t)
max = m — 1;
else

{
return_val = Py::new_reference_to(Py::Int (m));
break;

}

return inline(code, ["seq’,’t’])

We have two variables seq and t passed in. t is guaranteed (by the assert) to be an integer. Python integers are
converted to C int types in the transition from Python to C. seq is a Python list. By default, it is translated to a CXX
list object. Full documentation for the CXX library can be found at its website. The basics are that the CXX provides
C++ class equivalents for Python objects that simplify, or at least object orientify, working with Python objects in
C/C++. For example, seq. length () returns the length of the list. A little more about CXX and its class methods,
etc. is in the Type Conversions section.

146 Chapter 1. SciPy Tutorial

http://cxx.sourceforge.net/

SciPy Reference Guide, Release 0.16.1

Note: CXX uses templates and therefore may be a little less portable than another alternative by Gordan McMillan
called SCXX which was inspired by CXX. It doesn’t use templates so it should compile faster and be more portable.

SCXX has a few less features, but it appears to me that it would mesh with the needs of weave quite well. Hopefully
xxx_spec files will be written for SCXX in the future, and we’ll be able to compare on a more empirical basis. Both
sets of spec files will probably stick around, it just a question of which becomes the default.

Most of the algorithm above looks similar in C to the original Python code. There are two main differences. The first is
the setting of return_val instead of directly returning from the C code with a return statement. return_val
is an automatically defined variable of type PyObject « that is returned from the C code back to Python. You’ll
have to handle reference counting issues when setting this variable. In this example, CXX classes and functions
handle the dirty work. All CXX functions and classes live in the namespace Py::. The following code con-
verts the integer m to a CXX Int () object and then to a PyObject * with an incremented reference count using
Py::new_reference_to().

return_val = Py::new_reference_to(Py::Int(m));

The second big differences shows up in the retrieval of integer values from the Python list. The simple Python seq[1]
call balloons into a C Python API call to grab the value out of the list and then a separate call to py_to_int () that
converts the PyObject* to an integer. py_to_int () includes both a NULL cheack and a PyInt_Check () call as
well as the conversion call. If either of the checks fail, an exception is raised. The entire C++ code block is executed
with in a try/catch block that handles exceptions much like Python does. This removes the need for most error
checking code.

It is worth note that CXX lists do have indexing operators that result in code that looks much like Python. However,
the overhead in using them appears to be relatively high, so the standard Python API was used on the seq.ptr ()
which is the underlying PyOb ject * of the List object.

The #1ine directive that is the first line of the C code block isn’t necessary, but it’s nice for debugging. If the
compilation fails because of the syntax error in the code, the error will be reported as an error in the Python file
“binary_search.py” with an offset from the given line number (29 here).

So what was all our effort worth in terms of efficiency? Well not a lot in this case. The examples/binary_search.py file
runs both Python and C versions of the functions As well as using the standard bisect module. If we runiton a 1
million element list and run the search 3000 times (for 0- 2999), here are the results we get:

C:\home\ej\wrk\scipy\weave\examples> python binary_search.py
Binary search for 3000 items in 1000000 length list of integers:
speed in python: 0.159999966621

speed of bisect: 0.121000051498

speed up: 1.32

speed in c: 0.110000014305

speed up: 1.45

speed in c(no asserts): 0.0900000333786

speed up: 1.78

So, we get roughly a 50-75% improvement depending on whether we use the Python asserts in our C version. If
we move down to searching a 10000 element list, the advantage evaporates. Even smaller lists might result in the
Python version being faster. I'd like to say that moving to NumPy lists (and getting rid of the Getltem() call) offers a
substantial speed up, but my preliminary efforts didn’t produce one. I think the log(N) algorithm is to blame. Because
the algorithm is nice, there just isn’t much time spent computing things, so moving to C isn’t that big of a win. If
there are ways to reduce conversion overhead of values, this may improve the C/Python speed up. Anyone have other
explanations or faster code, please let me know.

Dictionary Sort

The demo in examples/dict_sort.py is another example from the Python CookBook. This submission, by Alex Martelli,
demonstrates how to return the values from a dictionary sorted by their keys:

1.16. Weave (scipy.weave) 147

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52306

SciPy Reference Guide, Release 0.16.1

def sortedDictValues3(adict) :
keys = adict.keys /()
keys.sort ()
return map (adict.get, keys)

Alex provides 3 algorithms and this is the 3rd and fastest of the set. The C version of this same algorithm follows:

def c_sort (adict):

assert (type (adict) == type({}))

code = """

#line 21 "dict_sort.py"

Py::List keys = adict.keys();

Py::List items (keys.length()); keys.sort();

PyObject* item = NULL;

for(int i = 0; i < keys.length();i++)

{
item = PyList_GET_ITEM (keys.ptr(),1i);
item = PyDict_GetItem(adict.ptr(),item);
Py_XINCREF (item) ;
PyList_SetItem(items.ptr(),i,item);

}

return_val = Py::new_reference_to (items);

nnn

return inline_tools.inline(code, ["adict’],verbose=1)

Like the original Python function, the C++ version can handle any Python dictionary regardless of the key/value pair
types. It uses CXX objects for the most part to declare python types in C++, but uses Python API calls to manipulate
their contents. Again, this choice is made for speed. The C++ version, while more complicated, is about a factor of 2
faster than Python.

C:\home\ej\wrk\scipy\weave\examples> python dict_sort.py
Dict sort of 1000 items for 300 iterations:
speed in python: 0.319999933243
[o, 1, 2, 3, 4]
speed in c: 0.151000022888
speed up: 2.12
[o, 1, 2, 3, 4]

NumPy — cast/copy/transpose

CastCopyTranspose is a function called quite heavily by Linear Algebra routines in the NumPy library. Its needed
in part because of the row-major memory layout of multi-demensional Python (and C) arrays vs. the col-major order
of the underlying Fortran algorithms. For small matrices (say 100x100 or less), a significant portion of the common
routines such as LU decompisition or singular value decompostion are spent in this setup routine. This shouldn’t
happen. Here is the Python version of the function using standard NumPy operations.

def _castCopyAndTranspose (type, array) :

if a.typecode () == type:
cast_array = copy.copy (NumPy.transpose (a))
else:
cast_array = copy.copy (NumPy.transpose (a) .astype (type))

return cast_array

And the following is a inline C version of the same function:

from weave.blitz tools import blitz_type_factories
from weave import scalar_spec

from weave import inline

def _cast_copy_transpose (type,a_2d):

148 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

assert (len (shape(a_2d)) == 2)

new_array = zeros (shape(a_2d),type)
NumPy_type = scalar_spec.NumPy_to_blitz_type_mapping[type]
code = \

for(int i = 0;1 < _Na_2d[0]; i++)
for(int 7 = 0; j < _Na_2d[1]; j++)
new_array (i, j) = (%s) a_2d(j,1);
"% NumPy_type
inline (code, ['new_array’,’a_2d’],
type_factories = blitz_type_factories,compiler="gcc’)
return new_array

This example uses blitz++ arrays instead of the standard representation of NumPy arrays so that indexing is simpler
to write. This is accomplished by passing in the blitz++ “type factories” to override the standard Python to C++ type
conversions. Blitz++ arrays allow you to write clean, fast code, but they also are sloooow to compile (20 seconds
or more for this snippet). This is why they aren’t the default type used for Numeric arrays (and also because most
compilers can’t compile blitz arrays...). inline () is also forced to use ‘gcc’ as the compiler because the default
compiler on Windows (MSVC) will not compile blitz code. (‘gcc’ I think will use the standard compiler on Unix
machine instead of explicitly forcing gcc (check this)) Comparisons of the Python vs inline C++ code show a factor
of 3 speed up. Also shown are the results of an “inplace” transpose routine that can be used if the output of the
linear algebra routine can overwrite the original matrix (this is often appropriate). This provides another factor of 2
improvement.

#C:\home\ej\wrk\scipy\weave\examples> python cast_copy_transpose.py
Cast/Copy/Transposing (150,150)array 1 times
speed in python: 0.870999932289

speed in c: 0.25

speed up: 3.48

1nplace transpose c: 0.129999995232

speed up: 6.70

wxPython

inline knows how to handle wxPython objects. Thats nice in and of itself, but it also demonstrates that the type
conversion mechanism is reasonably flexible. Chances are, it won’t take a ton of effort to support special types you
might have. The examples/wx_example.py borrows the scrolled window example from the wxPython demo, accept
that it mixes inline C code in the middle of the drawing function.

def DoDrawing(self, dc):

red = wxNamedColour ("RED");

blue = wxNamedColour ("BLUE") ;
grey_brush = wxLIGHT_GREY_BRUSH;
code = \

#line 108 "wx_example.py"
dc->BeginDrawing () ;
dc—>SetPen (wxPen (+red, 4, wxSOLID)) ;
dc—->DrawRectangle (5,5,50,50);
dc—>SetBrush (xgrey_brush);
dc—>SetPen (wxPen (*blue, 4, wxSOLID)) ;
dc—>DrawRectangle (15, 15, 50, 50);

mon

inline(code, ["dc’, red’, ’blue’, grey_brush’])

dc.SetFont (wxFont (14, wxSWISS, wxNORMAL, wxNORMAL))
dc.SetTextForeground (wxColour (OxFF, 0x20, OxFF))

1.16. Weave (scipy.weave) 149

SciPy Reference Guide, Release 0.16.1

te = dc.GetTextExtent ("Hello World™)
dc.DrawText ("Hello World", 60, 65)

dc.SetPen (wxPen (wxNamedColour (' VIOLET"), 4))
dc.DrawLine (5, 65+te[l1], 60+te[0], 65+te[l])

Here, some of the Python calls to wx objects were just converted to C++ calls. There isn’t any benefit, it just demon-
strates the capabilities. You might want to use this if you have a computationally intensive loop in your drawing code
that you want to speed up. On windows, you’ll have to use the MSVC compiler if you use the standard wxPython
DLLs distributed by Robin Dunn. Thats because MSVC and gcc, while binary compatible in C, are not binary com-
patible for C++. In fact, its probably best, no matter what platform you’re on, to specify that inline use the same
compiler that was used to build wxPython to be on the safe side. There isn’t currently a way to learn this info from the
library — you just have to know. Also, at least on the windows platform, you’ll need to install the wxWindows libraries
and link to them. I think there is a way around this, but I haven’t found it yet — I get some linking errors dealing with
wxString. One final note. You’ll probably have to tweak weave/wx_spec.py or weave/wx_info.py for your machine’s
configuration to point at the correct directories etc. There. That should sufficiently scare people into not even looking
at this... :)

Keyword Option

The basic definition of the inline () function has a slew of optional variables. It also takes keyword arguments that
are passed to distutils as compiler options. The following is a formatted cut/paste of the argument section of
inline’ s doc-string. It explains all of the variables. Some examples using various options will follow.

def inline (code,arg_names,local_dict = None, global_dict = None,
force = 0,
compiler="",
verbose = 0,
support_code = None,
customize=None,
type_factories = None,
auto_downcast=1,
**Kw) :

inline has quite a few options as listed below. Also, the keyword arguments for distutils extension modules are
accepted to specify extra information needed for compiling.

Inline Arguments

code string. A string of valid C++ code. It should not specify a return statement. Instead it should assign results that
need to be returned to Python in the return_val. arg_names list of strings. A list of Python variable names that should
be transferred from Python into the C/C++ code. local_dict optional. dictionary. If specified, it is a dictionary of
values that should be used as the local scope for the C/C++ code. If local_dict is not specified the local dictionary of
the calling function is used. global_dict optional. dictionary. If specified, it is a dictionary of values that should be
used as the global scope for the C/C++ code. If global_dict is not specified the global dictionary of the calling function
is used. force optional. O or 1. default 0. If 1, the C++ code is compiled every time inline is called. This is really only
useful for debugging, and probably only useful if you’re editing support_code a lot. compiler optional. string. The
name of compiler to use when compiling. On windows, it understands ‘msvc’ and ‘gcc’ as well as all the compiler
names understood by distutils. On Unix, it’ll only understand the values understoof by distutils. (I should add ‘gcc’
though to this).

On windows, the compiler defaults to the Microsoft C++ compiler. If this isn’t available, it looks for mingw32 (the
gcc compiler).

150 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

On Unix, it’ll probably use the same compiler that was used when compiling Python. Cygwin’s behavior should be
similar.

verbose optional. 0,1, or 2. defualt 0. Speficies how much much information is printed during the compile phase
of inlining code. 0 is silent (except on windows with msvc where it still prints some garbage). 1 informs you when
compiling starts, finishes, and how long it took. 2 prints out the command lines for the compilation process and can
be useful if you’re having problems getting code to work. Its handy for finding the name of the .cpp file if you need
to examine it. verbose has no affect if the compilation isn’t necessary. support_code optional. string. A string of
valid C++ code declaring extra code that might be needed by your compiled function. This could be declarations of
functions, classes, or structures. customize optional. base_info.custom_info object. An alternative way to specifiy
support_code, headers, etc. needed by the function see the weave.base_info module for more details. (not sure this’1l
be used much). type_factories optional. list of type specification factories. These guys are what convert Python data
types to C/C++ data types. If you’d like to use a different set of type conversions than the default, specify them here.
Look in the type conversions section of the main documentation for examples. auto_downcast optional. 0 or 1. default
1. This only affects functions that have Numeric arrays as input variables. Setting this to 1 will cause all floating point
values to be cast as float instead of double if all the NumPy arrays are of type float. If even one of the arrays has type
double or double complex, all variables maintain there standard types.

Distutils keywords

inline () also accepts a number of distutils keywords for controlling how the code is compiled. The following
descriptions have been copied from Greg Ward’s distutils.extension.Extension class doc- strings for
convenience: sources [string] list of source filenames, relative to the distribution root (where the setup script lives), in
Unix form (slash- separated) for portability. Source files may be C, C++, SWIG (.i), platform- specific resource files,
or whatever else is recognized by the “build_ext” command as source for a Python extension. Note: The module_path
file is always appended to the front of this list include_dirs [string] list of directories to search for C/C++ header files
(in Unix form for portability) define_macros [(name : string, value : string|None)] list of macros to define; each macro
is defined using a 2-tuple, where ‘value’ is either the string to define it to or None to define it without a particular value
(equivalent of “#define FOO” in source or -DFOO on Unix C compiler command line) undef_macros [string] list of
macros to undefine explicitly library_dirs [string] list of directories to search for C/C++ libraries at link time libraries
[string] list of library names (not filenames or paths) to link against runtime_library_dirs [string] list of directories to
search for C/C++ libraries at run time (for shared extensions, this is when the extension is loaded) extra_objects [string]
list of extra files to link with (eg. object files not implied by ‘sources’, static library that must be explicitly specified,
binary resource files, etc.) extra_compile_args [string] any extra platform- and compiler-specific information to use
when compiling the source files in ‘sources’. For platforms and compilers where “command line” makes sense, this is
typically a list of command-line arguments, but for other platforms it could be anything. extra_link_args [string] any
extra platform- and compiler-specific information to use when linking object files together to create the extension (or
to create a new static Python interpreter). Similar interpretation as for ‘extra_compile_args’. export_symbols [string]
list of symbols to be exported from a shared extension. Not used on all platforms, and not generally necessary for
Python extensions, which typically export exactly one symbol: “init” + extension_name.

Keyword Option Examples

We’ll walk through several examples here to demonstrate the behavior of inline and also how the various arguments
are used. In the simplest (most) cases, code and arg_names are the only arguments that need to be specified. Here’s
a simple example run on Windows machine that has Microsoft VC++ installed.

>>> from weave import inline

>>> a = ’'string’

>>> code = """
int 1 = a.length();
return_val = Py::new_reference_to(Py::Int(1l));
nmwn

>>> inline(code, ["a’])

sC_86e98826b65b047f£fd2cd5£479¢c627£12 . cpp

1.16. Weave (scipy.weave) 151

SciPy Reference Guide, Release 0.16.1

Creating

library C:\DOCUME~1\eric\LOCALS~1\Temp\python2l_compiled\temp\Release\sc_86e98826b65b047ffd2cd5f4"
and object C:\DOCUME~1\eric\LOCALS~1\Temp\python2l_ compiled\temp\Release\sc_86e98826b65b047ff
d2cd5£479c627£f12.exp
6
>>> inline(code, ["a’])
6

When inline is first run, you’ll notice that pause and some trash printed to the screen. The “trash” is actually part of
the compiler’s output that distutils does not supress. The name of the extension file, sc_bighonkingnumber. cpp,
is generated from the SHA-256 check sum of the C/C++ code fragment. On Unix or windows machines with only gcc
installed, the trash will not appear. On the second call, the code fragment is not compiled since it already exists, and
only the answer is returned. Now kill the interpreter and restart, and run the same code with a different string.

>>> from weave import inline

>>> a = 'a longer string’

>>> code = """
int 1 = a.length();
return_val = Py::new_reference_to(Py::Int(1l));
wun

>>> inline(code, ["a’])

15

Notice this time, inline () did not recompile the code because it found the compiled function in the persistent
catalog of functions. There is a short pause as it looks up and loads the function, but it is much shorter than compiling
would require.

You can specify the local and global dictionaries if you’d like (much like exec or eval () in Python), but if they
aren’t specified, the “expected” ones are used — i.e. the ones from the function that called inline (). This is
accomplished through a little call frame trickery. Here is an example where the local_dict is specified using the same
code example from above:

>>> a = 'a longer string’

>>> b = "an even longer string’
>>> my_dict = {’a’:b}

>>> inline(code, ["a’])

15

>>> inline(code, ["a’],my_dict)
21

Every time the code is changed, inline does a recompile. However, changing any of the other options in inline
does not force a recompile. The force option was added so that one could force a recompile when tinkering with
other variables. In practice, it is just as easy to change the code by a single character (like adding a space some place)
to force the recompile.

Note: It also might be nice to add some methods for purging the cache and on disk catalogs.

I use verbose sometimes for debugging. When set to 2, it’ll output all the information (including the name of
the .cpp file) that you’d expect from running a make file. This is nice if you need to examine the generated code to
see where things are going haywire. Note that error messages from failed compiles are printed to the screen even if
verbose is set to 0.

The following example demonstrates using gcc instead of the standard msvc compiler on windows using same code
fragment as above. Because the example has already been compiled, the force=1 flag is needed to make inline ()
ignore the previously compiled version and recompile using gcc. The verbose flag is added to show what is printed
out:

152 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

>>>inline(code, ["a’],compiler='gcc’,verbose=2, force=1)

running build_ext

building ’sc_86e98826b650047ffd2cd5£479¢c627£13’ extension

c:\gcc—-2.95.2\bin\g++.exe -mno-cygwin -mdll -02 -w -Wstrict-prototypes —-IC:

\home\ej\wrk\scipy\weave -IC:\Python21l\Include -c C:\DOCUME~1\eric\LOCAL

S~1\Temp\python21l_ compiled\sc_86e98826b65b047ffd2cd5£479c627£f13.cpp

-0 C:\DOCUME~1\eric\LOCALS~1\Temp\python2l_ compiled\temp\Release\sc_86e98826b65b04ffd2cd5f479c627£13
skipping C:\home\ej\wrk\scipy\weave\CXX\cxxextensions.c
(C:\DOCUME~1\eric\LOCALS~1\Temp\python21l_compiled\temp\Release\cxxextensions.o up-to-date)

skipping C:\home\ej\wrk\scipy\weave\CXX\cxxsupport.cxx

(C:\DOCUME~1\eric\LOCALS~1\Temp\python21l_ compiled\temp\Release\cxxsupport.o up-to-date)

skipping C:\home\ej\wrk\scipy\weave\CXX\IndirectPythonInterface.cxx
(C:\DOCUME~1\eric\LOCALS~1\Temp\python2l_ compiled\temp\Release\indirectpythoninterface.o up-to-date)
skipping C:\home\ej\wrk\scipy\weave\CXX\cxx_extensions.cxx

(C:\DOCUME~1\eric\LOCALS~1\Temp\python2l compiled\temp\Release\cxx_extensions.o

up-to-date)

writing C:\DOCUME~1\eric\LOCALS~1\Temp\python2l_compiled\temp\Release\sc_86e98826b65b047ffd2cd5f479cH
c:\gcc—2.95.2\bin\dllwrap.exe --driver-name g++ -mno-cygwin

-mdll -static --output-1lib
C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\libsc_86e98826b65b047ffd2cd5f479c627f1:
C:\DOCUME~1\eric\LOCALS~1\Temp\python21l_compiled\temp\Release\sc_86e98826b65b047ffd2cd5f479c627£13.d:
-sC:\DOCUME~1\eric\LOCALS~1\Temp\python2l compiled\temp\Release\sc_86e98826b65b047ffd2cd5£479c627£f13
C:\DOCUME~1\eric\LOCALS~1\Temp\python21_ compiled\temp\Release\cxxextensions.o
C:\DOCUME~1\eric\LOCALS~1\Temp\python21l_compiled\temp\Release\cxxsupport.o
C:\DOCUME~1\eric\LOCALS~1\Temp\python21l_compiled\temp\Release\indirectpythoninterface.o
C:\DOCUME~1\eric\LOCALS~1\Temp\python21l_ compiled\temp\Release\cxx_extensions.o —-LC:\Python21\1libs
—-lpython2l -o

C:\DOCUME~1\eric\LOCALS~1\Temp\python2l_ compiled\sc_86e98826b65b047ffd2cd5f479¢c627f13.pyd

15

That’s quite a bit of output. verbose=1 just prints the compile time.

>>>inline(code, ["a’],compiler='gcc’,verbose=1, force=1)
Compiling code...

finished compiling (sec): 6.00800001621

15

Note: I’ve only used the compiler option for switching between ‘msvc’ and ‘gec’ on windows. It may have use on
Unix also, but I don’t know yet.

The support_code argument is likely to be used a lot. It allows you to specify extra code fragments such as
function, structure or class definitions that you want to use in the code string. Note that changes to support_code
do not force a recompile. The catalog only relies on code (for performance reasons) to determine whether recompiling
is necessary. So, if you make a change to support_code, you’ll need to alter code in some way or use the force
argument to get the code to recompile. I usually just add some inocuous whitespace to the end of one of the lines in
code somewhere. Here’s an example of defining a separate method for calculating the string length:

>>> from weave import inline
>>> a = ’"a longer string’
>>> support_code = """
PyObject* length (Py::String a)
{
int 1 = a.length();
return Py::new_reference_to(Py::Int(1l));

}

nun

>>> inline("return_val = length(a);",["a’],
support_code = support_code)

1.16. Weave (scipy.weave) 153

SciPy Reference Guide, Release 0.16.1

15

customize is aleft over from a previous way of specifying compiler options. Itis a custom_1info object that can
specify quite a bit of information about how a file is compiled. These info objects are the standard way of defining
compile information for type conversion classes. However, I don’t think they are as handy here, especially since we’ve
exposed all the keyword arguments that distutils can handle. Between these keywords, and the support_code
option, I think customize may be obsolete. We’ll see if anyone cares to use it. If not, it’ll get axed in the next
version.

The type_factories variable is important to people who want to customize the way arguments are converted
from Python to C. We’ll talk about this in the next chapter xx of this document when we discuss type conversions.

auto_downcast handles one of the big type conversion issues that is common when using NumPy arrays in con-
junction with Python scalar values. If you have an array of single precision values and multiply that array by a Python
scalar, the result is upcast to a double precision array because the scalar value is double precision. This is not usu-
ally the desired behavior because it can double your memory usage. auto_downcast goes some distance towards
changing the casting precedence of arrays and scalars. If your only using single precision arrays, it will automatically
downcast all scalar values from double to single precision when they are passed into the C++ code. This is the default
behavior. If you want all values to keep there default type, set auto_downcast to 0.

Returning Values

Python variables in the local and global scope transfer seemlessly from Python into the C++ snippets. And, if inline
were to completely live up to its name, any modifications to variables in the C++ code would be reflected in the Python
variables when control was passed back to Python. For example, the desired behavior would be something like:

THIS DOES NOT WORK

>>> a = 1

>>> weave.inline ("a++;", ["a’])
>>> a

2

Instead you get:

>>> a = 1

>>> weave.inline ("a++;",["a’])
>>> a

1

Variables are passed into C++ as if you are calling a Python function. Python’s calling convention is sometimes called
“pass by assignment”. This means its asifa c_a = a assignment is made right before inline call is made and the
c_a variable is used within the C++ code. Thus, any changes made to c_a are not reflected in Python’s a variable.
Things do get a little more confusing, however, when looking at variables with mutable types. Changes made in C++
to the contents of mutable types are reflected in the Python variables.

>>> a= [1,2]
>>> weave.inline ("PyList_SetItem(a.ptr(),0,PyInt_FromLong(3));",["a’])
>>> print a

[3, 2]

So modifications to the contents of mutable types in C++ are seen when control is returned to Python. Modifications
to immutable types such as tuples, strings, and numbers do not alter the Python variables. If you need to make changes
to an immutable variable, you’ll need to assign the new value to the “magic” variable return_val in C++. This
value is returned by the inline () function:

>>> g = 1

>>> a = weave.inline("return_val = Py::new_reference_to(Py::Int(at+tl));",["a’l)
>>> a

2

154 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

The return_val variable can also be used to return newly created values. This is possible by returning a tuple. The
following trivial example illustrates how this can be done:

python version
def multi_return() :
return 1, ’'2nd’

C version.
def c_multi_return():
code = """
py::tuple results(2);

results[0] = 1;
results([1l] = "2nd";
return_val = results;

nun

return inline_tools.inline (code)

The example is available in examples/tuple_return.py. It also has the dubious honor of demonstrating how
much inline () can slow things down. The C version here is about 7-10 times slower than the Python version. Of
course, something so trivial has no reason to be written in C anyway.

The issue with 1locals () inline passes the locals () and globals () dictionaries from Python into the
C++ function from the calling function. It extracts the variables that are used in the C++ code from these dictionaries,
converts then to C++ variables, and then calculates using them. It seems like it would be trivial, then, after the
calculations were finished to then insert the new values back into the 1ocals () and globals () dictionaries so
that the modified values were reflected in Python. Unfortunately, as pointed out by the Python manual, the locals()
dictionary is not writable.

I suspect locals () is not writable because there are some optimizations done to speed lookups of the local names-
pace. I'm guessing local lookups don’t always look at a dictionary to find values. Can someone “in the know” confirm
or correct this? Another thing I’d like to know is whether there is a way to write to the local namespace of another
stack frame from C/C++. If so, it would be possible to have some clean up code in compiled functions that wrote
final values of variables in C++ back to the correct Python stack frame. I think this goes a long way toward making
inline truly live up to its name. I don’t think we’ll get to the point of creating variables in Python for variables
created in C — although I suppose with a C/C++ parser you could do that also.

A quick look at the code

weave generates a C++ file holding an extension function for each inline code snippet. These file names are
generated using from the SHA-256 signature of the code snippet and saved to a location specified by the PYTHON-
COMPILED environment variable (discussed later). The cpp files are generally about 200-400 lines long and include
quite a few functions to support type conversions, etc. However, the actual compiled function is pretty simple. Below
is the familiar print £ example:

>>> import weave

>>> a = 1
>>> weave.inline (printf ("sd\\n",a);’,["a’])
1

And here is the extension function generated by inline:

static PyObject* compiled_func(PyObject*self, PyObject* args)
{

py::object return_val;

int exception_occured = 0;

PyObject #*py__locals = NULL;

PyObject xpy__globals = NULL;

PyObject xpy_a;

1.16. Weave (scipy.weave) 155

SciPy Reference Guide, Release 0.16.1

py_a = NULL;

if (!PyArg_ParseTuple (args, "OO:compiled_func", &py__locals, &py__globals))
return NULL;

try

{
PyObject* raw_locals = py_to_raw_dict(py__locals,"_locals");
PyObjectx raw_globals = py_to_raw_dict (py__globals,"_globals");
/* argument conversion code =/
py_a = get_variable("a",raw_locals, raw_globals);
int a = convert_to_int (py_a,"a");
/* inline code =*/
/+ NDARRAY API VERSION 90907 =/

printf ("$d\n", a); /+I would like to fill in changed locals and globals here..
}
catch(...)
{

return_val = py::object();

exception_occured = 1;
}
/+ cleanup code x/
if (! (PyObject*) return_val && !exception_occured)
{

return_val = Py_None;

}

return return_val.disown () ;

Every inline function takes exactly two arguments — the local and global dictionaries for the current scope. All variable
values are looked up out of these dictionaries. The lookups, along with all inline code execution, are done within
a C++ try block. If the variables aren’t found, or there is an error converting a Python variable to the appropriate
type in C++, an exception is raised. The C++ exception is automatically converted to a Python exception by SCXX
and returned to Python. The py_to_int () function illustrates how the conversions and exception handling works.
py_to_int first checks that the given PyObject* pointer is not NULL and is a Python integer. If all is well, it calls the
Python API to convert the value to an int. Otherwise, it calls handle_bad_type () which gathers information
about what went wrong and then raises a SCXX TypeError which returns to Python as a TypeError.

int py_to_int (PyObjectx py_obj,char* name)
{
if (!py_obj || !PyInt_Check (py_obj))
handle_bad_type (py_obj, "int", name);
return (int) PyInt_AsLong (py_obj);

void handle_bad_type (PyObject* py_obj, charx good_type, charx var_name)
{
char msg[500];
sprintf (msg, "received ’%s’ type instead of ’"%s’ for variable ’"%s’",
find_type (py_obj),good_type, var_name) ;
throw Py::TypeError (msg);

charx find_type (PyObject* py_obj)
{
if (py_obj == NULL) return "C NULL value";
if (PyCallable_Check (py_obj)) return "callable";
if (PyString_Check (py_obj)) return "string";
if (PyInt_Check (py_obj)) return "int";

156 Chapter 1. SciPy Tutorial

.x/

SciPy Reference Guide, Release 0.16.1

if (PyFloat_Check (py_obj)) return "float";
if (PyDict_Check (py_obj)) return "dict";

if (PyList_Check (py_obj)) return "list";

if (PyTuple_Check (py_obj)) return "tuple";
if (PyFile_Check (py_ob3j)) return "file";

if (PyModule_Check (py_obj)) return "module";

//should probably do more interagation (and thinking) on these.

if (PyCallable_Check (py_obj) && PyInstance_Check (py_obj)) return "callable";
if (PyInstance_Check (py_obj)) return "instance";

if (PyCallable_Check (py_obj)) return "callable";

return "unknown type";

}

Since the inline is also executed within the try/catch block, you can use CXX exceptions within your code. It
is usually a bad idea to directly return from your code, even if an error occurs. This skips the clean up section of
the extension function. In this simple example, there isn’t any clean up code, but in more complicated examples, there
may be some reference counting that needs to be taken care of here on converted variables. To avoid this, either uses
exceptions or set return_val to NULL and use 1f/then’ s to skip code after errors.

Technical Details

There are several main steps to using C/C++ code within Python:
1. Type conversion
2. Generating C/C++ code
3. Compile the code to an extension module
4. Catalog (and cache) the function for future use

Items 1 and 2 above are related, but most easily discussed separately. Type conversions are customizable by the user if
needed. Understanding them is pretty important for anything beyond trivial uses of inline. Generating the C/C++
code is handled by ext _function and ext_module classes and . For the most part, compiling the code is handled
by distutils. Some customizations were needed, but they were relatively minor and do not require changes to distutils
itself. Cataloging is pretty simple in concept, but surprisingly required the most code to implement (and still likely
needs some work). So, this section covers items 1 and 4 from the list. Item 2 is covered later in the chapter covering
the ext_tools module, and distutils is covered by a completely separate document Xxx.

Passing Variables in/out of the C/C++ code

Note: Passing variables into the C code is pretty straight forward, but there are subtlties to how variable modifications
in C are returned to Python. see Returning Values for a more thorough discussion of this issue.

Type Conversions

Note: Maybe xxx_converter instead of xxx_specification is a more descriptive name. Might change in
future version?

By default, inline () makes the following type conversions between Python and C++ types.

1.16. Weave (scipy.weave) 157

SciPy Reference Guide, Release 0.16.1

Table 1.9: Default Data Type Conver-

sions
Python C++
int int
float double
complex std::complex
string py::string
list py::list
dict py::dict
tuple py::tuple
file FILE*
callable py::object
instance py::object
numpy.ndarray | PyArrayObject*
wxXXX WXXXX*

The Py : : namespace is defined by the SCXX library which has C++ class equivalents for many Python types. std: :
is the namespace of the standard library in C++.

Note:
* I haven’t figured out how to handle 1ong int yet (I think they are currenlty converted to int - - check this).

* Hopefully VTK will be added to the list soon

Python to C++ conversions fill in code in several locations in the generated inline extension function. Below is the
basic template for the function. This is actually the exact code that is generated by calling weave.inline ("").

The /+ inline code =/ section is filled with the code passed to the inline () function call. The
/*argument conversion codex/ and /* cleanup code =/ sections are filled with code that handles
conversion from Python to C++ types and code that deallocates memory or manipulates reference counts before the
function returns. The following sections demonstrate how these two areas are filled in by the default conversion meth-
ods. * Note: I’'m not sure I have reference counting correct on a few of these. The only thing I increase/decrease the
ref count on is NumPy arrays. If you see an issue, please let me know.

NumPy Argument Conversion

Integer, floating point, and complex arguments are handled in a very similar fashion. Consider the following inline
function that has a single integer variable passed in:

>>> g =1
>>> inline("",["a’])

The argument conversion code inserted for a is:

/* argument conversion code */
int a = py_to_int (get_variable("a",raw_locals,raw_globals),"a");

get_variable () reads the variable a from the local and global namespaces. py_to_int () has the following
form:

static int py_to_int (PyObject* py_obj,charx name)
{
if (!py_obj || !PyInt_Check (py_obj))
handle_bad_type (py_obj, "int", name);
return (int) PyInt_AsLong(py_obij);

158 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

Similarly, the float and complex conversion routines look like:

static double py_to_float (PyObject* py_obj,char* name)
{
if (!py_obj || !PyFloat_Check (py_obj))
handle_bad_type (py_obj,"float", name);
return PyFloat_AsDouble (py_ob3j);

static std::complex py_to_complex (PyObjectx py_obj,charx name)
{
if (!py_obj || !PyComplex_Check (py_obj))
handle_bad_type (py_obj, "complex", name);
return std::complex (PyComplex_RealAsDouble (py_obj),
PyComplex_ImagAsDouble (py_obij));

NumPy conversions do not require any clean up code.

String, List, Tuple, and Dictionary Conversion
Strings, Lists, Tuples and Dictionary conversions are all converted to SCXX types by default. For the following code,

>>> a = [1]
>>> inline("", ["a’])

The argument conversion code inserted for a is:

/* argument conversion code */
Py::List a = py_to_list (get_variable("a",raw_locals,raw_globals),"a");

get_variable () reads the variable a from the local and global namespaces. py_to_list () and its friends
have the following form:

static Py::List py_to_list (PyObjectx py_obj,charx name)
{
if (!py_obj || !PyList_Check (py_ob3j))
handle_bad_type (py_obj,"list", name);
return Py::List (py_obj);

static Py::String py_to_string(PyObject* py_obj,char+* name)
{
if (!'PyString_Check (py_obj))
handle_bad_type (py_obj, "string", name);
return Py::String(py_obj);

static Py::Dict py_to_dict (PyObject* py_obj,char* name)
{
if (!py_obj || !'PyDict_Check (py_obj))
handle_bad_type (py_obj,"dict", name);
return Py::Dict (py_obj);

static Py::Tuple py_to_tuple (PyObject* py_obj,char* name)
{
if (!py_obj || !PyTuple_Check (py_obj))
handle_bad_type (py_obj, "tuple", name);

1.16. Weave (scipy.weave) 159

SciPy Reference Guide, Release 0.16.1

return Py::Tuple (py_obj);
}

SCXX handles reference counts on for strings, lists, tuples, and dictionaries, so clean up code isn’t necessary.

File Conversion
For the following code,

>>> a = open("bob",’w’)
>>> inline("",["a’])

The argument conversion code is:

/* argument conversion code */
PyObject* py_a = get_variable("a",raw_locals, raw_globals);
FILEx a = py_to_file(py_a,"a");

get_variable () reads the variable a from the local and global namespaces. py_to_file () converts PyObject*
to a FILE* and increments the reference count of the PyObject*:

FILE* py_to_file(PyObject* py_obj, charx name)
{
if (!py_obj || !PyFile_Check (py_obj))
handle_bad_type (py_obj,"file", name);

Py_INCREF (py_obij);
return PyFile_AsFile (py_obj);
}

Because the PyObject* was incremented, the clean up code needs to decrement the counter

/+ cleanup code x/
Py_XDECREF (py_a) ;

Its important to understand that file conversion only works on actual files — i.e. ones created using the open ()
command in Python. It does not support converting arbitrary objects that support the file interface into C FILE %
pointers. This can affect many things. For example, in initial print £ () examples, one might be tempted to solve the
problem of C and Python IDE’s (PythonWin, PyCrust, etc.) writing to different stdout and stderr by using fprintf ()
and passing in sys . stdout and sys.stderr. For example, instead of

>>> weave.inline ('printf ("hello\\n");")

You might try:

>>> pbuf = sys.stdout
>>> weave.inline (/ fprintf (buf, "hello\\n");’, ["buf’])

This will work as expected from a standard python interpreter, but in PythonWin, the following occurs:

>>> buf = sys.stdout
>>> weave.inline (’ fprintf (buf, "hello\\n");’, ["buf’])
Traceback (most recent call last):
File "", line 1, in ?
File "C:\Python2l\weavelinline_tools.py", line 315, in inline
auto_downcast = auto_downcast,
File "C:\Python2l\weave\inline_tools.py", line 386, in compile_function
type_factories = type_factories)
File "C:\Python2l\weavelext_tools.py", line 197, in __init_
auto_downcast, type_factories)

160 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

File "C:\Python2l\weavelext_tools.py", line 390, in assign_variable_types
raise TypeError, format_error_msg(errors)
TypeError: {’buf’: "Unable to convert variable 'buf’ to a C++ type."}

The traceback tells us that inline () was unable to convert ‘buf’ to a C++ type (If instance conversion was imple-
mented, the error would have occurred at runtime instead). Why is this? Let’s look at what the buf object really
is:

>>> buf
pywin.framework.interact.InteractiveView instance at O00EADO014

PythonWin has reassigned sys.stdout to a special object that implements the Python file interface. This works
great in Python, but since the special object doesn’t have a FILE* pointer underlying it, fprint f doesn’t know what
to do with it (well this will be the problem when instance conversion is implemented...).

Callable, Instance, and Module Conversion

Note: Need to look into how ref counts should be handled. Also, Instance and Module conversion are not currently
implemented.

>>> def al():
pass
>>> inline("",["a’])

Callable and instance variables are converted to PyObject*. Nothing is done to their reference counts.

/* argument conversion code */
PyObjectx a = py_to_callable(get_variable("a",raw_locals,raw_globals),"a");

get_variable () reads the variable a from the local and global namespaces. The py_to_callable () and
py_to_instance () don’t currently increment the ref count.

PyObject* py_to_callable (PyObject* py_obj, charx name)
{
if (!py_obj || !PyCallable_Check (py_obij))
handle_bad_type (py_obj,"callable", name);
return py_obij;

PyObject* py_to_instance (PyObjectx py_obj, charx name)
{
if (!py_obj || !PyFile_Check (py_ob3j))
handle_bad_type (py_obj, "instance", name);
return py_obij;
}

There is no cleanup code for callables, modules, or instances.

Customizing Conversions

Converting from Python to C++ types is handled by xxx_specification classes. A type specification class
actually serve in two related but different roles. The first is in determining whether a Python variable that needs to be
converted should be represented by the given class. The second is as a code generator that generates C++ code needed
to convert from Python to C++ types for a specific variable.

When
>>> a = 1
>>> weave.inline (printf ("2d",a);’,["a’])

1.16. Weave (scipy.weave) 161

SciPy Reference Guide, Release 0.16.1

is called for the first time, the code snippet has to be compiled. In this process, the variable ‘a’ is tested against a
list of type specifications (the default list is stored in weave/ext_tools.py). The first specification in the list is used to
represent the variable.

Examples of xxx_specification are scattered throughout numerous “xxx_spec.py” files in the weave pack-
age. Closely related to the xxx_specification classes are yyy_info classes. These classes contain compiler,
header, and support code information necessary for including a certain set of capabilities (such as blitz++ or CXX
support) in a compiled module. xxx_specification classes have one or more yyy_info classes associated
with them. If you’d like to define your own set of type specifications, the current best route is to examine some of the
existing spec and info files. Maybe looking over sequence_spec.py and cxx_info.py are a good place to start. After
defining specification classes, you’ll need to pass them into inline using the type_factories argument. A
lot of times you may just want to change how a specific variable type is represented. Say you’d rather have Python
strings converted to std: : st ring or maybe char* instead of using the CXX string object, but would like all other
type conversions to have default behavior. This requires that a new specification class that handles strings is written
and then prepended to a list of the default type specifications. Since it is closer to the front of the list, it effectively
overrides the default string specification. The following code demonstrates how this is done: ...

The Catalog

catalog.py has a class called catalog that helps keep track of previously compiled functions. This prevents
inline () and related functions from having to compile functions every time they are called. Instead, catalog will
check an in memory cache to see if the function has already been loaded into python. If it hasn’t, then it starts searching
through persisent catalogs on disk to see if it finds an entry for the given function. By saving information about
compiled functions to disk, it isn’t necessary to re-compile functions every time you stop and restart the interpreter.
Functions are compiled once and stored for future use.

When inline (cpp_code) is called the following things happen:

1. A fastlocal cache of functions is checked for the last function called for cpp_code. If an entry for cpp_code
doesn’t exist in the cache or the cached function call fails (perhaps because the function doesn’t have compatible
types) then the next step is to check the catalog.

2. The catalog class also keeps an in-memory cache with a list of all the functions compiled for cpp_code. If
cpp_code has ever been called, then this cache will be present (loaded from disk). If the cache isn’t present,
then it is loaded from disk.

If the cache is present, each function in the cache is called until one is found that was compiled for the correct
argument types. If none of the functions work, a new function is compiled with the given argument types. This
function is written to the on-disk catalog as well as into the in-memory cache.

3. When a lookup for cpp_code fails, the catalog looks through the on-disk function catalogs for the en-
tries. The PYTHONCOMPILED variable determines where to search for these catalogs and in what order.
If PYTHONCOMPILED is not present several platform dependent locations are searched. All functions found
for cpp_code in the path are loaded into the in-memory cache with functions found earlier in the search path
closer to the front of the call list.

If the function isn’t found in the on-disk catalog, then the function is compiled, written to the first writable
directory in the PYTHONCOMPILED path, and also loaded into the in-memory cache.

Function Storage

Function caches are stored as dictionaries where the key is the entire C++ code string and the value is either a single
function (as in the “level 1” cache) or a list of functions (as in the main catalog cache). On disk catalogs are stored in
the same manor using standard Python shelves.

Early on, there was a question as to whether md5 checksums of the C++ code strings should be used instead of the
actual code strings. I think this is the route inline Perl took. Some (admittedly quick) tests of the md5 vs. the entire
string showed that using the entire string was at least a factor of 3 or 4 faster for Python. I think this is because it is

162 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.1

more time consuming to compute the md5 value than it is to do look-ups of long strings in the dictionary. Look at the
examples/md5_speed.py file for the test run.

Catalog search paths and the PYTHONCOMPILED variable

The default location for catalog files on Unix is ~/.pythonXX_compiled where XX is version of Python being used.
If this directory doesn’t exist, it is created the first time a catalog is used. The directory must be writable. If, for any
reason it isn’t, then the catalog attempts to create a directory based on your user id in the /tmp directory. The directory
permissions are set so that only you have access to the directory. If this fails, I think you’re out of luck. I don’t think
either of these should ever fail though. On Windows, a directory called pythonXX_compiled is created in the user’s
temporary directory.

The actual catalog file that lives in this directory is a Python shelf with a platform specific name such as
“nt21compiled_catalog” so that multiple OSes can share the same file systems without trampling on each other. Along
with the catalog file, the .cpp and .so or .pyd files created by inline will live in this directory. The catalog file simply
contains keys which are the C++ code strings with values that are lists of functions. The function lists point at func-
tions within these compiled modules. Each function in the lists executes the same C++ code string, but compiled for
different input variables.

You can use the PYTHONCOMPILED environment variable to specify alternative locations for compiled functions.
On Unix this is a colon (*:”) separated list of directories. On windows, it is a (‘;) separated list of directories. These
directories will be searched prior to the default directory for a compiled function catalog. Also, the first writable
directory in the list is where all new compiled function catalogs, .cpp and .so or .pyd files are written. Relative
directory paths (*.” and “..") should work fine in the PYTHONCOMPILED variable as should environement variables.

There is a “special” path variable called MODULE that can be placed in the PYTHONCOMPILED variable. It
specifies that the compiled catalog should reside in the same directory as the module that called it. This is useful if an
admin wants to build a lot of compiled functions during the build of a package and then install them in site-packages
along with the package. User’s who specify MODULE in their PYTHONCOMPILED variable will have access to
these compiled functions. Note, however, that if they call the function with a set of argument types that it hasn’t
previously been built for, the new function will be stored in their default directory (or some other writable directory in
the PYTHONCOMPILED path) because the user will not have write access to the site-packages directory.

An example of using the PYTHONCOMPILED path on bash follows:

PYTHONCOMPILED=MODULE:/some/path; export PYTHONCOMPILED;

If you are using python21 on linux, and the module bob.py in site-packages has a compiled function in it, then the
catalog search order when calling that function for the first time in a python session would be:

/usr/lib/python2l/site-packages/linuxpython_compiled
/some/path/linuxpython_compiled
~/.python2l_compiled/linuxpython_compiled

The default location is always included in the search path.

Note: hmmm. see a possible problem here. I should probably make a sub- directory such as /usr/lib/python21/site-
packages/python21_compiled/linuxpython_compiled so that library files compiled with python21 are tried to link with

python22 files in some strange scenarios. Need to check this.

The in-module cache (in weave.inline_tools reduces the overhead of calling inline functions by about a factor
of 2. It can be reduced a little more for type loop calls where the same function is called over and over again if the
cache was a single value instead of a dictionary, but the benefit is very small (less than 5%) and the utility is quite a bit
less. So, we’ll stick with a dictionary as the cache.

1.16.8 Blitz

1.16. Weave (scipy.weave) 163

SciPy Reference Guide, Release 0.16.1

Note: most of this section is lifted from old documentation. It should be pretty accurate, but there may be a few
discrepancies.

weave.blitz () compiles NumPy Python expressions for fast execution. For most applications, compiled expres-
sions should provide a factor of 2-10 speed-up over NumPy arrays. Using compiled expressions is meant to be as
unobtrusive as possible and works much like pythons exec statement. As an example, the following code fragment
takes a 5 point average of the 512x512 2d image, b, and stores it in array, a:

from scipy import * # or from NumPy Iimport x

a = ones((512,512), Float64d)

ones ((512,512), Floato64)

...do some stuff to fill in b...

now average

all:-1,1:-1] = (b[1:-1,1:-1] + b[2:,1:-1] + b[:-2,1:-1]1 \
+ b[l:-1,2:] + b[l:-1,:-2]) / 5.

o
Il

To compile the expression, convert the expression to a string by putting quotes around it and then use weave .blitz:

import weave

expr = "a[l:-1,1:-1] = (b[l:-1,1:-1] + b[2:,1:-1] + b[:-2,1:-1]" \
"+ b[l:-1,2:] + b[l:-1,:-2]) / 5."

weave.blitz (expr)

The first time weave.blitz is run for a given expression and set of arguments, C++ code that accomplishes the
exact same task as the Python expression is generated and compiled to an extension module. This can take up to
a couple of minutes depending on the complexity of the function. Subsequent calls to the function are very fast.
Furthermore, the generated module is saved between program executions so that the compilation is only done once for
a given expression and associated set of array types. If the given expression is executed with a new set of array types,
the code most be compiled again. This does not overwrite the previously compiled function — both of them are saved
and available for exectution.

The following table compares the run times for standard NumPy code and compiled code for the 5 point averaging.

Method Run Time (seconds) Standard NumPy 0.46349 blitz (1st time compiling) 78.95526 blitz (subsequent calls)
0.05843 (factor of 8 speedup)

These numbers are for a 512x512 double precision image run on a 400 MHz Celeron processor under RedHat Linux
6.2.

Because of the slow compile times, its probably most effective to develop algorithms as you usually do using the
capabilities of scipy or the NumPy module. Once the algorithm is perfected, put quotes around it and execute it using
weave.blitz. This provides the standard rapid prototyping strengths of Python and results in algorithms that run
close to that of hand coded C or Fortran.

Requirements

Currently, the weave .blitz has only been tested under Linux with gcc-2.95-3 and on Windows with Mingw32
(2.95.2). Its compiler requirements are pretty heavy duty (see the blitz++ home page), so it won’t work with just any
compiler. Particularly MSVC++ isn’t up to snuff. A number of other compilers such as KAI++ will also work, but my
suspicions are that gcc will get the most use.

Limitations

1. Currently, weave .blitz handles all standard mathematical operators except for the ** power operator. The
built-in trigonmetric, log, floor/ceil, and fabs functions might work (but haven’t been tested). It also handles all

164 Chapter 1. SciPy Tutorial

http://www.oonumerics.org/blitz/

SciPy Reference Guide, Release 0.16.1

types of array indexing supported by the NumPy module. numarray’s NumPy compatible array indexing modes
are likewise supported, but numarray’s enhanced (array based) indexing modes are not supported.

weave.blitz does not currently support operations that use array broadcasting, nor have any of the special
purpose functions in NumPy such as take, compress, etc.