

Contents

1 Library Utilities 1

1.1 List Processing . 1

1.1.1 Processing Comma Lists . 3

1.2 Attributed Variables . 3

1.2.1 Lowlevel Interface . 4

1.3 constraintLib: a library for CLP . 7

1.4 Formatted Output . 9

1.5 Low-level Atom Manipulation Predicates . 11

1.6 Script Writing Utilities . 12

1.6.1 Communication with Subprocesses . 14

1.7 Socket I/O . 21

1.8 Arrays . 27

1.9 The Profiling Library . 27

1.10 Gensym . 29

1.11 Random Number Generator . 30

1.12 Loading Separated Files . 31

1.13 Scanning in Prolog . 32

1.14 XSB Lint . 33

1.15 “Pure” Meta-programming in XSB with prolog_db.P 35

1.16 Miscellaneous Predicates . 36

1.17 Other Libraries . 37

1.17.1 Justification . 37

1.17.2 AVL Trees . 37

1.17.3 Ordered Sets: ordsets.P . 37

i

CONTENTS iv

8.4 XPath support . 87

9 rdf : The XSB RDF Parser 90

9.1 Introduction . 90

9.2 High-level API . 90

9.2.1 RDF Object representation . 91

9.2.2 Name spaces . 92

9.2.3 Low-level access . 92

9.3 Testing the RDF translator . 93

10 Constraint Packages 94

10.1 clpr : The CPL(R) package . 94

10.1.1 The CLP(R) API . 95

10.2 The bounds Package . 100

10.2.1 Thebounds API . 102

11 Constraint Handling Rules 105

11.1 Introduction . 105

11.2 Syntax and Semantics . 105

11.2.1 Syntax . 105

11.2.2 Semantics . 106

11.3 CHR in XSB Programs . 108

11.3.1 Embedding in XSB Programs . 108

11.3.2 Compilation . 108

11.4 Useful Predicates . 109

11.5 Examples . 109

11.6 CHR and Tabling . 110

11.6.1 General Issues and Principles . 110

11.6.2 Call Abstraction . 111

11.6.3 Answer Projection . 111

11.6.4 Answer Combination . 113

11.6.5 Overview of Tabling-related Predicates . 115

11.7 Guidelines . 115

CHAPTER 1. LIBRARY UTILITIES 17

Then we spawn another process,sort , which picks the output from the �rst process (since it uses
the stream FromCat1 as its input) and sends its own output (the sorted version ofdata) to its
output stream Stream. However, Stream has already been open for output into the �le test .
Thus, the overall result of the above clause is tantamount tothe following shell command:

cat data | sort > test

Important notes about spawned processes :

1. Asynchronous processes spawned by XSB do not disappear (at least on Unix) when they
terminate, unless the XSB program executes await on them (seeprocess_control below).
Instead, such processes become defunctzombies(in Unix terminology); they do not do any-
thing, but consume resources (such as �le descriptors). So,when a subprocess is known to
terminate, it must be waited on.

2. The XSB parent process must know how to terminate the asynchronous subprocesses it
spawns. The drastic way is to kill it (see process_control below). Sometimes a subprocess
might terminate by itself (e.g., having �nished reading a �le). In other cases, the parent
and the child programs must agree on a protocol by which the parent can tell the child to
exit. The programs in the XSB subdirectory examples/subprocess illustrate this idea. If
the child subprocess is another XSB process, then it can be terminated by sending the atom
end_of_file or halt to the standard input of the child. (For this to work, the chil d XSB
must waiting at the prompt).

3. It is very important to not forget to close the streams that the parent uses to communicate
with the child. These are the streams that are provided in arguments 2,3,4 ofspawn_process.
The reason is that the child might terminate, but these streams to the standard input of the
child will remain open, since they belong to the parent process. As a result, the parent will
own defunct I/O streams and might eventually run out of �le de scriptors or streams.

process_status(+Pid,-Status)
This predicate always succeeds. Given a process id, it bindsthe second argument (which must
be an unbound variable) to one of the following atoms:running , stopped , exited_normally ,
exited_abnormally , aborted , invalid , and unknown. The invalid status is given to pro-
cesses that never existed or that are not children of the parent XSB process. Theunknown
status is assigned when none of the other statuses can be assigned.

Note: process status (other thanrunning) is system dependent. Windows does not seem to
support stopped and aborted . Also, processes killed using theprocess_control predicate
(described next) are often marked asinvalid rather than exited , because Windows seems
to lose all information about such processes. Process status might be inaccurate in some Unix
systems as well, if the process has terminated andwait() has been executed on that process.

process_control(+Pid,+Operation)
Perform a process controloperation on the process with the givenPid . Currently, the only

supported operations arekill (an atom) and wait(Code) (a term). The former causes the

CHAPTER 1. LIBRARY UTILITIES 18

process to exit unconditionally, and the latter waits for process completion. When the process
exits, Codeis bound to the process exit code. The code for normal termination is 0.

This predicate succeeds, if the operation was performed successfully. Otherwise, it fails. The
wait operation fails if the process speci�ed inPid does not exist or is not a child of the parent
XSB process.

The kill operation might fail, if the process to be killed does not exist or if the parent XSB
process does not have the permission to terminate that process. Unix and Windows have
di�erent ideas as to what these permissions are. Seekill(2) for Unix and TerminateProcess
for Windows.

Note: under Windows, the programmer’s manual warns of dire consequences if one kills a
process that has DLLs attached to it.

get_process_table(-ProcessList) module: shell
This predicate is imported from module shell . It binds ProcessList to the list of terms,

each describing one of the active XSB subprocesses (createdvia spawn_process/5). Each
term has the form:

process(Pid,ToStream,FromStream,StderrStream,Comman dLine) .

The �rst argument in the term is the process id of the corresponding process, the next three
arguments describe the three standard streams of the process, and the last is an atom that
shows the command line used to invoke the process. This predicate always succeeds.

shell(+CmdSpec,-StreamToProc, -StreamFromProc, -ProcS tderr, -ErrorCode)
The arguments of this predicate are similar to those ofspawn_process, except for the

following: (1) The �rst argument is an atom or a list of atoms, like in spawn_process.
However, if it is a list of atoms, then the resulting shell command is obtained by string
concatenation. This is di�erent from spawn_process where each member of the list must
represent an argument to the program being invoked (and which must be the �rst member
of that list). (2) The last argument is the error code returned by the shell command and not
a process id. The code -1 and 127 mean that the shell command failed.

The shell/5 predicate is similar to spawn_process in that it spawns another process and can
capture that process’ input and output streams. The important di�erence, however, is that
XSB will ways until the process spawned byshell/5 terminates. In contrast, the process
spawned byspawn_process will run concurrently with XSB. In this latter case, XSB must
explicitly synchronize with the spawned subprocess using the predicateprocess_control/2
(using the wait operation), as described earlier.

The fact that XSB must wait until shell/5 �nishes has a very important implication: the
amount of data the can be sent to and from the shell command is limited (1K is probably
safe). This is because the shell command communicates with XSB via pipes, which have
limited capacity. So, if the pipe is �lled, XSB will hang wait ing for shell/5 to �nish and
shell/5 will wait for XSB to consume data from the pipe. Thus, use spawn_process/5 for
any kind of signi�cant data exchange between external processes and XSB.

CHAPTER 1. LIBRARY UTILITIES 21

| ?- [Compiling ./child] <- The child copy of received the pip e from
[child compiled, cpu time used: 0.1300 seconds] the parent a nd then the
[child loaded] request to consult child.P
Pipe 15 received <- child.P acknowledges receipt of the pipe
Message was: Hello! <- child.P gets the message and prints it
yes

Observe that the parent process is very careful about makingsure that the child terminates
and also about closing the I/O streams after they are no longer needed.

Finally, we should note that this mechanism can be used to communicate through pipes
with non-XSB processes as well. Indeed, an XSB process can create a pipe usingpipe_open
(before spawning a child process), pass one end of the pipe to a child process (which can be
a C program), and useopen/3 to convert the other end of the pipe to an XSB stream. The
C program, of course, does not needopen/3 , since it can use the pipe �le handle directly.
Likewise, a C program can spawn o� an XSB process and pass it one end of a pipe. The XSB
child-process can then convert this pipe fd to a �le usingfd2iostream and then talk to the
parent C program.

fd2iostream(+Pipe, -IOstream)
Take a �le descriptor and convert it to an XSB I/O stream. This predicate should be used

only for user-de�ned I/O. Otherwise, use open/{3,4} when possible.

1.7 Socket I/O

The XSB socket library de�nes a number of predicates for communication over BSD-style sockets.
Most are modeled after and are interfaces to the socket functions with the same name. For detailed
information on sockets, the reader is referred to the Unix man pages (another good source isUnix
Network Programming, by W. Richard Stevens). Several examples of the use of the XSB sockets
interface can be found in theXSB/examples/ directory in the XSB distribution.

XSB supports two modes of communication via sockets:stream-oriented and message-oriented.
In turn, stream-oriented communication can bebu�ered or character-at-a-time.

To use bu�ered stream-oriented communication, system socket handles must be converted to
XSB I/O streams using fd2iostream/2 . In these stream-oriented communication, messages have
no boundaries, and communication appears to the processes as reading and writing to a �le. At
present, bu�ered stream-oriented communication works under Unix only.

Character-at-a-time stream communication is accomplished using the primitivessocket_put/3
and socket_get0/3 . These correspond to the usual Prologput/1 and get0/1 I/O primitives.

In message-oriented communication, processes exchange messages that have well-de�ned bound-
aries. The communicating processes usesocket_send/3 and socket_recv/3 to talk to each other.
XSB messages are represented as strings where the �rst four bytes (sizeof(int)) is an integer
(represented in the binary network format � see the function s htonl and ntohl in socket docu-

CHAPTER 1. LIBRARY UTILITIES 33

set_scan_pars(+List) module: stdscan

set_scan_pars(+List) is used to con�gure the tokenizer to a particular need. List is a list
of parameters including the following:

� whitespace . The default action of the scanner is to return a list of tokens, with any
whitespace removed. Ifwhitespace is a parameter, then the scanner returns the token
'' when it �nds whitespace separating two tokens (unless the two tokens are letter
sequences; since two letter sequences can be two tokens ONLYif they are separated
by whitespace, such an indication of whitespace would be redundant.) Including the
parameter no_whitespace undoes the e�ect of previously including whitespace .

� upper_case The default action of the parser is to treat lowercase letterdi�erently from
uppercase letters. This parameter should be set if conversion to uppercase should be done
when producing a token that doesnot consist entirely of letters (e.g. one with mixed
letters and digits). Including the parameter no_case undoes the e�ect of previously
including upper_case.

� upper_case_in_lit The default action of the parser is to treat lowercase letterdi�er-
ently from uppercase letters. This parameter should be set if conversion to uppercase
should be done when producing a token that consists entirelyof letters. Including the
parameter no_case_in_lit undoes the e�ect of previously including upper_case.

� whitespace(Code) adds Codeas a whitespace code. By default, all ASCII codes less
than or equal to 32 are regarded as whitespace.

� letter(Code) adds Codeas a letter constituting a token. By default, ASCII codes for
characters a�z and A�Z are regarded as letters.

� special_char(Code) addsCodeas a special character. By default, ASCII codes for the
following characters are regarded as special characters:

| { } [] " % $ & ' () * + , - . / : ; < = > ? @ \ ^ _ ~ `

get_scan_pars(-List) module: stdscan
get_scan_pars/1 returns a list of the currently active parameters.

1.14 XSB Lint

The xsb_lint_impexp.P �le contains a simple tool to analyze import/exports and de� nitions
and uses of predicates. It tries to �nd possible inconsistencies, producing warnings when it �nds
them and generating document_import / document_export declarations that might be useful. It
can be used after a large multi-�le, multi-module XSB program has been written to �nd possible
inconsistencies in (or interesting aspects of) how predicates are de�ned and used.

XSB source �les that contain an export compiler directive are considered as modules. Predi-
cates de�ned in modules, but not exported, are local to that module. When compiling a module,
the XSB compiler generates useful warnings when predicatesare used but not de�ned or de�ned

CHAPTER 1. LIBRARY UTILITIES 36

called with ClauseHeadas a variable.) Note also that the order of clauses is not preserved
and is indeterminate.

call_in_db(?Goal,+DB)
call_in_db/2 calls Goal in DBand returns all instances of Goal provable by rules in DB.
Clauses must not contain cuts (!). They can contain most Prolog constructs, including and,
or, if-then-else, \+, calls to standard predicates, and calls explicitly modi�ed by a module
name. Such calls will be satis�ed by calling the goal in the indicated module. So in this case
one can think of a Prolog DB as being extended by the code in anymodule.

load_in_db(+FileName,+DB0,-DB)
load_in_db/3 reads the clauses from the �le namedFileName and asserts them into database
DB0returning DB.

load_in_db(+FileName,-DB)
load_in_db/2 reads the clauses from the �le namedFileName and asserts them into an empty
database returning DB.

union_db(+DB1,+DB2,-DB3)
union_db/3 returns in DB3the union of the sets of clauses inDB1and DB2.

1.16 Miscellaneous Predicates

term_hash(+Term,+HashSize,-HashVal) module: machine
Given an arbitrary Prolog term, Term, that is to be hashed into a table ofHashSize buckets,

this predicate returns a hash value forTerm that is between 0 and HashSize -1 .

pretty_print(+ClausePairs) module: pretty_print

pretty_print(+Stream,+ClausePairs) module: pretty_pri nt
The input to pretty_print/1 , ClausePairs , can be either a list of clause pairs or a single

clause pair. A clause pair is either a Prolog clause (or declaration) or a pair:

(Clause,Dict)

Where Dict is a list of the form A = Vwhere V is a variable in Clause and A is the string to
be used to denote the variable12.

By default, pretty_print/1 outputs atomic terms using writeq/1 , but specialized output
can be con�gured via asserting inusermoda term of the form

user_replacement_hook(Term,Call)

which will use Call to output an atomic literal A wheneverA uni�es with Term. For example,
pretty printing weight constraints in XSB’s XASPpackage is done via the hook

12 Thus the list of variable names returned by read_term/{2,3} can be used directly in Dict .

CHAPTER 1. LIBRARY UTILITIES 37

user_replacement_hook(weight_constr(Term),output_weight_constr(Term))

which outputs a weight constraint in a (non-Prolog) syntax that is used by several ASP
systems.

module_of_term(+Term,?Module) module: machine
Given a term Term, module_of_term/2 returns the module of its main functor symbol in

Module. If the module cannot be determined wither unknown1or unknown2is returrned,
depending on the reason the module name cannot be determined.

1.17 Other Libraries

Not all XSB libraries are fully documented. We provide brief summaries of some of these other
libraries.

1.17.1 Justi�cation

By Hai-Feng Guo

Most Prolog debuggers, including XSB's, are based on a mechanism that allows a user to trace
the evaluation of a goal by interrupting the evaluation at call, success, retry, or failure of various
subgoals. While this has proved an excellent mechanism for evaluating SLD(NF) executions, it is
di�cult at best to use such a mechanism during a tabled evaluation. This is because, unlike with
SLD(NF), SLG requires answers to be returned to tabled subgoals at various times (depending on
whether batched or local evaluation is used), negative subgoals to be sometimes be delayed and/or
simpli�ed, etc.

One approach to understanding tabled evaluation better is to abstract away the procedural
aspects of debugging and to use the tables produced by an evaluation to construct ajusti�cation
after the evaluation has �nished. The justi�cation library does just this using algorithms described
in [14].

1.17.2 AVL Trees

By Mats Carlsson

AVL trees provide a mechanism to maintain key value pairs so that loop up, insertion, and
deletion all have complexity O(log n). This library contains predicates to transform a sorted list to
an AVL tree and back, along with predicates to manipulate the AVL trees.

1.17.3 Ordered Sets: ordsets.P

By Richard O'Keefe

CHAPTER 11. CONSTRAINT HANDLING RULES 114

project(X) \ plus(_,_,_) # ID <=> true pragma passive(ID).
project(X) \ geq(Y,Z) # ID <=> (Y \== X ; var(Z))| true pragma p assive(ID).
project(_) <=> true.

path(X,Y,C) :-
tabled_path(X,Y,C1,AS),
merge_chr_answer_store(AS),
C = C1.

:- table tabled_path/4.

tabled_path(X,Y,C,AS) :-
'_$savecp'(Breg),
breg_retskel(Breg,4,Skel,Cs),
copy_term(p(X,Y,C,AS,Skel),p(OldX,OldY,OldC,OldAS,O ldSkel)),

get_chr_store(GS),
set_chr_store(_GS1),
orig_path(X,Y,C),

project(C),
(get_returns(Cs,OldSkel,Leaf),

OldX == X, OldY == Y ->
merge_chr_answer_store(OldAS),
C = OldC,
get_chr_answer_store(path,MergedAS),
sort(MergedAS,AS),
(AS = OldAs ->

fail
;

delete_return(Cs,Leaf)
)

;
get_chr_answer_store(path,UnsortedAS),
sort(UnsortedAS,AS)

),
set_chr_store(GS).

orig_path(X,Y,C) :- edge(X,Y,C1), geq(C,C1).
orig_path(X,Y,C) :- path(X,Z,C2), edge(Z,Y,C1), plus(C1 ,C2,C0), geq(C,C0).

edge(a,b,1).
edge(b,a,1).
edge(b,c,1).
edge(a,c,3).
edge(c,a,1).

The predicateorig_path/3 speci�es a possible path between two nodes in a graph. Intabled_path/4
multiple possible paths are combined together into a singlepath with the shortest distance. Hence
the tabling of the predicate will reject new answers that have a worse distance and will replace the
old answer when a better answer is found. The �nal answer gives the optimal solution, the shortest
path. It is also necessary for termination to keep only the best answer. When cycles appear in the

CHAPTER 2. XSB-ODBC INTERFACE 52

odbc_create_index('Doctor', 'DocKey', index(_,'DId')).

odbc_delete_table('TableName') To delete a table named'TableName'

odbc_delete_view('ViewName') To delete a view named'ViewName'

odbc_delete_index('IndexName') To delete an index named'IndexName'

2.2.11 Transaction Management

Depending on how the transaction options are set in ODBC.INI for data sources, changes to the
data source tables may not be committed (i.e., the changes become permanent) until the user
explicitly issues a commit statement. Some ODBC drivers support autocommit, which, if on,
means that every update operation is immediately committed upon execution. If autocommit is
o�, then an explicit commit (or rollback) must be done by the program to ensure the updates
become permanent (or are ignored.).

The predicate odbc_transaction/1 supports these operations.

odbc_transaction(autocommit(on)) Turns on autocommit, so that all update operations will
be immediately committed on completion.

odbc_transaction(autocommit(o�)) Turns o� autocommit, so that all update operations will
not be committed until explicitly done so by the program (using one of the following opera-
tions.)

odbc_transaction(commit) Commits all transactions up to this point. (Only has an e�ect if
autocommit is o�).

odbc_transaction(rollback) Rolls back all update operations done since the last commit point.
(Only has an e�ect if autocommit is o�).

2.2.12 Interface Flags

Users are given the option to monitor control aspects of the ODBC interface by setting ODBC �ags
via the predicatesset_odbc_flag/2 and odbc_flag/2 .

The �rst aspect that can be controlled is whether to display SQL statements for SQL queries.
This is done by the show_query �ag. For example:

| ?- odbc_flag(show_query,Val).

Val = on

CHAPTER 10. CONSTRAINT PACKAGES 96

:- import {}/1 from clpr.

root(N, R) :-
root(N, 1, R).
root(0, S, R) :- !, S=R.
root(N, S, R) :-

N1 is N-1,
{ S1 = S/2 + 1/S },
root(N1, S1, R).

Figure 10.1: Example of a file with a CLP(R) predicate

any of these predicates from compiled code, they must be explicitly imported from their modules
(e.g. {} must be explicitly imported from clpr). Figure 10.1.1 shows an example of how this is
done. ‘

{+Constraints} module: clpr
When the CLP(R) package is loaded, inclusion of equations in braces ({}) adds Constraints
to the constraint store where they are checked for satisfiability.
Example:

| ?- [clpr].
[clpr loaded]
[itf loaded]
[dump loaded]
[bv_r loaded]
[nf_r loaded]

yes

| ?- {X = Y+1, Y = 3*X}.

X = -0.5000
Y = -1.5000;

yes

Error Cases

� Constraints is not instantiated
� instantiation_error

� Constraints is not an equation, an inequation or a disequation
� domain_error(’constraint relation’,Rel)

� Constraints contains an expression Expr that is not a numeric expression
� domain_error(’numeric expression’,Expr)

CHAPTER 10. CONSTRAINT PACKAGES 97

entailed(+Constraint) module: clpr
Succeeds if Constraint is logically implied by the current constraint store. entailed/1 does
not change the constraint store.
Example:

| ?- {A =< 4},entailed(A =\= 5).
{ A =< 4.0000 }

yes

Error Cases

� Constraints is not instantiated
� instantiation_error

� Constraints is not an equation, an inequation or a disequation
� domain_error(’constraint relation’,Rel)

inf(+Expr,-Val) clpr
sup(+Expr,-Val) clpr
minimize(Expr) clpr
maximize(Expr) module: clpr

These four related predicates provide various mechanisms to compute the maximum and
minimum of expressions over variables in a constraint store. In the case where the expression
is not bounded from above over the reals sup/2 and maximize/1 will fail; similarly if the
expression is not bounded from below inf/2 and minimize/1 will fail.
Examples:

| ?- {X = 2*Y,Y >= 7},inf(X,F).
{ X >= 14.0000 }
{ Y = 0.5000 * X }

X = _h8841
Y = _h9506
F = 14.0000

| ?- {X = 2*Y,Y >= 7},minimize(X).
X = 14.0000
Y = 7.0000

| ?- {X = 2*Y,Y =< 7},maximize(X-2).

X = 14.0000
Y = 7.0000

| ?- {X = 2*Y,Y =< 7},sup(X-2,Z).
{ X =< 14.0000 }
{ Y = 0.5000 * X }

CHAPTER 10. CONSTRAINT PACKAGES 98

X = _h8975
Y = _h9640
Z = 12.0000

yes
| ?- {X = 2*Y,Y =< 7},maximize(X-2).

X = 14.0000
Y = 7.0000

yes

inf(+Expr,-Val, +Vector, -Vertex) clpr
sup(+Expr,-Val, +Vector, -Vertex) module: clpr

These predicates work like inf/2 and sup/2 with the following addition. Vector is a list
of Variables, and for each variable V in Vector, the value of V at the extremal point Val is
returned in corresponding position in the list Vertex.
Example:

| ?= { 2*X+Y =< 16, X+2*Y =< 11,X+3*Y =< 15, Z = 30*X+50*Y},
sup(Z, Sup, [X,Y], Vertex).

{ X + 3.0000 * Y =< 15.0000 }
{ X + 0.5000 * Y =< 8.0000 }
{ X + 2.0000 * Y =< 11.0000 }
{ Z = 30.0000 * X + 50.0000 * Y }

X = _h816
Y = _h869
Z = _h2588
Sup = 310.0000
Vertex = [7.0000,2.0000]

bb_inf(+IntegerList,+Expr,-Inf,-Vertex, +Eps) module: clpr
Works like inf/2 in Expr but assumes that all the variables in IntegerList have inte-
gral values. Eps is a positive number between 0 and 0:5 that specifies how close an ele-
ment of IntegerList must be to an integer to be considered integral – i.e. for such an X,
abs(round(X) - X) < Eps. Upon success, Vertex is instantiated to the integral values of
all variables in IntegerList. bb_inf/5 works properly for non-strict inequalities only.
Example:

| ?- {X > Y + Z,Y > 1, Z > 1},bb_inf([Y,Z],X,Inf,Vertex,0).
{ Z > 1.0000 }
{ Y > 1.0000 }
{ X - Y - Z > 0.0000 }

X = _h14286
Y = _h10914
Z = _h13553

CHAPTER 10. CONSTRAINT PACKAGES 99

Inf = 4.0000
Vertex = [2.0000,2.0000]

yes

Error Cases

� IntegerList is not instantiated
� instantiation_error

bb_inf(+IntegerList,+Expr,-Inf) module: clpr
Works like bb_inf/5, but with the neighborhood, Eps, set to 0.001.

Example

|?- {X >= Y+Z, Y > 1, Z > 1}, bb_inf([Y,Z],X,Inf)
{ Z > 1.0000 }
{ Y > 1.0000 }
{ X - Y - Z >= 0.0000 }

X = _h14289
Y = _h10913
Z = _h13556
Inf = 4.

yes

dump(+Variables,+NewVars,-CodedVars module: dump
For a list of variables Variables and a list of variable names NewVars, returns in CodedVars
the constraints on the variables, without affecting the constraint store.
Example:

| ?- {X > Y+1, Y > 2},
dump([X,Y], [x,y], CS).

{ Y > 2.0000 }
{ X - Y > 1.0000 }

X = _h17748
Y = _h17139
CS = [y > 2.0000,x - y > 1.0000];

Error Cases

� Variables is not instantiated to a list of variables
� instantiation_error

projecting_assert(+Clause) module: dump
In XSB, when a subgoal is tabled, the tabling system automatically determines the relevant
projected constraints for an answer and copies them into and out of a table. However,

CHAPTER 10. CONSTRAINT PACKAGES 100

when a clause with constrained variables is asserted, this predicate must be used rather
than assert/1 in order to project the relevant constraints. This predicate works with either
standard or trie-indexed dynamic code.
Example:

| ?- {X > 3},projecting_assert(q(X)).
{ X > 3.0000 }

X = _h396

yes
| ?- listing(q/1).
q(A) :-

clpr : {A > 3.0000}.

yes
| ?- q(X),entailed(X > 2).
{ X > 3.0000 }

X = _h358

yes
| ?- q(X),entailed(X > 4).

no

10.2 The bounds Package

Version 3.5 of XSB does not support a full-fledged CLP(FD) package. However it does support a
simplified package that maintains an upper and lower bound for logical variables. bounds can thus
be used for simple constraint problems in the style of finite domains, as long as these problems that
do not rely on too heavily on propagation of information about constraint domains 2

Perhaps the simplest way to explain the functionality of bounds is by example. The query

|?- X in 1..2,X #> 1.

first indicates via X in 1..2 that the lower bound of X is 1 and the higher bound 2, and then
constraints X, which is not yet bound, to be greater than 1. Applying this latter constraint to X
forces the lower bound to equal the upper bound, instantiating X, so that the answer to this query
is X = 2.

Next, consider the slightly more complex query

|?- X in 1..3,Y in 1..3,Z in 1..3,all_different([X,Y,Z]),X = 1, Y = 2.

2The bounds package was written by Tom Schrijvers, and ported to XSB from SWI Prolog version 5.6.49 by
Terrance Swift, who also wrote this manual section.

CHAPTER 10. CONSTRAINT PACKAGES 101

all_different/3 constraints X, Y and Z each to be different, whatever their values may be. Ac-
cordingly, this constraint together with the bound restrictions, implies that instantiating X and Y
also causes the instantiation of Z. In a similar manner, the query

|?- X in 1..3,Y in 1..3,Z in 1..3,sum([X,Y,Z],#=,9),

onstrains the sum of the three variables to equal 9 – and in this case assigns them a concrete value
due to their domain restrictions.

In many constraint problems, it does not suffice to know whether a set of constraints is satisfi-
able; rather, concrete values may be needed that satisfy all constraints. One way to produce such
values is through the predicate labelling/2

|?- X in 1..5,Y in 1..5,X #< Y,labeling([max(X)],[X,Y]))

In this query, it is specified that X and Y are both to be instantiated not just by any element of their
domains, but by a value that assigns X to be the maximal element consistent with the constraints.
Accordingly X is instantiated to 4 and Y to 5.

Because constraints in bounds are based on attributed variables which are handled by XSB’s
variant tabling mechanisms, constrained variables can be freely used with variant tabling as the
folowing fragment shows:

table_test(X):- X in 2..3,p(X).

:- table p/1.
p(X):- X in 1..2.

?- table_test(Y).

Y = 2

For a more elaborate example, we turn to the SEND MORE MONEY example, , in which
the problem is to assign numbers to each of the letters S,E,N,D,M,O,R,Y so that the number
SEND plus the number MORE equals the number MONEY. Borrowing a solution from the SWI
manual [31], the bounds package solves this problem as:

send([[S,E,N,D], [M,O,R,E], [M,O,N,E,Y]]) :-
Digits = [S,E,N,D,M,O,R,Y],
Carries = [C1,C2,C3,C4],
Digits in 0..9,
Carries in 0..1,
M #= C4,
O + 10 * C4 #= M + S + C3,
N + 10 * C3 #= O + E + C2,
E + 10 * C2 #= R + N + C1,
Y + 10 * C1 #= E + D,
M #>= 1,
S #>= 1,
all_different(Digits),
label(Digits).

CHAPTER 10. CONSTRAINT PACKAGES 102

In many cases, it may be useful to test whether a given constraint is true or false. This can
be done by unifying a variable with the truth value of a given constraint – i.e. by reifying the
constraint. As an example, the query

|?- X in 1..10, Y in 1..10,Z in 0..1,X #< Y, X #= Y #<=> Z,label([Z]).

sets the bounded variable Z to the truth value of X #= Y, or 0 3.

A reader familiar with the finite domain library of Sicstus [18] will have noticed that the syntax
of bounds is consistent with that library. It is important to note however, bounds maintains only
the upper and lower bounds of a variables as its attributes, (along, of course with constraints on
those variables) rather than an explicit vector of permissable values. As a result, bounds may not
be suitable for large or complex constraint problems.

10.2.1 The bounds API

Note that bounds does not perform error checking, but instead relies on the error checking of
lower-level comparison and arithmetic operators.

in(-Variable,+Bound) bounds
Adds the constraint Bound to Variable, where Bound should be of the form Low..High, with
Low and High instantiated to integers. This constraint ensures that any value of Variable
must be greater than or equal to Low and less than or equal to High. Unlike some finite-
domain constraint systems, it does not materialize a vector of currently allowable values for
Variable.
Variables that have not had their domains explicitly constrained are considered to be in the
range min_integer..max_integer.

#>(Expr1,Expr2) bounds
#<(Expr1,Expr2) bounds
#>=(Expr1,Expr2) bounds
#=<(Expr1,Expr2) bounds
#=(Expr1,Expr2) bounds
#=(Expr1,Expr2) bounds

Ensures that a given relation holds between Expr1 and Expr2. Within these constraints,
expressions may contain the functions +/2, -/2, */2, +/2, +/2, +/2, mod/2, and abs/1 in
addition to integers and variables.

#<=>(Const1,Const2) bounds
#=>(Const1,Const2) bounds
#<=(Const1,Const2) bounds

Constrains the truth-value of Const1 to have the speficied logical relation (“iff”, “only-if” or
“if”) to Const2, where Const1 and Const2 have one of the six relational operators above.

3The current version of the boundspackage does not always seem to propagate entailment into the values of reified
variables.

CHAPTER 10. CONSTRAINT PACKAGES 103

all_different(+VarList) bounds
VarList must be a list of variables: constrains all variables in VarList to have different
values.

sum(VarList,Op,?Value) bounds
VarList must be a list of variables and Value an integer or variable: constrains the sum of
all variables in VarList to have the relation Op to Value (see preceding example).

labeling(+Opts,+VarList bounds
This predicate succeeds if it can assign a value to each variable in VarList such that no con-
straint is violated. Note that assigning a value to each constrained variable is equivalent to
deriving a solution that satisfies all constraints on the variables, which may be intractible de-
pending on the constraints. Opts allows some control over how value assignment is performed
in deriving the solution.

� leftmost Assigns values to variables in the order in which they occur. For example the
query:
|?- X in 1..4,Y in 1..3,X #< Y,labeling([leftmost],[X,Y]),writeln([X,Y]),fail.
[1,2]
[1,3]
[2,3]

no

instantiates X and Y to all values that satisfy their constraints, and does so by consid-
ering each value in the domain of X, checking whether it violates any constraints, then
considering each value of Y and checking whether it violates any constraints.

� ff This “first-fail” strategy assignes values to variables based on the size of their domains,
from smallest to largest. By adopting this strategy, it is possible to perform a smaller
search for a satisfiable solution because the most constrained variables may be considered
first (though the bounds of the variable are checked rather than a vector of allowable
values).

� min and max This strategy labels variables in the order of their minimal lower bound or
maximal upper bound.

� min(Expr) and max(Expr) This strategy labels the variables so that their assignment
causes Expr to have a minimal or maximal value. Consider for example how these
strategies would affect the labelling of the preceding query:
|?- X in 1..4,Y in 1..3,X #< Y,labeling([min(Y)],[X,Y]),writeln([X,Y]),fail.
[1,2]

no
|?- X in 1..4,Y in 1..3,X #< Y,labeling([max(X)],[X,Y]),writeln([X,Y]),fail.
[2,3]

no

label(+VarList) bounds
Shorthand for labeling([leftmost],+VarList).

CHAPTER 10. CONSTRAINT PACKAGES 104

indomain(?Var) bounds
Unifies Var with an element of its domain, and upon sucessive backttrakcing, with all other
elements of its domain.

serialized(+BeginList,+Durations bounds
serialized/2 can be useful for scheduling problems. As input it takes a list of variables
or integers representing the beginnings of temporal events, along with a list of non-negative
intergers indicating the duration of each event in BeginList. The effect of this predicate is
to constrain each of the events in BeginList to have a start time such that their durations
do not overlap. As an example, consier the query

|?- X in 1..10, Y in 1..10, serialized([X,Y],[8,1]),label([X,Y]),writeln((X,Y)),fail.

In this query event X is taken to have duration of 8 units, while event Y is taken to have
duration of 1 unit. Executing this query will instantiate X and Y to many different values,
such as (1,9), (1,10), and (2,10) where X is less than Y, but also (10,1), (10,2) and many
others where Y is less than X. Refining the query as

X in 1..10, Y in 1..10, serialized([X,Y],[8,1]),X #< Y,label([X,Y]),writeln((X,Y)),fail.

removes all solutions where Y is less than X.

lex_chain(+List) bounds
lex_chain/1 takes as input a list of lists of variables and integers, and enforces the constraint
that each element in a given list is less than or equal to the elements in all succeeding lists.
As an example, consider the query

|?- X in 1..3,Y in 1..3,lex_chain([[X],[2],[Y]]),label([X,Y]),writeln([X,Y]),fail.
[1,2]
[1,3]
[2,2]
[2,3]

lex_chain/1 ensures that X is less than or equal to 2 which is less than or equal to Y.

Chapter 11

Constraint Handling Rules

11.1 Introduction

Constraint Handling Rules (CHR) is a committed-choice bottom-up language embedded in XSB. It
is designed for writing constraint solvers and is particularly useful for providing application-specific
constraints. It has been used in many kinds of applications, like scheduling, model checking,
abduction, type checking among many others.

CHR has previously been implemented in other Prolog systems (SICStus, Eclipse, Yap, hPro-
log), Haskell and Java. The XSB CHR system is based on the hProlog CHR system.

In this documentation we restrict ourselves to giving a short overview of CHR in general and
mainly focus on XSB-specific elements. For a more thorough review of CHR we refer the reader to
[13]. More background on CHR can be found at [12].

In Section 11.2 we present the syntax of CHR in XSB and explain informally its operational
semantics. Next, Section 11.3 deals with practical issues of writing and compiling XSB programs
containing CHR. Section 11.4 provides a few useful predicates to inspect the constraint store and
Section 11.5 illustrates CHR with two example programs. How to combine CHR with tabled
predicates is covered in Section 11.6. Finally, Section 11.7 concludes with a few practical guidelines
for using CHR.

11.2 Syntax and Semantics

11.2.1 Syntax

The syntax of CHR rules in XSB is the following:

rules --> rule, rules.
rules --> [].

rule --> name, actual_rule, pragma, [atom(’.’)].

105

CHAPTER 11. CONSTRAINT HANDLING RULES 106

name --> xsb_atom, [atom(’@’)].
name --> [].

actual_rule --> simplification_rule.
actual_rule --> propagation_rule.
actual_rule --> simpagation_rule.

simplification_rule --> constraints, [atom(’<=>’)], guard, body.
propagation_rule --> constraints, [atom(’==>’)], guard, body.
simpagation_rule --> constraints, [atom(’\’)], constraints, [atom(’<=>’)],

guard, body.

constraints --> constraint, constraint_id.
constraints --> constraint, [atom(’,’)], constraints.

constraint --> xsb_compound_term.

constraint_id --> [].
constraint_id --> [atom(’#’)], xsb_variable.

guard --> [].
guard --> xsb_goal, [atom(’|’)].

body --> xsb_goal.

pragma --> [].
pragma --> [atom(’pragma’)], actual_pragmas.

actual_pragmas --> actual_pragma.
actual_pragmas --> actual_pragma, [atom(’,’)], actual_pragmas.

actual_pragma --> [atom(’passive(’)], xsb_variable, [atom(’)’)].

Additional syntax-related terminology:

� head: the constraints in an actual_rule before the arrow (either <=> or ==>)

11.2.2 Semantics

In this subsection the operational semantics of CHR in XSB are presented informally. They do not
differ essentially from other CHR systems.

CHAPTER 11. CONSTRAINT HANDLING RULES 107

When a constraint is called, it is considered an active constraint and the system will try to
apply the rules to it. Rules are tried and executed sequentially in the order they are written.

A rule is conceptually tried for an active constraint in the following way. The active constraint
is matched with a constraint in the head of the rule. If more constraints appear in the head they are
looked for among the suspended constraints, which are called passive constraints in this context.
If the necessary passive constraints can be found and all match with the head of the rule and the
guard of the rule succeeds, then the rule is committed and the body of the rule executed. If not
all the necessary passive constraint can be found, the matching fails or the guard fails, then the
body is not executed and the process of trying and executing simply continues with the following
rules. If for a rule, there are multiple constraints in the head, the active constraint will try the rule
sequentially multiple times, each time trying to match with another constraint.

This process ends either when the active constraint disappears, i.e. it is removed by some rule,
or after the last rule has been processed. In the latter case the active constraint becomes suspended.

A suspended constraint is eligible as a passive constraint for an active constraint. The other
way it may interact again with the rules, is when a variable appearing in the constraint becomes
bound to either a non-variable or another variable involved in one or more constraints. In that case
the constraint is triggered, i.e. it becomes an active constraint and all the rules are tried.

Rule Types There are three different kinds of rules, each with their specific semantics:

� simplification:

The simplification rule removes the constraints in its head and calls its body.

� propagation:

The propagation rule calls its body exactly once for the constraints in its head.

� simpagation:

The simpagation rule removes the constraints in its head after the n and then calls its body.
It is an optimization of simplification rules of the form:

constraints 1; constraints 2 < = > constraints 1; body

Namely, in the simpagation form:

constraints 1nconstraints 2 < = > body

The constraints 1 constraints are not called in the body.

Rule Names Naming a rule is optional and has no semantical meaning. It only functions as
documentation for the programmer.

CHAPTER 11. CONSTRAINT HANDLING RULES 108

Pragmas The semantics of the pragmas are:

� passive/1: the constraint in the head of a rule with the identifier specified by the passive/1
pragma can only act as a passive constraint in that rule.

Additional pragmas may be released in the future.

11.3 CHR in XSB Programs

11.3.1 Embedding in XSB Programs

Since chr is an XSB package, it must be explicitly loaded before being used.

?- [chr].

CHR rules are written in a tt .chr file. They should be preceded by a declaration of the
constraints used:

:- constraints ConstraintSpec1, ConstraintSpec2, ...

where each ConstraintSpec is a functor description of the form name=arity pair. Ordinary code
may be freely written between the CHR rules.

The CHR constraints defined in a particular .chr file are associated with a CHR module. The
CHR module name can be any atom. The default module is user. A different module name can
be declared as follows:

:- chr_module(modulename).

One should never load different files with the same CHR module name.

11.3.2 Compilation

Files containing CHR rules are required to have a .chr extension, and their compilation has two
steps. First the .chr file is preprocessed into a .P file containing XSB code. This .P file can then
be loaded in the XSB emulator and used normally.

load_chr(File) chr_pp
load_chr/1 takes as input a file name whose extension is either .chr or that has no extension.
It preprocesses File if the times of the CHR rule file is newer than that of the corresponding
Prolog file, and then consults the Prolog file.

preprocess(File,PFile) chr_pp
preprocess/2 takes as input a file name whose extension is either .chr or that has no
extension. It preprocesses File if the times of the CHR rule file is newer than that of the
corresponding Prolog file, but does not consult the Prolog file.

CHAPTER 11. CONSTRAINT HANDLING RULES 109

11.4 Useful Predicates

The chr module contains several useful predicates that allow inspecting and printing the content
of the constraint store.

show_store(+Mod) chr
Prints all suspended constraints of module Mod to the standard output.

suspended_chr_constraints(+Mod,-List) chr
Returns the list of all suspended CHR constraints of the given module.

11.5 Examples

Here are two example constraint solvers written in CHR.

� The program below defines a solver with one constraint, leq/2, which is a less-than-or-equal
constraint.

:- chr_module(leq).

:- export cycle/3.

:- import length/2 from basics.

:- constraints leq/2.
reflexivity @ leq(X,X) <=> true.
antisymmetry @ leq(X,Y), leq(Y,X) <=> X = Y.
idempotence @ leq(X,Y) \ leq(X,Y) <=> true.
transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

cycle(X,Y,Z):-
leq(X,Y),
leq(Y,Z),
leq(Z,X).

� The program below implements a simple finite domain constraint solver.

:- chr_module(dom).

:- import member/2 from basics.

:- constraints dom/2.

CHAPTER 11. CONSTRAINT HANDLING RULES 110

dom(X,[]) <=> fail.
dom(X,[Y]) <=> X = Y.
dom(X,L1), dom(X,L2) <=> intersection(L1,L2,L3), dom(X,L3).

intersection([],_,[]).
intersection([H|T],L2,[H|L3]) :-

member(H,L2), !,
intersection(T,L2,L3).

intersection([_|T],L2,L3) :-
intersection(T,L2,L3).

These and more examples can be found in the examples/chr/ folder accompanying this XSB
release.

11.6 CHR and Tabling

The advantage of CHR in XSB over other Prolog systems, is that CHR can be combined with
tabling. Hence part of the constraint solving can be performed once and reused many times. This
has already shown to be useful for applications of model checking with constraints.

However the use of CHR constraints is slightly more complicated for tabled predicates. This
section covers how exactly to write a tabled predicate that has one or more arguments that also
appear as arguments in suspended constraints. In the current release the CHR-related parts of the
tabled predicates have to be written by hand. In a future release this may be substituted by an
automatic transformation.

11.6.1 General Issues and Principles

The general issue is how call constraints should be passed in to the tabled predicate and how answer
constraints are passed out of the predicate. Additionally, in some cases care has to be taken not to
generate infinite programs.

The recommended approach is to write the desired tabled predicate as if no additional code is
required to integrate it with CHR. Next transform the tabled predicate to take into account the
combination of tabling and CHR. Currently this transformation step has to be done by hand. In
the future we hope to replace this hand coding with programmer declarations that guide automated
transformations.

Hence we depart from an ordinary tabled predicate, say p/1:

:- table p/1.

p(X) :-
... /* original body of p/1 */.

CHAPTER 11. CONSTRAINT HANDLING RULES 111

In the following we will present several transformations or extensions of this code to achieve a
particular behavior. At least the transformation discussed in subsection 11.6.2 should be applied
to obtain a working integration of CHR and tabling. Further extensions are optional.

11.6.2 Call Abstraction

Currently only one type of call abstraction is supported: full constraint abstraction, i.e. all con-
straints on variables in the call should be removed. The technique to accomplish this is to replace
all variables in the call that have constraints on them with fresh variables. After the call, the
original variables should be unified with the new ones.

In addition, the call environment constraint store should be replaced with an empty constraint
store before the call and on return the answer store should be merged back into the call environment
constraint store.

The previously mentioned tabled predicate p/1 should be transformed to:

:- import merge_answer_store/1,
get_chr_store/1,
set_chr_store/1,
get_chr_answer_store/2

from chr.

:- table tabled_p/2.

p(X) :-
tabled_p(X1,AnswerStore),
merge_answer_store(AnswerStore),
X1 = X.

tabled_p(X,AnswerStore) :-
get_chr_store(CallStore),
set_chr_store(_EmptyStore)
orig_p(X),
get_chr_answer_store(chrmod,AnswerStore),
set_chr_store(CallStore).

orig_p(X) :-
... /* original body of p/1 */.

This example shows how to table the CHR constraints of a single CHR module chrmod. If
multiple CHR modules are involved, one should add similar arguments for the other modules.

11.6.3 Answer Projection

To get rid of irrelevant constraints, most notably on local variables, the answer constraint store
should in some cases be projected on the variables in the call. This is particularly important for

CHAPTER 11. CONSTRAINT HANDLING RULES 112

programs where otherwise an infinite number of answers with ever growing answer constraint stores
could be generated.

The current technique of projection is to provide an additional project/1 constraint to the CHR
solver definition. The argument of this constraint is the list of variables to project on. Appropriate
CHR rules should be written to describe the interaction of this project/1 constraint with other
constraints in the store. An additional rule should take care of removing the project/1 constraint
after all such interaction.

The project/1 constraint should be posed before returning from the tabled predicate.

If this approach is not satisfactory or powerful enough to implement the desired projection op-
eration, you should resort to manipulating the underlying constraint store representation. Contact
the maintainer of XSB’s CHR system for assistance.

Example Take for example a predicate p/1 with a less than or equal constraint leq/2 on variables
and integers. The predicate p/1 has local variables, but when p returns we are not interested in
any constraints involving local variables. Hence we project on the argument of p/1 with a project
constraint as follows:

:- import memberchk/2 from lists.

:- import merge_answer_store/1,
get_chr_store/1,
set_chr_store/1,
get_chr_answer_store/2

from chr.

:- table tabled_p/2.

:- constraints leq/2, project/1.

... /* other CHR rules */
project(L) \ leq(X,Y) <=>

(var(X), \+ memberchk(X,L)
; var(Y), \+ memberchk(Y,L)
) | true.

project(_) <=> true.

p(X) :-
tabled_p(X1,AnswerStore),
merge_answer_store(AnswerStore),
X1 = X.

tabled_p(X,AnswerStore) :-
get_chr_store(CallStore),
set_chr_store(_EmptyStore)
orig_p(X),
project([X]),

CHAPTER 11. CONSTRAINT HANDLING RULES 113

get_chr_answer_store(chrmod,AnswerStore),
set_chr_store(CallStore).

orig_p(X) :-
... /* original body of p/1 */.

The example in the following subsection shows projection in a full application.

11.6.4 Answer Combination

Sometimes it is desirable to combine different answers to a tabled predicate into one single answer
or a subset of answers. Especially when otherwise there would be an infinite number of answers. If
the answers are expressed as constraints on some arguments and the logic of combining is encoded
as CHR rules, answers can be combined by merging the respective answer constraint stores.

Another case where this is useful is when optimization is desired. If the answer to a predicate
represents a valid solution, but an optimal solution is desired, the answer should be represented
as constraints on arguments. By combining the answer constraints, only the most constrained, or
optimal, answer is kept.

Example An example of a program that combines answers for both termination and optimisation
is the shortest path program below:

:- chr_module(path).

:- import length/2 from lists.

:- import merge_chr_answer_store/1,
get_chr_store/1,
set_chr_store/1,
get_chr_answer_store/2

from chr.

breg_retskel(A,B,C,D) :- ’_$builtin’(154).

:- constraints geq/2, plus/3, project/1.

geq(X,N) \ geq(X,M) <=> number(N), number(M), N =< M | true.

reflexivity @ geq(X,X) <=> true.
antisymmetry @ geq(X,Y), geq(Y,X) <=> X = Y.
idempotence @ geq(X,Y) \ geq(X,Y) <=> true.
transitivity @ geq(X,Y), geq(Y,Z) ==> var(Y) | geq(X,Z).

plus(A,B,C) <=> number(A), number(B) | C is A + B.
plus(A,B,C), geq(A,A1) ==> plus(A1,B,C1), geq(C,C1).
plus(A,B,C), geq(B,B1) ==> plus(A,B1,C1), geq(C,C1).

CHAPTER 11. CONSTRAINT HANDLING RULES 114

project(X) \ plus(_,_,_) # ID <=> true pragma passive(ID).
project(X) \ geq(Y,Z) # ID <=> (Y \== X ; var(Z))| true pragma passive(ID).
project(_) <=> true.

path(X,Y,C) :-
tabled_path(X,Y,C1,AS),
merge_chr_answer_store(AS),
C = C1.

:- table tabled_path/4.

tabled_path(X,Y,C,AS) :-
’_$savecp’(Breg),
breg_retskel(Breg,4,Skel,Cs),
copy_term(p(X,Y,C,AS,Skel),p(OldX,OldY,OldC,OldAS,OldSkel)),

get_chr_store(GS),
set_chr_store(_GS1),
orig_path(X,Y,C),

project(C),
(get_returns(Cs,OldSkel,Leaf),
OldX == X, OldY == Y ->

merge_chr_answer_store(OldAS),
C = OldC,
get_chr_answer_store(path,MergedAS),
sort(MergedAS,AS),
(AS = OldAs ->

fail
;

delete_return(Cs,Leaf)
)

;
get_chr_answer_store(path,UnsortedAS),
sort(UnsortedAS,AS)

),
set_chr_store(GS).

orig_path(X,Y,C) :- edge(X,Y,C1), geq(C,C1).
orig_path(X,Y,C) :- path(X,Z,C2), edge(Z,Y,C1), plus(C1,C2,C0), geq(C,C0).

edge(a,b,1).
edge(b,a,1).
edge(b,c,1).
edge(a,c,3).
edge(c,a,1).

The predicate orig_path/3 specifies a possible path between two nodes in a graph. In tabled_path/4
multiple possible paths are combined together into a single path with the shortest distance. Hence
the tabling of the predicate will reject new answers that have a worse distance and will replace the
old answer when a better answer is found. The final answer gives the optimal solution, the shortest
path. It is also necessary for termination to keep only the best answer. When cycles appear in the

CHAPTER 11. CONSTRAINT HANDLING RULES 115

graph, paths with longer and longer distance could otherwise be put in the table, contributing to
the generation of even longer paths. Failing for worse answers avoids this infinite build-up.

The predicate also includes a projection to remove constraints on local variables and only retain
the bounds on the distance.

The sorting canonicalizes the answer stores, so that they can be compared.

11.6.5 Overview of Tabling-related Predicates

merge_answer_store(+AnswerStore) chr
Merges the given CHR answer store into the current global CHR constraint store.

get_chr_store(-ConstraintStore) chr
Returns the current global CHR constraint store.

set_chr_store(?ConstraintStore) chr
Set the current global CHR constraint store. If the argument is a fresh variable, the current
global CHR constaint store is set to be an empty store.

get_chr_answer_store(+Mod,-AnswerStore) chr
Returns the part of the current global CHR constraint store of constraints in the specified
CHR module, in the format of an answer store usable as a return argument of a tabled
predicate.

11.7 Guidelines

In this section we cover several guidelines on how to use CHR to write constraint solvers and how
to do so efficiently.

� Set semantics: The CHR system allows the presence of identical constraints, i.e. multiple
constraints with the same functor, arity and arguments. For most constraint solvers, this is
not desirable: it affects efficiency and possibly termination. Hence appropriate simpagation
rules should be added of the form:

constraint nconstraint < = > true

� Multi-headed rules: Multi-headed rules are executed more efficiently when the constraints
share one or more variables.

11.8 CHRd

An alternate implementation of CHR can be found in the CHRd package. The main objective of
the CHRd package is to optimize processing of constraints in the environment where termination is
guaranteed by the tabling engine, (and where termination benefits provided by the existing solver

CHAPTER 11. CONSTRAINT HANDLING RULES 116

are not critical). CHRd takes advantage of XSB’s tabling to simplify CHR’s underlying storage
structures and solvers. Specifically, we entirely eliminate the thread-global constraint store in favor
of a distributed one, realized as a collection of sets of constraints entirely associated with program
variables. This decision limits the applicability of CHRd to a restricted class of CHR programs,
refered to as direct-indexed CHR,in which all constraints in the head of a rule are connected
by shared variables. Most CHR programs are direct-indexed, and other programs may be easily
converted to fall into this class. Another advance of CHRd is its set-based semantics which removes
the need to maintain the propagation history, thus allowing further simplicity in the representation
of the constraints. The CHRd package itself is described in [22], and both the semantics of CHRd
and the class of direct-indexed CHR are formally defined in [23].

Chapter 12

XASP: Answer Set Programming
with XSB and Smodels

By Luis Castro, Terrance Swift, David S. Warren 1

The term Answer Set Programming (ASP) describes a paradigm in which logic programs are
interpreted using the (extended) stable model semantics. While the stable model semantics is
quite elegant, it has radical differences from traditional program semantics based on Prolog. First,
stable model semantics applies only to ground programs; second stable model semantics is not
goal-oriented – determining whether a stable model is true in a program involves examining each
clause in a program, regardless of whether the goal would depends on the clause in a traditional
evaluation 2.

Despite (or perhaps because of) these differences, ASP has proven to be a useful paradigm
for solving a variety of combinatorial programs. Indeed, determining a stable model for a logic
program can be seen as an extension of the NP-complete problem of propositional satisfiability, so
that satisfiability problems that can be naturally represented as logic programs can be solved using
ASP.

The current generation of ASP systems are very efficient for determining whether a program has
a stable model (analogous to whether the program, taken as a set of propositional axioms, is satisfi-
able). However, ASP systems have somewhat primitive file-based interfaces. XSB is a natural com-
plement to ASP systems. Its basis in Prolog provides a procedural counterpart for ASP, as described
in Chapter 5 of Volume 1 of this manual; and XSB’s computation of the Well-founded semantics
has a well-defined relationship to stable model semantics. Furthermore, deductive-database-like
capabilities of XSB allow it to be an efficient and flexible grounder for many ASP problems.

The XASP package provides various mechanisms that allow tight linkage of XSB programs to
the Smodels [20] stable model generator. The main interface is based on a store of clauses that can

1 Thanks to Barry Evans for helping resuscitate the XASP installation procedure, and to Gonçalo Lopes for the
installation procedure on Windows.

2In Version 3.5, the Smodels API has not been tested with the multi-threaded engine, and Smodels itself is not
thread-safe.

117

CHAPTER 12. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS 118

be incrementally asserted or deleted by an XSB program. Clauses in this store can make use of all of
the cardinality and weight constraint syntax supported by Smodels, in addition to default negation.
When the user decides that the clauses in a store are a complete representation of a program whose
stable model should be generated, the clauses are copied into Smodels buffers. Using the Smodels
API, the generator is invoked, and information about any stable models generated are returned.
This use of XASP is roughly analogous to building up a constraint store in CLP, and periodically
evaluating that store, but integration with the store is less transparent in XASP than in CLP.
In XASP, clauses must be explicitly added to a store and evaluated; furthermore clauses are not
removed from the store upon backtracking, unlike constraints in CLP.

The XNMR interpreter provides a second, somewhat more implicit use of XASP. In the XNMR
interface a query Q is evaluated as is any other query in XSB. However, conditional answers
produced for Q and for its subgoals, upon user request, can be considered as clauses and sent
to Smodels for evaluation. In backtracking through answers for Q, the user backtracks not only
through answer substitutions for variables of Q, but also through the stable models produced for
the various bindings.

12.1 Installing the Interface

Installing the Smodels interface of XASP sometimes can be tricky for two reasons. First, XSB
must dynamically load the Smodels library, and dynamic loading introduces platform dependencies.
Second since Smodels is written in C++ and XSB is written in C, the load must ensure that names
are properly resolved and that C++ libraries are loaded, steps that may addressed differently by
different compilers 3. However, by following the steps outlined below in the section for Unix or
Windows, XASP should be running in a matter of minutes.

12.1.1 Installing the Interface under Unix

In order to use the Smodels interface, several steps must be performed.

1. Creating a library for Smodels. Smodels itself must be compiled as a library. Unlike previous
versions of XSB, which required a special configuration step for Smodels, Version 3.5 requires
no special confiuration, since XSB includes source code for Smodels 2.33 as a subdirectory
of the $XSBDIR/packages/xasp directory (denoted $XASPDIR). We suggest making Smodels
out of this directory 4. Thus, to make the Smodels library

(a) Change directory to $XASPDIR/smodels

(b) On systems other than OS X, type

make lib
3XSB’s compiler can automatically call foreign compilers to compile modules written in C, but in Version 3.5 of

XSB C++ modules must be compiled with external commands, such as the makecommand shown below.
4Although distributed with XSB, Smodels is distributed under the GNU General Public License, a license that is

slightly stricter than the license XSB uses. Users distributing applications based on XASP should be aware of any
restrictions imposed by GNU General Public License.

CHAPTER 12. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS 119

on OS X, type 5

make -f Makefile.osx lib

If the compilation step ran successfully, there should be a file libsmodels.so (or libsomodels.dylib
on MacOS X or libsmodels.dll on Windows...) in $XASPDIR/smodels/.libs

(c) Change directory back to $XASPDIR

2. Compiling the XASP files Next, platform-specific compilation of XASP files needs to be
performed. This can be done by consulting prologMake.P and executing the goal

?- make.

It is important to note that under Version 3.5, code compiled by the single threaded engine will
only be executable by the single threaded engine, and code compiled by the multi-threaded
engine will only be executable by the multi-threaded engine.

3. Checking the Installation To see if the installation is working properly, cd to the subdirectory
tests and type:
sh testsuite.sh <$XSBDIR>

If the test suite succeeded it will print out a message along the lines of
PASSED testsuite for /Users/terranceswift/XSBNEW/XSB/config/powerpc-apple-darwin7.5.1/bin/xsb

12.1.2 Installing XASP under Windows using Cygwin

To install XASP under Windows, you must use Version 3.5 of XSB or later and Version 2.31 or
later of Smodels 6. You should also have a recent version of Cygwin (e.g. 1.5.20 or later) with
all the relevant development packages installed, such as devel, make, automake, patchtools, and
possibly x11 (for makedepend) Without an appropriate Cygwin build environment many of these
steps will simply fail, sometimes with quite cryptic error messages.

1. Patch and Compile Smodels First, uncompress smodels-2.31.tar.gz in some directory, (for
presentation purposes we use /cygdrive/c/smodels-2.31 — that is, c:\smodels-2.31).
After that, you must apply the patch provided with this package. This patch enables the
creation of a DLL from Smodels. Below is a sample session (system output omitted) with the
required commands:

$ cd /cygdrive/c/smodels-2.31
$ cat $XSB/packages/xasp/patch-smodels-2.31 | patch -p1
$ make lib

5A special makefile is needed for OS X since the GNU libtool is called glibtool on this platform.
6This section was written by Goncalo Lopes.

CHAPTER 12. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS 120

After that, you should have a file called smodels.dll in the current directory, as well as a file
called smodels.a. You should make the former "visible" to Windows. Two alternatives are
either (a) change the PATH environment variable to contain c:\smodels-2.31, or (b) copy
smodels.dll to some other directory in your PATH (such as c:\windows, for instance). One
simple way to do this is to copy smodels.dll to $XSB/config/i686-pc-cygwin/bin, after
the configure XSB step (step 2), since that directory has to be in your path in order to make
XSB fully functional.

2. Configure XSB. In order to properly configure XSB, you must tell it where the Smodels
sources and library (the smodels.a file) are. In addition, you must compile XSB such that
it doesn’t use the Cygwin DLL (using the -mno-cygwin option for gcc). The following is a
sample command:

$ cd $XSB/build
$./configure --enable-no-cygwin -with-smodels="/cygdrive/c/smodels-2.31’’

You can optionally include the extended Cygwin w32 API using the configuration option
--with-includes=<PATH_TO_API>, (this allows XSB’s build procedure to find makedepend
for instance), but you’ll probably do fine with just the standard Cygwin apps.
There are some compiler variables which may not be automatically set by the configure script
in xsb_config.h, namely the configuration names and some activation flags. To correct this,
do the following:

(a) cd to $XSB/config/i686-pc-cygwin

(b) open the file xsb_config.h and add the following lines:

#define CONFIGURATION "i686-pc-cygwin"
#define FULL_CONFIG_NAME "i686-pc-cygwin"
#define SLG_GC

(Still more flags may be needed depending on Cygwin configuration)
After applying these changes, cd back to the $XSB/build directory and compile XSB:

$./makexsb

Now you should have in $XSB/config/i686-pc-cygwin/bin directory both a xsb.exe and
a xsb.dll.

3. Compiling XASP. First, go to the XASP directory and execute the makelinks.sh script in
order to make the headers and libraries in Smodels be accessible to XSB, i.e.:

$ cd $XSB/packages/xasp
$ sh makelinks.sh /cygdrive/c/smodels-2.31

Now you must copy the smoMakefile from the config directory to the xasp directory and
run both its directives:

CHAPTER 12. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS 121

$ cp $XSB/config/i686-pc-cygwin/smoMakefile .
$ make -f smoMakefile module
$ make -f smoMakefile all

At this point, you can consult xnmr as you can with any other package, or xsb with the
xnmr command line parameter, like this: (don’t forget to add XSB bin directory to the $PATH
environment variable)

$ xsb xnmr

Lots of error messages will probably appear because of some runtime load compiler, but if
everything goes well you can ignore all of them since your xasppkg will be correctly loaded
and everything will be functioning smoothly from there on out.

12.2 The Smodels Interface

The Smodels interface contains two levels: the cooked level and the raw level. The cooked level
interns rules in an XSB clause store, and translates general weight constraint rules [24] into a normal
form that the Smodels engine can evaluate. When the programmer has determined that enough
clauses have been added to the store to form a semantically complete sub-program, the program
is committed. This means that information in the clauses is copied to Smodels and interned using
Smodels data structures so that stable models of the clauses can be computed and examined. By
convention, the cooked interface ensures that the atom true is present in all stable models, and
the atom false is false in all stable models. The raw level models closely the Smodels API, and
demands, among other things, that each atom in a stable sub-program has been translated into a
unique integer. The raw level also does not provide translation of arbitrary weight constraint rules
into the normal form required by the Smodels engine. As a result, the raw level is significantly
more difficult to directly use than the cooked level. While we make public the APIs for both the
raw and cooked level, we provide support only for users of the cooked interface.

As mentioned above Smodels extends normal programs to allow weight constraints, which can
be useful for combinatorial problems. However, the syntax used by Smodels for weight constraints
does not follow ISO Prolog syntax so that the XSB syntax for weight constraints differs in some
respects from that of Smodels. Our syntax is defined as follows, where A is a Prolog atom, N a
non-negative integer, and I an arbitrary integer.

� GeneralLiteral ::= WeightConstraint j Literal

� WeightConstraint ::= weightConst(Bound,WeightList,Bound)

� WeightList ::= List of WeightLiterals

� WeightLiteral ::= Literal j weight(Literal,N)

� Literal ::= A j not(A)

CHAPTER 12. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS 122

� Bound ::== I j undef

Thus an example of a weight constraint might be:

� weightConst(1,[weight(a,1),weight(not(b),1)],2)

We note that if a user does not wish to put an upper or lower bound on a weight constraint, she
may simply set the bound to undef or to an integer less than 0.

The intuitive semantics of a weight constraint weightConst(Lower,WeightList,Upper), in
which List is is list of WeightLiterals that it is true in a model M whenever the sum of the weights
of the literals in the constraint that are true in M is between the lower Lower and Upper. Any
literal in a WeightList that does not have a weight explicitly attached to it is taken to have a weight
of 1.

In a typical session, a user will initialize the Smodels interface, add rules to the clause store until
it contains a semantically meaningful sub-problem. He can then specify a compute statement if
needed, commit the rules, and compute and examine stable models via backtracking. If desired, the
user can then re-initialize the interface, and add rules to or retract rules from the clause store until
another semantically meaningful sub-program is defined; and then commit, compute and examine
another stable model 7.

The process of adding information to a store and periodically evaluating it is vaguely reminiscent
of the Constraint Logic Programming (CLP) paradigm, but there are important differences. In
CLP, constraints are part of the object language of a Prolog program: constraints are added to or
projected out of a constraint store upon forward execution, removed upon backwards execution, and
iteratively checked. When using this interface, on the other hand, an XSB program essentially acts
as a compiler for the clause store, which is treated as a target language. Clauses must be explicitly
added or removed from the store, and stable model computation cannot occur incrementally –
it must wait until all clauses have been added to the store. We note in passing that the xnmr
module provides an elegant but specialized alternative. xnmr integrates stable models into the
object language of XSB, by computing ""relevant"" stable models from the the residual answers
produced by query evaluation. It does not however, support the weighted constraint rules, compute
statements and so on that this module supports.

Neither the raw nor the cooked interface currently supports explicit negation.

Examples of use of the various interfaces can be found in the subdirectory intf_examples

smcInit
Initializes the XSB clause store and the Smodels API. This predicate must be executed before
building up a clause store for the first time. The corresponding raw predicate, smrInit(Num),
initializes the Smodels API assuming that it will require at most Num atoms.

smcReInit
Reinitializes the Smodels API, but does not affect the XSB clause store. This predicate is

7Currently, only normal rules can be retracted.

CHAPTER 12. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS 123

provided so that a user can reuse rules in a clause store in the context of more than one
sub-program.

smcAddRule(+Head,+Body)
Interns a ground rule into the XSB clause store. Head must be a GeneralLiteral as defined
at the beginning of this section, and Body must be a list of GeneralLiterals. Upon interning,
the rule is translated into a normal form, if necessary, and atoms are translated to unique
integers. The corresponding raw predicates, smrAddBasicRule/3, smrAddChoiceRule/3,
smrAddConstraintRule/4, and smrAddWeightRule/3 can be used to add raw predicates im-
mediately into the SModels API.

smcRetractRule(+Head,+Body)
Retracts a ground (basic) rule from the XSB clause store. Currently, this predicate cannot
retract rules with weight constraints: Head must be a Literal as defined at the beginning of
this section, and Body must be a list of GeneralLiterals.

smcSetCompute(+List)
Requires that List be a list of literals – i.e. atoms or the default negation of atoms). This
predicate ensures that each literal in List is present in the stable models returned by Smodels.
By convention the cooked interface ensures that true is present and false absent in all stable
models. After translating a literal it calls the raw interface predicates smrSetPosCompute/1
and smrSetNegCompute/1

smcCommitProgram
This predicate translates all of the clauses from the XSB clause store into the data structures
of the Smodels API. It then signals to the API that all clauses have been added, and initializes
the Smodels computation. The corresponding raw predicate, smrCommitProgram, performs
only the last two of these features.

smComputeModel
This predicate calls Smodels to compute a stable model, and succeeds if a stable model
can be computed. Upon backtracking, the predicate will continue to succeed until all stable
models for a given program cache have been computed. smComputeModel/0 is used by both
the raw and the cooked levels.

smcExamineModel(+List,-Atoms)
smcExamineModel/(+List,-Atoms) filters the literals in List to determine which are true in
the most recently computed stable model. These true literals are returned in the list Atoms.
smrExamineModel(+N,-Atoms) provides the corresponding raw interface in which integers
from 0 to N, true in the most recently computed stable model, are input and output.

smEnd
Reclaims all resources consumed by Smodels and the various APIs. This predicate is used
by both the cooked and the raw interfaces.

print_cache
This predicate can be used to examine the XSB clause store, and may be useful for debugging.

CHAPTER 12. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS 124

12.2.1 Using the Smodels Interface with Multiple Threads

If XASP has been compiled under the multi-threaded engine, the Smodels interface will be fully
thread-safe: this means that Smodels and all interface predicates described in this section can be
used concurrently by different threads. In multi-threaded XASP, each XSB thread can initialize
and query its own instance of Smodels, and build up its own private clause store at both the cooked
and raw levels (shared clause stores are not yet available). Figure 12.1 provides a simple example
of how this can be done. For each thread that will generate stable models, a message queue is
created that will be used to communicate back results. Two threads are then created and these
threads concurrently add rules to their private clause stores, call Smodels, and send the results
back to the calling thread using the appropriate message queue. Of course the example here is just
one of many possible: answers could be returned using different configurations of message queues,
through shared tables, through shared asserted code, and so on.

12.3 The xnmr_int Interface

. This module provides the interface from the xnmr module to Smodels. It does not use the
sm_int interface, but rather directly calls the Smodels C interface, and can be thought of as a
special-purpose alternative to sm_int.

init_smodels(+Query)
Initializes smodels with the residual program produced by evaluating Query. Query must be
a call to a tabled predicate that is currently completely evaluated (and should have a delay
list)

atom_handle(?Atom,?AtomHandle)
The handle of an atom is set by init_smodels/1 to be an integer uniquely identifying each
atoms in the residual program (and thus each atom in the Herbrand base of the program for
which the stable models are to be derived). The initial query given to init_smodels has the
atom-handle of 1.

in_all_stable_models(+AtomHandle,+Neg)
in_all_stable_models/2 returns true if Neg is 0 and the atom numbered AtomHandle re-
turns true in all stable models (of the residual program set by the previous call to init_smodels/1).
If Neg is nonzero, then it is true if the atom is in NO stable model.

pstable_model(+Query,-Model,+Flag)
returns nondeterministically a list of atoms true in the partial stable model total on the
atoms relevant to instances of Query, if Flag is 0. If Flag is 1, it only returns models in
which the instance of Query is true.

a_stable_model
This predicate invokes Smodels to find a (new) stable model (of the program set by the previ-
ous invocation of init_smodels/1.) It will compute all stable models through backtracking.
If there are no (more) stable models, it fails. Atoms true in a stable model can be examined
by in_current_stable_model/1.

CHAPTER 12. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS 125

:- ensure_loaded(xasp).
:- import smcInit/0, smcAddRule/2, smcCommitProgram/0 smcSetCompute/1,

smComputeModel/0, smcExamineModel/1, smEnd/0 from sm_int.
:- import thread_create/1 from thread.
:- import thread_get_message/2, thread_send_message/2, message_queue_create/1 from mutex_xsb.

test:-
message_queue_create(Queue1),
message_queue_create(Queue2),
thread_create(test1(Queue1)),
thread_create(test2(Queue2)),
read_models(Queue1),
read_models(Queue2).

test1(Queue) :-
smcInit,
smcAddRule(a1,[]),
smcAddRule(b1,[]),
smcAddRule(d1,[a1,not(c1)]),
smcAddRule(c1,[b1,not(d1)]),
smcCommitProgram,
write(’All Solutions: ’),nl,
(smComputeModel,

smcExamineModel(Model),
thread_send_message(Queue,solution(program1,Model)),
fail

;
thread_send_message(Queue,no_more_solutions),
smEnd).

test2(Queue) :-
smcInit,
smcAddRule(a2,[]),
smcAddRule(b2,[]),
smcAddRule(d2,[a2,not(c2)]),
smcAddRule(c2,[b2,not(d2)]),
smcCommitProgram,
write(’All Solutions: ’),nl,
(smComputeModel,

smcExamineModel(Model),
thread_send_message(Queue,solution(program2,Model)),
fail

;
thread_send_message(Queue,no_more_solutions),
smEnd).

read_models(Queue):-
repeat,
thread_get_message(Queue,Message),
(Message = no_more_solutions ->

true
; writeln(Message),
fail).

Figure 12.1: Using the Smodels Interface with Multi-Threading

CHAPTER 12. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS 126

in_current_stable_model(?AtomHandle)
This predicate is true of handles of atoms true in the current stable model (set by an
invocation of a_stable_model/0.)

current_stable_model(-AtomList)
returns the list of atoms true in the current stable model.

print_current_stable_model
prints the current stable model to the stream to which answers are sent (i.e stdfbk)

Chapter 13

PITA: Probabilistic Inference

By Fabrizio Riguzzi

“Probabilistic Inference with Tabling and Answer subsumption” (PITA) [21] is a package for
uncertain reasoning. In particular, it allowsvarious forms of Probabilistic Logic Programming
and Possibilistic Logic Programming. It accepts the language of Logic Programs with Annotated
Disjunctions (LPADs)[28, 29] and CP-logic programs [26, 27].

An example of LPAD/CP-logic program is

(heads(Coin) : 0:5) _ (tails (Coin) : 0:5) toss(Coin); : biased(Coin):
(heads(Coin) : 0:6) _ (tails (Coin) : 0:4) toss(Coin); biased(Coin):

(fair (Coin) : 0:9) _ (biased(Coin) : 0:1):
toss(Coin):

The first clause states that if we toss a coin that is not biased it has equal probability of landing
heads and tails. The second states that if the coin is biased it has a slightly higher probability of
landing heads. The third states that the coin is fair with probability 0.9 and biased with probability
0.1 and the last clause states that we toss a coin with certainty.

PITA computes the probability of queries by tranforming the input program into a normal logic
program and then calling a modified version of the query on the transformed programs.

13.0.1 Installation

PITA uses GLib 2.0 and CUDD. GLib is a standard GNU package so it is easy to install it using
the package management software of your Linux distribution.

To install CUDD, follow the instructions at http://vlsi.colorado.edu/~fabio/CUDD/ to
get the package (or get directly from ftp://vlsi.colorado.edu/pub/cudd-2.4.2.tar.gz), for
example cudd-2.4.2.tar.gz. After decompressing, you will have a direcory cudd-2.4.2 with
various subdirectories. Compile CUDD following the included instructions.

127

http://www.gtk.org/
http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
ftp://vlsi.colorado.edu/pub/cudd-2.4.2.tar.gz

CHAPTER 13. PITA: PROBABILISTIC INFERENCE 128

To install PITA with XSB, run XSB configure in the build directory with option –with-pita=DIR
where DIR is the folder where CUDD is.

Syntax

Disjunction in the head is represented with a semicolon and atoms in the head are separated from
probabilities by a colon. For the rest, the usual syntax of Prolog is used. For example, the CP-logic
clause

h1 : p1 _ : : : _ hn : pn b1; : : : ; bm ; : c1; : : : ; : cl

is represented by

h1:p1 ; ... ; hn:pn :- b1,...,bm,\+ c1,....,\+ cl

No parentheses are necessary. The pi are numeric expressions. It is up to the user to ensure that
the numeric expressions are legal, i.e. that they sum up to less than one.

If the clause has an empty body, it can be represented like this

h1:p1 ; ... ;hn:pn.

If the clause has a single head with probability 1, the annotation can be omitted and the clause
takes the form of a normal prolog clause, i.e.

h1:- b1,...,bm,\+ c1,...,\+ cl.

stands for

h1:1 :- b1,...,bm,\+ c1,...,\+ cl.

The body of clauses can contain a number of built-in predicates including:

is/2 >/2 </2 >=/2 =</2 =:=/2 =\=/2 true/0 false/0
=/2 ==/2 \=/2 \==/2 length/2 member/2

The coin example above thus is represented as (see file coin.cpl in subdirecoty examples)

heads(Coin):1/2 ; tails(Coin):1/2:-
toss(Coin),\+biased(Coin).

heads(Coin):0.6 ; tails(Coin):0.4:-
toss(Coin),biased(Coin).

fair(Coin):0.9 ; biased(Coin):0.1.
toss(coin).

Subdirectory examples contains other example programs.

CHAPTER 13. PITA: PROBABILISTIC INFERENCE 129

13.0.2 Use

Probabilistic Logic Programming

First write your program in a file with extension .cpl. If you want to use inference on LPADs load
PITA in XSB with

:- [pita].

load you program, say coin.cpl, with

:- load(coin).

and compute the probability of query atom heads(coin) by

:- prob(heads(coin),P).

load(file) reads file.cpl, translates it into a normal program, writes the result in file.P and
loads file.P.

PITA offers also the predicate parse(infile,outfile) which translates the LPAD in infile
into a normal progam and writes it to outfile.

Moreove, you can use prob(goal,P,CPUTime,WallTime) that returns the probability of goal P
together with the CPU and wall time used.

In case the modeling assumptions of PRISM hold, i.e.:

� the probability of a conjunction (A; B) is computed as the product of the probabilities of A
and B (independence assumption),

� the probability of a disjunction (A; B) is computed as the sum of the probabilities of A and
B (exclusiveness assumption),

you can perform faster inference with an optimized version of PITA in package pitaindexc.P. It
accepts the same commands of pita.P. pitaindexc.P simulates PRISM and does not need CUDD
and GLib.

If you want to compute the Viterbi path and probability of a query (the Viterbi path is the
explanation with the highest probability) as with the predicate viterbif/3 of PRISM, you can use
package pitavitind.P.

The package pitacount.P can be used to count the explanations for a query, provided that the
independence assumption holds. To count the number of explanations for a query use

:- count(heads(coin),C).

pitacount.P does not need CUDD and GLib.

CHAPTER 13. PITA: PROBABILISTIC INFERENCE 130

Possibilistic Logic Programming

PITA can be used also for answering queries to possibilistic logic program [10], a form of logic
progamming based on possibilistic logic [11]. The package pitaposs.P provides possibilistic infer-
ence. You have to write the possibilistic program as an LPAD in which the rules have a single head
whose annotation is the lower bound on the necessity of the clauses. To compute the highest lower
bound on the necessity of a query use

:- poss(heads(coin),P).

pitaposs.P does not need CUDD and GLib.

Chapter 14

Other XSB Packages

Many of the XSB packages are maintained somewhat independently of XSB and have their own
manuals. For these packages: Flora2, XMC, xsbdoc and Cold Dead Fish we provide summaries; full
information can be obtained in the packages themselves. In addition, we provide full documentation
here for two of the smaller packages, slx and GAP.

14.1 Programming with FLORA-2

F lora-2 is a sophisticated object-oriented knowledge base language and application development
platform. It is implemented as a set of run-time libraries and a compiler that translates a unified
language of F-logic [16], HiLog [7], and Transaction Logic [4, 3] into tabled Prolog code.

Applications of F lora-2 include intelligent agents, Semantic Web, ontology management, in-
tegration of information, and others.

The programming language supported by F lora-2 is a dialect of F-logic with numerous ex-
tensions, which include a natural way to do meta-programming in the style of HiLog and logical
updates in the style of Transaction Logic. F lora-2 was designed with extensibility and flexibility
in mind, and it provides strong support for modular software design through its unique feature of
dynamic modules. Other extensions, such as the versatile syntax of Florid path expressions, are
borrowed from Florid, a C++-based F-logic system developed at Freiburg University.1 Extensions
aside, the syntax of F lora-2 differs in many important ways from Florid, from the original ver-
sion of F-logic, as described in [16], and from an earlier implementation of F lora. These syntactic
changes were needed in order to bring the syntax of F lora-2 closer to that of Prolog and make it
possible to include simple Prolog programs into F lora-2 programs without choking the compiler.
Other syntactic deviations from the original F-logic syntax are a direct consequence of the added
support for HiLog, which obviates the need for the “@” sign in method invocations (this sign is
now used to denote calls to F lora-2 modules).

F lora-2 is distributed in two ways. First, it is part of the official distribution of XSB and
thus is installed together with XSB. Second, a more up-to-date version of the system is available

1 See http://www.informatik.uni-freiburg.de/ ∼dbis/florid/ for more details.

131

CHAPTER 14. OTHER XSB PACKAGES 132

on F lora-2 ’s Web site at

http://flora.sourceforge.net

These two versions can be installed at the same time and used independently (e.g., if you want to
keep abreast with the development of F lora-2 or if a newer version was released in-between the
releases of XSB). The installation instructions are somewhat different in these two cases. Here we
only describe the process of configuring the version F lora-2 included with XSB.

Installing F lora-2 under UNIX. To configure a version of F lora-2 that was downloaded
as part of the distribution of XSB, simply configure XSB as usual:

cd XSB/build
configure
makexsb

and then run

makexsb packages

If you downloaded XSB from its CVS repository earlier and are updating your copy using the
cvs update command, then it might be a good idea to also do the following:

cd packages/flora2
makeflora clean
makeflora

Installing F lora-2 in Windows. First, you need Microsoft’s nmake. Then use the following
commands to configure F lora-2 (assuming that XSB is already installed and configured):

cd flora2
makeflora clean
makeflora path-to-prolog-executable

Also make sure that the packages directory contains a shortcut called flora2.P to the file
packagesnflora2nflora2.P.

Running F lora-2 . F lora-2 is fully integrated into the underlying XSB engine, including its
module system. In particular, F lora-2 modules can invoke predicates defined in other Prolog
modules, and Prolog modules can query the objects defined in F lora-2 modules.

Due to certain problems with XSB, F lora-2 runs best when XSB is configured with local
scheduling, which is the default XSB configuration. However, with this type of scheduling, many
Prolog intuitions that relate to the operational semantics do not work. Thus, the programmer

CHAPTER 14. OTHER XSB PACKAGES 133

must think “more declaratively” and, in particular, to not rely on the order in which answers are
returned.

The easiest way to get a feel of the system is to start F lora-2 shell and begin to enter queries
interactively. The simplest way to do this is to use the shell script

.../flora2/runflora

where “...” is the directory where F lora-2 is downloaded. For instance, to invoke the version
supplied with XSB, you would type something like

~/XSB/packages/flora2/runflora

At this point, F lora-2 takes over and F-logic syntax becomes the norm. To get back to the
Prolog command loop, type Control-D (Unix) or Control-Z (Windows), or

| ?- _end.

If you are using F lora-2 shell frequently, it pays to define an alias, say (in Bash):

alias runflora=’~/XSB/packages/flora2/runflora’

F lora-2 can then be invoked directly from the shell prompt by typing runflora. It is even
possible to tell F lora-2 to execute commands on start-up. For instance,

foo> runflora -e "_help."

will cause the system to execute the help command right after after the initialization. Then the
usual F lora-2 shell prompt is displayed.

F lora-2 comes with a number of demo programs that live in

.../flora2/demos/

The demos can be run issuing the command “_demo(demo-filename).” at the F lora-2 prompt,
e.g.,

flora2 ?- _demo(flogic_basics).

There is no need to change to the demo directory, as flDemo knows where to find these programs.

14.2 Summary of xmc: Model-checking with XSB

No documentation yet available.

CHAPTER 14. OTHER XSB PACKAGES 134

the Ciao [6] system’s lpdoc which has been adapted to generate a reference manual automatically
from one or more XSB source files. The target format of the documentation can be Postscript,
HTML, PDF, or nicely formatted ASCII text. xsbdoc can be used to automatically generate a
description of full applications, library modules, README files, etc. A fundamental advantage of
using xsbdoc to document programs is that it is much easier to maintain a true correspondence
between the program and its documentation, and to identify precisely to what version of the
program a given printed manual corresponds. Naturally, the xsbdoc manual is generated by xsbdoc
itself.

The quality of the documentation generated can be greatly enhanced by including within the
program text:

� assertions (indicating types, modes, etc. ...) for the predicates in the program, via the
directive pred/1; and

� machine-readable comments (in the “literate programming” style).

The assertions and comments included in the source file need to be written using the forthcoming
XSB assertion language, which supports most of the features of Ciao’s assertion language within a
simple and (hopefully) intuitive syntax.

xsbdoc is distributed under the GNU general public license.

Unlike lpdoc, xsbdoc does not use Makefiles, and instead maintains information about how to
generate a document within Prolog format files. As a result, xsbdoc can in principle be run in any
environment that supports the underlying software, such as XSB, LATEX, dvips and so on. It has
been tested on Linux and Windows running with Cygwin.

14.3 slx: Extended Logic Programs under the Well-Founded Se-
mantics

As explained in the section Using Tabling in XSB, XSB can compute normal logic programs accord-
ing to the well-founded semantics. In fact, XSB can also compute Extended Logic Programs, which
contain an operator for explicit negation (written using the symbol -) in addition to the negation-
by-failure of the well-founded semantics (\+ or not). Extended logic programs can be extremely
useful when reasoning about actions, for model-based diagnosis, and for many other uses [2]. The
library, slx provides a means to compile programs so that they can be executed by XSB accord-
ing to the well-founded semantics with explicit negation [1]. Briefly, WFSX is an extension of the
well-founded semantics to include explicit negation and which is based on the coherence principle
in which an atom is taken to be default false if it is proven to be explicitly false, intuitively:

� p) not p:

This section is not intended to be a primer on extended logic programming or on WFSX
semantics, but we do provide a few sample programs to indicate the action of WFSX. Consider the
program

CHAPTER 14. OTHER XSB PACKAGES 135

s:- not t.

t:- r.
t.

r:- not r.

If the clause -t were not present, the atoms r, t, s would all be undefined in WFSX just as
they would be in the well-founded semantics. However, when the clause t is included, t becomes
true in the well-founded model, while s becomes false. Next, consider the program

s:- not t.

t:- r.
-t.

r:- not r.

In this program, the explicitly false truth value for t obtained by the rule -t overrides the
undefined truth value for t obtained by the rule t:- r. The WFSX model for this program will
assign the truth value of t as false, and that of s as true. If the above program were contained in
the file test.P, an XSB session using test.P might look like the following:

> xsb

| ?- [slx].
[slx loaded]

yes
| ?- slx_compile(’test.P’).
[Compiling ./tmptest]
[tmptest compiled, cpu time used: 0.1280 seconds]
[tmptest loaded]

| ?- s.

yes
| ?- t.

no
| ?- naf t.

yes
| ?- r.

no
| ?- naf r.

no
| ?- und r.

CHAPTER 14. OTHER XSB PACKAGES 136

yes

In the above program, the query ?- t. did not succeed, because t is false in WFSX: accordingly
the query naf t did succeed, because it is true that t is false via negation-as-failure, in addition to
t being false via explicit negation. Note that after being processed by the SLX preprocessor, r is
undefined but does not succeed, although und r will succeed.

We note in passing that programs under WFSX can be paraconsistent. For instance in the
program.

p:- q.

q:- not q.
-q.

both p and q will be true and false in the WFSX model. Accordingly, under SLX preprocessing,
both p and naf p will succeed.

slx_compile(+File) module: slx
Preprocesses and loads the extended logic program named File. Default negation in File
must be represented using the operator not rather than using tnot or \+. If L is an objective
literal (e.g. of the form A or � A where A is an atom), a query ?- L will succeed if L is true
in the WFSX model, naf L will succeed if L is false in the WFSX model, and und L will
succeed if L is undefined in the WFSX model.

14.4 gapza: Generalized Annotated Programs

Generalized Annotated Programs (GAPs) [17] offer a powerful computational framework for han-
dling paraconsistency and quantitative information within logic programs. The tabling of XSB
is well-suited to implementing GAPs, and the gap library provides a meta-interpreter that has
proven robust and efficient enough for a commercial application in data mining. The current
meta-interpreter is limited to range-restricted programs.

A description of GAPs along with full documentation for this meta-interpreter is provided in
[25] (currently also available at http://www.cs.sunysb.edu/� tswift). Currently, the interface
to the GAP library is through the following call.

meta(?Annotated_atom) module: gap
If Annotated_atom is of the form Atom:[Lattice_type,Annotation] the meta-interpreter
computes bindings for Atom and Annotation by evaluating the program according to the
definitions provided for Lattice_type.

Bibliography

[1] J. Alferes, C. Damasio, and L. Pereira. A logic programming system for non-monotonic rea-
soning. Journal of Automated Reasoning, 14:93–147, 1995.

[2] J. Alferes and L. M. Pereira. Reasoning with Logic Programming, volume 1111. Springer-Verlag
LNAI, 1996.

[3] A. Bonner and M. Kifer. An overview of transaction logic. Theoretical Computer Science,
133:205–265, October 1994.

[4] A. Bonner and M. Kifer. A logic for programming database transactions. In J. Chomicki and
G. Saake, editors, Logics for Databases and Information Systems, chapter 5, pages 117–166.
Kluwer Academic Publishers, March 1998.

[5] G. Box and M. Muller. A note on the generation of random normal deviates. The Annals of
Mathematical Statistics, 29(2):610–611, 1958.

[6] F. Bueno, D. Cabenza, M. Carro, M. Hermenegildo, P. López-García, and G. Puebla. The
ciao prolog system, reference manual. Technical report, School of Computer Science, Technical
University of Madrid, 2003. Available from http://www.clip.dia.fi.upm.es/.

[7] W. Chen, M. Kifer, and D. S. Warren. HiLog: A foundation for higher-order logic program-
ming. Journal of Logic Programming, 15(3):187–230, February 1993.

[8] B. Demoen. Dynamic attributes, their hProlog implementation, and a first evaluation. Report
CW 350, Department of Computer Science, K.U.Leuven, Leuven, Belgium, oct 2002. URL =
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW350.abs.html.

[9] C. Draxler. Prolog to SQL compiler, Version 1.0. Technical report, CIS Centre for Information
and Speech Processing Ludwig-Maximilians-University, Munich, 1992.

[10] D. Dubois, J. Lang, and H. Prade. Towards possibilistic logic programming. In ICLP, pages
581–595, 1991.

[11] D. Dubois, J. Lang, and H. Prade. Possibilistic logic. In D. M. Gabbay, C. J. Hogger, and
J. A. Robinson, editors, Handbook of logic in artificial intelligence and logic programming,vol.
3, pages 439–514. Oxford University Press, 1994.

[12] T. Fruehwirth. Thom Fruehwirth’s Constraint Handling Rules website. http://www.
informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/chr-intro.html.

137

http://www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/chr-intro.html
http://www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/chr-intro.html

BIBLIOGRAPHY 138

[13] T. Frühwirth. Theory and Practice of Constraint Handling Rules. In P. Stuckey and K. Marriot,
editors, Special Issue on Constraint Logic Programming, volume 37, October 1998.

[14] H. Guo, C. R. Ramakrishnan, and I. V. Ramakrishnan. Speculative beats conservative justi-
fication. In International Conference on Logic Programming, volume 2237 of Lecture Notes in
Computer Science, pages 150–165. Springer, 2001.

[15] C. Holzbaur. Ofai clp(q,r) manual, edition 1.3.3. Technical report, Austrian Research Institute
for Artificial Intelligence, 1995.

[16] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based
languages. Journal of the ACM, 42:741–843, July 1995.

[17] M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic programming and
its applications. Journal of Logic Programming, 12(4):335–368, 1992.

[18] T. I. S. Laboratory. SICStus Prolog User’s Manual Version 3.12.5. Swedish Institute of
Computer Science, 2006.

[19] A. McLeod. A remark on algorithm AS 183. Applied Statistics, 34:198–200, 1985.

[20] I. Niemelä and P. Simons. Smodels: An implementation of the stable model and well-founded
semantics for normal LP. In J. Dix, U. Furbach, and A. Nerode, editors, Proceedings of the 4th
International Conference on Logic Programing and Nonmonotonic Reasoning, volume 1265 of
LNAI, pages 420–429, Berlin, July 28–31 1997. Springer.

[21] F. Riguzzi and T. Swift. Tabling and answer subsumption for reasoning on logic programs
with annotated disjunctions. In Logic Programming, 26th International Conference, 2010.

[22] B. Sanna-Starosta. Chrd: A set-based solver for constraint hanlding rules. available at
www.cs.msu.edu/˜bss/chr-d, 2006.

[23] B. Sanna-Starosta and C. Ramakrishnan. Compiling constraint handling rules for efficient
tabled evaluation. available at www.cs.msu.edu/˜bss/chr-d, 2006.

[24] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model seman-
tics. Artificial Intelligence, 138:181–234, 2002.

[25] T. Swift. Tabling for non-monotonic programming. Ann. Math. Artif. Intell., 25(3-4):201–240,
1999.

[26] J. Vennekens, M. Denecker, and M. Bruynooghe. Representing causal information about a
probabilistic process. In Proceedings of the 10th European Conference on Logics in Artificial
Intelligence, LNAI. Springer, September 2006.

[27] J. Vennekens, M. Denecker, and M. Bruynooghe. CP-logic: A language of causal probabilistic
events and its relation to logic programming. Theory Pract. Log. Program., 9(3):245–308, 2009.

[28] J. Vennekens and S. Verbaeten. Logic programs with annotated disjunctions. Technical Report
CW386, K. U. Leuven, 2003.

BIBLIOGRAPHY 139

[29] J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with annotated disjunctions.
In International Conference on Logic Programming, volume 3131 of LNCS, pages 195–209.
Springer, 2004.

[30] B. A. Wichmann and I. D. Hill. Algorithm AS 183: An efficient and portable pseudo-random
number generator. Applied Statistics, 31:188–190, 1982.

[31] J. Wielemaker. SWI Prolog version 5.6: Reference Manual. University of Amsterdam, 2007.

Index

CDATA, 76, 77
DOCTYPE declaration, 84
NAMES, 77
NDATA, 77
NUMBER, 77
SDATA, 77
#</2, 101
#=/2, 101
#=</2, 101
#>/2, 101
#>=/2, 101
{}/1, 95
a_stable_model/0, 123
absmember/2, 3
absmerge/3, 3
all_different/1, 102
append/3, 1
array_elt/3, 27
array_new/2, 27
array_update/3, 27
atom_handle/2, 123
bb_inf/3, 98
bb_inf/4, 97
close/3, 71
close/4, 71
closetail/1, 3
comma_append/3, 3
comma_length/2, 3
comma_member/2, 3
comma_memberchk/2, 3
comma_to_list/2, 3
current_stable_model/1, 125
datime_setrand/0, 30
declaration, 83
default space mode, 79
del_attr/2, 4
delete_ith/4, 1

doctype, 81
dtd/3, 81
dump/3, 98
element, 83
encode_url/2, 72
entailed/1, 96
epoch_seconds/1, 14
expand_filename/2, 13
expand_filename_no_prepend/2, 13
exponential/2, 31
false, 78
fd2ioport/2, 26
fd2iostream/2, 21
file, 83
findall_odbc_sql/3, 42
findall_odbc_sql/4, 42
format/2, 9
format/3, 9
free_dtd/1, 81
free_sgml_parser/1, 82
gauss/2, 30
gennum/1, 29
gensym/2, 30
get_attr/3, 4
get_chr_answer_store/1, 114
get_chr_store/1, 114
get_process_table/1, 18
get_redir_url/2, 73
get_scan_pars/1, 33
getenv/2, 13
getrand/1, 30
in/2, 101
in_all_stable_models/2, 123
in_current_stable_model/1, 125
inf/2, 96
inf/4, 97
informational, 84

140

INDEX 141

init_smodels/1, 123
install_verify_attribute_handler/4, 4
install_verify_attribute_handler/5, 4
integer, 78
ith/3, 1
label/1, 102
labelling/2, 102
length/2, 2
load_chr/1, 107
load_csv/2, 31
load_dsv/3, 32
load_html_structure/3, 76
load_page/5, 72
load_sgml_structure/3, 76
load_structure/4, 77
load_xhtml_structure/3, 76
load_xml_structure/3, 76
log_ith/3, 2
log_ith_bound/3, 2
maximize/1, 96
member/2, 1
member2/2, 3
memberchk/2, 1
merge/3, 3
merge_answer_store/1, 114
minimize/1, 96
new_dtd/2, 80
new_sgml_parser/2, 81
odbc_close/0, 40
odbc_close/1, 40
odbc_create_index/3, 50
odbc_create_table/2, 50
odbc_data_sources/2, 40
odbc_delete/{2,3}, 49
odbc_delete_index/1, 51
odbc_delete_table/1, 51
odbc_delete_view/1, 51
odbc_flag/2, 51
odbc_get_schema/2, 50
odbc_import/2, 42
odbc_import/4, 44
odbc_insert/{2,3}, 49
odbc_open/3, 39
odbc_open/4, 40
odbc_query/2, 46

odbc_query/3, 48
odbc_show_schema/1, 50
odbc_sql/3, 40
odbc_sql/4, 41
odbc_sql_cnt/4, 42
odbc_transaction/1, 51
open/3, 71
open/4, 71
open_dtd/3, 81
parse_filename/4, 13
parse_xpath/4, 87
perm/2, 2
pid/1, 13
pipe_open/2, 19
prepare/1, 29
preprocess/2, 107
preserve space mode, 79, 80
pretty_print/1, 35
pretty_print/2, 35
print_cache/0, 122
print_current_stable_model/0, 125
process_control/2, 17
process_status/2, 17
pstable_model/3, 123
put_attr/3, 4
putenv/3, 14
random/1, 30
random/3, 30
randseq/3, 30
randset/3, 30
remove space mode, 80
reverse/2, 2
same_length/2, 2
scan/2, 32
scan/3, 32
see/1, 71
select/3, 2
serialized/2, 103
set_chr_store/1, 114
set_odbc_flag/2, 51
set_scan_pars/1, 33
set_sgml_parser/2, 82
set_timer/1, 25
setarg/3, 8
setrand/1, 30

INDEX 142

sgml_parse/3, 83
sgml, 78, 79, 82
sgml space mode, 79
shell/5, 18
show_store/1, 108
sleep/1, 13, 25
smcAddRule/2, 122
smcCommitProgram/0, 122
smcCompute/1, 122
smcComputeModel/0, 122
smcEnd/0, 122
smcExamineModel/2, 122
smcInit/0, 121
smcReInit, 121
smcRetractRule/2, 122
socket/2, 22
socket_accept/3, 22
socket_bind/3, 22
socket_close/2, 22
socket_connect/4, 22
socket_get0/3, 24
socket_listen/3, 22
socket_put/3, 24
socket_recv/3, 23
socket_select/6, 24
socket_select_destroy/1, 24
socket_send/3, 23
socket_set_option/3, 22
socket_set_select/4, 24
spawn_process/5, 14
str_match/5, 11
str_sub/2, 11
str_sub/3, 11
subseq/3, 2
substring/4, 12
sum/3, 102
sup/2, 96
sup/4, 97
suspended_constraints/2, 108
term_hash/3, 35
term_variables/2, 8
token, 78
unifiable/3, 8
url_properties/2, 72
url_properties/3, 72

weibull/3, 31
when/2, 7
xmlns, 78, 82
xmlns dialect, 80
xml, 78, 79, 82
, 103

Code authors
Carlsson, Mats, 36
Guo, Hai-Feng, 36
O’Keefe, Richard, 36, 37

constraints
asserting dynamic code with, 98

CP-logic, 126

FLIP, 130
FLORID, 130

Generalized Annotated Programs, 135

install_attribute_constraint_hook/4, 6
install_attribute_portray_hook/3, 6
interrupt instruction, 28

local scheduling in XSB, 131
Logic Programs with Annotated Disjunction, 126
LPADs, 126

negation
explicit negation, 133

PITA, 126
Possibilistic Logic Programming, 126
PRISM, 126
Probabilistic Logic Programming, 126
profile_call/1, 27
profile_mode_call/1, 28
profile_mode_dump/0, 29
profile_mode_init/0, 29
profile_unindexed_calls/1, 29
projecting_assert/1, 98
Prologs

hProlog, 3
Sicstus, 99
SWI, 3, 93, 99

Random Variables, 30

INDEX 143

Exponential, 31
Normal, 30
Weibull, 30

runflora script, 132

WFSX, 133

	
	List Processing
	Processing Comma Lists

	Attributed Variables
	Lowlevel Interface

	constraintLib: a library for CLP
	Formatted Output
	Low-level Atom Manipulation Predicates
	Script Writing Utilities
	Communication with Subprocesses

	Socket I/O
	Arrays
	The Profiling Library
	Gensym
	Random Number Generator
	Loading Separated Files
	Scanning in Prolog
	XSB Lint
	``Pure'' Meta-programming in XSB with prolog_db.P
	Miscellaneous Predicates
	Other Libraries
	Justification
	AVL Trees
	Ordered Sets: ordsets.P
	Unweighted Graphs: ugraphs.P
	Heaps: heaps.P

	Syntax
	Semantics

