PARMEINS-

Parallel Graph Partitioning and Sparse Matrix Ordering
Library
Version 3.2

George Karypis, Kirk Schloegel and Vipin Kumar

University of Minnesota, Department of Computer Sciencet&angineering
Minneapolis, MN 55455

karypis@cs.umn.edu

April 9, 2011

*PARMETS is copyrighted by the regents of the University of Minnesota

1

Contents

1 Introduction 3
2 Changes Across Key Releases 3
2.1 Changesbetween3.2and 3.1 e 3
2.2 Changesbetween3.0/3.1and 2.0 e e 4
3 Algorithms Used in PARMETS 4
3.1 Unstructured Graph Partitioning e e e 5
3.2 Partitioning Meshes Directly e 6
3.3 Partitioning Adaptively RefinedMeshes L 6
3.4 Partition Refinement e e e 8
3.5 Partitioning for Multi-phase and Multi-physics Comgtidbns 8
3.6 Partitioning for Heterogeneous Computing Architegsur. 9
3.7 Computing Fill-Reducing Orderings it e e e 9
4 Input and Output Formats used by PARMETS 10
4.1 Formatofthe lnputGraph e e 10
4.2 FormatofVertex Coordinates e 12
4.3 Formatofthe InputMesh e 12
4.4 Format of the Computed Partitionings and Orderings 12
4.5 Numbering and Memory Allocation 14
5 Calling Sequence of the Routines ifPARMEIS 15
5.1 GraphPartitioning e 16
ParMETISV3_Partkway e e e e e e e 16
ParMETISV3_PartGeomKway o e e e e 18
ParMETISV3_PartGeom e e e e 20
ParMETISV3_ PartMeshKway 21
5.2 Graph Repartitioning L e 23
ParMETISV3_AdaptiveRepart e 23
5.3 Partitioning Refinement e e e 25
ParMETISV3_RefineKway 25
5.4 Fill-reducing Orderings o e e e 27
ParMETISV3_NodeND 27
ParMETISV32.NodeND 28
5,5 MeshtoGraph Translation e e 30
ParMETISV3_Mesh2Dual 30
6 Restrictions & Limitations 31
7 Hardware & Software Requirements, and Contact Information 31
8 Copyright & License Notice 31

1 Introduction

PARMETS is an MPI-based parallel library that implements a varidtglgorithms for partitioning and repartitioning
unstructured graphs and for computing fill-reducing omigsiof sparse matriceBARMEIIS is particularly suited for
parallel numerical simulations involving large unstruetdimeshes. In this type of computati®®RMETS dramati-
cally reduces the time spent in communication by computieghmdecompositions such that the numbers of interface
elements are minimized.

The algorithms ilrPARMEIS are based on the multilevel partitioning and fill-reducimdesing algorithms that are
implemented in the widely-used serial pack&d@diS [5]. However,PARMEIS extends the functionality provided by
METS and includes routines that are especially suited for peratimputations and large-scale numerical simulations.
In particular,PARMEIS provides the following functionality:

e Partition unstructured graphs and meshes.

Repartition graphs that correspond to adaptively refineshes

Partition graphs for multi-phase and multi-physics sirtiatss.

Improve the quality of existing partitionings.

Compute fill-reducing orderings for sparse direct factatian.
e Construct the dual graphs of meshes

The rest of this manual is organized as follows. Section &flgrdescribes the differences between major versions
of PARMEIS. Section 3 describes the various algorithms that are imgheed inPARMETS. Section 4 describes the
format of the basic parameters that need to be supplied tootitenes. Section 5 provides a detailed description
of the calling sequences for the major routinesPrRMETS. Finally, Section 7 describes software and hardware
requirements and provides contact information.

2 Changes Across Key Releases

2.1 Changes between 3.2 and 3.1

The major change in version 3.2 is its better support for aging fill-reducing orderings of sparse matrices. Specifi-
cally, version 3.2 contains the following enhancementiitaxhs:

e A new parallel separator refinement algorithm that leadsaller separators and less fill-in.
e Parallel orderings can now be computed on non power-of-twogssors.

e It provides support for computing multiple separators athekevel (both during the parallel and the serial
phases). The smallest separator among these multiplessegeicted.

e There is a new API routindRarMETIS_V32_NodeND that exposes additional parameters to the user in order
to better control various aspects of the algorithm. The dil utine ParMETIS_V3_NodeND) is still valid
and is mapped to the new ordering routine.

The end results of these enhancements is that the qualiy afrtierings computed BBARMETS are now compa-
rable to those computed BWETS’ nested dissection routines. In addition, version 3.2 amsta number of bug-fixes
and documentation corrections. Note that changes in thendewtation are marked using change-bars.

Version 1.0 \ersion 2.0 Version 3.0

PARKMETIS ParMETIS PartKway ParMETISV3_PartKway
PARGKMETIS | ParMETISPartGeomKway | ParMETISV3_PartGeomKway|
PARGMETIS ParMETISPartGeom ParMETISV3_PartGeom
PARGRMETIS | Not available Not available

PARRMETIS | ParMETISRefineKway ParMETISV3_RefineKway

PARUAMETIS | ParMETISRepartLDiffusion
PARDAMETIS | ParMETISRepartGDiffusion
Not available ParMETISRepartRemap

Not available ParMETISRepartMLRemap

ParMETISV3_AdaptiveRepart

PAROMETIS | ParMETISNodeND ParMETISV3_NodeND
Not available Not available ParMETISV3_PartMeshKway
Not available | Not available ParMETISV3_Mesh2Dual

Table 1: The relationships between the names of the routines in the different versions of PARMETS.

2.2 Changes between 3.0/3.1 and 2.0

Version 3.x contains a number of changes over the previoygrmelease (version 2.x). These changes include the
following:

e The names and calling sequence of all the routines have etatge to expanded functionality that has been
provided in this release. Table 1 shows how the names of th@ugroutines map from version to version. Note
that Version 3.0 is fully backwards compatible with all praws versions oPARMETS. That is, the old API
calls have been mapped to the new routines. However, thendgpdunctionality provided with this release is
only available by using the new calling sequences.

e The four adaptive repartitioning routine®arMETIS_RepartLDiffusion, ParMETIS_RepartGDiffusion,
ParMETIS_RepartRemap, andParMETIS_RepartMLRemap have been replaced by a (single) implementa-
tion of a unified repartitioning algorithm [15ParMETIS _V3_AdaptiveRepart, that combines the best features
of the previous routines.

e Multiple vertex weights/balance constraints are supjpidide most of the routines. This allowBARMETS to be
used to partition graphs for multi-phase and multi-physiogulations.

e In order to optimize partitionings for specific heterogame@omputing architectures, it is now possible to
specify the target sub-domain weights for each of the subaiias and for each balance constraint. This feature,
for example, allows the user to compute a partitioning inchitone of the sub-domains is twice the size of all
of the others.

e The number of sub-domains has been de-coupled from the nmuoflprocessors in both the static and the
adaptive partitioning schemes. Hence, it is now possiblas® the parallel partitioning and repartitioning
algorithms to compute &-way partitioning independent of the number of procesduoas are used. Note that
Version 2.0 provided this functionality for the static péohing schemes only.

e Routines are provided for both directly partitioning a #nélement mesh, and for constructing the dual graph
of a mesh in parallel. In version 3.1 these routines have br@mded to support mixed element meshes.

3 Algorithms Used in P ARMEIS

PARMETIS provides a variety of routines that can be used to compuierdift types of partitionings and repartitionings
as well as fill-reducing orderings. Figure 1 provides an wesy of the functionality provided byPARMETS as well
as a guide to its use.

ParMETIS_V3_PartGeomKway }

What are your
time/quality tradeoffs?

NES

Do you have coordinates

Partition a graph for the vertices? ParMETIS_V3_PartGeom }

ParMETIS_V3_Partkway

)
&s o No|

Partition a mesh ParMETIS_V3_PartMeshKway }

Construct a graph from a mesh ParMETIS V3 Mesh2Dual }

epartition a graph correspondin

to an adaptively refined mesh ParMETIS_V3_AdaptiveRepart }

ParMetis Can Do The Following

VAR N

Refine the quality

of a partitioning ParMETIS_V3_RefineKway }

ParMETIS_V3_NodeND
ParMETIS_V32_NodeND

Compute a fill-reducing
ordering

I

Figure 1: A brief overview of the functionality provided by PARMETS. The shaded boxes correspond to the actual routines in
PARMETS that implement each particular operation.

3.1 Unstructured Graph Partitioning
ParMETIS_V3_PartKway is the routine irPARMETS that is used to partition unstructured graphs. This routikes
a graph and computestaway partitioning (where: is equal to the number of sub-domains desired) while attiexgpt
to minimize the number of edges that are cut by the partitigfi.e., theedge-cut ParMETIS_V3_PartKway makes
no assumptions on how the graph is initially distributed agithe processors. It can effectively partition a graph that
is randomly distributed as well as a graph that is well disiied. If the graph is initially well distributed among the
processorsParMETIS_V3_PartKway will take less time to run. However, the quality of the cormgalipartitionings
does not depend on the initial distribution.

The parallel graph partitioning algorithm usedRarMETIS_V3_PartKway is based on the serial multilevé}
way partitioning algorithm described in [6, 7] and parafletl in [4, 14]. This algorithm has been shown to quickly
produce partitionings that are of very high quality. It cists of three phases: graph coarsening, initial partitigni
and uncoarsening/refinement. In the graph coarsening paasgies of graphs is constructed by collapsing together
adjacent vertices of the input graph in order to form a relatearser graph. Computation of the initial partitioning
is performed on the coarsest (and hence smallest) of thapbgrand so is very fast. Finally, partition refinement is
performed on each level graph, from the coarsest to the f(nestoriginal graph) using a KL/FM-type refinement
algorithm [2, 9]. Figure 2 illustrates the multilevel grapartitioning paradigm.

PARMETS provides theParMETIS_V3_PartGeomKway routine for computing partitionings for graphs derived
from finite element meshes in which the vertices have coatdgassociated with them. Given a graph that is dis-
tributed among the processors and the coordinates of ttieegParMETIS_V3_PartGeomKway quickly computes

1The reader should note the difference between the tgraph distributionandgraph partition A partitioning is a mapping of the vertices to
the processors that results in a distribution. In other woadpartitioning specifies a distribution. In order to gémti a graph in parallel, an initial
distribution of the nodes and edges of the graph among thegsocs is required. For example, consider a graph that porrds to the dual of a
finite-element mesh. This graph could initially be partitidisemply by mapping groups of/p consecutively numbered elements to each processor
wheren is the number of elements apds the number of processors. Of course, this naive approauh I&ely to result in a very good distribution
because elements that belong to a number of different regidhe snesh may get mapped to the same processor. (That is, eaelsgwpmay get
a number of small sub-domains as opposed to a single contigubttognain). Hence, you would want to compute a new high-guadittitioning
for the graph and then redistribute the mesh accordinglye it it may also be the case that the initial graph is weltidisied, as when meshes
are adaptively refined and repartitioned.

Multilevel K-way Partitioning

Coarsening Phase
aseyd Bujuasreooun

Cep ey
=y ey
T

Initial Partitioning Phase

Figure 2: The three phases of multilevel k-way graph partitioning. During the coarsening phase, the size of the graph is successively decreased. During the
initial partitioning phase, a k-way partitioning is computed, During the multilevel refinement (or uncoarsening) phase, the partitioning is successively refined as it is
projected to the larger graphs. G is the input graph, which is the finest graph. G;t1 is the next level coarser graph of G;. G4 is the coarsest graph.

an initial partitioning using a space-filling curve methoddistributes the graph according to this partitioningd an
then callsParMETIS_V3_PartKway to compute the final high-quality partitioning. Our expeeims have shown that
ParMETIS_V3_PartGeomKway is often two times faster thaParMETIS_V3_PartKway, and achieves identical par-
tition quality. Note that depending on how the graph is carcted from the underlying mesh, the coordinates can
correspond to either the actual node coordinates of the fmeglal graphs) or the coordinates of the coordinates of
the element centers (dual graphs).

PARMETS also provides th@arMETIS_V3_PartGeom function for partitioning unstructured graphs when coordi
nates for the vertices are availabRarMETIS_V3_PartGeom computes a partitioning based only on the space-filling
curve method. Therefore, it is extremely fast (often 5 toidies faster thaParMETIS_V3_PartGeomKway), but it
computes poor quality partitionings (it may cut 2 to 10 timexe edges thaRarMETIS_V3_PartGeomKway). This
routine can be useful for certain computations in which tbe of space-filling curves is the appropriate partitioning
technique (e.gn-body computations).

3.2 Partitioning Meshes Directly

PARMETIS also provides routines that support the computation oftfarings and repartitionings givemeshegand

not graphs) as inputs. In particul®@arMETIS_V3_PartMeshKway take a mesh as input and computes a partitioning
of the mesh elements. InternallparMETIS_V3_PartMeshKway uses a mesh-to-graph routine and then calls the
same core partitioning routine that is usedHarMETIS_V3_PartKway.

PARMETIS provides no such routines for computing adaptive repaniitigs directly from meshes. However, it
does provide the routinParMETIS_V3_Mesh2Dual for constructing a dual graph given a mesh, quickly and in
parallel. Since the construction of the dual graph is in lpgrat can be used to construct the input graph for
ParMETIS_V3_AdaptiveRepart.

3.3 Partitioning Adaptively Refined Meshes

For large-scale scientific simulations, the computatioeqlirements of techniques relying on globally refined reesh

become very high, especially as the complexity and sizeeptbblems increase. By locally refining and de-refining
the mesh either to capture flow-field phenomena of intergstr{io account for variations in errors [11], adaptive
methods make standard computational methods more costiedfeThe efficient execution of such adaptive scientific

simulations on parallel computers requires a periodic ntémming of the underlying computational mesh. These
repartitionings should minimize both the inter-processmnmunications incurred in the iterative mesh-based cempu
tation and the data redistribution costs required to balaine load. Hence, adaptive repartitioning is a multi-afbjec
optimization problemPARMETS provides the routin®arMETIS_V3_AdaptiveRepart for repartitioning such adap-
tively refined meshes. This routine assumes that the meshliglistributed among the processors, but that (due to
mesh refinement and de-refinement) this distribution islgdoad balanced.

Repartitioning algorithms fall into two general categerid he first category balances the computation by incre-
mentally diffusing load from those sub-domains that haveenweork to adjacent sub-domains that have less work.
These schemes are referred taldfusive schemes. The second category balances the load by computing amlgntir
new partitioning, and then intelligently mapping the susréins of the new partitioning to the processors such that
the redistribution cost is minimized. These schemes arergin referred to asemapping schemes. Remapping
schemes typically lead to repartitionings that have smaliige-cuts, while diffusive schemes lead to repartitigain
that incur smaller redistribution costs. However, sinaesthresults can vary significantly among different types of
applications, it can be difficult to select the best reparihg scheme for the job.

ParMETIS_V3_AdaptiveRepart is a parallel implementation of the Unified Repartitioninggdrithm [15] for
adaptive repartitioning that combines the best charatiesiof remapping and diffusion-based repartitioningesabs.

A key parameter used by this algorithm is tHER Factor. This parameter describes the ratio between the time
required for performing the inter-processor communiceimcurred during parallel processing compared to the time
to perform the data redistribution associated with balagtie load. As such, it allows us to compute a single metric
that describes the quality of the repartitioning, even tioadaptive repartitioning is a multi-objective optiminat
problem.

ParMETIS_V3_AdaptiveRepart is based on the multilevel partitioning algorithm, and sojn nature similar
to the the algorithm implemented ParMETIS_V3_PartKway. However, this routine uses a technique known as
local coarsening Here, only vertices that have been distributed onto theeganmcessor are coarsened together. On
the coarsest graph, an initial partitioning need not be adety as one can either be derived from the initial graph
distribution (in the case when sub-domains are coupleddogssors), or else one needs to be supplied as an input to
the routine (in the case when sub-domains are de-coupledgrocessors). However, this partitioning does need to
be balanced. The balancing phase is performed on the cbgraph twice by alternative methods. That is, optimized
variants of remapping and diffusion algorithms [16] arehbosed to compute new partitionings. A quality metric
for each of these partitionings is then computed (using Tt Factor) and the partitioning with the highest quality
is selected. This technique tends to give very good poits fivhich to start multilevel refinement, regardless of
the type of repartitioning problem or the value of the ITR t6ac Note that the fact that the algorithm computes
two initial partitionings does not impact its scalability Bbong as the size of the coarsest graph is suitably small [8].
Finally, multilevel refinement is performed on the balanpaditioning in order to further improve its quality. Since
ParMETIS_V3_AdaptiveRepart starts from a graph that is already well distributed, it is@xely fast.

Appropriate values to pass for the ITR Factor parameter aaityedbe determined depending on the times required
to perform (i) all inter-processor communications thatéhaecurred since the last repartitioning, and (ii) the data
redistribution associated with the last repartitioningl balancing phase. Simply divide the first time by the sécon
The result is the correct ITR Factor. In case these timesatdmnascertained (e.g., for the first repartitioning/load
balancing phase), our experiments have shown that valiesée 100 and 1000 work well for a variety of situations.

ParMETIS_V3_AdaptiveRepart can be used to load balance the mesh either before or aftér ameptation. In
the latter case, each processor first locally adapts its fessding to different processors having different numioérs
elementsParMETIS_V3_AdaptiveRepart can then compute a partitioning in which the load is balant&nivever,
load balancing can also be done before adaptation if theedegfrrefinement for each element can be estimated
priori. That is, if we know ahead of time into how many new elementhedd element will subdivide, we can use
these estimations as the weights of the vertices for thehgifzgt corresponds to the dual of the mesh. In this case,
the mesh can be redistributed before adaption takes plddg tdchnique can significantly reduce data redistribution
times [10].

8,94

(a) (b)

Figure 3: A computational mesh for a particle-in-cells simulation (a) and a computational mesh for a contact-impact simulation (b). The particle-in-cells mesh
is partitioned so that both the number of mesh elements and the number of particles are balanced across the sub-domains. Two partitionings are shown for the
contact-impact mesh. The dashed partitioning balances only the number of mesh elements. The solid partitioning balances both the number of mesh elements and
the number of surface (lightly shaded) elements across the sub-domains.

3.4 Partition Refinement

ParMETIS_V3_RefineKway is the routine provided biPARMETS to improve the quality of an existing partitioning.
Once a graph is partitioned (and has been redistributeddiogty), ParMETIS_V3_RefineKway can be called to
compute a new partitioning that further improves the qualRarMETIS_V3_RefineKway can be used to improve
the quality of partitionings that are produced by otheriparting algorithms (such as the technique discussed in
Section 3.1 that is used ParMETIS_V3_PartGeom). ParMETIS_V3_RefineKway can also be used repeatedly to
further improve the quality of a partitioning. However, bauccessive call tBarMETIS_V3_RefineKway will tend

to produce smaller improvements in quality.

3.5 Partitioning for Multi-phase and Multi-physics Computations

The traditional graph partitioning problem formulationliigited in the types of applications that it can effectively
model because it specifies that only a single quantity bebatahced. Many important types of multi-phase and multi-
physics computations require that multiple quantitielael balanced simultaneously. This is because synchramzat
steps exist between the different phases of the compusatéod so, each phase must be individually load balanced.
That is, it is not sufficient to simply sum up the relative terrequired for each phase and to compute a partitioning
based on this sum. Doing so may lead to some processors havinguch work during one phase of the computation
(and so, these may still be working after other processergée), and not enough work during another. Instead, it is
critical that every processor have an equal amount of wank feach phase of the computation.

Two examples are particle-in-cells [17] and contact-imsmulations [3]. Figure 3 illustrates the charactersstic
of partitionings that are needed for these simulationsuréi@(a) shows a mesh for a particles-in-cells computation.
Assuming that a synchronization separates the mesh-basgglitation from the particle computation, a partitioning
is required that balances both the number of mesh elemedthhamumber of particles across the sub-domains. Fig-
ure 3(b) shows a mesh for a contact-impact simulation. @uitie contact detection phase, computation is performed
only on the surface (i.e., lightly shaded) elements, whildrdy the impact phase, computation is performed on all of
the elements. Therefore, in order to ensure that both pleasdesad balanced, a partitioning must balance both the
total number of mesh elements and the number of surface atsraeross the sub-domains. The solid partitioning in
Figure 3(b) does this. The dashed partitioning is similavhat a traditional graph partitioner might compute. This
partitioning balances only the total number of mesh elemérte surface elements are imbalanced by over 50%.

A new formulation of the graph partitioning problem is pretsel in [6] that is able to model the problem of
balancing multiple computational phases simultaneousyle also minimizing the inter-processor communications
In this formulation, a weight vector of size is assigned to each vertex of the graph. Tmati-constraint graph

Figure 4: A dual graph with vertex weight vectors of size two is constructed from the particle-in-cells mesh from Figure 3. A multi-constraint partitioning has
been computed for this graph, and this partitioning has been projected back to the mesh.

partitioning problemthen is to compute a partitioning such that the edge-cut iimited and that every sub-
domain has approximately the same amount of each of thexwerights. The routineParMETIS_V3_PartKway,
ParMETIS_V3_PartGeomKway, ParMETIS_V3_RefineKway, andParMETIS_V3_AdaptiveRepart are all able to
compute partitionings that satisfy multiple balance caists.

Figure 4 gives the dual graph for the particles-in-cellsmssown in Figure 3. Each vertex has two weights here.
The first represents the work associated with the mesh-lzaseplutation for the corresponding element. (These are all
ones because we assume in this case that all of the elemgatthiaame amount of mesh-based work associated with
them.) The second weight represents the work associatedhviparticle-based computation. This value is estimated
by the number of particles that fall within each element. Atirzonstraint partitioning is shown that balances both of
these weights.

3.6 Partitioning for Heterogeneous Computing Architectures

Complex, heterogeneous computing platforms, such as grofipightly-coupled shared-memory nodes that are
loosely connected via high bandwidth and high latency @enection networks, and/or processing nodes that have
complex memory hierarchies, are becoming more common,egsdisplay competitive cost-to-performance ratios.
The same is true of platforms that are geographically thsteid. Most existing parallel simulation codes can easily
be ported to a wide range of parallel architectures as theylana standard messaging layer such as MPI. However,
complex and heterogeneous architectures present neveisged to the scalable execution of such codes, since many
of the basic parallel algorithm design assumptions are ngdovalid.

We have taken the first steps toward developing architeawsge graph-partitioning algorithms. These are able
to compute partitionings that allow computations to achi#ve highest levels of performance regardless of the
computing platform. Specifically, we have enablarMETIS_V3_PartKway, ParMETIS_V3_PartGeomKway,
ParMETIS_V3_PartMeshKway, ParMETIS_V3_RefineKway, andParMETIS_V3_AdaptiveRepart to compute ef-
ficient partitionings for networks of heterogeneous presoes To do so, these routines require an additional array
(t pwgt s) to be passed as a parameter. This array describes thefractihe total vertex weight each sub-domain
should contain. For example, if you have a network of fourcpssors, the first three of which are of equal pro-
cessing speed, and the fourth of which is twice as fast asttiers the user would pass an array containing the
values(0.2,0.2,0.2,0.4). Note that by allowing users to specify target sub-domaiights as such, heterogeneous
processing power can be taken into account when computirgtiéigning. However, this does not allow us to take
heterogeneous network bandwidths and latencies into atc@ptimizing partitionings for heterogeneous networks
is still the focus of ongoing research.

3.7 Computing Fill-Reducing Orderings
ParMETIS_V3_NodeND andParMETIS_V32_NodeND are the routines provided lBARMETS for computing fill-

reducing orderings, suited for Cholesky-based direcofazdtion algorithms. Note th&arMETIS_V3_NodeND is
simply a wrapper around the more gend?atMETIS_V32_NodeND routine and is included for backward compat-
ibility. ParMETIS_V32_NodeND makes no assumptions on how the graph is initially distetdwtmong the proces-
sors. It can effectively compute fill-reducing orderings doaphs that are randomly distributed as well as graphs that
are well distributed.

The algorithm implemented barMETIS_V32_NodeND is based on a multilevel nested dissection algorithm.
This algorithm has been shown to produce low fill orderingsefavide variety of matrices. Furthermore, it leads
to balanced elimination trees that are essential for prditect factorization. ParMETIS_V32_NodeND uses a
multilevel node-based refinement algorithm that is paldidy suited for directly refining the size of the separators
To achieve high performanc®arMETIS_V32_NodeND first usesParMETIS_V3_PartKway to compute a high-
quality partitioning and redistributes the graph accagllin Next it proceeds to compute tHéog p| levels of the
elimination tree concurrently. When the graph has been asgghintop parts (where is the number of processors),
the graph is redistributed among the processor so that gackgsor receives a single subgraph, MeEiS’ serial
nested dissection ordering algorithm is used to order thesgler subgraphs.

4 Input and Output Formats used by P ARMEIS

4.1 Format of the Input Graph

All of the graph routines ilPARMEIS take as input the adjacency structure of the graph, the weaftthe vertices
and edges (if any), and an array describing how the graplsighiited among the processors. Note that depending
on the application this graph can represent different thirfgor example, wheRARMETIS is used to compute fill-
reducing orderings, the graph corresponds to the non-terctgre of the matrix (excluding the diagonal entries). In
the case of finite element computations, the vertices of taptgcan correspond to nodes (points) in the mesh while
edges represent the connections between these nodesatiltely, the graph can correspond to the dual of the finite
element mesh. In this case, each vertex corresponds tomemi@nd two vertices are connected via an edge if the
corresponding elements share an edge (in 2D) or a face (inA3&), the graph can be similar to the dual, but be more
or less connected. That is, instead of limiting edges todledements that share a face, edges can connect any two
elements that share even a single node. However the graphssracted, it is usually undirectédThat is, for every
pair of connected verticasandu, it contains both edge®, «) and(u, v).

In PARMETS, the structure of the graph is represented by the compretseje format (CSR), extended for the
context of parallel distributed-memory computing. We Miilst describe the CSR format for serial graphs and then
describe how it has been extended for storing graphs thalistrédouted among processors.

Serial CSR Format The CSR format is a widely-used scheme for storing spargghgraHere, the adjacency
structure of a graph is represented by two arragslj andadj ncy. Weights on the vertices and edges (if any) are
represented by using two additional arraysgt andadj wgt . For example, consider a graph wittvertices andn
edges. In the CSR format, this graph can be described ugiagsaof the following sizes:

xadj [n+ 1] ,vwgt [n] , adj ncy[2m] , andadj wgt [2m]

Note that the reason botdj ncy andadj wgt are of size2m is because every edge is listed twice (i.e.(@3:)
and(u,v)). Also note that in the case in which the graph is unweighied, @ll vertices and/or edges have the same
weight), then either or both of the arraysgt andadj wgt can be set ttNULL. ParMETIS_V3_AdaptiveRepart
additionally requires asi ze array. This array is similar to thewgt array, except that instead of describing the
amount of work that is associated with each vertex, it dbssrthe amount of memory that is associated with each
vertex.

The adjacency structure of the graph is stored as followsusing that vertex numbering starts from 0 (C style),
the adjacency list of vertekis stored in arraydj ncy starting at indexadj [7] and ending at (but not including)

2Multi-constraint and multi-objective graph partitioningrinulations [6, 13] can get around this requirement for soméicaiipns. These also
allow the computation of partitionings for bipartite grapas well as for graphs corresponding to non-square and yromstric matrices.

10

indexxadj [2 + 1] (in other wordsadj ncy[xadj [z]] up through and includingdj ncy[xadj [+ 1] - 1]).
Hence, the adjacency lists for each vertex are stored cotiggly in the arrayadj ncy. The arrayxadj is used

to point to where the list for each specific vertex begins amdise Figure 5(b) illustrates the CSR format for the
15-vertex graph shown in Figure 5(a). If the graph was weigimt the vertices, themwgt [7] is used to store the
weight of vertexi. Similarly, if the graph has weights on the edges, then thght®f edgeadj ncy|[;] is stored in
adj wgt [j] . This is the same format that is used by the (seN&liS library routines.

of 1| 2] 3] 4

50 6] 7] 8] 9

10 11 12 13 14

(a) A sample graph

Description of the graph on a serial computer (serial MeTiS)

xadj 02581113 16 20 24 28 31 33 36 39 42 44

adncy 1502613724839061015711268123791348 B4116 10127 11 13 8 12 14 9 13

(b) Serial CSR format

Description of the graph on a parallel computer with 3 processors (ParMeTiS)

Processor 0: xadj 02581113
adincy 1502613724839
vixdist 05 10 15

Processor 1: xadj 037 11 15 18
adincy 0610157 1126812379134814
vitxdist 051015

Processor 2: xadj 02581113
adincy 511610127 11 138 12 149 13
vixdist 05 10 15

(c) Distributed CSR format

Figure 5: An example of the parameters passed to PARMETS in a three processor case. The arrays vwgt and adj wgt are
assumed to be NULL.

Distributed CSR Format PARMETS uses an extension of the CSR format that allows the vertit&seagraph
and their adjacency lists to be distributed among the pemeesin particularPARMETS assumes that each processor
P, storesn; consecutive vertices of the graph and the correspondingdges, so that =). n;, and2xm =) . m;.
Here, each processor stores its local part of the graph ifotlrearraysxadj [n; + 1] , vwgt [n;] , adj ncy[m;] ,
andadj wgt [m;] , using the CSR storage scheme. Again, if the graph is unaezigthe arrayswgt andadj wgt

can be setthlULL. The straightforward way to distribute the graph RarMETIS is to taken /p consecutive adjacency
lists fromadj ncy and store them on consecutive processors (wh&¢he number of processors). In addition, each
processor needs its locahdj array to point to where each of its local vertices’ adjacdisty begin and end. Thus, if
we take all the locahdj ncy arrays and concatenate them, we will get exactly the sepecy array that is used in
the serial CSR. However, concatenating the logedj arrays will not give us the serialadj array. This is because
the entries in each localadj must point to their locahdj ncy array, and soxadj [0] is zero for all processors.
In addition to these four arrays, each processor also regjtlie arrayt xdi st [p + 1] that indicates the range of
vertices that are local to each processor. In particulaGgssorP; stores the vertices fromt xdi st [7] up to (but

11

not including) vertewt xdi st [¢ + 1] .

Figure 5(c) illustrates the distributed CSR format by amepi on a three-processor system. The 15-vertex graph
in Figure 5(a) is distributed among the processors so thelt peocessor gets 5 vertices and their corresponding
adjacency lists. That is, Processor Zero gets verticesdugfr 4, Processor One gets vertices 5 through 9, and
Processor Two gets vertices 10 through 14. This figure shbegadj , adj ncy, andvt xdi st arrays for each
processor. Note that the xdi st array will always be identical for every processor.

All five arrays that describe the distributed CSR format afingd inPARMETIS to be of type dxt ype. By default
i dxt ype is set to be equivalent to typgent (i.e., integers). However,dxt ype can be made to be equivalent to
ashort i nt for certain architectures that use 64-bit integers by defédote that doing so will cut the memory
usage and communication time required approximately ih)h@he conversion of dxt ype fromi nt toshort
can be done by modifying the filgar net i s. h. (Instructions are included there.) The sainuxt ype is used for
the arrays that store the computed partitioning and petioatsectors.

When multiple vertex weights are used for multi-constraiattitioning, thec vertex weights for each vertex are
stored contiguously in thewgt array. In this case, thewgt array is of sizenc, wheren is the number of locally-
stored vertices andis the number of vertex weights (and also the number of balanaostraints).

4.2 Format of Vertex Coordinates

As discussed in Section 3.RARMEIS provides routines that use the coordinate information ef/értices to quickly
pre-distribute the graph, and so, speedup the executioheoparallelk-way partitioning. These coordinates are
specified in an array calledlyz of single precision floating point numbers (i.€l, 0at). If d is the number of
dimensions of the mesh (i.el,= 2 for 2D meshes od = 3 for 3D meshes), then each processor requires an array
of sized x n;, wheren; is the number of locally-stored vertices. (Note that the harmof dimensions of the mesh,

d, is required as a parameter to the routine.) In this arrayctiordinates of vertekare stored starting at location
xyz[ix*d] up to (but notincluding) locatioryz[i x d + d] . For example, itl = 3, then the x, y, and z coordinates

of vertex: are stored atyz[3*i], xyz[3*i +1] , andxyz[3*i +2] , respectively.

4.3 Format of the Input Mesh

The routine ParMETIS_V3_PartMeshKway takes a distributed mesh and computes its partitioning,lewhi
ParMETIS_V3_Mesh2Dual takes a distributed mesh and constructs a distributed daghg Both of these rou-
tines require arel ndi st array that specifies the distribution of the mesh elementsthat is otherwise identical
to thevt xdi st array. They also require a pair of arrays calégat r andei nd, as well as the integer parameter
nconmmonnodes.

Theept r andei nd arrays are similar in nature to tik@dj andadj ncy arrays used to specify the adjacency
list of a graph but now for each element they specify the sabdes that make up each element. Specifically, the set
of nodes that belong to elemeinis stored in arragi nd starting at indexept r [¢] and ending at (but not including)
indexeptr[¢+ 1] (in other wordsei nd[eptr[4]] upthrough andincludingi nd[ept r[i+1] - 1]). Hence,
the node lists for each element are stored consecutivelyeiratrayei nd. This format allows the specification of
meshes that contain elements of mixed type.

The ncommonnodes parameter specifies the degree of connectivity that is elbdietween the vertices of the
dual graph. Specifically, an edge is placed between twocesrif their corresponding mesh elements share at least
g nodes, wherg is thenconmonnodes parameter. Hence, this parameter can be set to result inliéidreal dual
graph (e.g., a value of two for a triangle mesh or a value of foua hexahedral mesh). However, it can also be set
higher or lower for increased or decreased connectivity.

Additionally, ParMETIS_V3_PartMeshKway requires arel magt array that is analogous to thewt array.

4.4 Format of the Computed Partitionings and Orderings

Format of the Partitioning Array The partitioning and repartitioning routines require thiatlys (callegart)
of sizesn; (wheren; is the number of local vertices) be passed as parameterghopeacessor. Upon completion
of the PARMETIS routine, for each vertey, the sub-domain number (i.e., the processor label) to wthihvertex

12

si zes 2222223

or der 10146 7 451310112 312 8 9

Figure 6: An example of the ordering produced by ParMETIS_V3_NodeND. Consider the simple 3 x 5 grid and assume that
we have four processors. ParMETIS_V3_NodeND finds the three separators that are shaded. It first finds the big separator and
then for each of the two sub-domains it finds the smaller. At the end of the ordering, the or der vector concatenated over all the
processors will be the one shown. Similarly, the si zes arrays will all be identical to the one shown, corresponding to the regions
pointed to by the arrows.

belongs will have been written fmar t [j] . Note thatPARMEIS does not redistribute the graph according to the new
partitioning, it simply computes the partitioning and wstit to thepar t array.

Additionally, whenever the number of sub-domains does gatikthe number of processors that are used to com-
pute a repartitioningParMETIS_V3_RefineKway and ParMETIS_V3_AdaptiveRepart require that the previously
computed partitioning be passed as a parameter vigahe array. (This is also required whenever the user chooses to
de-couple the sub-domains from the processors. See disauissSection 5.2.) This is because the initial partitianin
needs to be obtained from the values supplied inpthet array. If the numbers of sub-domains and processors are
equal, then the initial partitioning can be obtained from ithitial graph distribution, and so this information neexd n
be supplied. (In this case, for each processerery element gbart would be set ta.)

Format of the Ordering and Separator Sizes Arrays Each processor runnigarMETIS _V3_NodeND (and
ParMETIS_V32_NodeND) writes its portion of the computed fill-reducing orderigin array calledr der . Similar
to thepart array, the size obr der is equal to the number of vertices stored at each procesgamm Hompletion,
for each vertey, or der [j] stores the new global number of this vertex in the fill-redggsermutation.

Besides the ordering vectoParMETIS_V3_NodeND also returns information about the sizes of the different
sub-domains as well as the separators at different leveiss array is calledi zes and is of size&2p (wherep is
the number of processors). Every processor must supphathay and upon return, each of tkezes arrays are
identical.

To accommodate runs in which the number of processors ispawar of two,ParMETIS_V3_NodeND performs
|logp| levels of nested dissection. Because of thatplet 2l1°s7) pe the largest number of processors less ghan
that is a power of two.

Given the above definition gf’, the format of thesi zes array is as follows. The first’ entries ofsi zes
starting from0 to p’ — 1 store the number of nodes in each one ofhsub-domains. The remaining — 1 entries
of this array starting fronsi zes[p'] up tosi zes[2p’ — 2] store the sizes of the separators atlihgp’ levels
of nested dissection. In particulan zes[2p’ — 2] stores the size of the top level separasorzes[2p’ — 4] and
si zes[2p’—3] store the sizes of the two separators at the second leved (&fdto right). Similarly,si zes[2p’'—8]
throughsi zes[2p’ — 5] store the sizes of the four separators of the third leveh{fteft to right), and so on. This
array can be used to quickly construct the separator tremifadf an elimination tree) for direct factorization. Given
this separator tree and the sizes of the sub-domains, tresrindhe ordering produced BarMETIS_V3_NodeND
are numbered in a postorder fashion. Figure 6 illustratesitlzes array and the postorder ordering.

13

4.5 Numbering and Memory Allocation

PARMETIS allows the user to specify a graph whose numbering staheredit 0 (C style) or at 1 (Fortran style). Of
course,PARMETS requires that same numbering scheme be used consistentyl fbe arrays passed to it, and it
writes to thepart andor der arrays similarly.

PARMETS allocates all the memory that it requires dynamically. Tas the advantage that the user does not have
to provide workspace. However, if there is not enough menoarthe machine, the routines RARMETS will abort.
Note that the routines iRARMETS do not modify the arrays that store the graph (exgdj andadj ncy). They
only modify thepar t andor der arrays.

14

5 Calling Sequence of the Routines in P ARMEIS

The calling sequences of tiaARMETS routines are described in this section.

15

5.1 Graph Partitioning
ParMETIS _V3_PartkKway (idxtype *vtxdist, idxtype *xadj, idxtype *adjncy, idxty@*vwgt, idxtype *adjwgt,

Description

int *wgtflag, int *numflag, int *ncon, int *nparts, float *tpwg, float *ubvec,
int *options, int *edgecut, idxtype *part, MBComm *comm)

This routine is used to computekaway partitioning of a graph op processors using the multileviiway
multi-constraint partitioning algorithm.

Parameters
vixdist ~ This array describes how the vertices of the graph are lolig&d among the processors. (See discus-
sion in Section 4.1). Its contents are identical for evencpssor.
xadj, adjncy

These store the (local) adjacency structure of the graphdt processor. (See discussion in Sec-
tion 4.1).

vwgt, adjwgt

wagtflag

numflag

ncon

nparts

tpwgts

ubvec

options

These store the weights of the vertices and edges. (Seesslisoun Section 4.1).
This is used to indicate if the graph is weightadytflagcan take one of four values:

0 No weights (vwgt and adjwgt are both NULL).
1 Weights on the edges only (vwgt is NULL).

2 Weights on the vertices only (adjwgt is NULL).
3 Weights on both the vertices and edges.

This is used to indicate the numbering scheme that is usethéortxdist xadj, adjncy, andpart
arrays.numflagcan take one of two values:

0 C-style numbering that starts from 0.
1 Fortran-style numbering that starts from 1.

This is used to specify the number of weights that each vérasx It is also the number of balance
constraints that must be satisfied.

This is used to specify the number of sub-domains that areedesNote that the number of sub-
domains is independent of the number of processors thahigHoutine.

An array of sizencon x npart s that is used to specify the fraction of vertex weight thatudtio
be distributed to each sub-domain for each balance constifall of the sub-domains are to be of
the same size for every vertex weight, then each ofhiben x npart s elements should be set to
avalue of Wipart s. If ncon is greater than 1, the target sub-domain weights for eachieuatain
are stored contiguously (similar to thewgt array). Note that the sum of all of thepwgt s for a
give vertex weight should be one.

An array of sizencon that is used to specify the imbalance tolerance for eaclex&reight, with 1
being perfect balance ampar t s being perfect imbalance. A value of 1.05 for each oflo®n
weights is recommended.

This is an array of integers that is used to pass additiomahpeters for the routine. ptions[0]=0,
then the default values are used.offtions[0]=1, then the remaining two elements gftionsare
interpreted as follows:

options[1] This specifies the level of information to be reed during the execution of the algo-
rithm. Timing information can be obtained by setting thisltoAdditional options for
this parameter can be obtained by lookingpat et i s. h. The numerical values
there should be added to obtain the correct value. The defuk is 0.

16

edgecut

part

comm

options[2] This is the random number seed for the routine défault value is 15.

Upon successful completion, the number of edges that arbyctite partitioning is written to this
parameter.

This is an array of size equal to the number of locally-startices. Upon successful completion the
partition vector of the locally-stored vertices is writtienthis array. (See discussion in Section 4.4).

This is a pointer to the MPI communicator of the processesdilhPARMETS. For most programs
this will point to MPI _COMMWORLD.

17

ParMETIS _V3_PartGeomKway (idxtype *vtxdist, idxtype *xadj, idxtype *adjncy, idxtyg*vwgt, idxtype *adjwgt,

Description

int *wgtflag, int *numflag, int *ndims, float *xyz, int *ncon it *nparts,
float *tpwgts, float *ubvec, int *options, int *edgecut, igxte *part,
MPI_Comm *comm)

This routine is used to computekaway partitioning of a graph op processors by combining the coordinate-
based and multi-constraiktway partitioning schemes.

Parameters
vtxdist This array describes how the vertices of the graph are bligad among the processors. (See discus-
sion in Section 4.1). Its contents are identical for evencpssor.
xadj, adjncy

These store the (local) adjacency structure of the graphdit processor. (See discussion in Sec-
tion 4.1).

vwgt, adjwgt

wgtflag

numflag

ndims
Xyz

ncon

nparts

tpwgts

ubvec

options

edgecut

These store the weights of the vertices and edges. (Seesslignun Section 4.1).
This is used to indicate if the graph is weightedytflagcan take one of four values:

0 No weights (vwgt and adjwgt are both NULL).

1 Weights on the edges only (vwgt is NULL).

2 Weights on the vertices only (adjwgt is NULL).

3 Weights on both the vertices and edges.

This is used to indicate the numbering scheme that is usethéortxdist xadj, adjncy, andpart
arrays.numflagcan take one of two values:

0 C-style numbering that starts from 0.

1 Fortran-style numbering that starts from 1.

The number of dimensions of the space in which the graph issdds.
The array storing the coordinates of the vertices (desgiib&ection 4.2).

This is used to specify the number of weights that each vérdsx It is also the number of balance
constraints that must be satisfied.

This is used to specify the number of sub-domains that areedesNote that the number of sub-
domains is independent of the number of processors thahisHoutine.

An array of sizencon x npart s that is used to specify the fraction of vertex weight thatudtio
be distributed to each sub-domain for each balance constifall of the sub-domains are to be of
the same size for every vertex weight, then each ofith@en x npart s elements should be set to a
value of Lhpart s. If ncon is greater than one, the target sub-domain weights for adzldemain
are stored contiguously (similar to thewgt array). Note that the sum of all of theowgt s for a
give vertex weight should be one.

An array of sizencon that is used to specify the imbalance tolerance for eacexareight, with 1
being perfect balance amgpar t s being perfect imbalance. A value of 1.05 for each oftie®n
weights is recommended.

This is an array of integers that is used to pass paramettrs toutine. Their meanings are identical
to those ofParMETIS_V3_PartKway.

Upon successful completion, the number of edges that arbyctite partitioning is written to this
parameter.

18

part This is an array of size equal to the number of locally-stertices. Upon successful completion the
partition vector of the locally-stored vertices is writtienthis array. (See discussion in Section 4.4).

comm This is a pointer to the MPI communicator of the processesciliPARMEIS. For most programs
this will point to MPI _COVMWORLD.

Note
The quality of the partitionings computed BarMETIS_V3_PartGeomKway are comparable to those pro-
duced byParMETIS_V3_PartkKway. However, the run time of the routine may be up to twice as fast

Because the current implementation of the geometric partitg routines rely on a parallel samplesort,
ParMETIS_V3_PartGeomKway switches toParMETIS_V3_PartkKway when more than 4096 processors are
used or when the number of vertices assigned to each prade$sss than the number of processors.

19

ParMETIS _V3_PartGeom (idxtype *vtxdist, int *ndims, float *xyz, idxtype *part, MPComm *comm)

Description
This routine is used to computepavay partitioning of a graph op processors using a coordinate-based space-
filling curves method.

Parameters
vixdist This array describes how the vertices of the graph are lolig&d among the processors. (See discus-
sion in Section 4.1). Its contents are identical for evecpssor.

ndims The number of dimensions of the space in which the graph issddsd.
Xyz The array storing the coordinates of the vertices (desgiib&ection 4.2).

part This is an array of size equal to the number of locally storedices. Upon successful completion
stores the partition vector of the locally stored graph ¢dbed in Section 4.4).

comm This is a pointer to the MPI communicator of the processescdiiiPARMETS. For most programs
this will point to MPI _COVMWORLD.

Note
The quality of the partitionings computed BarMETIS_V3_PartGeom are significantly worse than those
produced byParMETIS_V3_PartKway andParMETIS_V3_PartGeomKway.

Because the current implementation of the geometric partitg routines rely on a parallel samplesort,
ParMETIS_V3_PartGeom returns without computing a partitioning when more than@ipfcessors are used
or when the number of vertices assigned to each processmsisian the number of processors.

20

ParMETIS _V3_PartMeshKway (idxtype *elmdist, idxtype *eptr, idxtype *eind, idxtypestmwgt,
int *wgtflag, int *numflag, int *ncon, int *ncommonnodes, ifparts,
float *tpwgts, float *ubvec, int *options, int *edgecut, igxte *part,
MPI_Comm *comm)

Description
This routine is used to computeiaway partitioning of aneshon p processors. The mesh can contain elements
of different types.

Parameters

elmdist This array describes how the elements of the mesh are dittdtamong the processors. It is anal-
ogous to thevt xdi st array. Its contents are identical for every processor. (@seussion in
Section 4.3).

eptr, eind
These arrays specifies the elements that are stored lo¢adigich processor. (See discussion in
Section 4.3).

elmwgt This array stores the weights of the elements. (See dissussiSection 4.3).

wgtflag This is used to indicate if the elements of the mesh have wemgsociated with them. Thegtflag
can take two values:

0 No weights (elmwgt is NULL).
2 Weights on the vertices only.

numflag This is used to indicate the numbering scheme that is usatidetmdist elementsandpart arrays.
numflagcan take one of two values:

0 C-style numbering that starts from 0.
1 Fortran-style numbering that starts from 1.

ncon This is used to specify the number of weights that each vérasx It is also the number of balance
constraints that must be satisfied.
ncommonnodes

This parameter determines the degree of connectivity arttemngertices in the dual graph. Specifi-
cally, an edge is placed between any two elements if and bthgy share at least this many nodes.
This value should be greater than 0, and for most meshes a whtwo will create reasonable dual

graphs. However, depending on the type of elements in thé,nvafues greater than 2 may also
be valid choices. For example, for meshes containing odygular, tetrahedral, hexahedral, or
rectangular elements, this parameter can be set to twe, thar, or two, respectively.

Note that setting this parameter to a small value will insesthe number of edges in the resulting
dual graph and the corresponding partitioning time.

nparts This is used to specify the number of sub-domains that areedesNote that the number of sub-
domains is independent of the number of processors thahisioutine.

tpwgts An array of sizencon x npart s that is used to specify the fraction of vertex weight thatutio
be distributed to each sub-domain for each balance constifall of the sub-domains are to be of
the same size for every vertex weight, then each ohiben x npart s elements should be set to
avalue of Ihpart s. If ncon is greater than 1, the target sub-domain weights for eactientain
are stored contiguously (similar to thewgt array). Note that the sum of all of theowgt s for a
give vertex weight should be one.

ubvec An array of sizencon that is used to specify the imbalance tolerance for eaclex@reight, with 1
being perfect balance amgpar t s being perfect imbalance. A value of 1.05 for each of tie®n
weights is recommended.

21

options Thisis an array of integers that is used to pass parametts toutine. Their meanings are identical
to those ofParMETIS_V3_PartKway.

edgecut Upon successful completion, the number of edges that arbyctite partitioning is written to this
parameter.

part This is an array of size equal to the number of locally-staetices. Upon successful completion the
partition vector of the locally-stored vertices is writtenthis array. (See discussion in Section 4.4).

comm This is a pointer to the MPI communicator of the processelsdiiiPARMETS. For most programs
this will point to MPI _COVMWORLD.

22

5.2 Graph Repartitioning

ParMETIS _V3_AdaptiveRepart (idxtype *vitxdist, idxtype *xadj, idxtype *adjncy, idxtyg@*vwgt, idxtype *vsize,
idxtype *adjwgt, int *wgtflag, int *numflag, int *ncon, int *parts, float *tpwgts,
float *ubvec, float *itr, int *options, int *edgecut, idxtyppart,
MPI_Comm *comm)

Description
This routine is used to balance the work load of a graph thaesponds to an adaptively refined mesh.

Parameters

vixdist ~ This array describes how the vertices of the graph are lolig&d among the processors. (See discus-
sion in Section 4.1). Its contents are identical for evecpssor.

xadj, adjncy
These store the (local) adjacency structure of the graphdt processor. (See discussion in Sec-
tion 4.1).

vwgt, adjwgt
These store the weights of the vertices and edges. (Seessliisoun Section 4.1).

vsize This array stores the size of the vertices with respect tstrlalition costs. Hence, vertices associ-
ated with mesh elements that require a lot of memory will Havger corresponding entries in this
array. Otherwise, this array is similar to thegt array. (See discussion in Section 4.1).

wgtflag This is used to indicate if the graph is weightedjtflagcan take one of four values:
0 No weights (vwgt and adjwgt are both NULL).
1 Weights on the edges only (vwgt is NULL).
2 Weights on the vertices only (adjwgt is NULL).
3 Weights on both the vertices and edges.
numflag This is used to indicate the numbering scheme that is usethéortxdist xadj, adjncy, andpart
arrays.numflagcan take the following two values:
0 C-style numbering is assumed that starts from 0
1 Fortran-style numbering is assumed that starts from 1

ncon This is used to specify the number of weights that each vérasx It is also the number of balance
constraints that must be satisfied.

nparts This is used to specify the number of sub-domains that areedesNote that the number of sub-
domains is independent of the number of processors thahiaHoutine.

tpwgts An array of sizencon x npart s that is used to specify the fraction of vertex weight thatudtio
be distributed to each sub-domain for each balance consttiall of the sub-domains are to be of
the same size for every vertex weight, then each ofthen x npart s elements should be setto a
value of 1hpart s. If ncon is greater than one, the target sub-domain weights for adzidemain
are stored contiguously (similar to thewgt array). Note that the sum of all of theowgt s for a
give vertex weight should be one.

ubvec An array of sizencon that is used to specify the imbalance tolerance for eacexareight, with 1
being perfect balance amgpar t s being perfect imbalance. A value of 1.05 for each oftie®n
weights is recommended.

itr This parameter describes the ratio of inter-processor agmgation time compared to data redistri-
bution time. It should be set between 0.000001 and 1000000LTR is set high, a repartitioning
with a low edge-cut will be computed. If it is set low, a refitawhing that requires little data redistri-
bution will be computed. Good values for this parameter aaalifained by dividing inter-processor
communication time by data redistribution time. Otherwes&alue of 1000.0 is recommended.

23

options

edgecut

part

comm

This is an array of integers that is used to pass additiorrahpeters for the routine. tptions[0]=0,
then the default values are usedofftions[0]=1, then the remaining three elementsoptionsare
interpreted as follows:

options[1] This specifies the level of information to be rerd during the execution of the algo-
rithm. Timing information can be obtained by setting thisltoAdditional options for
this parameter can be obtained by lookingat met i s. h. The numerical values
there should be added to obtain the correct value. The defauk is 0.

options[2] This is the random number seed for the routine défault value is 15.

options[3] This specifies whether the sub-domains and gemrs are coupled or un-coupled. If
the number of sub-domains desired (irgpar t s) and the number of processors that
are being used is not the same, then these must be un-coltbacever, ifnpart s
equals the number of processors, these can either be comptésicoupled. If sub-
domains and processors are coupled, then the initial jpaitig will be obtained im-
plicitly from the graph distribution. However, if sub-doima are un-coupled from
processors, then the initial partitioning needs to be abthfrom the initial values as-
signed to thepar t array. A value of PARMETISPSRCOUPLED indicates that sub-
domains and processors are coupled and a value of PARMBSIKSUNCOUPLED
indicates that these are de-coupled. The default value RMIATIS_ PSRCOUPLED
if npar t s equals the number of processors and PARMEPER UNCOUPLED (un-
coupled) otherwise. These constants are definpdiimet i s. h.

Upon successful completion, the number of edges that arbyctite partitioning is written to this
parameter.

This is an array of size equal to the number of locally-stertices. Upon successful completion the
partition vector of the locally-stored vertices is writtenthis array. (See discussion in Section 4.4).
If the number of processors is not equal to the number of subaihs and/or options[3] is set to
PARMETIS PSRUNCOUPLED, then the previously computed partitioning mustpassed to the
routine as a parameter via this array.

This is a pointer to the MPI communicator of the processesdlbPARMETS. For most programs
this will point to MPI _COMMWORLD.

24

5.3 Partitioning Refinement
ParMETIS _V3_RefineKway (idxtype *vtxdist, idxtype *xadj, idxtype *adjncy, idxtyg*vwgt, idxtype *adjwgt,

Description

int *wgtflag, int *numflag, int *ncon, int *nparts, float *tpwtg, float *ubvec,
int *options, int *edgecut, idxtype *part, MBComm *comm)

This routine is used to improve the quality of an existingraay partitioning orp processors using the multi-
level k-way refinement algorithm.

Parameters
vixdist This array describes how the vertices of the graph are lolig&d among the processors. (See discus-
sion in Section 4.1). Its contents are identical for evecpssor.
xadj, adjncy

These store the (local) adjacency structure of the graphcit processor. (See discussion in Sec-
tion 4.1).

vwgt, adjwgt

ncon

nparts

wgtflag

numflag

tpwgts

ubvec

options

edgecut

These store the weights of the vertices and edges. (Seesslisoun Section 4.1).

This is used to specify the number of weights that each védrdsx It is also the number of balance
constraints that must be satisfied.

This is used to specify the number of sub-domains that areedesNote that the number of sub-
domains is independent of the number of processors thahisHoutine.

This is used to indicate if the graph is weightedytflagcan take one of four values:

0 No weights (vwgt and adjwgt are both NULL).

1 Weights on the edges only (vwgt is NULL).

2 Weights on the vertices only (adjwgt is NULL).

3 Weights on both the vertices and edges.

This is used to indicate the numbering scheme that is usethéortxdist xadj, adjncy, andpart
arrays.numflagcan take the following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

An array of sizencon x npart s that is used to specify the fraction of vertex weight thatudtio
be distributed to each sub-domain for each balance consttiall of the sub-domains are to be of
the same size for every vertex weight, then each ofihen x npart s elements should be set to
avalue of Ihpart s. If ncon is greater than 1, the target sub-domain weights for eaclisatain

are stored contiguously (similar to thewgt array). Note that the sum of all of thepwgt s for a
give vertex weight should be one.

An array of sizencon that is used to specify the imbalance tolerance for eaclexe@reight, with 1
being perfect balance amgpar t s being perfect imbalance. A value of 1.05 for each ofle®n
weights is recommended.

This is an array of integers that is used to pass paramettrs toutine. Their meanings are identical
to those ofParMETIS_V3_AdaptiveRepart.

Upon successful completion, the number of edges that arbyctite partitioning is written to this
parameter.

25

part

comm

This is an array of size equal to the number of locally-stertices. Upon successful completion the
partition vector of the locally-stored vertices is writtenthis array. (See discussion in Section 4.4).
If the number of processors is not equal to the number of subaihs and/or options[3] is set to
PARMETIS. PSRUNCOUPLED, then the previously computed partitioning mostpassed to the
routine as a parameter via this array.

This is a pointer to the MPI communicator of the processeiscllbPARMEIS. For most programs
this will point to MPI _COVMWORLD.

26

5.4 Fill-reducing Orderings
ParMETIS_V3_NodeND (idxtype *vtxdist, idxtype *xadj, idxtype *adjncy, int *nmflag, int *options,

Description

idxtype *order, idxtype *sizes, MPComm *comm)

This routine is used to compute a fill-reducing ordering gparse matrix using multilevel nested dissection.

Parameters

vixdist ~ This array describes how the vertices of the graph are lolig&d among the processors. (See discus-
sion in Section 4.1). Its contents are identical for evecpssor.

xadj, adjncy
These store the (local) adjacency structure of the graplact processor (See discussion in Sec-
tion 4.1).

numflag This is used to indicate the numbering scheme that is usetthéortxdist xadj, adjncy, andorder
arrays.numflagcan take the following two values:
0 C-style numbering is assumed that starts from O
1 Fortran-style numbering is assumed that starts from 1

options Thisis an array of integers that is used to pass parametts toutine. Their meanings are identical
to those ofParMETIS_V3_PartKway.

order This array returns the result of the ordering (describedkictiSn 4.4).

sizes This array returns the number of nodes for each sub-domaireach separator (described in Sec-
tion 4.4).

comm This is a pointer to the MPI communicator of the processelsdiitPARMETS. For most programs

this will point to MPI _COVMWORLD.

27

ParMETIS_V32_NodeND (idxtype *vtxdist, idxtype *xadj, idxtype *adjncy, idxtyg@*vwgt,

Description

int *numflag, int *mtype, int *rtype, int *pnseps, int *snseps, float *ubfrac,
int *seed, int *dbglvl, idxtype *order, idxtype *sizes, MEZomm *comm)

This routine is used to compute a fill-reducing ordering gbarse matrix using multilevel nested dissection.

Parameters
vixdist

This array describes how the vertices of the graph are lig&d among the processors. (See discus-
sion in Section 4.1). Its contents are identical for evecpssor.

xadj, adjncy

vwgt

numflag

mtype

rtype

p_nseps

s.nseps

ubfrac

seed

These store the (local) adjacency structure of the graplact processor (See discussion in Sec-
tion 4.1).

These store the weights of the vertices. A value of NULL iatks that each vertex has unit weight.
(See discussion in Section 4.1).

This is used to indicate the numbering scheme that is usetthéortxdist xadj, adjncy, andorder
arrays. The possible values are:

0 C-style numbering is assumed that starts from 0
1 Fortran-style numbering is assumed that starts from 1

This is used to indicate the scheme to be used for computmgnétching. The possible values,
defined inpar met i s. h, are:

PARMETISMTYPE_LOCAL A local matching scheme is used in which each pair ofahatl
vertices reside on the same processor.

PARMETISMTYPE_GLOBAL A global matching scheme is used in which the pairs atched
vertices can reside on different processors. This is thaultef
value if a NULL value is passed.

This is used to indicate the separator refinement schemenilidie used. The possible values,
defined inpar net i s. h, are:

PARMETIS. SRTYPEGREEDY Uses a simple greedy refinement algorithm.

PARMETIS. SRTYPE2PHASE Uses a higher quality refinement algorithm, whictoimawhat
slower. This is the default value if a NULL value is passed.

Specifies the number of different separators that will bepated during each bisection at the first
|log p| levels of the nested dissection (these are computed iniglaaahong the processors). The
bisection that achieves the smallest separator is seledted default value is 1 (when NULL is

supplied), but values greater than 1 can lead to bettertguaiierings. However, this is a time-

quality trade-off.

Specifies the number of different separators that will be maed during each of the bisections
levels of the remaining levels of the nested dissection (wthe matrix has been divided among
the processors and each processor proceeds independeathjet its portion of the matrix). The
bisections that achieve the smallest separator are selettee default value is 1 (when NULL is
supplied), but values greater than 1 can lead to bettertguaiierings. However, this is a time-
quality trade-off.

This value indicates how unbalanced the two partitions boevad to get during each bisection level.
The default value (when NULL is supplied) is 1.05, but high&lues (typical ranges 1.05-1.25) can
lead to smaller separators.

This is the seed for the random number generator. When NULUgpl&ed, a default seed is used.

28

dbglvi

order

sizes

comm

This specifies the level of information to be returned dutimg execution of the algorithm. This is
identical to theopt i ons[2] parameter of the other routines. When NULL is supplied, aevalu
0 is used.

This array returns the result of the ordering (describeckictiSn 4.4).

This array returns the number of nodes for each sub-domaireach separator (described in Sec-
tion 4.4).

This is a pointer to the MPI communicator of the processeiscllbPARMEIS. For most programs
this will point to MPI _COVMWORLD.

29

5.5 Mesh to Graph Translation

ParMETIS_V3_Mesh2Dual (idxtype *elmdist, idxtype *eptr, idxtype *eind, int *nunt,
int *ncommonnodes, idxtype **xadj, idxtype **adjncy, MEZomm *comm)

Description

This routine is used to construct a distributed graph givdis@ibuted mesh. It can be used in conjunction with
other routines in th®ARMETS library. The mesh can contain elements of different types.

Parameters

elmdist This array describes how the elements of the mesh are dittdtamong the processors. It is anal-

ogous to thevt xdi st array. Its contents are identical for every processor. (Bseussion in
Section 4.3).

eptr, eind
These arrays specifies the elements that are stored lodadigich processor. (See discussion in
Section 4.3).

numflag This is used to indicate the numbering scheme that is usetthé@Imdist elementsxadj, adjncy
andpart arrays.numflagcan take one of two values:

0 C-style numbering that starts from 0.

1 Fortran-style numbering that starts from 1.

ncommonnodes
This parameter determines the degree of connectivity arttengertices in the dual graph. Specifi-
cally, an edge is placed between any two elements if and bthgy share at least this many nodes.
This value should be greater than 0, and for most meshes @ whtwo will create reasonable dual
graphs. However, depending on the type of elements in thé,nvafues greater than 2 may also
be valid choices. For example, for meshes containing omdyngular, tetrahedral, hexahedral, or
rectangular elements, this parameter can be set to twe, thanér, or two, respectively.
Note that setting this parameter to a small value will inseesthe number of edges in the resulting
dual graph and the corresponding partitioning time.

xadj, adjncy
Upon the successful completion of the routine, pointeregéacbnstructedadj andadj ncy arrays
will be written to these parameters. (See discussion in@edt1).

comm This is a pointer to the MPI communicator of the processesdiiiPARMETS. For most programs
this will point to MPI _COVMWORLD.

Note

This routine can be used in conjunction wRarMETIS_V3_PartKway, ParMETIS_V3_PartGeomKway, or
ParMETIS_V3_AdaptiveRepart. It typically runs in half the time required ByarMETIS_V3_PartKway.

30

6 Restrictions & Limitations

The following is a list of restrictions and limitations imged by the current release BARMETS. Note that these
restrictions are on top of any other restrictions descrilggkd each API function.

1. The graph must be initially distributed among the prosessuch that each processor has at least one vertex.
Substantially better performance will be achieved if thaiges are distributed so that each processor gets an
equal number of vertices.

2. The routines must be called by at least two processord.ig,iRaRMETS cannot be used on a single processor.
If you need to partition on a single processor M&S.

3. The partitioning routines iRARMETS switch to a purely serial implementation (via a call to theresponding
METIS’ routine) when the following conditions are met: (i) the ghématrix contains less than 10000 vertices,
(ii) the graph contains no edges, and (iii) the number ofieestin the graph is less th&0 x p, wherep is the
number of processors.

7 Hardware & Software Requirements, and Contact Information

PARMETS is written in ANSI C and uses MPI for inter-processor comneation. Instructions on how to build
PARMETIS are available in thé NSTALL file. In the directory called> aphs, you will find programs that tests if
PARMETIS was built correctly. Also, a header file callpar neti s. h is provided that contains prototypes for the
functions inPARMETIS and various constant definitions.

In order to usePARMETS in your application you need to have a copy of the savidliS library and link your
program with both libraries (i.el,i bparmeti s. a andl i brret i s. a). Note that thePARMETS package already
contains the source code for tMeTiS library. The included Makefiles automatically constructhblibraries.

PARMETS have been extensively tested on a number of different ghradimputers. However, even though
PARMETIS contains no known bugs, this does not mean that all of its hage been found and fixed. If you have any
problems, please send emailkarypis@cs.umn.edwith a brief description of the problem.

8 Copyright & License Notice

PARMETS is copyrighted by the Regents of the University of Minnesdtacan be freely used for educational and
research purposes by non-profit institutions and US govemtragencies only. Other organizations are allowed to
usePARMETS only for evaluation purposes, and any further uses will ireqorrior approval. The software may not
be sold or redistributed without prior approval. One may enaépies of the software for their use provided that the
copies, are not sold or distributed, are used under the senms and conditions.

As unestablished research software, this code is provideahd'as is” basis without warranty of any kind, either
expressed or implied. The downloading, or executing any gfathis software constitutes an implicit agreement to
these terms. These terms and conditions are subject to eladiagy time without prior notice.

References
[1] R.Biswas and R. Strawn. A new procedure for dynamic adaptidhre&-dimensional unstructured gridgoplied Numerical
Mathematics13:437-452, 1994.

[2] C. Fiduccia and R. Mattheyses. A linear time heuristic for improving oeétwartitions. Inin Proc. 19th IEEE Design
Automation Conferen¢g@ages 175-181, 1982.

[3] J. Fingberg, A. Basermann, G. Lonsdale, J. Clinckemaillie, Jti&raand R. Ducloux. Dynamic load-balancing for parallel
structural mechanics simulations with DRAMACT2000 2000.

[4] G. Karypis and V. Kumar. A coarse-grain parallel multilekeWay partitioning algorithm. IrProceedings of the 8th SIAM
conference on Parallel Processing for Scientific Compytira97.

31

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

G. Karypis and V. KumarMEIS: A software package for partitioning unstructured graphs, partitioniegh@s, and comput-
ing fill-reducing orderings of sparse matrices, version 4.0. Techrepart, Univ. of MN, Dept. of Computer Sci. and Engr.,
1998.

G. Karypis and V. Kumar. Multilevel algorithms for multi-constrainggh partitioning. IfProc. Supercomputing '98.998.

G. Karypis and V. Kumar. Multilevek-way partitioning scheme for irregular graph3ournal of Parallel and Distributed
Computing 48(1), 1998.

G. Karypis and V. Kumar. Parallel multilevélway partitioning scheme for irregular grapiSiam Revienw41(2):278-300,
1999.

B. Kernighan and S. Lin. An efficient heuristic procedure fortpianing graphs. The Bell System Technical Journal
49(2):291-307, 1970.

L. Oliker and R. Biswas. PLUM: Parallel load balancing for adaptinstructured meshe¥urnal of Parallel and Distributed
Computing 52(2):150-177, 1998.

A. Patra and D. Kim. Efficient mesh partitioning for adaptive finite element meshes. Technical report, Dept. of Mech.
Engr., SUNY at Buffalo, 1999.

A. Pothen, H. Simon, L. Wang, and S. Bernard. Towards aifiaglementation of spectral nested dissectionSupercom-
puting '92 Proceedingpages 42-51, 1992.

K. Schloegel, G. Karypis, and V. Kumar. A new algorithm for mulbjective graph partitioning. IRroc. EuroPar '99 pages
322-331, 1999.

K. Schloegel, G. Karypis, and V. Kumar. Parallel multilevel algarithfor multi-constraint graph partitioning. roc.
EuroPar-20002000. Accepted as a Distinguished Paper.

K. Schloegel, G. Karypis, and V. Kumar. A unified algorithm fordeialancing adaptive scientific simulations. Rroc.
Supercomputing 200@000.

K. Schloegel, G. Karypis, and V. Kumar. Wavefront diffusiordd MSR: Algorithms for dynamic repartitioning of adaptive
meshes|EEE Transactions on Parallel and Distributed Systef®(5):451-466, 2001.

J. Watts, M. Rieffel, and S. Taylor. A load balancing technique faitiaphase computationsProc. of High Performance
Computing ‘97 pages 15-20, 1997.

32

