
The power of pyramid decomposition in Normaliz

Winfried Brunsa, Bogdan Ichimb, Christof Sögera

aUniversität Osnabrück, FB Mathematik/Informatik
49069 Osnabrück, Germany

bSimion Stoilow Institute of Mathematics of the Romanian Academy, Research Unit 5
C.P. 1-764, 010702 Bucharest, Romania

Abstract

We describe the use of pyramid decomposition in Normaliz, a software tool for the
computation of Hilbert bases and enumerative data of rational cones and affine mono-
ids. Pyramid decomposition in connection with efficient parallelization and stream-
lined evaluation of simplicial cones has enabled Normaliz to process triangulations of
size ≈ 5 · 1011 that arise in the computation of Ehrhart series related to the theory of
social choice.
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1. Introduction

Normaliz is a software tool for the computation of Hilbert bases and enumera-
tive data of rational cones and affine monoids. In the 17 years of its existence it has
found numerous applications; for example, in integer programming (Bogart, Raymond
and Thomas [5]), algebraic geometry (Craw, Maclagan and Thomas [17]), theoretical
physics (Kappl, Ratz and Staudt [31]), commutative algebra (Sturmfels and Welker
[41]) or elimination theory (Emiris, Kalinka, Konaxis and Ba [24]). Normaliz is used
in polymake [30], a computer system for polyhedral geometry, and in Regina [14], a
system for computations with 3-manifolds.

The mathematics of the very first version was described in Bruns and Koch [12],
and the details of version 2.2 (2009) are contained in Bruns and Ichim [10]. In this ar-
ticle we document the mathematical ideas and the most recent development 1 resulting
from them. It has extended the scope of Normaliz by several orders of magnitude.

In algebraic geometry the spectra of algebras K[C∩L] where C is a pointed cone
and L a lattice, both contained in a space Rd , are the building blocks of toric varieties;
for example, see Cox, Little and Schenck [16]. In commutative algebra the algebras
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K[C ∩ L] which are exactly the normal affine monoid algebras are of interest them-
selves. It is clear that an algorithmic approach to toric geometry or affine monoid
algebras depends crucially on an efficient computation of the unique minimal system
of generators of a monoid C∩L that we call its Hilbert basis. Affine monoids of this
type are extensively discussed by Bruns and Gubeladze [6]. The existence and unique-
ness of such a minimal system of generators is essentially due to Gordan [26] and was
proven in full generality by van der Corput [42].

The computation of Hilbert bases amounts to solving homogeneous linear diophan-
tine systems of inequalities (defining the cone) and equations and congruences (defin-
ing the lattice). Since version 2.11 Normaliz also solves inhomogeneous linear dio-
phantine systems; in other words, it computes lattice points in polyhedra (and not just
cones).

The term “Hilbert basis” was actually coined in integer programming (with L=Zd)
by Giles and Pulleyblank [25] in connection with totally dual integral (TDI) systems.
Also see Schrijver [36, Sections 16.4 and 22.3]. One should note that in integer pro-
gramming usually an arbitrary, not necessarily minimal, system of generators of C∩Zd

is called a Hilbert basis of C. From the computational viewpoint and also in bounds
for such systems of generators, minimality is so important that we include it in the def-
inition. Aardal, Weismantel and Wolsey [2] discuss Hilbert bases and their connection
with Graver Bases (of sublattices) and Gröbner bases (of binomial ideals). (At present,
Normaliz does not include Graver or Gröbner bases; 4ti2 [1] is a tool for their com-
putation.) It should be noted that Normaliz, or rather a predecessor, was instrumental
in finding a counterexample to the Integral Carathéodory Property (Bruns, Gubeladze,
Henk, Weismantel and Martin [7]) that was proposed by Sebő [38]. For more re-
cent developments in nonlinear optimization using Graver bases, and therefore Hilbert
bases, see J. De Loera, R. Hemmecke, S. Onn, U.G. Rothblum, R. Weismantel [19],
Hemmecke, Köppe and Weismantel [27], and Hemmecke, Onn and Weismantel [28].

Hilbert functions and polynomials of graded algebras and modules were introduced
by Hilbert himself [29] (in contrast to Hilbert bases). These invariants, and the cor-
responding generating functions, the Hilbert series, are fundamental in algebraic ge-
ometry and commutative algebra. See [6, Chapter 6] for a brief introduction to this
fascinating area. Ehrhart functions were defined by Ehrhart [23] as lattice point count-
ing functions in multiples of rational polytopes; see Beck and Robbins [4] for a gentle
introduction. Stanley [40] interpreted Ehrhart functions as Hilbert functions, creating
a powerful link between discrete convex geometry and commutative algebra. In the
last decades Hilbert functions have been the objective of a large number of articles.
They even come up in optimization problems; for example, see De Loera, Hemmecke,
Köppe and Weismantel [18]. Surprisingly, Ehrhart functions have an application in
compiler optimization; see Clauss, Loechner and Wilde [15] for more information.

From the very beginning Normaliz has used lexicographic triangulations; see [10],
[12] for the use in Normaliz and De Loera, Rambau and Santos [21] for (regular) tri-
angulations of polytopes. (Since version 2.1 Normaliz contains a second, triangulation
free Hilbert basis algorithm, originally due to Pottier [35] and called dual in the fol-
lowing; see [10]). Lexicographic triangulations are essentially characterized by being
incremental in the following sense. Suppose that the cone C is generated by vectors
x1, . . . ,xn ∈ Rd ; set C0 = 0 and Ci = R+x1 + · · ·+R+xi, i = 1, . . . ,n. Then the lexico-
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graphic triangulation Λ (for the ordered system x1, . . . ,xn) restricts to a triangulation
of Ci for i = 0, . . . ,n. Lexicographic triangulations are easy to compute, and go very
well with Fourier-Motzkin elimination that computes the support hyperplanes of C by
successive extension from Ci to Ci+1, i = 0, . . . ,n− 1. The triangulation Λi of Ci is
extended to Ci+1 by all simplicial cones F +R+xi+1 where F ∈ Λi is visible from xi+1.

As simple as the computation of the lexicographic triangulation is, the algorithm in
the naive form just described has two related drawbacks: (i) one must store Λi and this
becomes very difficult for sizes ≥ 108; (ii) in order to find the facets F that are visible
from xi+1 we must match the simplicial cones in Λi with the support hyperplanes of Ci
that are visible from xi+1. While (i) is a pure memory problem, (ii) quickly leads to
impossible computation times.

Pyramid decomposition is the basic idea that has enabled Normaliz to compute
dimension 24 triangulations of size ≈ 5 ·1011 in acceptable time on standard multipro-
cessor systems such as SUN xFire 4450 or Dell PowerEdge R910. Instead of going
for the lexicographic triangulation directly, we first decompose C into the pyramids
generated by xi+1 and the facets of Ci that are visible from xi+1, i = 0, . . . ,n−1. These
pyramids (of level 0) are then decomposed into pyramids of level 1 etc. While the level
0 decomposition need not be a polyhedral subdivision in the strict sense, pyramid de-
composition stops after finitely many iterations at the lexicographic triangulation; see
Section 3 for the details and Figure 3 for a simple example.

Pure pyramid decomposition is very memory friendly, but its computation times
are even more forbidding than those of pure lexicographic triangulation since too many
Fourier-Motzkin eliminations become necessary, and almost all of them are inevitably
wasted. That Normaliz can nevertheless cope with extremely large triangulations relies
on a well balanced combination of both strategies that we outline in Section 4.

It is an important aspect of pyramid decomposition that it is very parallelization
friendly since the pyramids can be treated independently of each other. Normaliz uses
OpenMP for shared memory systems. Needless to say that triangulations of the size
mentioned above can hardly be reached in serial computation.

For Hilbert basis computations pyramid decomposition has a further and sometimes
tremendous advantage: one can avoid the triangulation of those pyramids for which it
is a priori clear that they will not supply new candidates for the Hilbert basis. This
observation, on which the contribution of the authors to [8] (jointly with Hemmecke
and Köppe) is based, triggered the use of pyramid decomposition as a general principle.
See Remark 4.4 for a brief discussion.

In Section 5 we describe the steps by which Normaliz evaluates the simplicial cones
in the triangulation for the computation of Hilbert bases, volumes and Hilbert series.
After the introduction of pyramid decomposition, evaluation almost always takes sig-
nificantly more time than the triangulation. Therefore it must be streamlined as much
as possible. For the Hilbert series Normaliz uses a Stanley decomposition [39]. That it
can be found efficiently relies crucially on an idea of Köppe and Verdoolaege [33].

We document the scope of Normaliz’s computations in Section 6. The computation
times are compared with those of 4ti2 [1] (Hilbert bases) and LattE [20] (Hilbert series).
The test examples have been chosen from the literature (Beck and Hoşten [3], Ohsugi
and Hibi [34], Schürmann [37], Sturmfels and Welker [41]), the LattE distribution and
the Normaliz distribution. The desire to master the Hilbert series computations asked
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for in Schürmann’s paper [37] was an important stimulus in the recent development of
Normaliz.

2. Overview of the Normaliz algorithm

The primal Normaliz algorithm is triangulation based, as mentioned in the intro-
duction. Normaliz contains a second, dual algorithm for the computation of Hilbert
bases that implements ideas of Pottier [35]. The dual algorithm is treated in [10], and
has not changed much in the last years. We skip it in this article, except in Section 6
where computation times of the primal and dual algorithm will be compared.

The primal algorithm starts from a pointed rational cone C⊂Rd given by a system
of generators x1, . . . ,xn and a sublattice L ⊂ Zd that contains x1, . . . ,xn. (Other types
of input data are first transformed into this format.) The algorithm is composed as
follows:

1. Initial coordinate transformation to E = L∩ (Rx1 + · · ·+Rxn);
2. Fourier-Motzkin elimination computing the support hyperplanes of C;
3. pyramid decomposition and computation of the lexicographic triangulation ∆;
4. evaluation of the simplicial cones in the triangulation:

(a) enumeration of the set of lattice points Eσ in the fundamental domain of a
simplicial subcone σ ,

(b) reduction of Eσ to the Hilbert basis Hilb(σ),
(c) Stanley decomposition for the Hilbert series of σ ∩L;

5. Collection of the local data:
(a) reduction of

⋃
σ∈∆ Hilb(σ) to Hilb(C∩L),

(b) accumulation of the Hilbert series of the σ ∩L;
6. reverse coordinate transformation to Zd .

The algorithm does not strictly follow this chronological order, but interleaves steps
2–5 in an intricate way to ensure low memory usage and efficient parallelization. The
steps 2 and 5 are treated in [10], and there is not much to add here, except that 2 is
now modified by the pyramid decomposition. Step 3 is described in Sections 3 and
4, and step 4 is the subject of Section 5. In view of the initial and final coordinate
transformation we can assume E = Zd , and suppress the reference to the lattice in the
following.

Note that the computation goals of Normaliz can be restricted, for example to the
volume of a rational polytope. Then the evaluation of a simplicial cone just amounts
to a determinant calculation. Another typical restricted computation goal is the lattice
points contained in such a polytope. Then the reduction is replaced by a selection of
degree 1 points from the candidate set.

The algorithms described in this paper have been implemented in version 3.0.
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3. Lexicographic triangulation and pyramid decomposition

3.1. Lexicographic triangulation

Consider vectors x1, . . . ,xn ∈ Rd . For Normaliz these must be integral vectors, but
integrality is irrelevant in this section. We want to compute the support hyperplanes of
the cone

C = cone(x1, . . . ,xn) = R+x1 + · · ·+R+xn

and a triangulation of C with rays through x1, . . . ,xn. Such a triangulation is a poly-
hedral subdivision of C into simplicial subcones σ generated by linearly independent
subsets of {x1, . . . ,xn}.

For a triangulation Σ of a cone C and a subcone C′ we set

Σ|C′ = {σ ∩C′ : σ ∈ Σ}.

In general Σ|C′ need not be a triangulation of C′, but it is so if C′ is a face of C.
The lexicographic (or placing) triangulation Λ(x1, . . . ,xn) of cone(x1, . . . ,xn) can

be defined recursively as follows: (i) the triangulation of the zero cone is the trivial
one, (ii) Λ(x1, . . . ,xn) is given by

Λ(x1, . . . ,xn) = Λ(x1, . . . ,xn−1)∪{cone(σ ,xn) : σ ∈ Λ(x1, . . . ,xn−1) visible from xn}

where σ is visible from xn if xn /∈ cone(x1, . . . ,xn−1) and the line segment [xn,y] for ev-
ery point y of σ intersects cone(x1, . . . ,xn−1) only in y. Note that a polyhedral complex
is closed under the passage to faces, and the definition above takes care of it.

1

2

3

4 6

5

7

Figure 1: Genesis of a lexicographic triangulation

In the algorithms below, a polyhedral subdivision can always be represented by its
maximal faces which for convex full dimensional polyhedra are the full dimensional
members in the subdivision. For simplicial subdivisions of cones one uses of course
that the face structure is completely determined by set theory: every subset E of the set
of generators spans a conical face of dimension |E|.

We state some useful properties of lexicographic triangulations:
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Figure 2: A lexicographic triangulation in cone dimension 4

Proposition 1. With the notation introduced, let Ci = cone(x1, . . . ,xi) and Λi = Λ(x1,
. . . ,xi) for i = 1, . . . ,n.

1. Λn is the unique triangulation of C with rays through a subset of {x1, . . . ,xn}
that restricts to a triangulation of Ci for i = 1, . . . ,n and Λ|Ci has rays through a
subset of {x1, . . . ,xi}.

2. For every face F of C the restriction Λ|F is the lexicographic triangulation Λ(xi1 ,
. . . ,xim) where {xi1 , . . . ,xim}= F ∩{x1, . . . ,xn} and i1 < · · ·< im.

3. If dimCi > dimCi−1, then Λ = Λ(x1, . . . ,xi−2,xi,xi−1,xi+1, . . . ,xn).
4. Λ = Λ(xi1 , . . . ,xid ,x j1 , . . . ,x jn−d ) where (i1, . . . , id) is the lexicographic smallest

index vector of a rank d subset of {x1, . . . ,xn} and j1 < · · ·< jn−d lists the com-
plementary indices.

PROOF. (1) By construction it is clear that Λn satisfies the properties of which we
claim that they determine Λ uniquely. On the other hand, the extension of Λi−1 to a
triangulation of Ci is uniquely determined if one does not introduce further rays: the
triangulation of the part V of the boundary of Ci−1 that is visible from xi has to coincide
with the restriction of Λi−1 to V .

(2) One easily checks that Λ|F satisfies the conditions in (1) that characterize
Λ(xi1 , . . . ,xim).

(3) It is enough to check the claim for i = n. Then the only critical point for the
conditions in (1) is whether Λ(x1, . . . ,xn−2,xn,xn−1) restricts to Cn−1. But this is the
case since Cn−1 is a facet of C if dimC > dimCn−1.

(4) follows by repeated application of (3).

For the configuration of Figure 1, claim 4 of Proposition 1 says that we could have
started with the triangle spanned by the points 1,2,4 and then added the other points in
the given order.

In the following we will assume that C is full dimensional: dimC = d = dimRd .
Part (4) helps us to keep the data structure of lexicographic triangulations simple: right
from the start we need only to work with the list of dimension d simplicial cones
of Λ by searching xi1 , . . . ,xid first, choosing cone(xi1 , . . . ,xid ) as the first d-dimensional
simplicial cone and subsequently extending the list as prescribed by the definition of the
lexicographic triangulation. In other words, we can assume that x1, . . . ,xd are linearly
independent, and henceforth we will do so.
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In order to extend the triangulation we must of course know which facets of Ci−1
are visible from xi. Recall that a cone C of dimension d in Rd has a unique irredundant
representation as an intersection of linear halfspaces:

C =
⋂

H∈H (C)

H+,

where H (C) is a finite set of oriented hyperplanes and the orientation of the closed
half spaces H− and H+ is chosen in such a way that C ⊂ H+ for H ∈H (C). For
H ∈H (Ci−1) the facet H ∩Ci−1 is visible from xi if and only if xi lies in the open
halfspace H< = H− \H. When we refer to support hyperplane in the following we
always mean those that appear in the irredundant decomposition of C since only they
are important in the algorithmic context.

Hyperplanes are represented by linear forms λ ∈ (Rd)∗, and we always work with
the basis e∗1, . . . ,e

∗
d that is dual to the basis e1, . . . ,ed of unit vectors. For rational hyper-

planes the linear form λ can always be chosen in such a way that it has integral coprime
coefficients and satisfies λ (x) ≥ 0 for x ∈ C. This choice determines λ uniquely. (If
one identifies e∗1, . . . ,e

∗
d with e1, . . . ,ed via the standard scalar product, then λ is noth-

ing but the primitive integral inner (with respect to C) normal vector of H.) For later
use we define the (lattice) height of x ∈ Rd over H by

htH(x) = |λ (x)|.

If F =C∩H is the facet of C cut out by H, we set htF(x) = htH(x).
We can now describe the computation of the triangulation Λ(x1, . . . ,xn) and the

support hyperplanes in a more formal way by Algorithm 1. For simplicity we will
identify a simplicial cone σ with its generating set ⊂ {x1, . . . ,xn}. It should be clear
from the context what is meant. For a set H of hyperplanes we set

H ∗(x) = {H ∈H ,x ∈ H∗} where ∗ ∈ {<,>,+,−}.

Further we introduce the notation

H ∗(C,x) = {H ∈H (C),x ∈ H∗} where ∗ ∈ {<,>,+,−}.

The representation of hyperplanes by linear forms makes it easy to detect the visible
facets: a facet is visible from y if λ (y) < 0 for the linear from λ defining the hyper-
plane through the facet. As pointed out above, in Algorithm 1 and at several places
below we may assume that the first d elements of x1, . . . ,xn are linearly independent.
This can always be achieved by rearranging the order of the elements, or by a refined
bookkeeping (as done by Normaliz).

For its main data, Normaliz uses two types of data structures:

1. Lists and matrices of integer vectors. The vectors represent generators of cones,
Hilbert basis elements etc. in Rd , or linear forms in (Rd)∗.

2. Lists of subsets of the set {x1, . . . ,xn}. Each subset stands for the subcone gen-
erated by its elements.
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Algorithm 1 Incremental building of cone, support hyperplanes and lexicographic tri-
angulation
Require: A generating set x1, . . . ,xn of a rational cone C of dimension d
Ensure: The support hyperplanes H of C and the triangulation Λ(x1, . . . ,xn)

1: function LEXTRIANGULATION(x1, . . . ,xn)
2: ∆←{cone(x1, . . . ,xd)}
3: H ←H (cone(x1, . . . ,xd))
4: for i← d +1 to n do
5: ∆←EXTENDTRI(H ,∆,xi)
6: H ←FINDNEWHYP(H ,x1, . . . ,xi)
7: return (H ,∆)

Require: A set of hyperplanes H , a triangulation ∆ and a point y
Ensure: The union of ∆ with the set of simplicial cones spanned by y and the facets δ

of the σ ∈ ∆ such that δ ⊂ H for some H ∈H with y ∈ H<

1: function EXTENDTRI(H ,∆,y)
2: parallel for H ∈H <(y) do
3: for σ ∈ ∆ do
4: if |σ ∩H|= d−1 then
5: ∆← ∆∪{cone(y,σ ∩H)}
6: return ∆

Sometimes more complicated data structures are needed. For example, it is useful in
Algorithm 1 to store the incidence relation of generators and facets.

In the following discussion we set C j = cone(x1, . . . ,x j) as above. The support hy-
perplanes of the first simplicial cone Cd in line 3 are computed by essentially inverting
the matrix of the generators x1, . . . ,xd (see equation (1) in Section 5). The function
FINDNEWHYP computes H (Ci) from H (Ci−1) by Fourier-Motzkin elimination. (It
does nothing if xi ∈ Ci−1.) Its Normaliz implementation has been described in great
detail in [10]; therefore we skip it here, but will come back to it below when we outline
its combination with pyramid decomposition. The function EXTENDTRI does exactly
what its name says: it extends the triangulation Λ(x1, . . . ,xi−1) of Ci−1 to the triangu-
lation Λ(x1, . . . ,xi) of Ci (again doing nothing if xi ∈Ci−1).

One is tempted to improve EXTENDTRI by better bookkeeping and using extra
information on triangulations of cones. We discuss our more or less fruitless attempts
in the following remark.

Remark 2. (a) If one knows the restriction of Λ(x1, . . . ,xi−1) to the facets of Ci−1, then
Λ(x1, . . . ,xi) can be computed very fast. However, unless i = n, the facet triangulation
must now be extended to the facets of Ci, and this step eats up the previous gain,
as experiments have shown, at least for the relatively small triangulations to which
EXTENDTRI is really applied after the pyramid decomposition described below.

(b) The test of the condition |σ ∩H| = d−1 is positive if and only if d−1 of the
generators of σ lie in H. Its verification can be accelerated if one knows which facets
of the d-dimensional cones in Λ(x1, . . . ,xi−1) are already shared by another simpli-
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cial cone in Λ(x1, . . . ,xi−1), and are therefore not available for the formation of a new
simplicial cone. But the extra bookkeeping requires more time than is gained by its
use.

(c) One refinement is used in our implementation, though its influence is almost
unmeasurable. Each simplicial cone in Λ(x1, . . . ,xi−1) has been added with a certain
generator x j, j < i. (The first cone is considered to be added with each of its genera-
tors.) It is not hard to see that only those simplicial cones that have been added with a
generator x j ∈H can satisfy the condition |σ ∩H|= d−1, and this information is used
to reduce the number of pairs (H,σ) to be tested.

(d) If |H ∩{x1, . . . ,xi−1}| = d− 1, then H ∈H <(Ci−1,xi) produces exactly one
new simplicial cone of dimension d, namely cone(xi,H∩{x1, . . . ,xi−1}), and therefore
the loop over σ can be suppressed.

The product |H <(Ci−1,xi)| · |Λ(x1, . . . ,xi−1)| determines the complexity of EX-
TENDTRI. Even though the loop over H is parallelized (as indicated by parallel for),
the time spent in EXTENDTRI can be very long. (The “exterior” loops in FIND-
NEWHYP are parallelized as well.) The second limiting factor for EXTENDTRI is
memory: it is already difficult to store triangulations of size 108 and impossible for
size ≥ 109. Therefore the direct approach to lexicographic triangulations does not
work for truly large cones.

Remark 3. The computation time for the Fourier-Motzkin elimination and the lexi-
cographic triangulation often depends significantly on the order of the generators. If
only the support hyperplanes must be computed, Normaliz orders the input vectors lex-
icographically. If also the triangulation must be computed, the input vectors are first
sorted by their L1-norm, or by degree if a grading is defined (see Section 5), and second
lexicographically. The sorting by L1-norm or degree helps to keep the determinants of
the simplicial cones small (see Section 5). On the whole, we have reached good results
with this order.

Remark 4. Whenever possible, each parallel thread started in a Normaliz computation
collects its computation results and returns them to the calling routine after its comple-
tion. In this way, the amount of synchronization between the threads is reduced to a
minimum. For example, in EXTENDTRI, the new simplicial cones cone(y,σ ∩H) can
be collected independently of each other: they are not directly added to the global list
∆ in line 9, but are first stored in a list owned by the thread, and then spliced into ∆ at
the end of EXTENDTRI.

3.2. Pyramid decomposition

Now we present a radically different way to lexicographic triangulations via iter-
ated pyramid decompositions. The cones that appear in this type of decomposition are
called pyramids since their cross-section polytopes are pyramids in the usual sense,
namely of type conv(F,x) where F is a facet and x is a vertex not contained in F .
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Definition 5. The pyramid decomposition Π(x1, . . . ,xn) of C = cone(x1, . . . ,xn) is re-
cursively defined as follows: it is the trivial decomposition for n = 0, and

Π(x1, . . . ,xn) = Π(x1, . . . ,xn−1)∪{cone(F,xn) :
F a face of cone(x1, . . . ,xn−1) visible from xn}.

As already pointed out in the introduction, the pyramid decomposition is not a
polyhedral subdivision in the strong sense: the intersection of two faces F and F ′ need
not be a common face of F and F ′ (but is always a face of F or F ′). See Figures 3
and 4 for examples. Roughly speaking, one can say that in the pyramid decomposi-
tion forgets the potentially existing subdivision (or even triangulation) of the facets of
C(x1, . . . ,xn−1 that are visible from xn. In order to subdivide (or even triangulate) the
new pyramids it is enough to do the computations within each of them. This “localiza-
tion” reduces the complexity tremendously.

In order to iterate the pyramid decomposition we set Π0(x1, . . . ,xn) =Π(x1, . . . ,xn),
and

Π
k(x1, . . . ,xn) =

⋃
P∈Πk−1(x1,...,xn)

{Π(xi : xi ∈ P)} for k > 0.

We now assume that the first d vectors in the generating set of the top cone and each
of its pyramids are linearly independent. Because of Proposition 1, claim 4, this as-
sumption does not endanger the compatibility with lexicographic triangulation. Under
this assumption the recursion defining Πk cannot descend indefinitely, since the num-
ber of generators goes down with each recursion level. We denote the total pyramid
decomposition by Π∞(x1, . . . ,xn).

Π0

π

Π0(π) Π1 = Π∞

Figure 3: Pyramid decomposition of the point configuration of Figure 1

Figure 4: Pyramid decomposition of Figure 2
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Proposition 6. One has Π∞(x1, . . . ,xn) = Πn−d(x1, . . . ,xn) = Λ(x1, . . . ,xn).

PROOF. In the case n = d, the pyramid decomposition is obviously the face lattice
of C, and therefore coincides with the lexicographic triangulation. For n > d the first
full dimensional pyramid reached is the simplicial cone cone(x1, . . . ,xd). All the other
pyramids have at most n− 1 generators, and so we can use induction: For each P ∈
Π(x1, . . . ,xn) the total pyramid decomposition of P is the lexicographic triangulation
Λ(xi : xi ∈ P). According to Proposition 1(2) these triangulations match along the
common boundaries of the pyramids, and therefore constitute a triangulation of C. It
evidently satisfies the conditions in Proposition 1(1).

This leads to a recursive computation of Λ(x1, . . . ,xn) by the functions in Algo-
rithm 2.

Algorithm 2 Incremental building of cone, support hyperplanes and lexicographic tri-
angulation by total pyramid decomposition
Require: A generating set x1, . . . ,xn of a rational cone C of dimension d
Ensure: The support hyperplanes H and of C and the triangulation Λ(x1, . . . ,xn)

1: function TOTALPYRDEC(x1, . . . ,xn)
2: ∆←{cone(x1, . . . ,xd)}
3: H ←H (cone(x1, . . . ,xd))
4: for i← d +1 to n do
5: (G ,Σ)←PROCESSPYRSREC(H ,x1, . . . ,xi)
6: H ← (H ∪G )\H <(xi)
7: ∆← ∆∪Σ

8: return (H ,∆)

Require: A generating set x1, . . . ,xi of a rational cone C and the support hyperplanes
H = H (cone(x1, . . . ,xi−1)

Ensure: The support hyperplanes H (x1, . . . ,xn)\H (x1, . . . ,xn−1) and the triangula-
tion Λ(x1, . . . ,xn)\Λ(x1, . . . ,xn−1)

1: function PROCESSPYRSREC(H ,x1, . . . ,xn)
2: ∆← /0
3: G ← /0
4: parallel for H ∈H <(xn) do
5: key←{xn}∪ ({x1, . . . ,xn−1}∩H)
6: (K ,Σ)←TOTALPYRDEC(key)
7: G ← G ∪{G ∈K : G ∈H (cone(x1, . . . ,xn))}
8: ∆← ∆∪Σ

9: return (G ,∆)

When called with the arguments x1, . . . ,xn, the function TOTALPYRDEC builds
Π∞(x1, . . . ,xn) (represented by its full dimensional members). As in Algorithm 1, the
support hyperplanes of the simplicial cone Cd in line 3 are computed by the inversion
of the generator matrix. All further support hyperplanes are given back to Cn by its
“daughters” in line 6 where we also discard the support hyperplanes of Cn−1 that have
xi in their negative half space.
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The function PROCESSPYRSREC manages the recursion that defines Π∞(x1, . . . ,
xn). In its line 7 we must decide which support hyperplanes G of the daughter pyramid
cone(key) are “new” support hyperplanes of the mother Cn = cone(x1, . . . ,xn). We use
the following criteria:

(i) G ∈H (Cn) ⇐⇒ x j ∈ G+ for j = 1, . . . ,n−1;
(ii) G /∈H (Cn−1) ⇐⇒ x j ∈ G> for all j = 1, . . . , i−1 such that x j /∈ key.

One should note that pyramids effectively reduce the dimension: the complexity of
cone(F,xn) is completely determined by the facet F , which has dimension d−1.

While pyramid decomposition has primarily been developed for the computation
of triangulations, it is also very useful in the computation of support hyperplanes.
For Fourier-Motzkin elimination the critical complexity parameter is |H <(Ci−1,xi)| ·
|H >(Ci−1,xi)|, and as in its use for triangulation, pyramid decomposition lets us re-
place a potentially very large product of the sizes of two “global” lists by a sum of
small “local” products–the price to be paid is the computational waste invested for the
support hyperplanes of the pyramids that are useless later on.

While being very memory efficient, total pyramid decomposition in the naı̈ve im-
plementation of Algorithm 2 is sometimes slower and sometimes faster than using
Fourier-Motzkin elimination and building the lexicographic triangulation directly. The
best solution is a hybrid algorithm that combines pyramid decomposition and lexico-
graphic triangulation. It will be descried in the next section where we will also com-
pare computation times and memory usage of pure lexicographic triangulation, pure
pyramid decomposition and the hybrid algorithm. We compare computation times in
Section 4.5.

4. The current implementation

4.1. The hybrid algorithm

Roughly speaking, the hybrid algorithm switches from Fourier-Motzkin elimina-
tion and lexicographic triangulation to pyramid decomposition for hyperplanes and tri-
angulation when certain complexity parameters are exceeded. This strategy is realized
by the function BUILDCONE of Algorithm 3.

The boolean MakePyramidsForHyps (line 5) is determined by a single condition:

it is set to true if the complexity parameter |H <(Ci−1,xi)| · |H >(Ci−1,xi)| ex-
ceeds a threshold, and to false otherwise.

As the name MakePyramidsForHyps indicates,thew computation of support hyper-
planes is transferred to the pyramids over the hyperplanes H <(xi) if the complexity
parameter is exceeded. Pyramids created for the computation of support hyperplanes
must be treated very carefully since the mother cone must wait for the computation of
their support hyperplanes. We come back to this point below.

The MakePyramidsForTri (line 10) combines three conditions:

1. while set to false initially, it remains true once once the switch to pyramids has
been done in line 5 or line 10;
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Algorithm 3 Incremental building of cone, support hyperplanes and lexicographic tri-
angulation by a hybrid algorithm
Require: A generating set x1, . . . ,xn of a rational cone C of dimension d. The top cone

has an initially empty list Π of pyramids.
Ensure: The support hyperplanes H and of C and the triangulation Λ(x1, . . . ,xn)

1: function BUILDCONE(x1, . . . ,xn)
2: ∆←{cone(x1, . . . ,xd)}
3: H ←H (cone(x1, . . . ,xd))
4: for i← d +1 to n do
5: if MakePyramidsForHyps then
6: (G ,Σ)←PROCESSPYRSREC(H ,x1, . . . ,xi)
7: H ← (H ∪G )\H <(xi)
8: ∆← ∆∪Σ

9: else
10: if MakePyramidsForTri then
11: for H ∈H <(H ,xi) do
12: key←{xi}∪ ({x1, . . . ,xi−1}∩H)
13: Π←Π∪{key}
14: else
15: ∆←EXTENDTRI(H ,∆,xi)
16: H ←FINDNEWHYP(H ,x1, . . . ,xi)
17: if TopCone then
18: parallel for P ∈Π do
19: BUILDCONE(P)
20: Π←Π\{P}
21: return (H ,∆)

2. it is set true if the complexity parameter |H <(Ci−1,xi)| · |∆| exceeds a threshold;
3. it is set true if the memory protection threshold is exceeded.

The last point needs to be explained. BUILDCONE is not only called for the processing
of the top cone C, but also for the parallelized processing of pyramids. Since each
of the “parallel” pyramids produces simplicial cones, the buffer in which the simpli-
cial cones are collected for evaluation, may be severely overrun without condition (3),
especially if |H <(xi)| is small, and therefore condition (2) is reached only for large
|Λ(x1, . . . ,xi−1)|.

Pyramids that are created for triangulation can simply be stored since their trian-
gulation is not needed for the continuation of the pyramid decomposition. Line 13 of
BUILDCONE therefore adds them to the pyramid list Π which is part of the data of the
top cone. The stored pyramids are evaluated after the top cone has been completely
built (lines 17–20). It is a crucial aspect of pyramid decomposition that the loop in
lines 18–20 is parallelized: the evaluation of a pyramid is a completely independent
computation.

In the triangulation of the stored pyramids, new daughter pyramids may be created
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and added to the list. However, the number of pyramids is is bounded by |Λ(x1, . . . ,xn)|.
At its termination,BUILDCONE returns the support hyperplanes of the top cone and the
lexicographic triangulation Λ(x1, . . . ,xn).

Algorithm 3 is only a structural model of the actual implementation. Some of its
technical details will be described below.

4.2. Pyramids for support hyperplanes
Pyramids that have been created because of the complexity of Fourier-Motzkin

elimination are treated by the function PROCESSPYRSREC. The REC in its name in-
dicates that the computation of the mother cone must wait for the completion of the
daughter pyramid, at least for its support hyperplanes.

Algorithm 4 Processing of pyramids towards support hyperplanes and triangulation of
mother cone
Require: A generating set x1, . . . ,xi of a rational cone C and the support hyperplanes

H = H (cone(x1, . . . ,xi−1))
Ensure: The support hyperplanes H (x1, . . . ,xi)\H (x1, . . . ,xi−1) and part of the tri-

angulation Λ(x1, . . . ,xi)\Λ(x1, . . . ,xi−1)
1: function PROCESSPYRSREC(H ,x1, . . . ,xi)
2: ∆← /0
3: G ← /0
4: parallel for H ∈H <(xi) do
5: key←{xi}∪ ({x1, . . . ,xi−1}∩H)
6: if Small then
7: (K ,Σ)←BUILDCONE(key)
8: G ← G ∪{G ∈K : G ∈H (cone(x1, . . . ,xi))}
9: ∆← ∆∪Σ

10: else
11: G ← G ∪ MATCHWITPOSHYPS(H,H ,x1. . . . ,xi)
12: Π←Π∪{key}
13: return (G ,∆)

The function is similar to the function PROCESSPYRSREC in Algorithm 2, except
that we now distinguish between “small” and “large” pyramids. Small pyramids are
treated recursively as in the total pyramid decomposition, namely by applying BUILD-
CONE to them. The treatment of large pyramids differs in two ways:

1. the triangulation of the pyramid is deferred;
2. the Fourier-Motzkin step MATCHWITPOSHYPS is used to find the support hy-

perplanes of the mother cone that originate from H.

The criterion for small is based on a comparison of the expected computation times
for (i) building the pyramid over H and (ii) the Fourier-Motzkin step in which H is
“matched” with the hyperplanes G ∈H >(xi); see [10]. This refinement was the last
step added to the processing of pyramids. It is irrelevant in sequential computations,
but large pyramids previously had the tendency to significantly delay the completion
of the parallelized loop in line 4.
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4.3. Interruption strategy

Normaliz keeps all data in in RAM. Therefore it is necessary to control the size of
the lists that contain simplicial cones and pyramids. This is achieved by a strategy that
interrupts the production of pyramids and simplicial cones at suitable points as soon as
the lists sizes have exceeded a preset value. The choice of the interruption points must
take into consideration that Normaliz avoids nested parallelization for efficiency. (This
is the default choice of OpenMP.)

As soon as BUILDCONE switches to pyramids, the triangulation Λ(x1, . . . ,xi−1) is
no longer needed for further extension. Therefore it is shipped to the evaluation buffer.
The simplicial cones are evaluated and the buffer is emptied whenever it has exceeded
its preset size and program flow allows its parallelized evaluation.

The strategy for the evaluation of pyramids is similar, but it takes into account the
recursive nature of the pyramid decomposition. The pyramid list is actually split into
levels, and pyramids of level i produce subpyramids of level i+ 1. If the number of
level i+1 pyramids becomes too large, the production at level i is interrupted in favor
of the processing of the level i+1 pyramids.

4.4. Partial triangulation

The idea of pyramid decomposition was born when the authors observed that the
computation of Hilbert bases in principle does not need a full triangulation of C. If a
simplicial cone σ cannot contribute new candidates for the Hilbert basis of C, it need
not be evaluated, and if a pyramid consists only of such simplicial cones, it need not be
triangulated at all. This is the case if htH(xi) = 1.

The resulting strategy has sometimes striking results and was already described
in [8].

4.5. Computation times

Section 6 contains extensive data on the performance of Normaliz. The computa-
tion times listed there include the evaluation of the simplicial cones for Hilbert bases
and Hilbert series using the hybrid algorithm.

Here we want to compare lexicographic triangulation/Fourier-Motzkin elimination,
pure pyramid decomposition and the hybrid algorithm in the computation of triangula-
tions and support hyperplanes and triangulations, excluding any evaluation. (Normaliz
can be restricted to these tasks.) The sources of the test input files pf Table 1 are listed
in Section 6 where we give computation times for a large number of examples. The
times reported in this section were taken on a SUN xFire 4450 with with 4 Intel Xeon
X7460 (a total of 24 cores running at 2.66 GHz) and 128 GB RAM.

As Table 2 shows, the hybrid algorithm is far superior to lexicographic triangulation
as soon as the triangulations are large enough to have pyramids really built. Moreover,
the need of storing the whole triangulation in RAM limits the applicability of lexi-
cographic triangulation to sizes of ≈ 108: A543 needs already 21 GB of RAM, and
therefore lo6 and A553 cannot be computed by it, even if one is willing to wait for a
very long time. The RAM needed by the hybrid algorithm is essentially determined
by the fact that Normaliz collects 2.5 ·106 simplicial cones for parallelized evaluation,
and is typically between 500 MB and 1 GB.
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Input edim rank #ext #supp # triangulation

CondPar 24 24 234 27 1,344,671

5x5 25 15 1,940 25 14,615,011

lo6 16 16 720 910 5,796,124,824

cyclo60 17 17 60 656,100 11,741,300

A443 40 30 48 4,948 2,654,272

A543 47 36 60 29,387 102,538,890

A553 55 43 75 306,955 9,248,466,183

Table 1: Numerical data of test examples

When the number of support hyperplanes is very large relative to the triangulation
size, as for cyclo60, total pyramid decomposition is much better than lexicographic
triangulation and can compete with the hybrid algorithm. This is not surprising since
the pyramids built by the hybrid algorithm are close to being simplicial. The efficiency
of parallelization depends on the use of PROCESSPYRSREC: the dependence of the
mother on the daughters limits the gain by parallelization.

Input threads lex triang total pyr dec hybrid

CondPar 1 15.8 s 2:06 m 3.0 s
20 10.5 s 1:20 m 2.8 s

A443 1 8:32 m 4:37 m 12.0 s
20 39.7 s 1:23 m 5.4 s s

A543 1 – – 8:06 m
20 4:53 h – 44.0 s

A553 20 – – 1:22 h

lo6 1 – – 3:19 h
20 – – 27:11 m

5x5 1 45:39 m 11:52 m 1:25 m
20 5:16 m 5:18 m 18.5 s

cyclo60 1 – 12:35 m 5:10 m
20 5:45 h 3:14 m 1:21 m

Table 2: Triangulation

For the computation of support hyperplanes the hybrid algorithm shows its power
only for cones with truly large numbers of support hyperplanes, like A553 or cyclo60.
The third example lo6 in Table 3 is a borderline case in which Pure Fourier-Motzkin
elimination and the hybrid algorithm behave almost identically. The computation times
of total pyramid decomposition are almost identical with those for triangulation since

16



the only difference is that the simplicial cones must be stored.

Input threads Fourier-Motzkin hybrid

lo6 1 39.3 s 44.2 s
20 4.5 s 4.1 s

cyclo60 1 – 2:52 m
20 1:23 h 44.3 s

A553 1 2:48 h 11:47 m
20 10:29 m 1:08 m

Table 3: Support hyperplanes

5. Evaluation of simplicial cones

The fast computation of triangulations via pyramid decomposition must be accom-
panied by an efficient evaluation of the simplicial cones in the triangulation ∆, which,
after the introduction of the pyramid decomposition, is almost always the more time
consuming step. Like the processing of pyramids, the evaluation of simplicial cones is
parallelized in Normaliz.

Let σ be a simplicial cone generated by the linearly independent vectors v1, . . . ,vd .
The evaluation is based on the generator matrix Gσ whose rows are v1, . . . ,vd . Before
we outline the evaluation procedure, let us substantiate the remark made in Section 3
that finding the support hyperplanes amounts to the inversion of Gσ . Let Hi be the
support hyperplane of σ opposite to vi, given by the linear form λi = a1ie∗1+ · · ·+adie∗d
with coprime integer coefficients a j. Then

λi(vk) =
d

∑
j=1

vk ja ji =

{
htHi(vi), k = i,
0, k 6= i.

(1)

Thus the matrix (ai j) is G−1
σ up to scaling of its columns. Usually the inverse is com-

puted only for the first simplicial cone in every pyramid since its support hyperplanes
are really needed. But matrix inversion is rather expensive, and Normaliz goes to great
pains to avoid it.

Normaliz computes sets of vectors, primarily Hilbert bases, but also measures, for
example the volumes of rational polytopes. A polytope P arises from a cone C by cut-
ting C with a hyperplane, and for Normaliz such hyperplanes are defined by gradings:
a grading is a linear form deg : Zd → Z (extended naturally to Rd) with the following
properties: (i) deg(x)> 0 for all x ∈C, x 6= 0, and (ii) deg(Zd) = Z. The first condition
guarantees that the intersection P =C∩A1 for the affine hyperplane

A1 = {x ∈ Rd : deg(x) = 1}

is compact, and therefore a rational polytope. The second condition is harmless for
integral linear forms since it can be achieved by extracting the greatest common divisor
of the coefficients of deg with respect to the dual basis.
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The grading deg can be specified explicitly by the user or chosen implicitly by
Normaliz. The implicit choice makes only sense if there is a natural grading, namely
one under which the extreme integral generators of C all have the same degree. (If it
exists, it is of course uniquely determined.)

At present, Normaliz evaluates the simplicial cones σ in the triangulation of C for
the computation of the following data:

(HB) the Hilbert basis of C,
(LP) the lattice points in the rational polytope P =C∩A1,
(Vol) the normalized volume vol(P) of the rational polytope P (also called the multi-

plicity of C),
(HF) the Hilbert or Ehrhart function H(C,k) = |kP∩Zd |, k ∈ Z+.

5.1. Volume computation

Task (Vol) is the easiest, and Normaliz computes vol(P) by summing the volumes
vol(σ ∩ A1) where σ runs over the simplicial cones in the triangulation. With the
notation introduced above, one has

vol(σ ∩A1) =
|det(Gσ )|

deg(v1) · · ·deg(vd)
.

For the justification of this formula note that the simplex σ ∩A1 is spanned by the
vectors vi/deg(vi), i = 1, . . . ,d, and that the vertex 0 of the d-simplex δ = conv(0,σ ∩
A1) has (lattice) height 1 over the opposite facet σ ∩A1 of δ so that vol(σ ∩A1) =
vol(δ ).

In pure volume computations Normaliz (since version 2.9) utilizes the following
proposition that often reduces the number of determinant calculations significantly.

Proposition 7. Let σ and τ be simplicial cones sharing a facet F Let v1, . . . ,vd span τ

and let vd be opposite of F. If det(Gσ )|= 1, then |det(Gτ)|= htF(vd).

PROOF. The proposition is a special case of [6, Prop. 3.9], but is also easily seen
directly. Suppose that wd is the generator of σ opposite to F . Then Gσ = {v1, . . . ,vd−1,
wd}, and |detGσ |= 1 by hypothesis. Therefore v1, . . . ,vd−1,wd span Zd . With respect
to this basis, the matrix of coordinates of v1, . . . ,vd is lower trigonal with 1 on the
diagonal, except in the lower right corner where we find −htF(vd).

Every new simplicial cone τ found by EXTENDTRI is taken piggyback by an al-
ready known “partner” σ sharing a facet F with τ . Therefore Normaliz records |detGσ |
with σ , and if |detGσ | = 1 there is no need to compute |det(Gτ)| since the height of
the “new” generator vd over F is known. Remark 10(b) contains some numerical data
illuminating the efficiency of this strategy that we call exploitation of unimodularity.
One should note that it is inevitable to compute |det(Gσ )| for the first simplicial cone
in every pyramid.
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5.2. Lattice points in the fundamental domain

The sublattice Uσ spanned by v1, . . . ,vd acts on Rd by translation. The semi-open
parallelotope

par(v1, . . . ,vd) = {q1v1 + · · ·+qdvd : 0≤ qi < 1}.

is a fundamental domain for this action; see Figure 5. In particular,

E = Eσ = par(v1, . . . ,vd)∩Zd

is a set of representatives of the group Zd/Uσ . The remaining tasks depend crucially
on the set E.

v2

v1

Figure 5: Lattice points in the fundamental domain

For the efficiency of the evaluation it is important to generate E as fast as possible.
One finds E in two steps:

(Rep) find a representative of every residue class of the vectors in Zd , and
(Mod) reduce its coefficients with respect to the Q-basis v1, . . . ,vd modulo 1.

The first idea for (Rep) that comes to mind (and used in the first version of Nor-
maliz) is to decompose Zd/Uσ into a direct sum of cyclic subgroups Zui, i = 1, . . . ,d
where u1, . . . ,ud is a Z-basis of Zd and denotes the residue class modulo Uσ . The ele-
mentary divisor theorem guarantees the existence of such a decomposition, and finding
it amounts to a diagonalization of Gσ over Z. But diagonalization is even more ex-
pensive than matrix inversion, and therefore it is very helpful that a filtration of Zd/Uσ

with cyclic quotients is sufficient. Such a filtration can be based on trigonalization:

Proposition 8. With the notation introduced, let e1, . . . ,ed denote the unit vectors in
Zd and let X ∈GL(d,Z) such that XGσ is an upper triangular matrix D with diagonal
elements a1, . . . ,ad ≥ 1. Then the vectors

b1e1 + · · ·+bded , 0≤ bi < ai, i = 1, . . . ,d, (2)

represent the residue classes in Zd/Uσ .

19



PROOF. Note that the rows of XGσ are a Z-basis of Uσ . Since |Zd/Uσ |= |detGσ |=
a1 · · ·ad , it is enough to show that the elements listed represent pairwise different
residue classes. Let p be the largest index such that ap > 1. Note that ap is the order of
the cyclic group Zep, and that we obtain a Z-basis of U ′σ =Uσ +Zep if we replace the
p-th row of XGσ by ep. If two vectors b1e1+ · · ·+bpep and b′1e1+ · · ·+b′pep in our list
represent the same residue class modulo Uσ , then they are even more so modulo U ′σ .
It follows that bi = b′i for i = 1, . . . , p−1, and taking the difference of the two vectors,
we conclude that bp = b′p as well.

The first linear algebra step that comes up is therefore the trigonalization

XGσ = D. (3)

Let Gtr
σ be the transpose of Gσ . For (Mod) it is essentially enough to reduce those

ei modulo 1 that appear with a coefficient > 0 in (2), and thus we must solve the
simultaneous linear systems

Gtr
σ xi = ei, ai > 1, (4)

where we consider xi and ei as column vectors. In a crude approach one would simply
invert the matrix Gtr

σ (or Gσ ), but in general the number of i such that ai > 1 is small
compared to d (especially if d is large), and it is much better to solve a linear system
with the specific multiple right hand side given by (4). The linear algebra is of course
done over Z, using a1 · · ·ad as a common denominator. Then Normaliz tries to pro-
duce the residue classes and to reduce them modulo 1 (or, over Z, modulo a1 · · ·ad) as
efficiently as possible.

For task (LP) one extracts the vectors of degree 1 from E, and the degree 1 vectors
collected from all σ from the set of lattice points in P = C∩A1. For (HB) one first
reduces the elements of E ∪{v1, . . . ,vd} to a Hilbert basis of σ , collects these and then
applies “global” reduction in C. This procedure has been described in [10].

5.3. Hilbert series and Stanley decomposition

The mathematically most interesting task is (HF). The Hilbert series is defined by

HC(t) = ∑
x∈C∩Zd

tdegx =
∞

∑
k=0

H(C,k)tk, H(C,k) = |{x ∈C : degx = k}|.

It is well-known that HC(t) is the power series expansion of a rational function in t.
For a simplicial cone σ spanned by v1, . . . ,vd as above one has

Hσ (t) =
h0 +h1t + · · ·+hsts

(1− tg1) · · ·(1− tgd )
, gi = degvi, h j = |{x ∈ Eσ : degx = j}|.

This follows immediately from the disjoint decomposition

σ ∩Zd =
⋃

x∈Eσ

x+Mσ (5)
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where Mσ is the (free) monoid generated by v1, . . . ,vd .
However, one cannot compute HC(t) by simply summing these functions over σ ∈

∆ since points in the intersections of the simplicial cones σ would be counted several
times. Fortunately, the intricate inclusion-exclusion problem can be avoided since there
exist disjoint decompositions

C =
⋃

σ∈∆

σ \Sσ (6)

of C by semi-open simplicial cones σ \ Sσ where Sσ is the union of some facets (and
not just arbitrary faces!) of σ . Following Kleinschmidt and Smilansky [32] we call a
decomposition of type (6) a facet cover of ∆. (The name is motivated by the fact that
each lower dimensional face of ∆ is contained in exctly one of the “surviving” facets.)

Before we discuss the existence and computation of a facet cover, let us first derive
a representation of the Hilbert series based on it. It generalizes the h-vector formula of
McMullen-Walkup [9, 5.1.14].

Let σ ∈ ∆ and x ∈ Eσ , x = ∑qivi. Then we define ε(x) as the sum of all vi such
that (i) qi = 0 and (ii) the facet opposite to vi belongs to S. Since (x +Mσ ) \ S =
ε(x)+ x+Mσ , we obtain the Stanley decomposition

C∩Zd =
⋃

σ∈∆

Mσ \Sσ =
⋃

σ∈∆

⋃
x∈Eσ

x+ ε(x)+Mσ . (7)

of C∩Zd into disjoint subsets. A Stanley decomposition into 4 components is illus-
trated by Figure 6 in which lattice points in different components are marked differ-
ently.

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

+ + + + + +

+ +

Figure 6: A Stanley decomposition
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The series Hσ\Sσ
(t) is as easy to compute as Hσ (t):

Hσ\Sσ
(t) = ∑

y∈Mσ \Sσ

tdegy = ∑
x∈Eσ

∑
z∈Mσ

tdegx+ε(x)+z = ∑
x∈Eσ

tdegx+ε(x)Hσ (t)

=
∑x∈Eσ

tdegε(x)+degx

(1− tg1) · · ·(1− tgd )
. (8)

It only remains to sum the series Hσ\Sσ
(t) over the triangulation ∆.

The existence of a facet cover and (consequently) a Stanley decomposition of C was
shown by Stanley [39, Theorem 5.2] using the existence of a line shelling of C (proved
by Bruggesser and Mani). Instead of finding a shelling order for the lexicographic
triangulation (which is in principle possible), Normaliz 2.0–2.5 used a line shelling for
the decomposition, as discussed in [10].

This approach works well for cones of moderate size, but has a major drawback:
finding the sets S requires searching over the shelling order, and in particular the whole
triangulation must be stored. We learned a much simpler principle for the disjoint
decomposition (already implemented in Normaliz 2.7) from Köppe and Verdoolaege
[33]. It was previously used by Kleinschmidt and Smilansky [32] (also see Stanley
[40, p. 85]). As a consequence, each simplicial cone in the triangulation can be treated
in complete independence from the others, and can therefore be discarded once it has
been evaluated (unless the user insists on seeing the triangulation):

Lemma 9. Let OC be a vector in the interior of C such that OC is not contained in a
support hyperplane of any simplicial σ in a triangulation of C. For σ choose Sσ as the
union of the support hyperplanes H <(σ ,OC). Then the semi-open simplicial cones
σ \Sσ form a disjoint decomposition of C.

See [33] for a proof. Figure 7 shows a facet cover resulting from Lemma 9.

OC

+−+
−+ −+

−+

−+

+
− −

+

−+
+

+

+ +

+

+

+

Figure 7: Using the order vector

It is of course not possible to choose an order vector OC that avoids all hyper-
planes in advance, but this is not a real problem. Normaliz chooses OC in the interior
of the first simplicial cone, and works with a lexicographic infinitesimal perturbation
O′C. (This trick is known as ”simulation of simplicity” in computational geometry; see
Edelsbrunner [22]). If OC ∈ H< (or OC ∈ H>), then O′C ∈ H< (or O′C ∈ H>). In the
critical case OC ∈ H, we take the linear form λ representing H and look up its co-
ordinates in the dual basis e∗1, . . . ,e

∗
d . If the first nonzero coordinate is negative, then

O′C ∈ H<, and else O′C ∈ H>.
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At first it seems that one must compute the support hyperplanes of σ in order to
apply Lemma 9. However, it is much better to solve the system

Gtr
σ Iσ = OC. (9)

The solution Iσ is called the indicator of σ . One has OC ∈H< (or OC ∈H>) if Iσ
i < 0

(or Iσ
i > 0) for the generator vi opposite to H (λ vanishes on H). Let us call σ generic

if all entries of Iσ are nonzero.
If Iσ

i = 0—this happens rarely, and very rarely for more than one index i—then we
are forced to compute the linear form representing the support hyperplane opposite of
vi. In view of (1) this amounts to solving the systems

Gσ x = ei, Iσ
i = 0, (10)

simultaneously for the lexicographic decision.
If σ is unimodular, in other words, if |detGσ | = 1, then the only system to be

solved is (9), provided that σ is generic. Normaliz tries to take advantage of this fact
by guessing whether σ is unimodular, testing two necessary conditions:

(PU1) Every σ (except the first) is inserted into the triangulation with a certain gen-
erator xi. Let H be the facet of σ opposite to xi. If htH(xi) > 1, then σ is
nonunimodular. (The number htH(xi) has been computed in the course of the
triangulation.)

(PU2) If gcd(degv1, . . . ,degvd)> 1, then σ is not unimodular.

If σ passes both tests, we call it potentially unimodular. (Data on the efficiency of this
test will be given in Remark 10(a)).

After these preparations we can describe the order in which Normaliz treats the
trigonalization (3) and the linear systems (4), (9) and (10):

(L1) If σ is potentially unimodular, then (9) is solved first. It can now be decided
whether σ is indeed unimodular.

(L2) If σ is not unimodular, then the trigonalization (3) is carried out next. In the
potentially unimodular, but nongeneric case, the trigonalization is part of the
solution of (10) (with multiple right hand side).

(L3) In the nonunimodular case, we now solve the system (4) (with multiple right
hand side).

(L4) If σ is not potentially unimodular and not generic, it remains to solve the system
(10) (with multiple right hand side).

As the reader may check, it is never necessary to perform all 4 steps. In the uni-
modular case, (L1) must be done, and additionally (L2) if σ is nongeneric. If σ is not
even potentially unimodular, (L2) and (L3) must be done, and additionally (L4) if it
is nongeneric. In the potentially unimodular, but nonunimodular case, (L1), (L2) and
(L3) must be carried out.
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5.4. Presentation of Hilbert series
We conclude this section with a brief discussion of the computation and the repre-

sentation of the Hilbert series by Normaliz. The reader can find the necessary back-
ground in [6, Chapter 6].

Summing the Hilbert series (8) is very simple if they all have the same denominator,
for example in the case in which the generators of C (or at least the extreme integral
generators) have degree 1. For efficiency, Normaliz first forms “denominator classes”
in which the Hilbert series with the same denominator are accumulated. At the end, the
class sums are added over a common denominator that is extended whenever necessary.
This yields a “raw” form of the Hilbert series of type

HC(t) =
R(t)

(1− ts1) · · ·(1− tsr)
, R(t) ∈ Z[t], (11)

whose denominator in general has > d factors.
In order to find a presentation with d factors, Normaliz proceeds as follows. First it

reduces the fraction to lowest terms by factoring the denominator of (11) into a product
of cyclotomic polynomials:

HC(t) =
Z(t)

ζz1 · · ·ζzw

, Z(t) ∈ Z[t], ζz j - Z(t), (12)

which is of course the most economical way for representing HC(t) (as a single frac-
tion). The orders and the multiplicities of the cyclotomic polynomials can easily be
bounded since all denominators in (8) divide (1− t`)d where ` is the least common
multiple of the degrees degxi. So we can find a representation

HC(t) =
F(t)

(1− te1) · · ·(1− ted )
, F(t) ∈ Z[t], (13)

in which ed is the least common multiple of the orders of the cyclotomic polynomials
that appear in (12), ed−1 is the least common multiple of the orders that have multi-
plicity ≥ 2 etc. Normaliz produces the presentation (13) whenever the degree of the
numerator remains of reasonable size.

It is well-known that the Hilbert function itself is a quasipolynomial:

H(C,k) = q0(k)+q1(k)k+ · · ·+qd−1(k)kd−1, k ≥ 0, (14)

where the coefficients q j(k) ∈ Q are periodic functions of k whose common period is
the least common multiple of the orders of the cyclotomic polynomials in the denomi-
nator of (12). Normaliz computes the quasipolynomial, with the proviso that its period
is not too large. It is not hard to see that the periods of the individual coefficients are
related to the representation (13) in the following way: ek is the common period of
the coefficients qd−1, . . . ,qd−k. The leading coefficient qd−1 is actually constant (hence
e1 = 1), and related to the multiplicity by the equation

qd−1 =
vol(P)
(d−1)!

. (15)
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Since qd−1 and vol(P) are computed completely independently from each other, equa-
tion (15) can be regarded as a test of correctness for both numbers.

The choice (13) for HC(t) is motivated by the desire to find a standardized repre-
sentation whose denominator conveys useful information. The reader should note that
this form is not always the expected one. For example, for C = R2

+ with deg(e1) = 2
and deg(e2) = 3, the three representations (11)–(13) are

1
(1− t2)(1− t3)

=
1

ζ 2
1 ζ2ζ3

=
1− t + t2

(1− t)(1− t6)
.

Actually, it is unclear what the most natural standardized representation of the Hilbert
series as a fraction of two polynomials should look like, unless the denominator is
(1− t)d . Perhaps the most satisfactory representation should use a denominator (1−
t p1) · · ·(1− t pd ) in which the exponents pi are the degrees of a homogeneous system
of parameters (for the monoid algebra K[Zd ∩C] over an infinite field K). At present
Normaliz cannot find such a representation (except the one with the trivial denominator
(1− t`)d)), but future versions may contain this functionality.

6. Computational results

In this section we want to document that the algorithmic approach described in the
previous sections (and [10]) is very efficient and masters computations that appeared
inaccessible some years ago. We compare Normaliz 3.0 to 4ti2, version 1.6.6 [1], for
Hilbert basis computations and to LattE integrale, version 1.7.3 [20], for Hilbert series.

Almost all computations were run on a Dell PowerEdge R910 with 4 Intel Xeon
E7540 (a total of 24 cores running at 2 GHz), 128 GB of RAM and a hard disk of 500
GB. The remaining computations were run on a SUN xFire 4450 with a comparable
configuration. In parallelized computations we have limited the number of threads
used to 20. As the large examples below show, the parallelization scales efficiently.
In Tables 5 and 6 serial execution is indicated by 1x whereas 20x indicates parallel
execution with a maximum of 20 threads. Normaliz needs relatively little memory.
Almost all Normaliz computations mentioned run stably with < 1 GB of RAM.

Normaliz is distributed as open source under the GPL. In addition to the source
code, the distribution contains executables for the major platforms Linux, Mac and
Windows.

6.1. Overview of the examples
We have chosen the following test candidates:

1. CondPar, CEffPl and PlVsCut come from social choice theory. CondPar rep-
resents the Condorcet paradox, CEffPl computes the Condorcet efficiency of
plurality voting, and PlVsCut compares plurality voting to cutoff, all for 4 can-
didates. See Schürmann [37] for more details.

2. 4x4, 5x5 and 6x6 represent monoids of “magic squares”: squares of size 4×4,
5×5 and 6×6 to be filled with nonnegative integers in such a way that all rows,
columns and the two diagonals sum to the same “magic constant”. They belong
to the standard LattE distribution [20].
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3. bo5 and lo6 belong to the area of statistical ranking; see Sturmfels and Welker
[41]. bo5 represents the boolean model for the symmetric group S5 and lo6

represents the linear order model for S6.
4. small and big are test examples used in the development of Normaliz without

further importance. small has already been discussed in [10].
5. cyclo36, cyclo38, cyclo42 and cyclo60 represent the cyclotomic monoids

of orders 36, 38, 42 and 60. They are additively generated by the pairs (ζ ,1) ∈
C×Z+ where ζ runs over the roots of unity of the given order. They have been
discussed by Beck and Hoşten [3].

6. A443 and A553 represent monoids defined by dimension 2 marginal distributions
of dimension 3 contingency tables of sizes 4×4×3 and 5×5×3. They had been
open cases in the classification of Ohsugi and Hibi [34] and were finished in [8].

7. cross10, cross15 and cross20 are (the monoids defined by) the cross poly-
topes of dimensions 10, 15 and 20 contained in the LattE distribution [20].

Input edim rank #ext #supp #Hilb # triangulation # Stanley dec

CondPar 24 24 234 27 242 1,344,671 1,816,323

PlVsCut 24 24 1,872 28 9,621 257,744,341,008 2,282,604,742,033

CEffPl 24 24 3,928 30 25,192 347,225,775,338 4,111,428,313,448

4x4 16 8 20 16 20 48 48

5x5 25 15 1,940 25 4,828 14,615,011 21,210,526

6x6 36 24 97,548 36 522,347 – –

bo5 31 27 120 235 120 20,853,141,970 20,853,141,970

lo6 16 16 720 910 720 5,796,124,824 5,801,113,080

small 6 6 190 32 34,591 4580 2,276,921

big 7 7 27 56 73,551 542 18,788,796

cyclo36 13 13 36 46,656 37 44,608 46,656

cyclo38 19 19 38 923,780 39 370,710 923,780

cyclo42 13 13 42 24,360 43 153,174 183,120

cyclo60 17 17 60 656,100 61 11,741,300 13,616,100

A443 40 30 48 4,948 48 2,654,272 2,654,320

A553 55 43 75 306,955 75 9,248,466,183 9,249,511,725

cross10 11 11 20 1,024 21 512 1,024

cross15 16 16 30 32,678 31 16,384 32,768

cross20 21 21 40 1,048,576 41 524,288 1,048,576

Table 4: Numerical data of test examples

The columns of Table 4 contain the values of characteristic numerical data of the
test examples M, namely: edim is the embedding dimension, i. e., the rank of the lattice
in which M is embedded by its definition, whereas rank is the rank of M. #ext is the
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number of the extreme rays of the cone R+M, and #supp the number of its support
hyperplanes. #Hilb is the size of the Hilbert basis of M.

The last two columns list the number of simplicial cones in the triangulation and
the number of components of the Stanley decomposition. These data are not invariants
of M. However, if the triangulation uses only lattice points of a lattice polytope P (all
examples starting from bo5), then the number of components of the Stanley decompo-
sition is exactly the normalized volume of P.

The open entries for 6x6 seem to be out of reach presently. The Hilbert series of
6x6 is certainly a challenge for the future development of Normaliz. Other challenges
are lo7, the linear order polytope for S7 and the first case of the cyclotomic monoids
cyclo105 that is not covered by the theorems of Beck and Hoşten [3]. Whether
cyclo105 will ever become computable, is quite unclear in view of its gigantic num-
ber of support hyperplanes. However, we are rather optimistic for lo7; the normality
of the linear order polytope for S7 is an open question.

6.2. Hilbert bases

Table 5 contains the computation times for the Hilbert bases of the test candidates.
When comparing 4ti2 and Normaliz one should note that 4ti2 is not made for the input
of cones by generators, but for the input via support hyperplanes (CondPar – 6x6). The
same applies to the Normaliz dual mode -d. While Normaliz is somewhat faster even
in serial execution, the times are of similar magnitude. It is certainly an advantage
that its execution has been parallelized. When one runs Normaliz with the primary
algorithm on such examples it first computes the extreme rays of the cone and uses
them as generators.

Despite of the fact that several examples could not be expected to be computable
with 4ti2, we tried. We stopped the computations when the time had exceeded 150 h
(T) or the memory usage had exceeded 100 GB (R). However, one should note that
A553 (and related examples) can be computed by “LattE for tea, too” (http://www.
latte-4ti2.de), albeit with a very large computation time; see [8]. This approach
uses symmetries to reduce the amount of computations.

In Table 5 the option -d indicates the dual algorithm, and -N indicates the the
primal algorithm for Hilbert bases. The number n of threads is given by nx.

The examples CEffPl, PlVsCut, 5x5 and 6x6 are clear cases for the dual algo-
rithm. However, it is sometimes difficult to decide whether the primary, triangulation
based algorithm or the dual algorithm is faster. As small clearly shows, the dual al-
gorithm behaves badly if the final Hilbert basis is large, even if the number of support
hyperplanes is small.

The computation time of bo5 which is close to zero is quite surprising at first
glance, but it has a simple explanation: the lexicographic triangulation defined by the
generators in the input file is unimodular so that all pyramids have height 1, and the
partial triangulation is empty.

The computation time for the Hilbert basis of cyclo38 is large compared to the
time for the Hilbert series in Table 6. The reason is the large number of support hyper-
planes together with a large number of candidates for the Hilbert basis. Therefore the
reduction needs much time.
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Input 4ti2 Nmz -d 1x Nmz -d 20x Nmz -N 1x Nmz -N 20x

CondPar 0.024 s 0.014 s 0.026 s 2.546 s 0.600 s

PlVsCut 6.672 s 0.820 s 0.476 s – –

CEffPl 6:08 m 28.488 s 3.092 s – –

4x4 0.008 s 0.003 s 0.011 s 0.005 s 0.016 s

5x5 3.823 s 1.004 s 0.339 s 1:06 m 23.714 s

6x6 115:26:31 h 14:19:39 h 1:19:34 h – –

bo5 T – – 0.273 s 0.174 s

lo6 31:09 m 1:46 m 39.824 s 1:08 m 13:369 s

small 48:19 m 18:45 m 3:25 m 1.935 s 1.878 s

big T – – 1:45 m 15.636 s

cyclo36 T – – 0.774 s 0.837 s

cyclo38 R – – 6:32:50 h 1:04:04 h

cyclo60 R – – 2:55 m 1:02 m

A443 T – – 1.015 s 0.270 s

A553 R – – 44:11 m 4:24 m

Table 5: Computation times for Hilbert bases

The Hilbert basis computations in the Normaliz primary mode show the efficiency
of partial triangulations (see Section 4.4). Some numerical data are contained in [8].

We have omitted the cross examples from the Hilbert basis computation in view
of the obvious unimodular triangulation of the cross polytopes (different from the one
used by Normaliz). cross20 needs 16 s for Nmz -N x1.

6.3. Hilbert series

Now we compare the computation times for Hilbert series of Normaliz and LattE.
One should note that the computations with LattE are not completely done by open
source software: for the computation of Hilbert series it invokes the commercial pro-
gram Maple. LattE has a variant for the computation of Hilbert polynomials that avoids
Maple; however, it can only be applied to lattice polytopes (and not to rational poly-
topes in general).

There are three columns with computation times for LattE. The first, LattE ES,
lists the times for LattE alone, without Maple, the second, LattE + M ES, the com-
bined computation time of LattE and Maple (both for Hilbert series), and the third,
LattE EP, the computation time of LattE for the Hilbert polynomial. In all of these
three columns we have chosen the best time that we have been able to reach with vari-
ous parameter settings for LattE. However, LattE has failed on many candidates, partly
because it produces enormous output files. We have stopped it when the time exceeded
150 hours (T), the memory usage was more than 100 GB RAM (R) or it has produced
more than 400 GB of output (O). These limitation were imposed by the system avail-
able for testing. In three cases it has exceeded the system stack limit; this is marked
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by S.
It is easy to see that crossn has Hilbert series (1+ t)n/(1− t)n+1. Therefore it is a

good test candidate for the correctness of the algorithm.

Input LattE ES LattE+M ES LattE EP Nmz 1x Nmz 20x

CondPar O S – 18.085 s 8.949 s

PlVsCut O S – – 145:43:03 h

CEffPl O S – – 197:45:10 h

4x4 0.329 s 4.152 s – 0.006 s 0.018 s

5x5 O 72:39:23 h – 3:59 m 1:12 m

bo5 T T T 82:40:18 h 6:41:12 h

lo6 R R T 13:02:44 h 1:21:52 h

small 46.266 s 30:15 m 22.849 s 0.233 s 0.095 s

big R R 10.246 s 1.473 s 0.148 s

cyclo36 R R 23:03 m 1.142 s 1.106 s

cyclo38 R R R 26.442 s 22.789 s

cyclo42 R R 1:44:07 h 3.942 s 1.521 s

cyclo60 R R T 5:57 m 1:44 m

A443 R R R 49.541 s 18.519 s

A553 R R T 88:21:18 h 6:29:05 h

cross10 T T 9.550 s 0.016 s 0.022 s

cross15 R R 21:48 m 0.536 s 0.533 s

cross20 R R R 26.678 s 26.029 s

Table 6: Computation times for Hilbert series and Hilbert polynomials

Remark 10. (a) From the Hilbert series calculation of PlVsCut we have obtained the
following statistics on the types of simplicial cones:

1. 61,845,707,957 are unimodular,
2. 108,915,272,879 are not unimodular, but satisfy condition (PU1), and of these
3. 62,602,898,779 are potentially unimodular.

This shows that condition (PU2) that was added at a later stage has a satisfactory ef-
fect. (The number of potentially unimodular, but nonunimodular simplicial cones is
rather high in this class.) The average value of |detGσ | is ≈ 10. This can be read
off Table 4 since the sum of the |detGσ | is the number of components of the Stanley
decomposition.

The number of nongeneric simplicial cones is 129,661,342. The total number s of
linear systems that had to be solved for the computation of the Hilbert series is bounded
by 516,245,872,838≤ s≤ 516,375,534,180.

The total number of pyramids was 80,510,681. It depends on the number of paral-
lel threads that are allowed.
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(b) For examples with a high proportion of unimodular cones the exploitation
of unimodularity based on Proposition 7 is very efficient in volume computations.
With this strategy, lo6 requires only 102,526,351 determinant calculations instead
of 5,801,113,080. For PlVsCut it saves about 25%.

(c) For the examples from social choice theory (CondPar, CEffPl, PlVsCut)
Schürmann [37] has suggested a very efficient improvement via symmetrization that
replaces the Ehrhart series of a polytope by the generalized Ehrhart series of a projec-
tion. Normaliz now has an offspring, NmzIntegrate, that computes generalized Ehrhart
series; see Bruns and Söger [13].

The volumes of the pertaining polytopes had already been computed by Schürmann
with LattE integrale. This information was very useful for checking the correctness of
Normaliz.

(d) The short Normaliz computation times for the cyclo and cross examples are
made possible by the special treatment of simplicial facets in the Fourier-Motzkin elim-
ination; see [10].
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[37] A. Schürmann, Exploiting polyhedral symmetries in social choice. Social Choice
and Welfare 40 (2013), 1097–1110.

32
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