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Chapter 1. Introduction

1.1. Scope of this manual

The User's Guide for Application Developersis the first manual the reader should consult when learning about
Geant4 or developing a Geant4-based detector simulation program. This manual is designed to:

« introduce the first-time user to the Geant4 object-oriented detector simulation toolkit,

* provide adescription of the available tools and how to use them, and

« supply the practical information required to develop and run simul ation applications which may beused in real
experiments.

Thismanua isintended to be an overview of the toolkit, rather than an exhaustive treatment of it. Related physics
discussions are not included unless required for the description of a particular tool. Detailed discussions of the
physicsincluded in Geant4 can befound in the Physics Reference Manual. Details of the design and functionality
of the Geant4 classes can be found in the User's Guide for Toolkit Developers.

Geant4 isacompletely new detector simulation toolkit written in the C++ language. Thereader isassumed to have
a basic knowledge of object-oriented programming using C++. No knowledge of earlier FORTRAN versions of
Geant isrequired. Although Geant4 isafairly complicated software system, only arelatively small part of it needs
to be understood in order to begin devel oping detector simulation applications.

1.2. How to use this manual

A very basic introduction to Geant4 is presented in Chapter 2, " Getting Started with Geant4 - Running a
Simple Examplée". It is a recipe for writing and running a simple Geant4 application program. New users of
Geant4 should read this chapter first. It is strongly recommended that this chapter be read in conjunction with
a Geant4 system installed and running on your computer. It is helpful to run the provided examples as they are
discussed in the manual. To install the Geant4 system on your computer, please refer to the Installation Guide
for Setting up Geant4 in Y our Computing Environment.

Chapter 3, " Toolkit Fundamentals" discusses general Geant4 issues such as class categories and the physical
units system. It goes on to discuss runs and events, which are the basic units of a simulation.

Chapter 4," Detector Definition and Response” describeshow to construct adetector from customized materials
and geometric shapes, and embed it in electromagnetic fields. It also describes how to make the detector sensitive
to particles passing through it and how to store this information.

How particles are propagated through a material is treated in Chapter 5, " Tracking and Physics". The Geant4
"philosophy" of particle tracking is presented along with summaries of the physics processes provided by the
toolkit. The definition and implementation of Geant4 particles is discussed and a list of particle properties is
provided.

Chapter 6, " User Actions" isadescription of the "user hooks" by which the simulation code may be customized
to perform special tasks.

Chapter 7," Communication and Control" providesasummary of the commands avail ableto the user to control
the execution of thesimulation. After Chapter 2, Chapters 6 and 7 are of formeost importanceto the new application
developer.

The display of detector geometry, tracks and events may be incorporated into a simulation application by using
the tools described in Chapter 8, " Visualization" .

Chapter 9, " Examples' provides a set of basic, novice, extended and advanced simulation codes which may be
compiled and run "asis" from the Geant4 source code. These examples may be used as educational tools or as
base code from which more complex applications are devel oped.



http://cern.ch/geant4/support/userdocuments.shtml
http://cern.ch/geant4/support/userdocuments.shtml
http://cern.ch/geant4/support/userdocuments.shtml
http://cern.ch/geant4/support/userdocuments.shtml

Chapter 2. Getting Started with Geant4 -
Running a Simple Example

2.1. How to Define the main() Program
2.1.1. A Sample mai n() Method

The contents of nai n() will vary according to the needs of a given simulation application and therefore must
be supplied by the user. The Geant4 toolkit does not provide amai n() method, but a sample is provided here
as aguide to the beginning user. Example 2.1 is the simplest example of mai n() required to build a simulation
program.

Example 2.1. Simplest example of mai n()

#i ncl ude " G4RunManager . hh"
#i ncl ude " AUl manager . hh"

#i ncl ude "Ex(4Det ect or Constructi on01. hh"
#i ncl ude "Ex&4Physi csLi st 00. hh"
#i ncl ude "ExG4Actionlnitialization0Ol. hh"

int main()
{

/1 construct the default run manager
GARunManager * runManager = new G4ARunManager ;

/1 set mandatory initialization classes

runManager - >Set User I ni ti al i zati on(new ExG4Det ect or Constructi on01) ;
runManager - >Set User I ni ti al i zati on(new ExG4Physi csLi st 00) ;
runhManager - >Set User I ni ti al i zati on(new ExG4Actionlnitialization0l);

/Il initialize G4 kernel
runManager->lnitialize();

/1 get the pointer to the U nmnager and set verbosities
AUl manager* U = AUl manager: : Get Ul poi nter();

Ul - >Appl yCommand( "/ run/ ver bose 1");

Ul - >Appl yCommand( "/ event / ver bose 1");

Ul - >Appl yCommand( "/ t r acki ng/ ver bose 1");

/Il start a run
int nunber Of Event = 3;
runManager - >BeanmOn( nunber O Event ) ;

/1 job term nation
del et e runManager ;
return 0;

}

The main() method is implemented by two toolkit classess, ARunManager and
AUl nmanager, and three classes, Ex(ADet ect or Constructi on01l, ExG4Physi csLi st00 and
ExG4Actionlnitialization01,whicharederived fromtoolkit classes. Each of these are explained in the
following sections.

2.1.2. G4RunManager

The first thing mai n() must do is create an instance of the GARunManager class. This is the only manager
classin the Geant4 kernel which should be explicitly constructed in the user'smai n(') . It controlsthe flow of the
program and manages the event loop(s) within arun. If the user wantsto make the simulation code multi-threaded,
GAMIRunManager should be instantiated instead of GARunM anager.

When GARunManager is created, the other major manager classes are also created. They are deleted automat-
ically when GARunManager isdeleted. The run manager is also responsible for managing initialization proce-
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dures, including methods in the user initialization classes. Through these the run manager must be given al the
information necessary to build and run the ssmulation, including

1. how the detector should be constructed,

2. dl the particles and all the physics processes to be simulated,

3. how the primary particle(s) in an event should be produced, and
4. any additional requirements of the simulation.

In the sample mai n() thelines

runManager - >Set User I ni ti al i zati on(new ExG4Det ect or Constructi on01) ;
runManager - >Set User I ni ti al i zati on(new Ex&4Physi csLi st 00) ;
runhManager - >Set User I ni ti al i zati on(new ExG4Actionlnitialization0l);

create objects which specify the detector geometry, physics processes and primary particle, respectively, and pass
their pointers to the run manager. Ex(4Det ect or Const ruct i on01 is an example of a user initiaization

class which is derived from G4VUser Det ect or Const r uct i on. Thisis where the user describes the entire
detector setup, including

* itsgeometry,
» the materials used in its construction,

 adefinition of its sensitive regions and
« the readout schemes of the sensitive regions.

Similarly Ex&APhysi csLi st 01 isderived from (AVUser Physi csLi st and requires the user to define

» the particlesto be used in the simulation,
« al the physics processes to be simulated.

User can also override the default implementation for
* therange cutsfor these particles and

Also ExGAActionlnitializationOl is derived from G4VUser Actionlnitialization and re-
quires the user to define

 so-called user action classes (see next section) that are invoked during the simulation,
« which includes one mandatory user action to define the primary particles.

The next instruction

runManager->lnitialize();

performs the detector construction, creates the physics processes, calculates cross sections and otherwise sets up
the run. The final run manager method in mai n()

int nunber O Event = 3;
runManager - >beanOn( nunber & Event ) ;

begins a run of three sequentially processed events. The beantn() method may be invoked any number of
timeswithinmai n() with each invocation representing a separate run. Once a run has begun neither the detector
setup nor the physics processes may be changed. They may be changed between runs, however, as described in
Section 3.4.4. More information on GARunManager in general isfound in Section 3.4.

As mentioned above, other manager classes are created when the run manager is created. One of theseis the user
interface manager, G4Ul manager . Inmai n() apointer to the interface manager must be obtained

GAUl manager* U = AUl manager: : get Ul poi nter();
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in order for the user to issue commands to the program. In the present exampletheappl yConmand() methodis
called three timesto direct the program to print out information at the run, event and tracking levels of simulation.
A wide range of commands is available which allows the user detailed control of the simulation. A list of these
commands can be found in Section 7.1.

2.1.3. User Initialization and Action Classes
2.1.3.1. User Classes

Therearetwo kinds of user classes, user initialization classes and user action classes. User initialization classesare
used during the initialization phase, while user action classes are used during the run. User initialization classes
should be directly set to GARunManager through Set User | ni ti al i zati on() method, while user action
classes should de defined in G4AVUser Actionlnitializati on class.

2.1.3.2. User Initialization Classes

All three user initialization classes are mandatory. They must be derived from the abstract base classes provided
by Geant4:

e (AVUser Det ect or Constructi on
* (AVUser Physi cslLi st
e AVUserActionlnitialization

Geant4 does not provide default behavior for these classes. GARunManager checks for the existence of these
mandatory classeswhenthel niti al i ze() and BeantOn() methods are invoked.

As mentioned in the previous section, G4VUser Det ect or Const r uct i on requiresthe user to define the de-
tector and G4VUser Physi csLi st requiresthe user to define the physics. Detector definition will be discussed
in Sections Section 2.2 and Section 2.3. Physicsdefinition will be discussed in Sections Section 2.4 and Section 2.5.
Theuser action G4VUser Pri mar yGener at or Act i on requiresthat theinitia event state be defined. Primary
event generation will be discussed in Section 2.8.

AVUser Actionlnitialization should include a least one mandatory user action class
AAVUser Pri mar yGener at or Act i on. All user action classes are descrived in the next section.

Example 2.2. Simplest example of EXG4Act i onl nitializati on01

#i ncl ude "ExG4Actionlnitialization0l. hh"
#i ncl ude "ExXGAPri maryGener at or Acti onO1. hh"

void ExGAActionlnitialization0l1::Build() const

Set User Acti on( new EXGAPri mar yCGener at or Acti on01) ;
}

2.1.3.3. User Action Classes

HAVUser Pri mar yGener at or Act i on isamandatory class the user has to provide. It creates an instance of
aprimary particle generator. EXGAPr i mar yGener at or Act i on01 isan example of auser action classwhich
is derived from GAVUser Pri mar yGener at or Act i on. In this class the user must describe the initial state
of the primary event. This class has a public virtual method named Gener at ePri mari es() which will be
invoked at the beginning of each event. Details will be given in Section 2.6. Note that Geant4 does not provide
any default behavior for generating a primary event.

Geant4 provides additional five user hook classes:

e (AUser RunActi on
e (AUser Event Acti on
e AUser St acki ngActi on
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e AUser Tracki ngActi on
* (AUser St eppi ngActi on

These optional user action classes have several virtual methods which allow the specification of additional proce-
dures at all levels of the simulation application. Details of the user initialization and action classes are provided
in Chapter 6.

2.1.4. AU manager and Ul CommandSubmission

Geant4 provides a category named intercoms. (AUl nanager isthe manager class of this category. Using the
functionalities of this category, you can invoke set methods of class objects of which you do not know the pointer.
In Example 2.3, the verbosities of various Geant4 manager classes are set. Detailed mechanism description and
usage of intercoms will be given in the next chapter, with alist of available commands. Command submission
can be done all through the application.

Example 2.3. An exampleof mai n() using interactive terminal and visualization. Code
modified from the previous example are shown in blue.

#i ncl ude "AARunManager . hh"
#i ncl ude " 4Ul nanager . hh"

#i f def G4AUl _USE
#i ncl ude " AVi sExecuti ve. hh"
#endi f

#i ncl ude "ExXADet ect or Const ructi on01. hh"
#i ncl ude "Ex&4Physi csLi st 00. hh"
#i ncl ude "EXGAPri maryGener at or Acti onO1. hh"

int main()

{
/1 construct the default run nmanager
GARunManager * runManager = new GARunManager;

/'l set mandatory initialization classes
runManager - >Set User I ni ti al i zati on(new ExG4Det ect or Const ructi on01) ;
runManager - >Set User I ni ti al i zati on(new ExG4Physi csLi st 00) ;

/1 set mandatory user action class
runManager - >Set User Acti on( new EXGAPri mar yGener at or Act i on01) ;

I/ initialize &4 kernel
runManager->lnitialize();

/] Get the pointer to the User Interface manager
G4AUl manager * Ul manager = GAUl nanager: : Get Ul poi nter();

if (argc == 1) {
/'l interactive node : define U session
#i fdef AUl _USE
G4Ul Executive* ui = new G4Ul Executive(argc, argv);
U manager - >Appl yCommand( "/ control / execute init.nmac");
ui ->SessionStart();
del ete ui;
#endi f
}
el se {
/1 batch node
G4String conmand = "/control / execute "
GAsString fil eNanme = argv[1];
Ul manager - >Appl yComrand( command+f i | eNane) ;

}

// job term nation
del ete runManager ;
return 0O;
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2.1.5. HAcout and HAcerr

Although not yet included in the above examples, output streams will be needed. G4cout and KAcerr are
iostream objects defined by Geant4. The usage of these objectsis exactly the same as the ordinary cout and cerr,
except that the output streams will be handled by GAUI nanager . Thus, output strings may be displayed on
another window or stored in afile. Manipulation of these output streamswill be described in Section 7.2.4. These
objects should be used instead of the ordinary cout and cerr.

2.2. How to Define a Detector Geometry

2.2.1. Basic Concepts

A detector geometry in Geant4 is made of a number of volumes. The largest volumeis called the World volume.
It must contain, with some margin, al other volumesin the detector geometry. The other volumes are created and
placed inside previous volumes, included in the World volume. The most simple (and efficient) shape to describe
the World is a box.

Each volume is created by describing its shape and its physical characteristics, and then placing it inside a con-
taining volume.

When avolume is placed within another volume, we call the former volume the daughter volume and the latter
the mother volume. The coordinate system used to specify where the daughter volume is placed, is the coordinate
system of the mother volume.

To describe a volume's shape, we use the concept of a solid. A solid is a geometrical object that has a shape and
specific values for each of that shape's dimensions. A cube with a side of 10 centimeters and a cylinder of radius
30 cm and length 75 cm are examples of solids.

To describe avolume'sfull properties, we use alogical volume. It includes the geometrical properties of the solid,
and adds physical characteristics: the material of the volume; whether it contains any sensitive detector elements;
the magnetic field; etc.

We have yet to describe how to position the volume. To do thisyou create a physical volume, which places a copy
of thelogical volumeinside alarger, containing, volume.

2.2.2. Create a Simple Volume

What do you need to do to create a volume?

* Createasolid.
» Create alogical volume, using this solid, and adding other attributes.

Each of the volume types (solid, logical, and physical) has an associated registry (VolumeStore) which contains
alist of all the objects of that type constructed so far. The registries will automatically delete those objects when
requested; users should not deleted geometry objects manually.

2.2.3. Choose a Solid

To create a simple box, you only need to define its name and its extent along each of the Cartesian axes.

Example 2.4. Creating a box.

G4doubl e worl d_hx
GAdoubl e wor | d_hy

3.0
1. 0*
G4doubl e worl d_hz 1. 0*

*
SR=R=

G4Box* wor | dBox
= new HABox("World", world_hx, world_hy, world_hz);
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This creates a box named "World" with the extent from -3.0 meters to +3.0 meters along the X axis, from -1.0 to
1.0 metersin Y, and from -1.0 to 1.0 metersin Z. Note that the G4Box constructor takes as arguments the halfs
of thetotal box size.

Itisalso very simpleto create a cylinder. To do this, you can use the AATubs class.

Example 2.5. Creating a cylinder.

G4doubl e i nner Radi us
G4doubl e out er Radi us
HAdoubl e hz = 25. *cm
G4doubl e start Angl e = 0. *deg;

G4doubl e spanni ngAngl e = 360. *deg;

0.*cm
60. *cm

G4Tubs* tracker Tube
= new GATubs("Tracker",
i nner Radi us,
out er Radi us,
hz,
start Angl e,
spanni ngAngl e) ;

This creates afull cylinder, named "Tracker", of radius 60 centimeters and length 50 cm (the hz parameter repre-
sentsthe haf length in Z).

2.2.4. Create a Logical Volume

To create alogica volume, you must start with a solid and a material. So, using the box created above, you can
create asimplelogical volume filled with argon gas (see Section 2.3) by entering:

GALogi cal Vol ume* wor | dLog
= new GALogi cal Vol une(wor| dBox, Ar, "Wrld");

Thislogical volume is named "World".

Similarly we create alogical volume with the cylindrical solid filled with aluminium

GALogi cal Vol ume* trackerLog
= new GALogi cal Vol une(tracker Tube, A, "Tracker");

and named "Tracker"

2.2.5. Place a Volume

How do you place avolume? Y ou start with alogical volume, and then you decide the aready existing volume
inside of which to placeit. Then you decide whereto placeits center within that volume, and how to rotate it. Once
you have made these decisions, you can create a physical volume, which is the placed instance of the volume,
and embodies all of these atributes.

2.2.6. Create a Physical Volume

Y ou create aphysical volume starting with your logical volume. A physical volumeissimply a placed instance of
the logical volume. Thisinstance must be placed inside a mother logical volume. For simplicity it is unrotated:

Example 2.6. A simple physical volume.

GAdoubl e pos_x = -1.0*neter;
G4doubl e pos_y = 0.0*neter;
GAdoubl e pos_z = 0.0*neter;

GAVPhysi cal Vol une* tracker Phys
= new GAPVPI acenent (0, // no rotation
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GAThr eeVect or (pos_x, pos_y, pos_z),
/] translation position

tracker Log, /1l its |logical volune
"Tracker", /]l its nane

wor | dLog, I/ its nother (logical) volunme
fal se, /1 no bool ean operations

0); /] its copy nunber

This places the logical volumet r acker Log at the origin of the mother volume wor | dLog, shifted by one
meter along X and unrotated. The resulting physical volumeis named "Tracker" and has a copy number of O.

An exception exists to the rule that a physical volume must be placed inside a mother volume. That exception is
for the World volume, which is the largest volume created, and which contains al other volumes. This volume
obviously cannot be contained in any other. Instead, it must be created asa G4APVPI acenent with anull mother
pointer. It also must be unrotated, and it must be placed at the origin of the global coordinate system.

Generally, it is best to choose a simple solid as the World volume, the G4Box solid type is used in al basic
examples.

2.2.7. Coordinate Systems and Rotations

In Geant4, the rotation matrix associated to a placed physical volume represents the rotation of the reference
system of this volume with respect to its mother.

A rotation matrix is normally constructed as in CLHEP, by instantiating the identity matrix and then applying a
rotation to it. Thisis also demonstrated in Example B3.

2.3. How to Specify Materials in the Detector

2.3.1. General Considerations

In nature, general materials (chemical compounds, mixtures) are made of elements, and elements are made of
isotopes. Therefore, these are the three main classes designed in Geant4. Each of these classes has a table as a
static data member, which is for keeping track of the instances created of the respective classes. All three objects
automatically register themselves into the corresponding table on construction, and should never be deleted in
user code.

The GAEl enent class describes the properties of the atoms:

 atomic number,

e number of nucleons,

e atomic mass,

« shdll energy,

» aswell as quantities such as cross sections per atom, etc.

The GAMat eri al class describes the macroscopic properties of matter:

* density,

* dState,

* temperature,

* pressure,

» aswell as macroscopic quantities like radiation length, mean free path, dE/dx, etc.

The GAMat eri al class is the one which is visible to the rest of the toolkit, and is used by the tracking, the

geometry, and the physics. It contains al the information relative to the eventual elements and isotopes of which
it is made, at the same time hiding the implementation details.

2.3.2. Define a Simple Material

In the example below, liquid argon is created, by specifying its name, density, mass per mole, and atomic number.
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Example 2.7. Creating liquid argon.

GAdoubl e z, a, density;
density = 1.390*g/ cn8B;
a = 39.95*¢g/ nol e;

GAMaterial* | Ar = new GAMateri al (name="1i qui dArgon", z=18., a, density);

The pointer to the material, | Ar, will be used to specify the matter of which a given logical volume is made:

GALogi cal Vol unme* nyLbox = new ALogi cal Vol une(aBox, | Ar, "Lbox", 0, 0, 0) ;

2.3.3. Define a Molecule

In the example below, the water, H20, is built from its components, by specifying the number of atoms in the
molecule.

Example 2.8. Creating water by defining its molecular components.

Gddoubl e z, a, density;
GAString nanme, synbol ;
G4i nt nconponents, natomns;

a = 1.01*g/ nol e;
G4El enent* el H = new GAEl ement (nane="Hydr ogen", synbol ="H' , z= 1., a);

a = 16.00*g/ nol e;
G4El enent* el O = new GAEl ement (nane="Oxygen" ,synbol="0" , z= 8., a);

density = 1. 000*g/ cnB;
GAMateri al * H20 = new GAMat eri al (name="Water", densi ty, nconponent s=2) ;

H2O >AddEl enent (el H, nat ons=2) ;
H20 >AddEl enent (el O, nat ons=1);

2.3.4. Define a Mixture by Fractional Mass
In the example below, air is built from nitrogen and oxygen, by giving the fractional mass of each component.

Example 2.9. Creating air by defining the fractional mass of its components.

GAdoubl e z, a, fractionmass, density;
GAString nanme, synbol ;
G4i nt nconponent s;

a = 14.01*g/ nol e;
G4El enent* el N = new GAEl ement (nane="N trogen", synbol ="N' , z= 7., a);

a = 16.00*g/ nol e;
GAEl enent* el O = new GAEl enent (name="0Oxygen" ,synbol="0" , z= 8., a);

density = 1.290*ng/ cnB;
GAMaterial* Air = new GAMateri al (nanme="Air ", density, nconponents=2);

Ai r - >AddEl enent (el N, fracti onmass=70*per Cent ) ;
Ai r - >AddEl ement (el O, fracti onmass=30*per Cent) ;

2.3.5. Define a Material from the Geant4 Material Database
In the example below, air and water are accessed via the Geant4 material database.
Example 2.10. Defining air and water from the internal Geant4 database.

GANi st Manager* man = (AN st Manager: : | nst ance() ;

GAMateri al * H0
GAMaterial * Air

man- >Fi ndOr Bui | dMvat eri al (" G4_WATER') ;
man- >Fi ndOr Bui | dMaterial ("G4_AIR");
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2.3.6. Define a Material from the Base Material

Itispossibleto build new material on base of an existing "base" material. Thisfeatureisuseful for electromagnetic
physicsallowing to peak up for the derived material all correction dataand precomputed tables of stopping powers
and cross sections of the base material. In the example below, two methods how to create water with unusual
density are shown.

Example 2.11. Defining water with user defined density on base of G4 WATER.

GAdoubl e density;

density = 1.05*ng/cnB;
GAMaterial * waterl = new GAMateri al ("Water _1. 05", density, "G4_WATER") ;

density = 1. 03*ng/ cnB;

GAN st Manager* man = GAN st Manager:: | nstance();
GAMateri al * water2 = man->Bui | dvat eri al Wt hNewDensity("Water_1. 03", "G4_WATER', densi ty);

2.3.7. Print Material Information

Example 2.12. Printing information about materials.

Gdcout << H20 \\ print a given materi al
Gdcout << *(GAMaterial::GetMaterial Table()); \\ print the list of nmaterials

In Geant4 examples you all possible ways to build a material.

2.3.8. Access to Geant4 material database

Example 2.13. Geant4 material database may be accessed via Ul commands.

/material/nist/printEl ement Fe \\ print elenent by nane

/material/nist/printEl ementZ 13 \\ print elenent by atom c nunber
/material/nist/listMaterials type \\ print materials type = [sinple | conpound | hep | all]
/mat eri al / g4/ print El enent el mMNane \\ print instantiated el enent by nane
/material/g4/printMterial mat Nane \\ print instantiated naterial by nane

In Geant4 examples you with find all possible ways to build a material.

2.4. How to Specify Particles

AVUser Physi csLi st isone of the mandatory user base classes described in Section 2.1. Within this class
all particles and physics processes to be used in your simulation must be defined. The range cut-off parameter
should also be defined in this class.

The user must create a class derived from G4AVuser Physi csLi st and implement the following pure virtual
methods:

Construct Particle(); /] construction of particles
Const ruct Process(); /] construct processes and register themto particles

The user may also want to override the default implementation of the following virtual method:

Set Cut s() ; /] setting a range cut value for all particles

This section provides some simple examples of the Const ruct Parti cl e() and Set Cut s() methods. For
information on Const r uct Process() methods, please see Section 2.5.

2.4.1. Particle Definition

Geant4 provides various types of particles for usein simulations:
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« ordinary particles, such as electrons, protons, and gammas

* resonant particles with very short lifetimes, such as vector mesons and delta baryons
* nuclei, such as deuteron, apha, and heavy ions (including hyper-nuclei)

 quarks, di-quarks, and gluon

Each particle is represented by its own class, which is derived from G4Par ti cl eDefi ni ti on. (Exception:
G4lons represents all heavy nuclei. Please see Section 5.3.) Particles are organized into six major categories:

* lepton,

* meson,

* baryon,

* boson,

« shortlived and
e jon,

each of which isdefined in a corresponding sub-directory under geant 4/ sour ce/ parti cl es. Thereisaso
a corresponding granular library for each particle category.

2.4.1.1. The HAParticl eDefinitionClass

AParticl eDefinition has properties which characterize individual particles, such as, name, mass,
charge, spin, and so on. Most of these properties are "read-only" and can not be changed directly.
HAParticl ePropertyTabl e isusedto retrieve (load) particle property of G4Parti cl eDefinitionin-
to (from) G4Par ti cl ePr opert yDat a.

2.4.1.2. How to Access a Particle

Each particle class type represents an individual particle type, and each class has a single object. This object can
be accessed by using the static method of each class. There are some exceptionsto thisrule; please see Section 5.3
for details.

For example, the class AEl ect r on represents the electron and the member AEl ectr on: : t hel nst ance
points its only object. The pointer to this object is available through the static methods
(AEl ectron: : El ectronDefinition().G4El ectron:: Definition().

More than 100 types of particles are provided by default, to be used in various physics processes. In normal
applications, users will not need to define their own particles.

The unique aobject for each particle class is created when its static method to get the pointer is called at the first
time. Because particles are dynamic objects and should be instantiated before initialization of physics processes,
you must explicitly invoke static methods of all particle classes required by your program at the initialization step.
(NOTE: The particle object was static and created automatically before 8.0 release)

2.4.1.3. Dictionary of Particles

The (AParti cl eTabl e classis provided as a dictionary of particles. Various utility methods are provided,
such as:

Fi ndParticl e(G4AStri ng namne); /1 find the particle by name
Fi ndParticl e(G4i nt PDGencodi ng) /1 find the particle by PDG encoding .

HAParticleTable is defined a a dngleton object, and the static  method
HAParticl eTabl e:: GetParticl eTabl e() providesits pointer.

Asfor heavy ions (including hyper-nuclei), objects are created dynamically by requests from users and processes.
The(APar ti cl eTabl e class provides methods to create ions, such as:

GHAParticlebDefinition* Getlon( G4int at omi cNunber,

11
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i nt at oni cMass,
G4doubl e exci tati onEnergy);

Particles are registered automatically during construction. The user has no control over particle registration.

2.4.1.4. Constructing Particles

ConstructParticl e() isapurevirtua method, in which the static member functions for all the particles
you require should be called. This ensures that objects of these particles are created.

WARNING: You must define "All PARTICLE TYPES" which are used in your application, except for heavy
ions. "All PARTICLE TYPES" means not only primary particles, but also all other particles which may appear
as secondaries generated by physics processes you use. Beginning with Geant4 version 8.0, you should keep this
rule strictly because all particle definitions are revised to "non-static" objects.

For example, suppose you need a proton and a geantino, which isavirtual particle used for smulation and which
does not interact with materials. The Const ruct Parti cl e() method isimplemented as below:

Example 2.14. Construct a proton and a geantino.

voi d MyPhysi csLi st:: ConstructParticle()

G4Proton: : ProtonDefinition();
G4Geant i no: : Geanti noDefinition();

}

Dueto thelarge number of pre-defined particlesin Geant4, itiscumbersometo list all the particles by this method.
If you want al the particles in a Geant4 particle category, there are six utility classes, corresponding to each of
the particle categories, which perform this function:

e (ABosonConst ruct or

* ALept onConstruct or

e AMesonConst ruct or

e (ABari onConstructor

e (Al onConstructor

e AShort!livedConstructor.

An example of thisis shown in EXNO5Physi csLi st listed below.

Example 2.15. Construct all leptons.

voi d ExNO5Physi csLi st:: Construct Leptons()

/1 Construct all |eptons
GALeptonConstructor pConstructor;
pConstructor. ConstructParticle();

}
2.4.2. Range Cuts

To avoid infrared divergence, some el ectromagnetic processes require a threshold below which no secondary will
be generated. Because of this requirement, gammas, electrons and positrons require production threshold. This
threshold should be defined asadistance, or range cut-off, which isinternally converted to an energy for individual
materials. The range threshold should be defined in the initialization phase using the Set Cut s() method of
AVUser Physi csLi st . Section 5.5 discusses threshold and tracking cutsin detail.

2.4.2.1. Setting the cuts

Production threshold values should be defined in Set Cuts() which is a virtua method of the
AVUser Physi csLi st . Construction of particles, materials, and processes should precede the invocation of
Set Cut s() . ARunManager takes care of this sequence in usual applications.

12
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This range cut value is converted threshold energies for each material and for each particle type (i.e. electron,
positron and gamma) so that the particle with threshold energy stops (or is absorbed) after traveling the range cut
distance. In addition, from the 9.3 release ,this range cut value is applied to the proton as production thresholds
of nuclei for hadron elastic processes. In this case, the range cut value does not means the distance of traveling.
Threshold energies are calculated by a simple formula from the cut in range.

Note that the upper limit of the threshold energy is defined as 10 GeV. If you want to set higher threshold energy,
you can change the limit by using "/cuts/setMaxCutEnergy" command before setting the range cut.

Theideaof a"uniquecut valueinrange" isone of theimportant features of Geant4 and is used to handle cut values
in a coherent manner. For most applications, users need to determine only one cut value in range, and apply this
value to gammas, electrons and positrons alike. (and proton too)

The default implemetation of Set Cut s() method providesadef aul t Cut Val ue member asthe uniquerange
cut-off value for all particle types. The def aul t Cut Val ue is set to 1.0 mm by default. User can change this
value by Set Def aul t Cut Val ue() The"/run/setCut" command may be used to change the default cut value
interactively.

WARNING: DO NOT change cut valuesinside the event loop. Cut values may however be changed between runs.

It is possible to set different range cut values for gammas, electrons and positrons by using Set Cut Val ue()

methods (or using "/run/setCutForAGivenParticle" command). However, user must be careful with physicsoutputs
because Geant4 processes (especially energy loss) are designed to conform to the "unique cut value in range"
scheme.

Beginning with Geant4 version 5.1, it is now possible to set production thresholds for each geometrical region.
This new functionality is described in Section 5.5.

2.5. How to Specify Physics Processes

2.5.1. Physics Processes

Physics processes describe how particles interact with materials. Geant4 provides seven major categories of
processes:

* electromagnetic,

» hadronic,

* transportation,

* decay,

* optical,

« photolepton_hadron, and
 parameterisation.

All physics processes are derived from the GAVPr ocess base class. Its virtual methods
* At Rest Dol t,

» Al ongSt epDol t , and

* Post St epDol t

and the corresponding methods

» At Rest Get Physi cal | nteracti onLengt h,
e Al ongSt epGet Physi cal I nteracti onLengt h, and
» Post St epGet Physi cal | nteracti onLength

describe the behavior of a physics process when they are implemented in a derived class. The details of these
methods are described in Section 5.2.

The following are specialized base classes to be used for simple processes:
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AVAt Rest Pr ocess
Processes with only At Rest Dol t

AVCont i nuousProcess
Processes with only Al ongSt epDol t

AVDi scr et eProcess
processes with only Post St epDol t

Another 4 virtual classes, such asG4VVCont i nuousDi scr et eProcess, are provided for complex processes.

2.5.2. Managing Processes

The GAPr ocessManager class containsalist of processes that a particle can undertake. It has information on
the order of invocation of the processes, aswell aswhich kind of Dol t method isvalid for each processin thelist.
A (APr ocessManager object correspondsto each particle and is attached to the GAPar t i cl eDefi ni t on
class.

In order to validate processes, they should be registered with the particle's GAPr ocessManager . Process or-
dering information is included by using the AddPr ocess() and Set ProcessOr deri ng() methods. For
registration of simple processes, the AddAt Rest Pr ocess(), AddCont i nuousPr ocess() and AddDi s-
cret eProcess() methods may be used.

APr ocessManager isabletoturn some processeson or off duringarun by usingtheAct i vat ePr ocess()
and | nAct i vat ePr ocess() methods. These methods are valid only after process registration is complete, so
they must not be used in the Prelnit phase.

The (AAVUser Physi csLi st class creates and attaches GAPr ocessManager objects to all particle classes
defined inthe Const ruct Parti cl e() method.

2.5.3. Specifying Physics Processes

AVUser Physi csLi st isthe base class for a "mandatory user class' (see Section 2.1), in which all physics
processes and all particles required in a simulation must be registered. The user must create a class derived from
AVUser Physi csLi st and implement the pure virtual method Const r uct Process() .

For example, if just the AGeant i no particleclassisrequired, only the transportation process need be registered.
The Const ruct Process() method would then be implemented as follows:

Example 2.16. Register processesfor a geantino.

voi d MyPhysi csLi st:: Construct Process()

/1 Define transportation process
AddTransportation();

}

Here, the AddTr ansport ati on() method is provided in the AAVUser Physi csLi st classto register the
ATransport ati on classwith al particle classes. The (ATr ansport at i on class (and/or related classes)
describes the particle motion in space and time. It is the mandatory process for tracking particles.

Inthe Const ruct Process() method, physics processes should be created and registered with each particle's
instance of GAPr ocessManager .

An example of process registration is given in the G4VUser Physi csLi st ::AddTr ansportati on()
method.

Registration in (APr ocessManager is a complex procedure for other processes and particles because
the relations between processes are crucial for some processes. In order to ease registration procedures,
G4PhysicsListHelper is provided. Users do not care about type of processes (ie. AtRest and/or Discrete and/or
Continuous) or ordering parameters.
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An example of electromagnetic process registration for the gammais shown below

Example 2.17. Register processesfor agamma.

voi d MyPhysi csLi st:: Construct Process()
{
/] Define transportati on process
AddTr ansportation();
/] el ectromagnetic processes
Construct EM) ;
}

voi d MyPhysi csLi st:: Construct EM)
{
/Il Get pointer to GAPhysi csLi st Hel per
GAPhysi csLi st Hel per* ph = (APhysi csLi st Hel per: : Get Physi csLi st Hel per () ;

/] Get pointer to gamm
GAParticleDefinition* particle = GAGanmma: : GanmaDef i ni tion();

/] Construct and register processes for ganma

ph- >Regi st er Process(new G4Phot oEl ectri cEffect (), particle);

ph- >Regi st er Process(new G4Conpt onScattering(), particle);

ph- >Regi st er Process(new G4GammaConver si on(), particle);

ph- >Regi st er Process(new G4Rayl ei ghScattering(), particle);
}

2.6. How to Generate a Primary Event

2.6.1. Generating Primary Events

AVuser Pri mar yGener at or Act i on isone of the mandatory classes available for deriving your own con-
crete class. Inyour concrete class, you haveto specify how aprimary event should be generated. Actual generation
of primary particles will be done by concrete classes of GAVPr i mar yGener at or, explained in the following
sub-section. Your G4AVUser Pri mar yGener at or Act i on concrete class just arranges the way primary parti-

cles are generated.

Example 2.18. An example of a G4VUser Pri mar yGener at or Act i on concrete class
usingAParti cl eGun. For theusageof GAPar ti cl eGun refer to the next subsection.

ExG4PrimaryGeneratorAction01.hh

#i fndef ExGAPri maryGener at or Acti on01_h
#defi ne ExGAPri maryGenerator Action01_h 1

#i ncl ude "&4VUser Pri mar yGener at or Acti on. hh"
#i ncl ude " GAThr eeVect or. hh"
#i ncl ude "gl obal s. hh"

class HAParticl eQun;
cl ass AEvent;

cl ass ExGAPri maryGener at or Acti on01 : public GAVUser Pri maryGener at or Acti on
{
public:
ExGAPri mar yGener at or Act i on01(
const (AString& particleName = "geantino",
GAdoubl e energy = 1.*MeV,
GAThr eeVect or position= G4ThreeVector (0,0, 0),
GAThr eeVect or nonent unDi recti on = GAThreeVector(0,0,1));
~ExGAPri mar yGener at or Acti on01();

/| met hods
virtual void CeneratePrinaries(GiEvent*);

private:
/] data nmenbers
G4ParticleGun* fParticleGun; //pointer a to &4 service class

b
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#endi f

ExG4PrimaryGeneratorAction0l.cc

#i ncl ude

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

/l....000000000........ 0000000M000. . ... ... 0000000M000. . . .. ..

" EXGAPri mar yGener at or Acti on01. hh"

" AEvent . hh"
"GAParticl eGun. hh"
"GAParticl eTabl e. hh"
"GAParticl eDefinition. hh"

ExGAPri mar yGener at or Act i on01: : EXGAPri mar yGener at or Acti on01(

const (AString& particl eNane,

G4doubl e ener gy,
GAThr eeVect or position,

GAThr eeVect or nonent unDi rect i on)
GAVUser Pri mar yGener at or Action(),
fParticl e@n(0)

&4int nofParticles = 1;
fParticleGn = new GAParticl eGun(nofParticles)

/] default particle kinematic
G4Particl eTabl e* particleTable = G4Particl eTabl e:: Get Parti cl eTabl e()
G4Particl eDefinition* particle

= particleTabl e->Fi ndParti cl e(particl eNane)
fParticleGn->SetParticleDefinition(particle)
fParticl eGn->Set Particl eEner gy(energy);
fParticleGun->SetParticl ePosition(position)
fParticl eGn->Set Particl eMonent unDi recti on( monent unDi r ecti on)

/l....000000000........ 0000000000. . ...... 0000000M000. . ... ..

EXGAPri mar yGener at or Acti on01: : ~ExGAPri mar yGener at or Act i on01()

del ete fParticl eQun;

}

/l....000000000........ 0000000000. . ... ... 0000000M000. . ... ...

voi d ExGAPri maryGener at or Acti on01: : Gener at ePri mari es( G4Event * anEvent)

// this function is called at the begi ning of event

fParticl eGn->Cenerat ePri mar yVert ex(anEvent)

}

/l....000000000........ 00000000000. . ...... 00000000000. . ......

2.6.1.1. Selection of the generator

In the constructor of your GAVUser Pri mar yGener at or Acti on, you should instantiate the primary

generator(s). If necessary, you need to set someinitial conditions for the generator(s).

In Example 2.18, (APar t i cl eQun is constructed to use as the actual primary particle generator. Methods of
HAParticl e@un are described in the following section. Please note that the primary generator object(s) you
construct in your G4VUser Pri mar yGener at or Act i on concrete class must be deleted in your destructor.

2.6.1.2. Generation of an event

AVUser Pri maryGener at or Acti on has a pure virtual method named generatePrimaries().
This method is invoked at the beginning of each event. In this method, you have to invoke the
GAVPr i mar yGener at or concrete class you instantiated viathe gener at ePr i mar yVer t ex() method.

Y ou can invoke more than one generator and/or invoke one generator morethan once. Mixing up several generators

can produce a more complicated primary event.
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2.6.2. G4VPrimaryGenerator

Geant4 provides three GAVPri mar yGener at or concrete classes. Among these G4Parti cl eGun and
ACeneral Parti cl eSour ce will be discussed here. The third oneis GAHEPEVt | nt er f ace, which will
be discussed in Section 3.6.

2.6.2.1. G4ParticleGun

HAParticl e@in is a generator provided by Geant4. This class generates primary particle(s) with a given
momentum and position. It does not provide any sort of randomizing. The constructor of GAParti cl eGun
takes an integer which causes the generation of one or more primaries of exactly same kinematics. It is
a rather frequent user requirement to generate a primary with randomized energy, momentum, and/or posi-
tion. Such randomization can be achieved by invoking various set methods provided by G4Parti cl eGun.
The invocation of these methods should be implemented in the gener at ePri mari es() method of your
concrete AVUser Pri mar yGener at or Act i on class before invoking gener at ePri mar yVert ex() of
HAParti cl e@un. Geant4 provides various random number generation methods with various distributions (see
Section 3.2).

2.6.2.2. Public methods of (AParti cl eGun

The following methods are provided by G4Par t i cl eGun, and al of them can be invoked from the gener -
atePri mari es() method inyour concrete GAVUser Pri mar yGener at or Act i on class.

* void SetParticleDefinition(GParticleDefinition*)
* void SetParticl eMonent um{ AParti cl eMomrent um
 void SetParticl eMonentunDirection(G4Thr eeVect or)
» void SetParticl eEnergy(G4idoubl e)

 void SetParticleTi ne(G4doubl e)

 void SetParticlePosition(&ThreeVect or)

« void SetParticl ePol ari zati on(G4Thr eeVect or)

* void Set NunberOf Particl es(&dint)

2.6.2.3. G4GeneralParticleSource

For many applications4Par t i ¢l eGun isasuitable particle generator. However if you want to generate primary
particles in more sophisticated manner, you can utilize (AGener al Parti cl eSour ce, the Geant4 General
Particle Source module (GPS), discussed in the next section (Section 2.7).

2.7. Geant4 General Particle Source
2.7.1. Introduction

The GACGener al Parti cl eSour ce (GPS) is part of the Geant4 toolkit for Monte-Carlo, high-energy particle
transport. Specifically, it allows the specifications of the spectral, spatial and angular distribution of the primary
source particles. An overview of the GPS class structure is presented here. Section 2.7.2 covers the configuration
of GPS for a user application, and Section 2.7.3 describes the macro command interface. Section 2.7.4 gives an
example input file to guide the first time user.

(ACeneral Particl eSource is used exactly the same way as G4Parti cl eGun in a Geant4 appli-
cation. In existing applications one can simply change your PrimaryGeneratorAction by globally replacing
HAParticl eGunwithG4Gener al Parti cl eSour ce. GPS may be configured viacommand line, or macro
based, input. The experienced user may aso hard-code distributions using the methods and classes of the GPS
that are described in more detail in atechnical note * .

The class diagram of GPS is shown in Figure 2.1. As of version 10.01, a split-class mechanism was intro-
duced to reduce memory usage in multithreaded mode. The GAGener al Parti cl eSour ceDat a classis a

1 General purpose Source Particle Module for Geant4/SPARSET: Technical Note, UoS-GSPM-Tech, Issue 1.1, C Ferguson, February 2000.
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thread-safe singleton which provides access to the source information for the G4Gener al Parti cl eSour ce
class. The G4General Particl eSourceData class can have multiple instantiations of the
(ASi ngl eParti cl eSour ce class, each with independent positional, angular and energy distributions aswell
asincident particle types. To the user, this change should be transparent.

< <thread-privates = <<singletons >
G4GeneralParticleSource G4GeneralParticleSourceMess enger

< <thread-shared= =
G4GeneralParticleSource Data

G45SingleParticleSource

¢

G45PSPosDistribution G45PSAngDistribution G4SPSEneDistribution

\

Figure 2.1. The classdiagram of GAGener al Parti cl eSour ce.

G45P5RandomGenerator

2.7.2. Configuration

GPS alows the user to control the following characteristics of primary particles:

 Spatial sampling: on simple 2D or 3D surfaces such as discs, spheres, and boxes.

» Angular distribution: unidirectional, isotropic, cosine-law, beam or arbitrary (user defined).
 Spectrum: linear, exponential, power-law, Gaussian, blackbody, or piece-wise fits to data.
» Multiple sources. multiple independent sources can be used in the same run.

As noted above, G4Gener al Parti cl eSour ce is used exactly the same way as AParti cl eGn in a
Geant4 application, and may be substituted for the latter by "global search and replace” in existing application
source code.

2.7.2.1. Position Distribution

The position distribution can be defined by using several basic shapes to contain the starting positions of the
particles. The easiest source distribution to define is a point source. One could also define planar sources, where
the particles emanate from circles, annuli, ellipses, squares or rectangles. There are also methods for defining 1D
or 2D accelerator beam spots. The five planes are oriented in the x-y plane. To define acircle one givestheradius,
for an annulus one gives the inner and outer radii, and for an ellipse, a square or a rectangle one gives the half-
lengthsinx andy.

More complicated still, one can define surface or volume sources where the input particles can be confined to
either the surface of a three dimensional shape or to within its entire volume. The four 3D shapes used within
G4General ParticleSource are sphere, dlipsoid, cylinder and parallelepiped.A sphere can be defined simply by
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specifying the radius. Ellipsoids are defined by giving their half-lengths in X, y and z. Cylinders are defined such
that the axis is parallel to the z-axis, the user is therefore required to give the radius and the z half-length. Paral-
Iel epipeds are defined by giving X, y and z half-lengths, plus the angles a, o, and ) (Figure 2.2).

o
Jf /
/

Figure 2.2. The angles used in the definition of a Parallelepiped.

To alow easy definition of the sources, the planes and shapes are assumed to be orientated in aparticular direction
to the coordinate axes, as described above. For more general applications, the user may supply two vectors (x' and
avector in the plane x'-y") to rotate the co-ordinate axes of the shape with respect to the overall co-ordinate system
(Figure 2.3). The rotation matrix is automatically calculated within G4General ParticleSource. The starting points
of particles are always distributed homogeneously over the 2D or 3D surfaces, although biasing can change this.

T
F

-
z'.l

K'I‘
Figure 2.3. An illustration of the use of rotation matrices. A cylinder is defined with its
axisparallel tothe z-axis (black lines), but the definition of 2 vectorscan rotateit intothe

framegiven by X', y', Z' (red lines).
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2.7.2.2. Angular Distribution

The angular distribution is used to control the directions in which the particles emanate from/incident upon the
source point. In general there are three main choices, isotropic, cosine-law or user-defined. In addition there are
options for specifying parallel beam as well as diversed accelerator beams. The isotropic distribution represents
what would be seen from a uniform 4 flux. The cosine-law represents the distribution seen at a plane from a
uniform o flux.

Itis possible to bias (Section 2.7.2.4) both g and , for any of the predefined distributions, including settin lower
and upper limitsto g and (, User-defined distributions cannot be additionally biased (any bias should obviously
be incorporated into the user definition).

Incident with zenith angle g—g means the particle is travelling along the -z axis. It is important to bear thisin
mind when specifying user-defined co-ordinates for angular distributions. The user must be careful to rotate the
co-ordinate axes of the angular distribution if they have rotated the position distribution (Figure 2.3).

The user defined distribution requires the user to enter a histogram in either g or ¢, or both. The user-defined
distribution may be specified either with respect to the coordinate axes or with respect to the surface-normal of a
shape or volume. For the surface-normal distribution, g should only be defined between 0 and w2, not the usual
0to jrrange.

The top-level / gps/ di rect i on command uses direction cosines to specify the primary particle direction, as
follows:

P,=-sin 9CoS

Py=-sn esin(p

P,=-cosg

Equation 2.1. Direction cosine calculations

2.7.2.3. Energy Distribution

The energy of the input particles can be set to follow several built-in functions or a user-defined one, as shown in
Table 2.1. The user can bias any of the pre-defined energy distributions in order to speed up the simulation (user-
defined distributions are already biased, by construction).

Spectrum Abbre- |Functional Form User Parameters
viation
mono-energetic | Mono ||  #(E-Ep) Energy Eg
linear Lin [Iglo+mxE Intercept 1o, Slopem
exponential Exp |l oexp(-E/Ep) Energy scale-height Eg
power-law Pow |l E” Spectral index
Gaussian Gauss |l = (2no)_1/2 exp[-(E-Eg)?/ # Mean energy Eo, standard deviation
bremsstrahlung | Brem |I= IZE2 [ h2c2 (exp(-E/KT) - 1)]'1 Temperature T
black body Bbody |I (kT)'l/2 E exp(-E/KT) Temperature T (see note below)
cosmic diffuse| Cdg |l o[ (E/En)™ + (E/En)*?]?  |Energy rangeEnminto Ema; break energy
gammaray Ep and indices 1 and o arefixed (see
note below)
Table 2.1.
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Thereis aso the option for the user to define a histogram in energy ("User") or energy per nucleon ("Epn") or to
give an arbitrary point-wise spectrum ("Arb")that can befit with various simple functions. The datafor histograms
or point spectra must be provided in ascending bin (abscissa) order. The point-wise spectrum may be differential
(aswith abinned histogram) or integral (acumulative distribution function). If integral, the datamust satsify s(el)
> S(e2) for el < e2 when entered; this is not validated by the GPS code. The maximum energy of an integral
spectrum is defined by the last-but-one data point, because GPS converts to adifferential spectrum internally.

Unlike the other spectral distributionsit has proved difficult to integrate indefinitely the black-body spectrum and
this has lead to an alternative approach. Instead it has been decided to use the black-body formula to create a
10,000 bin histogram and then to produce random energies from this.

Similarly, the broken power-law for cosmic diffuse gamma rays makes generating an indefinite integral CDF
problematic. I nstead, the minimum and maximum energies specified by the user are used to construct adefinite-in-
tegral CDF from which random energies are selected.

2.7.2.4. Biasing

The user can bias distributions by entering a histogram. It is the random numbers from which the quantities are
picked that are biased and so one only needs a histogram from 0 to 1. Great care must be taken when using this
option, asthe way a quantity is calculated will affect how the biasing works, as discussed below. Bias histograms
are entered in the same way as other user-defined histograms.

When creating biasing histograms it is important to bear in mind the way quantities are generated from those
numbers. For example let us compare the biasing of a g distribution with that of a , distribution. Let us divide
the g and @ ranges up into 10 bins, and then decide we want to restrict the generated values to the first and last
bins. This gives a new ,, range of 0 to 0.628 and 5.655 to 6.283. Since ) is calculated using @ 2% RNDM,
this simple biasing will work correctly.

If we now look at g, We expect to select valuesin the two ranges 0 to 0.314 (for 0 - RNDM . 0.1) and 2.827 to
3.142 (for 0 « RN DM 0.9). However, the polar angle g is calculated from theformulae cos (1 - 2xRNDM).
From this, we see that 0 1 givesag of 0.644 and a RNDM of 0.9 gives a g of 2.498. This means that the above
will not bias the distribution as the user had wished. The user must therefore take into account the method used
to generate random quantities when trying to apply a biasing scheme to them. Some quantities such asx, y, z and
(pwi [l be relatively easy to bias, but others may require more thought.

2.7.2.5. User-Defined Histograms

The user can define histograms for several reasons: angular distributions in either g or (, energy distributions;
energy per nucleon distributions; or biasing of x, vy, z, 9, , OF energy. Even though the reasons may be different
the approach is the same.

To choose ahistogram thecommand/ gps/ hi st/ t ype isused (Section 2.7.3). If onewanted to enter an angular
distribution one would type "theta" or "phi" as the argument. The histogram is loaded, one bin at atime, by using
the/ gps/ hi st/ poi nt command, followed by its two arguments the upper boundary of the bin and the weight
(or area) of the bin. Histograms are therefore differential functions.

Currently histograms are limited to 1024 bins. The first value of each user input data pair is treated as the upper
edge of the histogram bin and the second value is the bin content. The exception isthe very first data pair the user
input whose first value is the treated as the lower edge of the first bin of the histogram, and the second value is
not used. Thisrule appliesto al distribution histograms, as well as histograms for biasing.

The user has to be aware of the limitations of histograms. For example, in general g is defined between 0 and
and ., is defined between 0 and 2, SO histograms defined outside of these limits may not give the user what they
want (see also Section 2.7.2.4).

2.7.3. Macro Commands

(HAGeneral Parti cl eSour ce can be configured by typing commands from the / gps command directory
tree, or including the/ gps commandsin agdmacro file.
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2.7.3.1. APar ti cl eGun equivalent commands

Command Arguments Description and restrictions

/gps/List List available incident particles

/gps/particle name Defines the particle type [default geantino], using
Geant4 naming convention.

/gps/direction Px Py Pz Set the momentum direction [default (1,0,0)] of generat-
ed particles using direction cosines (Equation 2.1).

/gps/energy E unit Sets the energy [default 1 MeV] for mono-energetic
sources. The units can be eV, keV, MeV, GeV, TeV or
PeV. (NB: it is recommended to use /gps/ene/mono in-
stead.)

/gps/position XY Z unit Sets the centre co-ordinates (X,Y,Z) of the source [de-
fault (0,0,0) cm]. The units can be micron, mm, cm, m
or km. (NB: it is reccomended to use /gps/pos/centrein-
stead.)

/gps/ion ZAQE After / gps/ particle ion, sets the properties
(atomic number Z, atomic mass A, ionic charge Q, exci-
tation energy E in keV) of theion.

/gps/ionLvl ZA QI After / gps/particle ion, sets the properties
(atomic number Z, atomic mass A, ionic charge Q, Num-
ber of metastable state excitation level (0-9) of theion.

/gps/time tO unit Setsthe primary particle (event) time[default O ns]. The
units can be ps, ns, us, ms, or s.

/gps/polarization Px Py Pz Setsthe polarization vector of the source, which does not
need to be a unit vector.

/gps/number N Sets the number of particles [default 1] to simulate on
each event.

/gps/verbose level Control the amount of information printed out by the
GPS code. Larger values produce more detailed output.

Table 2.2.

2.7.3.2. Multiple source specification

Command Arguments Description and restrictions

/gps/source/add intensity Add anew particle source with the specified intensity

/gps/sourcellist List the particle sources defined.

/gps/source/clear Remove all defined particle sources.

/gps/source/show Display the current particle source

/gps/source/set index Select the specified particle source as the current one.

/gps/source/del ete index Remove the specified particle source.

/gps/source/ flag Specify true for simulaneous generation of mutiple ver-

multiplevertex tices, one from each specified source. False [default]
generatesasinglevertex, choosing one sourcerandomly.

/gps/source/intensity intensity Reset the current source to the specified intensity

/gps/source/ flag Set to Trueto allow biased sampling among the sources.

flatsampling Setting to Truewill ignore sourceintensities. The default
isFalse.

Table2.3.
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2.7.3.3. Source position and structure

Command

Arguments

Description and restrictions

/gps/positype

dist

Sets the source positional distribution type: Point [de-
fault], Plane, Beam, Surface, Volume.

/gps/pos/shape

shape

Setsthe source shape type, after / gps/ pos/ t ype has
been used. For a Plane this can be Circle, Annulus, El-
lipse, Square, Rectangle. For both Surface or Volume
sources this can be Sphere, Ellipsoid, Cylinder, Para
(parallel piped).

/gps/pos/centre

XY Z unit

Sets the centre co-ordinates (X,Y,Z) of the source [de-
fault (0,0,0) cm]. The units can only be micron, mm, cm,
m or km.

/gps/pos/rotl

R1,R1, R,

Definesthefirst (x' direction) vector R1 [default (1,0,0)],
which does not need to be a unit vector, and is used
together with / gps/ pos/ r ot 2 to create the rotation
matrix of the shape defined with / gps/ shape.

/gps/pog/rot2

R2 R2y R2,

Defines the second vector R2 in the xy plane [default
(0,1,0)], which does not need to be a unit vector, and
is used tohgether with / gps/ pos/ r ot 1 to create the
rotation matrix of the shape defined with/ gps/ shape.

/gps/pog/halfx

len unit

Setsthe half-lengthin x [default O cm] of the source. The
units can only be micron, mm, cm, m or km.

/gps/pos/halfy

len unit

Setsthe half-lengthiny [default 0 cm] of the source. The
units can only be micron, mm, cm, m or km.

/gps/pog/halfz

len unit

Setsthe half-length in z [default O cm] of the source. The
units can only be micron, mm, cm, m or km.

/gps/pog/radius

len unit

Sets the radius [default O cm] of the source or the outer
radiusfor annuli. The units can only be micron, mm, cm,
m or km.

/gps/pos/inner_radius

len unit

Setstheinner radius [default 0 cm] for annuli. The units
can only be micron, mm, cm, m or km.

/gps/pos/sigma r

sigma unit

Sets the transverse (radial) standard deviation [default
0 cm] of beam position profile. The units can only be
micron, mm, cm, m or km.

/gps/pos/sigma._x

sigma unit

Sets the standard deviation [default 0 cm] of beam posi-
tion profile in x-direction. The units can only be micron,
mm, cm, m or km.

/gps/pos/sigma.y

sigma unit

Sets the standard deviation [default 0 cm] of beam posi-
tion profilein y-direction. The units can only be micron,
mm, cm, m or km.

/gps/pos/paralp

alpha unit

Used with a Parallelepiped. The angle [default O rad]
formed by the y-axis and the plane joining the centre of
the faces parallel to the zx plane a y and +y. The units
can only be deg or rad.

/gps/pos/parthe

theta unit

Used with aParallelepiped. Polar angle [default O rad] g
of the line connecting the centre of the face at z to the
centre of theface at +z. The units can only be deg or rad.

/gps/pos/parphi

phi unit

Used with a Parallelepiped. The azimuth angle [default
0 rad] ) of the line connecting the centre of the face at z
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Command Arguments Description and restrictions
with the centre of the face at +z. The units can only be
deg or rad.

/gps/pos/confine name Allowsthe user to confine the source to the physical vol-

ume name [default NULL].

Table2.4.

2.7.3.4. Source direction and angular distribution

Command

Arguments

Description and restrictions

/gps/ang/type

AngDis

Setsthe angular distribution type (iso [default], cos, pla-
nar, beamld, beam2d, focused, user) to either isotropic,
cosine-law or user-defined.

/gps/ang/rotl

AR1, ARl AR,

Defines the first (X' direction) rotation vector AR1 [de-
fault (1,0,0)] for the angular distribution and is not nec-
essarily a unit vector. Used with / gps/ ang/ r ot 2 to
compute the angular distribution rotation matrix.

/gps/ang/rot2

AR2, AR2, AR2,

Defines the second rotation vector AR2 in the xy plane
[default (0,1,0)] for the angular distribution, which does
not necessarily have to be a unit vector. Used with /
gps/ ang/ r ot 2 to compute the angular distribution
rotation matrix.

/gps/ang/mintheta

MinTheta unit

Sets a minimum value [default O rad] for the g distribu-
tion. Units can be deg or rad.

/gps/ang/maxtheta

MaxTheta unit

Sets amaximum value [default ;rad] for the g distribu-
tion. Units can be deg or rad.

/gps/ang/minphi

MinPhi unit

Sets a minimum value [default O rad] for the ® distribu-
tion. Units can be deg or rad.

/gps/ang/maxphi

MaxPhi unit

Sets amaximum value [default oy rad] for the ¢ distrib-
ution. Units can be deg or rad.

/gps/ang/sigma._r

sigma unit

Setsthe standard deviation [default O rad] of beam direc-
tional profilein radial. The units can only be deg or rad.

/gps/ang/sigma_x

sigmaunit

Setsthe standard deviation [default O rad] of beam direc-
tional profile in x-direction. The units can only be deg
or rad.

/gps/ang/sigma_y

sigma unit

Setsthe standard deviation [default O rad] of beam direc-
tional profile in y-direction. The units can only be deg
or rad.

/gps/ang/focuspoint

XY Z unit

Set the focusing point (X,Y,Z) for the beam [default
(0,0,0) cm]. The units can only be micron, mm, cm, m
or km.

/gps/ang/user_coor

bool

Calculatethe angular distribution with respect to the user
definded co-ordinate system (true), or with respect to the
global co-ordinate system (false, default).

/gps/ang/surfnorm

bool

Allows user to choose whether angular distributions are
with respect to the co-ordinate system (false, default) or
surface normals (true) for user-defined distributions.

Table 2.5.

24




Getting Started with Geant4
- Running a Simple Example

2.7.3.5. Energy spectra

Command Arguments Description and restrictions

/gps/eneltype EnergyDis Sets the energy distribution type to one of (Table 2.1):
Mono (mono-energetic, default)

Lin (linear)

Pow (power-law)

Exp (exponential)

Gauss (Gaussian)

Brem (bremsstrahlung)

Bbody (black-body)

Cdg (cosmic diffuse gamma-ray)
User (user-defined histogram)

Arb (point-wise spectrum)

Epn (energy-per-nucleon histogram)

/gps/ene/min Emin unit Sets the minimum [default O keV] for the energy distri-
bution. The units can be eV, keV, MeV, GeV, TeV or
PeV.

/gps/ene/max Emax unit Sets the maximum [default 0 keV] for the energy distri-
bution. The units can be eV, keV, MeV, GeV, TeV or
PeV.

/gps/ene/mono E unit Sets the energy [default 1 MeV] for mono-energetic
sources. The units can be eV, keV, MeV, GeV, TeV or
PeV.

/gps/ene/sigma sigmaunit Setsthe standard deviation [default O keV] in energy for
Gaussian or Mono energy distributions. The units can be
eV, keV, MeV, GeV, TeV or PeV.

/gps/ene/alpha alpha Sets the exponent # [default 0] for a power-law distrib-
ution.

/gps/eneltemp T Setsthetemperaturein kelvins[default O] for black body
and bremsstrahlung spectra.

/gps/enelezero EO Sets scale Eg [default O] for exponential distributions.

/gps/ene/gradient gradient Sets the gradient (slope) [default O] for linear distribu-
tions.

/gps/ene/intercept intercept Sets the Y-intercept [default O] for the linear distribu-
tions.

/gps/ene/biasAlpha alpha Sets the exponent # [default 0] for a biased power-law
distribution. Bias weight is determined from the pow-
er-law probability distribution.

/gps/ene/calculate Prepares integral PDFs for the interally-binned cosmic
diffuse gammaray (Cdg) and black body (Bbody) distri-
butions.

/gps/ene/lemspec bool Allows user to specify distributions are in momentum
(false) or energy (true, default). Only valid for User and
Arb distributions.

/gps/ene/diffspec bool Allows user to specify whether a point-wise spectrumis
integral (false) or differential (true, default). Theintegral
spectrum isonly usable for Arb distributions.

Table 2.6.
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2.7.3.6. User-defined histograms and interpolated functions

Command Arguments Description and restrictions

/gps/hist/itype type Set the histogram type: predefined biasx [default], biasy,
biasz, biast (angle 0), biasp (angle ), biaspt (position
9), biaspp (position 0, biase; user-defined histograms
theta, phi, energy, arb (point-wise), epn (energy per nu-

cleon).

/gps/hist/reset type Re-set the specified histogram: biasx [default], , biasy,
biasz, biast, biasp, biaspt, biaspp, biase, theta, phi, en-
ergy, arb, epn.

/gps/hist/point Eni Weight Specify one entry (with contents Weight) in a histogram

(where Ey,; is the bin upper edge) or point-wise distribu-
tion (where Ey,; isthe abscissa). The abscissa Ep, must be
in Geant4 default units (MeV for energy, rad for angle).

lgps/hist/file HistFile Import an arbitary energy histogram in an ASCII file.
The format should be one En Weight pair per line
of the file, following the detailed instructions in Sec-
tion 2.7.2.5. For histograms, Ey,; is the bin upper edge,
for point-wise distributions Ey; is the abscissa. The ab-
scissa Er must be in Geant4 default units (MeV for en-
ergy, rad for angle).

/gps/hist/inter type Sets the interpolation type (Lin linear, Log logarithmic,
Exp exponential, Spline cubic spling) for point-wise
spectra. This command must be issued immediately af -
ter the last data point.

Table2.7.

2.7.4. Example Macro File

# Macro test2. g4mac
/control/verbose 0
/tracki ng/ verbose 0

/ event/verbose 0

/ gps/ ver bose 2

/ gps/ particle gamma

/ gps/ pos/ type Pl ane

/ gps/ pos/ shape Square
/ gps/ pos/centre 1 2 1 cm
/ gps/ pos/hal fx 2 cm

/ gps/ pos/halfy 2 cm

/ gps/ ang/ type cos

/ gps/ ene/ type Lin
/gps/ene/mn 2 MeV

/ gps/ ene/ max 10 MeV

/ gps/ ene/ gradi ent 1

/ gps/ enel/intercept 1
/ run/ beanODn 10000

The above macro defines a planar source, square in shape, 4 cm by 4 cm and centred at (1,2,1) cm. By default
the normal of this plane isthe z-axis. The angular distribution isto follow the cosine-law. The energy spectrumis
linear, with gradient and intercept equal to 1, and extends from 2 to 10 MeV. 10,000 primaries are to be generated.
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Figure 2.4. Figure 4. Energy, position and angular distributions of the primary particles
as gener ated by the macro file shown above.

The standard Geant4 output should show that the primary particles start from between 1, 0, 1 and 3, 4, 1 (in cm)
and have energies between 2 and 10 MeV, as shown in Figure 2.4, in which we plotted the actual energy, position
and angular distributions of the primary particles generated by the above macro file.

2.8. How to Make an Executable Program

The code for the user examples in Geant4 is placed in the subdirectory exanpl es of the main Geant4 source
package. This directory isinstalled to the shar e/ Geant 4- X. Y. Z/ exanpl es (where X. Y. Z is the Geant4
version number) subdirectory under the installation prefix. In the following sections, a quick overview will be
given on how to build a concrete example, "ExampleB1", which is part of the Geant4 distribution, using CMake
and the older, and now deprecated, Geant4M ake system.

2.8.1. Using CMake to build Applications:
Geant4Config.cmake

Geantd installs afile named Geant 4Conf i g. cmake located in:

+- CMAKE_| NSTALL_PREFI X
+- lib/
+- Ceant 4-10. 3. 0/
+- Geant 4Confi g. cnake

which is designed for use with the CMake scripting language fi nd_package command. Building a Geant4
application using CMake therefore involves writing a CMake script CvakelLi st s. t xt using this and other
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CMake commands to locate Geant4 and describe the build of your application against it. Whilst it requires a bit
of effort to write the script, CMake provides a very powerful and flexible tool, especialy if you are working on
multiple platforms. It is therefore the method we recommend for building Geant4 applications.

WEe'l use Basic Example B1, which you may find in the Geant4 source directory under exanpl es/ basi ¢/ B1,
to demonstrate the use of CMaketo build aGeant4 application. Y ou'll find linksto the latest CM ake documentation
for the commands used throughout, so please follow these for further information. The application sources and
scripts are arranged in the following directory structure:

+ Bl/
CMakelLi sts. t xt
exanpl eBl. cc
i ncl ude/

. headers.hh ...
src/

. sources.cc ...

+7— + + +

Here, exanpl eB1. cc containsmai n() for the application, withi ncl ude/ andsr ¢/ containing theimple-
mentation class headers and sources respectively. Thisarrangement of sourcefilesis not mandatory when building
with CMake, apart from the location of the CMakeLi st s. t xt fileintheroot directory of the application.

The text file CvakelLi st s. t xt is the CMake script containing commands which describe how to build the
exampleB1 application:;

# (1)
crmake_m ni mum required(VERSI ON 2. 6 FATAL_ERROR)
proj ect (B1)

#(2)
opti on(WTH GEANT4_U VIS "Build exanple with Geant4 U and Vis drivers" ON)
i f (WTH_GEANT4_UI VI S)
find_package(Geant4 REQU RED ui _all vis_all)
el se()
find_package(Geant 4 REQUI RED)
endi f ()

# (3)
i ncl ude(${ Geant 4_USE_FI LE})
i nclude_directories(${ PROOECT_SOURCE_DI R}/ i ncl ude)

# (4)
file(GLOB sources ${ PRQIECT_SOURCE DI R}/src/*. cc)
file(GLOB headers ${PRQIECT_SOURCE_DI R}/ i ncl ude/ *. hh)

# (5)
add_execut abl e(exanpl eB1 exanpl eBl. cc ${sources} ${headers})
target _link_libraries(exanpl eBl ${Geant4_LI BRARI ES})

# (6)

set (EXAMPLEB1_SCRI PTS
exanpl eBl.in
exanpl eBl. out
init_vis.mc
runl. mac
run2. mac
Vi s. mac

)

foreach(_script ${EXAMPLEB1_SCRI PTS})
configure_file(
${ PROJECT_SOURCE_DI R}/ ${ _scri pt}
${ PROJECT_BI NARY_DI R}/ ${_scri pt}
COPYONLY

endf or each()

#(7)
i nstal | (TARGETS exanpl eB1 DESTI NATI ON bi n)
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For clarity, the above listing has stripped out the main comments (CMake comments begin with a"#") you'll find
in the actual file to highlight each distinct task:

1

Basic Configuration

The cnmake_m ni mum requi red commandsimply ensureswe're using asuitable version of CMake.
Though the build of Geant4 itself requires CMake 3.3 and we recommend this version for your own projects,
CGeant 4Conf i g. cnmake can support earlier versions from 2.6.4 and the 2.8.X series. The  pr oj ect
command sets the name of the project and enables and configures C and C++ compilers.

Find and Configure Geant4

The aforementioned  fi nd_package command isused to locate and configure Geant4 (we'll see how
to specify the location later when we run CMake), the REQUI RED argument being supplied so that CMake
will fail with an error if it cannot find Geant4. The  opti on command specifies a boolean variable
which defaultsto ON , and which can be set when running CMake viaa - D command line argument, or
toggled in the CMake GUI interfaces. Wewrap thecallsto  fi nd_package ina conditional block on
the option value. This alows us to configure the use of Geant4 Ul and Visualization drivers by exampleB1
viatheui _all vis_all "component" argumentsto fi nd_package . Thesecomponentsand their
usage is described later.

Configure the Project to Use Geant4 and B1 Headers

To automatically configure the header path, and force setting of compiler flags and compiler definitions
needed for compiling against Geant4, we usethe i ncl ude command to load a CMake script supplied
by Geant4. The CMake variable named Geant 4_USE_FI LE is set to the path to this module when Geant4
islocatedby find_package .Weusethe include_directories commandtoaddtheBl
header directory to the compiler's header search path. The CMake variable  PROJIECT_SOURCE DI R
points to the top level directory of the project and is set by the earlier call tothe  pr oj ect command.

List the Sourcesto Build the Application
Use the globbing functionality of the  fil e command to prepare lists of the B1 source and header files.

Note however that CMake globbing is only used here as a convenience. The expansion of the glob only
happens when CMake is run, so if you later add or remove files, the generated build scripts will not know
a change has taken place. Kitware strongly recommend listing sources explicitly as CMake automatically
makes the build depend on the CVakeLi st s. t xt file. Thismeansthat if you explicitly list the sourcesin
CMakelLi st s. t xt, any changes you make will be automatically picked when you rebuild. This is most
useful when you are working on a project with sources under version control and multiple contributors.

Define and Link the Executable

The add_executabl e command definesthe build of an application, outputting an executable named
by its first argument, with the sources following. Note that we add the headers to the list of sources so that
they will appear in IDEs like Xcode.

After adding the executable, we usethe  target |ink |ibraries command to link it withthe
Geant4 libraries. TheGeant 4_LI BRARI ESvariableissetby fi nd_package whenGeantdislocated,
andisalist of all thelibraries needed to link against to use Geant4.

Copy any Runtime Scripts to the Build Directory

Because we want to support out of source builds so that we won't mix CMake generated files with our actual
sources, we copy any scripts used by the B1 application to the build directory. Weuse f oreach toloop
over the list of scriptswe constructed, and  confi gure_fil e toperformthe actual copy.

Here, the CMake variable PROIECT_BI NARY_DI R is set by the earlier cal to the pr oj ect
command and points to the directory where we run CMake to configure the build.

If Required, Install the Executable
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Usethe install commandto createaninstal target that will install the executableto abi n directory
under CVAKE_| NSTALL_PREFI X.

If you don't intend your application to be installable, i.e. you only want to use it locally when built, you can
leave this out.

This sequence of commandsis the most basic needed to compile and link an application with Geant4, and iseasily
extendable to more involved use cases such as platform specific configuration or using other third party packages
(via find_package ).

With the CMake script in place, using it to build an application is a two step process. First CMake is run to
generate buildscripts to describe the build. By default, these will be Makefiles on Unix platforms, and Visual
Studio solutions on Windows, but you can generate scripts for other tools like Xcode and Eclipse if you wish.
Second, the buildscripts are run by the chosen build tool to compile and link the application.

A key concept with CMake is that we generate the buildscripts and run the build in a separate directory, the so-
called build directory, from the directory in which the sources reside, the so-called source directory. Thisisthe
exact same technique we used when building Geant4 itself. Whilst this may seem awkward to begin with, itisa
very useful technique to employ. It prevents mixing of CMake generated files with those of your application, and
allows you to have multiple builds against a single source without having to clean up, reconfigure and rebuild.

WEell illustrate this configure and build process on Linux/OS X using Makefiles, and on Windows using Visual
Studio. The example script and Geant4d's Geant 4Conf i g. cnake script are vanilla CMake, so you should be
able to use other Generators (such as Xcode and Eclipse) without issue.

2.8.1.1. Building ExampleB1 with CMake on Unix with Makefiles

WEell assume, for illustration only, that you've copied the exampleB1 sources into a directory under your home
area so that we have

+- [ hone/ you/ B1/

+- CMakeLi sts. txt
- exanpl eBl. cc
- include/

+
+
+- src/
+

Here, our sourcedirectoryis/ honme/ you/ B1, in other wordsthe directory holding the CMakelLi st s. t xt file.

Let's also assume that you have already installed Geant4 in your home area under, for illustration only, / honme/
you/ geant 4-install.

Our first step isto create abuild directory in which build the example. We will create this alongside our B1 source
directory asfollows:

$ cd $HOVE
$ nkdir Bil-build

We now changeto thisbuild directory and run CM aketo generate the M akefil es needed to build the B1 application.
We pass CMake two arguments:

$ cd $HOWVE/ Bl-build
$ cmake -DGeant 4_Dl R=/ honme/ you/ geant 4-instal | /1i b64/ Geant 4- 10. 3. 0 $HOVE/ B1

Here, the first argument points CMake to our install of Geant4. Specifically, it is the directory holding the
Geant 4Confi g. cnake file that Geant4 installs to help CMake find and use Geant4. Y ou should of course
adapt the value of this variableto the location of your actual Geant4 install. This providesthe most specific way to
point CMake to the Geant4 install you want to use. You may also usethe CMAKE PREFI X_PATHvariable, e.g.
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$ cd $HOVE/ Bl- bui |l d
$ cmake - DCMAKE_PREFI X_PATH=/ honme/ you/ geant 4-i nstal | $HOVE/ Bl

Thisis most useful for system integrators as it may be extended with paths to the install prefixes of additional
required software packages and also may be set as an environment variable that CMake will use at configuration
time.

The second argument to CM ake isthe path to the source directory of the application wewant to build. Hereit'sjust
the B1 directory as discussed earlier. Y ou should of course adapt the value of that variable to where you copied
the B1 source directory.

CMake will now run to configure the build and generate Makefiles. On Linux, you will see the output

$ cnake - DGeant 4_Dl R=/ home/ you/ geant 4-install/lib64/ Geant4-10.3.0 $HOVE Bl
-- The C conpiler identification is G\U 4.9.2

-- The CXX conpiler identification is GNU 4.9.2

-- Check for working C conpiler: /usr/bin/gcc-4.9

-- Check for working C conpiler: /usr/bin/gcc-4.9 -- works
-- Detecting C conpiler ABI info

-- Detecting C conpiler ABl info - done

-- Detecting C conpile features

-- Detecting C conpile features - done

-- Check for working CXX conpiler: /usr/bin/g++-4.9

-- Check for working CXX conpiler: /usr/bin/g++4.9 -- works
-- Detecting CXX conpiler ABI info

-- Detecting CXX conpiler ABlI info - done

-- Detecting CXX conpile features

-- Detecting CXX conpile features - done

-- Configuring done

-- Cenerating done

-- Build files have been witten to: /hone/you/Bl-build

On OS X, you will see dlightly different output, but the last three lines should be identical.

If you now list the contents of you build directory, you can see the files generated:

$1s
CMakeCache. t xt exanpl eBl.in Mekefile Vi s. mac
CMakeFi | es exanpl eBl. out runl. nac

cneke_install.cmake init_vis.nmac run2. nac

Notethe Makef i | e andthat all the scriptsfor running the exampleB1 application we're about to build have been
copied across. With the Makefile available, we can now build by simply running make:

$ make -jN

CMake generated Makefiles support parallel builds, so can set N suitable for the number of cores on your machine
(e.g. on adual core processor, you could set N to 2). When make runs, you should see the output

$ nake
Scanni ng dependenci es of target exanpleBl
[ 1694 Building CXX object CMakeFil es/exanpl eBl. dir/exanpl eBl.cc.o
[ 33% Building CXX object CMvakeFiles/exanpl eBl.dir/src/B1lPri maryGeneratorAction.cc.o
[ 5094 Building CXX object CMakeFil es/exanpl eBl.dir/src/BlEvent Action.cc.o
[ 669 Building CXX object CMakeFil es/exanpl eBl.dir/src/BlRunAction.cc.o
83% Building CXX object CMakeFil es/ exanpl eBl. di r/src/BlDet ector Construction.cc.o
[10094 Buil di ng CXX obj ect CMakeFi | es/ exanpl eBl. dir/src/B1St eppi ngActi on. cc. o
Li nki ng CXX execut abl e exanpl eBl
[1009 Built target exanpleBl

CMake Unix Makefiles are quite terse, but you can make them more verbose by adding the VERBOSE argument
to make:
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$ make VERBOSE=1

If you now list the contents of your build directory you will see the exampleB1 application executable has been
created:

$1s
CMakeCache. t xt exanpl eBl init_vis.mc run2. mac
CMakeFi | es exanpl eBl.in Makefil e Vi s. mac

cmake_instal |l .cnake exanpleBl.out runl.nac

Y ou can now run the application in place:

$ ./ exanpl eBl
Avail abl e U session types: [ GAG tcsh, csh ]

R R R R R R R

Geant 4 version Nane: geant4-10-03 [ MI] (2- Decenber - 2016)
<< in Milti-threaded node >>
Copyright : Geant4 Col |l aboration
Reference : NIM A 506 (2003), 250-303
WAV : http://cern.ch/geant4

R R R R R R R

<<< Reference Physics List QBBC

Vi sual i zati on Manager instantiating with verbosity "warnings (3)"...
Vi sual i zati on Manager initialising...

Regi stering graphics systens...

Note that the exact output shown will depend on how both Geant4 and your application were configured. Further
output and behaviour beyond the Regi st eri ng graphics systens... linewill depend on what Ul
and Visualization drivers your Geant4 install supports. If you recall the use of theui _al | vis_all inthe
fi nd_package command, this results in all available Ul and Visualization drivers being activated in your
application. If you didn't want any Ul or Visualization, you could rerun CMake as:

$ cmake - DW TH_GEANT4_Ul VI S=OFF - DGeant 4_Dl R=/ hone/ you/ geant 4-i nstal | /1i b64/ Geant 4- 10. 3. 0 $HOVE/ B1

This would switch the opt i on we set up to false, and result in f i nd_package not activating any Ul or Vi-
sualization for the application. Y ou can easily adapt this pattern to provide options for your application such as
additional components or features.

Once the build is configured, you can edit code for the application in its source directory. Y ou only need to rerun
nmake in the corresponding build directory to pick up and compile the changes. However, note that due to the use
of CMake globbing to create the source file list, if you add or remove files, you need to rerun CMake to pick up
the changes! Thisis another reason why Kitware recommend listing the sources explicitly.

2.8.1.2. Building ExampleB1 with CMake on Windows with Visual
Studio

Aswith building Geant4 itself, the simplest system to use for building applications on WindowsisaVisua Studio
Developer Command Prompt, which can be started from Start _ All Programs _, Visual Studio 2015 _ Visual
Studio Tools _, Developer Command Prompt for VS2015.

WEe'll assume, for illustration only, that you've copied the exampleB1 sourcesinto adirectory C: \ User s\ You-
r User nanme\ Geant 4\ B1 so that we have

+- C:\ User s\ Your User nane\ Geant 4\ B1
+- CMakelLi sts. t xt
+- exanpl eBl. cc
+- i nclude\
+- src\
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Here, our sourcedirectory isC: \ User s\ Your User nane\ Geant 4\ B1, in other words the directory holding
the CvakelLi st s. t xt file.

Let'salso assumethat you have already installed Geant4 in your homeareaunder, for illustrationonly, C. \ User s
\ Your User nane\ Geant 4\ geant4_10 _03-install.

Our first stepisto create abuild directory in which build the example. We will create this alongside our B1 source
directory as follows, working from the Visual Studio Developer Command Prompt:

> cd %OVEPATHW CGeant 4
> mkdir Bl-build

We now change to this build directory and run CMake to generate the Visua Studio solution needed to build the
B1 application. We pass CM ake two arguments:

> cd %HOVEPATH% Geant 4\ B1- bui | d
> cmake - DGeant 4_DI R=%H0OVEPATH% geant 4_10_03-i nstal | \ | i b\ Geant 4- 10. 3. 0 %1OVEPATH% Geant 4\ B1

Here, the first argument points CMake to our install of Geant4. Specifically, it is the directory holding the
CGeant 4Conf i g. cmake file that Geant4 installs to help CMake find and use Geant4. Y ou should of course
adapt the value of this variable to the location of your actual Geant4 install. Aswith the examples above, you can
asousethe CMAKE_PREFI X_PATHvariable.

The second argument is the path to the source directory of the application we want to build. Here it's just the B1
directory as discussed earlier. Y ou should of course adapt the value of that variable to where you copied the B1
source directory.

CMake will now run to configure the build and generate Visual Studio solutions and you will see the output

> cnake - DGeant 4_Dl R=%JOVEPATH% geant 4_10_03-i nstal I\ i b\ Geant 4- 10. 3. 0 %OVEPATH% Geant 4\ B1
-- Building for: Visual Studio 14 2015

-- The C conpiler identification is MSVC 19.0.23026.0

-- The CXX conpiler identification is MSVC 19.0.23026.0

-- Check for working C conpiler using: Visual Studio 14 2015

-- Check for working C conpiler using: Visual Studio 14 2015 -- works

-- Detecting C conpiler ABI info

-- Detecting C conpiler ABI info - done

-- Check for working CXX conpiler using: Visual Studio 14 2015

-- Check for working CXX conpiler using: Visual Studio 14 2015 -- works

-- Detecting CXX conpiler ABI info

-- Detecting CXX conpiler ABI info - done

-- Detecting CXX conpile features

-- Detecting CXX conpile features - done

-- Configuring done

-- Cenerating done

-- Build files have been witten to: C:/Users/YourUsernane/ Geant 4/ Bl-build

If you now list the contents of you build directory, you can see the files generated:

>dir /B

ALL_BUI LD. vcxpr oj

ALL_BUI LD. vcxproj.filters
Bl.sln

Bl. vcxpr oj
Bl.vcxproj.filters
CMakeCache. t xt

CMVakeFi | es

crmeke_i nstal | . cmeke
exanpl eBl.in

exanpl eBl. out

exanpl eBl. vcxpr oj

exanpl eBl. vexproj . filters
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init_vis.mc

I NSTALL. vcxpr o]

I NSTALL. vexproj . filters
runl. mac

run2. mac

Vi s. mac

ZERO_CHECK. vcxpr o]

ZERO CHECK. vcxproj.filters

Notethe B1. sl n solution file and that al the scripts for running the exampleB1 application we're about to build
have been copied across. With the solution available, we can now build by running cmake to drive M SBuild:

> cmake --build . --config Rel ease

Solution based builds are quite verbose, but you should not see any errors at the end. In the above, we have
built the B1 program in Rel ease mode, meaning that it is optimized and has no debugging symbols. As with
building Geant4 itself, thisis chosen to provide optimum performance. If you require debugging information for
your application, simply change the argument to Rel W t hDebl nf 0. Note that in both cases you must match
the configuration of your application with that of the Geant4 install, i.e. if you are building the application in
Rel ease mode, then ensure it usesaRel ease build of Geant4. Link and/or runtime errors may result if mixed
configurations are used.

After running the build, if we list the contents of the build directory again we see

>dir /B
ALL_BUI LD. vcxpr o
ALL_BUI LD. vcxproj.filters
Bl.sln

Bl1. vcxpr oj
Bl.vcxproj.filters
CMakeCache. t xt

CMakeFi | es
cnmeke_i nstal | . cmake
exanpl eBl. dir

exanpl eBl.in

exanpl eBl. out
exanpl eBl. vcxpro

exanpl eBl. vexproj . filters
init_vis.nmc

I NSTALL. vexpr o]

I NSTALL. vcxproj . filters
Rel ease

runl. mac

run2. mac

Vi s. mac

W n32

ZERO_CHECK. vcXxpr o]

ZERO CHECK. vcxproj . filters

> dir /B Rel ease
exanpl eBl. exe

Here, the Rel ease subdirectory contains the executable, and the main build directory contains all the . nac
scripts for running the program. If you build in different modes, the executable for that mode will bein adirectory
named for that mode, e.g. Rel W t hDebl nf o/ exanpl eBl1. exe. You can now run the application in place:

> .\ Rel ease\ exanpl eBl. exe
Avail abl e U session types: [ Wn32, GAG csh ]

R R R R R

Geant 4 version Nane: geant4-10-03 (2- Decenber - 2016)
Copyright : Geant4 Col | aboration
Reference : NIM A 506 (2003), 250-303
WAW : http://cern.ch/ geant4
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E R

<<< Reference Physics List QBBC

Vi sual i zati on Manager instantiating with verbosity "warnings (3)"...
Vi sual i zati on Manager initialising...

Regi stering graphics systens...

Note that the exact output shown will depend on how both Geant4 and your application were configured. Further
output and behaviour beyond the Regi st eri ng graphi cs systens. .. linewill depend onwhat Ul and
Visualization drivers your Geant4 install supports.

Whilst the Visual Studio Developer Command prompt provides the simplest way to build an application, the gen-
erated Visual Studio Solution file (B1. sl n in the above example) may also be opened directly in the Visual Stu-
dio IDE. This provides a more comprehensive development and debugging environment, and you should consult
its documentation if you wish to use this.

One key CMake related item to note goes back to our listing of the headers for the application in the call to
add_execut abl e. Whilst CMake will naturally ignore these for configuring compilation of the application,
it will add them to the Visual Studio Solution. If you do not list them, they will not be editable in the Solution
inthe Visual Studio IDE.

2.8.2. Using Geant4Make to build Applications:
binmake.gmk

Geant4Make isthe Geant4 GNU Make toolchain formerly used to build the toolkit and applications. It isinstalled
on UNIX systems (except for Cygwin) for backwards compatibility with the Geant4 Examples and your existing
applications which use a GNUmakefile and the Geant4Make bi nmake. gk file. However, please note that the
systemis now deprecated, meaning that it is no longer supported and may be removed in future releases without
warning. You should migrate your application to be built using CMake via the Geant 4Conf i g. cnmake script,
or any other buildtool of your choice, usingthegeant 4- conf i g programto query therelevant compiler/linker
flags.

The files for Geant4Make are installed under:

+- CMAKE_| NSTALL_PREFI X/
+- share/
+- geant 4make/

+- geant 4nake. sh

+- geant 4nake. csh

+- config/
+- bi nmake. gnk
+- ...

The system is designed to form a self-contained GNUM ake system which is configured primarily by environment
variables (though you may manually replace these with Make variables if you prefer). Building a Geant4 appli-
cation using Geant4M ake therefore involves configuring your environment followed by writing a GNUmakefile
using the Geant4Make variables and GNUMake modules.

To configure your environment, simply source the relevant configuration script  CMAKE_| NSTALL_PREFI X/
shar e/ Geant 4- 10. 3. 0/ geant 4make/ geant 4nake. (c) sh for your shell. Whilst both scripts can be
sourced interactively, if you are using the C shell and need to source the script inside another script, you must
use the commands:

cd CMAKE_I NSTALL_PREFI X/ shar e/ Geant 4- 10. 3. 0/ geant 4make
sour ce geant 4nake. csh

or aternatively

sour ce CMAKE_I NSTALL_PREFI X/ shar e/ Geant 4- 10. 3. 0/ geant 4make/ geant 4make. csh \\
CMAKE_I NSTALL_PREFI X/ shar e/ Geant 4- 10. 3. 0/ geant 4nake
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In both cases, you should replace CMAKE_| NSTALL_ PREFI X with the actua prefix you installed Geant4 under.
Both of these commands work around alimitation in the C shell which prevents the script locating itself.

Please also note that due to limitations of Geant4Make, you should not rely on the environment variables
it sets for paths into Geant4 itself. In particular, note that the (41 NSTALL variable is not equivalent to
CMAKE_INSTALL_PREFIX.

Once you have configured your environment, you can start building your application. Geant4Make enforces a
specific organization and naming of your sources in order to simplify the build. We'll use Basic Example B1,
which you may find in the Geant4 source directory under exanpl es/ basi ¢/ B1, as the canonical example
again. Here, the sources are arranged as follows

~

GNUnakefil e
exanpl eBl. cc
i ncl ude/
. headers. hh ..
src/
. sources.ccC ...

A S A O ~

As before, exanpl eBl. cc contains nai n() for the application, with i ncl ude/ and src/ containing the
implementation class headers and sources respectively. You rmust organise your sources in this structure with
these filename extensions to use Geant4Make as it will expect this structure when it tries to build the application.

With this structure in place, the GNUmakefile for exampleB1 isvery simple:

nanme : = exanpl eBl
GATARGET : = $(nane)
GHAEXLIB : = true

. PHONY: al
all: lib bin

i ncl ude $( G4l NSTALL)/ confi g/ bi nmake. gk

Here, nane is set to the application to be built, and it must match the name of the file containing the mai n()
program without the . cc extension. The rest of the variables are structural to prepare the build, and finaly the
core GeantdMake moduleisincluded. The G4l NSTALL variableis set in the environment by the geant 4make
script to point to the root of the Geant4Make directory structure.

With this structure in place, simply run make to build your application:

$ nmake

If you need extra detail on the build, you append CPPVERBOSE=1 to the make command to see a detailed log
of the command executed.

The application executable will be output to $( AWORKDI R) / bi n/ $( GASYSTEM / exanpl eB1, where
$( ASYSTEM is the system and compiler combination you are running on, e.g. Linux-g++. By default,
$( AWORKDI R) isset by thegeant 4make scriptsto $( HOVE) / geant 4_wor kdi r, and also prepends this
directory to your PATH. Y ou can therefore run the application directly onceit's built:

$ exanpl eBl

If you prefer to keep your application builds separate, then you can set GAWORKDI Rinthe GNUekef i | e before
including bi nmake. gnk. In this case you would have to run the executable by supplying the full path.

Further documentation of the usage of Geant4M ake and syntax and extensionsfor the GNUMakef i | e isdescribed
in the FAQ and Appendices of the Geant4 User's Guide for Application Developers.
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Please note that the Geant4Make toolchain is provided purely for conveniance and backwards compatibility. We
encourage you to use and migrate your applicationsto the new CMakeand geant 4- conf i g tools. Geant4Make
is deprecated in Geant4 10.0 and later.

2.9. How to Set Up an Interactive Session
2.9.1. Introduction

2.9.1.1. Roles of the "intercoms" category

The "intercoms" category provides an expandable command interpreter. It is the key mechanism of Geant4 to re-
alize secure user interactions across categories without being annoyed by dependencies among categories. Geant4
commands can be used in an interactive session, a batch mode with amacro file, or adirect C++ call.

2.9.1.2. User Interfaces to drive the simulation

Geant4 can be controllled by a seriese of Geant4 Ul commands. The "intercoms" category provides the abstract
class AUl sessi on that processes interactive commands. The concrete implementations of (graphical) user
interface are provided in the "interfaces' category. The strategy realize to adopt various user interface tools, and
allows Geant4 to utilize the state-of-the-art GUI tools such as Motif, Qt, and Java etc. The following interfaces
iscurrently available;

1. Command-lineterminal (dumb terminal and tcsh-like terminal)
2. Xm, Qt, Win32, variations of the above terminal by using a Motif, Qt, Windows widgets
3.  GAG, afully graphical user interface and its network extension GainServer of the client/server type.

Implementation of the user sesssions (1 and 2) is included in the sour ce/ i nt er f aces/ basi c directory.
As for GAG, the front-end class is included in the sour ce/ i nt er f aces/ GAG directory, while its partner
GUI package MOMO.jar isavailable under theenvi r onnent s/ MOMOdirectory. MOMO . jar, Javaarchivefile,
contains not only GAG, but also GGE and other helper packages. Supplementary information is available from
the author's web page (see URL below).

GAG, GainServer's client GUI Gain: http://www-geant4.kek.jp/~yoshidah/
2.9.2. A Short Description of Available Interfaces

2.9.2.1. AUt er m nal

This interface opens a session on a command-line terminal. G4Ul t er m nal runs on al supported platforms.
Therearetwo kinds of shells, GAUl csh and AUl t csh. AUl t csh supportstcsh-like readline features (cursor
and command completion) and works on Linux on Mac, while G4Ul csh isaplain standard input (cin) shell that
works on all platforms. The following built-in commands are availablein G4Ul t er mi nal ;

cd, pwd
change, display the current command directory.

s, Ic
list commands and subdirectoriesin the current directory.

history
show previous commands.

ThistorylD
reissue previous command.

2command
show current parameter values of the command.
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help command
show command help.

exit
terminate the session.

G4Ultcsh supports user-friendly key bindings a-la-tcsh. G4UI t csh runs on Linux and Mac. The following key-
bindings are supported;

A
move cursor to the top

"B
backward cursor ([LEFT] cursor)

AC (except Windows terminal)
abort arun (soft abort) during event processing. A program will be terminated while accepting a user com-
mand.

D
delete/exit/show matched list

=
move cursor to the end

"
forward cursor ([RIGHT] cursor)

K
clear after the cursor

N
next command ([DOWN] cursor)

P
previous command ([UP] cursor)

TAB
command compl etion

DEL
backspace

BS
backspace

The example below shows how to set a user's prompt.

AU tcsh* tcsh = new AU tcsh();
tcsh-> Set Pronpt ("%>");

The following strings are supported as substitutions in a prompt string.

%s
current application status

%/
current working directory

%h
history number
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Command history inauser'ssessionissavedinafile$( HOVE) / . g4_hi st that isautomatically read at the next
session, so that command history is available across sessions.

2.9.2.2. AU Xm AU Q@ and AU W n32 classes

Theseinterfacesare versionsof G4UI t er mi nal implemented over libraries Motif, Qt and WIN32 respectively.
AUl Xmuses the Motif XmCommand widget, AUl @ the Qt dialog widget, and AUl W n32 the Windows
"edit" component to do the command capturing. These interfaces are useful if working in conjunction with visu-
alization driversthat use the Xt library, Qt library or the WIN32 one.

A command box isat disposal for entering or recalling Geant4 commands. Command completion by typing"TAB"
key is available in the command box. The shell commands "exit, cont, help, Is, cd..." are al'so supported. A menu
bar can be customized through the AddMenu and AddButton method. Ex:

/gui/addMenu
test Test

/gui/addButton
test Init /run/initialize

/gui/addButton
test "Set gun" "/control/execute gun.g4m”

/gui/addButton
test "Run one event" "/run/beamOn 1"

GAUl Xmruns on Unix/Linux with Motif. G4Ul Q¢ run everywhere with Qt. GAUI W n32 runs on Windows.

2.9.2.3. AU GAGand AUl Gai nSer ver classes

They arefront-end classes of Geant4 which make connectionswith their respective graphical user interfaces, GAG
(Geant4 Adaptive GUI) via pipe, and Gain (Geant4 adaptive interface for network) via sockets. While GAG must
run on the same system (Windows or Unixen) asaGeant4 application, Gain can run on aremote system (Windows,
Linux, etc.) in which JRE (Java Runtime Environment) isinstalled. A Geant4 application is invoked on a Unix
(Linux) system and behaves as a network server. It opens a port, waiting the connection from the Gain. Gain has
capability to connect to multiple Geant4 "servers' on Unixen systems at different hosts.

Client GUIs, GAG and Gain have ailmost similar look-and-feel. So, GAG's functionalities are briefly explained
here. Please refer to the URL previously mentioned for details.

Using GAG, user can select acommand, set its parameters and executeiit. It isadaptive, in the sensethat it reflects
the internal states of Geant4 that is a state machine. So, GAG always provides users with the Geant4 commands
which may be added, deleted, enabled or disabled during a session. GAG does nothing by itself but to play an
intermediate between user and an executable simulation program via pipes. Geant4's front-end class AUl GAG
must be instantiated to communicate with GAG. GAG runs on Linux and Windows. MOMO.jar is supplied in the
Geant4 source distribution and can be run by a command;

% ava -jar /path/to/geant4.10.00/environnents/ MOMJ MOMOD. j ar
GAG has following functions.

GAG Menu:
The menus are to choose and run a Geant4 executable file, to kill or exit a Geant4 process and to exit GAG.
Upon the normal exit or an unexpected death of the Geant4 process, GAG window are automatically reset
to run another Geant4 executable.

Geant4 Command tree:
Upon the establishment of the pipe connection with the Geant4 process, GAG displays the command menu,
using expandable tree browser whose look and fedl issimilar to afile browser. Disabled commands are shown
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in opagque. GAG doesn't display commands that are just below the root of the command hierarchy. Direct
type-in field isavailable for such input. Guidance of command categories and commands are displayed upon
focusing. GAG has a command history function. User can re-execute a command with old parameters, edit
the history, or save the history to create a macro file.

Command Parameter panel:
GAG's parameter panel is the user-friendliest part. It displays parameter name, its guidance, its type(s) (inte-
ger, double, Boolean or string), omittable, default value(s), expression(s) of itsrange and candidate list(s) (for
example, of units). Range check is done by intercoms and the error message from it is shown in the pop-up
dialog box. When a parameter component has a candidate list, alist box is automatically displayed . When a
fileisrequested by acommand, the file chooser is available.

Logging:
Log can be redirected to the terminal (xterm or cygwin window) from which GAG is invoked. It can be
interrupted aswill, in the middle of along session of execution. Log can be saved to afile independent of the
above redirection . GAG displays warning or error messages from Geant4 in a pop-up warning widget.

2.9.3. How to Select Interface in Your Applications

To choose an interface (AUl xxx wherexxx = terminal, Xm Wn32, Q, GAG G nServer)
in your programs, there are two ways.

» Calling G4UIxxx directly :

#i ncl ude " &AU xxx. hh"

AUl sessi on* session = new AU xxx;
session-> SessionStart();

del ete session;
Note : For using atcsh session, AUl t er mi nal isinstantiated like:
G4Ul sessi on* session = new AUl term nal (new G4Ul t csh);

If the user wants to deactivate the default signal handler (soft abort) raised by "Ctr-C", the false flag can be set
in the second argument of the G4Ul t er mi nal constructor like;

(AU sessi on* session = new GAUlterni nal (new AUl tcsh, false).
* Using AUl Execut i ve Thisis more convenient way for choosing a session type, that can select a session
at run-time according to arule described below.

#i ncl ude "&4Ul Executi ve. hh"

G4Ul Executi ve* ui = new G4Ul Executive(argc, argv);
ui - >SessionStart();

del ete ui;

AUl Execut i ve has several ways to choose a session type. A session is selected in the following rule. Note
that session types are identified by a case-insensitive characters ("gt", "xm", "win32", "gag", "tcsh", "csh").

1. Check the argument of the constructor of G4UIExecutive. You can specify a session like new
AUl Executive(argc, argv, "qt");

2. Check environment variables, GAUl _USE_XX (XX= QT, XM W N32, GAG TCSH) . Selectasession
if the corresponding environment variable is defined. Variables are checked in the order of QT, XM, WIN32,
GAG, TCSH if multiple variables are set.
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3. Check ~/ . g4sesi on. You can specify the default session type and a session type by each application in
that file. The below shows asample of . g4sessi on.

tcsh # default session
exanpl eNO3 @ # (application nane / session type)

nmyapp tcsh
hoge csh

4. Guessthe best session type according to build session libraries. The order of the selection is Qt, tcsh, Xm.

Inany cases, (AUl Execut i ve checksif aspecified sessionisbuild or not. If not, it goesthe next step. A terminal
session with csh is the fallback session. If none of specified session is available, then it will be selected.

2.10. How to Execute a Program
2.10.1. Introduction

A Geant4 application can be run either in

» “purely hard-coded” batch mode

* batch mode, but reading a macro of commands
* interactive mode, driven by command lines

* interactive mode viaa Graphical User Interface

The last mode will be covered in Section 2.9. The first three modes are explained here.

2.10.2. 'Hard-coded' Batch Mode

Below is a modified main program of the basic example B1 to represent an application which will run in batch
mode.

Example 2.19. An example of the mai n() routine for an application which will runin
batch mode.

int main()

{
[/ Construct the default run manager
GARunManager * runManager = new GARunManager;

/] Set mandatory initialization classes

runManager - >Set User I ni ti al i zati on(new BlDet ect or Constructi on);
runManager - >Set User I ni ti al i zati on( new QGSP_BI C_EMY) ;
runivanager - >Set User Act i on( new B1Pri mar yGener at or Acti on) ;

/] Set user action classes

runManager - >Set User Act i on( new B1St eppi ngActi on());
runhManager - >Set User Act i on( new B1lEvent Action());
runManager - >Set User Act i on(new B1RunAction());

/1 Initialize G4 kernel
runManager->lnitialize();

/] start a run
int nunber O Event = 1000;
runManager - >BeamOn( nunber O Event ) ;

/] job term nation

del et e runManager;
return O;

Even the number of eventsin the runis “frozen'. To change this number you must at least recompile mai n() .
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2.10.3. Batch Mode with Macro File

Below is a modified main program of the basic example B1 to represent an application which will run in batch
mode, but reading afile of commands.

Example 2.20. An example of the mai n() routine for an application which will run in
batch mode, but reading a file of commands.

int main(int argc, char** argv)

{
/] Construct the default run manager
GARunManager * runManager = new G4ARunManager ;

// Set mandatory initialization classes

runManager - >Set User I ni ti al i zati on(new BlDet ect or Constructi on);
runManager - >Set User I ni ti al i zati on( new QGSP_BI C_EMY) ;
runManager - >Set User Act i on( new B1Pri mar yCGener at or Acti on) ;

/] Set user action classes

runManager - >Set User Act i on( new B1St eppi ngAction());
runManager - >Set User Act i on( new B1Event Action());
runManager - >Set User Act i on(new B1RunAction());

/] Initialize G4 kernel
runManager->lnitialize();

//read a nacro file of commands

G4AUl manager* U = AUl manager: : Get Ul poi nter();
GAString command = "/control / execute ";
GAString fil eName = argv[1];

Ul - >Appl yCommand( comrand+f i | eNane) ;

/] job term nation
del et e runManager;
return 0O;

}

This example will be executed with the command:

> exanpl eBl1 runl. mac

where exanpl eB1 isthe name of the executableand r unl. mac isamacro of commands located in the current
directory, which could look like:

Example 2.21. A typical command macro.

#

# Macro file for myProgram

#

# set verbose level for this run
#

/run/verbose 2

[ event /ver bose 0

/tracki ng/ verbose 1

#

# Set the initial kinenmatic and run 100 events
# electron 1 GeV to the direction (1.,0.,0.)

#

/gun/particle e-

/gun/energy 1 GeV

/run/ beanrOn 100

Indeed, you can re-execute your program with different run conditions without recompiling anything.
Digression: many G4 category of classes have a verbose flag which controls the level of 'verbosity'.

Usually ver bose=0 means silent. For instance
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e /run/ ver bose isfor the RunManager

» /event/verbose isfor the Event Manager

» /tracki ng/ verboseisfortheTr acki ngManager
e _.€fC...

2.10.4. Interactive Mode Driven by Command Lines

Below is an example of the main program for an application which will run interactively, waiting for command
lines entered from the keyboard.

Example 2.22. An example of the mai n() routine for an application which will run
interactively, waiting for commands from the keyboard.

int main(int argc, char** argv)

{
/] Construct the default run manager
GARunManager * runManager = new GARunManager;
/] Set mandatory initialization classes
runManager - >Set User I ni ti al i zati on( new BlDet ect or Const r uct i on)
runhvanager - >Set User I ni ti al i zati on( new QGSP_BI C_EMY) ;
runManager - >Set User Act i on(new B1Pri mar yGener at or Act i on)
/] Set user action classes
runManager - >Set User Act i on( new B1St eppi ngAction())
runManager - >Set User Act i on( new B1Event Action())
runivanager - >Set User Act i on( new B1RunAction())
/1 Initialize G4 kernel
runManager->lnitialize()
/] Define U termnal for interactive node
AUl session * session = new AUl term nal
sessi on- >Sessi onStart ()
del ete session
/] job term nation
del et e runManager ;
return O

}

This example will be executed with the command:

> exanpl eBl

where exanpl eB1 isthe name of the executable.

The G4 kernel will prompt:

1dl e>

and you can start your session. An example session could be:

Run 5 events:

Idl e> /run/ beann 5

Switch on tracking/verbose and run one more event:

I dl e> /tracking/verbose 1
Idl e> /run/beanOn 1
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Change primary particle type an run more events:

Idle> /gun/particle m+
Idl e> /gun/energy 10 GeV
Idl e> /run/beanOn 1

Idle> /gun/particle proton
I dl e> /gun/energy 100 MeV
I dl e> /run/beanOn 3

Idle> exit

For the meaning of the machine state | dl e, see Section 3.4.2.

This mode is useful for running a few events in debug mode and visualizing them. How to include visualization
will be shown in the next, general case, example.

2.10.5. General Case

All basic examplesin the exanpl es/ basi ¢ subdirectory of the Geant4 source distribution have the following
mai n() structure. The application can be run either in batch or interactive mode.

Example 2.23. Thetypical mai n() routine from the examplesdirectory.

int main(int argc, char** argv)

{
/] Construct the default run manager
GARunManager * runManager = new GARunManager ;

// Set mandatory initialization classes

runManager - >Set User I ni ti al i zati on(new BlDet ect or Constructi on);
runManager - >Set User I ni ti al i zati on( new QGSP_BI C_EMY) ;
runManager - >Set User Act i on(new B1Pri mar yCGener at or Acti on) ;

/] Set user action classes

runManager - >Set User Act i on(new B1St eppi ngAction());
runManager - >Set User Act i on( new B1Event Action());
runManager - >Set User Act i on(new B1RunAction());

/1] Initialize G4 kernel
runManager->lnitialize();

#i fdef AVI S_USE
// Initialize visualization
G4Vi sManager * vi sManager = new (4Vi sExecuti ve;
/| GAVi sExecutive can take a verbosity argunent - see /vis/verbose gui dance.
/| GAVi sManager* vi sManager = new (AVi sExecutive("Quiet");
vi sManager->lnitialize();
#endi f

/] Get the pointer to the User Interface manager
GAUl manager * Ul manager = GAUl nanager: : Get Ul poi nter();

if (argc!=1) {
/] batch node
GAString command = "/control /execute ";
AString fileNane = argv[1];
Ul manager - >Appl yComrand( command+f i | eNane) ;
}
el se {
/] interactive node : define U session
#i f def AUl _USE
AUl Executive* ui = new AUl Executive(argc, argv);
#i f def AVI S_USE
Ul manager - >Appl yComand( "/ control / execute init_vis.mc");
#el se
U manager - >Appl yComand( "/ control / execute init.nmac");
#endi f
ui ->SessionStart();
del ete ui;
#endi f

}
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/1 Job term nation

/] Free the store: user actions, physics_|list and detector_description are
/1 owned and del eted by the run manager, so they shoul d not be del eted

/] in the main() program!

#i f def GAVI S_USE

del et e vi sManager;
#endi f

del et e runManager;

}

Notice that both user interface and visualization systems are under the control of the compiler preprocessor sym-
bols AUl _USE and G4VI S_USE. Geant4's CMake support script automatically adds definitions for these sym-
bols to the compiler flags, unless you set the CMake variables G4UI _NONE and AVI S_NONE before calling
fi nd_package( Geant 4) . Thisprovidesyou with asimple system to control the enabling of the user interface
and visualization systems, though you are free to use your own names for the preprocessor symbols if your use
case reguires (though you must then add them to the compiler flags yourself). Notice also that, in interactive mode,
few intializations have been put in the macrosi ni t _vi s. mac, ori nit _vi s. mac, which is executed before
the session start.

Example 2.24. Thei ni t . mac macro:

# Macro file for the initialization phase of exanple Bl
# when running in interactive nmbde w t hout visualization
#

# Set sone default verbose

/control/verbose 2

/control /saveH story

/run/verbose 2

Thei nit _vi s. mac macro hasjust added alinewith acall tovi s. mac:

# Macro file for the initialization phase of exanple Bl
# when running in interactive node with visualization
#

# Set sonme default verbose

#

/control/verbose 2

/control/saveHi story

/run/verbose 2

#

# Visualization setting

/control /execute vis. nmac

Thevi s. mac macro defines aminimal setting for drawing volumes and trajectories accumulated for all events
of agiven run:

# Macro file for the visualization setting in the initialization phase
# of the Bl exanple when running in interactive node
#

#

# Use this open statenent to create an OpenGL view
/vi s/ open OG. 600x600- 0+0

#

# Draw geonetry:

[ vi s/ dr awNol une

#

# Specify view angl e:

/vis/viewer/set/vi ewpoi nt Thet aPhi 90. 180.

#

# Draw snooth trajectories at end of event, showing trajectory points
# as markers 2 pixels wide:
/vis/scene/add/trajectories snooth

#

# To superinpose all of the events froma given run:
/vi s/ scene/ endCf Event Acti on accunul ate

#

# Re-establish auto refreshing and verbosity:
/vis/viewer/set/autoRefresh true

/ vi s/ verbose warni ngs

#
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# For file-based drivers, use this to create an enpty detector view
#/ vi s/ vi ewer/fl ush

Also, this example demonstrates that you can read and execute a macro from another macro or interactively:

Idle> /control /execute nySubMacro. mac

2.11. How to Visualize the Detector and Events
2.11.1. Introduction

This section briefly explains how to perform Geant4 Visualization. The description here is based on the sample
program exanpl es/ basi ¢/ B1. More details are given in Chapter 8 "Visualization™.

2.11.2. Visualization Drivers

The Geant4 visualization system was developed in response to a diverse set of requirements:

Quick response to study geometries, tragjectories and hits
High-quality output for publications

Flexible camera control to debug complex geometries

Toolsto show volume overlap errorsin detector geometries
Interactive picking to get more information on visualized objects

agkrwNPE

No one graphics system is ideal for all of these requirements, and many of the large software frameworks into
which Geant4 has been incorporated already have their own visualization systems, so Geant4 visualization was
designed around an abstract interface that supports a diverse family of graphics systems. Some of these graphics
systems use a graphics library compiled with Geant4, such as OpenGL, Qt or Openlnventor, while othersinvolve
a separate application, such as HepRApp or DAWN.

You need not use all visualization drivers. You can select those suitable to your purposes. In the following, for
simplicity, we assume that the Geant4 libraries are built with the Qt driver.

If you build Geant4 using the standard Cvak e procedure, you include Qt by setting GEANT4_USE_QT to ON.

In order to use the the Qt driver, you need the OpenGL library, which isinstalled in many platforms by default
and Civake will find it. (If you wish to "do-it-yourself", see Section 8.2.1.) The makefiles then set appropriate C-
pre-processor flagsto select appropriate code at compilation time.

If you are using multithreaded mode, from Geant4 version 10.2 event drawing is performed by a separate thread
and you may need to optimise thiswith special / vi s/ mul ti t hr eadi ng comands - see Section 8.4.18.

2.11.3. How to Incorporate Visualization Drivers into an
Executable

Most Geant4 examples already incorporate visualization drivers. If you want to include visualization in your own
Geant4 application, you need to instantiate and initialize a subclass of (4Vi sManager that implementsthe pure
virtual function Regi st er Gr aphi csSystens().

TheprovidedclassG4Vi sExecut i ve canhandleall of thiswork for you. GAVi sExecut i ve issensitivetothe
AVI S _. .. variables(that you either set by hand or that are set for you by GNUMake or CMake configuration).
See any of the Geant4 examples for how to use (4Vi sExecut i ve.

If you really want to write your own subclass, rather than use G4Vi sExecut i ve, you may do so. You will see
how to do this by looking at G4Vi sExecut i ve. i cc. This subclass must be compiled in the user's domain to
force the loading of appropriate librariesin the right order. A typical extract is:
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Regi st er Gr aphi csSyst em (new GADAVWNFI LE) ;

#i f def GAVI S_USE_OPENGLX
Regi st er G aphi csSyst em (new G4QpenGLl nmmedi at eX) ;
Regi st er Gr aphi csSyst em (new GAQpenGL.St or edX) ;
#endi f

The4Vi sExecut i ve takesownership of al registered graphics systems, and will deletethemwhenitisdeleted
at the end of the user'sjob (see below).

If youwishtouse AVi sExecut i ve but register an additional graphics system, XXX say, you may do so either
before or after initializing:

vi sManager - >Regi st er Gr aphi csSyt en( new XXX) ;
vi sManager->Initialize();

An example of atypical mai n() functionis given below.

2.11.4. Writing the mai n() Method to Include Visualization

Now we explain how to write a visualization manager and thermai n() function for Geant4 visualization. In order
that your Geant4 executable is able to perform visualization, you must instantiate and initialize your Visualiza-
tion Manager inthe mai n() function. Thetypical mai n() function available for visualization is written in the
following style:

Example 2.25. Thetypical mai n() routine availablefor visualization.

[]----- C++ source codes: nmmin() function for visualization
#i f def GAVI S_USE

#i ncl ude " 4Vi sExecuti ve. hh"

#endi f

// Instantiation and initialization of the Visualization Manager
#i f def GAVI S_USE
/'l visualization manager
G4Vi sManager * vi sManager = new (AVi sExecuti ve;
/| GAVi sExecutive can take a verbosity argunent - see /vis/verbose guidance.
/| GAVi sManager* vi sManager = new (AVi sExecutive("Qiet");
vi sManager->lnitialize();
#endi f

/1 Job term nation
#i f def GAVI S_USE
del et e vi sManager ;

#endi f
return 0
}
[]----- end of C++

In the instantiation, initialization, and deletion of the Visualization Manager, the use of the macro 4AVI S_USE
is recommended as it is set automatically by the CMake and GNUmake support scripts. This allows one easily
to build an executable without visualization, if required, without changing the code (but remember you have
to force recompilation whenever you change the environment). Note that it is your responsibility to delete the
instantiated Visualization Manager by yourself. A compl ete description of asamplenai n() functionisdescribed
inexanpl es/ basi c/ B1/ exanpl eBl. cc.
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Getting Started with Geant4
- Running a Simple Example

2.11.5. Sample Visualization Sessions
Most Geant4 examplesinclude avis.mac. Run that macro to see atypical visualization. Read the commentsin the

macro to learn alittle bit about some visualization commands. The vis.mac also includes commented-out optional
visualization commands. By uncommenting some of these, you can see additional visualization features.

2.11.6. For More Information on Geant4 Visualization

See the Chapter 8 "Visualization" part of this user guide.
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Chapter 3. Toolkit Fundamentals

3.1. Class Categories and Domains

3.1.1. What is a class category?

In the design of alarge software system such as Geant4, it is essential to partition it into smaller logical units. This
makes the design well organized and easier to develop. Once the logical units are defined independent to each
other as much as possible, they can be developed in parallel without serious interference.

In object-oriented analysis and design methodology by Grady Booch [ Booch1994 ], class categories are used to
create logical units. They are defined as "clusters of classes that are themselves cohesive, but are loosely coupled
relative to other clusters." This means that a class category contains classes which have a close relationship (for
example, the "has-a" relation). However, relationships between classes which belong to different class categories
are weak, i.e, only limitted classes of these have "uses' relations. The class categories and their relations are
presented by a class category diagram. The class category diagram designed for Geant4 is shown in the figure
below. Each box in the figure represents a class category, and a "uses' relation by astraight line. The circle at an
end of a straight line means the class category which has this circle uses the other category.

/E\
N\

T s
=

Figure 3.1. Geant4 class categories

Thefileorganization of the Geant4 codesfollowsbasically the structure of thisclass cateogory. ThisUser'sManual
is also organized according to class categories.

In the devel opment and maintenance of Geant4, one software team will be assigned to a class category. Thisteam
will have aresponsihility to develop and maintain all classes belonging to the class category.

3.1.2. Class categories in Geant4

Thefollowing is a brief summary of the role of each class category in Geant4.
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Run and Event

These are categories related to the generation of events, interfaces to event generators, and any secondary
particles produced. Their rolesare principally to provide particlesto be tracked to the Tracking M anagement.
Tracking and Track

These are categories related to propagating a particle by analyzing the factors limiting the step and applying
the relevant physics processes. The important aspect of the design was that a generalized Geant4 physics
process (or interaction) could perform actions, along a tracking step, either localized in space, or in time, or
distributed in space and time (and all the possible combinations that could be built from these cases).
Geometry and Magnetic Field

These categories manage the geometrical definition of a detector (solid modeling) and the computation of
distancesto solids (also in a magnetic field). The Geant4 geometry solid modeler is based on the ISO STEP
standard and it isfully compliant with it. A key feature of the Geant4 geometry isthat the volume definitions
areindependent of the solid representation. By thisabstract interfacefor the G4 solids, the tracking component
works identically for various representations. The treatment of the propagation in the presence of fields has
been provided within specified accuracy. An OO design alows to exchange different numerical algorithms
and/or different fields (not only B-field), without affecting any other component of the toolkit.

Particle Definition and Matter

These two categories manage the the definition of materials and particles.
Physics

This category manages all physics processes participating in the interactions of particles in matter. The ab-
stract interface of physics processes alows multiple implementations of physics models per interaction or
per channel. Models can be selected by energy range, particle type, material, etc. Data encapsulation and
polymorphism make it possible to give transparent access to the cross sections (independently of the choice
of reading from an ascii file, or of interpolating from a tabulated set, or of computing analytically from a
formul@). Electromagnetic and hadronic physics were handled in a uniform way in such a design, opening
up the physics to the users.

Hits and Digitization

These two categories manage the creation of hitsand their use for the digitization phase. The basic design and
implementation of the Hits and Digi had been realized, and also severa prototypes, test cases and scenarios
had been developed before the apha-release. Volumes (not necessarily the ones used by the tracking) are
aggregated in sensitive detectors, while hits collections represent the logical read out of the detector. Different
ways of creating and managing hits collections had been delivered and tested, notably for both single hits
and calorimetry hitstypes. In all cases, hits collections had been successfully stored into and retrieved from
an Object Data Base Management System.

Visualization

Thismanagesthe visualization of solids, trajectoriesand hits, and interactswith underlying graphical libraries
(the Visualization class category). The basic and most frequently used graphics functionality had been im-
plemented already by the al pha-release. The OO design of the visualization component allowed usto develop
severa drivers independently, such as for OpenGL, Qt and Openinventor (for X11 and Windows), DAWN,
Postscript (via DAWN) and VRML.

Interfaces

This category handles the production of the graphical user interface (GUI) and the interactions with external
software (OODBMS, reconstruction etc.).

3.2. Global Usage Classes

The"global" category in Geant4 collectsall classes, types, structuresand constantswhich are considered of general
use within the Geant4 toolkit. This category also definesthe interface with third-party softwarelibraries (CLHEP,
STL, etc.) and system-related types, by defining, where appropriate, t ypedef s according to the Geant4 code
conventions.
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3.2.1. Signature of Geant4 classes

In order to keep an homogeneous naming style, and according to the Geant4 coding style conventions, each class
part of the Geant4 kernel has its name beginning with the prefix 4, e.g., GAVHi t , (AGeonet r yManager,
(AProcessVect or, etc. Instead of the raw C types, G4 types are used within the Geant4 code. For the basic
numeric types (i nt, float, doubl e, etc.), different compilers and different platforms provide different
value ranges. In order to assure portability, theuse of G4i nt, GAfl oat, (Adoubl e, Gibool, globaly
defined, is preferable. G4 types implement the right generic type for a given architecture.

3.2.1.1. Basic types
The basic types in Geant4 are considered to be the following:

e Z4int,

* 4l ong,

e (Afl oat,
 (Adoubl e,
e Abool ,

» G4conpl ex,
* (AString.

which currently consist of simplet ypedef sto respective types defined in the CLHEP, STL or system libraries.
Most definitions of these basic types come with the inclusion of asingle header file, gl obal s. hh. Thisfilealso
provides inclusion of required system headers, as well as some global utility functions needed and used within
the Geant4 kernel.

3.2.1.2. Typedefs to CLHEP classes and their usage

Thefollowing classesaret ypedef sto the corresponding classes of the CLHEP (Computing Library for High
Ener gy Physics) distribution. For more detailed documentation please refer to the CLHEP reference guide and
the CLHEP user manual .

e AThreeVector, ARotati onMatri x, GALorentzVector and GALor ent zRot ati on

Vector classes: defining 3-component (X,y,z) vector entities, rotation of such objects as 3x3 matrices, 4-com-
ponent (X,y,z,t) vector entities and their rotation as 4x4 matrices.
* (APl ane3D, ATransfornB8D, G4Nornmal 3D, (APoi nt 3D, (AScal e3D, and &4Vect or 3D

Geometrical classes. defining geometrical entities and transformations in 3D space.

3.2.2. The HEPRandom module in CLHEP

The HEPRandom module, originaly part of the Geant4 kernel, and now distributed as a module of CLHEP,
has been designed and devel oped starting from the Random class of MC++, the original CLHEP's HepRandom
modul e and the Rogue Wave approach in the M ath.h++ package. For detailed documentation on the HEPRandom
classes seethe CLHEP reference guide and the CLHEP user manual .

Information written in this manual is extracted from the original manifesto distributed with the HEPRandom
package.

The HEPRandom module consists of classes implementing different random ““engines' and different random
“distributions'. A distribution associated to an engine constitutes a random " generator”. A distribution class can
collect different algorithms and different calling sequences for each method to define distribution parameters or
range-intervals. An engine implements the basic algorithm for pseudo-random numbers generation.

There are 3 different ways of shooting random values:

1. Using the static generator defined in the HepRandom class: random values are shot using static methods
shoot () defined for each distribution class. The static generator will use, as default engine, a HepJames-
Random object, and the user can set its properties or change it with a new instantiated engine object by using
the static methods defined in the HepRandom class.
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Skipping the static generator and specifying an engine object: random values are shot using static methods
shoot (*HepRandonEngi ne) defined for each distribution class. The user must instantiate an engine
object and give it as argument to the shoot method. The generator mechanism will then be by-passed by
using the basic f | at () method of the specified engine. The user must take care of the engine objects he/
sheinstantiates.

Skipping the static generator and instantiating a distribution object: random values are shot using f i r e()
methods (NOT static) defined for each distribution class. The user must instantiate adistribution object giving
asargument to the constructor an engine by pointer or by reference. By doing so, the enginewill be associated
to the distribution object and the generator mechanism will be by-passed by using thebasicf | at () method
of that engine.

In this guide, well only focus on the static generator (point 1.), since the static interface of HEPRandom is the
only one used within the Geant4 toolkit.

3.2.2.1. HEPRandom engines

The class HepRandomEngine is the abstract class defining the interface for each random engine. It implements
the get Seed() and get Seeds() methods which return the “initial seed' value and the initial array of seeds
(if any) respectively. Many concrete random engines can be defined and added to the structure, smply making
them inheriting from HepRandomEngine. Severa different engines are currently implemented in HepRandom, we
describe here five of them:

HepJamesRandom

It implements the algorithm described in “*F.James, Comp. Phys. Comm. 60 (1990) 329" for pseudo-random
number generation. Thisis the default random engine for the static generator; it will be invoked by each distri-
bution class unless the user sets a different one.

DRand48Engine

Random engine using the dr and48() and srand48() system functions from C standard library to imple-
ment thef | at () basic distribution and for setting seeds respectively. DRand48Engine uses the seed48()
function from C standard library to retrieve the current internal status of the generator, which is represented by
3 short values. DRand48Engine is the only engine defined in HEPRandom which intrinsically works in 32 bits
precision. Copies of an object of thiskind are not allowed.

MixMaxRng

Random number engineimplementing the MixMax Matrix Generator of Pseudorandom Numbers generator pro-
posed by “"N.Z.Akopov, G.K.Saviddy and N.G.Ter-Arutyunian, J.Compt.Phy. 97, (1991) 573" and *" G.Savvidy
and N.Savvidy, J.Comput.Phys. 97 (1991) 566".

RanluxEngine

The agorithm for RanluxEngine has been taken from the original implementation in FORTRAN77 by Fred
James, part of the MATHLIB HEP library. Theinitialisation is carried out using a Multiplicative Congruen-
tial generator using formula constants of L'Ecuyer as described in ~"F.James, Comp. Phys. Comm. 60 (1990)
329-344". The engine provides five different luxury levelsfor quality of random generation. When instantiating
a RanluxEngine, the user can specify the luxury level to the constructor (if not, the default value 3 is taken).
For example:

Ranl uxEngi ne t heRanl uxEngi ne(seed, 4);

/1 instantiates an engine with “seed' and the best |uxury-Ievel
... or

Ranl uxEngi ne t heRanl uxEngi ne;

// instantiates an engine with default seed value and | uxury-Ievel

The class providesaget Luxur y() method to get the engine luxury level.

The Set Seed() and Set Seeds() methodsto set theinitial seedsfor the engine, can be invoked specifying
the luxury level. For example:
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/] static interface
HepRandom : set TheSeed(seed, 4); // sets the seed to "seed' and luxury to 4
HepRandom : set TheSeed( seed) ; /] sets the seed to “seed' keeping

/1 the current |uxury |evel

» RanecuEngine

Thealgorithm for RanecuEngineistaken fromthe oneoriginally writtenin FORTRAN77 aspart of theM ATH-
LIB HEP library. Theinitialisation is carried out using a Multiplicative Congruential generator using formula
constants of L'Ecuyer as described in “F.James, Comp. Phys. Comm. 60 (1990) 329-344". Handling of seeds
for this engine is dightly different than the other engines in HEPRandom. Seeds are taken from a seed table
given an index, the get Seed() method returns the current index of seed table. The set Seeds() method
will set seeds in the local SeedTabl e at a given position index (if the index number specified exceeds the
tablessize, [ i ndex¥%si ze] istaken). For example:

/Il static interface

const G4l ong* table _entry;

tabl e_entry = HepRandom : get TheSeeds();

// it returns a pointer “table entry' to the |ocal SeedTable

// at the current “index' position. The coupl e of seeds

/1 accessed represents the current “status' of the engine itself !

&4i nt i ndex=n;

G4l ong seeds|[ 2] ;

HepRandom : set TheSeeds( seeds, i ndex) ;

/] sets the new “index' for seeds and nodify the val ues inside

/1 the local SeedTable at the “index' position. If the index

/1 is not specified, the current index in the table is considered.

Theset Seed() method resets the current “status' of the engine to the original seeds stored in the static table
of seedsin HepRandom, at the specified index.

Except for the RanecuEngine, for which the internal status is represented by just a couple of longs, al the other
engines have a much more complex representation of their internal status, which currently can be obtained only
throughthemethodssaveSt at us() ,rest oreSt at us() andshowSt at us() , whichcanasobestatically
called from HepRandom. The status of the generator is needed for example to be able to reproduce a run or an
event in arun at agiven stage of the simulation.

RanecuEngine is probably the most suitable engine for this kind of operation, since its internal status can be
fetched/reset by simply using get Seeds() /set Seeds() (get TheSeeds() /set TheSeeds() forthesta
tic interface in HepRandom).

3.2.2.2. The static interface in the HepRandom class

HepRandom a singleton class and using a HepJamesRandom engine as default algorithm for pseudo-random num-
ber generation. HepRandom defines a static private data member, t heGener at or , and a set of static methods
to manipulate it. By means of t heGener at or , the user can change the underlying engine algorithm, get and
set the seeds, and use any kind of defined random distribution. The static methods set TheSeed() and get -

TheSeed() will set and get respectively the “initial' seed to the main engine used by the static generator. For
example:

HepRandom : set TheSeed(seed); // to change the current seed to 'seed'
int startSeed = HepRandom : get TheSeed(); // to get the current initial seed
HepRandom : saveEngi neSt at us() ; // to save the current engine status on file
HepRandom : rest or eEngi neStatus(); // to restore the current engine to a previous

/] saved configuration
HepRandom : showEngi neSt at us() ; /'l to display the current engine status to stdout

int index=n;
| ong seeds][2];
HepRandom : get TheTabl eSeeds( seeds, i ndex) ;
/1 fills “seeds' with the values stored in the gl obal
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/| seedTabl e at position "index'

Only one random engine can be active at a time, the user can decide at any time to change it, define a new one
(if not done already) and set it. For example:

RanecuEngi ne t heNewEngi ne;
HepRandom : set TheEngi ne( & heNewEngi ne) ;

or simply setting it to an old instantiated engine (the old engine status is kept and the new random sequence will
start exactly from the last one previously interrupted). For example:

HepRandom : set TheEngi ne( &vyQ dEngi ne) ;
Other static methods defined in this class are:

» voi d set TheSeeds(const G4l ong* seeds, G4int)
e const Al ong* get TheSeeds()

To set/get an array of seeds for the generator, in the case of a RanecuEngine this corresponds also to set/get
the current status of the engine.
* HepRandonEngi ne* get TheEngi ne()

To get apointer to the current engine used by the static generator.

3.2.2.3. HEPRandom distributions

A distribution-class can collect different algorithms and different calling sequences for each method to define
distribution parametersor range-intervals; it also collectsmethodstofill arrays, of specified size, of random values,
according to the distribution. This class collects either static and not static methods. A set of distribution classes
are defined in HEPRandom. Here is the description of some of them:

» RandFlat

Classto shoot flat random values (integers or double) within a specified interval. The class provides also meth-
ods to shoot just random hits.
» RandExponential

Class to shoot exponential distributed random values, given a mean (default mean = 1)
* RandGauss

Class to shoot Gaussian distributed random values, given a mean (default = 0) or specifying also a deviation
(default = 1). Gaussian random numbers are generated two at the time, so every other time a number is shot,
the number returned is the one generated the time before.

» RandBreitWigner

Class to shoot numbers according to the Breit-Wigner distribution algorithms (plain or mean”2).
* RandPoisson

Classto shoot numbers according to the Poisson distribution, given amean (default = 1) (Algorithm taken from
“"W.H.Press et a., Numerical Recipesin C, Second Edition").

3.2.3. The HEPNumerics module

A set of classes implementing numerical algorithms has been developed in Geant4. Most of the algorithms and
methods have been implemented mainly based on recommendations given in the books:

» B.H. Flowers, "“An introduction to Numerical Methods In C++", Claredon Press, Oxford 1995.
* M. Abramowitz, |. Stegun, “"Handbook of mathematical functions’, DOVER Publications INC, New Y ork
1965 ; chapters 9, 10, and 22.
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This set of classesincludes:
e (AChebyshevApproxi nati on

Class creating the Chebyshev approximation for afunction pointed by fFunction data member. The Chebyshev
polynomial approximation provides an efficient evaluation of the minimax polynomial, which (among all poly-
nomials of the same degree) has the smallest maximum deviation from the true function.

* (MADat al nt erpol ati on

Class providing methods for data interpolations and extrapolations: Polynomial, Cubic Spline, ...
* AGussChebyshevQ
» AGussHermteQ
e (AGussJacobi Q
* ACGaussLaguerreQ

Classes implementing the Gauss-Chebyshev, Gauss-Hermite, Gauss-Jacobi, Gauss-Laguerre and Gauss-Le-
gendre quadrature methods. Roots of orthogonal polynomials and corresponding weights are calculated based
on iteration method (by bisection Newton algorithm).

* (Al ntegrator

Template class collecting integrator methods for generic functions (Legendre, Simpson, Adaptive Gauss, La-
guerre, Hermite, Jacobi).
 GASi npl el ntegration

Class implementing simple numerical methods (Trapezoidal, MidPoint, Gauss, Simpson, Adaptive Gauss, for
integration of functions with signature: double f(double).

3.2.4. General management classes

The "global' category definesalso aset of "utility' classes generally used within the kernel of Geant4. These classes
include:

e (A4Al | ocat or

A classfor fast alocation of objectsto the heap through paging mechanism. It's meant to be used by associating
it to the object to be alocated and defining for it new and del et e operators via Mal | ocSi ngl e() and
Fr eeSi ngl e() methodsof AAl | ocat or.

Note: AAl | ocat or assumes that objects being allocated have all the same size for the type they represent.
For this reason, classes which are handled by GAAI | ocat or should avoid to be used as base-classes for oth-
ers. Similarly, base-classes of sub-classes handled through G4Al | ocat or should not define their (eventualy
empty) virtual destructorsinlined; such measureis necessary in order also to prevent bad aliasing optimisations
by compilers which may potentially lead to crashes in the attempt to free allocated chunks of memory when
using the base-class pointer or not.

Thelist of alocatorsimplicitely defined and used in Geant4 is reported here:

- events (GAEvent): anEvent Al | ocat or

- tracks (GATrack): aTrackAl | ocator

- stacked tracks (GAStackedTrack): aStackedTrackAl | ocator

- primary particles (GAPrimaryParticle): aPrimaryParticleAll ocator

- primary vertices (GAPrimaryVertex): aPrimaryVertexAl | ocator

- decay products (GADecayProducts): aDecayProductsAll ocat or

- digits collections of an event (GADCof Thi sEvent): anDCoTHAl | ocat or

- digits collections (G4D gi Col | ection): aDCAl | ocat or

- hits collections of an event (G4HCof Thi sEvent): anHCoTHAI | ocat or

- hits collections (G4H tsCol |l ection): anHCAI | ocat or

- touchabl e histories (GATouchabl eH story): aTouchabl eH st oryAl | ocat or
- trajectories (ATrajectory): aTrajectoryAllocator

- trajectory points (GATraj ectoryPoint): aTrajectoryPointAllocator

- trajectory containers (&4TrajectoryContainer): aTrajectoryContainerAllocator
- navigation | evels (4Navi gationLevel ): aNavi gati onLevel Al | ocat or
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- navigation | evel nodes (G&4Navi gati onLevel Rep): aNavi gLevel RepAl | ocat or

- reference-counted handl es (G4Ref er enceCount edHandl e<X>): aRCHAI | ocat or

- counted objects (G4CountedObject<X>): aCount edbj ect Al | ocat or

- HEPEvt primary particles (GAHEPEvtParticle): aHEPEvtParticl eAll ocator

- electron occupancy objects(GAEl ectronCccupancy): aEl ectronCccupancyAl | ocat or
"rich" trajectories (G4RichTrajectory): aRi chTrajectoryAllocator
"rich" trajectory points (GARi chTraj ectoryPoint): aRi chTraj ectoryPointAl | ocat or
"snmoot h" trajectories (G4Snoot hTraj ectory): aSnoot hTraj ectoryAl | ocat or
"smoot h" trajectory points (G4Snpot hTraj ectoryPoi nt): aSnoot hTraj ect or yPoi nt Al | ocat or
"ray" trajectories (GARayTrajectory): (ARayTrajectoryAll ocator
"ray" trajectory points (G4RayTrajectoryPoint): GARayTraj ectoryPoi nt Al | ocat or

For each of these alocators, accessible from the global namespace, it is possible to monitor the allocation in
their memory pools or force them to release the allocated memory (for example at the end of arun):

/! Return the size of the total nmenory allocated for tracks
I
aTrackAl | ocat or. Get Al | ocat edSi ze() ;

/! Return allocated storage for tracks to the free store
I
aTrackAl | ocat or. Reset St or age() ;

ARef er enceCount edHandl e

Template class acting as asmart pointer and wrapping the type to be counted. It performsthe reference counting
during the life-time of the counted object.
(AFast Vect or

Template class defining a vector of pointers, not performing boundary checking.
APhysi csVect or

Definesaphysicsvector which hasvalues of energy-loss, cross-section, and other physicsvaluesof aparticlein
matter in agiven range of the energy, momentum, etc. This class serves asthe base classfor avector having var-
ious energy scale, for examplelike'log' (APhysi csLogVect or) 'linear' (APhysi csLi near Vect or),
'free’ (GAPhysi csFreeVect or), etc.

ALPhysi csFreeVect or

Implements a free vector for low energy physics cross-section data. A subdivision method is used to find the
energy|momentum hin.
AAPhysi csOr der edFr eeVect or

A physics ordered free vector inherits from G4APhysi csVect or . It provides, in addition, a method for the
user to insert energy/value pairs in sequence. Methods to retrieve the max and min energies and values from
the vector are also provided.

GATi mer

Utility class providing methods to measure elapsed user/system process time. Uses <sys/ti nmes. h> and
<uni st d. h>- POSIX.1.
HAUserLimts

Class collecting methods for get and set any kind of step limitation allowed in Geant4.
GAUni t sTabl e

Placehol der for the system of unitsin Geant4.

3.3. System of units

3.3.1. Basic units

Geant4 offers the user the possibility to choose and use the preferred units for any quantity. In fact, Geant4 takes
care of the units. Internally a consistent set on units based on the HepSyst emOf Uni t s is used:
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mllinmeter (mm
nanosecond (ns)

Mega el ectron Vol t (MeV)

posi tron charge (epl us)
degree Kelvin (kel vi n)
the ampbunt of substance (nole)

| um nous intensity (candel a)
radi an (radi an)

st eradi an (st eradi an)

All other units are defined from the basic ones.
For instance:

mllimeter = nm= 1;
meter = m= 1000* mm

.nlﬁlz mm'm
Inthefile$CLHEP_BASE_DI R/ i ncl ude/ CLHEP/ Uni t s/ Syst enOf Uni t s. h from the CLHEP installa-

tion, one can find all untis definitions.

One can a so change the system of units to be used by the kernel.
3.3.2. Input your data
3.3.2.1. Avoid 'hard coded' data

The user must give the units for the data to introduce:

GAdoubl e Size = 15*km KineticEnergy = 90.3*CGeV, density = 11*ng/cnB;

Geant4 assumes that these specificationsfor the units are respected, in order to assure independence from the units
chosen in the client application.

If units are not specified in the client application, data are implicitly treated in internal Geant4 system units; this
practice is however strongly discouraged.

If the data set comes from an array or from an external file, it is strongly recommended to set the units as soon

as the data are read, before any treatment. For instance:

for (int j=0, j<jmax, j++) CrossSection[j] *= mllibarn;

rry cal cul ati ons
3.3.2.2. Interactive commands

Some built-in commands from the User Interface (Ul) also require units to be specified.

For instance:

/ gun/ energy 15.2 keV
/gun/position 3 2 -7 neter

If units are not specified, or are not valid, the command is refused.
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3.3.3. Output your data

Y ou can output your data with the wished units. To do so, it is sufficient to divide the data by the corresponding
unit:

GAcout << KineticEnergy/keV << " keV';
Gdcout << density/(g/cnB) << " g/lcnB";

Of course, ZAcout << Ki neti cEner gy will print the energy in theinternal units system.
There is another way to output the data. Let Geant4 choose the most appropriate units for the actual numerical

value of the data. It is sufficient to specify to which category the data belong to (Length, Time, Energy, etc.).
For example

GAcout << (ABest Unit (StepSize, "Length");

St epSi ze will be printed in km, m, mm, fermi, etc. depending of its actual value.

3.3.4. Introduce new units

If wished to introduce new units, there are two methods:

* You can extend thefileSyst entX Uni ts. h

#i ncl ude "SystemO Units. h"

static const Adouble inch = 2.54*cm

Using this method, it is not easy to define composed units. It is better to do the following:
* Instantiate an object of the class AUni t Defi nition. These objects are owned by the global
GAUni t sTabl e at construction, and must not be deleted by the user.

new AUnitDefinition ( nanme, synbol, category, value )
For example: define afew units for speed

new AUnitDefinition ( "km hour" , "km h", "Speed", km (3600*s) );
new AUnitDefinition ( "nmeter/ns", "m ns", "Speed", nmns );

The category "Speed" does not exist by default in G4Uni t sTabl e, but it will be created automatically. The
classGAUni t Defi ni ti onisdefinedinsour ce/ gl obal / managenent/ G4Uni t sTabl e. hh.

3.3.5. Print the list of units

You can print the list of units with the static function: G4Uni t Defi ni ti on: : Print Uni t sTabl e();

or with the interactive command: / uni t s/ | i st

3.4. Run

3.4.1. Basic concept of Run

In Geant4, Run isthe largest unit of simulation. A run consists of a sequence of events. Within arun, the detector
geometry, the set up of sensitive detectors, and the physics processes used in the simulation should be kept un-
changed. A runisrepresented by a4 Run classobject. A run startswith BeamOn() method of GARunManager .
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3.4.1.1. Representation of arun

GARun represents a run. It has a run identification number, which should be set by the user, and the number of
events simulated during the run. Please note that the run identification number is not used by the Geant4 kernel,
and thus can be arbitrarily assigned at the user's convenience.

GARun has pointersto the tables G4AVHi t sCol | ecti on and G4VDi gi Col | ect i on. Thesetables are asso-
ciated in case sensitive detectors and digitizer modules are simulated, respectively. The usage of these tables will
be mentioned in Section 4.4 and Section 4.5.

ARun has two virtual methods, and thus you can extend G4Run class. In particular if you use Geant4 in mul-
ti-threaded mode and need to accumulate values, these two virtual method must be overwritten to specify how
such values should be collected firstly for aworker thread, and then for the entire run. These virtual methods are
the following.

virtual void RecordEvent(const (4Event*)
Method to be overwritten by the user for recording events in this (thread-local) run. At the end of the imple-
mentation, G4Run base-class method for must be invoked for recording data members in the base class.

voi d Merge(const (ARun*)
Method to be overwritten by the user for merging local Run object to the global Run object. At the end of the
implementation, G4Run base-class method for must be invoked for merging data membersin the base class.

3.4.1.2. Manage the run procedures

ARunManager manages the procedures of a run. In the constructor of GARunManager , al of the manager
classes in Geant4 kernel, except for some static managers, are constructed. These managers are deleted in the
destructor of GARunManager . GARunManager must be asingleton created intheuser'snai n() program; the
pointer to this singleton object can be obtained by other code using the Get RunManager () static method.

As aready mentioned in Section 2.1, al of the user initialization classes defined by the user should be assigned
to ARunManager before starting initialization of the Geant4 kernel. The assignments of these user classes
aredone by Set User I nitialization() methods. All user classes defined by the Geant4 kernel will be
summarized in Chapter 6.

GAARunManager has severa public methods, which are listed below.

Initialize()
All initializations required by the Geant4 kernel are triggered by this method. Initializations are:
» construction of the detector geometry and set up of sensitive detectors and/or digitizer modules,
« construction of particles and physics processes,
» calculation of cross-section tables.
This method is thus mandatory before proceeding to the first run. This method will be invoked automatically
for the second and later runs in case some of the initialized quantities need to be updated.

BeamOn( 4i nt nunber Of Event)
This method triggers the actual simulation of arun, that is, an event loop. It takes an integer argument which
represents the number of eventsto be simulated.

Get RunManager ()
This static method returns the pointer to the GARunManager singleton object.

Get Current Event ()
This method returns the pointer to the GAEvent object which is currently being simulated. This method is
available only when an event is being processed. At this moment, the application state of Geant4, which is
explained in the following sub-section, is "EventProc". When Geant4 is in a state other than "EventProc",
this method returns nul | . Please note that the return value of thismethod isconst  GAEvent * and thus
you cannot modify the contents of the object.
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Set Nunber Of Event sToBeSt or ed( G4i nt  nPr evi ous)
When simulating the "pile up" of morethan one event, it isessential to access morethan one event at the same
moment. By invoking this method, GARunManager keepsnPr evi ous G4Event objects. This method
must be invoked before proceeding to Beantn() .

Get Previ ousEvent (G4i nt i _t hPrevi ous)
The pointer tothei _t hPrevi ous GAEvent object can be obtained through this method. A pointer to a
const objectisreturned. It isinevitablethati _t hPr evi ous events must have aready been simulated in
the samerun for getting thei _t hPr evi ous event. Otherwise, this method returnsnul | .

Abort Run()
This method should be invoked whenever the processing of arun must be stopped. It isvalid for GeomClosed
and EventProc states. Run processing will be safely aborted eveninthe midst of processing an event. However,
the last event of the aborted run will be incomplete and should not be used for further analysis.

3.4.1.3. Run manager classes for nulti-threadi ng node

AMIRunManager isthe replacement of GARunManager for multi-threading mode. At the very end of | ni -
tialize() method, AMIRunManager creates and starts worker threads. The event each thread is tasked is
infirst_come first_served basis, so that event numbers each thread has are not sequential.

AWr ker RunManager is the loca RunManager automatically instantiated by GAMITRunManager to take
care of initialization and event handling of a thread. Both AMIRunManager and GAWor ker RunManager
are derived classes of GARunManager base class.

The static method ARunManager : : Get RunManager () returnsthe following pointer.

« It returns the pointer to the GAWor ker RunManager of the local thread when it isinvoked from thread-local
object.

* It returns the pointer to the AMIRunManager when it isinvoked from shared object.
« It returns the pointer to the base GARunManager if it isused in the sequential mode.

HAARunManager has a method Get RunManager Type() that returns an enum named RMType to indicate
what kind of RunManager itis. RMIype isdefined as{ sequential RM masterRM workerRM }.
From the thread-local object, a static method GAMIRunManager : : Get Mast er RunManager () isavailable
to accessto AMIRunManager . From aworker thread, the user may accessto, for example, detector construction
(it isashared class) through this Get Mast er RunManager () method.

3.4.1.4. AUser RunActi on

HAUser RunAct i on isone of the user action classes from which you can derive your own concrete class. This
base class has three virtual methods as follows:

CGener at eRun()
This method is invoked at the beginning of the BeantOn() method but after confirmation of the conditions
of the Geant4 kernel. This method should be used to instantiate a user-specific run class object.

Begi nO RunActi on()
This method is invoked at the beginning of the BeantOn() method but after confirmation of the conditions
of the Geant4 kernel. Likely uses of this method include:
* setting arun identification number,
* booking histograms,
* setting run specific conditions of the sensitive detectors and/or digitizer modules (e.g., dead channels).

EndOf RunActi on()
This method isinvoked at the very end of the BeanOn() method. Typical use cases of this method are
* store/print histograms,
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e manipulate run summaries.

3.4.2. Geant4 as a state machine

Geant4 is designed as a state machine. Some methods in Geant4 are available for only a certain state(s).
AARunManager controls the state changes of the Geant4 application. States of Geant4 are represented by the
enumeration G4Appl i cati onSt at e. It has six states through the life cycle of a Geant4 application.

AState Prelnit state
A Geant4 application starts with this state. The application needs to be initialized when it isin this state. The
application occasionally comes back to this state if geometry, physics processes, and/or cut-off have been
changed after processing arun.

AState_ | nit sate
The application isin this state whilethe I ni ti al i ze() method of GARunManager is being invoked.
Methods defined in any user initialization classes are invoked during this state.

ASt at e_| dl e state
The application is ready for starting arun.

ASt at e_CGeonC osed state
When BeanOn() is invoked, the application proceeds to this state to process a run. Geometry, physics
processes, and cut-off cannot be changed during run processing.

(ASt at e_Event Pr oc state
A Geant4 application isin this state when aparticular event is being processed. Get Cur r ent Event () and
Get Pr evi ousEvent () methods of GARunManager are available only at this state.

AState_ Qi t state
When the destructor of G4RunManager isinvoked, the application comesto this"dead end" state. Managers
of the Geant4 kernel are being deleted and thus the application cannot come back to any other state.

ASt at e_Abort state
When aAExcept i on occurs, the application comesto this "dead end" state and causes a core dump. The
user still has ahook to do some "saf€e" opperations, e.g. storing histograms, by implementing a user concrete
class of GAVSt at eDependent . The user also has a choice to suppress the occurence of GAExcept i on
by a Ul command /control/suppressAbortion. When abortion is suppressed, you will still get error messages
issued by G4Exception, and there is NO guarantee of a correct result after the G4Exception error message.

ASt at eManager belongsto the intercoms category.

3.4.3. User's hook for state change

In case the user wants to do something at the moment of state change of Geant4, the user can create a concrete
class of the AVSt at eDependent base class. For example, the user can store histograms when G4Exception
occurs and Geant4 comes to the Abort state, but before the actual core dump.

The following is an example user code which stores histograms when Geant4 becomes to the Abort state. This
classobject should be mabein, for examplenai n( ) , by the user code. Thisobject will be automatically registered
to ASt at eManager at its construction.

Example 3.1. Header file of UserHookFor AbortState

#i f ndef User HookFor Abort State H
#defi ne User HookFor Abort State_H 1
#i ncl ude " 4VSt at eDependent . hh"

cl ass User HookFor Abort State : public GAVSt at eDependent
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public:
User HookFor Abort St at e() ; /] constructor
~User HookFor Abort State(); // destructor

virtual G4bool Notify(G4ApplicationState requiredState);
i

Example 3.2. Sourcefile of User HookFor AbortState

#i ncl ude " User HookFor Abort St at e. hh"

User HookFor Abor t St at e: : User HookFor Abort State() {;}
User HookFor Abor t St at e: : ~User HookFor Abort State() {;}

(Abool User HookFor Abort State: : Notify(4ApplicationState requiredState)
{

if(requiredState! =Abort) return true;
/1 Do book keeping here

return true;

}

3.4.4. Customizing the Run Manager

3.4.4.1. Virtual Methods in the Run Manager

GARunManager is a concrete class with a complete set of functionalities for managing the Geant4 kernel. It
is the only manager class in the Geant4 kernel which must be constructed in the mai n() method of the user's
application. Thus, instead of constructingthe GARunManager provided by Geant4, you are freeto construct your
own RunManager . It is recommended, however, that your RunManager inherit GARunManager . For this
purpose, GARunManager has various virtual methods which provide all the functionalities required to handle
the Geant4 kernel. Hence, your customized run manager need only override the methods particular to your needs;
the remaining methods in GARunManager base class can still be used. A summary of the available methods is
presented here:

public: virtual void Initialize();
main entry point of Geant4 kernel initialization

protected: virtual void InitializeGeometry();
geometry construction

protected: virtual void InitializePhysics();
physics processes construction

public: virtual void BeamDn(G4int n_event);
main entry point of the event loop

protected: virtual (4bool ConfirnBeanOnCondition();
check the kernel conditions for the event loop

protected: virtual void Runlnitialization();
prepare arun

protected: virtual void DoEventLoop(&int n_events);
manage an event loop

protected: virtual (4Event* GenerateBEvent (int i_event);
generation of AEvent object

protected: virtual void Anal yzeEvent (&Event* anEvent);
storage/analysis of an event
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protected: virtual void RunTerm nation();
terminate arun

public: virtual void DefineWrl dVol une(&VPhysi cal Vol ume * worl dVol ) ;
set the world volume to ANavi gat or

public: virtual void AbortRun();
abort the run

3.4.4.2. Customizing the Event Loop

In ARunManager the event loop is handled by the virtual method DoEvent Loop( ) . This method isimple-
mented by af or loop consisting of the following steps:

1. construct a AEvent object and assign to it primary vertex(es) and primary particles. This is done by the
virtual Gener at ePri mar yEvent () method.

2. sendthe GAEvent object to GAEvent Manager for the detector simulation. Hits and trajectories will be
associated with the G4AEvent object as a consequence.

3. perform bookkeeping for the current GAEvent object. This is done by the virtual Anal yzeEvent ()
method.

DoEvent Loop() performsthe entire simulation of an event. However, it is often useful to split the above three
stepsinto isolated application programs. If, for example, you wish to examine the effects of changing discriminator
thresholds, ADC gate widths and/or trigger conditions on simulated events, much time can be saved by perform-
ing steps 1 and 2 in one program and step 3 in another. The first program need only generate the hit/trgjectory
information once and storeit, perhaps in a database. The second program could then retrieve the stored AEvent
objects and perform the digitization (analysis) using the above threshold, gate and trigger settings. These settings
could then be changed and the digitization program re-run without re-generating the G4Event s.

3.4.4.3. Changing the Detector Geometry

The detector geometry defined in your G4VUser Det ect or Const ruct i on concrete class can be changed
during arun break (between two runs). Two different cases are considered.

The first is the case in which you want to delete the entire structure of your old geometry and build up a com-
pletely new set of volumes. For this case, you need to delete them by yoursef, and let RunManager invokes Con-
struct () and Const ruct SDandFi el d() methods of your detector construction once again when Run-
Manager startsthe next run.

G4ARunManager * runManager = GARunManager : : Get RunManager () ;
runManager->Rei nitiali zeGeonetry();

If thisRei nitializeGeonetry() isinvoked, Geonet r yHasBeenModi fi ed() (discussed next) is au-
tomatically invoked. Presumably this case is rather rare. The second case is more frequent for the user.

The second case is the following. Suppose you want to move and/or rotate a particular piece of your detector
component. This case can easily happen for abeam test of your detector. It is obvious for this case that you need
not change the world volume. Rather, it should be said that your world volume (experimental hall for your beam
test) should be big enough for moving/rotating your test detector. For this case, you can still use all of your detector
geometries, and just use a Set method of a particular physical volume to update the transformation vector as you
want. Thus, you don't need to re-set your world volume pointer to RunManager.

If you want to change your geometry for every run, you canimplement itintheBegi nOf RunAct i on() method
of AAUser RunAct i on class, which will beinvoked at the beginning of each run, or, derivethe Runl ni ti al -
i zati on() method. Please note that, for both of the above mentioned cases, you need to let RunManager know
"the geometry needs to be closed again”. Thus, you need to invoke

runManager - >Geonet r yHasBeenModi fi ed() ;
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before proceeding to the next run. An example of changing geometry is given in a Geant4 tutorial in Geant4
Training kit #2.

3.4.4.4. Switch physics processes

Inthel ni ti al i zePhysi cs() method, GAVUser Physi csLi st :: Const ruct isinvokedin order to de-
fine particles and physics processesin your application. Basically, you can not add nor remove any particlesduring
execution, because particles are static objects in Geant4 (see Section 2.4 and Section 5.3 for details). In addition,
it is very difficult to add and/or remove physics processes during execution, because registration procedures are
very complex, except for experts (see Section 2.5 and Section 5.2). Thisiswhy thei ni ti al i zePhysi cs()
method is assumed to be invoked at once in Geant4 kernel initialization.

However, you can switch on/off physics processes defined in your G4VUser Physi csLi st concrete class and
also change parameters in physics processes during the run break.

YoucanuseAct i vat eProcess() andl nActi vat eProcess() methods of G4Pr ocessManager any-
where outside the event loop to switch on/off some process. Y ou should be very careful to switch on/off processes
inside the event loop, though it is not prohibited to use these methods even in the EventProc state.

It is a likely case to change cut-off values in a run. You can change def aul t Cut Val ue in
(AVUser Physi csLi st during theldle state. Inthis case, al cross section tables need to be recal cul ated before
the event loop. Y ou should use the Cut Of f HasBeenMbdi fi ed() method when you change cut-off values so
that the Set Cut s method of your PhysicsList concrete class will be invoked.

3.4.5. Managing worker thread

HAUserWorkerlnitialization isan additional user initidization class to be used only for the mul-
ti-threaded mode. The object of this class can be set to GAMIRunManager , but not to GARunManager .
HAUser Wrkerlnitialization classhasfivevirtua methods as the user hooks which are invoked at sev-
eral occasions of thelife cycle of each thread.

virtual void Workerlnitialize() const
This method is called after the tread is created but before the GAWor ker RunManager isinstantiated.

virtual void WirkerStart() const
This method is called once at the beginning of simulation job when kernel classes and user action classes
have already instantiated but geometry and physics have not been yet initialized. This situation is identical
to"Pr el ni t " statein the sequential mode.

virtual void WrkerStartRun() const
This method is called before an event loop. Geometry and physics have already been set up for the thread.
All threads are synchronized and ready to start the local event loop. Thissituationisidentical to "l dl e" state
in the sequential mode.

virtual void WirkerRunEnd() const
This method is called for each thread when the local event loop is done, but before the synchronization over
all worker threads.

virtual void WrkerStop() const
This method is called once at the end of simulation job.

3.5. Bvent

3.5.1. Representation of an event

AEvent represents an event. An object of this class contains all inputs and outputs of the simulated event.
This class object is constructed in GARunManager and sent to GAEvent Manager . The event currently being
processed can be obtained viathe get Cur r ent Event () method of GARunManager .
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3.5.2. Structure of an event

A GAEvent object has four major types of information. Get methods for this information are available in
HAEvent .

Primary vertexes and primary particles
Details are given in Section 3.6.
Trajectories

Trajectories are stored in G4TrgectoryContainer class objects and the pointer to this container is stored in
GAEvent . The contents of atrajectory are given in Section 5.1.6.

Hits collections

Collections of hits generated by sensitive detectors are kept in GAHCof Thi sEvent class object and the
pointer to this container class object is stored in AEvent . See Section 4.4 for the details.

Digits collections

Collections of digits generated by digitizer modules are kept in G4DCof Thi sEvent class object and the
pointer to this container class object is stored in AEvent . See Section 4.5 for the details.

3.5.3. Mandates of GAEvent Manager

GAEvent Manager isthe manager class to take care of one event. It is responsible for:

» converting G4Pri mar yVert ex and APri mar yPar ti cl e objects associated with the current GAEvent
object to GATrack objects. All of GATrack objects representing the primary particles are sent to
A4St ackManager .

» Pop one ATr ack object from GASt ackManager and send it to GATr acki ngManager . The current
ATr ack object is deleted by GAEvent Manager after the track is simulated by G4 Tr acki ngManager ,
if thetrack is marked as "killed".

* In case the primary track is "suspended" or "postponed to next event" by G4 Tr acki ngManager , it is sent
back to the (A4St ackManager . Secondary GATr ack objects returned by GATr acki ngManager are aso
sent to ASt ackManager .

» When G4St ackManager returns NULL for the "pop" request, G4AEvent Manager terminates the current
processing event.

* invokes the user-defined methods begi nOf Event Acti on() and endOf Event Acti on() from the
HAUser Event Act i on class. See Section 6.3 for details.

3.5.4. Stacking mechanism

(ASt ackManager hasthree stacks, named urgent, waiting and postpone-to-next-event, which are objects of the
(ATr ackSt ack class. By default, all GATr ack objects are stored in the urgent stack and handled in a"last in
first out" manner. In this case, the other two stacks are not used. However, tracks may be routed to the other two
stacks by the user-defined GAUser St acki ngAct i on concrete class.

If the methods of AUser St acki ngAct i on have been overridden by the user, the postpone-to-next-event and
waiting stacks may contain tracks. At the beginning of an event, G4St ackManager checksto seeif any tracks
left over from the previous event are stored in the postpone-to-next-event stack. If so, it attemps to move them to
the urgent stack. But first the Pr epar eNewEvent () method of G4User St acki ngActi on iscalled. Here
tracks may bere-classified by the user and sent to the urgent or waiting stacks, or deferred again to the postpone-to-
next-event stack. Asthe event isprocessed 4 St ackManager popstracksfrom the urgent stack until itisempty.
At this point the NewSt age() method of AUser St acki ngAct i on iscalled. In this method tracks from the
waiting stack may be sent to the urgent stack, retained in the waiting stack or postponed to the next event.

Details of the user-defined methods of GAUser St acki ngAct i on and how they affect track stack management
aregiven in Section 6.3.
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3.6. Event Generator Interface

3.6.1. Structure of a primary event

3.6.1.1. Primary vertex and primary particle

The G4Event class object should have a set of primary particles when it is sent to GAEvent Manager via
processOneEvent () method. It isthe mandate of your G4VUser Pri mar yGener at or Act i on concrete
classto send primary particlesto the GAEvent object.

The KAPri mar yParti cl e class represents a primary particle with which Geant4 starts simulating an event.
This class object has information on particle type and its three momenta. The positional and time information of
primary particle(s) are stored in the GAPr i mar yVer t ex class object and, thus, this class object can have one or
more APr i mar yPar t i cl e class objects which share the same vertex. Primary vertexes and primary particles
are associated with the AEvent object by aform of linked list.

A concrete class of GAVPr i mar yGener at or , the GAPri maryParti cl e object is constructed with either
a pointer to GAPar ti cl eDefi ni ti on or an integer number which represents P.D.G. particle code. For the
case of some artificial particles, e.g., geantino, optical photon, etc., or exotic nuclear fragments, which the P.D.G.
particle code does not cover, the GAPr i mar yPar ti cl e should beconstructedby GAPar ti cl eDefinition
pointer. On the other hand, elementary particles with very short life time, e.g., weak bosons, or quarks/gluons,
can be instantiated as GAPr i mar yParti cl e objects using the P.D.G. particle code. It should be noted that,
even though primary particles with such avery short life time are defined, Geant4 will simulate only the particles
which are defined as G4Par t i cl eDef i ni ti on class objects. Other primary particles will be simply ignored
by (AEvent Manager . But it may still be useful to construct such "intermediate” particles for recording the
origin of the primary event.

3.6.1.2. Forced decay channel

The GAPri maryParti cl e class object can have a list of its daughter particles. If the parent particle is an
"intermediate” particle, which Geant4 does not have a corresponding G4Par ti cl eDefi ni ti on, this parent
particle is ignored and daughters are assumed to start from the vertex with which their parent is associated. For
example, aZ boson isassociated with avertex and it has positive and negative muons asits daughters, these muons
will start from that vertex.

There are some kinds of particles which should fly some reasonable distances and, thus, should be simulated by
Geant4, but you still want to follow the decay channel generated by an event generator. A typical case of these par-
ticlesis B meson. Even for the case of aprimary particlewhich hasacorresponding APar t i cl eDef i ni ti on,
it can have daughter primary particles. Geant4 will trace the parent particle until it comesto decay, obeying mul-
tiple scattering, ionization loss, rotation with the magnetic field, etc. according to its particle type. When the parent
comes to decay, instead of randomly choosing its decay channel, it follows the "pre-assigned” decay channel. To
conserve the energy and the momentum of the parent, daughters will be Lorentz transformed according to their
parent's frame.

3.6.2. Interface to a primary generator

3.6.2.1. G4AHEPEvtInterface

Unfortunately, amost al event generators presently in use, commonly are written in FORTRAN. For Geant4,
it was decided to not link with any FORTRAN program or library, even though the C++ language syntax itself
allows such alink. Linking to a FORTRAN package might be convenient in some cases, but we will lose many
advantages of object-oriented features of C++, such asrobustness. Instead, Geant4 providesan ASCI| fileinterface
for such event generators.

AHEPEVt | nterface is one of AVPri maryGener at or concrete class and thus it can be used
in your G4VUser Pri mar yGener at or Act i on concrete class. GAHEPEVt | nt er f ace reads an ASCII
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file produced by an event generator and reproduces GAPri maryParti cl e objects associated with a
GAPri mar yVer t ex object. It reproduces a full production chain of the event generator, starting with primary
quarks, etc. In other words, AHEPEVt | nt er f ace converts information stored in the / HEPEVT/ common
block to an object-oriented data structure. Because the/ HEPEVT/ common block iscommonly used by aimost all
event generatorswrittenin FORTRAN, GAHEPEVt | nt er f ace caninterfaceto amost all event generators cur-
rently used in the HEP community. The constructor of GAHEPEVt | nt er f ace takesthe file name. Example 3.3
shows an example how to use GAHEPEVt | nt er f ace. Note that an event generator is not assumed to give a
place of the primary particles, the interaction point must be set beforeinvoking Gener at ePr i mar yVert ex()

method.

Example 3.3. An example codefor AHEPEVt | nt er f ace
#i f ndef ExNO4Pri maryGener at or Acti on_h
#defi ne ExNO4Pri maryGeneratorAction_h 1

#i ncl ude " GAVUser Pri mar yGener at or Acti on. hh"
#i ncl ude "gl obal s. hh"

cl ass GAVPri mar yGener at or ;
cl ass AEvent;

cl ass ExNO4Pri maryGenerator Action : public G4VUserPri maryGenerat or Acti on
public:
ExNO4Pr i mar yGener at or Acti on();
~EXNO4Pr i mar yGener at or Acti on() ;

public:
voi d GeneratePrimari es(&4Event* anEvent);

private:
GAVPr i mar yGener at or * HEPEvt ;
=

#endi f

#i ncl ude " ExNO4Pri maryGener at or Acti on. hh"

#i ncl ude "&4Event. hh"
#i ncl ude "GAHEPEvt | nterface. hh"

ExNO4Pr i mar yGener at or Act i on: : EXNO4Pr i mar yGener at or Acti on()

HEPEvt = new GAHEPEvt | nterface("pythia_event.data");
}

EXNO4Pri mar yGener at or Act i on: : ~EXNO4Pr i mar yGener at or Acti on()

del et e HEPEVt;
}

voi d ExNO4Pri maryGener at or Acti on: : Gener at ePri mari es( G4Event * anEvent)

HEPEvt - >Set Parti cl ePositi on(G4ThreeVector (0.*cm 0.*cm 0. *cm) ) ;
HEPEVt - >Gener at ePri mar yVert ex(anEvent ) ;

}
3.6.2.2. Format of the ASCII file

An ASCII file, which will be fed by GAHEPEVt | nt er f ace should have the following format.

» The first line of each primary event should be an integer which represents the number of the following lines
of primary particles.

» Eachlinein an event correspondsto a particle in the/ HEPEVT/ common. Each line has| STHEP, | DHEP,
JDAHEP( 1), JDAHEP(2), PHEP(1), PHEP(2), PHEP(3), PHEP(5). Refertothe/ HEPEVT/
manual for the meanings of these variables.

Example 3.4 shows an example FORTRAN code to generate an ASCI| file.
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Example 3.4. A FORTRAN example using the/ HEPEVT/ common.
SUBROUTI NE HEP2GA

Convert /HEPEVT/ event structure to an ASCII file
to be fed by AHEPEvt | nterface

E N

R R R

PARAVETER ( NMXHEP=2000)

COVMON/ HEPEVT/ NEVHEP, NHEP, | STHEP( NVXHEP) , | DHEP( NVXHEP) |,
>JMOHEP( 2, NMXHEP) , JDAHEP( 2, NVXHEP) , PHEP( 5, NMXHEP) , VHEP( 4, NMXHEP)

DOUBLE PRECI SI ON PHEP, VHEP

WRI TE(6, *) NHEP
DO | HEP=1, NHEP
VRl TE( 6, 10)
> | STHEP( | HEP) , | DHEP( | HEP) , JDAHEP( 1, | HEP) , JDAHEP( 2, | HEP)
> PHEP(1, | HEP), PHEP( 2, | HEP) , PHEP( 3, | HEP) , PHEP( 5, | HEP)
10 FORMAT( 41 10, 4( 1X, D15. 8))
ENDDO

RETURN
END

3.6.2.3. Future interface to the new generation generators

Several activities have already been started for devel oping object-oriented event generators. Such new generators
can be easily linked and used with a Geant4 based simulation. Furthermore, we need not distinguish a primary
generator from the physics processes used in Geant4. Future generators can be akind of physics process plugged-
in by inheriting GAVPr ocess.

3.6.3. Event overlap using multiple generators

Your AVUser PrimaryCGeneratorAction concrete class can have more than one
GAVPr i mar yGener at or concrete class. Each GAVPr i mar yGener at or concrete class can be accessed
more than once per event. Using these class objects, one event can have more than one primary event.

One possible use is the following. Within an event, a GAHEPEVt | nt er f ace class object instantiated with a
minimum bias event file is accessed 20 times and another GAHEPEVt | nt er f ace class object instantiated with
asignal event file is accessed once. Thus, this event represents a typical signal event of LHC overlapping 20
minimum bias events. It should be noted that a simulation of event overlapping can be done by merging hitsand/or
digits associated with severa events, and these events can be simulated independently. Digitization over multiple
events will be mentioned in Section 4.5.

3.7. Event Biasing Techniques

3.7.1. Scoring, Geometrical Importance Sampling and
Weight Roulette

Geant4 provides event biasing techniques which may be used to save computing time in such applications as the
simulation of radiation shielding. These are geometrical splitting and Russian roulette (also called geometrical
importance sampling), and weight roulette. Scoring is carried out by GAMul t i Functi onal Det ect or (see
Section 4.4.4 and Section 4.4.5) using the standard Geant4 scoring technique. Biasing specific scorers have been
implemented and are described within G4Mul t i Functi onal Det ect or documentation. In this chapter, itis
assumed that the reader is familiar with both the usage of Geant4 and the concepts of importance sampling. More
detailed documentation may be found in the documents 'Scoring, geometrical importance sampling and weight
roulette’ . A detailed description of different use-cases which employ the sampling and scoring techniques can be
found in the document 'Use cases of importance sampling and scoring in Geant4' .

The purpose of importance sampling is to save computing time by sampling less often the particle histories en-
tering "less important” geometry regions, and more often in more "important” regions. Given the same amount
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of computing time, an importance-sampled and an analogue-sampled simulation must show equal mean values,
while the importance-sampled simulation will have a decreased variance.

Theimplementation of scoring isindependent of the implementation of importance sampling. However both share
common concepts. Scoring and importance sampling apply to particle types chosen by the user, which should be
borne in mind when interpreting the output of any biased simulation.

Examples on how to use scoring and importance sampling may befound in exanpl es/ ext ended/ bi asi ng.

3.7.1.1. Geometries
Thekind of scoring referred to in this note and the importance sampling apply to spatial cells provided by the user.

A cdll is a physical volume (further specified by it's replica number, if the volume is a replica). Cells may be
defined in two kinds of geometries:

1. massgeometry: the geometry setup of the experiment to be simulated. Physics processes apply to this geom-
etry.

2. parallel-geometry: ageometry constructed to define the physical volumes according to which scoring and/
or importance sampling is applied.

The user has the choice to score and/or sample by importance the particles of the chosen type, according to mass
geometry or to parallel geometry. It ispossibleto utilize several parallel geometriesin addition to the mass geom-
etry. This provides the user with alot of flexibility to define separate geometries for different particle typesin
order to apply scoring or/and importance sampling.

Note

Parallel geometries should be constructed using the implementation as described in Section 4.7. There
are afew conditions for parallel geometries:

» Theworld volume for parallel and mass geometries must be identical copies.
» Scoring and importance cells must not share boundaries with the world volume.

3.7.1.2. Changing the Sampling

Samplers are higher level tools which perform the necessary changes of the Geant4 sampling in order to apply
importance sampling and weight roulette.

Variance reduction (and scoring through the GAMul t i Funct i onal Det ect or ) may be combined arbitrarily
for chosen particle types and may be applied to the mass or to parallel geometries.

The GACGeonet r ySanpl er can be applied equally to mass or parallel geometries with an abstract interface
supplied by GAVSanpl er . GAVSanpl er providesPr epar e. . . methods and aConf i gur e method:

cl ass AVSanpl er
{
public:
AVSanpl er () ;
virtual ~G4VSanpler();
virtual void Preparel nportanceSanpling(&4VI Store *istore,
const G4VI nportanceAl gorithm
*ialg = 0) = 0;
virtual void PrepareWi ght Roul ett (G4doubl e wsurvive = 0.5,
GHAdouble Wwimt = 0. 25,
G4doubl e i source = 1) = 0;
virtual void PrepareWi ght Wndow GAVWei ght W ndowSt ore *wast or e,
GAVWei ght W ndowAl gori thm *wwAl g = 0,
GAPl aceOF Action pl aceOrF Action =
onBoundary) = 0;
virtual void Configure() = 0;
virtual void d earSanpling() = 0;
virtual 4bool |sConfigured() const = 0;
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IE
The methods for setting up the desired combination need specific information:

» Importance sampling: message Pr epar el npor t anceSanpl i ng with a G4VI St or e and optionally a
GAVI nport anceAl gorithm
* Weight window: message Pr epar eWei ght W ndow with the arguments:
o *wwstore: aAVWei ght W ndowSt or e for retrieving the lower weight bounds for the energy-space cells
o *WwAlg: aAVWei ght W ndowAl gor i t hmif a customized agorithm should be used
» placeOfAction: aGAPl aceOf Act i on specifying where to perform the biasing
» Weight roulette: message Pr epar eWi ght Roul et t with the optional parameters:
e wsurvive: survival weight
< wlimit: minimal allowed value of weight * source importance / cell importance
* isource: importance of the source cell

Each object of a sampler class is responsible for one particle type. The particle type is given to the constructor
of the sampler classes via the particle type name, e.g. "neutron”. Depending on the specific purpose, the Con-
figure() of asampler will set up specialized processes (derived from GA4VPr ocess) for transportation in the
parallel geometry, importance sampling and weight roulette for the given particle type. When Conf i gur e()
is invoked the sampler places the processes in the correct order independent of the order in which user invoked
the Pr epar e. . . methods.

Note

* ThePrepare. .. () functions may each only be invoked once.
» To configure the sampling thefunction Conf i gur e() must becalled after the GARunManager has
been initialized and the PhysicsList has been instantiated.

The interface and framework are demonstrated in the exanpl es/ ext ended/ bi asi ng directory, with the
main changes being to the G4GeometrySampler class and the fact that in the parallel case the WorldVolumeisa
copy of the Mass World. The parallel geometry now hasto inherit from G4VUser Par al | el Wor | d which also
hasthe Get Wor | d() method in order to retrieve a copy of the mass geometry WorldVolume.

cl ass BO2I nport anceDet ect or Constructi on : public GAVUserParall el Wrld
ghostWorld = GetWorld();

The constructor for GAGeonret r ySanpl er takes a pointer to the physical world volume and the particle type
name (e.g. "neutron") as arguments. In a single mass geometry the sampler is created as follows:

GAGeonet rySanpl er ngs(det ect or - >Get Wor | dVol une(), "neutron");
ngs. Set Paral | el (fal se);

Whilst the following lines of code are required in order to set up the sampler for the parallel geometry case:

GAVPhysi cal Vol une* ghostWorld = pdet - >Get Wr | dVol une() ;
GAGeonet rySanpl er pgs(ghost Wrl d, "neutron");

pgs. Set Paral | el (true);

Also note that the preparation and configuration of the samplers has to be carried out after the instantiation of
the UserPhysicsList. With the modular reference PhysicsList the following set-up is required (first is for biasing,
the second for scoring):

physi csLi st - >Regi st er Physi cs(new G4l npor t anceBi asi ng( &gs, par al | el Nang) ) ;
physi csLi st - >Regi st er Physi cs(new APar al | el Wor | dPhysi cs(paral | el Nang) ) ;

If the aUserPhysicsList is being implemented, then the following should be used to give the pointer to the Geom-
etrySampler to the PhysicsList:
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physli st - >AddBi asi ng( &pgs, par al | el Nane) ;

Then to instantiate the biasing physics process the following should be included in the UserPhysicsList and called
from Const ruct Process():

AddBi asi ngProcess() {
f GeonSanpl er->Set Paral l el (true); // parallelworld
G4l Store* iStore = G4l Store:: Getlnstance(fBi asWrl dNane) ;
f GeonBSanpl er - >Set Wor | d(i St or e- >Get Par al | el Wor | dVol unePoi nter());
/1 f GeonBanpl er - >Pr epar el npor t anceSanpl i ng( G4l Store: :
/1 Get | nst ance(f Bi asWor | dNane), 0);
static G4bool first = true;
if(first) {
f GeonBanpl er - >Pr epar el nport anceSanpl i ng(i Store, 0);

f GeonBanpl er - >Confi gure();
GAcout << " CeonBanpler Configured!!! " << Gdendl;
first = fal se;

}

#i f def GAMULTI THREADED
f GeonBanpl er - >AddPr ocess() ;
#el se
GAcout << " Running in singlethreaded node!!! " << Gdendl;
#endi f

pgs. Prepar el nport anceSanpl i ng( 41 St or e: : Get | nst ance( pdet - >Get Nane()), 0);
pgs. Configure();

Due to the fact that biasing is a process and has to be inserted after all the other processes have been created.

3.7.1.3. Importance Sampling

Importance sampling acts on particles crossing boundaries between "importance cells'. The action taken depends
on the importance values assigned to the cells. In general a particle history is either split or Russian roulette is
played if theimportanceincreases or decreases, respectively. A weight assigned to the history ischanged according
to the action taken.

The tools provided for importance sampling require the user to have a good understanding of the physicsin the
problem. Thisis because the user has to decide which particle types require importance sampled, define the cells,
and assign importance values to the cells. If thisis not done properly the results cannot be expected to describe
area experiment.

The assignment of importance valuesto a cell is done using an importance store described below.

An "importance store" with the interface G4VI St or e is used to store importance values related to cells. In order
to do importance sampling the user has to create an object (e.g. of class (41 St or e) of type G4VI St or e. The
samplers may be given aG4VI St or e. The user fills the store with cells and their importance values. The store
isnow asingleton class so should be created using a Getl nstance method:

GAl Store *alstore = G4l Store:: CGetlnstance();

Or if aparallel world is used:

G4l Store *alstore = G4l Store:: Getlnstance(pdet->Get Nane());

Animportance store hasto be constructed with areferenceto theworld volume of the geometry used for importance
sampling. This may be the world volume of the mass or of a parallel geometry. Importance stores derive from
the interface G4VI St or e:
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class GAVI Store

{
public:
G4Vl Store();
virtual ~&4VIStore();
virtual G4doubl e Getlnportance(const AGeonetryCell &gCell) const = 0;
virtual 4bool |sKnown(const GAGeonetryCell &gCell) const = O;
virtual const GAVPhysi cal Vol ume &Get Wor | dVol une() const = 0;
IE

A concrete implementation of an importance store is provided by the class G4VSt or e. The public part of the
classis:

class G4l Store : public GAVI Store

{
public:
explicit G4l Store(const G4VPhysi cal Vol une &wor | dvol une) ;
virtual ~GA4l Store();
virtual G4doubl e Getlnportance(const GAGeonetryCell &gCell) const;
virtual G4bool |sKnown(const GAGeonetryCell &gCell) const;
virtual const GAVPhysi cal Vol ume &Get Wor | dVol unme() const;
voi d Addl nport anceGeonetryCel | (G4doubl e i nportance,
const AGeonetryCell &gCell);
voi d Addl nport anceGeonetryCel | (G4doubl e i nportance,
const (4VPhysi cal Vol une &,
4int aRepNum = 0);
voi d Changel nportance( G4doubl e i nport ance,
const GAGeonetryCell &gCell);
voi d Changel nportance( G4doubl e i nport ance,
const GAVPhysi cal Vol une &,
G4i nt aRepNum = 0);
GAdoubl e Get | nportance(const AVPhysi cal Vol une &,
G4i nt aRepNum = 0) const ;
private: .....

b

The member function Addl nport anceGeonet ryCel | () entersacell and an importance value into the im-
portance store. The importance values may be returned either according to a physical volume and a replica num-
ber or according to aGACGeonet r yCel | . The user must be aware of the interpretation of assigning importance
valuesto acell. If scoring is aso implemented then thisis attached to logical volumes, in which case the physical
volume and replica number method should be used for assigning importance values. See exanpl es/ ext end-

ed/ bi asi ng B01 and BO2 for examples of this.

Note

* Animportance value must be assigned to every cell.
The different cases:
* Cedlisnotinstore

Not filling a certain cell in the store will cause an exception.
 Importance value = zero

Tracks of the chosen particle type will be killed.
* importance values> 0

Normal allowed values
 Importance value smaller zero

Not allowed!
3.7.1.4. The Importance Sampling Algorithm

Importance sampling supports using a customized importance sampling algorithm. To this end, the sampler inter-
face AVSanpl er may be given a pointer to the interface G4VI npor t anceAl gorit hm
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cl ass GAVI nport anceAl gorithm

public:
GAVI npor t anceAl gorit hm();
virtual ~GAVInportanceAl gorithn();
virtual ANsplit_Weight Cal cul ate(G4doubl e ipre,
G4doubl e i post,
GAdoubl e init_w) const = 0;

}
The method Cal cul at e() takesthe arguments:

* ipre, ipost: importance of the previous cell and the importance of the current cell, respectively.
e init_w: the particle's weight

It returns the struct:

class ANsplit_Weight
{

public:

Aint N

HAdoubl e fW
I

« fN: the calculated number of particles to exit the importance sampling
» fW: the weight of the particles

The user may have a customized algorithm used by providing a class inheriting from
GAVI mpor t anceAl gorit hm

If no customized algorithm is given to the sampler the default importance sampling algorithm is used. This algo-
rithmisimplemented in G4l nport anceAl gorit hm

3.7.1.5. The Weight Window Technique

The weight window technique is a weight-based alternative to importance sampling:

 applies splitting and Russian roul ette depending on space (cells) and energy
« user defines weight windows in contrast to defining importance values as in importance sampling

In contrast to importance sampling this technique is not weight blind. Instead the technique is applied according
to the particle weight with respect to the current energy-space cell.

Therefore the technique is convenient to apply in combination with other variance reduction techniques such as
cross-section biasing and implicit capture.

A weight window may be specified for every cell and for several energy regions: space-energy cell.

- splitting
to survival weight

upper weight bound 1

weight window

survival weight

Russian roulette

lower weight bound -
J kill or move to survival weight

Figure 3.2. Weight window concept
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Weight window concept

The user specifies alower weight bound W_L for every space-energy cell.

e The upper weight bound W_U and the survival weight W_S are calculated as:
W U=C UW Land

W_S=C SW_L.
» Theuser specifies C_Sand C_U once for the whole problem.
» Theuser may give different sets of energy bounds for every cell or one set for all geometrical cells
» Specid case: if C_ S=C_U = 1for al energies then weight window is equivalent to importance sampling
e The user can choose to apply the technique: at boundaries, on collisions or on boundaries and collisions

The energy-space cells are realized by GAGeonet r yCel | asinimportance sampling. The cells are stored in a

weight window store defined by GAVWei ght W ndowSt or e:

class GAVWeéi ght W ndowsSt ore {
public:
AV ght W ndowSt or e() ;
virtual ~G4AVWei ght W ndowSt ore();
virtual GAdoubl e Get Lower Wi tgh(const GAGeonetryCell &gCell,
GAdoubl e partEnergy) const = 0;
virtual (Abool |sKnown(const G4GeonetryCell &gCell) const = O;
virtual const (AVPhysical Vol ume &Get Wor | dVol une() const = 0;

bi

A concrete implementation is provided:

cl ass GAWei ght W ndowSt ore: public GAVWei ght WndowSt ore {
public:

explicit GAWei ght Wndowst or e( const G4VPhysi cal Vol une &wor | dvol une) ;

virtual ~G4Wei ght W ndowSt ore() ;

virtual G4doubl e Get Lower Weitgh(const GAGeonetryCell &gCell,

GAdoubl e part Energy) const;

virtual G4bool |sKnown(const GAGeonetryCell &gCell) const;

virtual const GAVPhysi cal Vol ume &Get Wor| dVol une() const;

voi d AddLower Wi ght s(const GAGeonetryCel |l &gCel |,

const std::vector<4doubl e> & ower Wi ghts) ;

voi d AddUpper EboundLower Wi ght Pai rs(const G4GeonetryCel | &gCel |,
const (AUpper Ener gyToLower Wi ght Map&
enV\eMap) ;

voi d Set Gener al Upper Ener gyBounds( const

st d: : set <G4doubl e, std::|ess<Gdoubl e> > & enBounds);

private::

o

The user may choose equal energy bounds for al cells. In this case a set of upper energy bounds must be given to
the store using the method Set Gener al Upper Ener gyBounds. If ageneral set of energy bounds have been
set AddLower Wei ght s can be used to add the célls.

Alternatively, the user may chose different energy regions for different cells. In this case the user must provide a
mapping of upper energy bounds to lower weight bounds for every cell using the method AddUpper Ebound-
Lower Wi ght Pai r s.

Weight window algorithms implementing the interface class G4VW\éi ght W ndowAl gor i t hmcan be used to
define a customized algorithm:

cl ass GAVWéi ght W ndowAl gori t hm {

public:

AWei ght W ndowAl gori thn() ;
virtual ~G4VWei ght W ndowAl gori thn();
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virtual GANsplit_Weight Cal cul ate(G4doubl e init_w,
G4doubl e | ower Wi ght Bound) const = 0;
IE

A concrete implementation is provided and used as a defaullt:

cl ass GAWei ght W ndowAl gorithm : public GAVWei ght W ndowAl gorithm {
public:
AWei ght W ndowAl gori t hm( G4doubl e upperLi mi t Fakt or = 5,
G4doubl e survival Faktor = 3,
G4int maxNunber Of Splits = 5);
virtual ~GAWei ght W ndowAl gorithn();
virtual ANsplit_Wei ght Cal cul ate(4double init_w,
G4doubl e | ower Wi ght Bound) const;
private:

e

The constructor takes three parameters which are used to: calculate the upper weight bound (upperLimitFaktor),
calculate the survival weight (survivalFaktor), and introduce a maximal number (maxNumberOf Splits) of copies
to be created in one go.

In addition, the inverse of the maxNumberOfSplits is used to specify the minimum survival probability in case
of Russian roulette.

3.7.1.6. The Weight Roulette Technique

Weight roul ette (al so called weight cutoff) isusually applied if importance sampling and implicit capture are used
together. Implicit capture is not described here but it is useful to note that this procedure reduces a particle weight
in every collision instead of killing the particle with some probability.

Together with importance sampling the weight of a particle may become so low that it does not change any result

significantly. Hence tracking a very low weight particle is awaste of computing time. Weight roulette is applied
in order to solve this problem.

The weight roulette concept

Weight roulette takes into account the importance "Ic" of the current cell and the importance "Is* of the cell in
which the source is located, by using the ratio "R=lg/Ic".

Weight roulette uses a relative minimal weight limit and a relative survival weight. When a particle falls below
the weight limit Russian roulette is applied. If the particle survives, tracking will be continued and the particle
weight will be set to the survival weight.

The weight roul ette uses the following parameters with their default values:

» wsurvival: 0.5

o wlimit: 0.25

* isource: 1

The following agorithm is applied:

If aparticle weight "w" is lower than R*wlimit:

 theweight of the particle will be changed to "ws = wsurvival*R"
* the probability for the particle to surviveis"p = w/ws"

3.7.2. Physics Based Biasing

Geant4 supports physics based biasing through anumber of general use, built in biasing techniques. A utility class,
G4WrapperProcess, is also available to support user defined biasing.
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3.7.2.1. Builtin Biasing Options

3.7.2.1.1. Primary Particle Biasing

Primary particle biasing can be used to increase the number of primary particles generated in a particular phase
space region of interest. The weight of the primary particle is modified as appropriate. A general implementation
isprovided through the GZAGener al Par ti cl eSour ce class. Itispossibleto bias position, angular and energy
distributions.

AGener al Parti cl eSour ce is aconcrete implementation of GAVPr i mar yGener at or . To use, instan-
tiate GAGener al Parti cl eSour ce inthe G4VUser Pri mar yGener at or Act i on class, as demonstrated
below.

M/Pri mar yGener at or Acti on: : MyPri mar yGener at or Action() {
generator = new (4Ceneral Parti cl eSource;

}
voi d

M/Pri mar yGener at or Acti on: : Gener at ePri nari es( G4Event *anEvent ) {
gener at or - >Gener at ePri maryVer t ex(anEvent) ;
}

The biasing can be configured through interactive commands, as desribed in Section 2.7. Examples are also dis-
tributed with the Geant4 distribution in examples/extended/eventgener ator/exgps.

3.7.2.1.2. Hadronic Leading Particle Biasing

One hadronic leading particle biasing technique isimplemented in the G4HadL eadBias utility. This method keeps
only the most important part of the event, aswell as representative tracks of each given particle type. So the track
with the highest energy as well as one of each of Baryon, pi0, mesons and leptons. As usual, appropriate weights
are assigned to the particles. Setting the SwitchL eadBiasOn environmental variable will activate this utility.

3.7.2.1.3. Hadronic Cross Section Biasing

Cross section biasing artificially enhances/reduces the cross section of a process. This may be useful for study-
ing thin layer interactions or thick layer shielding. The built in hadronic cross section biasing applies to photon
inelastic, electron nuclear and positron nuclear processes.

Thebiasingiscontrolled through the BiasCr ossSectionByFactor method in G4Hadroni cProcess, asdemonstrated
below.

voi d MyPhysi csLi st:: Construct Process()
{

GAEl ect roNucl ear Reacti on * theEl ectroReaction =
new GAEIl ect r oNucl ear React i on;

AEl ect ronNucl ear Process t heEl ect ronNucl ear Pr ocess;
t heEl ect ronNucl ear Process. Regi st er Me(t heEl ect r oReact i on) ;
t heEl ect ronNucl ear Pr ocess. Bi asCr ossSect i onByFact or ( 100) ;

pManager - >AddDi scr et ePr ocess( & heEl ect r onNucl ear Process) ;

}
3.7.2.2. Radioactive Decay Biasing

The G4ARadi oact i veDecay (GRDM) class simulates the decay of radioactive nuclei and implements the fol-
lowing biasing options:

* Increase the sampling rate of radionuclides within observation times through a user defined probability distri-
bution function
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* Nuclear splitting, where the parent nuclide is split into a user defined number of nuclides
 Branching ratio biasing where branching ratios are sampled with equal probability

G4RadioactiveDecay is a process which must be registered with a process manager, as demonstrated below.

voi d MyPhysi csLi st:: Construct Process()
{

(ARadi oact i veDecay* theRadi oactiveDecay =
new (ARadi oactiveDecay();

AProcessManager* pmanager = ...
prmanager ->AddProcess(theRadi oacti veDecay);

}

Biasing can be controlled either in compiled code or through interactive commands. Radioactive decay biasing
examples are also distributed with the Geant4 distribution in examples/extended/r adioactivedecay/exrdm.

To select biasing as part of the process registration, use

t heRadi oact i veDecay- >Set Anal ogueMbnt eCar | o( f al se);

or the equivalent macro command:

/ grdnif anal ogeMC [true| fal se]
In both cases, true specifies that the unbiased (analogue) simulation will be done, and fal se selects biasing.

3.7.2.2.1. Limited Radionuclides

Radioactive decay may be restricted to only specific nuclides, in order (for example) to avoid tracking extremely
long-lived daughtersin decay chainswhich are not of experimental interest. To limit the range of nuclides decayed
as part of the process registration (above), use

G4Nucl eusLimts limts(aMn, aMax, zMn, zMax);
t heRadi oact i veDecay- >Set Nucl eusLi mits(limts);

or viathe macro command

/grdm nucl eusLimts [aMn] [aMax] [zM n] [zMax]
3.7.2.2.2. Geometric Biasing

Radioactive decays may be generated throughout the user's detector model, in one or more specified volumes, or
nowhere. The detector geometry must be defined before applying these geometric biases.

Volumes may be selected or deselected programmatically using

t heRadi oact i veDecay- >Sel ect Al | Vol unmes() ;
t heRadi oact i veDecay- >Desel ect Al | Vol unes() ;

G4Logi cal Vol une* alogi cal Vol ung; /1 Acquired by the user

t heRadi oact i veDecay- >Sel ect Vol une(alLogi cal Vol une) ;
t heRadi oact i veDecay- >Desel ect Vol une( aLogi cal Vol une) ;

or with the equivalent macro commands
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/ grdnt al | Vol unes

/ grdnmi noVol unes

/ grdm sel ect Vol ume [ ogi cal Vol une]

/ grdni desel ect Vol une [ | ogi cal Vol une]

In macro commands, the volumes are specified by name, and found by searching the
ALogi cal Vol unesSt or e.

3.7.2.2.3. Decay Time Biasing

The decay time function (normally an exponentia in the natural lifetime) of the primary particle may be replaced
with a time profile F(t), as discussed in Section 40.6 of the Physics Reference Manual. The profile function is
represented as a two-column ASCI| text file with up to 100 time points (first column) with fractions (second
column).

t heRadi oact i veDecay- >Set Sour ceTi meProfil e(fil eNane);
t heRadi oact i veDecay- >Set DecayBi as(fi | eNane) ;

/ grdm sourceTi neProfile [fil eNane]
/ grdm decayBi asProfile [fil eNane]

3.7.2.2.4. Branching Fraction Biasing

Radionuclides with rare decay channels may be biased by forcing all channelsto be selected uniformly (BRBi as
= true below), rather than according to their natural branching fractions (false).

t heRadi oact i veDecay- >Set BRBi as(true);

/grdm BRbi as [true]|false]
3.7.2.2.5. Nuclear Splitting

The statistical efficiency of generated events may be increased by generating multiple "copies' of nuclei in an
event, each of which isdecayed independently, with an assigned weight of 1/Nsplit. Scoring the results of tracking
the decay daughters, using their corresponding weights, can improve the statistical reach of a ssmulation while
preserving the shape of the resulting distributions.

t heRadi oact i veDecay- >Set Spl i t Nucl ei (Nsplit);

/grdm splitNucleus [Nsplit]
3.7.2.3. GAWrapperProcess

G4WrapperProcess can be used to implement user defined event biasing. G4WrapperProcess, which is a process
itself, wraps an existing process. By default, all function calls are forwared to the wrapped process. It is a non-
invasive way to modify the behaviour of an existing process.

To use this utility, first create a derived class inheriting from G4WrapperProcess. Override the methods whose
behaviour you would like to modify, for example, PostStepDolt, and register the derived class in place of the
process to be wrapped. Finaly, register the wrapped process with G4WrapperProcess. The code snippets below
demonstrate its use.

cl ass MyW apper Process : public AW apper Process {

GAVParti cl eChange* Post St epDol t (const GATrack& track,
const GAStep& step) {
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// Do sonething interesting
}
H

voi d MyPhysi csLi st:: Construct Process()
{

G4eBrensst rahl ung* brenProcess =
new GAeBrensst rahl ung();

M/W apper Process* w apper = new MyW apper Process();
wr apper - >Regi st er Process( br enPr ocess) ;

processManager - >AddPr ocess(wr apper, -1, -1, 3);

}
3.7.3. Adjoint/Reverse Monte Carlo

Another powerful biasing technique available in Geant4 is the Reverse Monte Carlo (RMC) method, also known
asthe Adjoint Monte Carlo method. In thismethod particles are generated on the external boundary of the sensitive
part of the geometry and then are tracked backward in the geometry till they reach the external source surface, or
exceed an energy threshold. By thisway the computing timeisfocused only on particle tracksthat are contributing
tothetallies. The RM C method is much rapid than the Forward M C method when the sensitive part of the geometry
is small compared to the rest of the geometry and to the external source, that has to be extensive and not beam
like. At the moment the RMC method is implemented in Geant4 only for some electromagnetic processes (see
Section 3.7.3.1.3). An example illustrating the use of the Reverse MC method in Geant4 is distributed within the
Geant4 toolkit in examples/extended/biasing/Rever seM COL.

3.7.3.1. Treatment of the Reverse MC method in Geant4

Different G4Adjoint classes have been implemented into the Geant4 toolkit in order to run an adjoint/reverse
simulation in a Geant4 application. Thisimplementation isillustrated in Figure 3.3. An adjoint run isdivided in
a serie of alternative adjoint and forward tracking of adjoint and normal particles. One Geant4 event treats one
of thistracking phase.

Reverse Tracking of adjoint

particles from the Forward Tracking of normal
Boundary of the sensitive particles trough the
region sensitive region from the
to the External source. same sitarting position than

the reverse tracking.

Adjoint source
Boundary of the region External
with sensitive source
components

Figure 3.3. Schematic view of an adjoint/reverse smulation in Geant4
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3.7.3.1.1. Adjoint tracking phase

Adjoint particles (adjoint_e-, adjoint_gamma,...) are generated one by one on the so called adjoint source with
random position, energy (I/E distribution) and direction. The adjoint sourceisthe external surface of auser defined
volume or of auser defined sphere. The adjoint source should contain one or several sensitive volumes and should
be small compared to the entire geometry. The user can set the minimum and maximum energy of the adjoint
source. After its generation the adjoint primary particle is tracked backward in the geometry till a user defined
external surface (spherical or boundary of avolume) or iskilled before if it reaches a user defined upper energy
limit that represents the maximum energy of the external source. During the reverse tracking, reverse processes
take place where the adjoint particle being tracked can be either scattered or transformed in another type of adjoint
particle. During the reverse tracking the G4AdjointSimulationManager replaces the user defined primary, run,
stepping, ... actions, by its own actions. A reverse tracking phase corresponds to one Geant4 event.

3.7.3.1.2. Forward tracking phase

When an adjoint particle reaches the external surface its weight, type, position, and direction are registered and a
normal primary particle, with a type equivalent to the last generated primary adjoint, is generated with the same
energy, position but opposite direction and istracked in theforward direction in the sensitiveregion asin aforward
MC simulation. During this forward tracking phase the event, stacking, stepping, tracking actions defined by the
user for his forward simulation are used. By this clear separation between adjoint and forward tracking phases,
the code of the user developed for aforward simulation should be only slightly modified to adapt it for an adjoint
simulation (see Section 3.7.3.2). Indeed the computation of the signalsis done by the same actions or classes that
the one used in the forward simulation mode. A forward tracking phase corresponds to one G4 event.

3.7.3.1.3. Reverse processes

During the reverse tracking, reverse processes act on the adjoint particles. The reverse processes that are at the
moment available in Geant4 are the:

» Reversediscreteionization for e-, proton and ions

 Continuous gain of energy by ionization and bremsstrahlung for e- and by ionization for protons and ions

» Reverse discrete e- bremsstrahlung

» Reverse photo-electric effect

» Reverse Compton scattering

» Approximated multiple scattering (see comment in Section 3.7.3.4.3)

It is important to note that the electromagnetic reverse processes are cut dependent as their equivalent forward
processes. The implementation of the reverse processes is based on the forward processes implemented in the G4
standard electromagnetic package.

3.7.3.1.4. Nb of adjoint particle types and nb of G4 events of an adjoint simula-
tion

The list of type of adjoint and forward particles that are generated on the adjoint source and considered in the
simulation isafunction of the adjoint processes declared in the physicslist. For exampleif only the e- and gamma
electromagnetic processes are considered, only adjoint e- and adjoint gammawill be considered as primaries. In
this case an adjoint event will be divided in four G4 event consisting in the reverse tracking of an adjoint e-, the
forward tracking of its equivalent forward e-, the reverse tracking of an adjoint gamma, and the forward tracking
of itsequivalent forward gamma. In this case arun of 100 adjoint eventswill consist into 400 Geant4 events. If the
proton ionization is also considered adjoint and forward protons are also generated as primaries and 600 Geant4
events are processed for 100 adjoint events.

3.7.3.2. How to update a G4 application to use the reverse Monte
Carlo mode

Some modifications are needed to an existing Geant4 application in order to adapt it for the use of the reverse
simulation mode (see also the G4 example examples/extended/biasing/Rever seM C01). It consists into the:

* Creation of the adjoint simulation manager in the main code

80



Toolkit Fundamentals

» Optional declaration of user actions that will be used during the adjoint tracking phase
» Useof aspecia physics lists that combine the adjoint and forward processes
» Modification of the user analysis part of the code

3.7.3.2.1. Creation of G4AdjointSimManager in the main

The class G4AdjointSimManager represents the manager of an adjoint simulation. This static class should be
created somewhere in the main code. The way to do that isillustrated below

int main(int argc,char** argv) {
G4Adj oi nt Si mvanager * t heAdj oi nt Si mvanager = G4Adj oi nt Si mvanager : : Get | nst ance() ;
}

By doing this the G4 application can be run in the reverse MC mode as well as in the forward MC mode. It is
important to notethat G4AdjointSimManager isnot anew G4RunM anager and that the creation of G4RunManager
in the main and the declaration of the geometry, physics list, and user actions to G4ARunManager is still needed.
The definition of the adjoint and external sources and the start of an adjoint simulation can be controlled by G4Ul
commands in the directory /adjoint.

3.7.3.2.2. Optional declaration of adjoint user actions

During an adjoint simulation the user stepping, tracking, stacking and event actions declared to G4RunManager are
used only during the G4 events dedicated to the forward tracking of normal particlesin the sensitive region, while
during the events where adjoint particles are tracked backward the following happen concerning these actions:

» Theuser stepping actionisreplaced by G4AdjointSteppingAction that isreponsible to stop an adjoint track when
it reaches the external source, exceed the maximum energy of the external source, or cross the adjoint source
surface. If needed the user can declare its own stepping action that will be called by G4AdjointSteppingAction
after the check of stopping track conditions. This stepping action can be different that the stepping action used
for the forward simulation. It is declared to G4AdjointSimManager by the following lines of code:

GA4Adj oi nt Si mvanager * t heAdj oi nt Si mvanager = G4Adj oi nt Si mvanager : : Get | nst ance() ;
t heAdj oi nt Si mvanager - >Set Adj oi nt St eppi ngAct i on( aUser Def i nedSt eppi ngActi on) ;
* No stacking, tracking and event actions are considered by default. If needed the user can declare to
G4AdjointSimManager stacking, tracking and event actions that will be used only during the adjoint tracking

phase. The following lines of code show how to declare these adjoint actions to G4AdjointSimManager:

G4Adj oi nt Si mvanager * t heAdj oi nt Si mvanager = G4Ad]j oi nt Si mVanager : : Get | nst ance() ;
t heAdj oi nt Si mvanager - >Set Adj oi nt Event Acti on(aUser Def i nedEvent Acti on) ;

t heAdj oi nt Si mvanager - >Set Adj oi nt St acki ngAct i on( aUser Def i nedSt acki ngActi on) ;

t heAdj oi nt Si mvanager - >Set Adj oi nt Tr acki ngAct i on(aUser Def i nedTr acki ngActi on) ;

By default no user run action is considered in an adjoint simulation but if needed such action can be declared to
G4AdjointSimManager as such:

G4Adj oi nt Si mVanager * t heAdj oi nt Si mvanager = (4Adj oi nt Si mvanager : : Get I nst ance() ;
t heAdj oi nt Si mvanager - >Set Adj oi nt RunAct i on(aUser Def i nedRunAct i on) ;

3.7.3.2.3. Physics list for reverse and forward electromagnetic processes

To run an adjoint simulation a specific physics list should be used where existing G4 adjoint el ectromagnetic
processes and their forward equivalent have to be declared. An example of such physics list is provided by the
class G4AdjointPhysicsLits in the G4 example extended/biasing/Rever seM CO1.

3.7.3.2.4. Modification in the analysis part of the code

The user code should be modified to normalize the signals computed during the forward tracking phase to the
weight of the last adjoint particle that reaches the external surface. This weight represents the statistical weight
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that the last full adjoint tracks (from the adjoint source to the external source) would have in aforward simulation.
If multiplied by a signal and registered in function of energy and/or direction the simulation results will give an
answer matrix of thissignal. To normalizeit to agiven spectrum it hasto be furthermore multiplied by adirectional
differential flux corresponding to this spectrum The weight, direction, position , kinetic energy and type of the last
adjoint particle that reaches the external source, and that would represents the primary of a forward simulation,
can be gotten from G4AdjointSimManager by using for example the following line of codes

(4Adj oi nt Si mvanager * t heAdj oi nt Si mvanager = (4Adj oi nt Si mVanager: : Get | nst ance() ;

GAString particle_nane = theAdj oi nt Si mvanager - >Get FwdPar t i cl eNameAt EndCOf Last Adj oi nt Tr ack() ;
G4i nt PDGEncodi ng= t heAdj oi nt Si mvanager - >Get FwdPar t i cl ePDGEncodi ngAt EndCf Last Adj oi nt Tr ack() ;
G4doubl e wei ght = t heAdj oi nt Si mvanager - >Get Wi ght At EndCf Last Adj oi nt Tr ack() ;

G4doubl e Ekin = theAdj oi nt Si mvanager - >Get Eki nAt EndCf Last Adj oi nt Tr ack() ;

G4doubl e Eki n_per _nuc=t heAdj oi nt Si mvanager - >Get Eki nNucAt EndCf Last Adj oi nt Track(); // for ions
GAThreeVector dir = theAdjoi ntSi mvanager->Get Di r ect i onAt EndCf Last Adj oi nt Track() ;

GAThr eeVect or pos t heAdj oi nt Si mvanager - >Get Posi t i onAt EndCf Last Adj oi nt Track() ;

In order to have a code working for both forward and adjoint simulation mode, the extra code needed in user
actions or analysis manager for the adjoint simulation mode can be separated to the code needed only for the
normal forward simulation by using the following public method of G4AdjointSimManager:

GAbool Get Adj oi nt Si mvbde() ;

that returns true if an adjoint simulation is running and false if not.

The following code exampl e shows how to normalize a detector signal and compute an answer matrix in the case
of an adjoint simulation.

Example 3.5. Normalization in the case of an adjoint simulation. The detector signal S
computed during theforward tracking phaseisnormalized to a primary sour ce of e- with
a differential directional flux given by the function F. An answer matrix of the signal is
also computed.

G4double S = ...; // signal in the sensitive volunme conputed during a forward tracking phase

[/ Normal i zation of the signal for an adjoint sinulation
G4Adj oi nt Si mvanager * t heAdj Si mvenager = (AAdj oi nt Si mvanager : : Get | nst ance() ;
if (theAdj Si mvanager - >Get Adj oi nt Si mivbde()) {
GAdoubl e nornal i zed_S=0. ; //normalized to a given e- primry spectrum
GAdoubl e S for_answer_matrix=0.; //for e- answer matrix
if (theAdj Si mvanager ->Get FwdParti cl eNanmeAt EndCOf Last Adj oi nt Track() == "e-") {
G4doubl e eki n_prim = t heAdj Si mvaanager - >Get Eki nAt EndCf Last Adj oi nt Tr ack() ;
GAThreeVector dir_prim = theAdjoi ntSi mvanager - >Get Di recti onAt EndCf Last Adj oi nt Tr ack() ;
G4doubl e wei ght _pri m = t heAdj Si mvanager - >Get Wi ght At EndCOF Last Adj oi nt Tr ack() ;
S for_answer_matrix = S*weight_prim
normalized_ S = S for_answer_matrix*F(ekin_primdir);
/1 F(ekin_primdir_prim gives the differential directional flux of primary e-

//follows the code where normalized_S and S for_answer_matrix are regi stered or whatever

}

// anal ysi s/ nornal i zati on code for forward sinulation
el se {

:

3.7.3.3. Control of an adjoint simulation

The G4UI commands in the directory /adjoint. allow the user to :
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« Define the adjoint source where adjoint primaries are generated
 Define the external source till which adjoint particles are tracked
 Start an adjoint simulation

3.7.3.4. Known issues in the Reverse MC mode

3.7.3.4.1. Occasional wrong high weight in the adjoint simulation

In rare cases an adjoint track may get awrong high weight when reaching the external source. While this happens
not often it may corrupt the simulation results significantly. This happens in some tracks where both reverse
photo-el ectric and bremsstrahlung processestake place at low energy. We still need someinvestigationsto remove
this problem at the level of physical adjoint/reverse processes. However this problem can be solved at the level of
event actions or analysis in the user code by adding atest on the normalized signal during an adjoint simulation.
An exampl e of such test has been implemented in the Geant4 example extended/biasing/ReverseM COL . In this
implementation an event isrejected when therelative error of the computed normalized energy deposited increases
during one event by more than 50% while the computed precision is already below 10%.

3.7.3.4.2. Reverse bremsstrahlung

A difference between the differential cross sections used in the adjoint and forward bremsstrahlung models is
the source of a higher flux of >100 keV gamma in the reverse simulation compared to the forward simulation
mode. In principle the adjoint processessmodel s should make use of the direct differential cross section to sample
the adjoint secondaries and compute the adjoint cross section. However due to the way the effective differential
cross section isconsidered in the forward model G4eBremsstrahlungM odel thiswas not possible to achieve for the
reverse bremsstrahlung. Indeed the differential cross section used in G4AdjointeBremstrahlungModel is obtained
by the numerical derivation over the cut energy of the direct cross section provided by G4eBremsstrahlungModel.
This would be a correct procedure if the distribution of secondary in G4eBremsstrahlungModel would match
this differential cross section. Unfortunately it is not the case as independent parameterization are used in
G4eBremsstrahlungModel for both the cross sections and the sampling of secondaries. (It means that in the for-
ward case if one would integrate the effective differential cross section considered in the simulation we would not
find back the used cross section). In the future we plan to correct this problem by using an extraweight correction
factor after the occurrence of areverse bremsstrahlung. Thisweight factor should be the ratio between the differ-
ential CS used in the adjoint simulation and the one effectively used in the forward processes. Asit isimpossible
to have asimple and direct accessto the forward differential CSin G4eBremsstrahlungModel we areinvestigating
the feasibility to use the differential CS considered in G4Penel ope models.

3.7.3.4.3. Reverse multiple scattering

For the reverse multiple scattering the same model is used than in the forward case. This approximation makes
that the discrepancy between the adjoint and forward simulation cases can get to a level of ~ 10-15% relative
differencesin thetest casesthat we have considered. In the future we plan to improvethe adjoint multiple scattering
models by forcing the computation of multiple scattering effect at the end of an adjoint step.

3.7.4. Generic Biasing

The generic biasing scheme provides facilities for:

 physics-based biasing, to alter the behavior of existing physics processes:
« biasing of physics process interaction occurence,
* biasing of physics process fina state production;
» non-physics-based biasing, to introduce or remove particles in the simulation but without affecting the existing
physics processes, with techniques like, but not limited to
« gplitting,
* Russian roulette (killing).

Decisions on what techniques to apply are taken on a step by step and inter-step basis, hence providing alot of
flexibility.
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The scheme has been introduced in 10.0, with new features and some non-backward compatible changes intro-
duced in 10.1 and 10.2; these are documented in Section 3.7.4.4 and Section 3.7.4.5. Parallel geometry capability
has been introduced in 10.3.

3.7.4.1. Overview

The generic biasing scheme relies on two abstract classes, that are meant to model the biasing problems. You
have to inherit from them to create your own concrete classes, or use some of the concrete instances provided (see
Section 3.7.4.3), if they respond to your case. A dedicated process provides the interface between these biasing
classes and the tracking. In case of parallel geometry usage, an other process handles the navigation in these
geometries.

The two abstract classes are:

* (4AVBi asi ngOper at i on: which representsasimple, or "atomic" biasing operation, like changing a process
interaction occurence probability, or changing its final state production, or making a splitting operation, etc.

For the occurence biasing case, the biasing is handled with an other class, ZAVBi asi ngl nt er act i onLaw,
which holds the properties of the biased interaction law. An object of this class type must be provided by the
occurence biasing operation returned.

* (4AVBi asi ngOper at or : which purpose is to make decisions on the above biasing operations to be applied.
Itisattached to a(ALogi cal Vol une and isthe pilot of the biasing in this volume. An operator may decide
to delegate to other operators.

Anoperator actsonly intheG4Logi cal Vol une itisattachedto. In volumeswith no biasing operator attached,
the usual tracking is applied.

The process acting as interface between the biasing classes and the tracking is:

» (4Bi asi ngProcessl nt er f ace:itisaconcrete AVPr ocess implementation. It interrogatesthe current
biasing operator, if any, for biasing operations to be applied.

The (4Bi asi ngPr ocessl nt er f ace can either:
* hold a physics process that it wraps and controls: in this case it asks the operator for physics-based biasing
operations (only) to be applied to the wrapped process,
 not hold a physics process: in this case it asks the operator for non-physics-based biasing operations (only):
splitting, killing, etc.
e The (ABi asi ngPr ocessl nt er f ace class provides many information that can be used by the biasing
operator.

Each G4Bi asi ngPr ocessl nt er f ace providesits identity to the biasing operator it calls, so that the op-
erator has thisinformation but also information of the underneath wrapped physics process, if it is the case.

The G4Bi asi ngProcessl nt er f ace can be asked for all other 4Bi asi ngPr ocessl nterface in-
stances at play on the current track. In particular, this allows the operator to get all cross-sections at the current
point (feature available since 10.1). The code is organized in such away that these cross-sections are all avail-
able at the first call to the operator in the current step.

» Tomake ABi asi ngPr ocessl nt er f ace instances wrapping physics processes, or to insert instances not
holding a physics process, the physicslist has to be modified -the generic biasing approach is hence invasive to
the physicslist-. The way to configure your physics list and related hel per tools are described bel ow.

The process handling parallel geometriesis:

* (AParal | el Geonetri esLim terProcess,itisaconcrete AVPr ocess implementation, whichtakes
care of limiting the step on the boundaries of parallel geometries.

» A singleinstance of G4Par al | el Geonetri esLi mi t er Process handles all parallel geometries to be
considered for a particle type.

It collects these geometries by means of myLimter-
Process->AddPar al | el Wor | d( " myPar al | el Geonetry") cdlls.
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Given such a process is attached to a particle type, parallel geometries are hence specified per particle type.
Attaching an instance of this process to a given particle type, and specifying the parallel geometries to be
considered is eased by the helper tools as explained below.

3.7.4.2. Getting Started

3.7.4.2.1. Examples

Six "Generic Biasing (GB)" examples are proposed (they have been introduced in 10.0, 10.1 and 10.3, two exam-
ples each time):

exanpl es/ ext ended/ bi asi ng/ GB01:

 which shows how biasing of process cross-section can be done.

e This example uses the physics-based biasing operation GABOpt nChangeCr ossSecti on de
fined in geant 4/ source/ processes/ bi asi ng/ generic. This operation performs the
actual process cross-section change. In the example a first G4VBi asi ngOper at or,
GB01BOpt r ChangeCr ossSect i on, configuresand selectsthisoperation. Thisoperator appliesto only
one particle type.

e To dlow severa particle types to be biased, a second GA4VBi asi ngQperat or,
GB01BOptrMul ti Parti cl eChangeCrossSection, is implemented, and which holds a
GB01BOpt r ChangeCr ossSect i on operator for each particle type to be biased. This second operator
then delegates to the first one the handling of the biasing operations.

exanpl es/ ext ended/ bi asi ng/ GB02:

« which shows how a"force collision" scheme very close to the MNCP one can be activated.

e This second example has a quite similar approach than the GBO1 one, with a &AVBi asi ngQper at or,
QEB02BOpt r Mul ti Parti cl eForceCol |i si on, that holds as many operators than particle types to
be biased, this operators being of GABOpt r For ceCol | i si on type.

e ThisGABOpt r For ceCol | i si on operator isdefined in sour ce/ pr ocesses/ bi asi ng/ generi c.
It combines several biasing operationsto build-up the needed logi ¢ (see Section 3.7.4.3). It can bein particular
looked at to see how it collects and makes use of physics process cross-sections.

exanpl es/ ext ended/ bi asi ng/ GB03:

« which implements a kind of importance geometry biasing, using the generic biasing classes.

¢ The example uses a simple sampling calorimeter. On the boundary of the absorber parts, it does splitting
(killing) if the track is moving forward (backward). As the splitting can be too strong in some cases, falling
into an over-splitting situation, even with a splitting by a factor 2, atechnique is introduced to alleviate the
problem : aprobability to apply the splitting (killing) isintroduced, and with proper tuning of this probability,
the over-splitting can be avoided.

exanpl es/ ext ended/ bi asi ng/ GB04:

< which implements a bremsstrahlung splitting. Bremsstrahlung splitting exists in the EM package. In the
present example, it is shown how to implement a similar technique, using the generic biasing classes.

« A biasing operator, GB04BOptrBrenSplitting, sends a fina state biasing operation,
GB04BOpt nBrenSpl i tti ng, for the bremsstrahlung process. Splitting factor, and options to control the
biasing are available through command line.

exanpl es/ ext ended/ bi asi ng/ GB05:

« whichillustratesatechniquethat uses physics cross-sectionsto determinethe splitting[killing] ratein ashield-
ing problem, it is applied to neutrons. Thistechniqueis supposed to be an invention, to illustrate a technique
combining physics-based information with splitting/killing.

* Inthe classical treatment of the shielding problem, the shield is divided in slices at the boundaries of which
particles are splitted[killed] if moving forward[backward)]. In the present technique, we collect the cross-
sections of "absorbing/destroying” processes : decay, capture, inelastic. We then use the generic biasing
facilities to create an equivalent of a splitting process, that has a "cross-section” which is the sum of the
previous ones. This process is competing with other processes, as a regular one. When this process wins the
competition, it splitsthe track, with a splitting factor 2. This splitting is hence occuring at the same rate than
the absorption, resulting in an expected maintained (unweighted) flux.

e GBO5BOptr SplitAndKill ByCrossSection and
GB05BOpt nSpl i t AndKi | | ByCr ossSect i on are respectively the biasing operator and operation.
The operator collects the absorbing cross-sections at the beginning of the step, passes them to the oper-
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ation, requests it to sample the distance to its next interaction, and returns this operation to the calling
(ABi asi ngPr ocessl nt er f ace asthe operation to be applied in the step.

« The operation interaction distance is then proposed by the calling G4Bi asi ngPr ocessl nt er f ace and,
if being the shortest of the interaction distances, the operation final state generation (the splitting) is applied
by the process.

» exanpl es/ ext ended/ bi asi ng/ GB06:

< which demonstrates the use of parallel geometries in generic biasing, on a classical shield problem, using
geometry-based importance biasing.

» The mass geometry consists of asingle block of concrete; it is overlayed by a parallel geometry defining the
slices used for splitting/killing.

» Thenavigation capability in the parallel geometry is activated in the main program, by means of the physics
list constructor.

3.7.4.2.2. Setting up the application
For making an existing G4VBi asi ngQOper at or used by your application, you have to do two things:
1. Attach the operator to the GALogi cal Vol unme where the biasing should take place:

Y ou have to make this attachment in your Const r uct SDandFi el d() method (to make your application
both sequential and M T-compliant):

Example 3.6. Attachement of a G4VBi asi ngQper at or toa G4Logi cal Vol une.
We assume such a volume has been created with name " volumeWithBiasing", and
we assume that a biasing operator class MyBi asi ngOper at or has been created,
inheriting from G4VBi asi ngQOper at or :

/Il Fetch the |ogical volune pointer by nane (it is an exanple, not a nandatory way):

GALogi cal Vol une* bi asi ngVol une = ALogi cal Vol uneSt or e: : Get | nst ance() - >CGet Vol une( " vol uneW t hBi asi ng") ;
/1l Create the biasing operator:

M/Bi asi ngOper at or * nyBi asi ngQOper at or = new MyBi asi ngQper at or (" Exanpl eCperator");

/l Attach it to the vol une:

nyBi asi ngQper at or - >At t achTo( bi asi ngVol une) ;

2. Setupthephysicslist you useto properly includethe needed G4Bi asi ngPr ocessl nt er f ace instances.

Y ou have several options for this.

» Theeasiest way isif you use a pre-packaged physics list (e.g. FTFP_BERT, QGSP...). As such aphysics
listisof GAVMbdul ar Physi csLi st type, you can alter it with aGAVPhysi csConst ruct or . The
constructor G4Gener i cBi asi ngPhysi cs is meant for this. It can be used, typicaly in your main
program, as.

Example 3.7. Use of the &ACGeneri cBi asi ngPhysi cs physics constructor to
setup a pre-packaged physicslist (of GAVMbdul ar Physi csLi st type). Here we
assumethe FTFP_BERT physicslist, and weassumethat r unManager isapointer
on a created GARunManager or GARMIunManager object.

/1 Instanciate the physics list:

FTFP_BERT* physi csLi st = new FTFP_BERT;

/I Create the physics constructor for biasing:

GACeneri cBi asi ngPhysi cs* bi asi ngPhysi cs = new G4Generi cBi asi ngPhysi cs();
/1 Tell what particle types have to be biased:

bi asi ngPhysi cs- >Bi as("ganma") ;

bi asi ngPhysi cs->Bi as(" neutron");

/] Register the physics constructor to the physics |ist:
physi csLi st - >Regi st er Physi cs( bi asi ngPhysi cs) ;

/1 Set this physics list to the run nanager:

runManager - >Set User | ni ti al i zati on(physi csLi st);

physics processes will be wrapped, and, for example, the gamma conversion
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cl e/ process/ dunp). An additionnal " bi asW apper (0) " process, for non-physics-based biasing
isaso inserted.

Other methods to specifically chose some physics processes to be biased or to insert only
(ABi asi ngPr ocessl nt er f ace instances for non-physics-based biasing also exist.

» Thesecond way isuseful if youwriteyour own physicslist, and if thisoneisnot amodular physicslist, but
inheritsdirectly fromthelowest level abstract classG4VUser Physi csLi st . Inthiscase, theabovesolu-
tionwithG4Gener i cBi asi ngPhysi cs doesnot apply. Instead you can usethe G4Bi asi ngHel per
utility class (this oneisindeed used by GAGener i cBi asi ngPhysi cs).

Example 3.8. Use of the ABi asi ngHel per utility class to setup a physics list
for biasing in case this physicslist is not of G4VMbdul ar Physi csLi st type but
inheritsdirectly from G4VUser Physi csLi st.

/] Get physics list helper:
GAPhysi csLi st Hel per* ph = GAPhysi csLi st Hel per: : Get Physi csLi st Hel per () ;

/1 Assume "particle" is a pointer on a AParticl eDefinition object
GAString particleNanme = particle->GetParticl eNane();
if (particleNane == "ganmm")

ph- >Regi st er Process(new G4Phot oEl ectricEffect , particle);
ph- >Regi st er Process(new G4Conpt onScattering , particle);
ph- >Regi st er Process(new G4GanmaConver si on , particle);
GAProcessManager * pmanager = particl e->Cet ProcessManager () ;
G4Bi asi ngHel per: : Acti vat ePhysi csBi asi ng( pmanager, "phot");
GABi asi ngHel per: : Acti vat ePhysi csBi asi ng( pnanager, "conpt");
G4Bi asi ngHel per: : Acti vat ePhysi csBi asi ng( pmanager, "conv");
GABi asi ngHel per: : Acti vat eNonPhysi csBi asi ng( pnmanager) ;

}

* A last way to setup the physiscs list is by direct insertion of the GABi asi ngPr ocessl nterface
instances, but this requires solid expertise in physics list creation.

In case you also use parallel geometries, you have to make the generic biasing sensitive to these. Assuming you
have created three parallel geometries with names " par al | el Wor | d1", " paral | el Wor | d2" and " par -
al I el Wr 1 d3" that you want to be active for neutrons, the additionnal calls you have to make compared to
example Example 3.7 above are smply:

Example 3.9. Callsto activate parallel geometry navigation

/Il -- activate parallel geometries for neutrons:

bi asi ngPhysi cs- >AddPar al | el Geonetry("neutron", "paral | el Wrl d1");
bi asi ngPhysi cs- >AddPar al | el Geonetry("neutron", "paral | el Wrl d2");
bi asi ngPhysi cs- >AddPar al | el Geonetry("neutron", "paral |l el Wrl d3");

It is aso possible even though less convenient, to use the GA4BiasingHel per
utility class making calls to the static method limter =
(ABi asi ngHel per:: AddLi m t er Process(pmanager, "l im terProcessNanme") in addition to
the ones of example Example 3.8 above. This call returns a pointer |im ter on the construct-
ed APar al | el GeonetriesLi mterProcess process, setting its name as "limiterProcess-
Nane", this pointer has then to be used to specify the paralel geometries to the process : |im
iter->AddParal |l el Worl d("parallel Wrldl")..

3.7.4.3. Existing biasing operations, operator and interaction laws
Thisis set of biasing operations and one operator available in 10.1, as well as a set of biasing interaction laws.
These are defined in sour ce/ processes/ bi asi ng/ generi c. Please note that several examples (Sec-
tion 3.7.4.2.1) also implement dedicated operators and operations.

These classes have been tested for now with neutral particles.
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e (4VBi asi ngOper at i on classes:

e GABOpt nd oni ng: a non-physics-based biasing operation that clones the current track. Each of the two
copiesisgiven freely aweight.

 ABOpt nChangeCr ossSect i on: aphysics-based biasing operation to change one process cross-section

e (ABOpt nFor ceFr eeFl i ght : a physics-based biasing operation to force a flight with no interaction
through the current volume. This operation is better said a"silent flight": the flight is conducted under azero
weight, and the track weight isrestored at the end of the free flight, taking into account the cumulated weight
change for the non-interaction flight. This special feature is because this classin used in the MCNP-likeforce
collision scheme (ABOpt r For ceCol | i si on.

* ABOpt nFor ceComonTr uncat edExp: aphysics-based biasing operationto forceacollisioninsidethe
current volume. It is"common™ as several processes may be forced together, driving the related interaction
law by the sum of these processes cross-section. The relative natural occurence of processes is conserved.
This operation makes use of a"truncated exponential" law, which isthe exponential law limited to a segment
[O,L], where L isthe distance to exit the current volume.

* (4VBi asi ngOper at or class:

e (ABOpt r For ceCol | i si on: abiasing operator that implements a force collision scheme quite close to

the one provided by MCNP. It handles the scheme though the following sequence:

1. The operator starts by using a G4BOpt nCl oni ng cloning operation, making a copy of the primary
entering the volume. The primary is given a zero weight.

2. Theprimary isthen transported through to the volume, without interactions. Thisis done with the oper-
ator requesting forced free flight G4BOpt nFor ceFr eeFl i ght operations to al physics processes.
The weight is zero to prevent the primary to contribute to scores. This flight purpose is to accumulate
the probability to fly through the volume without interaction. When the primary reaches the volume
boundary, the first free flight operation restores the primary weight to its initial weight and all opera-
tions multiply this weight by their weight for non-interaction flight. The operator then abandons here
the primary track, letting it back to normal tracking.

3. The copy of the primary track starts and the track is forced to interact in the volume, using the
AABOpt nFor ceComonTr uncat edExp operation, itself using the total cross-section to compute
the forced interaction law (exponential law limited to path lenght in the volume). One of the physics
processes is randomly selected (on the basis of cross-section values) for the interaction.

4. Other processes are receiving aforced free flight operation, from the operator.

5. Thecopy of the primary is transported up to itsinteraction point. With these operations configured, the
(ABi asi ngProcessl nt er f ace instances have all needed information to automatically compute
the weight of the primary track and of its interaction products.

As this operation starts on the volume boundary, a single force interaction occures: if the track survives the
interaction (e.g Compton process), asit moved apart the boundary, the operator does not consider it further.
*« (AVBI asi ngl nt eracti onLaw classes. These classes describe the interaction law in term of a non-inter-

action probability over a segment of lenght |, and an "effective" cross-section for an interaction at distance |

(see Physics Reference Manual, section generic biasing [to come]). An interaction law can also be sampled.

e Al nteractionLawPhysi cal :theusua exponential law, driven by across-section constant over astep.
The effective cross-section is the cross-section.

e Al LawFor ceFr eeFl i ght: an"interaction" law for, precisely, a non-interacting track, with non-inter-
action probability always 1, and zero effective cross-section. It isalimit case of the modeling.

e Al LawTr uncat edExp: an exponentia interaction law limited to a ssgment [O,L]. The non-interaction
probability and effective cross-section depend on I, the distance travelled, and become zero and infinite,
respectively, at I=L.

3.7.4.4. Changes from 10.0to 10.1

The G4VBi asi ngOper at i on class has been evoled to simplify the interface. The changes regard physics-
based biasing (occurence biasing and final state biaising) and are:

» Suppression of the method virtual GAForceCondition ProposeForceCondition(const
(AForceCondi ti on w appedProcessCondi tion)
e The functionnality has been kept, absorbing the Pr oposeFor ceCondi tion(...) method by the
Provi deCccur enceBi asi ngl nt eracti onLaw(. . .) one, which has now the signature:
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e virtual const (AVBi asi ngl nteracti onLaw Provi deQccur enceBi asi ngl n-
teracti onLaw( const (ABi asi ngProcessl nterface* cal li ngProcess,
(AFor ceCondi ti on& proposeForceCondition) = O;

e The value of pr oposeFor ceCondi ti on passed to the method is the G4For ceCondi t i on value of
the wrapped process, as this was the case with deprecated method Pr oposeFor ceCondi tion(...).

e Suppression of the virtua method "Gidbool DenyPr ocessPost St epDol t (const
(ABi asi ngProcessl nterface* callingProcess, const &ATrack* track, const
(ASt ep* step, Adoubl e& proposedTrackWei ght) ™
» This method was used to prevent the wrapped processhold by cal | i ngPr ocess to haveitsPost St ep-

Dol t(...) caled, providing aweight for this non-call.

» The method has been removed, but the functionnality still exists, and has been merged and generalized with
the change of the pure virtual Appl yFi nal St at eBi asi ng(...) described just after.

e Extra argument Gidbool & forceBi asedFinal State added as last argument
of "virtual AVParti cl eChange* Appl yFi nal St at eBi asi ng( const
(ABi asi ngProcessl nterface* callingProcess, const &ATrack* track, const
(ASt ep* step, Abool & forceBi asedFi nal State) = 0"

» Thismethod is meant to return afinal state interaction through the G4VPar t i cl eChange. Thefina state
may be the anal og wrapped process one, or a biased one, which comeswith itsweight correction for biaising
thefinal state. If an occurence biasing isalso at play in the same step, the weight correction for thishiasing is
applied to thefinal state beforethisoneisreturned to the stepping. Thisisthe default behavior. Thisbehavior
can be controlled by f or ceBi asedFi nal St at e:

- If f or ceBi asedFi nal St at e isleft f al se, the above default behavior is applied.

« Iff or ceBi asedFi nal St at eissettot rue,theG4VParti cl eChange fina state will bereturned
asisto the stepping, and that, regardless their is an occurence at play. Hence, when setting f or ceBi -
asedFi nal St at e tot r ue, thebiasing operation takesfull responsibilty for the total weight (occurence
+ final state) calculation.

» Deletion of (Al LawCommonTr uncat edExp, which could be eliminated after better implementation of
ABOpt nFor ceComonTr uncat edExp operation.

3.7.4.5. Changes from 10.1 to 10.2

Changes in 10.2 derive from the introduction of the t r ack feature G4VAuxi | i aryTr ackl nf or mati on.
They regard essentially the force collision operator GABOpt r For ceCol | i si on and related features. These
changes are transparent to the user if using G4BOpt r For ceCol | i si on and followingexanpl es/ ext end-
ed/ bi asi ng/ GB02. The information below are provided for developers of biasing classes.

The GAVAuxi | i aryTrackl nf or mat i on functionnality allows to extend the G4Tr ack attributes with an
instance of a concrete class deriving from G4VAuxi | i ar yTr ackl nf or mat i on. Such an object isregistered
to the GATr ack using an | D that has to be previously obtained from the G4Physi csMbdel Cat al og. The
AVBi asi ngQper at or classdefinestwo new virtual methods, Conf i gur e() and Conf i gur eFor Wor k-
er (), to help with the creation of these | D' s at the proper time (see GABOpt r For ceCol | i si on asan ex-
ample).

Before 10.2, the GABOpt r For ceCol | i si on class was using state variables to make the bookkeeping of the
tracks handled by the scheme. Now thisbookkeepingishandled usingaGVAuxi | i ar yTr ackl nf or mat i on,
ABOpt r For ceCol |i si onTrackDat a.

To help with the bookkeeping, the base class G4VBi asi ngQOper at or was defining a set of methods (Get -
BirthOperation(..), RemenberSecondaries(..), ForgetTrack(..)), these have beenre-
moved in 10.2 and are easy to overpass with a dedicated GAVAuxi | i ar yTr ackl nf or mat i on.
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Chapter 4. Detector Definition and Response
4.1. Geometry

4.1.1. Introduction

The detector definition requires the representation of its geometrical elements, their materials and electronics
properties, together with visualization attributes and user defined properties. The geometrical representation of
detector elements focuses on the definition of solid models and their spatial position, as well as their logical
relations to one another, such as in the case of containment.

Geant4 uses the concept of "Logical Volume' to manage the representation of detector element properties. The
concept of "Physical Volume" is used to manage the representation of the spatial positioning of detector elements
and their logical relations. The concept of "Solid" is used to manage the representation of the detector element
solid modeling. Volumes and solids must be dynamically allocated using 'new' in the user program; they must not
be declared aslocal objects. Volumes and solids are automatically registered on creation to dedicated stores; these
stores will delete all objects at the end of the job.

4.1.2. Solids

The Geant4 geometry modeller implements Constructive Solid Geometry (CSG) representations for geometrical
primitives. CSG representations are easy to use and normally give superior performance.

All solids must be allocated using 'new' in the user's program; they get registered to a G4Sol i dSt or e at con-
struction, which will also take care to deallocate them at the end of the job, if not done aready in the user's code.

All constructed solids can stream out their contents via appropriate methods and streaming operators.

For all solidsit is possible to estimate the geometrical volume and the surface area by invoking the methods:
G4doubl e Get Cubi cVol une()
GAdoubl e Get Surf aceArea()

which return an estimate of the solid volume and total areaininternal unitsrespectively. For elementary solidsthe
functions compute the exact geometrical quantities, while for composite or complex solids an estimate is made
using Monte Carlo techniques.

For all solidsit isaso possible to generate pseudo-random points lying on their surfaces, by invoking the method

GAThr eeVect or Get Poi nt OnSur f ace() const

which returns the generated point in local coordinates relative to the solid. To be noted that this function is not
meant to provide a uniform distribution of points on the surfaces of the solids.

Since release 10.3, solids can be scaled in their dimensions along the Cartesian axes X, Y or Z, by providing a
scal e transformation associated to the original solid.

(AScal edSol i d( const GAStri ng& pNane,
G4VSol i d* pSolid ,
const GAScal e3D& pScale )

4.1.2.1. Constructed Solid Geometry (CSG) Solids

CSG solidsare defined directly asthree-dimensional primitives. They are described by aminimal set of parameters
necessary to define the shape and size of the solid. CSG solids are Boxes, Tubes and their sections, Cones and
their sections, Spheres, Wedges, and Toruses.

Box:

To create abox one can use the constructor:
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G4Box(const GAString& pNane,
G4doubl e  pX,
GAdoubl e pY,
G4doubl e p2)

In the picture:
pX = 30, pY = 40, pZ = 60

by giving the box a name and its half-lengths along the X, Y and Z axis:

pX half lengthin X [pY half lengthinY |pZ half lengthin Z

Thiswill create abox that extends from - pXto +pXin X, from- pYto+pYinY, and from- pZto+pZinZ.

For example to create a box that is 2 by 6 by 10 centimeters in full length, and called Box A one should use the
following code:

G4Box* aBox = new ABox("BoxA", 1.0*cm 3.0*cm 5.0*cm;
Cylindrical Section or Tube:

Similarly to create acylindrical section or tube, one would use the constructor:

GATubs(const GAStri ng& pNane,
G4doubl e pRM n,
G4doubl e pRMax,
G4doubl e pDz,
G4doubl e  pSPhi ,
G4doubl e  pDPhi )

In the picture:
pRM n = 10, pRvax = 15, pDz = 20

giving its name pNane and its parameters which are:

pPRM n Inner radius pRVax Outer radius
pDz Half lengthiin z pSPhi Starting phi angle in radi-
ans
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pDPhi

Angle of the segment in ra-
dians

Cylindrical Cut Section or Cut Tube:

A cut in Z can be applied to a cylindrical section to obtain a cut tube. The following constructor should be used:

GACut Tubs( const G4String& pNang,
G4doubl e pRM n,
G4doubl e pRMax
G4doubl e pDz,
G4doubl e pSPhi
G4doubl e pDPhi ,
GAThr eeVect or pLowNor m
GAThr eeVect or pH ghNor m )

giving its name pNane and its parameters which are:

pRM n
30, pSPhi

In the picture:

12, pRvax = 20, pbz =
= 0, pDPhi = 1.5*pi,

pLowNorm = (0,-0.7,-0.71),
pH ghNorm = (0.7,0,0.71)

pPRM n Inner radius pRMax Outer radius
pDz Half lengthin z pSPhi Starting phi angle in radi-
ans
pDPhi Angle of the segment in ra- | pLowNor m Outside Normal at -z
dians
pHi ghNor m Outside Normal at +z

Cone or Conical section:

Similarly to create acone, or conical section, one would use the constructor

GACons(const GAString& pNane,

G4doubl e
Gddoubl e
G4doubl e
Gddoubl e
G4doubl e
G4doubl e
G4doubl e

pRm nl
pRmax1
pRm n2
pRmax2
pDz,

pSPhi ,
pDPhi )

In the picture:
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giving its name pNane, and its parameters which are:

pRm nl = 5, pRmaxl = 10, pRm n2
= 20, pRmax2 = 25, pDz = 40,
pSPhi = 0, pDPhi = 4/3*Pi

pRm nl insideradius at - pDz pRmax1 outsideradius at - pDz

pRmM n2 inside radius at +pDz pRmax2 outsideradius at +pDz

pDz half lengthiin z pSPhi starting angle of the seg-
ment in radians

pDPhi the angle of the segment in

radians

Parallelepiped:

A parallelepiped is constructed using:

GAPar a(const GAString& pNane,

G4doubl e
Gddoubl e
G4doubl e
Gddoubl e
G4doubl e
Gddoubl e

giving its name pNane and its parameters which are:

dx,
dy,

dz,

al pha
t het a,
phi)

dx, dy, dz Half-length in x,y,z

al pha Angle formed by they axis and by the plane joining the
centre of the faces parallel to the z-x plane at -dy and
+dy

theta Polar angle of the linejoining the centres of the faces at
-dzand +dzinz

phi Azimutha angle of the line joining the centres of the
facesat -dz and +dzin z

Trapezoid:

To construct atrapezoid use:
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GATrd(const GAString& pNane,
G4Adoubl e dx1,
HAdoubl e dx2,
G4doubl e dy1, —40
GAdoubl e dy2,
Giddoubl e dz) 50

Z0

In the picture:

dx1 = 30, dx2 = 10, dyl
= 40, dy2 = 15, dz = 60

to obtain a solid with name pNane and parameters

dx1 Half-length along x at the surface positioned at - dz
dx2 Half-length along x at the surface positioned at +dz
dyl Half-length along y at the surface positioned at - dz
dy2 Half-length along y at the surface positioned at +dz
dz Half-length along z axis

Generic Trapezoid:

To build a generic trapezoid, the GATr ap classis provided. Here are the two costructors for a Right Angular
Wedge and for the general trapezoid for it:

GATrap(const GAStri ng& pNane,
G4doubl e pZ,
G4doubl e pY,
G4doubl e  pX,
G4doubl e  pLTX)

GATrap(const GAStri ng& pNane,
G4doubl e pDz, GAdoubl e pThet a,
GAdoubl e pPhi, 4double pDyl,
G4doubl e pDx1, GAdouble pDx2,
G4doubl e pAl pl, GAdoubl e pDy2,
G4doubl e pDx3, GAdoubl e pDx4,
GAdoubl e  pAl p2)

In the picture:

pDx1 30, pDx2 40, pDyl 40,
pDx3 = 10, pDx4 = 14, pDy2 = 16,
pDz = 60, pTheta = 20*Degree, pPhi =
5*Degree, pAl pl = pAl p2 = 10*Degree

to obtain a Right Angular Wedge with name pNane and parameters:

pZ Length along z
pY Length alongy
pX Length along x at the wider side
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pLTX

Length along x at the narrower side (pl TX<=pX) ‘

or to obtain the general trapezoid:

pDx1 Half x length of the side at y=-pDy1 of the face at -pDz

pDx2 Half x length of the side at y=+pDy1 of theface at -pDz

pDz Half z length

pThet a Polar angle of the line joining the centres of the faces
at -/+pDz

pPhi Azimuthal angle of thelinejoining the centre of theface
at -pDz to the centre of the face at +pDz

pDy1 Half y length at -pDz

pDy2 Half y length at +pDz

pDx3 Half x length of the side at y=-pDy2 of theface at +pDz

pDx4 Half x length of the side at y=+pDy2 of thefaceat +pDz

pAl pl Angle with respect to the y axis from the centre of the
side (lower endcap)

pAl p2 Angle with respect to the y axis from the centre of the

side (upper endcap)

Note on pAl phl/ 2: the two angles have to be the same due to the planarity condition.

Sphere or Spherical Shell Section:

To build asphere, or aspherical shell section, use:

G4Sphere(const GAString& pNare,
G4double  pRmin,
G4doubl e pRmax,
G4doubl e pSPhi ,
G4doubl e pDPhi ,
Giddoubl e pSThet a,
G4doubl e pDThet a )

to obtain a solid with name pNane and parameters:

In the picture:

pRmi n = 100, pRmax = 120,
pSPhi = 0*Degree, pDPhi =
180*Degree, pSTheta = 0 De-
gree, pDTheta = 180*Degree

pRmin Inner radius

pRmMax Outer radius

pSPhi Starting Phi angle of the segment in radians
pDPhi Delta Phi angle of the segment in radians
pSTheta Starting Theta angle of the segment in radians
pDTheta Delta Theta angle of the segment in radians
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Full Solid Sphere:

To build afull solid sphere use:

GAO b(const GAStri ng& pNane,
G4doubl e  pRmax)

In the picture:
pRmax = 100

The Orb can be obtained from a Sphere with: pRmi n =0, pSPhi =0, pDPhi =2*Pi, pSThet a =0, pDThet a
=Pi

pRmax Outer radius

Torus:

To build atorus use:

GATor us(const GAString& pNane,
HAdoubl e pRm n,
G4doubl e  pRmax,
HAdoubl e pRt or,
G4doubl e pSPhi ,
G4doubl e pDPhi )

In the picture:

pRmM n = 40, pRmax = 60, pRtor =
200, pSPhi = 0, pDPhi = 90*degree

to obtain a solid with name pNane and parameters:

pRmin Inside radius

pRmax Outside radius

pRtor Swept radius of torus

pSPhi Starting Phi angle in radians (f SPhi +f DPhi <=2PI ,
f SPhi >- 2Pl )

pDPhi Delta angle of the segment in radians

In addition, the Geant4 Design Documentation showsin the Solids Class Diagram the completelist of CSG classes.

Specific CSG Solids

Polycons:

Polycons (PCON) are implemented in Geant4 through the G4Pol ycone class:
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GAPol ycone(const (A4Stri ng& pNang,
G4doubl e phi Start,
HAdoubl e phi Tot al ,
G4i nt nunZPl anes,
const Adouble  zPlane[],
const GAdoubl e rinner[],
const (Adoubl e rQuter[])

GAPol ycone(const (A4Stri ng& pNang,
G4doubl e phi Start,
HAdoubl e phi Tot al ,
G4i nt nuniRZ,
const Adouble r[],
const GAdouble z[])

In the picture:

3/2*Pi, nunZPl anes = 9, rln-
ner ={ 0 0 O O, O, O, O, O,
0}, rQuter = { 0, 10, 10, 5,

5, 10, 10, 2, 2}, z ={ 5,

7, 9, 11, 25, 27, 29, 31, 35}

phi Start = 1/4*Pi, phiTotal =
0

where:

phi Start Initial Phi starting angle

phiTotal Total Phi angle

numZPlanes Number of z planes

numRZ Number of cornersinr,z space

zPlane Position of z planes, with z in increasing order
rinner Tangent distance to inner surface

rOuter Tangent distance to outer surface

r r coordinate of corners

z z coordinate of corners

A Polyconewhere Z planes position can also decreaseisimplemented through the G4Gener i cPol ycone class:

GAGeneri cPol ycone(const GAString& pNane,
GAdoubl e phi Start,
G4doubl e phi Total ,
G4i nt nunRZ,
const G4double r[],
const GAdouble z[])

where:

phi Start Initial Phi starting angle
phiTota Total Phi angle

numRZ Number of cornersinr,z space
r r coordinate of corners

z z coordinate of corners

Polyhedra (PGON):

Polyhedra (PGON) are implemented through G4Pol yhedr a:
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GAPol yhedr a(const (AStri ng& pNang,
G4doubl e phi Start,
G4Adoubl e phi Tot al ,
G4i nt nunsi de,
i nt nun¥ZPl anes,
const A4double zPlane[],
const Adouble rlnner[],
const Adouble rCQuter[] )
G4Pol yhedra(const AString& pNane,
G4Adoubl e phiStart,
G4doubl e phi Total , .
i nt nunsi de, In the picture:
G4i nt nuniRz,
const GAdouble r[], phi Start = -1/4*Pi, phi To-
const Gidouble z[] ) tal = 5/4*Pi, nunSide = 3, nun-
ZPlanes = 7, rinner = { 0, O,
0O, 0,0 0,0 0, 0}, rQuter = { O,
15, 15, 4, 4, 10, 10}, z =
{0 5 8 13, 30, 32, 35}
where:
phi St art Initial Phi starting angle
phi Tot al Total Phi angle
nuntSi de Number of sides
nunZPl anes Number of z planes
nunRZ Number of cornersinr,z space
zPlane Position of z planes
rlnner Tangent distance to inner surface
rOuter Tangent distance to outer surface
r r coordinate of corners
Z z coordinate of corners

Tube with an elliptical cross section:

A tubewith an elliptical cross section (ELTU) can be defined as follows:

GAEl i ptical Tube(const GAString& pName,
G4doubl e  Dx,
G4doubl e Dy,
GAdoubl e Dz)

The equation of the surfacein x/y is1. 0
dx)**2 +(y/dy)**2

(x/

In the picture:
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Dx =5, Dy =10, Dz = 20

Dx

Half length X Dy

Half length Y Dz Half length Z

General Ellipsoid:

The general ellipsoid with possible cut in Z can be defined as follows:

GAE!l | i psoi d(const (AString& pNane,

G4doubl e  pxSem Axi s,
G4doubl e pySem AXxi s,
G4doubl e pzSem Axi s,
G4doubl e pzBot t onCut =0,
G4doubl e pzTopCut =0)

RO

o

i

et o

S

S5

In the picture:

pxSem Axis = 10, pySem Axis
= 20, pzSeni Axis = 50, pzBot -
tonCut = -10, pzTopCut = 40

A general (or triaxial) ellipsoid is aquadratic surface which is given in Cartesian coordinates by:

1.0 = (x/ pxSem Axis)**2 + (y/pySem Axis)**2 + (z/pzSem Axis)**2

where:

pxSem AXi s Semiaxisin X
pySemiAxis SemiaxisinY
pzSemiAxis SemiaxisinZ
pzBottomCut lower cut planelevel, z
pzTopCut upper cut plane level, z

Cone with Elliptical Cross Section:

A conewith an elliptical cross section can be defined as follows:

GAEl i ptical Cone(const GAString& pName,

G4doubl e
Giddoubl e
G4doubl e
Giddoubl e

pxSem AXi s,
pySem Axi s,
zMax,
pzTopCut )

In the picture:

pxSem Axi s = 30/ 75, pySenmi Axis =
60/ 75, zMax = 50, pzTopCut = 25
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where;

pxSemiAxis Semiaxisin X
pySemiAxis SemiaxisinY

zMax Height of elliptical cone
pzTopCut upper cut plane level

An dliptical cone of height zMax, with two bases a - pzTopCut and +pzTopCut , semiaxis pxSeni Axi s,
and semiaxis py Sem Axi s isgiven by the parametric equations:

X
y
z

pxSem Axis * ( zMax - u ) / u * Cos(Vv)
pySem Axis * ( zMax - u ) / u * Sin(v)
u

Wherev isbetween 0 and 2* Pi , and u between - pzTopCut and +pzTopCut respectively.
Paraboloid, a solid with parabolic profile:

A solid with parabolic profile and possible cuts along the Z axis can be defined as follows:

G4Par abol oi d(const AString& pNane,
HAdoubl e Dz,
GAdoubl e R1,
G4doubl e R2)

The equation for the solid is:

rho**2 <= k1 * z + k2; In the picture:
-dz <=z <= dz
ri**2 = k1 * (-dz) + k2 _ _ _
r2**2 = k1 * ( dZ) + k2 Rl - 20, R2 - 35, DZ - 20
Dz Half length Z R1 Radius at -Dz R2 Radius a +Dz

greater than R1

Tube with Hyperbolic Profile:

A tubewith a hyperbolic profile (HY PE) can be defined as follows:

GAHype(const GAStri ng& pNane,
HAdoubl e i nner Radi us,
G4doubl e out er Radi us,
HAdoubl e i nner St ereo,
G4doubl e outerStereo,
GAdoubl e hal f LenZ)

In the picture:

innerStereo = 0.7, outerStereo
= 0.7, halfLenZ = 50, innerRa-
dius = 20, outerRadius = 30

AHy pe isshaped with curved sides parallel to the z-axis, has a specified half-length along the z axis about which
it is centred, and a given minimum and maximum radius.

A minimum radius of 0 defines a filled Hype (with hyperbolic inner surface), i.e. inner radius = 0 AND inner
stereo angle = 0.
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The inner and outer hyperbolic surfaces can have different stereo angles. A stereo angle of 0 gives acylindrical
surface:

i nner Radi us Inner radius

out er Radi us Outer radius

i nner St er eo Inner stereo anglein radians
outerStereo Outer stereo anglein radians
hal f Lenz Half lengthin Z
Tetrahedra:

A tetrahedra solid can be defined as follows:

GATet (const GAStri ng& pNane,
(AThreeVector anchor,
GAThr eeVector p2,
GAThreeVector p3,
GAThr eeVector  p4,
Gidbool *degener acyFl ag=0)

In the picture:

anchor = {0, 0, sqrt(3)},
p2 = { 0, 2*sqrt(2/3), -1/
sqrt(3) }, p3 ={ -sqrt(2), -
sqrt(2/3),-1/sqrt(3) }, p4 =
{ sqrt(2), -sqrt(2/3) , -1/sqrt(3) }

The solid is defined by 4 pointsin space:

anchor Anchor point

p2 Point 2

p3 Point 3

p4 Point 4

degeneracyFlag Flag indicating degeneracy of points

Extruded Polygon:

The extrusion of an arbitrary polygon (extruded solid) with fixed outline in the defined Z sections can be defined
asfollows (in ageneral way, or as special construct with two Z sections):

GAExt rudedSol i d(const GAString& pNane,
std:: vect or<&ATwoVect or > pol ygon,
std:: vect or<ZSection> zsecti ons)

GAExt rudedSol i d(const GAString& pNane,
st d: : vect or <GATwoVect or > pol ygon, z
G4doubl e hz,
ATwoVect or of f 1, HAdoubl e scal el,
GATwoVector of f2, Adoubl e scal e2)

20,0
90300

In the picture:

pol i gon = {-30, -30}, {-30, 30},
{30, 30}, {30,-30}, {15,-30},
{15, 15}, {- 15, 15}, {- 15, - 30}

101



Detector Definition and Response

zsections = [-60, {0, 30}, 0. 8],
[-15, {0,-30},1.], [10,
{0,0},0.6], [60,{0,30},1.2]

The z-sides of the solid are the scaled versions of the same polygon.

pol ygon the vertices of the outlined polygon defined in clock-
wise order

zsections the z-sections defined by z position in increasing order

hz Half lengthin Z

of f1, off2 Offset of the sidein -hz and +hz respectively

scal el, scale2 Scale of the side in -hz and +hz respectively

Box Twisted:

A box twisted along one axis can be defined as follows:

GATwi st edBox(const (AStri ng& pNane,
GAdoubl e tw stedangl e,
G4doubl e  pDx,
G4doubl e  pDy,
G4doubl e pDz)

In the picture:

twi st edangl e = 30*Degr ee,
pDx = 30, pDy =40, pDz = 60

GATwi st edBox isabox twisted along the z-axis. The twist angle cannot be greater than 90 degrees:

twi st edangl e Twist angle

pDx Half x length
pDy Half y length
pDz Half z length

Trapezoid Twisted along One AXis:

trapezoid twisted along one axis can be defined as follows:

GATwi st edTrap(const GAStri ng& pNane,
GAdoubl e tw stedangl e,
G4doubl e  pDxx1,
GAdoubl e  pDxx2,
G4doubl e pDy,
GAdoubl e pDz)
GATwi st edTr ap(const AString&
G4doubl e
G4doubl e
G4doubl e
G4doubl e
G4doubl e

pNare,

tw st edangl e,
pDz,

pThet a,

pPhi ,

pDy1,
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GAdoubl e
G4doubl e
GAdoubl e
G4doubl e
GAdoubl e
G4doubl e

pDx1,
pDx2,
pDy2,
pDx3,
pDx4,
pAl ph

In the picture:

pDx1 = 30, pDx2 = 40, pDyl = 40,
pDx3 = 10, pDx4 = 14, pDy2 = 16,
pDz = 60, pTheta = 20*Degree,
pDphi = 5*Degree, pAl ph = 10*De-
gree, tw stedangl e = 30*Degree

Thefirst constructor of GATwi st edTr ap produces aregular trapezoid twisted along the z-axis, where the caps
of the trapezoid are of the same shape and size.

The second constructor produces a generic trapezoid with polar, azimuthal and tilt angles.

The twist angle cannot be greater than 90 degrees:

twi st edangl e Twisted angle

pDx1 Half x length at y=-pDy

pDx2 Half x length at y=+pDy

pDy Half y length

pDz Half z length

pThet a Polar angle of the line joining the centres of the faces
at -/+pDz

pDy1 Half y length at -pDz

pDx1 Half x length at -pDz, y=-pDy1

pDx2 Half x length at -pDz, y=+pDy1

pDy2 Half y length at +pDz

pDx3 Half x length at +pDz, y=-pDy2

pDx4 Half x length at +pDz, y=+pDy2

pAl ph Angle with respect to the y axis from the centre of the
side

Twisted Trapezoid with x and y dimensions varying along z:

A twisted trapezoid with the x andy dimensions varying along z can be defined as follows:

GATwi st edTrd(const AString&
GAdoubl e
GAdoubl e
G4doubl e
GAdoubl e
G4doubl e
GAdoubl e

where:

pNare,

pDx1,

pDx2,

pDy1,

pDy2,

pDz,

tw st edangl e)

o
T
SR

E e
s
S

“.‘.“

PR

e
T

In the picture:
30, dx2 =

dx1l = 10, dy1l
= 40, dy2 = 15, dz = 60,
twi st edangl e = 30*Degree
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pDx1 Half x length at the surface positioned at -dz
pDx2 Half x length at the surface positioned at +dz
pDy1 Half y length at the surface positioned at -dz
pDy2 Half y length at the surface positioned at +dz
pDz Half z length

tw st edangl e Twisted angle

Generic trapezoid with optionally collapsing vertices:

An arbitrary trapezoid with up to 8 vertices standing on two parallel planes perpendicular to the Z axis can be
defined asfollows:

GACGeneri cTrap(const GAStri ng& pNane,
G4doubl e pDz,
const std::vector<GATwoVect or >& vertices)

In the picture: In the picture: In the picture:
pDz = 25 vertices = pDz = 25 vertices = pDz = 25 vertices =
{-30, -30}, {-30, 30}, {-30,-30}, {-30, 30}, {-30,-30}, {-30, 30},
{30, 30}, {30, -30} {30, 30}, {30,-30} {30, 30}, {30,-30} {O,0},
{-5, -20}, {-20, 20}, {-20,-20}, {-20, 20}, {0,0}, {0,0}, {O,0}
{20, 20}, {20, -20} {20, 20}, {20, 20}
where:
pDz Half z length
vertices The (x,y) coordinates of vertices

The order of specification of the coordinates for the vertices in G4Gener i cTr ap is important. The first four
points are the vertices sitting on the - hz plane; the last four points are the vertices sitting on the +hz plane.

The order of defining the vertices of the solid is the following:

 point 0 is connected with points 1,3,4
 point 1 is connected with points 0,2,5
* point 2 is connected with points 1,3,6
* point 3 is connected with points 0,2,7
* point 4 is connected with points 0,5,7
 point 5 is connected with points 1,4,6
* point 6 is connected with points 2,5,7
* point 7 is connected with points 3,4,6

Points can beidentical in order to create shapes with less than 8 vertices; the only limitation isto have at |east one
triangleat +hz or - hz; thelateral surfacesare not necessarily planar. Not planar lateral surfacesare represented by
asurface that linearly changes from the edge on - hz to the corresponding edge on +hz;; it represents a sweeping
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surface with twist angle linearly dependent on Z, but it is not areal twisted surface mathematically described by
equations as for the other twisted solids described in this chapter.

Tube Section Twisted along Its Axis:

A tube section twisted along its axis can be defined as follows:

GATwi st edTubs(const (AString& pNane,
G4doubl e tw stedangl e, 5
GAdoubl e endi nnerrad,
(Adoubl e endout err ad,
GAdoubl e hal f zl en,

G4doubl e dphi) -10
20¢
10 il
e
z s
0 il
':é’r il
-10} g
sy
pead i
~20 i

In the picture:

endi nnerrad = 10, endouterrad =
15, halfzlen = 20, dphi = 90*De-
gree, tw stedangl e = 60*Degree

ATw st edTubs isasort of twisted cylinder which, placed along the z-axis and divided into phi -segmentsis
shaped like an hyperboloid, where each of its segmented pieces can be tilted with a stereo angle.

It can have inner and outer surfaces with the same stereo angle:

tw st edangl e Twisted angle

endi nnerrad Inner radius at endcap
endout errad Outer radius at endcap
hal f zIl en Half z length

dphi Phi angle of a segment

Additional constructors are provided, allowing the shape to be specified either as:

* the number of segmentsin phi and the total angle for all segments, or

» acombination of the above constructors providing instead the inner and outer radii at z=0 with different z-
lengths along negative and positive z -axis.

4.1.2.2. Solids made by Boolean operations

Simple solids can be combined using Boolean operations. For example, a cylinder and a half-sphere can be com-
bined with the union Boolean operation.

Creating such anew Boolean solid, requires:

» Two solids
» A Boolean operation: union, intersection or subtraction.
» Optionally atransformation for the second solid.
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The solids used should be either CSG solids (for examples a box, a spherical shell, or atube) or another Boolean
solid: the product of a previous Boolean operation. An important purpose of Boolean solids is to alow the de-
scription of solids with peculiar shapesin asimple and intuitive way, still allowing an efficient geometrical nav-
igation inside them.

The constituent solids of a Boolean operation should possibly avoid be composed by sharing all or part
of their surfaces. This precaution is necessary in order to avoid the generation of ‘fake' surfaces due to
precision loss, or errors in the final visualization of the Boolean shape. In particular, if any one of the
subtractor surfacesis coincident with a surface of the subtractee, the result is undefined. Moreover, the
final Boolean solid should represent a single 'closed’ solid, i.e. a Boolean operation between two solids
which are digoint or far apart each other, is not avalid Boolean composition.

The tracking cost for navigating in a Boolean solid in the current implementation, is proportional to
the number of constituent solids. So care must be taken to avoid extensive, unecessary use of Boolean
solids in performance-critical areas of ageometry description, where each solid is created from Boolean
combinations of many other solids.

Examples of the creation of the simplest Boolean solids are given below:

G4Box*  box =
new ABox("Box", 20* nm 30* nm 40* nm) ;
GATubs* cyl =
new ATubs("Cylinder", 0, 50*nm 50*mm O, twopi ); // r: 0O mMm -> 50 mMm
Il z: 50 nm -> 50 mm
/1 phi 0-> 2 pi

G4Uni onSol i d* union =

new AUni onSol i d("Box+Cylinder", box, cyl);
G4l ntersectionSolid* intersection =

new Al ntersectionSolid("Box*Cylinder", box, cyl);
GA4SubtractionSol i d* subtraction =

new ASubtractionSol i d("Box-Cylinder", box, cyl);

where the union, intersection and subtraction of a box and cylinder are constructed.

The more useful case where one of the solids is displaced from the origin of coordinates also exists. In this case
the second solid is positioned relative to the coordinate system (and thus relative to the first). This can be done
in two ways:

« Either by giving arotation matrix and trandlation vector that are used to transform the coordinate system of the
second solid to the coordinate system of thefirst solid. Thisis called the passive method.

» Or by creating a transformation that moves the second solid from its desired position to its standard position,
e.g., abox's standard position is with its centre at the origin and sides parallel to the three axes. Thisis called
the active method.

Inthefirst case, thetrandation is applied first to move the origin of coordinates. Then the rotation is used to rotate
the coordinate system of the second solid to the coordinate system of the first.

G4Rot ati onMatri x* yRot = new GARotationMatrix; // Rotates X and Z axes only
yRot - >rotateY(M Pl /4. *rad); /] Rotates 45 degrees
GAThreeVector zTrans(0, 0, 50);

GAUni onSol i d* uni onMoved =

new G4Uni onSol i d( " Box+Cyl i nder Moved", box, cyl, yRot, zTrans);
I
/1 The new coordi nate systemof the cylinder is translated so that
/l its centre is at +50 on the original Z axis, and it is rotated
/1 with its X axis hal fway between the original X and Z axes.

/1 Now we build the sanme solid using the alternative nethod
/1
GARot ati onMatri x i nvRot = yRot->invert();
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GATransforn8D transforn(invRot, zTrans);
G4Uni onSol i d* uni onMoved =
new GAUni onSol i d( " Box+Cyl i nder Moved", box, cyl, transform;

Note that the first constructor that takes a pointer to the rotation-matrix (ARot at i onMat ri x*), does NOT
copy it. Therefore once used a rotation-matrix to construct a Boolean solid, it must NOT be modified.

In contrast, with the alternative method shown, aG4Tr ansf or nBDis provided to the constructor by value, and
its transformation is stored by the Boolean solid. The user may modify the A Tr ansf or n8D and eventually
useit again.

When positioning a volume associated to a Boolean solid, the relative center of coordinates considered for the
positioning is the one related to the first of the two constituent solids.

4.1.2.3. Tessellated Solids

In Geant4 it isalso implemented aclass (ATessel | at edSol i d which can be used to generate a generic solid
defined by a number of facets ((AVFacet ). Such constructs are especially important for conversion of complex
geometrical shapesimported from CAD systems bounded with generic surfaces into an approximate description
with facets of defined dimension (see Figure 4.1).

Figure 4.1. Example of geometries imported from CAD system and converted to
tessellated solids.

They can aso be used to generate a solid bounded with a generic surface made of planar facets. It is important
that the supplied facets shall form afully enclose space to represent the solid.

Two types of facet can be used for the construction of a ATessel | at edSol i d: a triangular facet
(ATri angul ar Facet ) and a quadrangular facet (AQuadr angul ar Facet ).

An example on how to generate a simple tessellated shape is given below.

Example 4.1. An example of a ssimpletessellated solid with ATessel | at edSol i d.

/Il First declare a tessellated solid
/1
GATessel | atedSol i d sol i dTarget = new GATessel | at edSol i d(" Sol i d_nane");

/1 Define the facets which formthe solid
I

G4doubl e targetSize = 10*cm ;

GATri angul ar Facet *facetl = new

GATri angul ar Facet (GAThreeVector (-targetSize,-targetSi ze, 0.0),
GAThr eeVect or (+t ar get Si ze, -t arget Si ze, 0.0),
GAThr eeVect or ( 0.0, 0.0, +t arget Si ze),
ABSCOLUTE) ;

GATri angul ar Facet *facet2 = new

GATri angul ar Facet (GAThreeVect or (+t ar get Si ze, -t ar get Si ze, 0.0),
GAThr eeVect or (+t ar get Si ze, +t ar get Si ze, 0.0),
GAThr eeVect or ( 0.0, 0.0, +target Si ze),
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ABSOLUTE) ;

GATri angul ar Facet *facet3 = new

GATri angul ar Facet (AThreeVector (+target Si ze, +t arget Si ze, 0.0),
GAThr eeVector (-t arget Si ze, +t arget Si ze, 0.0),
GAThr eeVect or ( 0.0, 0.0, +t arget Si ze),
ABSCOLUTE) ;

GATri angul ar Facet *facet4 = new

GATri angul ar Facet (GAThreeVector (-t arget Si ze, +t ar get Si ze, 0.0),
GAThreeVector (-target Si ze, -t arget Si ze, 0.0),
GAThr eeVect or ( 0.0, 0.0, +t arget Si ze),
ABSOLUTE) ;

GAQuadr angul ar Facet *facet5 = new

GAQuadr angul ar Facet (AThreeVector (-targetSi ze, -targetSi ze,
GAThreeVector (-t arget Si ze, +t arget Si ze, 0.0
GAThr eeVect or ( +t ar get Si ze, +t ar get Si ze, 0.0
GAThr eeVect or (+t arget Si ze, -t arget Si ze, 0.0
ABSOLUTE) ;

/1 Now add the facets to the solid

/1

sol i dTar get - >AddFacet (( AAVFacet*) facetl);
sol i dTar get - >AddFacet (( GAVFacet *) facet2);
sol i dTar get - >AddFacet (( AVFacet *) facet3);
sol i dTar get - >AddFacet (( GAVFacet *) facet4);
sol i dTar get - >AddFacet (( AAVFacet*) facet5);

Finally declare the solid is conplete
/1
sol i dTar get - >Set Sol i dC osed(true);

The&Tri angul ar Facet classisused for the contruction of G4Tessel | at edSol i d. Itisdefined by three
vertices, which shall be supplied in anti-clockwise order looking from the outside of the solid where it belongs.
Its constructor looks like:

GATri angul ar Facet ( const (AThreeVect or Pt 0,
const (AThr eeVect or vt 1,
const (AThr eeVect or vt 2,

GAFacet Vert exType fType )

i.e., it takes 4 parameters to define the three vertices:

AFacet Vert exType ABSOLUTE in which case Pt 0, vt 1 and vt 2 are the
three vertices in anti-clockwise order looking from the
outside.

AFacet Vert exType RELATI VE in which case the first vertex is Pt 0, the

second vertex is Pt O+vt 1 and the third vertex is
Pt O+vt 2, al in anti-clockwise order when looking
from the outside.

The GAQuadr angul ar Facet classcan be used for the contruction of G4Tessel | at edSol i d aswell. Itis
defined by four vertices, which shall be in the same plane and be supplied in anti-clockwise order looking from
the outside of the solid where it belongs. Its constructor looks like:

GAQuadr angul ar Facet ( const (AThreeVect or Pt 0,
const GAThr eeVect or vt1l,
const (AThreeVect or vt 2,
const GAThr eeVect or vt 3,

G4Facet Vert exType fType )

i.e., it takes 5 parameters to define the four vertices:

AFacet Vert exType ABSOLUTE inwhichcasePt 0,vt 1,vt 2 andvt 3 are
the four vertices required in anti-clockwise order when
looking from the outside.

108



Detector Definition and Response

AFacet Vert exType RELATI VE in which case the first vertex is Pt 0, the
second vertex isPt 0+vt , thethird vertex isPt 0+vt 2
and thefourth vertex isPt 0+vt 3, in anti-clockwise or-
der when looking from the outside.

Importing CAD models as tessellated shapes

Tessellated solids can a'so be used to import geometrical models from CAD systems (see Figure 4.1). In order to
dothis, itisrequiredto convert first the CAD shapesinto tessellated surfaces. A way to do thisisto save the shapes
inthe geometrical model as STEPfilesand convert them to tessellated (faceted surfaces) solids, using atool which
allows such conversion. At thetime of writing, at least two tools are avail able for such purpose: STViewer (part of
the STEP-Tools development suite) or FASTRAD. This strategy allowsto import any shape with some degree of
approximation; the converted CAD models can then be imported through GDML (Geometry Description Markup
Language) into Geant4 and be represented as G4Tessel | at edSol i d shapes.

Other tools which can be used to generate meshes to be then imported in Geant4 as tessellated solids are:

* InStep - A free STL to GDML conversion tool.

* SALOME - Open-source software allowing to import STEP/BREP/IGES/STEP/ACI S formats, mesh them and
export to STL.

e ESABASE?2 - Space environment analysis CAD, basic modules free for academic non-commercial use. Can
import STEP files and export to GDML shapes or complete geometries.

» CADMesh - Tool based onthe VCG Library to read STL files and import in Geant4.

» Cogenda- Commercial TCAD software for generation of 3D meshes through the module Gds2Mesh and final
export to GDML.

4.1.2.4. Unified Solids

An dternative implementation for some of the cited geometrical primitives is provided since release 10.0 of
Geant4. The solids included in release 10.2 are: Box, Cons, Polycone, GenericPolycone, Polyhedra, Paraboloid,
Orb, Sphere, Tet, Trd, Trap, GenericTrap, Tubs, Torus, ExtrudedSolid and MultiUnion.

Thenew GAMul t i Uni on structure, in particular, allowsfor the description of aBoolean union of many displaced
solids at once, therefore representing volumes with the same associated material. NOTE: MultiUnion structures
can only be defined for usage with USolids primitivesenabled ! An example on how to defineasimple MultiUnion
structure is given here:

#i ncl ude "GAMul ti Uni on. hh"

/] Define two -UBox- shapes

/1

GABox* box1l = new ABox("Box1", 5.*mm
G4Box* box2 = new ABox("Box2", 5.*mm
/| Define displacenents for the shapes
/11

G4Rot ationMatrix rotm = GARotationMatri x();
GAThreeVector positionl = GAThreeVector(0.,0.,1.);
GAThr eeVector position2 = GAThreeVector(0.,0.,2.);
GATransfornBD trl = GATransfor nBD(rot m positionl);
GATransfornBD tr2 = GATransfor nBD(rot m position2);

/] Initialise a MiultiUnion structure
/11
GAMul ti Uni on* muni on_solid = new GAMil ti Uni on(" Boxes_Uni on");

// Add the shapes to the structure
/11

muni on_sol i d- >AddNode( *box1, tr1);
muni on_sol i d- >AddNode( *box2, tr 2) ;

/l Finally close the structure
/1l
muni on_sol i d- >Voxel i ze() ;
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/] Associate it to a logical volune as a normal solid
/1
G4Logi cal Vol une* | vol =

new ALogi cal Vol ume( muni on_sol i d, /l its solid
muni on_nat , // its material
" Boxes_Uni on_LV"); /1 its name

The code for the USalids primitives originated as part of the AIDA Unified Solids Library and is now integrated
in the VecGeom library (the vectorized geometry library for particle-detector simulation); it is provided for ex-
perimental use and can be activated in place of the original primitives defined in Geant4, by selecting the appro-
priate compilation flag when configuring the Geant4 libraries installation. The installation allows to build against
an external system installation of the VecGeom library, therefore the appropriate installation path must also be
provided during the installation configuration:

- DGEANT4_USE_USCOLI DS="al | " /1 to replace all avail abl e shapes
- DGEANT4_USE_USOLI DS="box; tubs" // to replace only individual shapes

The original API for all geometrical primitivesis preserved.

4.1.3. Logical Volumes

The Logical Volume manages the information associated with detector elements represented by a given Solid and
Material, independently from its physical position in the detector.

(ALogi cal Vol umes must be alocated using 'new' in the user's program; they get registered to a
(ALogi cal Vol unmeSt or e at construction, which will also take care to deallocate them at the end of the jab,
if not done already in the user's code.

A Logica Volume knowswhich physical volumes are contained within it. It isuniquely defined to be their mother
volume. A Logica Volume thus represents a hierarchy of unpositioned volumes whose positions relative to one
another are well defined. By creating Physical Volumes, which are placed instances of a Logical Volume, this
hierarchy or tree can be repeated.

A Logica Volume also manages the information relative to the Visualization attributes (Section 8.6) and user-
defined parameters related to tracking, el ectro-magnetic field or cuts (through the GAUser Li mi t s interface).

By default, tracking optimization of the geometry (voxelization) is applied to the volume hierarchy identified by
alogical volume. It is possible to change the default behavior by choosing not to apply geometry optimization
for a given logical volume. This feature does not apply to the case where the associated physical volume is a
parameterised volume; in this case, optimization is always applied.

(ALogi cal Vol ume( G4VSol i d* pSol i d,
GAMateri al * pMat eri al ,
const (AString& Nane,

GAFi el dvanager * pFi el dvgr =0,
G4VSensi ti veDet ect or* pSDet ect or =0,
GAUserLimts* pULi ni t s=0,
Gdbool Optim se=true )

Through the logical volume it is also possible to tune the granularity of the optimisation algorithm to be applied
to the sub-tree of volumes represented. This s possible using the methods:

G4doubl e Get Smartl ess() const
voi d Set Smart | ess(G4doubl e s)

The default smartless value is 2 and controls the average number of slices per contained volume which are used
in the optimisation. The smaller the value, the less fine grained optimisation grid is generated; this will trandate
in a possible reduction of memory consumed for the optimisation of that portion of geometry at the price of a
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dlight CPU time increase at tracking time. Manual tuning of the optimisation isin general not required, since the
optimal granularity level is computed automatically and adapted to the specific geometry setup; however, in some
cases (like geometry portions with 'dense’ concentration of volumes distributed in a non-uniform way), it may be
necessary to adopt manual tuning for helping the optimisation process in dealing with the most critical areas. By
setting the verbosity to 2 through the following Ul run-time command:

/run/verbose 2

a statistics of the memory consumed for the allocated optimisation nodes will be displayed volume by volume,
allowing to easily identify the critical areas which may eventually require manual intervention.

The logical volume provides away to estimate the mass of atree of volumes defining a detector or sub-detector.
This can be achieved by calling the method:

GAdoubl e Get Mass( 34bool forced=fal se)

The mass of thelogical volumetreeis computed from the estimated geometrical volume of each solid and material
associated with thelogical volumeand its daughters. Notethat thiscomputation may require aconsiderable amount
of time, depending on the complexity of the geometry tree. The returned value is cached by default and can be
used for successive calls, unless recomputation is forced by providing t r ue for the boolean argument f or ced
in input. Computation should be forced if the geometry setup has changed after the previous call.

Finally, the Logical Volume manages the information relative to the Envel opes hierarchy required for fast Monte
Carlo parameterisations (Section 5.2.6).

4.1.3.1. Sub-detector Regions

In complex geometry setups, such as those found in large detectors in particle physics experiments, it is useful to
think of specific Logical Volumes as representing parts (sub-detectors) of the entire detector setup which perform
specific functions. In such setups, the processing speed of areal simulation can be increased by assigning specific
production cuts to each of these detector parts. This alows a more detailed simulation to occur only in those
regions whereit is required.

The concept of detector Region is introduced to address this need. Once the final geometry setup of the detector
has been defined, aregion can be specified by constructing it with:

G4Regi on( const GAString& rName )

where:

r Nane String identifier for the detector region

ARegi ons must be allocated using 'new' in the user's program; they get registered to a G4Regi onSt or e at
construction, which will also take careto deallocate them at the end of thejob, if not done already inthe user's code.

A ARegi on must then be assigned to alogical volume, in order to make it a Root Logical Volume:

(ARegi on* ental ori neter = new G4Regi on("EM Cal ori neter");
emCal ori met er LV- >Set Regi on( ental ori neter);
enCal ori net er - >AddRoot Logi cal Vol une(ental ori neterLV);

A root logical volumeisthe first volume at the top of the hierarchy to which a given region is assigned. Once the
region is assigned to the root logical volume, the information is automatically propagated to the volume tree, so
that each daughter volume shares the same region. Propagation on atree branch will be interrupted if an already
existing root logical volume is encountered.
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A specific Production Cut can be assigned to the region, by defining and assigning to it aG4Pr oduct i onCut
object

emCal ori met er - >Set Pr oduct i onCut s(ental Cuts) ;

Section 5.4.2 describes how to define a production cut. The same region can be assigned to more than one root
logical volume, and root logical volumes can be removed from an existing region. A logical volume can have only
one region assigned to it. Regions will be automatically registered in a store which will take care of destroying
them at the end of the job. A default region with a default production cut is automatically created and assigned
to the world volume.

Regions can also become '‘envelopes for fast-simulation; can be assigned user-limits or gener-
ic user-information (AVUser Regi onl nf ormati on); can be associated to specific stepping-actions
(AUser St eppi ngAct i on) or have assigned alocal magnetic-field (local fields specifically associated to log-
ical volumes take precedence anyhow).

4.1.4. Physical Volumes

Physical volumes represent the spatial positioning of the volumes describing the detector elements. Several tech-
nigues can be used. They range from the simple placement of asingle copy to the repeated positioning using either
asimple linear formula or a user specified function.

Any physical volume must be allocated using 'new' in the user's program; they get registered to a
APhysi cal Vol unmeSt or e at construction, which will also take care to deall ocate them at the end of the jab,
if not done already in the user's code.

The simple placement involves the definition of atransformation matrix for the volumeto be positioned. Repeated
positioning is defined using the number of times a volume should be replicated at a given distance along a given
direction. Finally it is possible to define a parameterised formula to specify the position of multiple copies of a
volume. Details about these methods are given below.

Note - For geometries which vary between runs and for which components of the old geometry setup are ex-
plicitely -deleted-, it is required to consider the proper order of deletion (which is the exact inverse of the actual
construction, i.e., first delete physical volumes and then logical volumes). Deleting a logical volume does NOT
delete its daughter volumes.

It is not necessary to delete the geometry setup at the end of a job, the system will take care to free the volume
and solid stores at the end of the job. The user has to take care of the deletion of any additional transformation or
rotation matrices alocated dinamically in his’her own application.

4.1.4.1. Placements: single positioned copy

Inthiscase, the Physical Volumeiscreated by associating alL ogical Volumewith a Rotation Matrix and aTransa-
tion vector. The Rotation Matrix represents the rotation of the reference frame of the considered volumerelatively
to its mother volume's reference frame. The Trandation Vector represents the translation of the current volume
in the reference frame of its mother volume.

Transformations including reflections are not allowed.

To create a Placement one must construct it using:

GAPVPI acenent ( GARot ati onMatri x* pRot,
const (AThr eeVect or & tlate,
GALogi cal Vol ume* pCurrent Logi cal ,
const GAString& pNane,
GALogi cal Vol ume* pMot her Logi cal ,
Gdbool pMany,
GAi nt pCopyNo,
Gdbool pSur f Chk=f al se )
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where;

pRot Rotation with respect to its mother volume

tlate Tranglation with respect to its mother volume

pCurrent Logi cal The associated Logical Volume

pNane String identifier for this placement

pMot her Logi cal The associated mother volume

pMany For future use. Can be set to false

pCopyNo Integer which identifies this placement

pSur f Chk if true activates check for overlaps with existing vol-
umes

Care must be taken because the rotation matrix is not copied by aG4PVPI acenent . So the user must not modify
it after creating a Placement that uses it. However the same rotation matrix can be re-used for many volumes.

Currently Boolean operations are not implemented at the level of physical volume. So pMany must be false.
However, an alternative implementation of Boolean operations exists. In this approach a solid can be created from
the union, intersection or subtraction of two solids. See Section 4.1.2.2 above for an explanation of this.

The mother volume must be specified for all volumes except the world volume.

An aternative way to specify aPlacement utilizes adifferent method to place the volume. The solid itself ismoved
by rotating and trandating it to bring it into the system of coordinates of the mother volume. If compared to the
previous construct, the transformation in this case is generated by specifying the same translation with respect to
its mother volume and the inverse of the rotation matrix. This active method can be utilized using the following
constructor:

GAPVPI acenent ( GATr ansf or nBD sol i dTransform
GALogi cal Vol unme* pCurrent Logi cal ,
const G4String& pNane,
GALogi cal Vol unme* pMot her Logi cal ,
G4bool phvany,
G4i nt pCopyNo,
G4bool pSur f Chk=f al se )

An alternative method to specify the mother volume is to specify its placed physical volume. It can be used in
either of the above methods of specifying the placement's position and rotation. The effect will be exactly the
same as for using the mother logical volume.

Note that a Placement VVolume can still represent multiple detector elements. This can happen if several copies
exist of the mother logical volume. Then different detector elements will belong to different branches of the tree
of the hierarchy of geometrical volumes.

4.1.4.2. Repeated volumes

In this case, asingle Physical VVolume represents multiple copies of avolume within its mother volume, allowing
to save memory. This is normally done when the volumes to be positioned follow a well defined rotational or
tranglational symmetry along a Cartesian or cylindrical coordinate. The Repeated VV olumes techniqueis available
for most volumes described by CSG solids.

Replicas:
Replicas are repeated volumes in the case when the multiple copies of the volume are all identical. The coordinate

axis and the number of replicas need to be specified for the program to compute at run time the transformation
matrix corresponding to each copy.
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GAPVRepl i ca( const (AString& pNang,
G4Logi cal Vol une* pCurrent Logi cal ,
(4Logi cal Vol une* pMot her Logi cal, // OR AVPhysi cal Vol une*

const EAXi s pAXi s,
const A4int nRepl i cas,
const (Adoubl e wi dt h,
const GAdoubl e of fset=0 )
where:
pNane String identifier for the replicated volume
pCurrent Logi cal The associated Logica Volume
pMbt her Logi cal The associated mother volume
pAXi s The axis along with the replication is applied
nRepl i cas The number of replicated volumes
wi dt h Thewidth of asinglereplicaaongtheaxisof replication
of f set Possible offset associated to mother offset along the axis
of replication

APVRepl i ca represents nRepl i cas volumes differing only in their positioning, and completely filling the
containing mother volume. Conseguently if aG4PVRepl i ca is'positioned' insideagiven mother it MUST bethe
mother's only daughter volume. Replica's correspond to divisions or slices that completely fill the mother volume
and have no offsets. For Cartesian axes, slices are considered perpendicular to the axis of replication.

The replica's positions are calculated by means of alinear formula. Replication may occur along:
» Cartesian axes ( kXAXxi s, kYAXi s, KZAxi s)

The replications, of specified width have coordinates of form (-
wi dt h* (nRepl i cas- 1) *0. 5+n*wi dt h, 0, 0)

wheren=0.. nRepl i cas- 1 for the case of kXAxi s, and are unrotated.
» Radial axis (cylindrical polar) ( kRho)

The replications are cong/tubs sections, centred on the origin and are unrotated.

They haveradii of wi dt h* n+of f set tow dt h* (n+1) +of f set wheren=0. . nRepl i cas-1
 Phi axis (cylindrical polar) ( kPhi )

The replications are phi sections or wedges, and of cons/tubs form.
They have phi of of f set +n*wi dt h to of f set +( n+1) *wi dt h wheren=0. . nRepl i cas- 1

The coordinate system of the replicasis at the centre of each replicafor the cartesian axis. For the radial case, the
coordinate system is unchanged from the mother. For the phi axis, the new coordinate system isrotated such that
the X axis bisects the angle made by each wedge, and Z remains parallel to the mother's Z axis.

The solid associated via the replicas logical volume should have the dimensions of the first volume created and
must be of the correct symmetry/type, in order to assist in good visualisation.

ex. For X axisreplicasin abox, the solid should be another box with the dimensions of the replications. (same Y
& Z dimensions as mother box, X dimension = mother's X dimension/nReplicas).

Replicas may be placed inside other replicas, provided the above rule is observed. Normal placement volumes
may be placed insidereplicas, provided that they do not intersect the mother's or any previous replica's boundaries.
Parameterised volumes may not be placed inside.

Because of theserules, it is not possible to place any other volumeinside areplicationinr adi us.

The world volume cannot act as areplica, therefore it cannot be dliced.
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During tracking, the trandlation + rotation associated with each G4PVRepl i ca object is modified according to
the currently 'active' replication. The solid is not modified and consequently has the wrong parameters for the
cases of phi andr replication and for when the cross-section of the mother is not constant along the replication.

Example:
Example 4.2. An example of smplereplicated volumeswith GAPVRepl i ca.

GAPVRepl i ca repX("Linear Array",
pRepLogi cal ,
pCont ai ni ngMbt her Box,
kXAxi s, 5, 10*mm);

G4PVRepl i ca repR("RSlices",
pRepRLogi cal ,
pCont ai ni ngWbt her Tub,
kRho, 5, 10*mm O0);

GAPVRepl i ca repz("ZSlices",
pRepZLogi cal ,
pCont ai ni ngMbt her Tub,
kZAxis, 5, 10*mm);

G4PVRepl i ca repPhi ("Phi Slices",
pRepPhi Logi cal ,
pCont ai ni ngMot her Tub,
kPhi, 4, MPI*0.5*rad, 0);

RepXisan array of 5 replicas of width 10*mm, positioned inside and completely filling the volume pointed by
pCont ai ni ngMbt her Box. The mother's X length must be 5* 10*mm=50*mm (for example, if the mother's
solid were aBox of half lengths [25,25,25] then the replica's solid must be abox of half lengths [25,25,5]).

If the containing mother's solid is a tube of radius 50* mm and half Z length of 25* mm, Re pR divides the mother
tube into 5 cylinders (hence the solid associated with pRepRLogi cal must be atube of radius 10* mm, and half
Z length 25* mm); r epZ dividesthetubeinto 5 shorter cylinders (the solid associated withpRepZLogi cal must
be atube of radius 10*mm, and half Z length 5*mm); finaly, r epPhi dividesthe tubeinto 4 tube segments with
full angle of 90 degrees (the solid associated with pRepPhi Logi cal must be atube segment of radius 10* mm,
half Z length 5* mm and delta phi of M_PI*0.5* rad).

No further volumes may be placed inside these replicas. To do so would result in intersecting boundaries due to
ther replications.

Parameterised Volumes:

Parameterised V olumes are repeated volumes in the case in which the multiple copies of avolume can be different
in size, solid type, or material. The solid's type, its dimensions, the material and the transformation matrix can all
be parameterised in function of the copy number, both when a strong symmetry exist and when it does not. The
user implements the desired parameterisation function and the program computes and updates automatically at
run time the information associated to the Physical Volume.

An example of creating a parameterised volume (by dimension and position) exists in basic ex-
ample B2b. The implementation is provided in the two classes B2bDet ect or Constructi on and
B2bChanber Par anet eri sati on.

To create a parameterised volume, one must first create its logical volume like t r acker Chamnber LV below.
Then one must create his own parameterisation class (B2bChamber Parameterisation) and instantiate an object of
this class (chamber Par am). We will see how to create the parameterisation below.

Example 4.3. An example of Parameterised volumes.

/'l Tracker segments
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/1 An exanpl e of Paraneterised vol unes
/1 Dummy val ues for G4Tubs -- nodified by paraneterised vol unme

G4Tubs* chanber S
= new ATubs("tracker", 0, 100*cm 100*cm O0.*deg, 360.*deg);
f Logi cChanber
= new (ALogi cal Vol une(chanber S, f Chanber Mat eri al , " Chanber", 0, 0, 0) ;

GAdoubl e firstPosition = -trackerSi ze + chanber Spaci ng;
G4doubl e firstLength = trackerLengt h/ 10;
GAdoubl e | astLengt h = trackerLength;

G4VPVPar anet eri sati on* chanber Param =
new B2bChanber Par anet eri sat i on(
NbOf Chanber s, /1 NoChanbers
firstPosition, // Z of center of first
chanber Spacing, // Z spacing of centers
chanmber W dt h, /1 chanber width

firstLength, /1 initial length
| ast Lengt h) ; [/l final length
/1 dummy value : kZAxis -- nodified by paraneterised vol une
new GAPVPar anet eri sed( " Chanber ", /] their nanme
f Logi cChanber, /1 their |ogical volune
trackerLV, /1 Mot her | ogical volune
kZAxi s, /1 Are placed along this axis
NbOf Chanber s, /1 Nunber of chanbers
chanber Par am /] The paranetrisation

f CheckOverl aps); // checking overl aps

The general constructor is:

GAPVPar anet eri sed( const (AString& pNane,
G4Logi cal Vol une* pCurrent Logi cal ,
GALogi cal Vol unme* pMot her Logi cal, // OR GAVPhysi cal Vol ume*
const EAXis pAXi s,
const 4int nRepl i cas,
GAVPVPar anet er i sati on* pPar am
G4bool pSur f Chk=f al se )

Note that for a parameterised volume the user must always specify a mother volume. So the world volume can
never be a parameterised volume, nor it can be sliced. The mother volume can be specified either as a physical
or alogical volume.

pAXi s specifiesthe tracking optimisation algorithm to apply: if avalid axis (the axis a ong which the parameter-
isation is performed) is specified, a simple one-dimensional voxelisation algorithm is applied; if "kUndefined" is
specified instead, the default three-dimensional voxelisation algorithm applied for normal placements will be ac-
tivated. In the latter case, more voxelswill be generated, therefore agreater amount of memory will be consumed
by the optimisation algorithm.

pSur f Chk if t r ue activates a check for overlaps with existing volumes or paramaterised instances.

The parameterisation mechanism associated to a parameterised volume is defined in the parameterisation class
and its methods. Every parameterisation must create two methods:

» Conput eTr ansf or mat i on defines where one of the copiesis placed,
» Conput eDi mensi ons defines the size of one copy, and
* aconstructor that initializes any member variables that are required.

An exampleisB2bChanber Par anet er i sat i on that parameterises a series of tubes of different sizes

Example 4.4. An example of Parameterised tubes of different sizes.

cl ass B2bChanber Paraneteri sation : public G4VPVParaneterisati on
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{
voi d Conput eTr ansf or mati on(const G4i nt copyNo,
G4VPhysi cal Vol ume *physVol ) const;
voi d Conput eDi nensi ons( G4Tubs& trackerLayer,

const A4int copyNo,
const (AVPhysi cal Vol une *physVol ) const;

:

These methods works as follows:

The Conput eTr ansf or mat i on method is called with a copy number for the instance of the parameterisation
under consideration. It must compute the transformation for this copy, and set the physical volume to utilize this
transformation:

voi d B2bChanber Par anet eri sati on: : Conput eTr ansf or nat i on
(const 4int copyNo, GAVPhysi cal Vol une *physVol) const

{
/1 Note: copyNo will start with zero!

GAdoubl e Zposition = fStartZ + copyNo * fSpaci ng;
GAThr eeVect or ori gin(0, 0, Zposi tion);
physVol - >Set Tr ansl ati on(origin);
physVol - >Set Rot ati on(0) ;
}

Note that the translation and rotation given in this scheme are those for the frame of coordinates (the passive
method). They are not for the active method, in which the solid is rotated into the mother frame of coordinates.

Similarly the Conput eDi mensi ons method is used to set the size of that copy.

voi d B2bChanber Par anet eri sati on: : Conput eDi nensi ons
(GATubs& tracker Chanber, const 4int copyNo, const G4VPhysi cal Vol unme*) const

{
/1 Note: copyNo will start with zero!
GAdoubl e rmax = fRmaxFirst + copyNo * fRmaxlncr;
tracker Chanber . Set | nner Radi us(0) ;
tracker Chanber . Set Qut er Radi us( r max) ;
tracker Chanber . Set ZHal f Lengt h(f Hal f W dt h) ;
tracker Chanber . Set St ar t Phi Angl e(0. *deg) ;
tracker Chanber . Set Del t aPhi Angl e(360. *deg) ;

}

The user must ensure that the type of the first argument of this method (in this example &4 Tubs &) corresponds
to the type of object the user give to the logical volume of parameterised physical volume.

More advanced usage allows the user:

* to change the type of solid by creating a Conput eSol i d method, or
* to change the material of the volume by creating aConput eMat er i al method. This method can also utilise
information from a parent or other ancestor volume (see the Nested Parameterisation below.)

for the parameterisation.

Exampleexanpl es/ ext ended/ r unAndEvent / REO2 showsasimple parameterisation by material. A more
complex exampleis provided in exanpl es/ ext ended/ medi cal / DI COM where a phantom grid of cellsis
built using a parameterisation by material defined through a map.

Notes

Currently for many cases it is not possible to add daughter volumes to a parameterised volume. Only
parameterised volumes all of whose solids have the same size are allowed to contain daughter volumes.
Whenthesizeor typeof solid varies, adding daughtersisnot supported. So thefull power of parameterised
volumes can be used only for "leaf" volumes, which contain no other volumes.
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A hierarchy of volumes included in a parameterised volume cannot vary. Therefore, it is not possible
to implement a parameterisation which can modify the hierachy of volumes included inside a specific
parameterised copy.

For parameterisations of tubes or cons, where the starting Phi and its Del t aPhi angles vary, it
is possible to optimise the regeneration of the trigonometric parameters of the shape, by invoking
Set St art Phi Angl e(newPhi, fal se); SetDeltaPhi Angl e (newbPhi),i.e by specify-
ingwithf al se flag to skip the computation of the parameters which will be later on properly initialised
with the call for Del t aPhi .

For multi-threaded applications, one must be careful in the implementation of the parameterisation func-
tionsfor the geometrical objectsbeing created in the parameterisation. In particular, when parameterising
by the type of a solid, it is assumed that the solids being parameterised are being declared thread-local
in the user's parameterisation class and allocated just once.

Advanced parameterisations for 'nested' parameterised volumes

A different type of parameterisation enables auser to have the daughter's material also depend on the copy number
of the parent when a parameterised volume (daughter) is located inside another (parent) repeated volume. The
parent volume can be areplica, a parameterised volume, or adivision if the key feature of modifying its contents
isutilised. (Note: a'nested' parameterisation inside a placement volume is not supported, because all copies of a

placement volume must be identical at all levels.)

Insuch a" nested" parameterisation , the user must provide aConput eMVat er i al method that utilises the new

argument that represents the touchable history of the parent volume:

/] Sanpl e Paraneterisation
cl ass Sanpl eNest edPar aneteri sation : public G4VNestedParaneterisation

{

public:

[/l .. other nethods ...
/1 Mandatory nethod, required and reason for this class
virtual GAMaterial * Conput eMateri al (&4VPhysi cal Vol une *current Vol ,

const 4int no_lev,
const GAVTouchabl e *parent Touch) ;

private:

}s

The implementation of the method can utilise any information from a parent or other ancestor volume of its

GiMvaterial *materiall, *material 2;

parameterised physical volume, but typically it will use only the copy number:

GAMateeri al *
Sanpl eNest edPar anet eri sati on: : Conput eMat eri al (AVPhysi cal Vol ume *current Vol ,

}

Nested parameterisations are suitable for the case of regular, 'voxel' geometries in which alarge number of 'equal’
volumes are required, and their only difference isin their material. By creating two (or more) levels of parame-
terised physical volumesit is possible to divide space, while requiring only limited additional memory for very
fine-level optimisation. Thisprovidesfast navigation. Alternativeimplementations, taking into account the regular

const G4int no_lev,
const (4VTouchabl e *parent Touchabl e)

Givaterial *material =0;

/Il Get the information about the parent vol une

G4i nt no_par ent = par ent Touchabl e- >Get Repl i caNunber () ;

G4int no_total = no_parent + no_lev;

/1 A sinple 'checkerboard' pattern of two materials

if( no_total / 2 ==1) material= material 1;

else material= material 2;

// Set the material to the current |ogical volune

GALogi cal Vol ume* current LogVol = current Vol - >Get Logi cal Vol unme() ;
current LogVol - >Set Material ( material );

return material ;

structure of such geometries in navigation are under study.
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Divisions of Volumes

Divisionsin Geant4 are implemented as a specialized type of parameterised volumes.

They serve to divide a volume into identical copies along one of its axes, providing the possibility to define an
offset, and without the limitation that the daugthers have to fill the mother volume asit is the case for the replicas.
In the case, for example, of a tube divided along its radial axis, the copies are not strictly identical, but have

increasing radii, although their widths are constant.

To divide avolume it will be necessary to provide:

1. theaxisof division, and

2. either

« the number of divisions (so that the width of each division will be automatically calculated), or

« the division width (so that the number of divisions will be automatically calculated to fill as much of the
mother as possible), or
« both the number of divisions and the division width (this is especially designed for the case where the

copies do not fully fill the mother).

An offset can be defined so that the first copy will start at some distance from the mother wall. The dividing copies

will be then distributed to occupy the rest of the volume.

There are three constructors, corresponding to the three input possibilities described above:

» Giving only the number of divisions:

GAPVDI vi si on( const

const
const
const

GAStri ng& pNane,

G4Logi cal Vol une* pCurrent Logi cal ,
GALogi cal Vol une* pMot her Logi cal ,
EAXi s pAXi s,

&4i nt nDi vi si ons,

G4doubl e of fset )

* Giving only the division width:

G4PVDi vi si on( const

const
const
const

GAStri ng& pNane,

G4Logi cal Vol une* pCurrent Logi cal ,
G4Logi cal Vol une* pMbt her Logi cal ,
EAXi s pAXi s,

G4doubl e wi dt h,

G4doubl e of fset )

* Giving the number of divisions and the division width:

G4PVDi vi si on( const

where:

const
const
const
const

GAStri ng& pNane,

G4Logi cal Vol une* pCurrent Logi cal ,
G4Logi cal Vol une* pMbt her Logi cal ,
EAXi s pAXi s,

G4i nt nDi vi si ons,

GAdoubl e wi dt h,

G4doubl e of fset )

pNanme

String identifier for the replicated volume

pCurrent Logi cal

The associated Logical Volume

pMot her Logi cal

The associated mother Logical Volume

pPAXi s The axis along which the division is applied
nDi vi si ons The number of divisions
wi dt h The width of asingle division along the axis

119




Detector Definition and Response

of f set Possible offset associated to the mother along the axis
of division

The parameterisation is calculated automatically using the values provided in input. Therefore the dimen-
sions of the solid associated with pCurrent Logi cal will not be used, but recomputed through the
GAVPar anet eri sati on: : Conput eDi nensi on() method.

Since AAVPVPar anet er i sat i on may havedifferent Conput eDi nensi on() methodsfor each solid type,
the user must provide a solid that is of the same type as of the one associated to the mother volume.

As for any replica, the coordinate system of the divisions is related to the centre of each division for the carte-
sian axis. For the radial axis, the coordinate system is the same of the mother volume. For the phi axis, the new
coordinate system is rotated such that the X axis bisects the angle made by each wedge, and Z remains parallel
to the mother's Z axis.

As divisions are parameterised volumes with constant dimensions, they may be placed inside other divisions,
except in the case of divisions along the radial axis.

It is also possible to place other volumes inside a volume where adivision is placed.

Thelist of volumes that currently support divisioning and the possible division axis are summarised below:

ABox kXAxi s, KYAXi s, kZAxi s
G4Tubs kRho, kPhi , kZAxi s
G4Cons kRho, kPhi , kZAxi s
ATrd kXAxi s, kYAXi s, kZAxi s
HAPar a kXAXi s, KYAXi s, kZAxi s
APol ycone kRho, kPhi , kZAxi s
G4Pol yhedr a kRho, kPhi , kZAxi s (*)

(*) - APol yhedr a:

e kPhi -the number of divisions hasto be the same as solid sides, (i.e. nunsi des), the width will not be taken
into account.

In the case of division along kRho of G4Cons, (APol ycone, APol yhedr a, if widthis provided, it istaken
as the width at the - Z radius; the width at other radii will be scaled to this one.

Examples are given below in listings Example 4.4 and Example 4.5.

Example 4.5. An example of a box division along different axes, with or without offset.

G4Box* not her Solid = new GABox("not herSolid", 0.5*m 0.5*m 0.5*m;

GALogi cal Vol ume* not her Log = new G4Logi cal Vol une( ot her Sol id, material, "nmother",0,0,Q0);
GAPara* divSolid = new G4Para("divSolid", 0.512*m 1.21*m 1.43*m;

GALogi cal Vol ume* chi |l dLog = new G4ALogi cal Vol une(di vSolid, material, "child",O,0,O0);

GAPVDI vi si on di vBox1("division along X giving nDiv",
chil dLog, notherLog, kXAxis, 5, 0.);

GAPVDi vi si on di vBox2("division along X giving width and offset",
chil dLog, notherLog, kXAxis, 0.1*m 0.45*n);

GAPVDI vi si on di vBox3("division along X giving nDiv, width and of fset",
chil dLog, notherLog, kXAxis, 3, 0.1*m O0.5*m;

» di vBox1 isadivision of abox along its X axisin 5 equal copies. Each copy will have a dimension in meters
of[0.2, 1., 1.].

» di vBox2 isadivision of the samebox alongits X axiswithawidth of 0. 1 metersand an offset of 0. 5 meters.
As the mother dimension along X of 1 meter (0. 5* mof halflength), the division will be sized in total 1 -
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0. 45 = 0. 55 meters. Therefore, there's space for 5 copies, the first extending from - 0. 05 to 0. 05 meters
in the mother's frame and the last from 0. 35 to 0. 45 meters.

» di vBox3 isadivision of the same box along its X axis in 3 equal copies of width 0. 1 meters and an offset
of 0. 5 meters. Thefirst copy will extend from 0. to 0. 1 metersin the mother's frame and the last from 0. 2
to 0. 3 meters.

Example 4.6. An example of division of a polycone.

GAdoubl e* zPl anem = new GAdoubl e[ 3] ;
zPlanenf0] = -1.*m
zPl anenf 1] = - 0. 25*m
zPlanenf2]= 1.*m
GAdoubl e* rlnnerm = new G4doubl e[ 3] ;
rlnnernf 0] =0. ;
rlnnernf1] =0. 1*m
rlnnernf2] =0.5*m
GAdoubl e* rQuterm = new G4doubl e[ 3] ;
rQut er nf 0] =0. 2*m
rQut er nf 1] =0. 4*m
rQutern{2]=1.*m
GAPol ycone* not her Sol i d = new 4Pol ycone( " not her Sol i d*, 20.*deg, 180. *deg,
3, zPlanem rlnnerm rQuterm;
GALogi cal Vol unme* not her Log = new ALogi cal Vol ume( not her Sol i d, material, "nother",O0,0,0);

GAdoubl e* zPl aned = new GAdoubl e[ 3] ;
zPl aned[ 0] = -3.*m
zPl aned[ 1] = -0.*m
zPlaned[2]= 1.*m
GAdoubl e* rlnnerd = new GAdoubl e[ 3] ;
rlnnerd[ 0] =0. 2;
rlnnerd[ 1] =0. 4*m
rlnnerd[ 2] =0. 5*m
GAdoubl e* rQuterd = new G4doubl e[ 3] ;
rQut erd[ 0] =0. 5*m
rQut erd[ 1] =0. 8*m
rQuterd[2]=2.*m
GAPol ycone* divSolid = new G4Pol ycone("di vSol i d", 0.*deg, 10.*deg,
3, zPlaned, rlnnerd, rQuterd);
GALogi cal Vol ume* chil dLog = new ALogi cal Vol une(di vSolid, material, "child",0,0,0);

GAPVDI vi si on di vPconePhi W "di vi si on al ong phi giving width and of fset",
chil dLog, notherLog, kPhi, 30.*deg, 60.*deg);

GAPVDi vi si on di vPconeZN("di vi sion along Z giving nDiv and offset",
chi |l dLog, motherlLog, kZAxis, 2, 0.1*m);

» di vPconePhi Wis adivision of a polycone along its phi axis in equal copies of width 30 degrees with an
offset of 60 degrees. As the mother extends from O to 180 degrees, there's space for 4 copies. All the copies
have a starting angle of 20 degrees (as for the mother) and a phi extension of 30 degrees. They are rotated
around the Z axis by 60 and 30 degrees, so that the first copy will extend from 80 to 110 and the last from
170 to 200 degrees.

» di vPconeZNisadivision of the same polycone along its Z axis. As the mother polycone has two sections, it
will be divided in two one-section polycones, the first one extending from -1 to -0.25 meters, the second from
-0.25 to 1 meters. Although specified, the offset will not be used.

Note

Divisions for polycone and polyhedra are NOT possible in a multi-threaded application.
4.1.5. Touchables: Uniquely Identifying a Volume

4.1.5.1. Introduction to Touchables

A touchable for avolume serves the purpose of providing a unique identification for a detector element. This can
be useful for description of the geometry alternative to the one used by the Geant4 tracking system, such as a
Sensitive Detectors based read-out geometry, or a parameterised geometry for fast Monte Carlo. In order to create
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atouchable volume, several techniques can be implemented: for example, in Geant4 touchables are implemented
as solids associated to atransformation-matrix in the global reference system, or asahierarchy of physical volumes
up to the root of the geometrical tree.

A touchableis ageometrical entity (volume or solid) which has a unique placement in a detector description. Itis
represented by an abstract base class which can be implemented in a variety of ways. Each way must provide the
capabilities of obtaining the transformation and solid that is described by the touchable.

4.15.2. What can a Touchable do?

All AVTouchabl e implementations must respond to thetwo following "requests’, wherein all cases, by dept h
it is meant the number of levels up in the tree to be considered (the default and current oneis 0):

1. GetTransl ation(depth)
2. CetRotation(depth)

that return the components of the volume's transformation.

Additional capabilities are available from implementations with more information. These have a default imple-
mentation that causes an exception.

Severa capabilities are available from touchables with physical volumes:
3. Get Solid(depth) givesthe solid associated to the touchable.
4. Get Vol unme(dept h) givesthe physical volume.

5. Get Repl i caNunber (dept h) or Get CopyNunber (dept h) which return the copy number of the
physical volume (replicated or not).

Touchables that store volume hierarchy (history) have the whole stack of parent volumes available. Thusiit is
possible to add alittle more state in order to extend its functionality. We add a "pointer" to alevel and a member
function to movethelevel in thisstack. Then calling the above member functionsfor another level theinformation
for that level can beretrieved.

Thetop of the history treeis, by convention, the world volume.
6. GCet Hi st oryDept h() givesthe depth of the history tree.

7. MoveUpH st or y( nunm) movesthe current pointer inside the touchable to point numlevels up the history
tree. Thus, e.g., calling it with num=1 will cause the internal pointer to move to the mother of the current
volume.

WARNING: this function changes the state of the touchable and can cause errors in tracking if applied to
Pre/Post step touchables.

These methods are valid only for the touchable-history type, as specified also below.
An update method, with different arguments is available, so that the information in a touchable can be updated:

8. Updat eYoursel f(vol, history) takesaphysica volume pointer and can additionally take aNav -
i gati onHi st ory pointer.

4.1.5.3. Touchable history holds stack of geometry data

As shown in Sections Section 4.1.3 and Section 4.1.4, a logical volume represents unpositioned detector ele-
ments, and a physical volume can represent multiple detector elements. On the other hand, touchables provide
a unique identification for a detector element. In particular, the Geant4 transportation process and the tracking
system exploit touchables as implemented in G4Touchabl eH st ory. The touchable history is the minimal
set of information required to specify the full genealogy of a given physical volume (up to the root of the geo-
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metrical tree). These touchable volumes are made available to the user at every step of the Geant4 tracking in
AVUser St eppi ngAct i on.

To create/laccessaATouchabl eHi st or y the user must message &ANavi gat or which provides the method
Creat eTouchabl eHi st or yHandl e():

G4Touchabl eHi st or yHandl e Cr eat eTouchabl eHi st or yHandl e() const;

thiswill return a handle to the touchable.

The methods that differentiate the touchable-history from other touchables (since they have meaning only for this
type...), are:

G4i nt Get Hi storyDepth() const;
G4i nt MoveUpHi story( G4int numlevels =1 );

The first method is used to find out how many levels deep in the geometry tree the current volumeis. The second
method asks the touchable to eliminate its deepest level.

As mentioned above, MoveUpHi st or y( nuny significantly modifies the state of atouchable.

4.1.6. Creating an Assembly of Volumes

HAAssenbl yVol une is a helper class which allows several logical volumes to be combined together in an
arbitrary way in 3D space. Theresult isa placement of anormal logical volume, but where final physical volumes
are many.

However, an assembly volume does not act as areal mother volume, being an envelope for its daughter volumes.
Itsrole is over at the time the placement of the logical assembly volume is done. The physical volume objects
become independent copies of each of the assembled logical volumes.

This classis particularly useful when thereis aneed to create aregular pattern in space of a complex component
which consists of different shapes and can't be obtained by using replicated volumes or parametrised volumes
(see also Figure 4.2 reful usage of AAssenbl yVol une must be considered though, in order to avoid cases of
"proliferation” of physical volumes all placed in the same mother.

% L
Lylisre

Figure4.2. Examples of assembly of volumes.

4.1.6.1. Filling an assembly volume with its "daughters”

Participating logical volumes are represented as a triplet of <logical volume, trandation, rotation>
(AAssenbl yTri pl et class).

The adopted approach is to place each participating logical volume with respect to the assembly's coordinate
system, according to the specified translation and rotation.

4.1.6.2. Assembly volume placement

An assembly volume object is composed of a set of logical volumes; imprints of it can be made inside a mother
logical volume.
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Since the assembly volume class generates physical volumes during each imprint, the user has no way to specify
identifiers for these. An internal counting mechanism is used to compose uniquely the names of the physical
volumes created by the invoked Makel nprint (. ..) method(s).

The name for each of the physical volume is generated with the following format:

av_WWV.i npr _XXX_YYY_ZZZ
where:

* WWW - assembly volume instance number

o XXX - assembly volume imprint number

* YYY -the name of the placed logical volume

» ZZZ - thelogical volume index inside the assembly volume

It is however possible to access the constituent physical volumes of an assembly and eventually customise ID
and copy-number.

4.1.6.3. Destruction of an assembly volume

At destruction all the generated physical volumes and associated rotation matrices of theimprintswill be destroyed.
A list of physical volumes created by Makel npri nt () methodiskept, in order to be ableto cleanup the objects
when not needed anymore. This requires the user to keep the assembly objects in memory during the whole job
or during the life-time of the G4Navi gat or , logical volume store and physical volume store may keep pointers
to physical volumes generated by the assembly volume.

The Makel npri nt () method will operate correctly also on transformations including reflections and can be
applied also to recursive assemblies (i.e., it is possible to generate imprints of assemblies including other assem-
blies). Giving t r ue asthe last argument of the Makel npri nt () method, it ispossible to activate the volumes
overlap check for the assembly’s constituents (the default isf al se).

At destruction of aGAAssenbl yVol une, al itsgenerated physical volumes and rotation matrices will be freed.

4.1.6.4. Example

This example shows how to use the G4Assenbl yVol ume class. It implements a layered detector where each
layer consists of 4 plates.

In the code below, at first the world volume is defined, then solid and logical volume for the plate are created,
followed by the definition of the assembly volume for the layer.

The assembly volume for the layer is then filled by the plates in the same way as normal physical volumes are
placed inside a mother volume.

Finally the layers are placed inside the world volume as the imprints of the assembly volume (see Example 4.7).

Example 4.7. An example of usage of the ZAAssenbl yVol une class.

static unsigned int |ayers = 5;

voi d Tst VADet ect or Constructi on: : Construct Assenbl y()
{
/1 Define world vol une
G4Box* Wor | dBox = new GABox( "WBox", worldX/ 2., worldY/ 2., worldz/2. );
GALogi cal Vol une* wor | dLV new ALogi cal Vol unme( Worl| dBox, sel ectedMvaterial, "Wog", 0, 0, 0);
GAVPhysi cal Vol une* wor| dVol new APVPI acenent (0, GAThreeVector (), "Whys",worldLV,
0, false, 0);

/Il Define a plate
G4Box* Pl ateBox = new G4Box( "Pl ateBox", plateX/ 2., plateY/2., platez/2. );
GALogi cal Vol une* pl ateLV = new ALogi cal Vol une( Pl ateBox, Pb, "PlateLV', 0, 0, 0 );
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/1 Define one |ayer as one assenbly vol ume
GAssenbl yVol unme* assenbl yDet ect or = new (AAssenbl yVol une() ;

/l Rotation and translation of a plate inside the assenbly
HARot ationMatri x Ra;

AThr eeVect or Ta;

&ATransfornBD Tr;

// Rotation of the assenbly inside the world
(ARot ati onMatri x Rm

/1 Fill the assenbly by the plates

Ta.set X( caloX/ 4. ); Ta.setY( caloY/ 4. ); Ta.setZ( 0. );
Tr = GATransfornBD(Ra, Ta);

assenbl yDet ect or - >AddPl acedVol une( plateLV, Tr );

Ta.set X( -1*caloxX/ 4. ); Ta.setY( caloY/ 4. ); Ta.setZ( 0. );
Tr = GATransfornBD(Ra, Ta);
assenbl yDet ect or - >AddPl acedVol une( plateLV, Tr );

Ta.set X( -1*calox/4. ); Ta.setY( -1*caloY/4. ); Ta.setZ( 0. );
Tr = GATransfornBD(Ra, Ta);
assenbl yDet ect or - >AddPl acedVol une( plateLV, Tr );

Ta.set X( caloX/ 4. ); Ta.setY( -1*caloY/ 4. ); Ta.setZ( 0. );
Tr = GATransfornBD(Ra, Ta);
assenbl yDet ect or - >AddPl acedVol une( plateLV, Tr );

/1 Now instantiate the |ayers
for( unsigned int i =0; i < layers; i++)
{
/] Translation of the assenbly inside the world
GAThreeVector Tn{ 0,0,i*(caloZ + cal oCal oOffset) - firstCal oPos );
Tr = GATransfornBD(Rm Tn) ;
assenbl yDet ect or - >Makel nprint ( worl dLV, Tr );

}

The resulting detector will look asin Figure 4.3, below:

Figure4.3. Thegeometry corresponding to Example 4.7.

4.1.7. Reflecting Hierarchies of Volumes

Hierarchies of volumes based on CSG or specific solids can be reflected by means of the
HARefl ecti onFact ory class and GARef | ect edSol i d, which implements a solid that has been shifted
from its original reference frame to a new 'reflected' one. The reflection transformation is applied as a decompo-
sition into rotation and tranglation transformations.

The factory is asingleton object which provides the following methods:

GAPhysi cal Vol unesPair Pl ace(const GATransfornB8D& transforn8D,
const GAString& nane,
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GALogi cal Vol ume* LV,
G4ALogi cal Vol une* not her LV,

G4bool i sMany,

G4i nt copyNo,

G4bool sur f Check=f al se)
GAPhysi cal Vol unesPair Replicate(const GAString& nane,

G4Logi cal Vol ume* LV,
GALogi cal Vol ume* not her LV,

EAXi s axi s,

G4i nt nof Repl i cas,

GAdoubl e wi dt h,

GAdoubl e of f set =0)
GAPhysi cal Vol unesPair Divi de(const GAString& nane,

G4Logi cal Vol une* LV,
GALogi cal Vol ume* not her LV,

EAXi s axi s,

G4i nt nof Di vi si ons,
HAdoubl e wi dt h,
HAdoubl e of fset);

The method Pl ace() used for placements, evaluates the passed transformation. In case the transformation con-
tains a reflection, the factory will act as follows:

1. Performsthe transformation decomposition.

2. Creates a new reflected solid and logical volume, or retrieves them from a map if the reflected object was
already created.

3. Transformsthe daughters (if any) and place them in the given mother.

If successful, the result is a pair of physical volumes, where the second physical volume is a placement in a
reflected mother. Optionally, it isaso possible to force the overlaps check at the time of placement, by activating
thesur f Check flag.

The method Repl i cat e() creates replicas in the given mother. If successful, the result is a pair of physical
volumes, where the second physical volume isareplicain areflected mother.

Themethod Di vi de() createsdivisionsinthegiven mother. If successful, theresultisapair of physical volumes,
where the second physical volumeis adivision in areflected mother. There exists aso two more variants of this
method which may specify or not width or number of divisions.

Notes

* In order to reflect hierarchies containing divided volumes, it is necessary to explicite-
ly instantiate a concrete division factory -before- applying the actual reflection: (i.e. -
APVDI vi si onFactory: : Getl nstance() ;).

* Reflection of generic parameterised volumesis not possible yet.

Example 4.8. An example of usage of the ARef | ecti onFact ory class.

#i ncl ude "ARefl ecti onFactory. hh"

/] Calor placement with rotation

(HAdoubl e cal Thi ckness = 100*cm

G4doubl e Xpos = cal Thi ckness*1. 5;

GARot at i onMatri x* rotD3 = new ARotati onMatri x();
rot D3- >r ot at eY(10. *deg) ;

GAVPhysi cal Vol une* physi Cal or =

new APVPI acenent (r ot D3, /] rotation
GAThr eeVect or (Xpos, 0.,0.), // at (Xpos,O0,0)
| ogi cCal or, // its logical volunme (defined el sewhere)
"Calorineter", [/ its nane
| ogi cHal I , I/ its mother volume (defined el sewhere)
fal se, /1 no bool ean operation
0); /'l copy nunber
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/] Calor reflection with rotation

Il

GATransl at e3D transl ati on(-Xpos, 0., 0.);

GATransfornBD rotati on = GARot at e3D( *r ot D3) ;

HARefl ect X3D refl ection;

GATransfornBD transform = transl ati on*rotati on*refl ecti on;

GARef | ecti onFactory: : 1 nstance()

->Pl ace(transform // the transformation with refl ection
"Calorinmeter", // the actual nane
| ogi cCal or, /1 the |ogical volune
| ogi cHal I, // the nother vol une
f al se, /1 no bool ean operation
1, /] copy nunber
fal se); /1 no overlap check triggered

/1 Replicate |ayers
/1
GARef | ecti onFactory: : |1 nstance()
->Replicate("Layer", /] layer name
| ogi cLayer, // layer |ogical volune (defined el sewhere)
logicCalor, // its nother

kXAXi s, /] axis of replication
5, /1 nunmber of replica
20*cm ; /1 width of replica

4.1.8. The Geometry Navigator

Navigation through the geometry at tracking time is implemented by the class GANavi gat or . The navigator
is used to locate points in the geometry and compute distances to geometry boundaries. At tracking time, the
navigator isintended to be the only point of interaction with tracking.

Internally, the G4Navigator has several private helper/utility classes:

» G4NavigationHistory - stores the compounded transformations, replication/parameterisation information, and
volume pointers at each level of the hierarchy to the current location. The volume types at each level are also
stored - whether normal (placement), replicated or parameterised.

» G4NormalNavigation - provides location & distance computation functions for geometries containing 'place-
ment' volumes, with no voxels.

» G4VoxelNavigation - provides location and distance computation functions for geometries containing 'place-
ment' physical volumes with voxels. Internally a stack of voxel information is maintained. Private functions
alow for isotropic distance computation to voxel boundaries and for computation of the 'next voxel' in a spec-
ified direction.

» G4ParameterisedNavigation - provides|ocation and distance computation functionsfor geometries containing
parameterised volumes with voxels. Voxel information ismaintained similarly to G4Voxel Navi gat i on, but
computation can also be simpler by adopting voxels to be one level deep only (unrefined, or 1D optimisation)

» G4ReplicaNavigation - provides location and distance computation functions for replicated volumes.

In addition, the navigator maintains a set of flags for exiting/entry optimisation. A navigator is not a singleton
class; thisis mainly to allow a design extension in future (e.g geometrical event biasing).

4.1.8.1. Navigation and Tracking

The main functions required for tracking in the geometry are described below. Additional functions are provided
to return the net transformation of volumes and for the creation of touchables. None of the functions implicitly
requires that the geometry be described hierarchically.

* SetWorldVolume()

Setsthe first volumein the hierarchy. It must be unrotated and untranslated from the origin.
» LocateGlobalPointAndSetup()

L ocates the volume containing the specified global point. Thisinvolvesatraverse of the hierarchy, requiring the
computation of compound transformations, testing replicated and parameterised volumes (etc). To improve ef-
ficiency this search may be performed relative to the last, and thisis the recommended way of calling the func-

127



Detector Definition and Response

tion. A 'relative’ search may be used for thefirst call of the function which will result in the search defaultingto a
search from the root node of the hierarchy. Searches may also be performed usinga&Touchabl eHi st ory.
* LocateGlobalPointAndUpdateT ouchableHandle()

First, search the geometrical hierarchy like the above method Locat ed obal Poi nt AndSet up() . Then
use the volume found and its navigation history to update the touchable.
» ComputeStep()

Computesthe distance to the next boundary intersected al ong the specified unit direction from a specified point.
The point must be have been located prior to calling Conput eSt ep() .

When calling Conput eSt ep() , aproposed physics step is passed. If it can be determined that the first inter-
section lies at or beyond that distance then k1 nf i ni t y isreturned. In any case, if the returned step is greater
than the physics step, the physics step must be taken.

e SetGeometricallyLimitedStep()

Informs the navigator that the last computed step was taken in its entirety. This enables entering/exiting opti-
misation, and should be called prior to calling Locat ed obal Poi nt AndSet up() .
e CreateT ouchableHistory()

Creates a G4Touchabl eHi st ory object, for which the caler has deletion responsibility. The ‘touchable'
volume is the volume returned by the last Locate operation. The object includes a copy of the current Naviga-
tionHistory, enabling the efficient relocation of points in/close to the current volume in the hierarchy.

Asstated previoudly, the navigator makes use of utility classesto perform location and step computation functions.
The different navigation utilities manipulate the GANavi gat i onHi st ory object.

In Locat ed obal Poi nt AndSet up() the process of locating a point breaks down into three main stages -
optimisation, determination that the point is contained with a subtree (mother and daughters), and determination of
the actual containing daughter. The latter two can be thought of as scanning first 'up' the hierarchy until avolume
that is guaranteed to contain the point is found, and then scanning 'down’ until the actual volume that contains
the point is found.

In Conput eSt ep() threetypes of computation are treated depending on the current containing volume:

» The volume contains normal (placement) daughters (or none)
» The volume contains a single parameterised volume object, representing many volumes
» Thevolumeisareplicaand contains normal (placement) daughters

4.1.8.2. Using the navigator to locate points

More than one navigator object can be created inside an application; these navigators can act independently for
different purposes. The main navigator which is activated automatically at the startup of a simulation program is
the navigator used for the tracking and attached the world volume of the main tracking (or mass) geometry.

The navigator for tracking can be retrieved at any state of the application by messagging the
ATransport ati onManager :

G4Navi gat or* tracking _navi gator =
GATr anspor t ati onManager : : Get I nst ance() - >Get Navi gat or For Tr acki ng() ;

Thisalso alowsto retrieve at any time a pointer to the world volume assigned for tracking:

G4VPhysi cal Vol ume* tracki ng_world = tracki ng_navi gat or - >Get Wor | dVol une() ;

The navigator for tracking al so retains all theinformation of the current history of volumestransversed at a precise
moment of the tracking during arun. Therefore, if the navigator for tracking is used during tracking for locating a
generic point in the tree of volumes, the actual particle gets also -relocated- in the specified position and tracking
will be of course affected !
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In order to avoid the problem above and provide information about location of a point without affecting the track-
ing, it is suggested to either use an alternative G4Navi gat or object (which can then be assigned to the world-
volume), or access the information through the step.

If the user instantiates an alternative GANavi gat or , ownership is retained by the user's code, and the navigator
object should be deleted by that code.

Using the 'step’ to retrieve geometrical information

During the tracking run, geometrical information can be retrieved through the touchable handle associated to the
current step. For example, to identify the exact copy-number of a specific physical volume in the mass geometry,
one should do the following:

// Gven the pointer to the step object ...
/1l
AStep* aStep = ..;

/1 ... retrieve the 'pre-step' point
/1
GASt epPoi nt* preStepPoi nt = aStep->CGet PreSt epPoint ();

/1 ... retrieve a touchabl e handl e and access to the information

/1

G4Touchabl eHandl e t heTouchabl e = preSt epPoi nt - >Get Touchabl eHandl e() ;
G4int copyNo = theTouchabl e->Get CopyNunber () ;

G4i nt not her CopyNo = t heTouchabl e- >Get CopyNunber (1) ;

To determine the exact position in global coordinates in the mass geometry and convert to local coordinates (local
to the current volume):

GAThr eeVect or wor | dPosition = preStepPoi nt->Cet Position();
GAThr eeVector | ocal Position = theTouchabl e->Get Hi story()->
Get TopTr ansf or () . Tr ansf or nPoi nt (wor | dPosi ti on);

Using an alternative navigator to locate points

In order to know (when inthei dl e state of the application) in which physical volume a given point is located
in the detector geometry, it is necessary to create an aternative navigator object first and assign it to the world
volume:

G4Navi gat or* aNavi gator = new ANavi gator();
aNavi gat or - >Set Wor | dVol urme( wor | dVol unePoi nter) ;

Then, locate the point myPoi nt (defined in global coordinates), retrieve a touchable handle and do whatever
you need with it:

aNavi gat or - >Locat ed obal Poi nt AndSet up( myPoi nt) ;
GATouchabl eHi st or yHandl e aTouchabl e =
aNavi gat or - >Cr eat eTouchabl eHi st or yHandl e() ;

// Do whatever you need with it ...
/1 ... convert point in |ocal coordinates (local to the current vol unme)
/1
GAThreeVector | ocal Position = aTouchabl e->Cet Hi story()->
Get TopTr ansf or m() . Tr ansf or nPoi nt ( myPoi nt) ;

/1 ... convert back to gl obal coordinates system
GAThr eeVect or gl obal Posi tion = aTouchabl e->Get Hi story()->
Get TopTransforn(). | nverse(). Transf or nPoi nt (| ocal Posi tion);

If outside of the tracking run and given a generic local position (local to a given volume in the geometry tree),
it is -not- possible to determine a priori its global position and convert it to the global coordinates system. The
reason for thisis rather simple, nobody can guarantee that the given (local) point is located in the right -copy- of
the physical volume! In order to retrieve this information, some extra knowledge related to the absolute position
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of the physical volume is required first, i.e. one should first determine a global point belonging to that volume,
eventually making a dedicated scan of the geometry tree through a dedicated G4Navi gat or object and then
apply the method above after having created the touchable for it.

4.1.8.3. Navigation in parallel geometries

Sincerelease 8.2 of Geant4, it is possible to define geometry treeswhich arepar al | el to thetracking geometry
and having them assigned to navigator objects that transparently communicate in sync with the normal tracking
geometry.

Parallel geometries can be defined for several uses (fast shower parameterisation, geometrical biasing, particle
scoring, readout geometries, etc ...) and can overlap with the mass geometry defined for the tracking. The par -
al I el transportation will be activated only after the registration of the parallel geometry in the detector descrip-
tion setup; see Section Section 4.7 for how to define a parallel geometry and register it to the run-manager.

The ATr ansport ati onManager provides al the utilities to verify, retrieve and activate the navigators as-
sociated to the various parallel geometries defined.

4.1.8.4. Fast navigation in regular patterned geometries and phan-
toms

Sincerelease 9.1 of Geant4, a specialised navigation algorithm has been introduced to allow for optimal memory
use and extremely efficient navigation in geometries represented by aregular pattern of volumes and particularly
three-dimensional grids of boxes. A typical application of this kind is the case of DICOM phantoms for medical
physics studies.

TheclassARegul ar Navi gat i on isused and automatically activated when such geometries are defined. It is
required to the user to implement a parameterisation of the kind G4Phant onPar anet eri sat i on and place
the parameterised volume containing it in acontainer volume, so that all cellsin thethree-dimensional grid (voxels)
completely fill the container volume. This way the location of a point inside a voxel can be done in afast way,
transforming the position to the coordinate system of the container volume and doing a simple calculation of the
kind:

copyNo_x = (Il ocal Poi nt. x() +f Voxel Hal f X*f NoVoxel X) / (f Voxel Hal f X*2.))

where f Voxel Hal f X is the haf dimension of the voxel along X and f NoVoxel X is the number of vox-
els in the X dimension. Voxel 0 will be the one closest to the corner (f Voxel Hal f X*f NoVoxel X,
f Voxel Hal f Y*f NoVoxel Y, fVoxel Hal f Z*f NoVoxel Z) .

Having the voxels filling completely the container volume alows to avoid the lengthy computation of Com

put eSt ep() andConput eSaf et y methodsrequired inthetraditional navigation algorithm. Inthiscase, when
atrack isinside the parent volume, it has always to be inside one of the voxels and it will be only necessary to
calculate the distance to the walls of the current voxel.

Skipping borders of voxels with same material

Another speed optimisation can be provided by skipping the frontiers of two voxels which the same material
assigned, so that bigger steps can be done. This optimisation may be not very useful when the number of materials
isvery big (in which case the probability of having contiguous voxelswith same material isreduced), or when the
physical step is small compared to the voxel dimensions (very often the case of electrons). The optimisation can
be switched off in such cases, by invoking the following method with argument ski p = O:

Phantoms with only one material

If you want to describe a phantom of a unique material, you may spare some memory by not filling the set of
indices of materials of each voxel. If the method Set Mat eri al | ndi ces() isnot invoked, the index for all
voxelswill be 0, that isthe first (and unique) material in your list.
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GARegul ar Par anet eri sati on: : Set Ski pEqual Materi al s( G4bool skip );
Example

To use the gpecidised navigation, it is required to first create an object of type
APhant onPar anet eri sati on:

GAPhant onPar anet eri sati on* param = new G4APhant onPar anet eri sati on();

Then, fill it with the all the necessary data:

/1 Voxel dimensions in the three dimensions
Il

G4doubl e hal f X
G4doubl e hal fY
G4doubl e hal fZ B
par am >Set Voxel Di nensi ons( hal fX, halfY, halfzZ );

/1 Nunmber of voxels in the three dinmensions
/1l

G4i nt nVoxel X
4i nt nVoxel Y
4i nt nVoxel Z e
par am >Set NoVoxel ( nVoxel X, nVoxel Y, nVoxel Z );

/Il Vector of nmaterials of the voxels

/1

std::vector < GAMaterial* > theMaterials;
theMat eri al s. push_back( new GAMateri al (
theMat eri al s. push_back( new G4Materi al (
param >Set Materi al s( theMaterials );

/1 List of material indices

/| For each voxel it is a nunber that correspond to the index of its
/! material in the vector of nmaterials defined above;

/1

size_t* matel Ds = new si ze_t [ nVoxel X*nVoxel Y*nVoxel Z] ;

mat el Ds[ 0] = noO;

mat el Ds[ 1] = n1;

param >Set Mat eri al | ndi ces( matel Ds );

Then, define the volume that contains all the voxels:

G4Box* cont_solid = new G4Box( " Phant onCont ai ner", nVoxel X*hal f X. , nVoxel Y*hal f Y., nVoxel Z*hal f Z) ;
G4Logi cal Vol une* cont _|l ogic =
new (ALogi cal Vol ume( cont _solid,

mat ePat i ent, // material is not relevant here...
" Phant onCont ai ner",
0, 0, 0);
G4VPhysi cal Vol ume * cont _phys =
new APVP| acenent (rotm /1 rotation
pos, // translation
cont _| ogi c, /1 1ogical volune
" Phant onCont ai ner", /1 nanme
wor | d_| ogi c, /'l nother vol une
fal se, /1 No op. bool.
1); /1l Copy nunber

The physical volume should be assigned as the container volume of the parameteri sation:

par am >Bui | dCont ai ner Sol i d( cont _phys) ;

[/ Assure that the voxels are conpletely filling the container vol ume
/1
par am >CheckVoxel sFi | | Cont ai ner ( cont _sol i d->Cet XHal f Lengt h(),

cont _sol i d->Get yHal f Lengt h(),

cont _sol i d->Get zHal f Lengt h() );
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/] The paraneterised vol unme which uses this paraneterisation is placed
/1 in the container |ogical volune

/1

GAPVPar aneteri sed * patient_phys =

new APVPar aneteri sed("Patient", /] name
patient _| ogi c, /1 1ogical volune
cont _| ogi c, // nother vol une
kXAXi s, /] optimsation hint
nVoxel X* nVoxel Y*nVoxel Z, // nunber of voxels
paranm ; /] paraneterisation

/1 Indicate that this physical volume is having a regular structure
/1
pati ent _phys->Set Regul ar Structurel d(1);

An example showing the application of the optimised navigation algorithm for phantoms geometries is avail-
able in exanpl es/ ext ended/ nedi cal / DI COM It implements a real application for reading DI COMim-
ages and convert them to Geant4 geometries with defined materials and densities, allowing for different imple-
mentation solutions to be chosen (non-optimised, classical 3D optimisation, nested parameterisations and use of
GAPhant onPar anet er i sati on).

4.1.8.5. Run-time commands

When running in verbose mode (i.e. the default, G4 VERBOSE set while installing the Geant4 kernel libraries),
the navigator provides a few commands to control its behavior. It is possible to select different verbosity levels
(up to 5), with the command:

geonetry/ navi gat or/ ver bose [verbose_| evel ]

or to force the navigator to run in check mode:

geonet ry/ navi gat or/ check_node [true/fal se]

The latter will force more strict and less tolerant checks in step/safety computation to verify the correctness of
the solids' response in the geometry.

By combining check_mode with verbosity level-1, additional verbosity checks on the response from the solids
can be activated.

4.1.8.6. Setting Geometry Tolerance to be relative

Thetolerance val ue defining the accuracy of tracking on the surfacesisby default set to areasonably small value of
10E-9 mm. Such accuracy may be however redundant for use on simulation of detectors of big size or macroscopic
dimensions. Sincerelease 9.0, it is possible to specify the surface tolerance to berelative to the extent of theworld
volume defined for containing the geometry setup.

The class GACGeonet r yManager can be used to activate the computation of the surface tolerance to berelative
to the geometry setup which has been defined. It can be done this way:
GACeonet ryManager : : Get | nst ance() - >Set Wor | dvaxi munExt ent (Wor | dExt ent ) ;

where, Wor | dExt ent isthe actual maximum extent of the world volume used for placing the whole geometry
setup.

Such call to GAGeonet r yManager must bedone befor e defining any geometrical component of the setup (solid
shape or volume), and can be done only once'!

TheclassGACGeonet r yTol er ance isto be used for retrieving the actual values defined for tolerances, surface
(Cartesian), angular or radial respectively:

GAGeonetryTol erance: : Get | nst ance() - >Get Sur f aceTol er ance() ;
GACeonet ryTol erance: : Get | nst ance() - >Get Angul ar Tol er ance() ;
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GAGeonet ryTol erance: : Get | nst ance() - >Get Radi al Tol er ance() ;

4.1.9. A Simple Geometry Editor

GGE is the acronym for Geant4 Graphical Geometry Editor. GGE aims to assist physicists who have a little
knowledge on C++ and the Geant4 toolkit to construct his or her own detector geometry. In essence, GGE is made
up of a set of tables which can contain all relevant parameters to construct a ssmple detector geometry. Tables
for scratch or compound materials, tables for logical and physical volumes are provided. From the values in the
tables, C++ source codes are automatically generated.

GGE provides methods to:

1. construct adetector geometry including GAEl ement , G4Mat eri al , AASol i ds, GALogi cal Vol une,
GHAPVPI acenent , etc.

view the detector geometry using existing visualization system, DAWN

3. keep the detector object in a persistent way, either in GDML format (currently only logical volumes are
supported) or Java serialized format.

produce corresponding C++ codes after the norm of Geant4 toolkit

make a Geant4 executable, in collaboration with another component of MOMO, i.e., GPE, or Geant4 Physics
Editor.

N

o~

GGE can be found in the standard Geant4 source package under the directory environnent s/ MO
MY MOMO. j ar . JRE (Java Run-time Environment) is prerequisite to run MOMO.jar, Java archive file of MO-
MO. MOMO contains GGE, GPE, GAG and other helper tools. Further information is available from the Web
pages below.

MOMO = GGE + GPE + GAG: http://lwww-geant4.kek.jp/~yoshidah

4.1.9.1. Materials: elements and mixtures

GGE provides the database of elementsin the form of the periodic table, from which users can select element(s) to
construct new materials. They can beloaded, used, edited and saved as Javapersistent objectsorinaGDML file. In
envi r oment s/ MOMO, a pre-constructed database of materials taken from the PDG book, PDG. xmi is present.

Users can also create new materials either from scratch or by combining other materials.

» By selecting an element in the periodic table, default values as shown below are copied to arow in the table.

Use Name |A 4 Density |[Unit State Temper- | Unit Pressure | Unit
ature

Use marks the used materials. Only the elements and materials used in the logical volumes are kept in the
detector object and are used to generate C++ constructors.

* By selecting multiple elements in the periodic table, a material from a combination of elementsis assigned to
arow of the compound material table. The minimum actions user have to do is to give a name to the material
and define its density.

Use Name Elements |Density | Unit State Tempera- |Unit Pressure |Unit
ture

By clicking the column Elements, a new window is open to select one of two methods:
« Add an element, giving its fraction by weight
« Add an element, giving its number of atoms.

4.1.9.2. Solids

The most popular CSG solids (G4Box, ATubs, (ACons, GATr d) and specific solids (Pcons, Pgons) are sup-
ported. All relevant parameters of such a solid can be specified in the parameter table, which pops up upon se-
lection.
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Color, or the visualization attribute of alogical volume can be created, using color chooser panel. Users can view
each solid using DAWN.

4.1.9.3. Logical Volume

GGE can specify the following items:

\ Name \ Solid Material VisAttribute

The lists of solid types, names of the materials defined in the material tables, and names of user-defined visual-
ization attributes are shown automatically in respective table cell for user's choices.

The construction and assignment of appropriate entities for GAFi el dvanager and
AVSensi tiveDet ect or areleft tothe user.

4.1.9.4. Physical Volume

Geant4 enables users to create a physical volume in different ways; the mother volume can be either alogical or
a physical one, spatial rotation can be either with respect to the volume or to the frame to which the volume is
attached. GGE is prepared for such four combinatorial casesto construct a physical volume.

Five simple cases of creating physical volumes are supported by GGE. Primo, asingle copy of aphysical volume
can be created by atranslation and rotation. Secondo, repeated copies can be created by repeated linear trangl ations.
A logical volume is trandated in a Cartesian direction, starting from the initial position, with a given step size.
Mother volume can be either another logical volume or a physical volume.

Name Logi- Type and|Many X0, YO, ZO|Direction |StepSize |Unit CopyNum-
caVolume |name  of ber
Mother-
Volume

Third, repeated copies are created by rotation around an axis, placing an object repeatedly on a ~“cylindrical"
pattern. Fourth, replicas are created by slicing a volume along a Cartesian direction. Fifth, replicas are created by
cutting avolume cylindrically.

4.1.9.5. Generation of C++ code:

User has to type in a class name to his geometry, for example, MyDet ect or Const r uct i on. Then, with a
mouse button click, source codesin the form of aninclude file and a sourcefile are created and shown in the editor
panel. In this example, they are MyDet ect or Const ructi on. cc and MyDet ect or Const ructi on. hh
files. They reflect al current user modifications in the tables in real-time.

4.1.9.6. Visualization

The whole geometry can be \visualized after the compilation of the source code
MyDet ect or Const ruct i on. cc with appropriate parts of Geant4. (In particular only the geometry and vi-
sualization, together with the small other parts they depend on, are needed.) MOMO provides Physics Editor to
create standard el ectromagnetic physics and a minimum main program. See the on-line document in MOMO.

4.1.10. Converting Geometries from Geant3.21
4.1.10.1. Approach

G3toG4 isthe Geant4 facility to convert GEANT 3.21 geometries into Geant4. Thisis done in two stages:

1. The user supplies a GEANT 3.21 RZ-file (.rz) containing the initialization data structures. An executable
r zt og4 reads this file and produces an ASCII call list file containing instructions on how to build the
geometry. The source code of r zt 0g4 is FORTRAN.
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2. A cdl list interpreter (ABui | dGeom cc) reads these instructions and builds the geometry in the user's
client code for Geant4.

4.1.10.2. Importing converted geometries into Geant4

Two examples of how to use the call list interpreter are supplied in the directory exanpl es/ ext end-
ed/ g3t og4:

1. cl t og4 isasimple example which simply invokesthe cal list interpreter method G4Bui | dGeomfrom the
G3t oADet ect or Const ruct i on class, builds the geometry and exits.

2. cl Geonet ry, ismore complete and is patterned as for the basic Geant4 examples. It also invokes the call
list interpreter, but in addition, allows the geometry to be visualized and particles to be tracked.

To compile and build the G3toG4 libraries, you need to have set in your environment the variable
ALI B_BU LD _G3TOA at thetime of installation. The G3toG4 libraries are not built by default. Then, simply

type

grmake
from the top-level sour ce/ g3t 0g4 directory.

To build the converter executabler zt og4, simply type

gnmeke bin

To make everything, simply type:

grmeke gl obal

Toremove all G3t o4 libraries, executables and .d files, simply type

grmeke cl ean

4.1.10.3. Current Status

The package has been tested with the geometries from experiments like: BaBar, CMS, Atlas, Alice, Zeus, L3,
and Opal.

Here is a comprehensive list of features supported and not supported or implemented in the current version of
the package:

» Supported shapes: all GEANT 3.21 shapes except for GTRA, CTUB.

» PGON, PCON are built using the specific solids G4Pol ycone and (APol yhedr a.

» GEANT 3.21 MANY feature is only partially supported. MANY positions are resolved in the G3t o AMANY( )
function, which has to be processed before G3t 0G4Bui | dTree() (it is not called by default). In order
to resolve MANY, the user code has to provide additional info using G4gsbool (G4String vol Nane,
&AString nmanyVol Name) function for al the overlapping volumes. Daughters of overlapping volumes
are then resolved automatically and should not be specified viaGsbool .

Limitation: avolumewith aMANY position can have only this one position; if more than one position is needed
anew volume hasto be defined (gsvol u() ) for each position.
e GSDV* routinesfor dividing volumes are implemented, using G4PVRepl i cas, for shapes:
* BOX, TUBE, TUBS, PARA - al axes;
e CONE, CONS - axes 2, 3;
e TRD1, TRD2, TRAP - axis 3;
e PGON, PCON- axis 2;
* PARA -axis1; axis 2,3 for aspecia case
* GSPOSP isimplemented viaindividua logical volumes for each instantiation.
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» GSROTMis implemented. Reflections of hierachies based on plain CSG solids are implemented through the
G3Di vi si on class.

 Hitsare not implemented.

e Conversion of GEANT 3.21 magnetic field is currently not supported. However, the usage of magnetic field
has to be turned on.

4.1.11. Detecting Overlapping Volumes

4.1.11.1. The problem of overlapping volumes

Volumes are often positioned within other volumes with the intent that one is fully contained within the other.
If, however, a volume extends beyond the boundaries of its mother volume, it is defined as overlapping. It may
also be intended that volumes are positioned within the same mother volume such that they do not intersect one
another. When such volumes do intersect, they are also defined as overlapping.

The problem of detecting overlaps between volumesis bounded by the complexity of the solid model description.
Hence it requires the same mathematical sophistication which is needed to describe the most complex solid topol-
ogy, in general. However, atunable accuracy can be obtained by approximating the solids viafirst and/or second
order surfaces and checking their intersections.

In general, the most powerful clash detection algorithms are provided by CAD systems, treating the intersection
between the solids in their topological form.

Detecting overlaps at construction

The Geant4 geometry modeler providesthe ability to detect overlaps of placed volumes (normal placements or pa-
rameterised) at thetime of construction. Thischeck isoptional and can be activated when instantiating a placement
(see GAPVPI acenent constructor in Section 4.1.4.1) or a parameterised volume (see GAPVPar anet er i sed
constructor in Section 4.1.4.2).

The positioning of that specific volume will be checked against all volumes in the same hierarchy level and its
mother volume. Depending on the complexity of the geometry being checked, the check may require considerable
CPU time; it istherefore suggested to use it only for debugging the geometry setup and to apply it only to the part
of the geometry setup which requires debugging.

The classes GAPVPI acenent and GAPVPar anet er i sed aso provide a method:

G4bool CheckOverl aps(&int res=1000, GAdoubl e tol =0., (Abool verbose=true)

which will force the check for the specified volume, and can be therefore used to verify for overlaps also once
the geometry is fully built. The check verifiesif each placed or parameterised instance is overlapping with other
instances or with its mother volume. A default resolution for the number of points to be generated and verified
is provided. The method returnst r ue if an overlap occurs. It is also possible to specify a "tolerance" by which
overlaps not exceeding such quantity will not be reported; by default, all overlaps are reported.

Detecting over laps: built-in kernel commands

Built-in run-time commands to activate verification tests for the user-defined geometry are a so provided:

geonetry/test/run

-->to start verification of geonetry for overl appi ng regions
recursively through the vol unes tree.

geonetry/test/recursion_start [int]

-->to set the starting depth level in the volunes tree from where
checking overlaps. Default is level '0" (i.e. the world volune).
The new settings will then be applied to any recursive test run.

geonetry/test/recursion_depth [int]

-->to set the total depth in the volunme tree for checking overl aps.
Default is '-1' (i.e. checking the whole tree).

Recursion will stop after having reached the specified depth (the

default being the full depth of the geonetry tree).

The new settings will then be applied to any recursive test run.
geonetry/test/tol erance [double] [unit]
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--> to define tolerance by which overl aps shoul d not be reported.
Default is '0'.

geonetry/test/verbosity [bool]

-->to set verbosity node. Default is "true'.

geonetry/test/resolution [int]

-->to establish the nunber of points on surface to be generated
and checked for each volunme. Default is '10000'.

geonetry/test/ maxi numerrors [int]

-->to fix the threshold for the nunber of errors to be reported
for a single volunme. By default, for each volunme, reports stop
after the first error reported.

To detect overlapping volumes, the built-in Ul commands use the random generation of pointson surfacetechnique
described above. It alows to detect with high level of precision any kind of overlaps, as depicted below. For
example, consider Figure 4.4:

Bothel Volume

]

[/ |

Figure4.4. Different cases of placed volumes overlapping each other.

Here we have aline intersecting some physical volume (large, black rectangle). Belonging to the volume are four
daughters: A, B, C, and D. Indicated by the dots are the intersections of the line with the mother volume and the
four daughters.

This example has two geometry errors. First, volume A sticks outside its mother volume (this practice, sometimes
used in GEANT3.21, is not alowed in Geant4). This can be noticed because the intersection point (leftmost
magenta dot) lies outside the mother volume, as defined by the space between the two black dots.

The second error is that daughter volumes A and B overlap. This is noticeable because one of the intersections
with A (rightmost magenta dot) isinside the volume B, as defined as the space between the red dots. Alternatively,
one of the intersections with B (leftmost red dot) is inside the volume A, as defined as the space between the
magenta dots.

Another difficult issue is roundoff error. For example, daughters C and D lie precisaly next to each other. It is
possible, due to roundoff, that one of the intersections points will lie just dightly inside the space of the other. In
addition, a volume that lies tightly up against the outside of its mother may have an intersection point that just
dlightly lies outside the mother.

Finally, notice that no mention is made of the possible daughter volumes of A, B, C, and D. To keep the code
simple, only theimmediate daughters of avolume are checked at one pass. To test these "granddaughter” volumes,
the daughters A, B, C, and D each have to be tested themselves in turn. To make this automatic, a recursive
algorithm is applied; it first tests the target volume, then it loops over all daughter volumes and calls itself.

NOTE: for acomplex geometry, checking the entire volume hierarchy can be extremely time consuming.
Using thevisualization driver: DAVID

The Geant4 visualization offers a powerful debugging tool for detecting potential intersections of physical vol-
umes. The Geant4 DAVID visualization tool can infact automatically detect the overlaps between the volumes
defined in Geant4 and converted to a graphical representation for visualization purposes. The accuracy of the
graphical representation can be tuned onto the exact geometrical description. In the debugging, physical-volume
surfaces are automatically decomposed into 3D polygons, and intersections of the generated polygons are investi-
gated. If apolygon intersects with another one, physical volumes which these polygons belong to are visualized in
color (red is the default). The Figure 4.5 below is a sample visualization of a detector geometry with intersecting
physical volumes highlighted:
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Figure4.5. A geometry with overlapping volumes highlighted by DAVID.

At present physical volumes made of the following solids can be debugged: (4Box, G4Cons, G4Par a,
ASphere, ATrd, GATr ap, ATubs. (Existence of other solidsis harmless.)

Visual debugging of physical-volume surfaces is performed with the DAWNFILE driver defined in the visual-
ization category and with the two application packages, i.e. Fukui Renderer "DAWN" and a visual intersection
debugger "DAVID". DAWN and DAVID can be downloaded from the Web.

How to compile Geant4 with the DAWNFILE driver incorporated is described in Section 8.3.

If the DAWNFILE driver, DAWN and DAVID are all working well inyour host machine, the visual intersection
debugging of physical-volume surfaces can be performed as follows:

Run your Geant4 executable, invoke the DAWNFILE driver, and execute visualization commands to visualize
your detector geometry:

I dl e> /vis/open DAVWNFI LE
..... (setting camera etc)...
I dl e> /vis/drawol une

I dl e> /vis/viewer/update

Then afile "g4.prim”, which describes the detector geometry, is generated in the current directory and DAVID
isinvoked to read it. (The description of the format of the file g4.prim can be found from the DAWN web site
documentation.)

If DAVID detects intersection of physical-volume surfaces, it automatically invokes DAWN to visualize the de-
tector geometry with the intersected physical volumes highlighted (See the above sample visualization).

If no intersection is detected, visualization is skipped and the following message is displayed on the console:

11l Nunber of intersected volumes : 0 !!!
11l Congratulations ! \(~o")/ (N

If you always want to skip visualization, set an environmental variable as follows beforehand:

% setenv DAVID NO VIEW 1
To control the precision associated to computation of intersections (default precision is set to 9), it is possible to
use the environmental variable for the DAWNFILE graphics driver, as follows:

% setenv GADAWNFI LE PRECI SION 10

If necessary, re-visualize the detector geometry with intersected parts highlighted. The data are saved in afile
"g4david.prim" in the current directory. Thisfile can be re-visualized with DAWN as follows:
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% dawn g4davi d. pri m

It is aso helpful to convert the generated file g4david.prim into a VRML-formatted file and perform interactive
visualization of it with your WWW browser. The file conversion tool pri m2wr ml can be downloaded from the
DAWN web site download pages.

For more details, see the document of DAVID mentioned above.

4.1.12. Dynamic Geometry Setups

Geant4 can handle geometries which vary in time (e.g. a geometry varying between two runsin the same job).
It is considered a change to the geometry setup, whenever for the same physical volume:

* the shape or dimension of its related solid is modified;
« the positioning (translation or rotation) of the volume is changed;
« thevolume (or a set of volumes, tree) is removed/replaced or added.

Whenever such a change happens, the geometry setup needs to be first "opened” for the change to be applied and
afterwards "closed" for the optimisation to be reorganised.

Inthe general case, in order to notify the Geant4 system of the change in the geometry setup, the ARunManager
has to be messaged once the new geometry setup has been finalised:

GARunManager : : Geonet r yHasBeenMbdi fi ed() ;

The above notification needs to be performed also if a material associated to a positioned volume is changed, in
order to alow for the internal material S/cuts table to be updated. However, for relatively complex geometries the
re-optimisation step may be extremely inefficient, since it has the effect that the whole geometry setup will be re-
optimised and re-initialised. In cases where only alimited portion of the geometry has changed, it may be suitable
to apply the re-optimisation only to the affected portion of the geometry (subtree).

Since release 7.1 of the Geant4 toolKkit, it is possible to apply re-optimisation local to the subtree of the geometry
which has changed. The user will have to explicitly "open/close" the geometry providing a pointer to the top
physical volume concerned:

Example 4.9. Opening and closing a portion of the geometry without notifying the
ARunManager .

#i ncl ude " ACGeonet r yManager . hh"

/1 Open geonetry for the physical volune to be nodified ...
/1
GACeonet ryManager : : OpenGeonet ry( physCal or) ;

/1 Modify dinension of the solid ...
/1
physCal or - >Get Logi cal Vol ume() - >Get Sol i d() - >Set XHal f Lengt h(12. 5*cn) ;

/] Close geonetry for the portion nodified ...
/1
GACeonet ryManager : : Cl oseGeonet ry( physCal or) ;

If the existing geometry setup is modified locally in more than one place, it may be convenient to apply such a
technique only once, by specifying a physical volume on top of the hierarchy (subtree) containing al changed
portions of the setup.

An alternative solution for dealing with dynamic geometriesisto specify NOT to apply optimisation for the subtree
affected by the change and apply the general solution of invoking the GARunManager . Inthiscase, aperformance
penalty at run-time may be observed (depending on the complexity of the not-optimised subtree), considering that,
without optimisation, intersectionsto all volumesin the subtree will be explicitely computed each time.
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NOTE: in multi-threaded runs, dynamic geometries are only allowed for runs consisting only of one event.

4.1.13. Importing XML Models Using GDML

Geometry Description Markup Language (GDML) is a markup language based on XML and suited for the de-
scription of detector geometry models. It allows for easy exchange of geometry data in a human-readable XML-
based description and structured formatting.

The GDML parser is a component of Geant4 which can be built and installed as an optional choice. It allows for
importing and exporting GDML files, following the schema specified in the GDML documentation. The installa-
tion of the plugin is optional and requires the installation of the XercesC DOM parser.

Examples of how to import and export a detector description model based on GDML, and aso how to extend the
GDML schema, are provided and can be found in exanpl es/ ext ended/ per si st ency/ gdm .

4.1.14. Importing ASCII Text Models

Sincerelease9.2 of Geant4, itisalso possibleto import geometry setups based on aplaintext description, according
to awell defined syntax for identifying the different geometrical entities (solids, volumes, materials and volume
attributes) with associated parameters. An example showing how to define a geometry in plain text format and
import it in a Geant4 applicationisshown inexanpl es/ ext ended/ per si st ency/ P03. The exampleaso
covers the case of associating a sensitive detector to one of the volumes defined in the text geometry, the case of
mixing C++ and text geometry definitions and the case of defining new tagsin the text format so that regions and
cuts by region can be defined in the text file. It aso provides an example of how to write a geometry text file from
the in-memory Geant4 geometry. For the details on the format see the dedicated manual .

4.1.15. Saving geometry tree objects in binary format

The Geant4 geometry tree can be stored in the Root binary file format using the Root-1/0 technique provided by
in Root. Such abinary file can then be used to quickly load the geometry into the memory or to move geometries
between different Geant4 applications.

See Chapter 4.6 for details and references.

4.2. Material

4.2.1. General considerations

In nature, materials (chemical compounds, mixtures) are made of elements, and elements are made of isotopes.
Geant4 has three main classes designed to reflect this organization. Each of these classes has atable, which isa
static data member, used to keep track of the instances of the respective classes created.

4l sot ope
This class describes the properties of atoms: atomic number, number of nucleons, mass per mole, etc.
GAEl enment

This class describes the properties of elements: effective atomic number, effective number of nucleons, ef-
fective mass per mole, number of isotopes, shell energy, and quantities like cross section per atom, etc.

AMat eri al

This class describes the macroscopic properties of matter: density, state, temperature, pressure, and macro-
scopic quantities like radiation length, mean free path, de/dx, etc.

Only the GAMat eri al classisvisible to the rest of the toolkit and used by the tracking, the geometry and the
physics. It contains all the information relevant to its constituent elements and isotopes, while at the same time
hiding their implementation details.
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4.2.2. Introduction to the Classes
4.2.2.1. G4lsotope

A G4l sot ope object has aname, atomic number, number of nucleons, mass per mole, and an index in the table.
The constructor automatically stores"this' isotope in the isotopestable, which will assign it an index number. The
(Al sot ope objects are owned by the isotopes table, and must not be deleted by user code.

4.2.2.2. G4Element

A GAEl enrent object hasaname, symbol, effective atomic number, effective number of nucleons, effective mass
of amole, an index in the elements table, the number of isotopes, a vector of pointers to such isotopes, and a
vector of relative abundances referring to such isotopes (where relative abundance means the number of atoms
per volume). In addition, the class has methods to add, one by one, the isotopes which are to form the element.

The constructor automatically stores "this" element in the elements table, which will assign it an index number.
The GAEl enent objects are owned by the elements table, and must not be deleted by user code.

A GAEl enent object can be constructed by directly providing the effective atomic number, effective number
of nucleons, and effective mass of a mole, if the user explicitly wants to do so. Alternatively, a G4El enent

object can be constructed by declaring the number of isotopes of which it will be composed. The constructor will
"new" avector of pointersto G4l sot opes and avector of doublesto store their relative abundances. Finally, the
method to add an isotope must be invoked for each of the desired (pre-existing) isotope objects, providing their
addresses and relative abundances. At the last isotope entry, the system will automatically compute the effective
atomic number, effective number of nucleons and effective mass of a mole, and will store "this* element in the
elementstable.

A few quantities, with physical meaning or not, which are constant in a given element, are computed and stored
here as "derived data members'.

Using theinternal Geant4 database, aG4El enent can be accessed by atomic number or by atomic symbol ("Al",
"Fe',"Pb"...). Inthat case AEl enent will befound fromthelist of existing elementsor will be constructed using
data from the Geant4 database, which is derived from the NIST database of elements and isotope compositions.
Thus, the natural isotope composition can be built by default. The same element can be created as using the
NIST database with the natural composition of isotopes and from scratch in user code with user defined isotope
composition.

4.2.2.3. G4Material

A GAMat eri al object has a name, density, physical state, temperature and pressure (by default the standard
conditions), the number of elements and a vector of pointers to such elements, avector of the fraction of massfor
each element, a vector of the atoms (or molecules) numbers of each element, and an index in the materials table.
In addition, the class has methods to add, one by one, the elements which will comprise the material.

The constructor automatically stores "this* materia in the materials table, which will assign it an index number.
The GAMat eri al objects are owned by the materials table, and must not be deleted by user code.

A AMat eri al object can be constructed by directly providing the resulting effective numbers, if the user ex-
plicitly wantsto do so (an underlying element will be created with these numbers). Alternatively, aGAMat er i al
object can be constructed by declaring the number of elements of which it will be composed. The constructor
will "new" a vector of pointersto G4El enent and a vector of doubles to store their fraction of mass. Finally,
the method to add an element must be invoked for each of the desired (pre-existing) element objects, providing
their addresses and mass fractions. At the last element entry, the system will automatically compute the vector of
the number of atoms of each element per volume, the total number of electrons per volume, and will store "this"
material in the materials table. In the same way, a material can be constructed as a mixture of other materials
and elements.

It should be noted that if the user provides the number of atoms (or molecules) for each element comprising
the chemical compound, the system automatically computes the mass fraction. A few quantities, with physical
meaning or not, which are constant in a given material, are computed and stored here as "derived data members".
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Some materialsareincluded in theinternal Geant4 database, which were derived from the NI ST database of mate-
rial properties. Additionally anumber of materialsfriquently used in HEPisincluded in the database. Materialsare
interrogated or constructed by their names (Section 6). There are Ul commands for the material category, which
provide an interactive access to the database. If material is created using the NIST database by it will consist by
default of elements with the natural composition of isotopes.

4.2.2.4. Final Considerations

The classeswill automatically decideif thetotal of the massfractionsis correct, and perform the necessary checks.
The main reason why a fixed index is kept as a data member is that many cross section and energy tables will
be built in the physics processes "by rows of materials (or elements, or even isotopes)”. The tracking gives the
physics process the address of a material object (the material of the current volume). If the material has an index
according to which the cross section table has been built, then direct access is available when a number in such a
table must be accessed. We get directly to the correct row, and the energy of the particle will tell us the column.
Without such an index, every accessto the cross section or energy tableswould imply a search to get to the correct
material's row. More details will be given in the section on processes.

| sotopes, elements and materials must be instantiated dynamically in the user application; they are automatically
registered in internal stores and the system takes care to free the memory alocated at the end of the job.

4.2.3. Recipes for Building Elements and Materials

Example 4.10 illustrates the different ways to define materials.

Example 4.10. A program which illustratesthe different waysto define materials.

#i ncl ude "™l sot ope. hh"

#i ncl ude "G4El enent. hh"

#i ncl ude "GAMateri al . hh"
#i ncl ude "&AUni t sTabl e. hh"

int main() {

GAString nane, synbol ; /1 a=mass of a nole;
GAdoubl e a, z, density; /1l z=mean nunber of protons;
&int iz, n; /1 iz=nb of protons in an isotope;

/1 n=nb of nucleons in an isotope;
G4i nt nconponents, nat ons;
G4doubl e abundance, fractionnass;
GAdoubl e tenperature, pressure;

G4AUni t Def i ni tion:: Buil dunitsTabl e();

[/ define Elenments

a = 1.01*g/ nol e;

G4El enent* el H = new AEl enent (nanme="Hydr ogen", synbol ="H' , z= 1., a);

a = 12.01*g/ nol e;
GAEl enent* el C = new G4El enent (nanme="Car bon" ,synbol="C"' , z= 6., a);

a = 14.01*g/ nol e;
G4El enent* el N = new AEl enent (nanme="Ni trogen", synbol ="N' , z= 7., a);

a = 16.00*g/ nol e;
GAEl enent* el O = new G4El enent (name="Oxygen" ,synbol="0" , z= 8., a);

a = 28.09*g/ nol e;
GAEl enent* el Si = new AEl enent (nanme="Si | i con", synbol ="Si", z=14., a);

a = 55.85*g/ nol e;
GAEl enent* el Fe = new G4El enent (nanme="1Iron" , synmbol ="Fe", z=26., a);

a = 183. 84*g/ nol e;
GAEl enent* el W= new AEl enent (nane="Tungsten" , synbol ="W, z=74., a);

a = 207.20*g/ nol e;
GAEl enent* el Pb = new G4El enent (nanme="Lead" , synmbol ="Pb", z=82., a);

/] define an Elenent fromisotopes, by relative abundance
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G4l sot ope* U5 = new Al sot ope(nane="U235", iz=92, n=235, a=235.01*g/nole);
G4l sot ope* U8 = new G4l sot ope(nane="U238", iz=92, n=238, a=238.03*g/ nol e);

GAEl enent* el U = new G4El enent (nanme="enri ched Urani unf, synbol="U"', nconponents=2);
el U- >Addl sot ope( U5, abundance= 90. *per Cent) ;
el U- >Addl sot ope( U8, abundance= 10. *per Cent) ;

cout << *( G4l sotope:: GetlsotopeTable()) << endl;
cout << *(CAEl enent:: CGet El enent Tabl e()) << endl;

/] define sinple materials

density = 2.700*g/cnB;

a = 26.98*g/ nol e;

AMaterial* Al = new GAMateri al (name="Al um nun', z=13., a, density);

density = 1.390*g/cnB;
a = 39.95*¢g/ nol e;
vAMaterial* | Ar = new AMateri al (nane="1i qui dArgon", z=18., a, density);

density = 8.960*g/cnB;
a = 63.55*g/ nol e;
GAMaterial* Cu = new GAMat eri al (name=" Copper " , z=29., a, density);

/] define a naterial fromelenents. case 1: chem cal nol ecul e
density = 1.000*g/cnB;

GAMaterial * H2O = new GAMateri al (name="Water", density, nconponents=2);
H20O >AddEl enent (el H, nat ons=2) ;

H20O >AddEl enent (el O, nat ons=1) ;

density = 1.032*g/cnB;

GAMaterial* Sci = new GAMateri al (nanme="Scintillator", density, nconponents=2);
Sci - >AddEl enent (el C, nat onms=9) ;

Sci - >AddEl enent (el H, nat ons=10) ;

density = 2.200*g/cnB;

GAMaterial* Si 2 = new GAMateri al (name="quartz", density, nconponents=2);
Si O2- >AddEl enent (el Si, natons=1);

Si O2- >AddEl ement (el O , nat ons=2);

density = 8.280*g/cnB;

GAMateri al * PoWD4= new GAMat eri al (name="PbWDX4", density, nconponents=3);
PbWO4- >AddEl enent (el O , nat ons=4) ;

PbWO4- >AddEl enent (el W, nat ons=1) ;

PbWO4- >AddEl enent (el Pb, nat ons=1);

/] define a naterial fromelenents. case 2: mxture by fractional nass
density = 1.290*ng/ cnB;
GAMaterial* Air = new GAMaterial (name="Air " , density, nconmponents=2);

Ai r - >AddEl enent (el N, fracti onmass=0.7);
Ai r- >AddEl enent (el O fracti onmass=0. 3);

/1 define a material fromelenments and/or others materials (m xture of m xtures)
density = 0.200*g/cnB;

GAMaterial * Aerog = new GAMat eri al (name="Aerogel ", density, nconponents=3);

Aer og- >AddMat eri al (Si @, fracti onmass=62. 5*per Cent);

Aer og- >AddMat eri al (H2O , fracti onmass=37. 4*per Cent) ;

Aer og- >AddEl enent (el C, fractionmass= 0. 1*perCent);

/1 exanpl es of gas in non STP conditions

density = 27.*nyl/ cnB;
pressure = 50. *at nospher e;
tenperature = 325. *kel vi n;

GAMaterial* CO2 = new GAMat eri al (nane="Car boni ¢ gas", density, nconponents=2,
kSt at eGas, t enper at ur e, pressure) ;

C2- >AddEl enent (el C, nat ons=1);

CO2- >AddEl enent (el O, nat ons=2) ;

density = 0. 3*ny/ cnB;
pressure = 2. *at nosphere;
tenperature = 500. *kel vi n;

GAMaterial * steam = new GAMateri al (name="Water steam", density, nconponents=1,
kSt at eGas, t enper at ur e, pressure) ;
st eam >AddMat eri al (H2O, fracti onmass=1.);

/1 What about vacuum ? Vacuumis an ordinary gas with very |ow density
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density = uni ver se_nean_densi ty; [/ from Physi cal Constants. h
pressure = 1. e-19*pascal ;
tenperature = 0. 1*kel vin;
new AMateri al (name="Gal actic", z=1., a=1.01*g/nple, density,
kSt at eGas, t enper at ur e, pressure) ;
density = 1. e-5*g/cnB;
pressure = 2.e-2%bar;
tenperature = STP_Tenper at ur e; [/ from Physi cal Constants. h

GAMateri al * beam = new GAMat eri al (name="Beam ", density, nconponents=1,
kSt at eGas, t enper at ur e, pressure) ;
beam >AddMat eri al (Air, fracti onnass=1.);

/] print the table of materials
GAcout << *(GAMmterial::GetMaterial Table()) << endl;

return EXI T_SUCCESS;
}

As can be seen in the later examples, a material has a state: solid (the default), liquid, or gas. The constructor
checks the density and automatically sets the state to gas below a given threshold (10 mg/cm3).

In the case of a gas, one may specify the temperature and pressure. The defaults are STP conditions defined in
Physi cal Const ant s. hh.

An element must have the number of nucleons >= number of protons >= 1.
A material must have non-zero values of density, temperature and pressure.

Materials can also be defined using the internal Geant4 database. Example 4.11 illustrates how to do this for the
same materials used in Example 4.10. There are d'so Ul commands which allow the database to be accessed. The
list of currently avalable material names (Section 6) is extended permanetly.

Example 4.11. A program which shows how to define materials from the internal
database.

#i ncl ude "gl obal s. hh"
#i ncl ude "AMateri al . hh"
#i ncl ude " &ANi st Manager . hh"

int main() {
GANi st Manager* man = (AN st Manager: : | nst ance();
man- >Set Ver bose( 1) ;

/] define el ements
GAEl enent* C = man->Fi ndOr Bui | dEl emrent ("C") ;
G4El enent* Pb = man->Fi ndOr Bui | dvat eri al ("Pb");

/] define pure NIST materials
GAMaterial* Al = nan->Fi ndOr Bui | dvateri al ("4
GAMateri al * Cu = nan->Fi ndOr Bui | dMat eri al (

ALY
"G1_Qu");
/1l define NIST naterials

GAMaterial * H20 man- >Fi ndOr Bui | dMvat eri al ("G4_WATER') ;

GAMaterial * Sci man- >Fi ndOr Bui | dvat eri al (" G4_PLASTI C_SC_VI NYLTOLUENE") ;
GAMaterial * Si 2 man- >Fi ndOr Bui | dvat eri al ("G4_SI LI CON_DI OXI DE") ;

GAMaterial * Air man- >Fi ndOr Bui | dMaterial ("G4_AIR");

// HEP materials
GAMat eri al * PbwWoA
GAMaterial * | Ar
G4Materi al * vac

man- >Fi ndOr Bui | dvat eri al (" G4_PbwWA") ;
man- >Fi ndOr Bui | dMaterial ("G4_I Ar");
man- >Fi ndOr Bui | dvateri al ("G4_Gal actic");

/1 define gas material at non STP conditions (T = 120K, P=0.5atm
GAMat eri al * col dAr = man- >Const ruct NewGasdMat eri al (" Col dAr", "G4_Ar", 120. *kel vi n, 0. 5*at nosphere) ;

/] print the table of materials
GAcout << *(GAMaterial:: GetMterial Table()) << endl;

return EXl T_SUCCESS;
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4.2.4. The Tables

4.2.4.1. Print a constituent

The following shows how to print a constituent:

Gdcout << el U << endl;
Gdcout << Air << endl;

4.2.4.2. Print the table of materials

The following shows how to print the table of materials:

Gdcout << *(GAMaterial:: GetMaterial Table()) << endl;

4.3. Electromagnetic Field

4.3.1. An Overview of Propagation in a Field

Geant4 is capable of describing and propagating in avariety of fields. Magnetic fields, electric fields, electromag-
netic fields, and gravity fields, uniform or non-uniform, can specified for a Geant4 setup. The propagation of tracks
inside them can be performed to a user-defined accuracy.

In order to propagate a track inside a field, the equation of motion of the particle in the field is integrated. In
general, thisis done using a Runge-Kutta method for the integration of ordinary differential equations. However,
for specific cases where an analytical solution is known, it is possible to utilize this instead. Several Runge-
Kutta methods are available, suitable for different conditions. In specific cases (such as a uniform field where
the analytical solution is known) different solvers can also be used. In addition, when an approximate analytical
solution is known, it is possible to utilize it in an iterative manner in order to converge to the solution to the
precision required. This latter method is currently implemented and can be used particularly well for magnetic
fields that are almost uniform.

Onceamethod is chosen that cal culatesthe track's propagation in aspecific field, the curved path isbroken up into
linear chord segments. These chord segments are determined so that they closely approximate the curved path.
The chords are then used to interrogate the Navigator as to whether the track has crossed a volume boundary.
Several parameters are available to adjust the accuracy of the integration and the subsequent interrogation of the
model geometry.

How closely the set of chords approximates acurved trajectory isgoverned by a parameter called the miss distance
(also called the chord distance ). Thisisan upper bound for the value of the sagitta - the distance between the 'real’
curved trgjectory and the approximate linear trgjectory of the chord. By setting this parameter, the user can control
the precision of the volume interrogation. Every attempt has been made to ensure that al volume interrogations
will be made to an accuracy within this miss distance.

miss distance

"Tracking’ Step g™ ...
R e

real trajectory
Figure4.6. Thecurved trajectory will be approximated by chords, so that the maximum
estimated distance between curve and chord islessthan the the miss distance.

In addition to the miss distance there are two more parameters which the user can set in order to adjust the accuracy
(and performance) of tracking in afield. In particular these parameters govern the accuracy of the intersection
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with a volume boundary and the accuracy of the integration of other steps. As such they play an important role
for tracking.

The delta intersection parameter is the accuracy to which an intersection with avolume boundary is calculated. If
acandidate boundary intersection is estimated to have a precision better than this, it is accepted. This parameter is
especially important because it isused to limit a bias that our algorithm (for boundary crossing in afield) exhibits.
Thisagorithm cal culates the intersection with avolume boundary using a chord between two points on the curved
particle trgjectory. As such, the intersection point is aways on the 'inside’ of the curve. By setting avalue for this
parameter that is much smaller than some acceptable error, the user can limit the effect of thisbiason, for example,
the future estimation of the reconstructed particle momentum.

Figure 4.7. The distance between the calculated chord intersection point C and a
computed curve point D isused to determine whether C isan accurate representation of
the intersection of the curved path ADB with a volume boundary. Here CD islikely too
large, and a new inter section on the chord AD will be calculated.

The delta one step parameter is the accuracy for the endpoint of "ordinary’ integration steps, those which do not
intersect avolume boundary. This parameter isalimit on the estimated error of the endpoint of each physicsstep. It
can be seen as akin to a statistical uncertainty and is not expected to contribute any systematic behavior to physical
guantities. In contrast, the bias addressed by delta intersection isclearly correlated with potential systematic errors
in the momentum of reconstructed tracks. Thus very strict limits on the intersection parameter should be used in
tracking detectors or wherever the intersections are used to reconstruct a track's momentum.

Delta intersection and delta one step are parameters of the Field Manager; the user can set them according to the
demands of his application. Because it is possible to use more than one field manager, different values can be set
for different detector regions.

Note that reasonable values for the two parameters are strongly coupled: it does not make sense to request an
accuracy of 1 nm for delta intersection and accept 100 &#956m for the delta one step error value. Nevertheless
delta intersection is the more important of the two. It is recommended that these parameters should not differ
significantly - certainly not by more than an order of magnitude.

4.3.2. Practical Aspects

4.3.2.1. Creating a Magnetic Field for a Detector

The simplest way to define afield for a detector involves the following steps:

1. createafidd:

GAUni f or mvagFi el d* magFi el d
= new GAUni f or mvagFi el d( G4ThreeVector (0., 0., fi el dval ue));

2. setit asthe default field:
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GAFi el dvanager* fiel dMgr
= GATransportati onManager: : Get Tr ansport at i onManager ()
- >Get Fi el dManager () ;
fi el dMgr - >Set Det ect or Fi el d( negFi el d) ;

3. create the objects which calculate the trajectory:
fi el dMyr - >Cr eat eChor dFi nder (nmagFi el d) ;
To change the accuracy of volume intersection use the Set Del t aChor d method:

fi el dMgr - >Get Chor dFi nder () - >Set Del t aChor d( GAdoubl e newval ue) ;

Since 10.0 version, it is aso possible to perform al three steps above at once using the
Ad obal MagFi el dMessenger class:

GAThreeVector fiel dvalue = GAThreeVector();
f MagFi el dMessenger = new Ad obal MagFi el dMessenger (fi el dval ue) ;
f MagFi el dMessenger - >Set Ver boselLevel (1) ;

The messenger creates the global uniform magnetic field, which is activated (set to the
ATransport ati onManager object) only when thef i el dVal ue isnon zero vector. The messenger class
setter functions can be then used to change the field value (and activate or inactivate the field again) or the level
of output messages. The messenger also takes care of deleting the field.

Asits class name suggests, the messenger creates also Ul commands which can be used to change the field value
and the verbose level interactively or from amacro:

/ gl obal Fi el d/ set Val ue vx vy vz unit
/ gl obal Fi el d/ ver bose | evel

4.3.2.2. Creating a Field for a Part of the Volume Hierarchy

It is possible to create a field for a part of the detector. In particular it can describe the field (with pointer
fEmField, for example) inside a logical volume and all its daughters. This can be done by simply creating a
(AFi el dvanager and attaching it to alogical volume (with pointer, logicVolumeWithField, for example) or
set of logical volumes.

Gdbool all Local = true;
| ogi cVol umeW t hFi el d- >Set Fi el dvlinager (| ocal Fi el dManager, all Local);

Using the second parameter to Set Fi el dManager you choose whether daughter volumes of thislogical volume
will also be given this new field. If it has the value t r ue, the field will be assigned also to its daughters, and
all their sub-volumes. Elsg, if it isf al se, it will be copied only to those daughter volumes which do not have
afield manager already.

4.3.2.3. Creating an Electric or Electromagnetic Field

The design and implementation of the Field category allows and enables the use of an electric or combined elec-
tromagnetic field. These fields can also vary with time, as can magnetic fields.

Source listing Example 4.12 shows how to define a uniform electric field for the whole of a detector.

Example4.12. How todefineauniform electricfield for thewhole of a detector, extracted
from examplein examples/extended/field/field02 .

/1 in the header file (or first)
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#i ncl ude "AEqMagEl ectri cFi el d. hh"
#i ncl ude " GAUni f or nEl ectri cFi el d. hh"

GAEl ectri cFi el d* fEMi el d;
GAEqMagE!l ectri cFi el d* f Equat i on;
GAMagl nt egr at or St epper * f St epper ;

GAFi el dMvanager * fFi el dMr;
G4doubl e fMnStep ;
GAChor dFi nder * f Chor dFi nder ;

/] in the source file

fEMield = new GAUni fornEl ectri cFi el d(
GAThr eeVect or (0. 0, 100000. 0*ki | ovol t/cm 0.0));

/] Create an equation of notion for this field
f Equati on = new GAEqQMagEl ectri cFi el d(fEMi el d);

G4int nvar = 8;
f St epper = new G4Ad assi cal RK4( fEquation, nvar );

/] Get the global field nanager

f Fi el dManager = GATr ansport ati onManager : : Get Tr anspor t at i onManager () - >
Get Fi el dManager () ;

/1 Set this field to the global field manager

f Fi el dManager - >Set Det ector Fi el d(fEMield );

fM nSt ep = 0.010*mm; // miniml step of 10 mi crons

fintgrDriver = new GAMagl nt _Driver(fM nStep,
f St epper,
f St epper - >Get Nunber O Vari abl es() );

f Chor dFi nder = new GAChor dFi nder (fIntgrDriver);
f Fi el dManager - >Set Chor dFi nder ( f Chor dFi nder );

}

An example with an electric field is examplesextended/field/field02, where the class FO2ElectricFieldSetup
demonstrates how to set these and other parameters, and how to choose different Integration Steppers. An example
with auniform gravity field (G4UniformGravityField) is exampl es/extended/fiel d/fiel d06.

Theuser can aso create their own type of field, inheriting from G4 VFi el d, and an associated Equation of Motion
class (inheriting from GAEgRhs) to simulate other types of fields.

4.3.2.4. Choosing a Stepper

Runge-Kutta integration is used to compute the motion of a charged track in a general field. There are many
genera steppers from which to choose, of low and high order, and specialized steppers for pure magnetic fields.
By default, Geant4 uses the classical fourth-order Runge-Kutta stepper, which is general purpose and robust. If
thefield isknown to have specific properties, lower or higher order steppers can be used to obtain the same quality
results using fewer computing cycles.

In particular, if the field is calculated from afield map, alower order stepper is recommended. The less smooth
thefield is, the lower the order of the stepper that should be used. The choice of lower order steppersincludes the
third order stepper G4Si nmpl eHeum the second order G41 npl i ci t Eul er and G4Si npl eRunge, and the
first order AExpl i ci t Eul er . A first order stepper would be useful only for very rough fields. For somewhat
smooth fields (intermediate), the choice between second and third order steppers should be made by trial and error.
Trying afew different types of steppersfor aparticular field or application is suggested if maximum performance
isagoal.

The choice of stepper depends on the type of field: magnetic or general. A general field can be an electric or
electromagnetic field, it can be amagnetic field or a user-defined field (which requires a user-defined equation of
motion.) For ageneral field several steppers are available as alternatives to the default (ACl assi cal RK4):

Gdint nvar = 8; // To integrate time & energy
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/1l in addition to position, nmonmentum
GAEqMagE!l ectri cFi el d* f Equati on= new GAEqMagEl ectri cFi el d(fEMi el d);

f St epper = new ASi npl eHeun( fEquation, nvar );

//  3rd order, a good alternative to O assical RK
f St epper = new ASi npl eRunge( f Equati on, nvar );

/1 2nd order, for |less snmooth fields
f St epper = new ACashKar pRKF45( f Equation );

/1 4/5th order for very snooth fields

Specialized steppers for pure magnetic fields are also available. They take into account the fact that alocal tra-
jectory in a slowly varying field will not vary significantly from a helix. Combining this in with a variation the
Runge-K utta method can provide higher accuracy at lower computational cost when large steps are possible.

GAMag_Usual EqRhs*
f Equati on = new GAMag_Usual EqRhs(f Magneti cFi el d) ;

f Stepper = new GAHel i xI nplicitEul er( fEquation );
/] Note that for magnetic field that do not vary with tinme,
I/ the default number of variables suffices.

Il or ..
f St epper
f St epper

new AHel i xExplicitEuler( fEquation );
new (AHel i xSi npl eRunge( fEquation );

A new stepper for propagation in magnetic field is available in release 9.3. Choosing the G4ANystromRK 4 stepper
provides accuracy near that of G4ClassicalRK4 (4th order) with a significantly reduced cost in field evaluation.
Using anovel analytical expression for estimating the error of a proposed step and the Nystrom reuse of the mid-
point field value, it requires only 2 additional field evaluations per attempted step, in place of 10 field evaluations
of ClassicalRK4 (which uses the general midpoint method for estimating the step error.)

GAMag_Usual EqRhs*
pMagFl dEquati on = new GAMag_Usual EqRhs(f Magneti cFi el d);
f St epper = new ANystronRK4( pMagFl dEquation );

Itisproposed as an alternative stepper in the case of apure magnetic field. It isnot applicable for the simulation of
electric or full electromagnetic or other types of field. For a pure magnetic field, results should be fully compatible
with the results of ClassicalRK4 in nearly al cases. ( The only potential exceptions are large steps for tracks with
small momenta - which cannot be integrated well by any RK method except the Helical extended methods.)

Y ou can choose an adternative stepper either when the field manager is constructed or later. At the construction
of the ChordFinder it is an optiona argument:

GAChor dFi nder ( G4Magneti cFi el d* itsMagFi el d,
G4doubl e stepM ni mum = 1.0e-2 * nmm
GAMagl nt egr at or St epper* pltsStepper = 0 );

To change the stepper at alater time use

pChor dFi nder - >CGet | nt egrati onDri ver ()
- >RenewsSt epper AndAdj ust ( newSt epper ) ;

4.3.2.5. How to Adjust the Accuracy of Propagation

In order to obtain a particular accuracy in tracking particles through an electromagnetic field, it is necessary to
adjust the parametersof thefield propagation module. In the following section, some of these additional parameters
are discussed.

When integration is used to calculate the trgjectory, it is necessary to determine an acceptable level of numerical
imprecision in order to get performant simulation with acceptable errors. The parameters in Geant4 tell the field
module what level of integration inaccuracy is acceptable.

In all quantities which are integrated (position, momentum, energy) there will be errors. Here, however, we focus
on the error in two key quantities: the position and the momentum. (The error in the energy will come from the
momentum integration).
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Three parameters exist which are relevant to the integration accuracy. DeltaOneStep is a distance and is roughly
the position error which is acceptable in an integration step. Since many integration steps may be required for a
single physics step, DeltaOneStep should be a fraction of the average physics step size. The next two parameters
impose a further limit on the relative error of the position/momentum inaccuracy. EpsilonMin and EpsilonMax
impose a minimum and maximum on this relative error - and take precedence over DeltaOneStep. (Note: if you
set EpsilonMin=EpsilonMax=your-value, then all stepswill be made to this relative precision.

Example 4.13. How to set accuracy parametersfor the'global’ field of the setup.

GAFi el dvanager *gl obal Fi el dManager ;

GATransport ati onManager *transport Mr=
GATr ansport ati onManager : : Get Tr ansport at i onManager () ;

gl obal Fi el dManager = transport Myr->Get Fi el dvanager () ;

/] Relative accuracy val ues:
GAdoubl e m nEps= 1.0e-5; // M ni mrum & val ue for smallest steps
G4doubl e maxEps= 1.0e-4; [/ Maxi mum & val ue for |argest steps

gl obal Fi el dManager - >Set M ni munEpsi | onSt ep( m nEps );
gl obal Fi el dManager - >Set Maxi munEpsi | onSt ep( nmaxEps );
gl obal Fi el dManager - >Set Del t aOneStep( 0.5e-3 * nmm); // 0.5 mcroneter

Gdcout << "EpsilonStep: set mn=" << mnEps << " max= " << maxEps << Gendl ;

We note that the relevant parameters above limit the inaccuracy in each step. The final inaccuracy due to the full
trajectory will accumulate!

The exact point at which atrack crossesaboundary isalso calculated with finite accuracy. To limit thisinaccuracy,
aparameter called Deltal ntersection is used. Thisisamaximum for the inaccuracy of asingle boundary crossing.
Thus the accuracy of the position of the track after a number of boundary crossingsis directly proportiona to the
number of boundaries.

4.3.2.6. Reducing the number of field calls to speed-up simulation

An additional method to reduce the number of field evaluationsisto utilise the new class G4CachedM agneticField
class. It is applicable only for pure magnetic fields which do not vary with time.

GAMagneticField * pvagField; // Your field - Defined el sewhere

HAdoubl e di stanceConst = 2.5 * mllineter;
GAMagneti cFiel d * pCachedMagFi el d= new ACachedMagneti cFi el d( pMagField, distanceConst);

4.3.2.7. Choosing different accuracies for the same volume

It is possible to create a FieldManager which has different properties for particles of different momenta (or de-
pending on other parameters of atrack). This is useful, for example, in obtaining high accuracy for ‘important’
tracks (e.g. muons) and accept less accuracy in tracking others (e.g. electrons). To use this, you must create your
own field manager which uses the method

voi d Confi gureFor Track( const GATrack * );

to configure itself using the parameters of the current track. An example of thiswill be available in examples/ex-
tended/field05.

4.3.2.8. Parameters that must scale with problem size

The default settings of this module are for problems with the physical size of atypical high energy physics setup,
that is, distances smaller than about one kilometer. A few parameters are necessary to carry this information
to the magnetic field module, and must typically be rescaled for problems of vastly different sizes in order to
get reasonable performance and robustness. Two of these parameters are the maximum acceptable step and the
minimum step size.
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The maximum acceptable step should be set to adistance larger than the biggest reasonabl e step. If the apparatus
in a setup has a diameter of two meters, alikely maximum acceptable steplength would be 10 meters. A particle
could then take large spiral steps, but would not attempt to take, for example, a 1000-meter-long step in the case
of avery low-density material. Similarly, for problems of a planetary scale, such as the earth with its radius of
roughly 6400 km, a maximum acceptabe steplength of afew times this value would be reasonable.

An upper limit for the size of a step is a parameter of GAPr opagat or | nFi el d, and can be set by calling its
Set Lar gest Accept abl eSt ep method.

The minimum step sizeisused during integration to limit the amount of work in difficult cases. It is possible that
strong fields or integration problems can force the integrator to try very small steps; this parameter stops them
from becoming unnecessarily small.

Tria steps smaller than this parameter will be treated with less accuracy, and may even be ignored, depending
on the situation.

The minimum step size is a parameter of the Magint_Driver, but can be set in the contstructor of G4ChordFinder,
asin the source listing above.

4.3.2.9. Known Issues

Currently it is computationally expensive to change the miss distance to very small values, as it causes tracks to
be limited to curved sections whose 'bend' is smaller than this value. (The bend is the distance of the mid-point
from the chord between endpoints.) For tracks with small curvature (typically low momentum particlesin strong
fields) this can cause alarge number of steps

* even in areas where there are no volumes to intersect (something that is expected to be addressed in future
development, in which the safety will be utilized to partialy aleviate this limitation)

 especialy inaregion near avolume boundary (in which caseit is necessary in order to discover whether atrack
might intersect a volume for only a short distance.)

Requiring such precision at the intersection is clearly expensive, and new development would be necessary to
minimize the expense.

By contrast, changing the intersection parameter is less computationally expensive. It causes further calculation
for only afraction of the steps, in particular those that intersect a volume boundary.

4.3.3. Spin Tracking

The effects of a particle’'s motion on the precession of its spin angular momentum in slowly varying external
fields are smulated. The relativistic equation of motion for spin is known as the BMT equation. The equation
demonstrates aremarkable property; in a purely magnetic field, in vacuum, and neglecting small anomal ous mag-
netic moments, the particle's spin precesses in such a manner that the longitudinal polarization remains a constant,
whatever the motion of the particle. But when the particle interacts with electric fields of the medium and multi-
ple scatters, the spin, which is related to the particle's magnetic moment, does not participate, and the need thus
arises to propagate it independent of the momentum vector. In the case of a polarized muon beam, for example,
it isimportant to predict the muon's spin direction at decay-time in order to simulate the decay electron (Michel)
distribution correctly.

In order to track the spin of a particlein amagnetic field, you need to code the following:

1. inyour DetectorConstruction

#i ncl ude " &4Mag_Spi nEqRhs. hh"
GAMag_EqRhs* f Equation = new GAMag_Spi nEqRhs( magFi el d) ;

GAMagl nt egr at or St epper * pSt epper = new (Ad assi cal RK4(f Equati on, 12);
notice the 12

2. inyour PrimaryGenerator
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particl eGun->Set Particl ePol ari zati on(GAThr eeVect or p)

for example:

particl eGn->
Set ParticlePol ari zation(-(particleGun->CetParticleMnentunDirection()));

/1 or
particl eGn->

Set Particl ePol ari zation(particleGun->CGetParticl eMnentunDirection()
.cross(&AThreeVector (0.,1.,0.)));

where you set the initial spin direction.

While the G4AMag_SpinEqRhs class constructor

GAMag_Spi nEqRhs: : GAMag_Spi nEqRhs( GAMagneti cFi el d* MagField )
: GAMag_EgRhs( MagFiel d )
{

}

anomaly = 1.165923e- 3;
sets the muon anomaly by default, the class also comes with the public method:

inline void Set Anonal y(G4double a) { anomaly = a; }
with which you can set the magnetic anomaly to any value you require.

The code has been rewritten (in Release 9.5) such that field tracking of the spin can now be done for charged and
neutral particles with a magnetic moment, for example spin tracking of ultra cold neutrons. This requires the user
to set Enabl eUseMagnet i cMonent , a method of the GATr ansport ati on process. The force resulting
from the term, I, is not yet implemented in Geant4 (for example, simulated trajectory of a neutral hydrogen
atom trapped by its magnetic moment in a gradient B-field.)

4.4. Hits
4.4.1. Hit

A hit is a snapshot of the physical interaction of atrack in the sensitive region of a detector. In it you can store
information associated with a A St ep object. This information can be

* the position and time of the step,

* the momentum and energy of the track,
* the energy deposition of the step,

» geometrical information,

or any combination of the above.

G4VHit

AVHi t is an abstract base class which represents a hit. You must inherit this base class and derive your own
concrete hit class(es). The member data of your concrete hit class can be, and should be, your choice.

AswithGATHi t sCol | ect i on, authors of subclasses must declare templated GAAl | ocat or sfor their class.
They must also implement operator new() and operator delete() which use these allocators.

(AVHi t hastwo virtual methods, Dr aw( ) and Pri nt () . Todraw or print out your concrete hits, these methods
should be implemented. How to define the drawing method is described in Section 8.9.
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GATHitsCollection

(AVHi t isan abstract class from which you derive your own concrete classes. During the processing of a given
event, represented by a GAEvent object, many objects of the hit class will be produced, collected and associ-
ated with the event. Therefore, for each concrete hit class you must also prepare a concrete class derived from
(AVHi t sCol | ecti on, an abstract class which represents a vector collection of user defined hits.

(ATHi t sCol | ecti on isatemplate class derived from (AVHi t sCol | ect i on, and the concrete hit collec-
tion class of aparticular GAVHi t concrete class can be instantiated from this template class. Each object of a hit
collection must have a unique name for each event.

HAEvent hasa GAHCof Thi sEvent class object, that isacontainer class of collections of hits. Hit collections
are stored by their pointers, whose type is that of the base class.

An example of a concrete hit class
Example 4.14 shows an example of a concrete hit class.

Example 4.14. An example of a concrete hit class.

| | ============ header file

#i f ndef ExNO4TrackerHit_h
#define ExNO4TrackerHit _h 1

#i nclude "GAVHi t. hh"

#i ncl ude "GATH tsCol | ecti on. hh"
#i ncl ude "&4Al | ocat or. hh"

#i ncl ude " &AThr eeVect or. hh"

cl ass ExNO4TrackerHit : public GAVH t

{

public:
ExNO4TrackerHit () ;
~ExNO4Tr ackerHit ();
ExNO4Tr acker Hi t (const ExNO4TrackerHit &right);
const EXNOATracker Hit & operator=(const ExNO4TrackerHit &right);
int operator==(const ExNO4TrackerHit &right) const;
inline void * operator new(size_t);
inline void operator delete(void *aHit);
voi d Draw() const;
void Print() const;

private:
GAdoubl e edep;
GAThr eeVect or pos;

public:
inline void Set Edep(x4doubl e de)
{ edep = de; }
inline G4doubl e Get Edep() const
{ return edep; }
inline void Set Pos(AThreeVector xyz)
{ pos = xyz; }
inline AThreeVector GetPos() const
{ return pos; }

=

typedef GATHi t sCol | ecti on<ExNO4Tr acker Hi t > ExNO4Tr acker Hi t sCol | ecti on;
extern GAThreadLocal G4Al | ocat or <ExNO4Tr acker Hi t >* ExNO4Tr acker Hi t Al | ocat or;
inline void* ExNO4TrackerHit::operator new(size_t)

i f (! EXNO4Tracker Hi t Al l ocat or) ExNO4TrackerHit Al l ocator = new G4Al | ocat or <ExNO4Tr acker Hi t >
return (void *) ExNO4TrackerHit Al l ocator->MallocSingle();
}
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inline void ExNO4TrackerHit::operator delete(void *aH t)

ExNO4Tr acker Hi t Al | ocat or - >Fr eeSi ngl e( (ExNO4TrackerHit*) aHit);
}

#endi f

| | ============ source file

#i ncl ude "ExNO4Tr acker Hi t. hh"
GAThr eadLocal G4AI | ocat or <ExNO4Tr acker Hi t >* ExNO4Tr acker Hi t: : EXNO4Tracker Hi t Al | ocator = O;

. snipped ...

AAl | ocat or isaclassfor fast allocation of objects to the heap through the paging mechanism. For details of
HAAl | ocat or, refer to Section 3.2.4. Use of AAl | ocat or is not mandatory, but it is recommended, espe-
cialy for users who are not familiar with the C++ memory allocation mechanism or alternative tools of memory
allocation. On the other hand, note that G4Al | ocat or isto be used only for the concrete class that is not used
as a base class of any other classes. For example, do not use the GATr aj ect ory class as a base class for a
customized trgjectory class, since ATr aj ect ory uses AAl | ocat or.

G4THitsMap

GATHi t sMap isan alternativeto GATHi t sCol | ecti on. ATHi t sMap does not demand GAVHi t , but in-
stead any variable which can be mapped with an integer key. Typically the key is a copy number of the volume,
and the mapped value could for example be a double, such as the energy deposition in avolume. ATHi t sMap
is convenient for applications which do not need to output event-by-event data but instead just accumulate them.
All the GAVPri nmi ti veScor er classesdiscussed in Section 4.4.4 use GATHi t sMap.

ATHi t sMap is derived from the AVHi t sCol | ect i on abstract base class and al objects of this class are
aso stored in GAHCof Thi sEvent at the end of an event. How to accessa GATHi t sMap object is discussed
in the following section (Section 4.4.4).

4.4.2. Sensitive detector

G4VSensitiveDetector

AVSensi ti veDet ect or is an abstract base class which represents a detector. The principal mandate of
a sensitive detector is the construction of hit objects using information from steps along a particle track. The
ProcessHi t s() method of G4VSensi t i veDet ect or performsthistask using G4St ep objectsasinput. In
the case of a"Readout" geometry, objectsof the GATouchabl eHi st or y classmay be used asan optional input.

Your concrete detector class should be instantiated with the unique name of your detector. The name can be
associated with one or more global names with */" as adelimiter for categorizing your detectors. For example

nyEMcal = new MyEMcal ("/ nmyDet/nyCal / nyEMcal *);

where nmyEMcal is the name of your detector. The detector must be constructed in
AVUser Det ect or Construction: : Const ruct SDandFi el d() method. It must be assigned to one or
more ALogi cal Vol une objects to set the sensitivity of these volumes. SUch assignment must be made in
the same G4VUser Det ect or Const ructi on: : Const ruct SDandFi el d() method. The pointer should
also be registered to GASDMVanager , as described in Section 4.4.3.

AVSensi ti veDet ect or hasthree mgjor virtual methods.
ProcessHits()

This method isinvoked by G4St eppi ngManager when a step is composed in the G4Logi cal Vol une
which has the pointer to this sensitive detector. The first argument of this method is a (A4St ep object of
the current step. The second argument is a GATouchabl eHi st ory object for the “"Readout geometry”
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described in the next section. The second argument is NULL if ““Readout geometry" is not assigned to this
sensitive detector. In this method, one or more G4VHi t objects should be constructed if the current step is
meaningful for your detector.

Initialize()

This method is invoked at the beginning of each event. The argument of this method is an object of the
(AHCof Thi sEvent class. Hit collections, where hits produced in this particular event are stored, can
be associated with the GAHCof Thi sEvent object in this method. The hit collections associated with the
(AHCof Thi sEvent object during this method can be used for ““during the event processing" digitization.

EndCOf Event ()

This method is invoked at the end of each event. The argument of this method is the same object as the
previous method. Hit collections occasionally created in your sensitive detector can be associated with the
AHCof Thi sEvent object.

4.4.3. G4SDManager

(ASDManager isthe singleton manager class for sensitive detectors.
Activation/inactivation of sensitive detectors

The user interface commands act i vat e and i nact i vat e are available to control your sensitive detectors.
For example:

/hits/activate detector_nane
/hits/inactivate detector_nane

wheredet ect or _narme can be the detector name or the category hame.

For example, if your EM calorimeter is named
[ myDet / myCal / nyEMcal
/hits/inactivate nmyCal

will inactivate al detectors belonging to the myCal category.

Access to the hit collections
Hit collections are accessed for various cases.

* Digitization

» Eventfilteringin G4VUser St acki ngActi on
* TEnd of event" simple analysis

» Drawing/ printing hits

The following is an example of how to access the hit collection of a particular concrete type:

GASDvanager * f SDM = (ASDVanager : : Get SDVpoi nter () ;

GARunManager * f RM = GARunManager : : Get RunManager () ;

G4int collectionl D = fSDM >Get Col | ectionl D("col | ecti on_nane");

const AEvent* current Event = fRM >Get Current Event () ;

GAHCof Thi sEvent * HCof Event = current Event - >Get HCof Thi sEvent () ;

M/Hi t sCol | ecti on* myCol | ection = (M/Hi tsCol | ecti on*) ( HCOf Event - >Get HC( col | ectionl D)) ;

4.4.4. AMul ti Functi onal Det ect or and
AVPrimtiveScorer

AMul ti Functi onal Det ect or is a concrete class derived from G4VSensi t i veDet ect or . Instead of
implementing a user-specific detector class, G4Mul ti Functi onal Det ect or alows the user to register
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HAVPrimtiveScorer classes to build up the sensitivity. G4AMul t i Functi onal Det ect or should be
instantiated in the users detector construction with its unique name and should be assigned to one or more
(ALogi cal Vol unes.

AVPrimtiveScorer is an abstract base class representing a class to be registered to
&AMl ti Functi onal Det ect or that creates a G4ATHi t sMap object of one physics quantity for an event.
Geant4 provides many concrete primitive scorer classes listed in Section 4.4.5, and the user can aso implement
his’/her own primitive scorers. Each primitive scorer object must be instantiated with a name that must be unique
among primitive scorersregistered inaGAMul t i Funct i onal Det ect or . Please note that a primitive scorer
object must not be shared by more than one G4Mul t i Funct i onal Det ect or object.

As mentioned in Section 4.4.1, each GAVPri mi ti veScor er generates one GATHi t sMap object per event.
The name of the map object is the same as the name of the primitive scorer. Each of the concrete primitive
scorers listed in Section 4.4.5 generates a GATHi t sMap<G4doubl e> that maps a GAdoubl e value to its
key integer number. By default, the key is taken as the copy number of the G4Logi cal Vol une to which
&AMl ti Functi onal Det ect or isassigned. In case thelogical volumeisuniquely placed in its mother vol-
ume and the mother is replicated, the copy number of its mother volume can be taken by setting the second argu-
ment of the GAVPri m tiveScor er constructor, "depth” to 1, i.e. one level up. Furthermore, in case the key
must consider more than one copy number of a different geometry hierarchy, the user can derive his’her own
primitive scorer from the provided concrete class and implement the Get | ndex( G4St ep*) virtual method to
return the unique key.

Example 4.15 shows an example of primitive sensitivity class definitions.

Example 4.15. An example of defining primitive sensitivity classes taken from
REO6Det ect or Constructi on.

voi d REO06Det ect or Const ruct i on: : Set upDet ect or s()

{
GAString filterNane, particl eNang;

GASDParticleFilter* gammaFilter =

new GASDParticleFilter(filterNane="gammaFilter", particleNane="ganmm");
GASDParticleFilter* electronFilter =

new GASDParticleFilter(filterNane="electronFilter", particleName="e-");
GASDParticleFilter* positronFilter =

new GASDParticleFilter(filterNane="positronFilter", particleName="e+");
GASDParticleFilter* epFilter = new GASDParticleFilter(filterName="epFilter");
epFi |l ter->add(particl eName="e-");
epFil ter->add(particl eName="e+");

for(G4int i=0;i<3;i++)

for(G4int j=0;j<2;j++)

{

/1 Loop counter j 0 : absorber
I 1: gap
GAString det Nanme = cal Nane[i];
i f(j==0)

{ detNanme += "_abs"; }
el se

{ detNanme += "_gap"; }
GAMul ti Functi onal Detector* det = new GAMil ti Functi onal Det ect or ( det Nang) ;

/1 The second argunent in each prinmitive means the "l evel" of geonetrical hierarchy,
/1 the copy nunber of that |evel is used as the key of the GATH tsMap.

/Il For absorber (j = 0), the copy nunber of its own physical volume is used.

/1l  For gap (j = 1), the copy nunber of its nother physical volune is used, since there
/1 is only one physical volume of gap is placed with respect to its nother.
GAVPrimtiveScorer* primtive;

primtive = new APSEner gyDeposit("eDep",|);

det->Regi sterPrimtive(primtive);

primtive = new APSNof Secondar y("nGamma",j);

primtive->SetFilter(ganmaFilter);

det->RegisterPrinmtive(primtive);

primtive = new GAPSNof Secondary("nEl ectron”,j);

primtive->SetFilter(electronFilter);

det->RegisterPrimtive(primtive);
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primtive = new GAPSNof Secondary("nPositron",j);
primtive->SetFilter(positronFilter);

det->Regi sterPrinmtive(primtive);

primtive = new GAPSM nKi nEAt Gener ati on(" m nEki nGamma", j ) ;
primtive->SetFilter(gammaFilter);

det->Regi sterPrimtive(primtive);

primtive = new GAPSM nKi nEAt Gener ati on(" m nEki nEl ectron”,j);
primtive->SetFilter(electronFilter);

det->Regi sterPrinmtive(primtive);

primtive = new GAPSM nKi nEAt Gener ati on(" m nEki nPositron",j);
primtive->SetFilter(positronFilter);

det->Regi sterPrimtive(primtive);

primtive = new APSTrackLengt h("trackLength",j);
primtive->SetFilter(epFilter);
det->RegisterPrinmtive(primtive);

primtive = new GAPSNof St ep("nStep",j);
primtive->SetFilter(epFilter);

det->Regi sterPrimtive(primtive);

GASDvanager : : Get SDVpoi nt er () - >AddNewDet ect or (det ) ;
i f(j==0)

{ layerLogical[i]->SetSensitiveDetector(det); }

el se

{ gapLogical[i]->SetSensitiveDetector(det); }

}
}

Each GATHi t sMap object can be accessed from AHCof Thi sEvent with a unique collection ID num-
ber. This ID number can be obtained from 4SDManager : : Get Col | ecti onl D() with a name of
&AMl ti Functi onal Det ect or and&AVPri miti veScor er connectedwithaslush ("/"). ATHi t sMap
has a[] operator taking the key value as an argument and returning the pointer of the value. Please note that the[]
operator returnsthe pointer of the value. If you get zero from the [] operator, it does not mean the value is zero,
but that the provided key does not exist. The valueitself is accessible with an astarisk ("*"). It is advised to check
the validity of the returned pointer before accessing the value. GATHi t sMap also has a += operator in order to
accumul ate event data into run data. Example 4.16 shows the use of ATHi t sMap.

Example 4.16. An example of accessing to GATHi t sMap objects.

#i ncl ude "ExNO7Run. hh"

#i ncl ude "AEvent. hh"

#i ncl ude " G4HCof Thi sEvent . hh"
#i ncl ude " 4SDvanager . hh"

ExNO7Run: : EXNO7Run()
{
GAString det Name[ 6] = {"Cal or-A _abs", "Cal or-A gap", "Cal or-B_abs", "Cal or - B_gap",
"Cal or-C_abs", "Cal or-C gap"};
GAString primNameSun 6] = {"eDep", "nGamm", "nEl ectron", "nPosi tron", "trackLength", "nStep"};
GAString primNaneM n[ 3] = {"m nEki nGanma", " m nEki nEl ectron", " m nEki nPosi tron"};

GASDvanager * SDVan = GASDManager : : Get SDVpoi nter () ;
GAString ful |l Name;

for(size_t i=0;i<6;i++)

{

for(size_t j=0;j<6;]j++)

full Name = det Nanme[i]+"/"+pri mNaneSunij];
col IDSunfi][j] = SDvan->Get Col | ecti onl D(ful | Nane) ;

}
for(size_t k=0; k<3; k++)

full Name = det Nane[i]+"/"+pri nNameM n[ k] ;
col IDMn[i][k] = SDMvan->Get Col | ecti onl D(ful | Nane) ;
}
}
}

voi d ExNO7Run: : Recor dEvent (const GAEvent* evt)

GAHCof Thi sEvent* HCE = evt - >Get HCof Thi sEvent () ;
if(!HCE) return;
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nunber O Event ++;
for(size_t i=0;i<6;i++)

for(size t j=0;j<6;j++)

GATHI t sMap<G4doubl e>* evt Map = (GATH t sMap<G4doubl e>*) ( HCE- >Get HC( col 1 DSunfi][j]1));
mapSunfi][j] += *evt Map;

for(size_t k=0;k<3; k++)

GATH t sMap<GAdoubl e>* evt Map = (ATH t sMap<GHAdoubl e>*) (HCE- >Get HC(col IDM n[i][k]));
st d: : map<G4i nt, AAdoubl e*>: :iterator itr = evt Map->Cet Map() - >begi n();
for(; itr != evtMap->CGet Map()->end(); itr++)
{
Gint key = (itr->first);
GAdoubl e val = *(itr->second);
G4doubl e* mapP = mapM n[i ][ k] [ key];
if( mapP && (val >*mapP) ) conti nue;
mapM n[i ][ k] . set (key, val);
}
}
}
}

4.4.5. Concrete classes of AVPrimti veScorer

With Geant4 version 8.0, several concrete primitive scorer classes are provided, all of which are
derived from the GAVPrimtiveScorer abstract base class and which are to be registered to
&AMl ti Functi onal Det ect or . Each of them contains one ATHi t sMap object and scores a simple dou-
ble value for each key.

Track length scorers

G4PSTrackLength

The track length is defined as the sum of step lengths of the particles inside the cell. Bt default, the track
weight is not taken into account, but could be used as a multiplier of each step length if the Wi ght ed()
method of this class object isinvoked.

G4PSPassageTrackL ength

The passage track length is the same as the track length in GAPSTr ackLengt h, except that only tracks
which pass through the volume are taken into account. It means newly-generated or stopped tracksinside the
cell are excluded from the calculation. By default, the track weight is not taken into account, but could be
used as amultiplier of each step length if the Wei ght ed() method of this class object isinvoked.

Deposited energy scorers

G4PSEnergyDeposit

This scorer stores asum of particles energy deposits at each step in the cell. The particle weight is multiplied
at each step.

G4PSDoseDeposit

In some cases, dose is a more convenient way to evaluate the effect of energy deposit in a cell than simple
deposited energy. The dose deposit is defined by the sum of energy deposits at each step in acell divided by
the mass of the cell. The massis calculated from the density and volume of the cell taken from the methods
of AVSol i d and GALogi cal Vol une. The particle weight is multiplied at each step.

Current and flux scorers

There are two different definitions of a particle's flow for a given geometry. One is a current and the other isa
flux. In our scorers, the current is simply defined as the number of particles (with the particlesweight) at acertain
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surface or volume, while the flux takes the particle'sinjection angle to the geometry into account. The current and
flux are usually defined at a surface, but volume current and volume flux are also provided.

G4PSFl atSurfaceCurrent

Flat surface current is a surface based scorer. The present implementation is limited to scoring only at the -Z
surface of aG4Box solid. The quantity isdefined by the number of tracksthat reach the surface. The user must
choose adirection of the particle to be scored. The choicesare fCurrent_In, fCurrent_Out, or fCurrent_InOut,
one of which must be entered as the second argument of the constructor. Here, fCurrent_In scores incoming
particles to the cell, while fCurrent_Out scores only outgoing particles from the cell. fCurrent_InOut scores
both directions. The current is multiplied by particle weight and is normalized for a unit area.

GA4PSSphereSurfaceCurrent

Sphere surface current is a surface based scorer, and similar to the G4PSFlatSurfaceCurrent. The only differ-
ence is that the surface is defined at the inner surface of a G4Sphere solid.

G4PSPassageCurrent

Passage current is a volume-based scorer. The current is defined by the number of tracks that pass through
the volume. A particle weight is applied at the exit point. A passage current is defined for a volume.

G4PSFl atSurfaceFlux

Flat surfaceflux isasurface based flux scorer. The surfaceflux isdefined by the number of tracksthat reach the
surface. The expression of surfaceflux isgiven by the sum of W/cos(t)/A, where W, t and A represent particle
weight, injection angle of particle with respect to the surface normal, and area of the surface. The user must
enter one of the particle directions, fFlux_In, fFlux_Out, or fFlux_InOut in the constructor. Here, fFlux_In
scores incoming particles to the cell, while fFlux_Out scores outgoing particles from the cell. fFlux_InOut
scores both directions.

G4PSCellFlux

Cdll flux is a volume based flux scorer. The cell flux is defined by atrack length (L) of the particle inside
avolume divided by the volume (V) of this cell. The track length is calculated by a sum of the step lengths
in the cell. The expression for cell flux is given by the sum of (W*L)/V, where W is a particle weight, and
ismultiplied by the track length at each step.

G4PSPassageCelIFlux
Passage cell flux is a volume based scorer similar to GAPSCel | FI ux. The only difference is that tracks

which pass through a cell are taken into account. It means generated or stopped tracks inside the volume are
excluded from the calculation.

Other scorers

G4PSMinKinEAtGeneration

This scorer records the minimum kinetic energy of secondary particlesat their production point in the volume
in an event. This primitive scorer does not integrate the quantity, but records the minimum quantity.

G4PSNof Secondary

This class scores the number of secondary particles generated in the volume. The weight of the secondary
track is taken into account.

G4PSNof Step

This class scores the number of stepsin the cell. A particle weight is not applied.
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GA4PSCelICharge

This class scored the total charge of particles which has stoped in the volume.

4.4.6. AVSDFi | t er and its derived classes

AVSDFi lter is an abstract class that represents a track filter to be associated with
(AVSensitiveDet ector or G4VPri m tiveScor er. It definesavirtual method
G4bool Accept (const GASt ep*)

that should return true if this particular step should be scored by the GAVSensitiveDet ector or
HAVPrimtiveScorer.

While the user can implement hig’her own filter class, Geant4 version 8.0 provides the following concrete filter
classes:

G4SDChargedFilter

All charged particles are accepted.
G4SDNeutralFilter

All neutral particles are accepted.
G4SDParticleFilter

Particle species which are registered to thisfilter object by Add( " parti cl e_name") areaccepted. More
than one species can be registered.

GA4SDKineticEnergyFilter

A track with kinetic energy greater than or equal to EKmin and smaller than EKmin is accepted. EKmin and
EKmax should be defined as arguments of the constructor. The default values of EKmin and EKmax are zero
and DBL_MAX.

GA4SDParticleWithEnergyFilter
Combination of ASDParticl eFilter and AASDParti cl eWt hEnergyFilter.

Theuseof theASDPar ti cl eFi | t er classisdemonstrated in Example 4.15, where filters which accept gam-
ma, electron, positron and electron/positron are defined.

4.4.7. Muiltiple sensitive detectors associated to a single
logical-volume

From Geant4 Version 10.3 it is possible to attach multiple sensitive detectors to a single geometrical element.
This is achieved via the use of a specia proxy class, to which multiple child sensitive detectors are attached:
&AMl ti SensitiveDetector . The kernd still sees a single sensitive detector associated to any given
logical-volume, but the proxy will dispatch the calls from kernel to all the attached child sensitive detectors.

When usingthe G4VUser Det ect or Constructi on: : Set Sensi tiveDetector(...) utility method
the handling of multiple sensitive detectors is done automatically. Multiple calls to the method passing the same
logical volume will trigger the creation and setup of an instance of &AMul ti Sensi ti veDet ect or.

For more complex use cases it may be necessary to manualy instantiate and setup an instance of
&AMl ti SensitiveDetector. For this advanced use case you can refer to the implementation of the
AVUser Det ect or Construction: : Set Sensi tiveDet ect or (4Logi cal Vol ume* | ogVol ,
AVSensi tiveDet ector* aSD) utility method.
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Example 4.17. An example of theuseof GAMul ti Sensi ti veDet ect or.

voi d MyDet ect or Const ructi on: : Const ruct SDandFi el d()

{
auto sdman = GASDManager : : Get SDMVpoi nter () ;
1. ..
auto nySD = new nySD1("/SD1");
sdman- >AddNewDet ect or (nySD) ; // Note we explictly add the SD to the nanager
Set Sensi ti veDet ect or (" LogVol Nane", nySD) ;
auto nySD2 = new MySD2("/SD2");
sdman- >AddNewDet ect or ( nySD2) ;
//This will trigger atuomatic creation and setup of proxy
Set Sensi ti veDet ect or (" LogVol Nane", mySD2) ;
1. ..

}

4.5. Digitization
4.5.1. Digi

A hit is created by a sensitive detector when a step goes through it. Thus, the sensitive detector is associated to
the corresponding GALogi cal Vol une object(s). On the other hand, adigit is created using information of hits
and/or other digits by a digitizer module. The digitizer module is not associated with any volume, and you have
to implicitly invokethe Di gi ti ze() method of your concrete GAVDi gi ti zer Modul e class.

Typical usages of digitizer module include:

» simulate ADC and/or TDC
 simulate readout scheme
* generate raw data

» simulate trigger logics

» simulate pile up

G4VDigi

GAVDi gi isanabstract base classwhich representsadigit. Y ou havetoinherit this base class and derive your own
concrete digit class(es). The member data of your concrete digit class should be defined by yourself. GAVDI gi
has two virtual methods, Dr aw() and Pri nt ().

Aswith GAVHi t , authors of subclasses must declare templated GAAl | ocat or sfor their digit class. They must
also implement operator new() and operator delete() which use these all ocators.

G4TDigiCollection

(ATDi gi Col | ecti on isatemplate class for digits collections, which is derived from the abstract base class
AVDi gi Col | ecti on. AEvent has a GADCof Thi sEvent object, which is a container class of collec-
tions of digits. The usages of AVDi gi and GATDi gi Col | ecti on are almost the same as GAVHi t and
(ATHi t sCol | ect i on, respectively, explained in the previous section.

Aswith GATHi t sCol | ect i on, authors of subclasses must declare templated GAAl | ocat or sfor their col-
lection class. They must also implement operator new() and operator delete() which use these alocators.

4.5.2. Digitizer module

G4VDigitizerModule

AVDi gi ti zer Modul e is an abstract base class which represents a digitizer module. It has a pure virtual
method, Di gi ti ze() . A concrete digitizer module must have an implementation of this virtual method. The
Geant4 kernel classes do not have a ““built-in" invocation to the Di gi ti ze() method. Y ou have to implement
your code to invoke this method of your digitizer module.
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In the Digitize() method, you construct your GAVDi gi concrete class objects and store them to
your ATDi gi Col | ecti on concrete class object(s). Your collection(s) should be associated with the
ADCof Thi sEvent object.

G4DigiManager
ADi gi Manager isthe singleton manager class of the digitizer modules. All of your concrete digitizer modules

should be registered to GADi gi Manager with their unique names.

GADi gi Manager * fDM = GAD gi Manager : : Get D\vpoi nter () ;
My/Di giti zer * nyDM = new MyDi gi ti zer( "/ nyDet/ nyCal / nyEMIi gi Mod" );
f DM >AddNewMbdul e( myDM) ;

Y our concrete digitizer module can be accessed from your code using the unique module name.

GADi gi Manager * fDM = GAD gi Manager : : Get D\vpoi nter () ;
My/Di gitizer * nyDM = f DM >Fi ndDi gi ti zer Modul e( "/ nyDet / myCal / myEMIi gi Mod" ) ;
nyDM >Digi ti ze();

Also, ADi gi Manager hasaDi giti ze() method which takes the unique module name.

GADi gi Manager * fDM = GAD gi Manager : : Get D\vpoi nter () ;
M/Digitizer * nyDM = fDM >Digitize( "/ nyDet/nyCal/nyEMIi gi Mod" );

How to get hitsCollection and/or digiCollection

ADi gi Manager hasthe following methods to access to the hits or digi collections of the currently processing
event or of previous events.

First, you have to get the collection ID number of the hits or digits collection.

GADi gi Manager * fDM = GADi gi Manager : : Get D\vpoi nter () ;
Aint nyH tsCollID = fDM >CGet HitsCol | ectionl D( "hits_col | ecti on_nane" );
Aint nyDigiCollI D= fDW>CetDigiCollectionlD( "digi_collection_nane" );

Then, you can get the pointer to your concrete ATHi t sCol | ecti on objector G4TDi gi Col | ect i on object
of the currently processing event.

M/Hi tsCol | ection * HC = f DM >Cet Hi t sCol | ection( nyHi tsCollID );
M/Di gi Col | ection * DC = f DM >CGet Di gi Col | ection( nyDigiCollID);

In case you want to access to the hits or digits collection of previous events, add the second argument.

M/Hi t sCol | ection * HC = fDM >Get HitsCol | ection( nyHitsCollID, n );
MyDi gi Col | ection * DC = fDWM >Cet Di gi Col | ection( nyDigiCollID, n);

where, n indicates the hits or digits collection of the nt previous event.

4.6. Object Persistency
4.6.1. Persistency in Geant4

Object persistency is provided by Geant4 as an optional category, so that the user may run Geant4 with or without
an object database management system (ODBMYS).

When a usual (transient) object is created in C++, the object is placed onto the application heap and it ceases to
exist when the application terminates. Persistent objects, on the other hand, live beyond the termination of the
application process and may then be accessed by other processes (in some cases, by processes on other machines).
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Figure 4.8. Persistent object.

C++ does not have, as an intrinsic part of the language, the ability to store and retrieve persistent objects. Geant4
provides an abstract framework for persistency of hits, digits and events.

Two examples demonstrating an implementation of object persistency using one of the tools accessible through
the available interface, is provided in exanpl es/ ext ended/ per si st ency.

4.6.2. Using Root-I/O for persistency of Geant4 objects

Object persistency of Geant4 objects is also possible by using the Root-1/0 features through Root (since release
v6. 04/ 08).

The basic steps that one needs to do in order to use Root-1/0 for arbitrary C++ classesis:

1. Generate thedictionary for the given classes from Root (this usually is done by adding the appropriate com-
mand to the makefile)

2. Addinitialization of Root-1/0 and loading of the generated dictionary for the given classesin the appropriate
part of the code

3. Whenever the objects to be persistified are available, call the Wi t eCbj ect method of TFi | e with the
pointer to the appropriate object as argument (usually it is some sort of container, likest d: : vect or con-
taining the collection of objects to be persistified)

The two examples (P01 and P02) provided in exanpl es/ ext ended/ per si st ency demonstrate how to
perform object persistency using the Root-1/O mechanism for storing hits and geometry description.

4.7. Parallel Geometries

4.7.1. A parallel world

Occasionaly, it is not straightforward to define geometries for sensitive detectors, importance geometries or en-
velopes for shower parameterization to be coherently assigned to volumes in the tracking (mass) geometry. The
parallel navigation functionality introduced since release 8.2 of Geant4, allows the user to define more than one
world simultaneously. The G4Coupl edTr ansport ati on process will see all worlds simultaneously; steps
will be limited by every boundaries of the mass and parallel geometries. GATr ansport at i on isautomaticaly
replaced GACoupl edTr ansport ati on.

In aparalel world, the user can define volumesin arbitrary manner with sensitivity, regions, shower parameteri-
zation setups, and/or importance weight for biasing. Volumesin different worlds may overlap.

Any kind of (AVSensi ti veDet ect or object can be defined in volumes in a parallel world, exactly at the
same manner for the mass geometry. G4St ep object given as an argument of Pr ocessHi t () method contains
geometrical information of the associated world.

Here are restrictions to be considered for the parallel geometry:
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* Production thresholds and EM field are used only from the mass geometry. Even if such physical quantities are
defined in aparalel world, they do not affect to the ssmulation.

« Although all worlds will be comprehensively taken care by the G4Coupl edTr ansport at i on process for
the navigation, each parallel world must haveits own unique object of G4Par al | el Wor | dPr ocess process.

e Volumesin a paralel world may have materials. Such materials overwrite the materials defined in the mass
geometry if the" | ayered mass geonetry" switch of the G4Par al | el Wor | dPr ocess constructor
IS set.

4.7.2. Defining a parallel world

A paralel world should be defined in the Const r uct () virtual method of the user's class derived from the ab-
stract base class GAVUser Par al | el Wor | d. If needed, sensitive detectors must be defined in the Const r uc-
t SD() method of the same derived class. Please note that EM field cannot be defined in a paralle world.

Example 4.18. An example header file of a concrete user parallel world class.

#i f ndef MyParal | el Wor | d_h
#define MyParallelWorld_h 1

#i ncl ude "gl obal s. hh"
#i ncl ude "&AVUser Par al | el Wr | d. hh"

class MyParal l el Wrld : public GAVUserParal |l el Worl d

{
public:
M/Par al | el Wor |l d( A4St ring worl dNang) ;
virtual ~MyParallelWrld();

public:
virtual void Construct();
virtual void ConstructSD();

}

#endi f

A paralel world must have its unique name, which should be set to the G4VUser Par al | el Wr | d base class
as an argument of the base class constructor.

The world physical volume of the parallel world is provided by the GARunManager as a clone of the mass
geometry. In the Const ruct () virtual method of the user's class, the pointer to this cloned world physical
volumeis available through the Get Wor | d() method defined in the base class. The user should fill the volumes
in the parallel world by using this provided world volume. For alogical volume in a parallel world, the material
pointer can be nul | pt r. Even if specified a valid material pointer, unless" | ayered mass geonetry"
switch of the A Par al | el Wor | dPr ocess constructor is set, it will not be taken into account by any physics
process.

Example 4.19. An example source code of a concrete user parallel world class.

#i ncl ude "MParallelWrld. hh"
#i ncl ude "ALogi cal Vol une. hh"
#i ncl ude " &AVPhysi cal Vol une. hh"
#i ncl ude " &4Box. hh"

#i ncl ude "APVPl acenent . hh"

MWParal | el Worl d: : MyParal | el Worl d(&G4String wor | dNane)
: GAVUser Par al | el Wor | d(wor | dNane)

{i}

MParal | el Wor | d: : ~MyParal | el Wr | d()
i

voi d MyParal |l el Worl d: : Construct ()

GAVPhysi cal Vol une* ghostWorl d
G4Logi cal Vol ume* wor | dLogi cal

Get Worl d();
ghost Wor | d- >Get Logi cal Vol une() ;

/'l place volunes in the parallel world here. For exanple ...
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/1
G4Box * ghostSolid = new GABox(" Ghost dBox", 60.*cm 60.*cm 60.*cnm);
GALogi cal Vol ume * ghost Logi cal
= new GALogi cal Vol une(ghost Solid, 0, "ChostlLogical", 0, 0, 0);
new APVPI acenent (0, GAThreeVector (), ghostLogical,
" Chost Physi cal ", worldLogical, 0, 0);
}

In case the user needs to define more than one parallel worlds, each of them must be implemented through its
dedicated class. Each parallel world should be registered to the mass geometry class using the method Regi s-

terParal | el Wor | d() available through the class G4VUser Det ect or Const r uct i on. The registration
must be done before the mass world is registed to the GARunManager .

Example 4.20. Typical implementation in themai n() to definea parallel world.

/1 RunManager construction
Il
GARunManager * runManager = new GARunManager;

/1 mass world
/1
MyDet ect or Const ructi on* massWorl d = new MyDet ect or Const ructi on;

// parallel world

/1

GAString paraWrl dNane = "Paral | el Worl d";

massWor | d- >Regi st er Par al | el Wor | d(new MyPar al | el Wor | d( par aWor | dNane) ) ;

/] set mass world to run manager
11
runManager - >Set User I ni ti al i zati on( massWorl d) ;

/] physics list

11

GAVMbdul ar Physi csLi st* physi csLi st = new FTFP_BERT;

physi csLi st - >Regi st er Physi cs(new G4Par al | el Wor | dPhysi cs( par aWor | dNane) ) ;
runManager - >Set User I ni ti al i zati on( physi csLi st);

4.7.3. Layered mass geometry

If"l ayered mass geonetry" switchof the&APar al | el Wr | dPr ocess constructor isset, that parallel
world is conceptually layered on top of the mass geometry. If more than one parallel worlds are defined, later-de-
fined world comes on top of others. A track will see the material of thetop layer, if itisnul | pt r, then one layer
beneath. Thus, user has to make sure volumesin a parallel world should have nul | pt r astheir materials except
for volumes he/she really wants to overwrite.

Example4.21. Typical implementation inthemai n() todefinealayered massgeometry.

/1 RunManager construction
Il
GARunManager * runManager = new GARunManager;

/1 mass world
/1
MyDet ect or Const ructi on* massWorl d = new MyDet ect or Const ructi on;

// parallel world

/1

GAString paraWrl dNane = "Paral | el Worl d";

mass\Wor | d- >Regi st er Par al | el Wor| d( new MyPar al | el Wor | d( par aWor | dNane) ) ;

/] set mass world to run manager
/Il
runManager - >Set User I ni ti al i zati on( massWorl d) ;

/] physics list

Il

GAVMbdul ar Physi csLi st* physi csLi st = new FTFP_BERT;

physi csLi st - >Regi st er Physi cs(new GAPar al | el Wor | dPhysi cs( par aWr | dNang, true) ) ;
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runManager - >Set User I ni ti al i zati on( physi csLi st);

For an information to advanced users, instead of using A Par al | el Wor | dPhysi c¢s physics constructor, once
can define G4Par al | el Wr | dProcess in higher physics list and assign it only to some selected kind of
particle types. In this case, this parallel world will be seen only by these kinds of particles.

4.8. Command-based scoring
4.8.1. Introduction

Command-based scoring in Geant4 utilizes parallel navigation in a parallel world volume as descibed in the pre-
vious sections. Through interactive commands, the user can define :

» A paralel world for scoring and three-dimensional mesh in it
 Arbitrary number of physics quantities to be scored and filters

After scoring (i.e. arun), the user can visualize the score and dump scoresinto afile. All available Ul commands
arelistedin List of built-in commands.

Command-based scoring is an optional functionality and the user has to explicity define its use in the mai n() .
To do this, the method (AScor i ngManager : : Get Scori ngManager () must be invoked right after the
instantiation of GARunManager . The scoring manager is a singleton object, and the pointer accessed above
should not be deleted by the user.

Example 4.22. A user mai n() to usethe command-based scoring

#i ncl ude " G4RunManager . hh"
#i ncl ude " &4Scori ngManager . hh"

int main(int argc, char** argv)

// Construct the run nanager
ARunManager * runManager = new ARunManager ;

/] Activate conmand- based scorer
GAScor i ngManager : : Get Scor i nghvanager () ;

}
4.8.2. Defining a scoring mesh

To define a scoring mesh, the user has to specify the followings.

 Shape and name of the 3D scoring mesh. Currently, box is the only available shape.

* Size of the scoring mesh. Mesh size must be specified as "half width" similar to the arguments of G4Box.

» Number of binsfor each axes. Note that too hugh number causes immense memory consumption.

» Optionaly, position and rotation of the mesh. If not specified, the mesh is positioned at the center of the world
volume without rotation.

For ascoring mesh the user can have arbitrary number of quantitiesto be scored for each cell of the mesh. For each
scoring quantity, the use can set one filter. Please note that / scor e/ fi | t er affects on the preceding scorer.
Names of scorers and filters must be unique for the mesh. It is possible to define more than one scorer of same
kind with different names and, likely, with different filters.

Defining a scoring mesh and scores in the mesh should terminate with the/ scor e/ cl ose command. The fol-
lowing sample Ul commands define a scoring mesh named boxMesh_1, size of whichis2m* 2m* 2m, and
dliced into 30 cells along each axes. For each cell energy deposition, number of steps of gamma, number of steps
of electron and number of steps of positron are scored.
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Example 4.23. Ul commandsto define a scoring mesh and scorers

# define scoring nmesh
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viewer-0 (OpenGLImmediateX)

it is possible to visualize the scores. The score is drawn on top of the mass geometry with

in (ADef aul t Li near Col or Map class, and registered to G4Scor i ngManager with the color map name
"def aul t Li near Col or Map" . The user may alternate color map by implementing a customised color map

class derived from (4VScor eCol or Map and register it to G4Scor i ngManager . Then, for each dr aw com-

mand, one can specify the preferred color map.
(/ score/ dunpAl | Quantiti esToFi | e command) to afile. The default file format isthe ssmple CSV. To

alternatethefileformat, one should overwrite GAVScor eW i t er classandregisteritto4Scor i ngvanager .
The scoring manager takes ownership of the registered writer, and will delete it at the end of the job.

By default, entries are linearly mapped to colors (gray - blue - green - red). This color mapping is implemented
It is possible to dump ascoreinamesh (/ scor e/ dunpQuant i t yToFi | e command) or all scoresin amesh

Scored data can be visualized using the commands "/ scor e/ dr awPr oj ecti on" and"/ scor e/ dr awCol -

Figure4.9. Drawing scoresin dlices (Ieft) and projection (right)
um". For details, see examples/extended/runAndEvent/REQ3.

Pleaserefer to/ exanpl es/ ext ended/ r unAndEvent / REO3 for details.

/ scorel cl ose

4.8.3. Drawing scores

Once scores are filled

the current visualization settings.

4.8.4. Writing scores to afile

#
#



Chapter 5. Tracking and Physics

5.1. Tracking
5.1.1. Basic Concepts

Philosophy of Tracking

All Geant4 processes, including the transportation of particles, are treated genericaly. In spite of the name "track-
ing", particles are not transported in the tracking category. GATr acki ngManager isan interface class which
brokerstransactions between the event, track and tracking categories. An instance of thisclass handlesthe message
passing between the upper hierarchical object, which is the event manager, and lower hierarchica objects in the
tracking category. The event manager is a singleton instance of the G4Event Manager class.

The tracking manager receives a track from the event manager and takes the actions required to finish track-
ing it. GATr acki ngManager aggregates the pointers to G4St eppi ngManager, GATraj ectory and
HAUser Tr acki ngAct i on. Alsothereisa'use’ relationto GATr ack and A4St ep.

(ASt eppi ngManager plays an essential role in tracking the particle. It takes care of all message passing be-
tween objectsin the different categories relevant to transporting a particle (for example, geometry and interactions
in matter). Its public method St eppi ng() steersthe stepping of the particle. The algorithm to handle one step
is given below.

1. If the particle stop (i.e. zero kinetic energy), each active atRest process proposes a step length in time based
on the interaction it describes. And the process proposing the smallest step length will be invoked.

2. Each active discrete or continuous process must propose a step length based on the interaction it describes.
The smallest of these step lengthsis taken.

3. Thegeometry navigator calculates " Safety", the distance to the next volume boundary. If the minimum phys-
ical-step-length from the processes is shorter than "Safety", the physical-step-length is selected as the next
step length. In this case, no further geometrical calculations will be performed.

4. If the minimum physical-step-length from the processes is longer than "Safety”, the distance to the next
boundary is re-calculated.

5. Thesmaller of the minimum physical-step-length and the geometric step length is taken.

6. All active continuous processes are invoked. Note that the particle's kinetic energy will be updated only after
all invoked processes have completed. The change in kinetic energy will be the sum of the contributions
from these processes.

7. Thecurrent track propertiesare updated before discrete processesareinvoked. Inthe sametime, the secondary
particles created by processes are stored in SecondaryList. The updated properties are:

« the kinetic energy of the current track particle (note that ‘sumEnergyChange’ is the sum of the energy
difference before and after each process invocation)
* position and time

8. Thekinetic energy of the particle is checked to see whether or not it has been terminated by a continuous
process. If the kinetic energy goes down to zero, atRest processeswill be applied at the next step if applicable.

9. Thediscrete processisinvoked. After the invocation,

* the energy, position and time of the current track particle are updated, and
« the secondaries are stored in SecondaryL.ist.

10. Thetrack is checked to see whether or not it has been terminated by the discrete process.

11. "Safety” is updated.

12. If the step was limited by the volume boundary, push the particle into the next volume.

13. Handle hit information.

14. Invoke the user intervention GAUser St eppi ngAct i on.

15. Savedatato Trajectory.

16. Update the mean free paths of the discrete processes.

17. If the parent particle is still aive, reset the maximum interaction length of the discrete process which has
occurred.
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18. One step completed.
What is a Process?

Only processes can change information of G4Tr ack and add secondary tracks via Parti cl eChange.
(AVPr ocess isabase class of all processes and it has 3 kinds of Dol t and Get Physi cal | nt eracti on
methods in order to describe interactions genericaly. If a user want to modify information of A Tr ack, he (or
she) SHOULD create a special process for the purpose and register the process to the particle.

What is a Track?

ATr ack keeps'current' information of the particle. (i.e. energy,momentum, position ,timeand so on) and has'sta-
tic' information (i.e. mass, charge, life and so on) also. Note that ATr ack keepsinformation at the beginning of
the stepwhilethe Al ongSt epDol t sarebeing invoked for the step in progress.After finishing al Al ongSt ep-
Dol t s, ATr ack isupdated. On the other hand, GATr ack is updated after each invocation of a Post St ep-
Dol t .

What is a Step?

ASt ep storesthe transient information of a step. Thisincludes the two endpoints of the step, Pr eSt epPoi nt

and Post St epPoi nt , which contain the points coordinates and the volumes containing the points. G4St ep
also storesthe changein track properties between the two points. These properties, such as energy and momentum,
are updated as the various active processes are invoked.

What is a ParticleChange?

Processesdo NOT changeany information of A Tr ack directly intheir Dol t . Instead, they proposeschangesasa
result of interactionsby using Par t i cl eChange. AftereachDol t ,Parti cl eChange updatesPost St ep-

Poi nt based on proposed changes. Then, A Tr ack is updated after finishing al Al ongSt epDol t sand after
each Post St epDol t .

5.1.2. Access to Track and Step Information

How to Get Track Information

Track information may be accessed by invoking various Get methods providedinthe A Tr ack class. For details,
seethe ATr ack. hh header filein $G41 NCLUDE. Typica information available includes:

° (X,y,Z)

» Global time (time since the event was created)

 Local time (time since the track was created)

» Proper time (timein its rest frame since the track was created )
* Momentum direction ( unit vector )

 Kinetic energy

» Accumulated geometrical track length

» Accumulated true track length

* Pointer to dynamic particle

* Pointer to physical volume

» Track ID number

» Track ID number of the parent

 Current step number

» Track status

* (x,y,2) a the start point (vertex position) of the track

e Momentum direction at the start point (vertex position) of the track
» Kinetic energy at the start point (vertex position) of the track

* Pinter to the process which created the current track
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How to Get Step Information

Step and step-point information can be retrieved by invoking various Get methods provided in the A4St ep/
ASt epPoi nt classes..

Information in G4 St ep includes:

» Pointersto Pr eSt ep and Post St epPoi nt
» Geometrical step length (step length before the correction of multiple scattering)
» True step length (step length after the correction of multiple scattering)
 Increment of position and time between Pr eSt epPoi nt and Post St epPoi nt
* Increment of momentum and energy between Pr eSt epPoi nt and Post St epPoi nt . (Note: to get the en-
ergy deposited in the step, you cannot use this 'Delta energy'. Y ou have to use 'Total energy deposit' as below.)
 Pointer to G4Tr ack
 Total energy deposited during the step - this is the sum of
« the energy deposited by the energy loss process, and
« the energy lost by secondaries which have NOT been generated because each of their energies was below
the cut threshold
 Energy deposited not by ionization during the step
» Secondary tracks created during tracking for the current track.
* NOTE: al secondaries are included. NOT only secondaries created in the CURRENT step.

Information in G4St epPoi nt (Pr eSt epPoi nt and Post St epPoi nt ) includes:

s (X,¥,21)

* (px, py, pz, EK)

* Momentum direction (unit vector)

 Pointersto physical volumes

o Safety

» Beta, gamma

» Polarization

o Step status

« Pointer to the physics process which defined the current step and its Dol t type
* Pointer to the physics process which defined the previous step and its Dol t type
» Total track length

» Global time (time since the current event began)

» Locd time (time since the current track began)

» Proper time

How to Get "particle change"

Particle change information can be accessed by invoking various Get methods provided in the
AParticl eChange class. Typica information available includes:

« final momentum direction of the parent particle

« final kinetic energy of the parent particle

« final position of the parent particle

« final global time of the parent particle

* final proper time of the parent particle

» final polarization of the parent particle

* status of the parent particle (ATr ack St at us)

* true step length (thisis used by multiple scattering to store the result of the transformation from the geometrical
step length to the true step length)

* local energy deposited - this consists of either
 energy deposited by the energy |oss process, or
« the energy lost by secondaries which have NOT been generated because each of their energies was below

the cut threshold.
» number of secondaries particles
* list of secondary particles (list of ATr ack)
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5.1.3. Handling of Secondary Particles

Secondary particlesare passed as A Tr ack sfrom aphysicsprocesstotracking. G4Par t i ¢l eChange provides
the following four methods for a physics process:

» AddSecondary( (ATrack* aSecondary )

» AddSecondary( ADynami cParticl e* aSecondary )

* AddSecondary( (ADynami cParticl e* aSecondary, GAThreeVector position )
* AddSecondary( ADynami cParticle* aSecondary, (A4double tine)

Inall but thefirst, the construction of G4 Tr ack isdonein the methods using information given by the arguments.

5.1.4. User Actions

There are two classes which allow the user to intervene in the tracking. These are:

 AUser Tracki ngActi on, and
e (AUser St eppi ngAct i on.

Each provides methods which allow the user access to the Geant4 kernel at specific pointsin the tracking.

Note-1: Users SHOULD NOT (and CAN NOT) change G4 Tr ack in User St eppi ngAct i on. Only the ex-
ception isthe Tr ack St at us.

Note-2: Users have to be cautious to implement an unnatural/unphysical action in these user actions. See the
section Killing Tracksin User Actions and Energy Conservation for more details.

5.1.5. Verbose Outputs

The verbose information output flag can be turned on or off. The amount of information printed about the track/
step, from brief to very detailed, can be controlled by the value of the verbose flag, for example,

G4Ul nanager* U = AU manager: : Get Ul poi nter();

Ul - >Appl yCommand( "/ t r acki ng/ ver bose 1");

5.1.6. Trajectory and Trajectory Point

G4Trajectory and G4TrajectoryPoint

ATraj ectory and ATr aj ect or yPoi nt are default concrete classes provided by Geant4, which are de-
rived fromthe G4VTr aj ect ory and G4VTr aj ect or yPoi nt baseclasses, respectively. A G4Tr aj ect ory
class object is created by G4Tr acki ngManager when aG4Tr ack is passed from the ZAEvent Manager .
(ATr aj ect or y hasthe following data members:

* ID numbers of the track and the track's parent
* particle name, charge, and PDG code
» acollection of ATr aj ect or yPoi nt pointers

(ATr aj ect or yPoi nt corresponds to a step point along the path followed by the track. Its position is given
by aAThr eeVect or. A GATr aj ect or yPoi nt class object is created in the AppendSt ep() method of
(ATr aj ect or y and this method isinvoked by (ATr acki ngManager at the end of each step. Thefirst point
is created when the A Tr aj ect or y is created, thusthefirst point is the original vertex.

The creation of a trajectory can be controlled by invoking
GATracki ngManager : : Set St oreTr aj ect ory( G4bool ). The Ul command /tracking/storeTrajec-
tory bool does the same. The user can set this flag for each individual track from higher
HAUser Tracki ngActi on: : PreUser Tracki ngActi on() method.
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The user should not create trgjectories for secondaries in a shower due to the large amount of memory
consumed.

All the created trajectories in an event are stored in G4Tr aj ect or yCont ai ner class object and this ob-
ject will be kept by GAEvent . To draw or print trajectories generated in an event, the user may invoke the
Dr awTr aj ect ory() or ShowTr aj ect ory() methods of AVTr aj ect ory, respectively, from his/her
HAUser Event Acti on: : EndOF Event Act i on( ) . The geometry must be drawn before the trajectory draw-
ing. The color of the drawn trajectory depends on the particle charge:

* negative: red
* neutral: green
* positive: blue

Due to improvementsin &ANavi gat or , atrack can execute more than one turn of its spiral trajectory
without being broken into smaller steps as long as the trajectory does not cross a geometrical boundary.
Thus adrawn trajectory may not be circular.

Customizing trajectory and trajectory point

(ATrack and GASt ep are transient classes; they are not available at the end of the event. Thus, the concrete
classes AVTr aj ect ory and AVTr aj ect or yPoi nt arethe only ones a user may employ for end-of-event
analysisor for persistency. As mentioned above, the default classes which Geant4 provides, i.e. G4Tr aj ect ory
and (ATr aj ect or yPoi nt , have only very primitive quantities. The user can customize his/her own trajectory
and trajectory point classes by deriving directly from the respective base classes.

To use the customized trajectory, the user must construct a concrete trajectory class object in the
HAUser Tracki ngActi on: : PreUser Tracki ngActi on() method and make its pointer available to
(ATr acki ngManager by using the Set Tr aj ect or y() method. The customized trajectory point class ob-
ject must be constructed in the AppendSt ep() method of the user'simplementation of the trgjectory class. This
AppendSt ep() method will be invoked by GATr acki ngManager .

To customize trajectory drawing, the user can override the Dr awTr aj ect or y() method in his’/her own trajec-
tory class.

When a customized version of GA4Trgectory declares any new class variables, operator new and opera-
tor delete must be provided. It is also useful to check that the allocation size in operator new is equa to
si zeof ((ATr aj ect ory) . These two points do not apply to G4VTr aj ect or y because it has no operator
new or operator delete.

5.2. Physics Processes

Physics processes describe how particlesinteract with amaterial. Seven major categories of processesare provided
by Geant4:

electromagnetic,
hadronic,

decay,
photolepton-hadron,
optical,
parameterization, and
transportation.

Noo,r~wNPE

The generalization and abstraction of physics processesisakey issuein the design of Geant4. All physics process-
es are treated in the same manner from the tracking point of view. The Geant4 approach enables anyone to cre-
ate a process and assign it to a particle type. This openness should allow the creation of processes for novel, do-
main-specific or customised purposes by individuals or groups of users.
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Each process has two groups of methods which play an important role in tracking, Get Physi cal | nt er ac-
ti onLengt h (GPIL) and Dol t . The GPIL method givesthe step length from the current space-time point to the
next space-time point. It does this by cal culating the probability of interaction based on the process's cross section
information. At theend of thisstepthe Dol t method should beinvoked. The Dol t method implementsthe details
of the interaction, changing the particle's energy, momentum, direction and position, and producing secondary
tracks if required. These changes are recorded as G4VPar t i cl eChange objects(see Particle Change).

G4VProcess

GAVPr ocess isthe base class for al physics processes. Each physics process must implement virtual methods
of G4VPr ocess which describe the interaction (Dolt) and determine when an interaction should occur (GPIL).
In order to accommaodate various types of interactions G4VPr ocess providesthree Dol t methods:

» AVParticl eChange* Al ongSt epDolt( const ATrack& track, const GASt ep& st ep-
Data )

This method isinvoked while 4St eppi ngManager is transporting a particle through one step. The corre-
sponding Al ongSt epDol t for each defined processis applied for every step regardl ess of which process pro-
duces the minimum step length. Each resulting change to the track information is recorded and accumulated in
ASt ep. After al processes have been invoked, changes dueto Al ongSt epDol t are applied to ATr ack,
including the particle rel ocation and the safety update. Note that after the invocation of Al ongSt epDol t , the
endpoint of the GATr ack object isin anew volume if the step was limited by a geometric boundary. In order
to obtain information about the old volume, G4St ep must be accessed, since it contains information about
both endpoints of a step.
e AVParticl eChange* Post StepDolt( const (ATrack& track, const GASt ep& step-

Data )

This method is invoked at the end point of a step, only if its process has produced the minimum step length,
or if the processis forced to occur. ATr ack will be updated after each invocation of Post St epDol t, in
contrast to the Al ongSt epDol t method.

e AVParticl eChange* AtRestDolt( const (ATrack& track, const GAStep& step-
Data )

This method is invoked only for stopped particles, and only if its process produced the minimum step length
or the processisforced to occur.

For each of the above Dol t methods GAVPr ocess provides a corresponding pure virtual GPIL method:

* Adoubl e Post St epCet Physi cal I nteracti onLength( const GATrack& track,
(Adoubl e previ ousSt epSi ze, AForceCondition* condition )

This method generates the step length allowed by its process. It also provides a flag to force the interaction to
occur regardless of its step length.

» (4doubl e Al ongSt epGet Physi cal I nteracti onLength( const ATrack& track,
GAdoubl e previ ousSt epSi ze, Adoubl e currentM ni munttep, Adoubl e& pro-
posedSaf ety, (AGPI LSel ection* selection )

This method generates the step length allowed by its process.
* 4doubl e At Rest Get Physi cal I nteracti onLengt h( const ATrack& track,
GAFor ceCondi tion* condition )

This method generates the step length in time allowed by its process. It aso provides a flag to force the inter-
action to occur regardless of its step length.

Other pure virtual methodsin G4VPr ocess follow:
 virtual (4bool [|sApplicable(const G4Particl eDefinition&)

returns true if this process object is applicable to the particle type.
e virtual void PreparePhysicsTabl e(const G4Particl eDefinition&) and
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e virtual void Buil dPhysicsTabl e(const G4Particl eDefinition&)

ismessaged by the process manager, whenever cross section tables should be prepared and rebuilt due to chang-
ing cut-off values. It is not mandatory if the process is not affected by cut-off values.

e virtual void StartTracki ng() and

e virtual void EndTracking()

are messaged by the tracking manager at the beginning and end of tracking the current track.

Other base classes for processes

Specialized processes may be derived from seven additional virtual base classes which are themselves derived
from G4VPr ocess. Three of these classes are used for simple processes:

AVRest Process

Processes using only the At Rest Dol t method.

example: neutron capture
AVDi scr et eProcess

Processes using only the Post St epDol t method.

example: compton scattering, hadron inelastic interaction
The other four classes are provided for rather complex processes:
&AVCont i nuousDi scr et eProcess

Processes using both Al ongSt epDol t and Post St epDol t methods.

example: transportation, ionisation(energy loss and deltaray)
(AVRest Di scr et eProcess

Processes using both At Rest Dol t and Post St epDol t methods.

example: positron annihilation, decay (both in flight and at rest)
AVRest Cont i nuousProcess

Processes using both At Rest Dol t and Al ongSt epDol t methods.
AVRest Cont i nuousDi scr et eProcess

Processesusing At Rest Dol t , Al ongSt epDolt and PostStepDolt methods.

Particle change

GHAVPar ti cl eChange and its descendants are used to store the final state information of the track, including
secondary tracks, which has been generated by the Dol t methods. Theinstanceof G4VPar t i cl eChange isthe
only object whose information is updated by the physics processes, hence it is responsible for updating the step.
The stepping manager collects secondary tracks and only sends requests via particle change to update G4 St ep.

HAVPar ti cl eChange is introduced as an abstract class. It has a minima set of methods for updating
(ASt ep and handling secondaries. A physics process can therefore define its own particle change derived from
AVPar ti cl eChange. Three pure virtual methods are provided,

 virtual GA4Step* Updat eStepFor At Rest ( GASt ep* step),
 virtual G4Step* Updat eStepFor Al ongSt ep( A4St ep* step ) and
 virtual G4Step* Updat eSt epFor Post St ep( GA4St ep* step),
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which correspond to thethree Dol t methods of G4VPr ocess. Each derived class should implement these meth-
ods.

5.2.1. Electromagnetic Interactions

This section summarizes the el ectromagnetic (EM) physics processes which are provided with Geant4. Extended
information are avalable at EM web pages. For details on the implementation of these processes please refer to
the Physics Reference Manual.

To use the electromagnetic physics data files are needed. The user should set the environment variable
GALEDATA to the directory with this files. These files are distributed together with Geant4 and can be obtained
via Geant4 download web page. For Geant4 version 10.3 GAEMLOWS6.50 data set is required.

5.2.1.1. Electromagnetic Processes

Thefollowing is a summary of the electromagnetic processes available in Geant4.

Photon processes

* Gamma conversion (also called pair production, class name G4GanmaConver si on)

« Photo-electric effect (class name G4Phot oEl ect ri cEf f ect)

» Compton scattering (class name G4Conpt onScat t eri ng)

» Rayleigh scattering (class name G4Ray| ei ghScat t eri ng)

e Muon pair production (class name GAGanmmaConver si onToMions)

Electron/positron processes

« lonisation and deltaray production (class name (4el oni sat i on)

« Bremsstrahlung (class name G4eBr ensst r ahl ung)

e et+e- pair production (class name (4ePai r Pr oduct i on)

* Multiple scattering (class name G4eMul ti pl eScat t eri ng)

 Positron annihilation into two gammas (class name GAepl usAnni hi | ati on)

 Positron annihilation into two muons (class name G4Anni hi ToMuPai r)

* Positron annihilation into hadrons (class name GAeeToHadr ons)

Muon processes

« lonisation and deltaray production (class name G4AMul oni sat i on)

e Bremsstrahlung (class name GAMUBr ensst r ahl ung)

e ete- pair production (class name GAMuPai r Pr oduct i on)

» Multiple scattering (class name GAMuMul ti pl eScat t eri ng)

Hadron/ion processes

* lonisation (class name (4hl oni sat i on)

« lonisation for ions (class name (4i onl oni sat i on)

« lonisation for heavy exotic particles (class name G4hhl oni sat i on)

« lonisation for classical magnetic monopole (class name G4npl | oni sat i on)

e Multiple scattering (class name GAhMul ti pl eScat t eri ng)

¢ Bremsstrahlung (class name G4hBr ensst r ahl ung)

e ete- pair production (class name &4hPai r Pr oduct i on)

Coulomb scattering processes

« Alternative process for simulation of single Coulomb scattering of all charged particles (class
ACoul onbScat t eri ng)

e Alternative process for simulation of single Coulomb scattering of ions (class
AScr eenedNucl ear Recoi | )

Processes for simulation of polarized electron and gamma beams

e Compton scattering of circularly polarized gamma beam on polarized target (class
(APol ari zedConpt on)

e Pair production induced by circulaly  polarized gamma  beam (class
APol ari zedGamaConver si on)

e Photo-electric  effect induced by circularly polarized gamma beam (class
APol ari zedPhot oEl ectri cEf fect)

name

name

name

name

name

« Bremsstrahlung of polarized electrons and positrons (class name G4ePol ar i zedBr ensst r ahl ung)

« lonisation of polarized electron and positron beam (class name G4ePol ar i zedl oni sati on)
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« Annihilation of polarized positrons (class name G4epl usPol ari zedAnni hi | ati on)

» Processes for smulation of X-rays and optical protons production by charged particles
» Synchrotron radiation (class name G4Synchr ot r onRadi at i on)

» Transition radiation (classname GATr ansi t i onRadi at i on)
e Cerenkov radiation (class name G4Cer enkov)
« Scintillations (classname ASci nti | | ati on)

» The processes described above use physics model classes, which may be combined according to particle energy.
It is possible to change the energy range over which different models are valid, and to apply other models
specific to particle type, energy range, and G4Region. The following alternative models are available in the
standard EM sub-library:

« lonisation in thin absorbers (class name 4 PAI Model )

« lonisation in thin absorbers (class name G4PAI Phot Model )

« |onisation in low-density media (class name G4Br aggl onGasMbdel )

« lonisation in low-density media (class name (ABet heBl ochl onGasModel )
¢ Multiple scattering (class name G4Ur banMscMbdel )

< Multiple scattering (class name G4Goudsm t Saunder sonMscModel )

» Multiple scattering (class name G4\Wwent zel VI Model )

» Multiple scattering (class name G4LowEVent zel VI Mbdel )

 Single scattering (class name G4eCoul onbScat t er i nghbdel )

« Single scattering (class name (4eSi ngl eCoul onbScat t eri nghbdel )

It is recommended to use physics constructor classes provided with reference physics lists (in subdirectory
sour ce/ physics_lists/constructors/el ectromagneti c of the Geant4 source distribution):

 default EM physics, multiple scattering is simulated with "UseSafety” type of step limitation by combined
AWent zel VI Model and GdeCoul onbScat t eri nghbdel for all particle types, for of e+- below 100
MeV AUr banMscModel isused, physicstablesare built from 100 eV to 100 TeV, 7 bins per energy decade
of physicstables are used (class name AEntt andar dPhysi cs)

« optional EM physics providing fast but less acurate electron transport due to " Simple" method of step limitation
by multiple scattering, reduced step limitation by ionisation process and enabled "ApplyCuts' option (class
name AEnSt andar dPhysi cs_opti onl)

« optional EM physics providing fast but |ess acurate electron transport due to " Simple" method of step limitation
by multiple scattering and reduced step limitation by ionisation process, G4Gener at or 2BS angular generator
for bremsstrahlung (class name GAEntst andar dPhysi cs_opt i on2)

* EM physics for simulation with high accuracy due to "UseDistanceToBoundary” multiple scattering step
limitation and usage of G4Ur banMscMbdel for all charged particles, reduced finalRange parameter of
stepping function optimized per particle type, aternative models GALi ver nor ePhot oEl ect ri cMbdel
for photoelectric effect, AKI ei nNi shi navbdel for Compton scattering, enabled Rayleigh scattering,
enabled fluorescence, enabled nuclear stopping, GAGener at or 2BS angular generator for bremsstrahlung,
(Al onPar anet eri sedLossMdel forionionisation, 20 bins per energy decade of physicstables, and 10
eV low-energy limit for tables (class name GAEnftst andar dPhysi cs_opt i on3)

* Combination of EM models for simulation with high accuracy includes "UseDistanceToBound-
ary" multiple scattering step limitation, RangeFact or = 0. 02, reduced finalRange pa-
rameter of stepping function optimized per particle type, enabled Rayleigh scattering, en-
abled fluorescence, enabled nuclear stopping, enable accurate angular generator for ionisa
tion models, GALi ver nor ePhot oEl ectri cModel , GALowEPConpt onModel below 20 MeV,
GAPenel opeGammaConver si onModel below 1 GeV, (APenel opel oni sati onModel froelectrons
and positronsbelow 100 keV, 41 onPar anet er i sedLossModel forionionisation, &AGener at or 2BS
angular generator for bremsstrahlung, and 20 bins per energy decade of physics tables, (class name
HAEntt andar dPhysi cs_opti on4)

* Models based on Livermore data bases for electrons and gamma, enabled Rayleigh scattering, en-
abled fluorescence, enabled nuclear stopping, enable accurate angular generator for ionisation models,
Al onPar anet eri sedLossMdel for ion ionisation, and 20 bins per energy decade of physics tables,
(HAEnLi ver nor ePhysi ¢s);

» Models for smulation of linear polarized gamma based on Livermore data bases for electrons and gamma
(GAENnLi ver nor ePol ar i zedPhysi cs);

* Models based on Livermore data bases and new model for Compton scattering G4ALowEPConpt onModel
new low-energy model of multiple scatetring GALowEVWenzel MscModel (GAEnLowEPPhysi cs);
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» Penelope2008 models for electrons, positrons and gamma, enabled Rayleigh scattering, enabled
fluorescence, enabled nuclear stopping, enable accurate angular generator for ionisation models,
(Al onPar anet eri sedLossMdel for ion ionisation, and 20 hins per energy decade of physics tables,
(AEnPenel opePhysi cs);

e Experimenta physics with multiple scattering of e+- below 100 MeV simulated by
A Goudsm t Saunder sonMscMbdel is done on top of the default EM physics
(HAEntt andar dPhysi csGS);

e Experimental physics with multiple scattering of e+- below 100 MeV simulated by a combination of
AAWent zel VI Model and GAeCoul onbScatt eri nghvbdel is done on top of the default EM physics
(HAEntt andar dPhysi csGS);

» Experimental physics with single scattering models instead of multiple scattering is done on top of the
default EM physics, for al leptons and hadrons G4eCoul onbScat t eri nghMbdel is used, for ions -
A1 onCoul onbScat t eri nghvbdel (GAEnSt andar dPhysi csSS);

» Low-energy Geant4-DNA physics (GAEnDNAPhysi cs).

 Alternative low-energy Geant4-DNA physics constructors (AEnmDNAPhysi cs_opt i onX, where X is1to
5).Refer to Geant4-DNA section.

Examples of the registration of these physics constructor and construction of alternative combinations of options
are shown in basic, extended and advanced examples, which can be found in the subdirectoriesexanpl es/ ba-
si c,exanpl es/ ext ended/ el ect r omagnet i c andexanpl es/ advanced of the Geant4 source distri-
bution. Examplesillustrating the use of electromagnetic processes are available as part of the Geant4 release.

Options are available for steering of electromagnetic processes. These options may be invoked ei-
ther by Ul commands or by the new C++ interfface class G4EnParaneters. The interface
AEnPar anet ers: : | nst ance() isthread safe, EM parameters are shared between threads, and parameters
are shared between all EM processes. Parameters may be modified at G4State Prelnit or G4State Idle states of
Geant4. Note, that when any of EM physics constructor is instantiated a default set of EM parameters for this
EM physics configuration is defained. So, parameters modification should be applied only after. This class has
the following public methods:

* Dump()

» Streaminfo(std::ostream& )

» SetDefaults()

* Setl ossFHluctuations(G4bool)

* SetBuildCSDARange(G4bool)

 SetlL PM(G4bool)

» SetSpline(G4bool)

» SetCutAsFinalRange(G4bool)

» SetApplyCuts(G4bool)

 SetFluo(G4bool val)

» SetBeardenFluoDir(G4bool val)

» SetAuger(G4bool val)

» SetAugerCascade(G4bool val)

» SetPixe(G4bool val)
 SetDeexcitationlgnoreCut(G4bool val)

* Setl ateral Displacement(G4bool val)

» SetMuHadL ateral Displacement(G4bool val)
» Setl atDisplacementBeyondBoundary(G4bool val)
» ActivateAngularGeneratorForl onisation(G4bool val)
» SetUseMottCorrection(G4bool val)

» Setintegral (G4bool val)

» SetBirksActive(G4bool val)

» SetEmSaturation(G4EmSaturation*)

» SetMinSubRange(G4double)

e SetMinEnergy(G4double)

» SetMaxEnergy(G4double)

o SetMaxEnergyForCSDARange(G4double)

» Setl owestEnergy(G4double)
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» Setl owestMuHadEnergy(G4double)

» SetLinearLossLimit(G4double)

e SetBremsstrahlungTh(G4double)

* Setl ambdaFactor(G4double)

 SetFactorForAngleLimit(G4double)

e SetMscThetal imit(G4double)

» SetMscRangeFactor(G4double)

» SetMscMuHadRangeFactor(G4double)

» SetMscGeomFactor(G4double)

» SetMscSkin(G4double)

 SetStepFunction(G4double, G4doubl€)

* SetStepFunctionMuHad(G4double, G4double)

* SetNumberOfBing(G4int)

 SetNumberOfBinsPerDecade(G4int)

o SetVerbose(G4int)

» SetWorkerV erbose(G4int)

e SetMscStepLimitType(GAMscStepLimitType val)

e SetMscMuHadStepLimitType(G4AMscStepLimitType val)

* SetNuclearFormFactor Type(G4NuclearFormFactor Type val)

* SetPI X ECrossSectionModel (const G4String&)

 SetPI X EElectronCrossSectionM odel (const G4String& )

» AddPAIModel(const G4String& particle, const G4String& region, const G4String& type)
» AddMicroElecModel (const G4String& region)

» AddDNA (const G4String& region, const G4String& type)

e AddMsc(const G4String& region, const G4String& physics type)
 SetSubCutoff(G4bool, const G4String& region)

» SetDeexActiveRegion(const G4String& region, G4bool, G4bool, G4bool)
 SetProcessBiasingFactor(const G4String& process, G4double, G4bool)
 ActivateForcedl nteraction(const G4String& process, const G4String& region, G4double, G4bool)
 ActivateSecondaryBiasing(const G4String& process, const G4String& region, G4double, G4double)

The old interface class GAEnPr ocessOpt i ons is still available but but is strongly recommended not to be
used. It will be removed in the next major release.

The corresponding Ul command can be accessed in the Ul subdirectories"/process/el oss’, "/process’em”, and "/
process/msc”. The following types of step limitation by multiple scattering are available:

» fSimple - simplified step limitation (used in _EMV and _EMX Physics Lists)

» fUseSafety - default

» fUseDistanceToBoundary - advance method of step limitation used in EM examples, required parameter skin
> 0, should be used for setup without magnetic field

» fUseSafetyPlus - advanced method may be used with magnetic field

G4EmCalculator isaclass which provides access to cross sections and stopping powers. This class can be used
anywhere in the user code provided the physics list has already been initialised (G4State Idle). GAEmCalculator
has "Get" methods which can be applied to materials for which physics tables are already built, and "Compute"
methods which can be applied to any material defined in the application or existing in the Geant4 internal database.
The public methods of this class are:

e GetDEDX (kinEnergy,particle,material,G4Region region=0)

» GetRangeFromRestrictedDEDX (kinEnergy,particle material,G4Region* region=0)
» GetCSDARange(kinEnergy,particle,material,G4Region* region=0)

» GetRange(kinEnergy,particle material,G4Region* region=0)

» GetKinEnergy(range,particle material,G4Region* region=0)

» GetCrosSectionPerV olume(kinEnergy,particle material,G4Region* region=0)
 GetShelllonisationCrossSectionPerAtom(particle,Z,shell kinEnergy)

» GetMeanFreePath(kinEnergy,particle material,G4Region* region=0)

» PrintDEDXTable(particle)

 PrintRangeTable(particle)
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* PrintinverseRangeT able(particle)

» ComputeDEDX (kinEnergy,particle,process,material,cut=DBL_MAX)

» ComputeElectronicDEDX (kinEnergy,particle material,cut=DBL_MAX)

e ComputeNuclearDEDX (kinEnergy,particle,material,cut=DBL_MAX)

» ComputeTotal DEDX (kinEnergy,particle,material,cut=DBL_MAX)

» ComputeCrossSectionPerV olume(kinEnergy,particle,process,material ,cut=0)
» ComputeCrossSectionPerAtom(kinEnergy,particle,process,Z,A,cut=0)

» ComputeGammaA ttenuationL ength(kinEnergy,material)

» ComputeShelll oni sationCrossSectionPerAtom(particle,Z,shell kinEnergy)
» ComputeM eanFreePath(kinEnergy,particle,process,material ,cut=0)

» ComputeEnergyCutFromRangeCut(range,particle,material)

» FindParticle(const G4String&)

* Findlon(Gdint Z, Gdint A)

e FindMaterial(const G4String&)

» FindRegion(const G4String& )

» FindCouple(const GAMaterial*, const G4Region* region=0)

o SetVerbose(G4int)

For these interfaces, particles, materials, or processes may be pointers or strings with names.

5.2.1.2. Low Energy Electromagnetic Library

A physical interactionisdescribed by aprocess classwhich can handle physicsmodels, described by model classes.
The following is a summary of the Low Energy Electromagnetic physics models available in Geant4. Further
information is available in the web pages of the Geant4 Low Energy Electromagnetic Physics Working Group,
accessible from the Geant4 web site, “who we are” section, then “working groups”.

The physics content of these models is documented in the Geant4 Physics Reference Manual. They are based on
the Livermore data library, on the ICRU73 data tables or on the Penelope2008 Monte Carlo code. They adopt the
same software design as the "standard" Geant4 electromagnetic models.

Examples of the registration of physics constructor with low-energy electromagnetic models are shown in Geant4
extended examples (exanpl es/ ext ended/ el ect r onagneti ¢ in the Geant4 source distribution). Ad-
vanced examples (exanpl es/ advanced in the Geant4 source distribution) illustrate alternative instantiation
of these processes. Both are available as part of the Geant4 rel ease.

5.2.1.3. Production Cuts

Remember that production cuts for secondaries can be specified as range cuts, which are converted at initialisation
time into energy thresholds for secondary gamma, electron, positron and proton production. The cut for protonis
applied by elastic scattering processes to aa recoil ions.

A range cut valueis set by default to 0.7 mm in Geant4 reference physics lists. This value can be specified in the
optional SetCuts() method of the user Physicslist or viaUl commands. For eg. to set arange cut of 10 micrometers,
one can Use:

/run/setCut 0.01 mm
or, for agiven particle type (for eg. electron),
/run/ set Cut For AG venParticle e- 0.01 mm

If arange cut equivalent to an energy lower than 990 eV is specified, the energy cut is still set to 990 €V. In order
to decrease this value (for eg. down to 250 eV, in order to simulate low energy emission lines of the fluorescence
spectrum), one may use the following Ul command before the "/run/initialize" command:
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/ cut s/ set LowEdge 250 eV
or aternatively directly in the user Physicslist, in the optional SetCuts() method, using:
G4Pr oduct i onCut sTabl e: : Get Product i onCut sTabl e() - >Set Ener gyRange( 250*eV, 1*GeV);

A command isalso availablein order to disable usage of production threshold for fluorescence and Auger electron
production:

/ process/ eml deexci t ati onl gnoreCut true

5.2.1.4. Angular Generators

For part of EM processes it is possible to factorise out sampling of secondary energy and direction. Using an
interface AVEnivbdel baseclassSet Angul ar Di stri buti on( AVEMAngul ar Di stri bution*) itis
possible to substitute default angular generator of a model. Angular generators in standard and lowenergy sub-
packages follow the same abstract interface.

For photoelectric models several angular generators are available:

e G4SauterGavrilaAngularDistribution (default);
» GA4PhotoElectricAngularGeneratorSauterGavril a;
» G4PhotoElectricAngularGeneratorPol ari zed.

For bremsstrahlung models following angular generators are available:

e G4DipBustGenerator (default);

* G4AModifiedTsai;

* GAGenerator2BS;

* GAGenerator2BN;

» G4Penel opeBremsstrahlungAngular.

For models of ionisation a new optional angular generator is available:

» G4DetaAngle.

5.2.1.5. Electromagnetics secondary biasing

It may be useful to create more than one secondary at an interaction. For example, electrons incident on a target
in amedical linac produce photons through bremsstrahlung. The variance reduction technique of bremsstrahlung
splitting involves choosing N photons from the expected distribution, and assigning each aweight of 1/N.

Similarly, if the secondaries are not important, one can kill them with asurvival probability of 1/N. The weight of
the survivorsisincreased by afactor N. Thisis known as Russian roulette.

Neither biasing technique is applied if the resulting daughter particles would have aweight below 1/N, in the case
of brem splitting, or above 1, in the case of Russian roulette.

These techniques can be enabled in Geant4 el ectromagnetics with the macro commands

/ process/ em set SecBi asi ng processNane Regi on factor energyLimt energyUnit

where: processName is the name of the process to apply the biasing to; Region is the region in which to apply
biasing; factor isthe inverse of the brem splitting or Russian roul ette factor (1/N); energyLimit energyUnit isthe
high energy limit. If the first secondary has energy above thislimit, no biasing is applied.

For example,
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/ process/ em set SecBi asi ng eBrem target 10 100 MeV

will result in electrons undergoing bremsstrahlung in the target region being split 10 times (if the first photon
sampled has an energy less than 100 MeV).

Note that the biasing needs to be specified for each process individually. To apply Russian Roulette to daughter
electrons from interactions of photons, issue the macro command for the processes phot, compt, conv.

Reference: BEAMnrc UsersManual, D.W.O Rogers, B. Walters, |. Kawrakow. NRCC Report PIRS-0509(A)revL,
available at http://www.irs.inms.nrc.calinms/irs'BEAM/beamhome.html

5.2.1.6. Livermore Data Based Models

» Photon models
« Photo-electric effect (class GALi ver nor ePhot oEl ect ri cModel )
* Polarized Photo-electric effect (class ALi ver mor ePol ar i zedPhot oEl ectri cMbdel )
e Compton scattering (class GALi ver nor eConpt onModel )
« Compton scattering (class GALowEPConpt onbdel )
» Polarized Compton scattering (class GALi ver nor ePol ar i zedConpt onhbdel )
* Rayleigh scattering (class G4Li ver nor eRayl ei ghMbdel )
» Polarized Rayleigh scattering (class G4Li ver nor ePol ari zedRayl ei ghMbdel )
e Gamma conversion (also called pair production, class G4Li ver nor eGammaConver si onModel )
« Nuclear gamma conversion (class G4ALi ver nor eNucl ear GammaConver si onModel )
 Radiative correction for pair production (class G4Li ver mor eGanmaConver si onModel RC)
 Polarized gamma conversion (class GALi ver nor ePol ari zedGammaConver si onhbdel )
» Electron models
» Bremsstrahlung (class G4Li ver nor eBr ensst r ahl unghbdel )
« lonisation and deltaray production (class G4Li ver nor el oni sat i onMbdel )

5.2.1.7. ICRU73 Based lon Model

lonisation and delta ray production (class G4l onParametrisedL ossModel)

The ion model uses data files initially converted from the ICRU 73 report. Later authors of the ICRU 73 report
provided Geant4 recomputated tables for more combinations of projectile and target ions. In 2015 newer calcu-
lation results were provided. The algorith of selection of ion stopping powers applying following condition: if a
projectile/target combionation exists in the data base and the projectile energy is below 1 GeV/nucleon then tab-
ulated datais used, otherwise applies a Bethe-Bloch based formalism. For compounds, ICRU 73 stopping powers
are employed if the material name coincides with the name of Geant4 NIST materials (e.g. G4_WATER). Ele-
mental materials are matched to the corresponding ICRU 73 stopping powers by means of the atomic number of
the material. The material name may be arbitrary in this case. For alist of applicable materials, the user isreferred
to the ICRU 73 report.

Themodel requiresdatafilesto be copied by the user to his’her code repository. These filesare distributed together
with the Geant4 release. The user should set the environment variable GALEDATA to the directory where he/
she has copied thefiles.

The model is dedicated to be used with the Gdionlonisation process and its applicability is restricted to
GA4Genericlon particles. Theion model is not used by default by this process and must be instantiated and regis-
tered by the user:

G4i onl oni sati on* ionloni = new G4ionlonisation();
ionloni -> SetEm\vbdel (new G4l onPar anet ri sedLossMdel ());

5.2.1.8. Penelope2008 Based Models

» Photon models
« Compton scattering (class &APenel opeConpt onMbdel )
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» Rayleigh scattering (class G4Penel opeRayl ei ghibdel )
* Gamma conversion (also called pair production, class GPenelopeGammaConversionModel)
» Photo-electric effect (class ZAPenel opePhot oEl ectri cModel )
» Electron models
» Bremsstrahlung (class G4Penel opeBr ensst r ahl unghodel )
* lonisation and deltaray production (class G4Penel opel oni sat i onModel )
» Positron models
» Bremsstrahlung (class G4Penel opeBr ensst r ahl unghodel )
* lonisation and deltaray production (class G4Penel opel oni sat i onModel )
 Positron annihilation (class class G4Penel opeAnnihilationModel)

All Penelope models can be applied up to amaximum energy of 100 GeV, although it is advisable not to use them
above afew hundreds of MeV.

Options are available in the all Penelope Models, allowing to set (and retrieve) the verbosity level of the model,
namely the amount of information which is printed on the screen.

» SetVerbositylLevel (G4int)
» GetVerbosityLevel()

The default verbosity level is 0 (namely, no textual output on the screen). The default value should be used in
genera for normal runs. Higher verbosity levels are suggested only for testing and debugging purposes.

The verbosity scale defined for all Penelope processes is the following:

» 0= no printout on the screen (default)

» 1=lissuewarningsonly in the case of energy non-conservation in the final state (should never happen)
» 2 =reportsfull details on the energy budget in the final state

» 3 =writes also informations on cross section calculation, data file opening and sampling of atoms

4 = issues messages when entering in methods

5.2.1.9. Very Low energy Electromagnetic Processes (Geant4-DNA
extension)

The Geant4 low energy €lectromagnetic Physics package has been extended down to energies of afew electron-
Volts suitable for the ssmulation of radiation effects in liquid water for applications in micro/nanodosimetry at
the cellular and sub-cellular level. These developments take placein the framework of the on-going Geant4-DNA
project (see more in the Geant4-DNA web pages or in the web pages of the Geant4 Low Energy Electromagnetic
Physics Working Group).

The Geant4-DNA process and model classes apply to el ectrons, protons, hydrogen, alphaparticlesand their charge
States.

Electron processes and models

* Elastic scattering :
 process classis GADNAElastic
o three  adternative  model classes ae GADNA ScreenedRutherfordElasticM odel or
GA4DNA ChampionElasticModel (default) or GADNAUeharaScreenedRutherfordEl asticM odel
» Excitation
e process class is GADNAEXxcitation
« model classis GADNABornExcitationModel (default) or GADNAEmfietzoglouExcitationM odel
* lonisation
 process classis GADNAIonisation
« model classis GADNABornlonisationModel (default) or GADNAEmfietzogloul onisationM odel
Attachment
e process class is G4ADNAAttachment
* model classis GADNAMeltonAttachmentM odel
Vibrationa excitation
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 process classis GADNAVibExcitation
* model classis GADNA SancheExcitationM odel

Proton processes and models

* Elastic scattering :
* process classis GADNAElastic
» GADNAIlonElasticModel
» Excitation
 process classis GADNAEXxcitation
e two complementary model classes are GADNAMillerGreenExcitationModel (below 500 keV) and
GADNABornExcitationModel (above)
* lonisation
* process classis GADNAIlonisation
e two complementary model classes are G4DNARuddionisationModel (below 500 keV) and
GADNABornlonisationModel (above)
» Charge decrease
* process classis GADNAChargeDecrease
« model classis GADNADingfelderChargeDecreaseM odel

Hydrogen processes and models

* Elastic scattering :
 process classis GADNAElastic
* G4DNAIlonElasticM odel
» Excitation
 process class is GADNAEXxcitation
* model classis GADNAMillerGreenExcitationM odel
* lonisation
 process classis GADNAIonisation
» model classis G4ADNA Ruddl onisationM odel
e Chargeincrease
 process class is G4ADNA Chargel ncrease
« model classis GADNADingfelderChargel ncreaseModel

Helium (neutral) processes and models

* Elastic scattering :
* process classis GADNAElastic
» GADNAIlonElasticModel
» Excitation
* process classis GADNAEXxcitation
* model classis GADNAMillerGreenExcitationModel
* lonisation
* process classis GADNAIlonisation
* model class is G4ADNARuddI onisationM odel
» Chargeincrease
* process classis G4ADNA Chargel ncrease
« model classis GADNADingfelderChargel ncreaseModel

Helium+ (ionized once) processes and models

* Elastic scattering :

e process classis GADNAElastic

* G4DNAIlonElasticModel
» Excitation

e process class is GADNAEXxcitation

* model classis GADNAMillerGreenExcitationModel
* lonisation
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 process classis GADNAIonisation

» model classes is GADNARuddl onisationModel
» Chargeincrease

* process class is G4ADNAChargel ncrease

* model classesis GADNA DingfelderChargel ncreaseM odel
» Charge decrease

¢ process class is GADNAChargeDecrease

* model classes is GADNADingfelderChargeDecreaseM odel

Helium++ (ionised twice) processes and models

* Elastic scattering :
 process classis GADNAElastic
* G4DNAIlonElasticM odel
» Excitation
 process class is GADNAEXxcitation
» model classesis GADNAMillerGreenExcitationM odel
* lonisation
¢ process classis GADNAIonisation
* model classesis GADNARuddlonisationModel
» Charge decrease
¢ process class is GADNAChargeDecrease
* model classesis GADNADingfelderChargeDecreaseM odel

Li, Be, B, C, N, O, Si, Fe processes and models

* |onisation
 process classis GADNAIonisation
* model classis G4ADNA Ruddl onisationExtendedM odel

An example of the registration of these processesin aphysicslist is given in the GAEmDNA Physics constructor
(insource/ physics_lists/constructors/el ectronagneti c inthe Geant4 source distribution).
An example of the usage of this constructor in aphysicslistisgiveninthe"dnaphysics' extended example, which
explains how to extract basic information from Geant4-DNA Physics processes.

Other aternative Geant4-DNA physics constructors are available, see more information at the Geant4-DNA web-
site.

The "microdosimetry” extended example illustrates how to combine Geant4-DNA processes with Standard el ec-
tromagnetic processes (combination of discrete and condensed history Geant4 electromagnetic processes at dif-
ferent scales).

Since Geant4 release 10.1, Geant4-DNA can also be used for the modelling of water radiolysis (physico-chemistry
and chemistry stages). Three extended examples, "cheml", "chem?2", "chem3" and "chem4" illustrate this. More
information is available from the Geant4-DNA website.

To run the Geant4-DNA extension, data files need to be copied by the user to his’her code repository. Thesefiles
are distributed together with the Geant4 release. The user should set the environment variable GALEDATA to the
directory where he/she has copied the files.

A full list of publications regarding Geant4-DNA is directly available from the Geant4-DNA website or from the
Geant4@IN2P3 web site).

5.2.1.10. Atomic Deexcitation

A unique interface named G4V AtomicDeexcitation is available in Geant4 for the simulation of atomic deexcita-

tion using Standard, Low Energy and Very Low Energy electromagnetic processes. Atomic deexcitation includes

fluorescence and Auger electron emission induced by photons, electrons and ions (PIXE); see more detailsin:
PIXE Simulation in Geant4X-Ray Spec.
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It can be activated for processes producing vacancies in atomic shells. Currently these processes are the photo-
electric effect, ionization and Compton scattering.

Activation of atomic deexcitation

The activation of atomic deexcitation in continuous processes in a user physics list can be done through the fol-
lowing GAEmParameters class methods described above or via Ul commands:

/ process/ em deexcitation region true true true
/ process/enfluo true

/ process/ enml auger true

/ process/ enl pi xe true

One can define parametersin the G4State Prelnit or G4AState |dle states. Fluorescence from photons and el ectrons
isactivated by default in Option3, Option4, Livermore and Penel ope physics constructors, while Auger production
and PIXE are not.

The aternative set of data by Bearden et a. (1967) for the modelling of fluorescence lines had been added to the
GALEDATA archive. This set can be selected via Ul command:

/ process/ em fl uoBearden true

Another important Ul commands enable simulation of the full Auger and/or fluorescence cascade:

/ process/ enf auger Cascade true
/ process/ eml deexci t ati onl gnoreCut true

How to change ionisation cross section models ?

The user can also select which cross section model to use in order to calculate shell ionisation cross sections for
generating PIXE:

/ process/ em pi xeXSnodel name
/ process/ em pi xeEl ecXSnodel nane

where the name can be "Empirical", "ECPSSR_FormFactor" or "ECPSSR_Analytical" corresponds to different
PIXE cross sections. Following shell cross sections models are available : "ECPSSR_Analytical" models derive
from an analytical calculation of the ECPSSR theory (see A. Mantero et al., X-Ray Spec.40 (2011) 135-140) and
it reproduces K and L shell cross sections over a wide range of energies; "ECPSSR_FormFactor" models derive
from A. Tabordaet a. calculations (see A. Taborda et al., X-Ray Spec. 40 (2011) 127-134) of ECPSSR values
directly form Form Factors and it covers K, L shells on the range 0.1-100 MeV and M shellsin the range 0.1-10
MeV; the "empirical” models are from Paul "reference values (for protons and alphas for K-Shell) and Orlic
empirical model for L shells (only for protons and ions with Z>2). The later ones are the models used by default.
Out of the energy boundaries, "ECPSSR_Analytical" model is used. We recommend to use default settingsif not
sure what to use.

Example

The TestEm5 extended/electr omagetic example shows how to simulate atomic deexcitation (see for eg. the
pixe.mac macro).

5.2.1.11. Very Low energy Electromagnetic Processes in Silicon for
microelectronics application (Geant4-MuElec extension)

(Previously named Geant4-MUEl ec)

The Geant4 low energy €lectromagnetic Physics package has been extended down to energies of afew electron-
Volts suitable for the smulation of radiation effectsin highly integrated microel ectronic components.
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The Geant4-MicroElec process and model classes apply to electrons, protons and heavy ionsin silicon.
Electron processes and models

* Elastic scattering :
e process classis G4AMicroElastic
* model classis G4MicroElecElasticM odel
* lonization
 process class is G4AMicroEleclnelastic
« model classis G4MicroEleclnelasticM odel

Proton processes and models

* |onisation
¢ process class is GAMicroEleclnelastic
* model classis G4MicroEleclnelasticM odel

Heavy ion processes and models

 |onization
 process classis GAMicroEleclnelastic
* model class is G4MicroEleclnelasticM odel

A full list of publications regarding Geant4-MicroElec is directly available from the Geant4-MicroElec website.

5.2.1.12. New Compton model by Monash U., Australia

A new Compton scattering model for unpolarised photons has been developed in the relativistic impul se approx-
imation. The model was developed as an dternative to low energy electromagnetic Compton scattering models
developed from Ribberfors Compton scattering framework (Livermore, Penelope Compton models). The model
classis named named G4L owEPComptonModel.

GA4LowEPComptonModel has been added to the physics constructor GAEmStandardPhysics_option4, containing
the most accurate models from the Standard and Low Energy Electromagnetic physics working groups.

5.2.1.13. Multi-scale Processes

5.2.1.13.1. Hadron Impact lonisation and PIXE

The G4hlmpactlonisation process deals with ionisation by impact of hadrons and apha particles, and the
following generation of PIXE (Particle Induced X-ray Emission). This process and related classes can be found
in sour ce/processes/el ectromagnetic/pii .

Further documentation about PIXE simulation with this process is available here.

A detailed description of the related physics features can be found in:
PIXE Simulation with Geant4lEEE Trans. Nucl. Sci.

A brief summary of the related physics features can be found in the Geant4 Physics Reference Manual.

An example of how to use this process is shown below. A more extensive example is available in the eRosita
Geant4 advanced example (see examples/advanced/eRosita in your Geant4 installation source).

#i ncl ude " &4hl npact | oni sati on. hh"
[...1]

voi d eRosi t aPhysi csLi st:: Construct Process()

{
[...]
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theParticlelterator->reset();
while( (*theParticlelterator)() )

GAParticleDefinition* particle = theParticlelterator->val ue();
GAProcessManager * processManager = particl e->Get ProcessManager () ;
GAString particleName = particle->GetParticl eNanme();

if (particleNanme == "proton")

// Instantiate the G4hl npact!oni sation process
G4hl npact | oni sati on* hloni sati on = new G4hl npact | oni sation();

/] Select the cross section nodels to be applied for K, L and M shell vacancy creation
/1l (here the ECPSSR npodel is selected for K, L and Mshell; one can mx and match

/] different nodels for each shell)

hl oni sat i on- >Set Pi xeCr ossSect i onK("ecpssr");

hl oni sat i on- >Set Pi xeCr ossSecti onL("ecpssr");

hl oni sati on- >Set Pi xeCr ossSecti onM "ecpssr");

/] Register the process with the processManager associated with protons
processManager -> AddProcess(hlonisation, -1, 2, 2);

}
Available cross section model options
The following cross section model options are available:

* protons

* K shdll
* ecpssr (based onthe ECPSSR theory)
e ecpssr_hs (based onthe ECPSSR theory, with Hartree-Sater correction)
e ecpssr_ua (based onthe ECPSSR theory, with United Atom Hartree-Sater correction)
* ecpssr_he (based onthe ECPSSR theory, with high energy correction)
e pwba (plane wave Born approximation)
e paul (based onthe empirical model by Paul and Sacher)
» kahoul (based ontheempirical model by Kahoul et al.)

e L shell
e ecpssr
e ecpssr_ua
e pwba
e nmiyagawa (based ontheempirical model by Miyagawa et al.)
e orlic (basedontheempirical model by Orlic et al.)
* sow (based onthe empirical model by Sow et al.)

* M shell
e ecpssr
e pwba

» aphaparticles

* K shdll
e ecpssr
e ecpssr_hs
e pwba
e paul (based onthe empirical model by Paul and Bolik)

e L shell
e ecpssr
e pwba

* M shell
e ecpssr
e pwba

PIXE data library

The G4hlmpactlonisation processusesa PIXE DatalLibrary.
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The PIXE Data Library is distributed in the Geant4 GA4PI| data set, which must be downloaded aong with
Geant4 source code.

The G4PIIDATA environment variable must be defined to refer to the location of the G4PII PIXE datalibrary
in your filesystem; for instance, if you use a c-like shell:
set env GAPI | DATA pat h_t o_where_GA4PI | _has_been_downl oaded

Further documentation about the PIXE Data Library is available here.

5.2.2. Hadronic Interactions

This section briefly introduces the hadronic physics processes installed in Geant4. For details of the implementa-
tion of hadronic interactions available in Geant4, please refer to the Physics Reference Manual.

5.2.2.1. Treatment of Cross Sections

Cross section data sets

Each hadronic process object (derived from GAHadr oni cPr ocess) may have one or more cross section data
sets associated with it. The term "data set” is meant, in a broad sense, to be an object that encapsul ates methods
and datafor calculating total cross sectionsfor agiven process. The methods and data may take many forms, from
a simple equation using a few hard-wired numbers to a sophisticated parameterisation using large data tables.
Cross section data sets are derived from the abstract class G4VCr ossSect i onDat aSet , and are required to
implement the following methods:

G4bool 1sApplicable( const ADynam cParticle*, const GAEl ement* )
This method must return Tr ue if the data set is able to calculate a total cross section for the given particle and
material, and Fal se otherwise.

GAdoubl e Get CrossSection( const G4Dynami cParticle*, const GAEl enent* )
This method, which will beinvoked only if Tr ue wasreturned by | sAppl i cabl e, must return a cross section,
in Geant4 default units, for the given particle and material.

voi d Bui | dPhysi csTabl e( const G4Particl eDefinition& )
This method may be invoked to request the data set to recalculate its internal database or otherwise reset its state
after achange in the cuts or other parameters of the given particle type.

voi d DunpPhysi csTabl e( const GAParticleDefinition& ) = 0

This method may be invoked to request the data set to print its internal database and/or other state information,
for the given particle type, to the standard output stream.

Cross section data store

Cross section data sets are used by the process for the calculation of the physical interaction length. A given cross
section data set may only apply to a certain energy range, or may only be able to calculate cross sections for a
particular type of particle. The class ACr ossSect i onDat aSt or e has been provided to allow the user to
specify, if desired, aseries of data setsfor aprocess, and to arrange the priority of data sets so that the appropriate
oneisused for a given energy range, particle, and material. It implements the following public methods:

GACr ossSect i onDat aSt ore()
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~GACr ossSect i onDat aSt ore()

and

GAdoubl e Get CrossSection( const GADynanicParticl e*, const GAEl enent* )

For a given particle and material, this method returns a cross section value provided by one of the collection of
cross section data sets listed in the data store object. If there are no known data sets, a GAExcept i on isthrown
and DBL_M N is returned. Otherwise, each data set in the list is queried, in reverse list order, by invoking its
| sAppl i cabl e method for the given particle and material. The first data set object that responds positively
will then be asked to return a cross section value via its Get Cr ossSect i on method. If no data set responds
positively, aGAExcept i on isthrown and DBL_M Nis returned.

voi d AddDat aSet ( GAVCrossSecti onDat aSet * aDat aSet )

This method adds the given cross section data set to the end of the list of data sets in the data store. For the
evaluation of cross sections, the list hasa LIFO (Last In First Out) priority, meaning that data sets added later to
the list will have priority over those added earlier to the list. Another way of saying this, is that the data store,
when given aGet Cr ossSect i on request, doesthe | sAppl i cabl e queriesin thereverse list order, starting
with the last data set in the list and proceeding to the first, and the first data set that responds positively is used
to calculate the cross section.

voi d Bui | dPhysi csTabl e( const G4Particl eDefinition& aParticl eType )

Thismethod may beinvoked to indicate to the data store that there has been achangein the cuts or other parameters
of the given particle type. In response, the data store will invoke the Bui | dPhysi csTabl e of each of its data
Sets.

voi d DunpPhysi csTabl e( const G4ParticleDefinition& )

This method may be used to request the data store to invoke the DunpPhysi csTabl e method of each of its
data sets.

Default cross sections

The defaults for total cross section data and calculations have been encapsulated in the sin-
gleton class (AHadr onCr ossSecti ons. Each hadronic process. (AHadr onl nel asti cProcess,
(AHadr onEl asti cProcess, &AHadr onFi ssi onPr ocess, and G4Hadr onCapt ur ePr ocess, comes
already equipped with a cross section data store and a default cross section data set. The data set objects are re-
ally just shells that invoke the singleton G4Hadr onCr ossSect i ons to do the real work of calculating cross
sections.

The default cross sections can be overridden in whole or in part by the user. To this end, the base class
(AHadr oni cProcess hasa  get" method:

GACr ossSect i onDat aSt or e* Get CrossSecti onDat aSt or e()

which gives public access to the data store for each process. The user's cross section data sets can be added to the
data store according to the following framework:

GAHadron. . . Process aProcess(...)
M/ Cr ossSect i onDat aSet nyDataSet (.. .)

aProcess. Get CrossSect i onDat aSt or e() - >AddDat aSet ( &WDat aSet )

189



Tracking and Physics

The added data set will override the default cross section data whenever so indicated by its | sAppl i cabl e
method.

In addition to the “"get" method, G4Hadr oni cPr ocess also has the method

voi d Set CrossSecti onDat aSt ore( GACrossSecti onDat aSt ore* )
which alows the user to completely replace the default data store with a new data store.

It should be noted that a process does not send any information about itself to its associated data store (and
hence data set) objects. Thus, each data set is assumed to be formulated to calculate cross sections for one and
only one type of process. Of course, this does not prevent different data sets from sharing common data and/
or calculation methods, as in the case of the GAHadr onCr ossSect i ons class mentioned above. Indeed,
AVCrossSect i onDat aSet specifies only the abstract interface between physics processes and their data
sets, and leaves the user free to implement whatever sort of underlying structure is appropriate.

The current implementation of the data set GAHadr onCr ossSect i ons reuses the total cross-sections for in-
elastic and elastic scattering, radiative capture and fission as used with GHEISHA to provide cross-sections for
calculation of the respective mean free paths of agiven particlein a given material.

Cross-sections for low energy neutron transport

The cross section data for low energy neutron transport are organized in a set of files that are read in by
the corresponding data set classes at time zero. Hereby the file system is used, in order to alow highly gran-
ular access to the data. The ““root" directory of the cross-section directory structure is accessed through an
environment variable, GANEUTRONHPDATA, which is to be set by the user. The classes accessing the total
cross-sections of the individual processes, i.e., the cross-section data set classes for low energy neutron trans-
port, are GANeut r onHPEI ast i cDat a, &ANeut r onHPCapt ur eDat a, G4Neut r onHPFi ssi onDat a,
and GANeut r onHPI nel ast i cDat a.

For detailed descriptions of the low energy neutron total cross-sections, they may be registered by the user as
described above with the data stores of the corresponding processes for neutron interactions.

It should be noted that using these total cross section classes does not require that the neutron_hp models also be
used. It is up to the user to decide whethee thisis desirable or not for his particular problem.

A prototype of the compact version of neutron cross sections derived from HP database are provided
with new classes GANeut r onHPE! ast i cDat a, G4Neut r onCapt ur eXS, GANeut r onEl ast i ¢XS, and
AANeut ronl nel asti cXS.

Cross-sections for low-energy charged particle transport

The cross-section data for low-energy charged particle transport are organized in a set of files that are read at
initialization, similarly to the case of low-energy neutron transport. The "root" directory of the cross-section di-
rectory structure is accessed through an environment variable, GAPARTI CLEHPDATA, which hasto be set by the
user. This variable has to point to the directory where the low-energy charged particle data have been installed,
e.g. ATENDL1. 3 for the Geant4 release 10. 3 (note that the download of this datalibrary from the Geant4 web
siteis not done automatically, i.e. it must be done manually by the user):

export GAPARTI CLEHPDATA=/ your/ pat h/ GATENDL1. 3/ .

It is expected that the directory $G4PARTI CLEHPDATA has the following five subdirectories, correspond-
ing to the charged particles that can be handled by the low-energy charged particle transport: Pr ot on/,
Deut eron/, Triton/, He3/, Al pha/ . It is possible for the user to overwrite the default directory struc-
ture with individual environment variables pointing to custom data libraries for each particle type. This is
considered an advanced/expert user feature. These directories are set by the following environment vari-
ables: GAPROTONHPDATA, for proton; G4DEUTERONHPDATA, for deuteron; GATRI TONHPDATA, for triton;
HAHE3HPDATA, for He3; AALPHAHPDATA, for alpha. Note that if any of these variables is not defined
explicitly, e.g. GATRI TONHPDATA, then the corresponding data library is expected to be a subdirectory of
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$GAPARTI CLEHPDATA/ , e.g. SGAPARTI CLEHPDATA/ Tri t on/ . If instead all the abovefive environmental
variables are set, then GAPARTI CLEHPDATA does not need to be specified; even if it is set, then its value will
be ignored (because the per-particle ones take precedence).

5.2.2.2. Hadrons at Rest

List of implemented "Hadron at Rest" processes

The following process classes have been implemented:

* pi-, K-, sigma, xi-, omega- absorption (class name G4Hadr oni cAbsor pti onBerti ni)
* neutron capture (class name G4Hadr onCapt ur ePr ocess)
e anti-proton, anti-sigmat+, anti-deuteron, anti-triton, anti-alpha, anti-He3 annihilation (class name

(AHadr oni cAbsor ptionFriti of)

* mu- capture (class name GZAMuonM nusCapt ur e)

Capture of low-energy negatively charged particlesis a complex process involving formation of mesonic atoms,
X-ray cascade and Auger cascade, nuclear interaction. In the case of mu- thereis also a probability to decay from
K-shell of mesonic atom. To handle this a base process class GAHadr oni ¢St oppi hgPr ocess isused.

For the case of neutrons, Geant4 offer simulation down to thermal energies. The capture cross section generally
increases when neutron energy descreases and there are many nuclear resonances. In Geant4 neutron capture cross

sections are parameterized using ENDF database.

5.2.2.3. Hadrons in Flight

What processes do you need?

For hadrons in motion, there are four physics process classes. Table 5.1 shows each process and the particles for

which it isrelevant.

(GAHadr onEl asti cProcess

pi+, pi-, K¥, K%, K%, K, p, p-bar, n, n-bar, lambda,
lambda-bar, Sigma", Sigma’, Sigma'-bar, Sigma-bar,
Xi®, Xi", Xi®bar, Xi™-bar

GAHadr onl nel asti cProcess

pi+, pi-, K*, K%, K%, K, p, p-bar, n, n-bar, lambda,
lambda-bar, Sigma", Sigma’, Sigma'-bar, Sigma-bar,
Xi®, Xi", Xi%bar, Xi™-bar

G4Hadr onFi ssi onPr ocess

all

ACapt ur eProcess

n, n-bar

Table5.1. Hadronic processes and relevant particles.

How to register Models

To register an inelastic process model for a particle, a proton for example, first get the pointer to the particle's

process manager:

GAParticleDefinition *theProton = GAProton: : ProtonDefinition();
GAProcessManager *theProtonProcMan = t heProt on- >Get ProcessManager () ;

Create an instance of the particle'sinelastic process:

G4Pr ot onl nel asti cProcess *theProtonl EProc = new G4Prot onl nel asti cProcess();

Create an instance of the model which determines the secondaries produced in the interaction, and calculates the
momenta of the particles, for instance the Bertini cascade model:
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(GACascadel nterface *theProtonl E = new G4Cascadel nterface();

Register the model with the particle's inelastic process:

t hePr ot onl EPr oc- >Regi st er Me( t heProtonl E );

Finally, add the particle'sinelastic process to the list of discrete processes:

t hePr ot onPr ocMan- >AddDi scr et eProcess( theProtonl EProc );

The particle's inelastic process class, G4Pr ot onl nel asti cProcess in the example above, derives
from the (AHadr oni cl nel asti cProcess class, and simply defines the process name and calls the
GAHadr oni cl nel asti cProcess constructor. All of the specific particle inelastic processes derive from
the (AHadr oni cl nel asti cProcess class, which calls the Post St epDol t function, which returns
the particle change object from the (AHadr oni cProcess function Gener al Post St epDol t. This
class also gets the mean free path, builds the physics table, and gets the microscopic cross section. The
(AHadr oni cl nel asti cProcess classderivesfromthe GAHadr oni cPr ocess class, whichisthetoplev-
€l hadronic process class. The GZAHadr oni cPr ocess class derives from the GAVDi scr et ePr ocess class.
The inelastic, elastic, capture, and fission processes derive from the G4Hadr oni cPr ocess class. This pure
virtual class also provides the energy range manager object and the Regi st er Me access function.

In-flight, final-state hadronic models derive, directly or indirectly, from the 41 nel asti cl nteracti on
class, which is an abstract base class since the pure virtual function Appl yYour sel f is not defined there.
G4l nel asticl nteracti on itself derives from the G4Hadr oni cl nt er act i on abstract base class. This
class is the base class for all the model classes. It sorts out the energy range for the models and provides class
utilities. The GAHadr oni cl nt er act i on class providesthe Set / Get M nEner gy and the Set / Get Max-
Ener gy functions which determine the minimum and maximum energy range for the model. An energy range
can be set for a specific element, a specific material, or for general applicability:

voi d Set M nEnergy( G4doubl e anEnergy, AEl enent *anEl enent )
voi d Set M nEnergy( G4doubl e anEnergy, 4Material *aMaterial )
voi d Set M nEnergy( const GAdoubl e anEnergy )
voi d Set MaxEner gy( GAdoubl e anEnergy, GAEl enent *anEl enent )
voi d Set MaxEner gy( G4doubl e anEnergy, GAMaterial *aMaterial )
voi d Set MaxEner gy( const G4doubl e anEnergy )

Which models are there, and what are the defaults

In Geant4, any model can be run together with any other model without the need for theimplementation of aspecial
interface, or batch suite, and the ranges of applicability for the different models can be steered at initialisation
time. Thisway, highly specialised models (valid only for one material and particle, and applicable only in avery
restricted energy range) can be used in the same application, together with more general code, in acoherent fashion.

Each model has an intrinsic range of applicability, and the model chosen for a simulation depends very much on
the use-case. Consequently, there are no ““defaults’. However, physics lists are provided which specify sets of
models for various purposes.

Two types of hadronic shower models have been implemented: data driven models and theory driven models.

» Datadriven models are available for the transport of low energy neutrons in matter in sub-directory hadr on-
i cs/ nodel s/ neut r on_hp. Themodeling isbased on the dataformats of ENDF/B-VI, and al distributions
of this standard data format are implemented. The data sets used are selected from data libraries that conform
to these standard formats. The file systemisused in order to allow granular access to, and flexibility in, the use
of the cross sections for different isotopes, and channels. The energy coverage of these modelsis from thermal
energiesto 20 MeV.

» Theory driven models are available for inelastic scattering in a first implementation, covering the full energy
range of LHC experiments. They are located in sub-directory hadr oni cs/ nodel s/ gener at or . The cur-
rent philosophy implies the usage of parton string models at high energies, of intra-nuclear transport models at
intermediate energies, and of statistical break-up models for de-excitation.
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5.2.2.4. High-precision neutron interactions (NeutronHP)

Nuclear models fail (sometimes catastrophically) at predicting with reasonable accuracies the nuclear cross sec-
tions of neutrons (and other particles). For thisreason, all physical quantities relevant for an accurate modeling of
nuclear reactions in Monte Carlo simulations need to be provided as a database which includes, ideally:

* Cross sections

 angular distributions of the emitted particles

* energy spectraof the emitted particles

* energy-angle correlated spectrum (double-differential cross sections, DDX)
* neutrons per fission

« fission spectra

« fission product yields

* photo production data

For the case of neutron induced reactions, such databases are called “ evaluated data”, in the sense that they contain
recommended values for different quantities that rely on compilations of experimental nuclear data and usually
completed with theoretical predictions, benchmarked against avail able experimental data (i.e. integral and differ-
ential experiments) when possible. It should be noticed that the information available varies from isotope to iso-
tope and can be incomplete or totally missing.

The G4NeutronHP package in GEANT4 allows using evaluated nuclear data libraries in the GANDL format.
GEANT4 users should know that any simulation involving neutronswith energies below 20 MeV and not using the
G4NeutronHP package can lead to unreliable results. GEANT4 users are therefore encouraged to use it, although
they should be aware of the limitations of using evaluated nuclear datalibraries.

An example about how to implement the G4NeutronHP package into physicslist ina GEANT4 application can be
found in the example case (among othersdistributed with GEANT4) ext ended/ r adi oact i vedecay/ r de-
cay02. Three different processes are included in that example: elastic, capture and inelastic. The inelastic reac-
tions in G4NeutronHP are all reactions except elastic, capture and fission, so fission should aso be included in
the physicsligt, if needed, and it is done in the same way asit is done for the other three.

The G4NeutronHP package must be used together with eval uated nuclear datalibraries. They are distributed by the
GEANT4 collaboration (http://geant4.web.cern.ch/geant4/support/download.shtml) and from the IAEA nuclear
data web site (http://www-nds.iaca.org/geant4/) where a larger set of different libraries, including isotopes with
Z >92, isavalable.

The evaluated nuclear data libraries do differ and thus the results of the Monte Carlo simulations will depend on
the library used. It is a safe practice to perform simulations with (at least) two different libraries for estimating
the uncertainties associated to the nuclear data.

Together with a good implementation of the physics list, users must be very careful with the definition of the
materials performed in a Monte Carlo simulation when low energy neutron transport is relevant. In contrast to
other kind of simulations, the isotopic composition of the elements which compose the different materials can
strongly affect the obtained simulation results. Because of this, it is strongly recommended to define specifically
the isotopic composition of each element used in the simulation, asit is described in the GEANT4 user’ s manual .
In principle, such a practice is not mandatory if natural isotopic compositions are used, since GEANT4 contains
them in their databases. However, by defining them explicitly some unexpected problems may be avoided and a
better control of the simulation will be achieved.

It is highly recommended or mandatory to set the following UNIX environment variables running a GEANT4
application:

ANEUTRONHPDATA
[path to the GANDL format datalibraries] (mandatory).

GANEUTRONHP_SKI P_M SSI NG_| SOTOPES=1

It setsto zero the cross section of theisotopeswhich are not present in the neutron library. If GEANT4 doesn't
find an isotope, then it looks for the natural composition data of that element. Only if the element is not found
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then the cross section is set to zero. On the contrary, if this variable is not defined, GEANT4 |looks then for
the neutron data of another isotope closein Z and A, which will have completely different nuclear properties
and lead to incorrect results (highly recommended).

GANEUTRONHP_DO NOT_ADJUST_FI NAL_STATE=1

If thisvariableis not defined, a GEANT4 model that attempts to satisfy the energy and momentum conserva-
tion in some nuclear reactions, by generating artificial gammarays. By setting such a variable one avoids the
correction and leads to the result obtained with the ENDF-6 libraries. Even though energy and momentum
conservation are desirable, the ENDF-6 libraries do not provide the necessary correlations between secondary
particles for satisfying them in all cases. On the contrary, ENDF-6 libraries intrinsically violate energy and
momentum conservation for several processes and have been built for preserving the overall average quanti-
ties such as average energy releases, average number of secondaries... (highly recommended).

Al | owfor HeavyEl enent s=1

Activates the physics for isotopes with Z>92 (recommended).

The GANDL format libraries are based on the ENDF-6 format libraries, which contain evaluated (i.e. recommend-
ed) nuclear data prepared for their use in transport codes. These data are essentially nuclear reaction cross sections
together with the distribution in energy and angle of the secondary reaction products. As a consequence of how
the data is written in the ENDF files, there are some features that may be or may be not expected in the results
of aMonte Carlo calculation.

The information concerning the creation of the reaction products can be incomplete and/or uncorrelated, in the
sense that is described below:

1

Incomplete information.

This applies when there is no information about how to generate a secondary particle. As an example, it
is possible to have only the cross section data of an (n,p) reaction, without any information concerning the
energy and angle of the secondary proton. In this case GEANT4 will produce the proton considering that it
is emitted isotropically in the center of mass frame, with an energy which is deduced from assuming that the
residual nucleusisin its ground state.

Uncorrelated information.
This applies when:

a. The energy and angle distributions of a reaction product may be uncorrelated. As a consequence, the
reaction products can be generated with an unphysical energy-angle relationship.

b. The energy-angle distributions of different reaction products of a certain reaction are always uncorre-
lated. As an example, consider that in a (n, 2p) reaction at a certain neutron energy both resulting pro-
tons can be emitted with energies ranging from 0 to 5MeV. In this case the energy and angle of each
proton will be sampled independently of the energy and angle of the other proton, so therewill be events
in which both protons will be emitted with energies close to 5 MeV and there will also be events in
which both protons will be emitted with energies closeto 0 MeV. Asaconseguence, energy and angular
momentum won’t be conserved event by event. However, energy will be conserved in average and the
resulting proton energy spectrum will be correctly produced.

Concatenated reactions.

There are some cases where several nuclear reactions are put together asif they were asinglereaction (MT=5
reaction, in ENDF-6 format nomenclature). In those cases the information consists in a cross section, which
is the sum of all of them, plus a reaction product yield and energy-angle distributions for each secondary
particle. Inthis case the amount of each secondary particle produced hasto be sampled every timethereaction
occurs, and it is done independently of the amount of the other secondary particles produced.

Thus, inthis case neither the energy and angular momentum nor the number of nucleonsis conserved event by
event, but all the quantities should be conserved in average. Asaconsequence, it isalso not possibleto deduce
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which are the residual nuclei produced, since no information is available concerning what are the specific
nuclear reactions which take place. It hasto be said that sometimes ENDF librariesinclude theresidual nuclei
as an outgoing particle. However, GEANT4 does not manage that information, at present. This situation is
guite uncommon in neutron data libraries up to 20 MeV. However, it is quite common to find it in charged
particle libraries below 20 MeV or in neutron libraries above 20 MeV.

As a consequence of what has been presented above, some general features can be expected in the results of a
Monte Carlo calculation performed with the G4NeutronHP package:

» The neutron transport, which means how the neutron looses energy in the collisions, when and how it is ab-
sorbed..., is quite trustable, since the main purpose of the ENDF neutron libraries is to perform this neutron
transport.

» The production of neutrons due to neutron induced nuclear reactions is usually trustable, with the exception of
the energy-angle correlations when several neutrons are produced in the same nuclear reaction.

» Theresults concerning the production of charged particles have to be always questioned. A look into the ENDF
format library used can indicate which results are trustable and which are not. This can be done, for example,
in http://t2.1anl.gov/data/data.html, among other websites.

» Theresults concerning the production of #-rays have to be questioned always. For example, the information on
the number and energies of #-rays emitted in the neutron capture processisincomplete for aimost all the nuclei
and isfreguently also uncorrelated. When theinformation is available, it will be used, but one can obtain results
which are quite far from reality on an event by event basis: the total energy of the cascade won't be correct in
many cases and only some specific #-rays which are stored in the neutron databases will be emitted. If there
isn't any information concerning these #-rays, GEANT4 will use asimple amodel instead which is generally
missing the relevant spectroscopic information. The results concerning the generation of residua nuclei (for
example, in activation calculations) are usually trustable, with the exception of libraries with MT=5 reactions,
as described above (2).

As agenera conclusion, users should always be critical with the results obtained with Monte Carlo simulation
codes, and this also applies to GEANT4. They have to anticipate which results can be trusted and which results
should be questioned. For the particular case of the a closer look into the underlying evaluated nuclear datain the
ENDF format libraries will allow to check what is the information available in a certain library for some specific
isotope and a certain reaction. There are several public nuclear data sites like http://t2.1anl.gov/data/data.html.

The transport of very low energy neutrons (below 5 eV) has to be performed using the thermal neutron data li-
braries. At these energies, the fact that the nuclei are in atoms which form part of a certain molecule inside a
material (crystal lattice, liquid, plastic...) plays an important role, since there can be a transference of momentum
between the neutron and the whole structure of the material, not only with the nucleus. Thisis of particular im-
portance for material used as neutron moderators, i.e., materials with low A (mass number) used to decrease the
incident neutron energy in only a few collisions. Since the property is related to the nucleus in the material, as
an example, there is the need for having different thermal libraries for Hydrogen in polyethylene, Hydrogen in
water and so on.

If neutron collisions at these energies are relevant for the problem to be simulated, thermal libraries should be used
for the materialsif they are available. If they are not, the results obtained from the simulation will not be trustable
in the neutron energy range below 5 eV, especially when using low mass elements in the simulation.

To use the thermal libraries the following lines should be included in the physics list:

G4Hadr onEl asti cProcess* t heNeutronEl asti cProcess = new (AHadr onEl asti cProcess;

I/l Cross Section Data set

G4Neut r onHPE! ast i cDat a* t heHPEl asti cData = new G4Neut r onHPE!l ast i cDat a;

t heNeut r onEl asti cProcess->AddDat aSet (t heHPEl asti cDat a) ;

GANeut ronHPTher nal Scat t eri ngDat a* t heHPTher nal Scatt eri ngData = new G4Neut r onHPTher mal Scat t er i ngDat a;
t heNeut r onEl asti cProcess->AddDat aSet (t heHPTher mal Scat t eri ngDat a) ;

/1 Model s

G4Neut r onHPE!l asti c* t heNeutronEl asti cMbdel = new G4Neut r onHPE! asti c;

t heNeut r onEl asti cModel - >Set M nEner gy(4. 0*eV);

t heNeut r onEl asti cProcess->Regi st er Me(t heNeut r onEl asti cModel ) ;

GANeut ronHPTher nal Scatt eri ng* t heNeutronTher mal El asti cvbdel = new G4Neut r onHPTher mal Scat t eri ng;
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t heNeut r onTher mal El asti cMbdel - >Set MaxEner gy(4. 0*eV) ;

t heNeut r onEl asti cProcess->Regi st er Me(t heNeut r onTher mal El asti chvbdel ) ;

Il Apply Processes to Process Manager of Neutron

GAProcessManager * pmanager = ANeutron:: Neutron()->Cet ProcessManager () ;
pmanager - >AddDi scr et ePr ocess(t heNeut r onEl asti cProcess);

And the materials should be defined with a specific name. For example, to use the thermal library for Hydrogen
in water, the water should be defined as:

GAEl enent* el TSHW = new AEl enent ("TS_H of _Water", "H WATER', 1.0, 1.0079*g/nole);
GAMaterial* mat HHO TS = new AMaterial ("Water _TS", density=1.0*g/cnB, nconponents=2);
mat H2O_TS- >AddEl enent (el TSHW nat ons=2) ;

mat H2O_TS- >AddEl enent (el O nat ons=1) ;

where the important thing is the name " TS H_of Water", which is a specific name used by G4NeutronHP.
In order to see which thermal libraries are available, they can be found in the G4NDLA4.0/Ther-
malScattering folder (or equivalent, for other neutron libraries). Then, one has to look into the
GANeut ronHPTher mal Scat t eri ngNanes. cc source file, under sour ce/ processes/ hadr on-
i ¢/ nodel s/ neut ron_hp/ src. There are somelines similar to:

nanes. i nsert (std:: pair<G4String, AString>("TS_H of _Water", "h_water"));

where "TS H of Water" means Hydrogen in water. Names similar to "TS H of Water" like
"TS C of Graphite" or"TS H_of Polyethylene" can befound and used in the same way as described above.

5.2.2.5. High-precision charged particle interactions (ParticleHP)

Due to the coupling between the configuration for neutrons and charged particles in ParticleHP, the default one
is not the recommended one from the physics point of view for all particles. A consistent configuration with
thorough testing will hopefully be introduced in the next release. For the time being, in order to improve the
physics performance for primary charged particles the following environment variable should be set:

export DO NOT_SET_PHP_AS_HP=1

Note that this environmental variable is a configuration option which is used only at compilation, not at run time,
and it affects both primary neutrons and charged particles. It is not expected to dramatically change the behaviour
for neutrons.

For further improvement with projectile charged particles, it is also recommended to set the following environ-
mental variable used at run-time:

export GAPHP_DO_NOT_ADJUST_FI NAL_STATE=1

which avoids the default adjustment of the final state to ensure better conservation laws (for charge, energy,
momentum, baryon number).

The adjustment of thefinal state is recommended for realistic detector response in the case of neutron interactions.
For the use-case of reactor physics and dosimetry, where average quantities are important, not adjusting the final
state (i.e. setting the above environment variable) improves accuracy.

Note that, for the time being, setting GAPHP_DO NOT_ADJUST FI NAL_STATE affects both prima-
ry neutrons and charged particles, so be careful which is the use-case you are interested in. To sum-
marize: if you use ParticleHP for primary neutrons, you can safely take the default; no harm is ex-
pected if you build ParticleHP with DO NOT_SET _PHP_AS HP set; be very careful instead if you set
GAPHP_DO_NOT_ADJUST_FI NAL_STATE. If you use ParticleHP for primary charged particles, thenitisrec-
ommended to build with DO_NOT_SET_PHP_AS_HP set, and then run with DO_NOT_SET_PHP_AS_HP set.

5.2.2.6. Switching statistical nuclear de-excitation models

Nuclear reactions at intermediate energies (from afew MeV to afew GeV) are typically modelled in two stages.
The first, fast reaction stage is described by a dynamical model (quantum molecular dynamics, intranuclear cas-
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cade, pre-compound, etc.) and often resultsin the production of one or several excited nuclel. The second reaction
stage describes the de-excitation of the excited nuclei and it is usually handled by statistical de-excitation models.
The models for the two reaction stages can in principle be chosen independently, but the current design of the
Geant4 hadronicsframework makesit difficult to do thisat the physics-list level. However, another solution exists.

Geant4 provides several nuclear de-excitation modules. The default one is G4Exci t at i onHandl er, which
is described in detail in the Physics Reference Manual. The Bertini-style G4Cascadel nt er f ace uses an
internal de-excitation model. The ABLA V3 model is aso available.

Options are available for steering of the pre-compound model and the de-excitation module. These
options may be invoked by the new C++ interface class GADeexPr ecoPar anet ers. The interface
ANucl ear Level Dat a: : I nst ance() - >CGet Par anet er s() is thread safe, parameters are shared be-
tween threads, and parameters are shared between all de-excitation and pre-compound classes. Parameters may
be modified at GAState Prelnit state of Geant4. This class has the following public methods:

* Dump()
 Streamlinfo(std::ostreamé&)

» Setlevel Density(G4double)

» SetRO(G4double)

» SetTransitionsRO(G4double)
 SetFermiEnergy(G4double)

» SetPrecoL owEnergy(G4double)
* SetPhenoFactor(G4double)

» SetMinExcitation(G4double)

» SetMaxLifeTime(G4double)

» SetMinExPerNucleounForM F(G4doubl€)
* SetMinEForMultiFrag(G4double)
» SetMinZForPreco(G4int)

* SetMinAForPreco(G4int)

» SetPrecoModel Type(G4int)

» SetDeexModel Type(Gdint)

» SetNeverGoBack(G4bool)

» SetUseSoftCutoff(G4booal)

» SetUseCEM (G4bool)

» SetUseHETC(G4bool)

» SetUseAngularGen(G4bool)

» SetUsel ongFiles(G4bool)

¢ SetCorrelatedGamma(G4bool)

» SetStoreAllLevels(G4booal)

» SetDeexChannel Type(G4DeexChannel Type)

Itispossibleto replacethe default de-excitation model with ABLA V3for any intranuclear-cascade model in Geant4
except ACascadel nt er f ace. The easiest way to do thisisto call the Set DeExci t ati on() method of
the relevant intranucl ear-cascade-model interface. This can be done even if you are using one of the reference
physics lists. The technique is the following.

For clarity's sake, assume you are using the FTFP_INCLXX physics list, which uses INCL++, the Liege Intranu-
clear Cascade model (41 NCLXXI nt er f ace) at intermediate energies. Y ou can couple INCL++ to ABLA V3
by adding a run action (Section 6.2.1) and adding the following code snippet to Begi nOf RunActi on() .

Example5.1. Coupling the INCL ++ model to ABLA V3

#i ncl ude " &AHadr oni cl nt eracti on. hh"

#i ncl ude "G4Hadroni cl nteracti onRegi stry. hh"
#i ncl ude " &A1 NCLXXI nt er f ace. hh"

#i ncl ude " 4Abl al nterface. hh"

voi d MyRunActi on: : Begi nOf RunActi on(const G4Run*)

/] Get hold of pointers to the I NCL++ npdel interfaces
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st d:: vect or<AHadroni cl nteraction *> interactions = GiHadroni cl nteracti onRegi stry: : | nstance()
- >Fi ndAl | Model s( &41 NCLXXI nt er f aceSt or e: : Get | nst ance() - >get | NCLXXVer si onNane() ) ;
for(std::vector<GiHadroniclnteraction *>::const_iterator ilnter=interactions.begin(), e=interactions.end();
ilnter!=e; ++ilnter) {
G4 NCLXXI nt erface *thel NCLI nterface = static_cast <G4l NCLXXI nt erface*>(*ilnter);
if(thel NCLInterface) {
// Instantiate the ABLA nodel
G4Hadr oni cl nteraction *interaction = GAHadroni cl nt eracti onRegi stry: : |1 nstance()->Fi ndVodel ("ABLA");
G4Abl al nterface *theAbl al nterface = static_cast <G4Abl al nterface*>(interaction);
i f(!theAbl al nterface)
t heAbl al nt erf ace = new 4Abl al nterf ace;
/] Couple INCL++ to ABLA
GiAcout << "Coupling INCLXX to ABLA" << Hendl ;
t hel NCLI nt er f ace- >Set DeExci t ati on(t heAbl al nt erface);

}
}
}

This technique may be applied to any intranuclear-cascade model (i.e. models that inherit from
GAVI nt raNucl ear Tr anspor t Model ), except GACascadel nt er f ace. For example, if your physicslist
relies on the Binary-Cascade model (e.g. FTF_BIC), you'll need to do

/] Get hold of a pointer to the Binary-Cascade nodel interface
st d:: vect or<G4Hadroni cl nteraction *> interactions = AHadroni cl nteracti onRegi stry: :|nstance()
- >Fi ndAl | Model s("Bi nary Cascade");
for(std::vector<G4Hadroniclnteraction *>::const_iterator ilnter=interactions.begin(), e=interactions.end();
ilnter!=e; ++ilnter) {
(ABi naryCascade *theBl Clnterface = static_cast <GABi naryCascade*>(*ilnter);
if(theBl Clinterface) {

/] Instantiate ABLA V3 as in the exanple above
I I...1]

/] Couple BIC to ABLA
t heBI Cl nt er f ace- >Set DeExci t ati on(t heAbl al nt erf ace) ;

5.2.3. Particle Decay Process

This section briefly introduces decay processes installed in Geant4. For details of the implementation of particle
decays, please refer to the Physics Reference Manual.

5.2.3.1. Particle Decay Class

Geant4 provides a (ADecay class for both ““at rest" and “"in flight" particle decays. G4Decay can be applied
to all particles except:

massless particles, i.e.,
HAParticlebDefinition::thePDAvss <= 0

particles with ““negative' lifetime, i.e.,
HAParticleDefinition::thePDGifeTine < 0

shortlived particles, i.e.,
HAParticleDefinition::fShortLivedFlag = True

Decay for some particles may be switched on or off by using
HAParticl eDefinition::Set PDGSt abl e() as well as ActivateProcess() and I nActi -
vat eProcess() methodsof GAPr ocessManager .

(ADecay proposes the step length (or step time for At Rest ) according to the lifetime of the particle unless
Pr eAssi gnedDecayPr oper Ti e isdefined in G4Dynam cParti cl e.

The GADecay classitself does not define decay modes of the particle. Geant4 provides two ways of doing this:
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e using GADecayChannel in G4DecayTabl e, and
» usingt hePr eAssi gnedDecayPr oduct s of GADynam cParticl e

The (ADecay class calculates the Physi cal | nt er acti onLengt h and boosts decay products created by
AVDecayChannel or event generators. See below for information on the determination of the decay modes.

An object of ADecay can be shared by particles. Registration of the decay process to particles in the Con-
st ruct Physi cs method of PhysicsList (see Section 2.5.3) is shown in Example 5.2.

Example5.2. Registration of the decay processto particlesin the Const r uct Physi cs
method of PhysicsList.

#i ncl ude "ADecay. hh"
voi d MyPhysi csLi st:: Construct General ()
{
/] Add Decay Process
GADecay* theDecayProcess = new ADecay();
theParticlelterator->reset();
while( (*theParticlelterator)() ){
GAParticleDefinition* particle = theParticlelterator->value();
GAPr ocessManager * pnanager = parti cl e- >Get ProcessManager () ;
if (theDecayProcess->|IsApplicable(*particle)) {
pmanager ->AddProcess(theDecayProcess);
/] set ordering for PostStepDolt and At Rest Dol t
pmanager ->Set ProcessOr dering(theDecayProcess, i dxPost Step);
prmanager ->Set ProcessOrderi ng(theDecayProcess, i dxAtRest);
}
}
}

5.2.3.2. Decay Table

Each particle has its GADecayTabl e, which stores information on the decay modes of the particle. Each de-
cay mode, with its branching ratio, corresponds to an object of various “decay channel” classes derived from
AVDecayChannel . Default decay modes are created in the constructors of particle classes. For example, the
decay table of the neutral pion has GZAPhaseSpaceDecayChannel and G4Dal i t zDecayChannel asfol-
lows:

/] create a decay channel

GAVDecayChannel * node;

/] pi0 -> gama + ganmma

node = new (4PhaseSpaceDecayChannel ("pi 0", 0. 988, 2, "gamm", "gamma") ;
t abl e- >l nsert (node) ;

/] pi0 -> gamma + e+ + e-

node = new (ADal i t zDecayChannel (" pi 0", 0.012,"e-", "e+");

t abl e- >l nsert ( node) ;

Decay modes and branching ratios defined in Geant4 are listed in Section 5.3.2.

Branching ratios and life time can be set in tracking time.

Il set lifetime

GANeut ron: : Neut ron() - >Set PDGLi f eTi me(885. 7*second) ;
/] allow neutron decay

GANeut ron: : Neut ron() - >Set PDGSt abl e( f al se) ;

Branching ratios and life time can be modified by using user commands, also.

Example: Set 100% br for dalitz decay of piO

Idle> /particlelselect pi0

Idl e> /particlel/property/decay/select 0
Idle> /particlelproperty/decay/br 0

Idl e> /particlel/property/decay/select 1
Idle> /particlelproperty/decay/br 1

199



Tracking and Physics

I dl e> /particlel/property/decay/ dunp
(ADecayTabl e: pi 0
0: BR 0 [Phase Space] : gamma ganmma
1:. BR 1 [Dalitz Decay] : gamma e- e+

5.2.3.3. Pre-assigned Decay Modes by Event Generators

Decays of heavy flavor particles such as B mesons are very complex, with many varieties of decay modes and
decay mechanisms. There are many modelsfor heavy particle decay provided by various event generatorsand it is
impossibleto defineall the decay modes of heavy particlesby using G4VDecay Channel . In other words, decays
of heavy particles cannot be defined by the Geant4 decay process, but should be defined by event generators or
other external packages. Geant4 providestwo waysto do this: pr e- assi gned decay node and ext er nal
decayer.

In the latter approach, the class GAVEXxt Decayer isused for the interface to an external package which defines
decay modes for a particle. If an instance of G4VExt Decayer is attached to G4Decay, daughter particles will
be generated by the external decay handler.

In the former case, decays of heavy particles are simulated by an event generator and the primary event contains
the decay information. G4VPr i mar yGener at or automatically attaches any daughter particles to the parent
particle as the PreAssignedDecayProducts member of GADynarmi cParti cl e. AADecay adopts these pre-as-
signed daughter particlesinstead of asking (4VDecay Channel to generate decay products.

In addition, the user may assign a pr e- assi gned decay time for a specific track in its rest frame (i.e. de-
cay time is defined in the proper time) by using the GAPr i mar yParti cl e: : Set Proper Ti me() method.
GAVPri maryGener at or sets the PreAssignedDecayProperTime member of GADynami cParti cl e.
ADecay usesthis decay timeinstead of the life time of the particle type.

5.2.4. Gamma-nuclear and Lepto-nuclear Processes

Gamma-nuclear and lepto-nuclear reactions are handled in Geant4 as hybrid processes which typically require
both electromagnetic and hadronic models for their implementation. While neutrino-induced reactions are not
currently provided, the Geant4 hadronic framework is general enough to include their future implementation as
ahybrid of weak and hadronic models.

The general scheme followed is to factor the full interaction into an electromagnetic (or weak) vertex, in which
avirtual particle is generated, and a hadronic vertex in which the virtual particle interacts with a target nucleus.
In most cases the hadronic vertex is implemented by an existing Geant4 model which handles the intra-nuclear
propagation.

The cross sections for these processes are parameterizations, either directly of data or of theoretical distributions
determined from the integration of lepton-nucleon cross sections double differential in energy loss and momentum
transfer.

For the most part gammas can be treated as hadrons and in fact they interact that way with the nucleus when the
Bertini-style cascade GACascadel nt er f ace and QGSP models are used. These models may be assigned to
(APhot oNucl ear Process asshown in the following partial code:

ATheoFSGener at or* t heHEMbdel = new G4TheoFSGener at or ;
G4QGSMWodel * theStringhMdel = new GAQGSMbdel <GAGanmaParti ci pant s>;
G4Exci tedStri ngDecay* theStringDecay =

new AExci t edStri ngDecay(t heFragnent ati on=new GAQGSM-r agnent ati on) ;
t heSt ri nghbdel - >Set Fr agnent ati onModel (t heStri ngDecay) ;

t heHEMbdel - >Set Hi ghEner gyGener at or (t heSt ri nghodel ) ;
t heHEMbdel - >Set Tr ansport (new GAGener at or Pr econpoundl nt er f ace) ;
t heHEMbdel - >Set M nEner gy(8*GeV) ;

(ACascadel nterface* theLEMbodel = new (ACascadel nterface;
t heLEMbdel - >Set MaxEner gy( 10* GeV) ;

APhot oNucl ear Process* t hePhot oNucl ear Process = new (4Phot oNucl ear Process;
t hePhot oNucl ear Process- >Regi st er Me(t heLEMbdel ) ;
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t hePhot oNucl ear Pr ocess- >Regi st er Me(t heHEMbdel ) ;

GAProcessManager * procMan = (AGamma: : Gamme( ) - >Get Pr ocessManager () ;
pr ocMan- >AddDi scr et eProcess(t hePhot oNucl ear Process) ;

Electro-nuclear reactions in Geant4 are handled by the classes GAEl ect r onNucl ear Process and
(APosi t ronNucl ear Process, which are both implmented by GAEl ect r oVDNucl ear Model . This
model consists of three sub-models: code which generates the virtual photon from the lepton-nucleus vertex, the
Bertini-style cascade to handle the low and medium energy photons, and the FTFP model to handle the high en-
ergy photons.

Muon-nuclear reactions are handled similarly. The process GAMuonNucl ear Pr ocess can be assigned the
&AAMuonVDNucl ear Model whichinturnisimplemented by three sub-models: virtual gamma generation code,
Bertini-style cascade and the FTFP model.

5.2.5. Optical Photon Processes

A photon is considered to be optical when its wavelength is much greater than the typical atomic spacing. In
GEANT4 optical photons are treated as a class of particle distinct from their higher energy gamma cousins. This
implementation allows the wave-like properties of electromagnetic radiation to be incorporated into the optical
photon process. Because this theoretical description breaks down at higher energies, there is no smooth transition
as afunction of energy between the optical photon and gamma particle classes.

For the simulation of optical photons to work correctly in GEANT4, they must be imputed a linear polarization.
Thisisunlike most other particlesin GEANT4 but is automatically and correctly done for optical photonsthat are
generated as secondaries by existing processes in GEANT4. Not so, if the user wishesto start optical photons as
primary particles. In this case, the user must set the linear polarization using particle gun methods, the General
Particle Source, or his’/her PrimaryGeneratorAction. For an unpolarized source, the linear polarization should be
sampled randomly for each new primary photon.

The GEANT4 catalogue of processes at optical wavelengths includes refraction and reflection at medium bound-
aries, bulk absorption, Mieand Rayleigh scattering. Processeswhich produce optical photonsincludethe Cerenkov
effect and scintillation. Optical photons are generated in GEANT4 without energy conservation and their energy
must therefore not be tallied as part of the energy balance of an event.

The optical properties of the medium which are key to the implementation of these types of processes are stored
as entries in a G4AMat eri al Properti esTabl e which is linked to the G4Mat eri al in question. These
properties may be constants or they may be expressed as a function of the photon's energy. This table is a pri-
vate data member of the GAMat eri al class. The G4Mat eri al Properti esTabl e isimplemented as a
hash directory, in which each entry consists of a value and a key. The key is used to quickly and efficiently re-
trieve the corresponding value. All values in the dictionary are either instantiations of G4doubl e or the class
AMat eri al PropertyVect or, andall keysare of type ASt ri ng.

A AMat eri al PropertyVect or is atypedef of G4PhysicsOrderedFreeVector. The entries are a pair of
numbers, which in the case of an optical property, are the photon energy and corresponding property value. It is
possible for the user to add as many materia (optical) properties to the material as he wishes using the methods
supplied by the G4AMat eri al Properti esTabl e class. An example of thisis shown in Example 5.3. In this
example the interpolation of the G4Material PropertyVector is to be done by a spline fit. The default is a linear
interpolation.

Example 5.3. Optical properties added to a GAMat eri al Properti esTabl e and
linked toaG4Mat eri al

const 4i nt NUMENTRI ES = 32;

G4doubl e ppckov[ NUMENTRI ES] = {2.034*eV, ......, 4.136*eV};
GAdoubl e rindex] NUMENTRIES] = {1.3435, ......, 1.3608};
GAdoubl e absorpti on[ NUMENTRI ES] = {344.8*cm ......, 1450. O*cnj ;

GAMateri al PropertiesTabl e *MPT = new GAMateri al Properti esTabl e();
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MPT -> AddConst Property(" SCl NTI LLATI ONYI ELD", 100. / MeV) ;

MPT -> AddProperty(" Rl NDEX", ppckov, ri ndex, NUVMENTRI ES} - >Set Spl i ne(true);
MPT -> AddProperty("ABSLENGTH', ppckov, absor pti on, NUMENTRI ES} - >Set Spl i ne(true);

scintillator -> SetMaterial Properti esTabl e( MPT);

5.2.5.1. Generation of Photons in processes/ el ect r omagnet -
I ¢/ xrays - Cerenkov Effect

The radiation of Cerenkov light occurs when a charged particle moves through a dispersive medium faster than
the group velocity of light in that medium. Photons are emitted on the surface of a cone, whose opening angle
with respect to the particle's instantaneous direction decreases as the particle slows down. At the same time, the
frequency of the photons emitted increases, and the number produced decreases. When the particle velocity drops
below the local speed of light, the radiation ceases and the emission cone angle collapses to zero. The photons
produced by this process have an inherent polarization perpendicular to the cone's surface at production.

The flux, spectrum, polarization and emission of Cerenkov radiation in the Al ongSt epDol t method of the
class ACer enkov follow well-known formulae, with two inherent computational limitations. The first arises
from step-wise simulation, and the second comes from the requirement that numerical integration calculate the
average number of Cerenkov photons per step. The process makes use of a G4Physi csTabl e which contains
incremental integral sto expeditethiscalculation. The Cerenkov processin Geant4 islimited to normally dispersive
media, i.e., dn(E)/dE 5 0.

The time and position of Cerenkov photon emission are calculated from quantities known at the beginning of a
charged particle's step. The step is assumed to berectilinear even in the presence of amagnetic field. The user may
limit the step size by specifying amaximum (average) number of Cerenkov photons created during the step, using
the Set MaxNumnPhot onsPer St ep(const G4i nt  NunPhot ons) method. The actual number generated
will necessarily be different due to the Poissonian nature of the production. In the present implementation, the
production density of photons is distributed evenly along the particle's track segment, even if the particle has
dowed significantly during the step. The step can also be limited with the Set MaxBet aChangePer St ep
method, where the argument is the allowed change in percent).

Thefrequently very large number of secondaries produced in asingle step (about 300/cm in water), compelled the
ideain GEANT3.21 of suspending the primary particle until al its progeny have been tracked. Despite the fact
that GEANT4 employs dynamic memory allocation and thus does not suffer from the limitations of GEANT3.21
with itsfixed large initial ZEBRA store, GEANT4 nevertheless provides for an analogous functionality with the
public method Set Tr ackSecondari esFi r st . An example of the registration of the Cerenkov process is
given in Example 5.4.

Example5.4. Registration of the Cerenkov processin Physi csLi st .

#i ncl ude " GACer enkov. hh"

voi d Expt Physi csLi st:: Construct Op() {
G4Cer enkov* t heCer enkovProcess = new G4Cer enkov(" Cer enkov") ;
G4i nt MaxNunPhot ons = 300;

t heCer enkovPr ocess- >Set Tr ackSecondari esFirst (true);
t heCer enkovPr ocess- >Set MaxBet aChangePer St ep(10. 0) ;
t heCer enkovPr ocess- >Set MaxNunPhot onsPer St ep( MaxNunPhot ons) ;

theParticlelterator->reset();
while( (*theParticlelterator)() ){
GAParticlebDefinition* particle = theParticlelterator->value();
GAPr ocessManager * pnanager = particl e- >Get ProcessManager () ;
GAString particleNanme = particle->GetParticl eNanme();
i f (theCerenkovProcess->| sApplicabl e(*particle)) {
prmanager - >AddPr ocess(t heCer enkovPr ocess) ;
pmanager - >Set ProcessOr der i ng(t heCer enkovPr ocess, i dxPost St ep) ;
}
}
}
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5.2.5.2. Generation of Photons in processes/ el ectr omagnet -
I ¢/ xrays - Scintillation

Every scintillating material has a characteristic light yield, SCI NTI LLATI ONYI ELD, and an intrinsic resolu-
tion, RESOLUTI ONSCALE, which generally broadens the statistical distribution of generated photons. A wider
intrinsic resolution is due to impurities which are typical for doped crystals like Nal(Tl) and Csl(Tl). On the
other hand, the intrinsic resolution can also be narrower when the Fano factor plays a role. The actual hum-
ber of emitted photons during a step fluctuates around the mean number of photons with a width given by
Resol uti onScal e*sqrt ( MeanNunber O Phot ons) . The average light yield, MeanNunber O Pho-
t ons, hasalinear dependence on the local energy deposition, but it may be different for minimum ionizing and
non-minimum ionizing particles.

A scintillator is also characterized by its photon emission spectrum and by the exponential decay of its time spec-
trum. In GEANT4 the scintillator can have afast and aslow component. Therelative strength of the fast component
asafraction of total scintillation yieldisgiven by the YI ELDRATI O. Scintillation may be simulated by specifying
these empirical parameters for each material. It is sufficient to specify in the user's Det ect or Const ructi on
class a relative spectra distribution as a function of photon energy for the scintillating material. An example of
thisis shown in Example 5.5

Example 5.5. Specification of scintillation propertiesin Det ect or Const r ucti on.

const G4int NUMENTRIES = 9;
G4doubl e Scnt _PP[ NUMENTRIES] = { 6.6*eV, 6.7*eV, 6.8*eV, 6.9*eV,

7.0%eV, 7.1*eV, 7.2*eV, 7.3*eV, 7.4*eV },;
GAdoubl e Scnt _FAST[ NUMENTRI ES] = { 0.000134, 0.004432, 0.053991, 0.241971,
0.398942, 0.000134, 0.004432, 0.053991,
0. 241971 };
0. 000010, 0.000020, 0.000030, 0.004000,
0. 008000, 0.005000, 0.020000, 0.001000,
0. 000010 };

GAdoubl e Scnt SLON NUVENTRI ES] = {

HAMaterial * Scnt ;
GAMat eri al PropertiesTabl e* Scnt _MPT = new GAMateri al Properti esTabl e();

Scnt _MPT- >AddPr opert y(" FASTCOMPONENT", Scnt _PP, Scnt FAST, NUMENTRI ES);
Scnt _MPT- >AddPr opert y(" SLONCOMPONENT", Scnt PP, Scnt SLOW NUMENTRI ES);

Scnt _MPT- >AddConst Propert y(" SClI NTI LLATI ONYI ELD", 5000./ MeV);
Scnt _MPT- >AddConst Propert y(" RESOLUTI ONSCALE", 2.0);

Scnt _MPT- >AddConst Property(" FASTTI MECONSTANT", 1.*ns);

Scnt _MPT- >AddConst Property(" SLOMI MECONSTANT", 10.*ns);

Scnt _MPT- >AddConst Property(" Yl ELDRATI O', 0.8);

Scnt - >Set Mat eri al Properti esTabl e( Scnt _MPT) ;

In cases where the scintillation yield of a scintillator depends on the particle type, different scintillation processes
may be defined for them. How thisyield scalesto the one specified for the material is expressed with the Sci n-
tillationYieldFactor intheuser'sPhysi csLi st asshown in Example 5.6. In those cases where the
fast to dow excitation ratio changes with particle type, the method Set Sci nti | | ati onExcitati onRati o
can be called for each scintillation process (see the advanced underground_physics example). This overwritesthe
Yi el dRat i o obtained fromthe AMat eri al Properti esTabl e.

Example5.6. Implementation of the scintillation processin Physi csLi st .

GAScintillation* theMuonScint Process = new (AScintillation("Scintillation");

t heMuonSci nt Process- >Set Tr ackSecondar i esFi rst (true);
t heMuonSci nt Process- >Set Sci nti |l |l ati onYi el dFact or (0. 8);

theParticlelterator->reset();

while( (*theParticlelterator)() ){
GAParticleDefinition* particle = theParticlelterator->val ue();
GAPr ocessManager * pnanager = particl e- >Get ProcessManager () ;
GAString particleNanme = particle->GetParticl eNanme();
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if (theMuonScint Process- >l sApplicable(*particle)) {
if (particleName == "nmu+") {
pmanager - >AddPr ocess(t heMuonSci nt Process) ;
prmanager - >Set ProcessOr der i ngToLast (t heMuonSci nt Process, i dxAt Rest);
pmanager - >Set ProcessOr der i ngToLast (t heMionSci nt Process, i dxPost St ep) ;

}
}

A Gaussian-distributed number of photons is generated according to the energy lost during the
step. A resolution scale of 1.0 produces a dtatistical fluctuation around the average yield set with
AddConst Property(" SCl NTI LLATI ONYI ELD") , while values > 1 broaden the fluctuation. A value of
zero produces no fluctuation. Each photon's frequency is sampled from the empirical spectrum. The photons orig-
inate evenly along the track segment and are emitted uniformly into 44, with arandom linear polarization and at
times characteristic for the scintillation component.

When there are multiple scintillatorsin the simulation and/or when the scintillation yield isanon-linear function of
the energy deposited, the user can also define an array of total scintillation light yields as a function of the energy
deposited and particle type. The available particles are protons, electrons, deuterons, tritons, alphas, and carbon
ions. These are the particles known to significantly effect the scintillation light yield, of for example, BC501A
(NE213/EJ301) liquid organic scintillator and BC420 plastic scintillator as function of energy deposited.

The method works as follows:

1. Intheuser's physics lists, the user must set a G4bool flag that allows scintillation light emission to depend
on the energy deposited by particle type:

t heSci nt Process->Set Scintillati onByParticl eType(true);

2. Theuser must also specify and add, via the AddProperty method of the MPT, the scintillation light yield as
function of incident particle energy with new keywords, for example: PROTONSCINTILLATIONYIELD
etc. and pairs of protonEnergy and scintLightYield.

5.2.5.3. Generation of Photons in processes/ opti cal - Wave-
length Shifting

Wavelength Shifting (WLS) fibers are used in many high-energy particle physics experiments. They absorb light
at one wavelength and re-emit light at a different wavelength and are used for several reasons. For one, they tend
to decrease the self-absorption of the detector so that as much light reaches the PMTs as possible. WL S fibers are
also used to match the emission spectrum of the detector with the input spectrum of the PMT.

A WLS materia is characterized by its photon absorption and photon emission spectrum and by a possible time
delay between the absorption and re-emission of the photon. Wavelength Shifting may be simulated by specifying
these empirical parameters for each WLS materia in the simulation. It is sufficient to specify in the user's De-
t ect or Construct i on classarelative spectral distribution as afunction of photon energy for the WL S mate-
rial. WLSABSLENGTH isthe absorption length of the material as afunction of the photon's energy. WL SCOM-
PONENT isthe relative emission spectrum of the material as a function of the photon's energy, and WLSTIME-
CONSTANT accounts for any time delay which may occur between absorption and re-emission of the photon.
An exampleis shown in Example5.7.

Example5.7. Specification of WL S propertiesin Det ect or Const ruct i on.

const Aint nEntries = 9;

G4doubl e Phot onEnergy[ nEntries] = { 6.6*eV, 6.7*eV, 6.8%eV, 6.9*eV,
7.0%eV, 7.1*eV, 7.2*eV, 7.3*eV, 7.4*eV },;

GAdoubl e RI ndexFi ber[nEntries] =

{ 1.60, 1.60, 1.60, 1.60, 1.60, 1.60, 1.60, 1.60, 1.60 };
GAdoubl e AbsFi ber[nEntries] =

{0.1*nmm 0. 2*mm 0. 3*mm 0. 4*cm 1. 0*cm 10*cm 1. 0*m 10. 0*m 10. 0* n} ;
GAdoubl e Em ssi onFi ber[ nEntries] =

{0.0, 0.0, 0.0, 0.1, 0.5, 1.0, 5.0, 10.0, 10.0 };
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AMat eri al * WLSFi ber ;
GAMat eri al Properti esTabl e* MPTFi ber = new AMateri al Properti esTabl e();

MPTFi ber - >AddPr oper t y(" Rl NDEX", Phot onEner gy, Rl ndexFi ber, nEntri es);

MPTFi ber - >AddPr oper t y( " W.SABSLENGTH", Phot onEner gy, AbsFi ber, nEntri es) ;

MPTFi ber - >AddPr oper t y(" W.SCOVMPONENT" , Phot onEner gy, Emi ssi onFi ber, nEntri es);
MPTFi ber - >AddConst Pr opert y(" W.STI MECONSTANT", 0. 5*ns);

WLSFi ber - >Set Mat eri al Properti esTabl e( MPTFi ber) ;

The process is defined in the PhysicsList in the usual way. The process class name is G4OpWLS. It should be
instantiated with theWL SProcess = new GA4OpWL S("OpWL S") and attached to the process manager of the optical
photon as a DiscreteProcess. The way the WLSTIMECONSTANT is used depends on the time profile method
chosen by the user. If in the PhysicsList theWL SProcess->UseTimeGenerator("exponential") option is set, the
time delay between absorption and re-emission of the photon is sampled from an exponentia distribution, with the
decay term equal to WLSTIMECONSTANT. If, on the other hand, theWL SProcess->UseTimeGenerator("delta’)
is chosen, the time delay is a delta function and equal to WLSTIMECONSTANT. The default is "delta” in case
the GAOpWL S::UseTimeGenerator(const G4String name) method is not used.

5.2.5.4. Tracking of Photons in processes/ opti cal

Absorption

The implementation of optical photon bulk absorption, GAOpAbsor pt i on, istrivia in that the process merely
kills the particle. The procedure requires the user to fill the relevant GAMat er i al Properti esTabl e with
empirical datafor the absorption length, using ABSLENGTH as the property key in the public method AddPr op-
erty. The absorption length is the average distance traveled by a photon before being absorpted by the medium,;
i.e. it isthe mean free path returned by the Get MeanFr eePat h method.

Rayleigh Scattering

The differential cross section in Rayleigh scattering, d#/d#, is proportional to 1+cosz(9), where g is the polar of
the new polarization vector with respect to the old polarization vector. The G4AOpRay| ei gh scattering process
samples this angle accordingly and then calculates the scattered photon's new direction by requiring that it be
perpendicular to the photon's new polarization in such away that the final direction, initial and final polarizations
are dl in one plane. This process thus depends on the particle's polarization (spin). The photon's polarization is
a datamember of the GADynani cParti cl e class.

A photon which is not assigned a polarization at production, either via the Set Pol ari zati on method
of the GAPri maryParti cl e class, or indirectly with the Set Parti cl ePol ari zat i on method of the
APar ti cl e@un class, may not be Rayleigh scattered. Optical photons produced by the G4Cer enkov process
have inherently a polarization perpendicular to the cone's surface at production. Scintillation photons have a ran-
dom linear polarization perpendicular to their direction.

TheprocessrequiresaGAMat er i al Properti esTabl e tobefilled by theuser with Rayleigh scattering length
data. The Rayleigh scattering attenuation length is the average distance traveled by a photon beforeit is Rayleigh
scattered inthe medium and it isthe distancereturned by the Get MeanFr eePat h method. TheG4OpRay! ei gh
classprovidesaRay! ei ghAt t enuat i onLengt hGener at or method which cal cul ates the attenuation coef-
ficient of a medium following the Einstein-Smoluchowski formula whose derivation requires the use of statistical
mechanics, includes temperature, and depends on the isothermal compressibility of the medium. This generator is
convenient when the Rayleigh attenuation length is not known from measurement but may be cal culated from first
principles using the above material constants. For amedium named Water and no Rayleigh scattering attenutation
length specified by the user, the program automatically callsthe Rayl ei ghAt t enuat i onLengt hGener a-
t or which calculatesit for 10 degrees Celsiusliquid water.

Mie Scattering
Mie Scattering (or Mie solution) is an analytical solution of Maxwell's equations for scattering of optical photons

by spherical particles. It is significant only when the radius of the scattering object is of order of the wave length.
Theanalytical expressionsfor Mie Scattering are very complicated since they are a series sum of Bessel functions.
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One common approximation madeiscall Henyey-Greenstein (HG). Theimplementation in Geant4 followsthe HG
approximation (for details see the Physics Reference Manual) and the treatment of polarization and momentum
are similar to that of Rayleigh scattering. We require the final polarization direction to be perpendicular to the
momentum direction. We also require the final momentum, initial polarization and final polarization to be in the
same plane.

The process requires a G4M aterial PropertiesTable to be filled by the user with Mie scattering length data (entered
with the name: MIEHG) analogous to Rayleigh scattering. The Mie scattering attenuation length is the average
distance traveled by a photon before it is Mie scattered in the medium and it is the distance returned by the Get-
M eanFreePath method. In practice, the user not only needs to provide the attenuation length of Mie scattering, but
also needs to provide the constant parameters of the approximation: g_f, g b, and r_f. (with AddConstProperty
and with the names: MIEHG_FORWARD, MIEHG_BACKWARD, and MIEHG_FORWARD_RATIO, respec-
tively; see Novice Example N0O6.)

Boundary Process
Reference: E. Hecht and A. Zajac, Optics[ Hecht1974 ]

For the ssimple case of a perfectly smooth interface between two dielectric materials, all the user needs to provide
are the refractive indices of the two materials stored in their respective AMat er i al Properti esTabl e. In
all other cases, the optical boundary process design relies on the concept of surfaces. The information is split into
two classes. One classin the material category keepsinformation about the physical properties of the surfaceitself,
and a second class in the geometry category holds pointersto the relevant physical and logical volumesinvolved
and has an association to the physical class. Surface objects of the second type are stored in arelated table and
can be retrieved by either specifying the two ordered pairs of physical volumes touching at the surface, or by the
logical volume entirely surrounded by this surface. Theformer iscalled aborder surfacewhilethelatter isreferred
to asthe skin surface. This second type of surface is useful in situations where avolume is coded with a reflector
and is placed into many different mother volumes. A limitation is that the skin surface can only have one and
the same optical property for all of the enclosed volume's sides. The border surface is an ordered pair of physical
volumes, so in principle, the user can choose different optical propertiesfor photons arriving from thereverse side
of the same interface. For the optical boundary process to use a border surface, the two volumes must have been
positioned with APVPI acenent . The ordered combination can exist at many places in the simulation. When
the surface concept is not needed, and a perfectly smooth surface exists beteen two dielectic materias, the only
relevant property is the index of refraction, a quantity stored with the material, and no restriction exists on how
the volumes were positioned.

When an optical photon arrives at aboundary it is absorbed if the medium of the volume being left behind has no
index of refraction defined. A photon is also absorbed in case of a dielectric-dielectric polished or ground surface
when the medium about to be entered has no index of refraction. It is absorbed for backpainted surfaces when the
surface has no index of refraction. If the geometry boundary has a border surface this surface takes precedence,
otherwise the program checks for skin surfaces. The skin surface of the daughter volume is taken if a daughter
volumeisentered el sethe program checksfor askin surface of the current volume. When the optical photon leaves
a volume without entering a daughter volume the skin surface of the current volume takes precedence over that
of the volume about to be entered.

The physical surface object also specifies which model the boundary process should use to simulate interactions
with that surface. In addition, the physical surface can have amaterial property table all its own. The usage of this
table allows all specular constants to be wavel ength dependent. In case the surface is painted or wrapped (but not a
cladding), the table may include the thin layer'sindex of refraction. Thisallowsthe simulation of boundary effects
at the intersection between the medium and the surface layer, as well as the Lambertian reflection at the far side
of the thin layer. This occurs within the process itself and does not invoke the &4 Navi gat or . Combinations of
surface finish properties, such as polished or ground and front painted or back painted, enumerate the different
situations which can be simulated.

When a photon arrives at a medium boundary its behavior depends on the nature of the two materials that join at
that boundary. Medium boundaries may be formed between two dielectric materials or a dielectric and a metal.
In the case of two dielectric materias, the photon can undergo total internal reflection, refraction or reflection,
depending on the photon's wavel ength, angle of incidence, and the refractive indices on both sides of the boundary.
Furthermore, reflection and transmission probabilites are sensitive to the state of linear polarization. In the case of

206



Tracking and Physics

an interface between a dielectric and a metal, the photon can be absorbed by the metal or reflected back into the
dielectric. If the photon is absorbed it can be detected according to the photoel ectron efficiency of the metal.

Asexpressed in Maxwell's equations, Fresnel reflection and refraction are intertwined through their relative prob-
abilities of occurrence. Therefore neither of these processes, nor total internal reflection, are viewed as individual
processes deserving separate class implementation. Nonethel ess, an attempt was made to adhere to the abstraction
of having independent processes by splitting the code into different methods where practicable.

One implementation of the GACpBoundar yPr ocess class employs the UNIFIED model [A. Levin and C.
Moisan, A More Physical Approach to Model the Surface Treatment of Scintillation Counters and its Implementa-
tioninto DETECT, TRIUMF Preprint TRI-PP-96-64, Oct. 1996] of the DETECT program [G.F. Knoll, T.F. Knoll
and T.M. Henderson, Light Collection Scintillation Detector Composites for Neutron Detection, |EEE Trans. Nu-
cl. Sci., 35 (1988) 872.]. It applies to dielectric-dielectric interfaces and tries to provide a realistic simulation,
which deals with all aspects of surface finish and reflector coating. The surface may be assumed as smooth and
covered with a metallized coating representing a specular reflector with given reflection coefficient, or painted
with a diffuse reflecting material where Lambertian reflection occurs. The surfaces may or may not bein optical
contact with another component and most importantly, one may consider a surface to be made up of micro-facets
with normal vectorsthat follow given distributions around the nominal normal for the volume at the impact point.
For very rough surfaces, it is possible for the photon to inversely aim at the same surface again after reflection
of refraction and so multiple interactions with the boundary are possible within the processitself and without the
need for relocation by GANavi gat or .

UNIFIED MODEL FOR OPTICAL SURFACES
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Figure5.1. Diagram of the UNIFIED Model for Optical Surfaces (courtesy A. Shankar)

The UNIFIED model (Figure 5.1) provides for a range of different reflection mechanisms. The specular lobe
constant represents the reflection probability about the normal of a micro facet. The specular spike constant, in
turn, illustrates the probability of reflection about the average surface normal. The diffuse lobe constant is for the
probability of internal Lambertian reflection, and finally the back-scatter spike constant is for the case of several
reflections within a deep groove with the ultimate result of exact back-scattering. The four probabilities must
add up to one, with the diffuse lobe constant being implicit. The reader may consult the reference for a thorough
description of the model.
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Example 5.8. Dielectric-dielectric  surface properties defined via the
AOpti cal Surface.

AVPhysi cal Vol une* vol unel;
AVPhysi cal Vol une* vol une2;

GAOpt i cal Surface* OpSurface = new GAOpti cal Surface("nanme");

(ALogi cal Bor der Sur f ace* Surface = new
G4Logi cal Bor der Sur f ace(" nanme", vol unel, vol une2, OpSur f ace) ;

GAdoubl e sigma_al pha = 0. 1;

OpSur face -> Set Type(diel ectric_dielectric);
QpSur f ace -> Set Mbdel (unified);

OpSur f ace -> Set Fi ni sh(groundbackpai nt ed) ;
OpSur f ace -> Set Si gnmaAl pha(si gma_al pha) ;

const 4int NUM = 2;

GAdoubl e pp[ NUM = {2.038*eV, 4.144*eV};
GAdoubl e specul arl obe[ NUM = {0.3, 0.3};
GAdoubl e specul arspi ke[ NUM = {0.2, 0.2};
G4doubl e backscatter[NUM = {0.1, O0.1};
GAdoubl e rindex[ NUM = {1.35, 1.40};
GAdoubl e reflectivity[NUM = {0.3, 0.5};
GAdoubl e efficiency[NUM = {0.8, 0.1};

GAMat eri al PropertiesTabl e* SMPT = new AMateri al Properti esTabl e();

SMPT -> AddProperty("RI NDEX", pp, ri ndex, NUM ;

SMPT -> AddPropert y(" SPECULARLOBECONSTANT", pp, specul ar | obe, NUM ;
SMPT -> AddPropert y(" SPECULARSPI KECONSTANT", pp, specul ar spi ke, NUM ;
SMPT -> AddPropert y(" BACKSCATTERCONSTANT", pp, backscatter, NUM ;
SMPT -> AddProperty("REFLECTI VI TY", pp, refl ectivity, NUM;

SMPT -> AddProperty("EFFI Cl ENCY", pp, ef fi ci ency, NUM ;

OpSur face -> SetMateri al Properti esTabl e( SMPT) ;
Theorigina GEANT3.21 implementation of thisprocessisalso availableviathe GLISUR methodsflag. [GEANT

Detector Description and Simulation Tool, Application Software Group, Computing and Networks Division,
CERN, PHY S260-6 tp 260-7.].

Example5.9. Dielectric metal surface propertiesdefined viathe GAOpt i cal Sur f ace.

G4ALogi cal Vol ume* vol une_| og;
GAOpti cal Surface* OpSurface = new AOpti cal Surface("nane");

GALogi cal Ski nSurface* Surface = new
G4Logi cal Ski nSur face("nanme", vol une_| og, OpSur f ace) ;

OpSur face -> Set Type(dielectric_netal);
pSur face -> Set Fi ni sh(ground);
QpSur face -> Set Mbdel (glisur);

GAdoubl e polish = 0.8;
GAMat eri al PropertiesTabl e *OpSurfaceProperty = new GAMateri al Properti esTabl e();

QpSur f aceProperty -> AddProperty("REFLECTIVITY", pp,reflectivity, NUM;
OpSur f aceProperty -> AddProperty("EFFI Cl ENCY", pp, ef fi ci ency, NUM ;

OpSurface -> Set Materi al Properti esTabl e( OpSur f aceProperty);

Thereflectivity off ametal surface can also be calculated by way of acomplex index of refraction. Instead of stor-
ing the REFLECTIVITY directly, the user storestherea part (REALRINDEX) and the imaginary part (IMAGI-
NARY RINDEX) as afunction of photon energy separately in the G4Material Property Table. Geant4 then calcu-
lates the reflectivity depending on the incident angle, photon energy, degree of TE and TM polarization, and this
complex refractive index.
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The program defaults to the GLISUR model and polished surface finish when no specific model and sur-
face finish is specified by the user. In the case of a dielectric-meta interface, or when the GLISUR model is
specified, the only surface finish options available are polished or ground. For dielectric-metal surfaces, the
A OpBoundar yPr ocess also defaults to unit reflectivity and zero detection efficiency. In cases where the
user specifies the UNIFIED model (Figure 5.1), but does not otherwise specify the model reflection probability
constants, the default becomes Lambertian reflection.

Martin Janecek and Bill Moses (Lawrence Berkeley National Laboratory) built an instrument for measuring the
angular reflectivity distribution inside of BGO crystals with common surface treatments and reflectors applied.
These results have been incorporate into the Geant4 code. A third class of reflection type besides dielectric_metal
and dielectric_dielectric is added: dielectric_LUT. The distributions have been converted to 21 look-up-tables
(LUT); so far for 1 scintillator material (BGO) x 3 surface treatments x 7 reflector materials. The modified code
allows the user to specify the surface treatment (rough-cut, chemically etched, or mechanically polished), the at-
tached reflector (Lumirror, Teflon, ESR film, Tyvek, or TiO2 paint), and the bonding type (air-coupled or glued).
The glue used is MeltMount, and the ESR film used is VM2000. Each LUT consists of measured angular distri-
butions with 4° by 5° resolution in theta and phi, respectively, for incidence angles from 0° to 90° degrees, in 1°-
steps. The code might in the future be updated by adding more LUTS, for instance, for other scintillating materials
(such as LSO or Nal). To use these LUT the user has to download them from Geant4 Software Download and
set an environment variable, AREAL SURFACEDATA, to the directory of geant 4/ dat a/ Real Sur f acel. 0.
For details see: M. Janecek, W. W. Moses, |EEE Trans. Nucl. Sci. 57 (3) (2010) 964-970.

The enumeration G4Optical SurfaceFinish has been extended to include (what follows should be a2 column table):

pol i shedlunmirrorair, /1 mechanically polished surface, with lumrror

pol i shed! umi rrorgl ue, // mechanical 'y polished surface, with lumrror & neltnount

pol i shedai r, /1 mechanically polished surface

pol i shedt ef | onai r, // mechanical ly polished surface, with teflon

pol i shedti oair, /1 mechanically polished surface, with tio paint

pol i shedt yvekai r, // mechanical |y polished surface, with tyvek

pol i shedvn000ai r, /1 mechanically polished surface, with esr film

pol i shedvn2000g! ue, /1 mechanically polished surface, with esr film & nel t mount

etchedlumirrorair, /1 chemcally etched surface, with lumrror

et chedl um rror gl ue, /Il chem cally etched surface, with lumirror & neltnount

et chedair, /1 chemcally etched surface

etchedteflonair, // chemcally etched surface, with teflon

et chedti oair, /1 chemcally etched surface, with tio paint

et chedt yvekai r, // chemcally etched surface, with tyvek

et chedvnR000ai r, /1 chemcally etched surface, with esr film

et chedvnR000g! ue, /1 chem cally etched surface, with esr film & nmelt nount

groundlumrrorair, /'l rough-cut surface, with lumrror

groundl um rror gl ue, /'l rough-cut surface, with lumrror & neltnount

groundai r, /'l rough-cut surface

groundt ef |l onair, // rough-cut surface, with teflon

groundtioair, /1 rough-cut surface, with tio paint

groundt yvekai r, /'l rough-cut surface, with tyvek

gr oundvnR000ai r, /1 rough-cut surface, with esr film

groundvnR000g! ue /'l rough-cut surface, with esr film & neltnount
To use a |ook-up-table, all the user needs to specify for an
HAOptical Surface is. Set Type(diel ectric_LUT), Set Mbdel (LUT) and for example,

Set Fi ni sh(pol i shedtyvekair).

5.2.6. Parameterization

In this section we describe how to use the parameterization or "fast simulation” facilities of GEANT4. Examples
are provided in the examples/novice/NO5 directory.

5.2.6.1. Generalities:

The Geant4 parameterization facilities allow you to shortcut the detailed tracking in a given volume and for given
particle typesin order for you to provide your own implementation of the physics and of the detector response.

Parameterisations are bound to a GZARegi on object, which, in the case of fast smulation is also called an enve-
lope. Prior to release 8.0, parameterisations were bound to a G4Logi cal Vol une, the root of a volume hierar-
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chy. These root volumes are now attributes of the G4Regi on. Envelopes often correspond to the volumes of
sub-detectors: electromagnetic calorimeters, tracking chambers, etc. With GEANTA4 it is also possible to define
envelopes by overlaying aparalel or "ghost" geometry as discussed in Section 5.2.6.7.

In GEANT4, parameterisations have three main features. Y ou must specify:

* the particle types for which your parameterisation is valid;

» the dynamics conditions for which your parameterisation is valid and must be triggered;

* the parameterisation itself: where the primary will be killed or moved, whether or not to create it or create
secondaries, etc., and where the detector response will be computed.

GEANT4 will message your parameterisation code for each step starting in any root G4L ogicalVolume (including
daughters. sub-daughters, etc. of this volume) of the G4ARegi on. It will proceed by first asking the available
parameterisations for the current particle type if one of them (and only one) wants to issue a trigger. If so it will
invoke its parameterisation. In this case, the tracking will not apply physicsto the particle in the step. Instead, the
UserSteppingAction will be invoked.

Parameterisations ook like a"user stepping action" but are more advanced because:

 parameterisation code is messaged only in the GZARegi on to which it is bound;

 parameterisation codeis messaged anywhereinthe G4Regi on, thatis, any volumeinwhichthetrack islocated;

 GEANT4 will provide information to your parameterisation code about the current root volume of the
(ARegi on inwhich the track istravelling.

5.2.6.2. Overview of Parameterisation Components
The GEANT4 components which allow the implementation and control of parameterisations are:
(AVFast Si mul ati onModel

Thisisthe abstract class for the implementation of parameterisations. Y ou must inherit from it to implement
your concrete parameterisation model.

(HAFast Si mul ati onManager

The GAVFast Sinul ati onMbdel  objects are attached to the 4Region through a
GAFast Si mul at i onManager . Thisobject will managethelist of modelsand will messagethem at track-
ing time.

ARegi on/ Envel ope

As mentioned before, an envelope in GEANT4 is a (ARegi on. The parameterisation is bound to the
(ARegi on by setting aG4Fast Si nul at i onManager pointer toit.

Thefigure below showshow the AVFast Si nul at i onMbdel and G(4Fast Si nmul at i onManager ob-
jects are bound to the GARegi on. Then for al root G4LogicalVolume's held by the G4Region, the fast sim-

ulation code is active.
!] G4Region |

Mgmwulml % Ll G4FastSimulationhlanager |
( )

rvolune of hisrarchy tree

G4VFastSimulationhfodel
2g: e-+ie-/gamma model

GA4VFastSimulationtdodel
2g: pion model

l G4VFastSimulationModel

(AFast Si nul at i onManager Pr ocess

ThisisaGAVPr ocess. It provides the interface between the tracking and the parameterisation. It must be
set in the process list of the particles you want to parameterise.

210



Tracking and Physics

Ad obal Fast Si nul ati onManager

This a singleton class which provides the management of the GAFast Si nul at i onManager objectsand
some ghost facilities.

5.2.6.3. The (AVFast Si mul ati onMbdel Abstract Class

Constructors:
The&VFast Si mul at i onMbdel classhastwo constructors. The second one allowsyou to get started quickly:
AVFast Si nul ati onModel ( const G4String& aNane) :

Here aNare identifies the parameterisation model.

HAVFast Si nul ati onMbdel (const AString& aNarre, ARegi on*, AAbool
I sUni que=f al se):

In addition to the model name, this constructor accepts a (ARegi on pointer. The needed
(HAFast Si mul at i onManager object is constructed if necessary, passing to it the G4Region point-
er and the boolean value. If it aready exists, the model is simply added to this manager. Note that the
HAVFast Si mul ati onvbdel object will not keep track of the ZARegi on passed in the constructor. The
boolean argument is there for optimization purposes. if you know that the GARegi on has a unique root
ALogi cal Vol ume, uniquely placed, you can set the boolean value to "true'.

Virtual methods:

The (AVFast Si nul at i onMbdel has three pure virtua methods which must be overriden in your concrete
class:

AVFast Si nul ati onModel ( const GAString& aNane) :
Here aName identifies the parameterisation model.
Abool Model Trigger( const (AFast Track&):

You must return "true" when the dynamic conditions to trigger your parameterisation are ful-
filled. G4FastTrack provides access to the current GA4Track, gives simple access to the current root
G4LogicalVolume related features (its G4V Solid, and G4AffineTransform references between the global and
the root G4L ogicalVolume local coordinates systems) and simple access to the position and momentum ex-
pressed in the root G4L ogica Volume coordinate system. Using these quantities and the G4V Solid methods,
you can for example easily check how far you are from the root G4L ogicalVVolume boundary.

Abool 1sApplicable( const AParticleDefinition&):

In your implementation, you must return "true" when your model is applicable to the G4ParticleDefinition
passed to thismethod. The G4ParticleDefinition providesall intrinsic particleinformation (mass, charge, spin,
name...).

If you want to implement a model which isvalid only for certain particle types, it is recommended for effi-
ciency that you use the static pointer of the corresponding particle classes.

Asan example, in amodel valid for gammas only, the I1sA pplicable() method should take the form:

#i ncl ude " GAGamma. hh"

Gdbool MyGanmmaModel : : 1 sAppl i cabl e(const AParticl eDefinition& part Def)

{
return &partDef == GAGanma:: GarmaDefini ti on();

}
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Abool Mdel Trigger( const GAFast Track&):

You must return "true” when the dynamic conditions to trigger your parameterisation are fulfilled. The
GA4FastTrack provides access to the current G4Track, gives simple access to envelope related features
(G4LogicalVolume, G4V Solid, and G4AffineTransform references between the global and the envelopelocal
coordinates systems) and simple access to the position and momentum expressed in the envelope coordinate
system. Using these quantities and the G4V Solid methods, you can for example easily check how far you are
from the envel ope boundary.

void Dolt( const (AFast Track&, GAFastStepé&):

The details of your parameterisation will beimplemented in thismethod. The G4FastTrack reference provides
the input information, and the final state of the particles after parameterisation must be returned through the
GAFastStep reference. Tracking for the final state particlesis requested after your parameterisation has been
invoked.

5.2.6.4. The HAFast Si mul ati onManager Class:

G4FastSimulationManager functionnalities regarding the use of ghost volumes are explained in Section 5.2.6.7.
Constructor:
(AFast Si nul at i onManager (  G4Regi on *anEnvel ope, (Abool |sUni que=fal se):

This is the only constructor. You specify the G4Region by providing its pointer. The
GA4FastSimulationManager object will bind itself to this G4Region. If you know that this G4Region has a
single root G4L ogicalVolume, placed only once, you can set the IsUnique boolean to "true" to allow some
optimization.

Note that if you choose to use the G4V FastSimulationModel (const G4String&, G4Region*, G4bool) con-
structor for your model, the G4FastSimulationManager will be constructed using the given G4Region* and
G4bool values of the model constructor.

G4VFastSimulationModel object management:
The following two methods provide the usual management functions.

* voi d AddFast Si mul ati onMbdel ( GAVFast Si nul at i onMobdel *)
* RenoveFast Si mul ati onMbdel ( AVFast Si nul at i onMbdel *)

5.2.6.5. The (AFast Si nul ati onManager Pr ocess Class

This G4V Process serves as an interface between the tracking and the parameterisation. At tracking time, it col-
laborates with the G4FastSimulationManager of the current volume, if any, to alow the models to trigger. If no
manager exists or if no model issues atrigger, the tracking goes on normally.

In the present implementation, you must set this process in the G4ProcessManager of the particles you parame-
terise to enable your parameterisation.

The processes ordering is:

[n-3] ...

[n-2] Multiple Scattering

[n-1] AFast Si nmul ati onManager Pr ocess
[ n] ATransportation

This ordering isimportant if you use ghost geometries, since the G4FastSimul ationM anagerProcess will provide
navigation in the ghost world to limit the step on ghost boundaries.

The G4FastSimulationM anager must be added to the process list of a particle as a continuous and discrete process
if you use ghost geometries for this particle. Y ou can add it as a discrete process if you don't use ghosts.
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The following code registers the G4FastSimul ationM anagerProcess with all the particles as a discrete and contin-
UOUS Process:

voi d MyPhysi csLi st:: addParaneteri sati on()

G4Fast Si nul at i onManager Pr ocess*

t heFast Si mul at i onManager Process = new G4Fast Si mul at i onManager Process() ;
theParticlelterator->reset();
while( (*theParticlelterator)() )

GAParticleDefinition* particle = theParticlelterator->val ue();
G4ProcessManager * pmanager = particl e->Get ProcessManager () ;
prmanager - >AddPr ocess(t heFast Si nul ati onManager Process, -1, 0, 0);

}
5.2.6.6. The (A3 obal Fast Si nul at i onManager Singleton Class

This classisasingleton which can be accessed as follows:

#i ncl ude " 4d obal Fast Si nul ati onManager . hh"

G4d obal Fast Si mul ati onManager * gl obal FSM
gl obal FSM = (Ad obal Fast Si nul ati onManager : : get G obal Fast Si nmul ati onManager () ;

Presently, you will mainly need to use the Global FastSimulationManager if you use ghost geometries.

5.2.6.7. Parameterisation Using Ghost Geometries

In some cases, volumes of the tracking geometry do not allow envelopes to be defined. This may be the case
with a geometry coming from a CAD system. Since such a geometry is flat, a parallel geometry must be used
to define the envel opes.

Another interesting case involves defining an envel ope which groups the el ectromagnetic and hadronic calorime-
ters of adetector into one volume. This may be useful when parameterizing the interaction of charged pions. You
will very likely not want electrons to see this envel ope, which means that ghost geometries have to be organized
by particle flavours.

Using ghost geometriesimplies some more overhead in the parameteri sation mechanism for the particles sensitive
to ghosts, since navigation is provided in the ghost geometry by the G4FastSimulationM anagerProcess. Usually,
however, only afew volumes will be placed in this ghost world, so that the geometry computations will remain
rather cheap.

In the existing implementation (temporary implementation with G4Region but before parallel geometry
implementation), you may only consider ghost G4Regions with just one root G4LogicalVolume. The
GA4Global FastSimulationManager provides the construction of the ghost geometry by making first an empty
"clone" of the world for tracking provided by the construct() method of your G4V UserDetectorConstruction con-
crete class. You provide the placement of the G4Region root G4L ogicalVolume relative to the ghost world coor-
dinates in the G4FastSimulationManager objects. A ghost G4Region is recognized by the fact that its associated
G4FastSimulationManager retains a non-empty list of placements.

The G4Global FastSimulationM anager will then use both those placements and the 1A pplicable() methods of the
model s attached to the G4FastSimul ationManager objects to build the flavour-dependant ghost geometries.

Then at the beginning of the tracking of a particle, the appropriate ghost world, if any, will be selected.
The steps required to build one ghost G4Region are:

1. built the ghost G4Region : myGhostRegion;
2. build the root G4L ogicalVolume: myGhostLogical, set it to myGhostRegion;
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3. build a G4FastSimulationManager object, myGhostFSManager, giving myGhostRegion as argument of the
constructor;

4. give to the G4FastSimulationManager the placement of the myGhostLogical, by invoking for the
G4FastSimulationManager method:

AddGhost Pl acenent (G4Rot at i onMat ri x*, const GAThreeVector &) ;
or:
AddGhost Pl acenent (G4Tr ansf or nBD*) ;

where the rotation matrix and translation vector of the 3-D transformation describe the placement relative
to the ghost world coordinates.

5. build your G4V FastSimulationModel objects and add them to the myGhostFSManager. The |sApplicable()
methods of your models will be used by the G4Global FastS mulationManager to build the ghost geometries
corresponding to a given particle type.

6. Invoke the G4Global FastSimulationManager method:

G4d obal Fast Si mul at i onManager : : get A obal Fast Si nul at i onManager () - >

Cl oseFast Si nmul ation();

This last call will cause the G4Global FastSimulationManager to build the flavour-dependent ghost geometries.
This call must be done before the RunManager closes the geometry. (It is foreseen that the run manager in the
future will invoke the CloseFastSimulation() to synchronize properly with the closing of the geometry).

Visualization facilities are provided for ghosts geometries. After the CloseFastSimulation() invocation, it is pos-
sible to ask for the drawing of ghostsin an interactive session. The basic commands are;

L]
/vis/draw Chosts particl e_nanme

which makesthe drawing of the ghost geometry associated with the particle specified by name in the command
line.

/vi s/ draw Chosts

which draws all the ghost geometries.

5.2.6.8. Gflash Parameterization

This section describes how to use the Gflash library. Gflash is a concrete parameterization which is based on
the equations and parameters of the original Gflash package from H1(hep-ex/0001020, Grindhammer & Peters,
see physics manual) and uses the "fast simulation” facilities of GEANT4 described above. Briefly, whenever a
e-/e+ particle enters the calorimeter, it is parameterized if it has a minimum energy and the shower is expected
to be contained in the calorimeter (or " parameterization envelope”). If this is fulfilled the particle is killed, as
well as all secondaries, and the energy is deposited according to the Gflash equations. An example, provided in
examples/extended/par ametrisation/gflash/, shows how to interface Gflash to your application. The simulation
time is measured, so the user can immediately see the speed increase resulting from the use of Gflash.

5.2.6.9. Using the Gflash Parameterisation
To use Gflash "out of the box" the following steps are necessary:

» Theuser must add the fast simulation process to his process manager:
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voi d MyPhysi csLi st:: addPar anet eri sati on()

GAFast Si mul at i onManager Pr ocess*

t heFast Si mul at i onManager Process = new (AFast Si mul at i onManager Process();
theParticlelterator->reset();
while( (*theParticlelterator)() )

GAParticleDefinition* particle = theParticlelterator->val ue();
GAProcessManager * pmanager = parti cl e- >Get ProcessManager () ;
pmanager - >AddPr ocess(t heFast Si nul ati onManager Process, -1, 0, 0);

}
}

» The envelope in which the parameterization should be performed must be specified (below: G4Region
m_calo_region) and the GFlashShowerModel must be assigned to this region. Furthermore, the class-
es GFlashParticleBounds (which provides thresholds for the parameterization like minimal energy etc.),
GflashHitMaker(a helper class to generate hits in the sensitive detector) and GFlashHomoShowerParamteri-
sation (which does the computations) must be constructed (by the user at the moment) and assigned to the
GFlashShowerModel. Please note that at the moment only homogeneous cal orimeters are supported.

m_t heFast Shower Model
m t heParanetri sation

new GFl ashShower Mbdel (" f ast Shower Mbdel ", m cal o_r egi on) ;

new GFl ashHonoShower Par ant eri sat i on( mat Manager - >get Materi al (mat));
m t heParti cl eBounds new GFl ashParti cl eBounds();

m_t heHvaker new GFl ashHi t Maker () ;

m_t heFast Shower Mbdel - >Set Par anetri sati on(*m t heParanetri sati on);

m t heFast Shower Model - >Set Par ti cl eBounds(*m t heParti cl eBounds) ;

m_t heFast Shower Mbdel - >Set Hi t Maker (*m_t heHVaker) ;

The user must also set the material of the calorimeter, since the computation depends on the material.
* Itismandatory to use G4V GFlashSensitiveDetector as (additional) base class for the sensitive detector.

class ExG'l ashSensitiveDetector: public 4VSensitiveDetector ,public GAVGFl ashSensitiveDetector
Hereit is necessary to implement a separate interface, where the GFlash spots are processed.
(ProcessHi t s(G4GFl ashSpot *aSpot , GATouchabl eHi st ory* ROhi st))

A separateinterfaceisused, because the Gflash spots naturally contain lessinformation than the full simulation.

Since the parameters in the Gflash package are taken from fits to full simulations with Geant3, some retuning
might be necessary for good agreement with Geant4 showers. For experiment-specific geometries some retuning
might be necessary anyway. The tuning is quite complicated since there are many parameters (some correl ated)
and cannot be described here (see again hep-ex/0001020). For brave users the Gflash framework already forsees
the possibility of passing a class with the (users) parameters,GV FlashHomoShower Tuning, to the GFlashHo-
moShowerParamterisation constructor. The default parameters are the original Gflash parameters:

GFl ashHonoShower Par anet eri sati on(G4Material * aMat, GVFI ashHomoShower Tuni ng * aPar = 0);
Now there is also a preliminary implemenation of a parameterization for sampling calorimeters.
The user must specify the active and passive material, as well as the thickness of the active and passive layer.

The sampling structure of the calorimeter is taken into account by using an "effective medium" to compute the
shower shape.

All material properties needed are calculated automatically. If tuning is required, the user can pass his own para-
meter set in the class GFlashSamplingShower Tuning. Here the user can also set his calorimeter resolution.

All in all the constructor 1ooks the following:

GFl ashSanpl i ngShower Par ant eri sati on(G4Material * Matl, GAMaterial * Mat2, GAdoubl e d1, GAdoubl e d2,
GVFl ashSanpl i ngShower Tuni ng * aPar = 0);

215



Tracking and Physics

An implementation of some tools that should help the user to tune the parameterization is forseen.

5.2.7. Transportation Process

To be delivered by J. Apostolakis (<John. Apost ol aki s@er n. ch>).
5.3. Particles

5.3.1. Basic concepts

There are three levels of classes to describe particles in Geant4.

HAParticlebDefinition
defines aparticle

GADynami cParticle
describes a particle interacting with materials

ATrack
describes a particle traveling in space and time

AParticl eDefi ni ti on aggregatesinformation to characterize a particle's properties, such as name, mass,
spin, life time, and decay modes. G4Dynami cPar ti cl e aggregates information to describe the dynamics of
particles, such as energy, momentum, polarization, and proper time, as well as " particle definition” information.
ATr ack (see Section 5.1) includes all information necessary for tracking in a detector simulation, such astime,
position, and step, aswell as “dynamic particle" information.

5.3.2. Definition of a particle

There are alarge number of elementary particles and nuclei. Geant4 provides the G4Par ti cl eDefinition
class to represent particles, and various particles, such as the electron, proton, and gamma have their own classes
derived from APar ti cl eDef i niti on.

We do not need to make a class in Geant4 for every kind of particle in the world. There are more than 100 types
of particles defined in Geant4 by default. Which particles should be included, and how to implement them, is
determined according to the following criteria. (Of course, the user can define any particles he wants. Please see
the User's Guide: For ToolKit Developers).

5.3.2.1. Particle List in Geant4

Thislist includes al particlesin Geant4 and you can see properties of particles such as

» PDG encoding

» mass and width

* électric charge

* spin, isospin and parity

* magnetic moment

» quark contents

* lifetime and decay modes

Hereisalist of particlesin Geant4. This list is generated automatically by using Geant4 functionality, so listed
values are same as those in your Geant4 application (as far as you do not change source codes).

Categories

e gluon/ quarks/ di-quarks
* leptons
* mesons
* baryons
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e jons
o others

5.3.2.2. Classification of particles

1.

elementary particles which should be tracked in Geant4 volumes

All particlesthat can fly afinite length and interact with materials in detectors are included in this category.
In addition, some particles with avery short lifetime are included for user's convenience.
a  stableparticles

Stable means that the particle can not decay, or has avery small possibility to decay in detectors, e.g.,
gamma, electron, proton, and neutron.
b. long life (>10*sec) particles

Particles which may travel afinite length, e.g., muon, charged pions.
c. short life particles that decay immediately in Geant4

For example, pi°, eta
d.  K%system

KO "decays’ immediately into K% or K°, , and then K%/ K°_decays according toitslife time and decay
modes.
e. optical photon

Gamma and optical photon are distinguished in the simulation view, though both are the same particle
(photonswith different energies). For example, optical photonisused for Cerenkov light and scintillation
light.

f.  geantino/charged geantino

Geantino and charged geantino are virtual particles for simulation which do not interact with materials
and undertake transportation processes only.
nuclei

Any kinds of nucleus can be used in Geant4, such as apha(He-4), uranium-238 and excited states of car-
bon-14. In addition, Geant4 provides hyper-nuclei. Nuclei in Geant4 are divided into two groups from the
viewpoint of implementation.

a. light nuclei

Light nuclel frequently used in simulation, e.g., alpha, deuteron, He3, triton.
b. heavy nuclei (including hyper-nuclei)

Nuclei other than those defined in the previous category.
c. lightanti-nuclei

Light anti-nuclei for example anti-al pha.
Note that G4ParticleDefinition represents nucleus state and G4DynamicParticle represents atomic state with
some nucleus. Both alpha particle with charge of +2e and helium atom with no charge aggregates the same
"particle definition” of G4Alpha, but different G4DynamicParticle objects should be assigned to them. (De-
tails can be found below)
short-lived particles

Particles with very short life time decay immediately and are never tracked in the detector geometry.
These particles are usually used only inside physics processes to implement some models of interactions.
AVshort Li vedPar ti cl e isprovided asthe base classfor these particles. All classesrelated to particles
in this category can befound inshor t | i ved sub-directory under the par ti cl es directory.

a. quarkddi-quarks: For example, al 6 quarks.

b. gluon

c. baryon excited states with very short life: For example, spin 3/2 baryons and anti-baryons

d. meson excited states with very short life: For example, spin 1 vector bosons

217


AllResources/TrackingAndPhysics/particleList.src/ions/index.html
AllResources/TrackingAndPhysics/particleList.src/others/index.html

Tracking and Physics

5.3.2.3. Implementation of particles
Sngle object created in the initialization : Categories a, b-1

These particles are frequently used for tracking in Geant4. An individua classis defined for each particle in these
categories. The object in each classisunique. The user can get pointersto these objects by using static methodsin
their own classes. The unique object for each classis created when its static method is called in the “initialization
phase".

On-the-fly creation: Category b-2

lons will travel in a detector geometry and should be tracked, however, the number of ions which may be
used for hadronic processes is so huge that ions are dynamically created by requests from processes (and
users). Each ion corresponds to one object of the G4l ons class. (41 onTabl e class is a dictionary for ions.
Al onTabl e: : Get 1 on() method to create ions on the fly. (41 onTabl e: : FI ndl on() method returns
pointer to the specified ion. If theion does not exists, it returns zero without creating any ion.

GANucl ei Properti esTabl eAMEO3 contains a table of mesaured mass values of about 3100 stable nuclei
(ground states). GANucl ei Properti esTheor eti cal Tabl e theoretical mass values of about 8000 nuclei
(ground states). G41 sot opeTabl e describes properties of ions (exited energy, decay modes, life time and mag-
netic moments), which are used to create ions. G4Nucl i deTabl e is provided as alist of nuclel in Geant4. It
contains about 2900 ground states and 4000 excited states. Users can register hissher G41 sot opeTabl e to the
Al onTabl e.

Processes attached to heavy ions are same asthose for GAGener i ¢l on class. In other words, you need to create
HAGeneri cl on and attach processesto it if you want to use heavy ions.

AParticl e@in can shoot any heavy ions with /gun/ions command after ““ion" is selected by /gun/particle
command.

Dynamic creation by processes: Category ¢

Particle types in this category are are not created by default, but will only be created by regquest from
processes or directly by users. Each shortlived particle corresponds to one object of a class derived from
GAVshort Li vedParti cl e, and it will be created dynamically during the “initialization phase”.

5.3.2.4. G4ParticleDefinition

The AParti cl eDefinition class has read-only" properties to characterize individua particles, such as
name, mass, charge, spin, and so on. These properties are set during initialization of each particle. Methods to get
these properties are listed in Table 5.2.

AString GetParticl eNane() particle name

Adoubl e Get PDGAVass() mass

Adoubl e Get PDGW dt h() decay width

Adoubl e Get PDGChar ge() electric charge

Adoubl e Get PDGSpi n() spin

Adoubl e Get PDGVagnet i cMonent () magnetic moment (0: not defined or no magnetic mo-
ment)

HAint GetPDG Parity() parity (0:not defined)

i nt Get PDG Conj ugation() charge conjugation (0:not defined)

Adoubl e Get PDA sospi n() iS0-spin

Adoubl e Get PDA sospi n3() 3rd-component of iso-spin

HAint GetPDG GParity() G-parity (0:not defined)

AString GetParticl eType() particle type
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AString CetParticl eSubType() particle sub-type

4i nt CGet Lept onNunber () lepton number

4i nt Get Bar yonNunber () baryon number

i nt Get PDGENncodi ng() particle encoding number by PDG
&4int Get Ant i PDGEncodi ng() encoding for anti-particle of this particle

Table5.2. Methodsto get particle properties.

Table 5.3 showsthe methods of GAPar ti cl eDefi ni ti on for getting information about decay modes and the
life time of the particle.

Abool Get PDGSt abl e() stable flag
HAdoubl e Get PDALi f eTi ne() lifetime
ADecayTabl e* Get DecayTabl e() decay table

Table5.3. Methodsto get particle decay modes and lifetime.

Users can modify these properties, though the other properties listed above can not be change without rebuilding
thelibraries.

Each particle has its own G4Pr ocessManger object that manages a list of processes applicable to the parti-
cle.(see Section 2.5.2)

5.3.3. Dynamic particle

The G4Dynani cParti cl e class has kinematics information for the particle and is used for describing the
dynamics of physics processes. The propertiesin GADynami cParti cl e arelisted in Table 5.4.

HAdoubl e t heDynani cal Mass dynamical mass

AThr eeVect or theMonent unDirection normalized momentum vector

HAParticlebDefinition* theParticl eDef - |definition of particle

inition

Adoubl e t heDynanmi cal Spi n dynamical spin (i.e. total angular momentum as a ion/
atom)

GAThr eeVect or thePol ari zati on polarization vector

Adoubl e t heMagnet i cMonent dynamical magnetic moment (i.e. total magnetic mo-
ment as aion/atom )

Adoubl e theKi neti cEnergy Kinetic energy

Adoubl e t heProper Ti me proper time

Adoubl e t heDynani cal Char ge dynamical electric charge (i.e. total electric charge asa
ion/atom )

(AEl ectronQccupancy* t heEl ect ronCccu- |electron orbitsfor ions

pancy

Table5.4. Methodsto set/get values.

Here, the dynamical mass is defined as the mass for the dynamic particle. For most cases, it is same as the mass

defined in GAParti cl eDef i ni ti on class (i.e. mass value given by Get PDGAvAss() method). However,
there are two exceptions.

* resonance particle
* ions

Resonance particles have large mass width and the total energy of decay products at the center of mass system
can be different event by event.
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As for ions, GAParti cl eDefi nti on defines a nucleus and G4Dynani cParti cl e defines an atom.
(AEl ect ronQccupancy describes state of orbital electrons. So, the dynamic mass can be different from the
PDG mass by the mass of electrons (and their binding energy). In addition, the dynamical charge, spin and mag-
netic moment are those of the atom/ion (i.e. including nucleus and orbit electrons).

Decay products of heavy flavor particles are given in many event generators. In such cases,
GAVPr i mar yGener at or setsthisinformationin*t hePr eAssi gnedDecayPr oduct s. Inaddition, decay
time of the particle can be set arbitrarily time by using Pr eAssi gnedDecayPr oper Ti ne.

5.4. Production Threshold versus Tracking Cut

5.4.1. General considerations

We have to fulfill two contradictory requirements. It is the responsibility of each individual process to produce
secondary particles according to its own capabilities. On the other hand, it isonly the Geant4 kernel (i.e., tracking)
which can ensure an overall coherence of the smulation.

The general principlesin Geant4 are the following:

1. Each process hasitsintrinsic limit(s) to produce secondary particles.

2. All particles produced (and accepted) will be tracked up to zero range.

3. Each particle has a suggested cut in range (which is converted to energy for all materials), and defined via
aSet Cut () method (see Section 2.4.2).

Points 1 and 2 imply that the cut associated with the particle is a (recommended) production threshold of sec-
ondary particles.

5.4.2. Set production threshold (Set Cut methods)

As already mentioned, each kind of particle has a suggested production threshold. Some of the processes will not
use this threshold (e.g., decay), while other processes will use it as a default value for their intrinsic limits (e.g.,
ionisation and bremsstrahlung).

See Section 2.4.2 to see how to set the production threshold.

5.4.3. Apply cut

The Dol t methods of each process can produce secondary particles. Two cases can happen:

e aprocess setsitsintrinsic limit greater than or equal to the recommended production threshold. OK. Nothing
has to be done (nothing can be done!).
» aprocess setsitsintrinsic limit smaller than the production threshold (for instance 0).

Thelist of secondariesis sent to the SeppingManager via a ParticleChange object.

Before being recopied to the temporary stack for later tracking, the particles below the production threshold will
be kept or deleted according to the safe mechanism explained hereafter.

» The ParticleDefinition (or ParticleWithCuts) has a boolean data member: Appl yCut .

» Appl yCut is OFF: do nothing. All the secondaries are stacked (and then tracked later on), regardless of their
initial energy. The Geant4 kernel respects the best that the physics can do, but neglects the overall coherence
and the efficiency. Energy conservation is respected as far as the processes know how to handle correctly the
particles they produced! Thisisthe main used during Geant4 tracking.

» Appl yCut in ON: thisfeature is not normally used but is potentially available; the TrackingManager checks
the range of each secondary against the production threshold and against the safety. The particle is stacked if
range > mn(cut,safety).

« If not, check if the process has nevertheless set theflag *good for tracking" and then stack it (see Section 5.4.4
below for the explanation of the GoodFor Tr acki ng flag).
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« If not, recuperateits kinetic energy inthel ocal Ener gyDeposi t, and sett ki n=0.
» Then check in the ProcessManager if the vector of ProcessAtRest is not empty. If yes, stack the particle for
performing the “"Action At Rest" later. If not, and only in this case, abandon this secondary.

With this sophisticated mechanism we have the global cut that we wanted, but with energy conservation, and
we respect boundary constraint (safety) and the wishes of the processes (via “"good for tracking"). Note, that
for electromagnetic processes for gamma incident a specific Appl yCut option is used which gurantees energy
balance and is more efficient because secondary tracks are not produced at all.

5.4.4. Why produce secondaries below threshold in some
processes?

A process may have good reasons to produce particles bel ow the recommended threshold:

» checking the range of the secondary versus geometrical quantities like safety may allow one to redlize the
possibility that the produced particle, even below threshold, will reach a sensitive part of the detector;

» another example is the gamma conversion: the positron is always produced, even at zero energy, for further
annihilation;

« if aprocessisrarethereisnot practica reason make it complicate checking cut value.

These secondary particles are sent to the ™" Stepping Manager" with aflag GoodFor Tr acki ng to passthefilter
explained in the previous section (even when Appl yCut is ON).

5.4.5. Cuts in stopping range or in energy?

The cuts in stopping range allow one to say that the energy has been released at the correct space position, lim-
iting the approximation within a given distance. On the contrary, cuts in energy imply accuracies of the energy
depositions which depend on the material.

5.4.6. Summary

In summary, we do not have tracking cuts; we only have production thresholds in range. All particles produced
and accepted are tracked up to zero range.

It must be clear that the overall coherency that we provide cannot go beyond the capability of processesto produce
particles down to the recommended threshold.

In other words a process can produce the secondaries down to the recommended threshold, and by interrogating
the geometry, or by realizing when mass-to-energy conversion can occur, recognize when particles below the
threshold have to be produced.

5.4.7. Special tracking cuts

One may need to cut given particle types in given volumes for optimisation reasons. This decision is under user
control, and can happen for particles during tracking as well.

The user must be able to apply these special cuts only for the desired particles and in the desired volumes, without
introducing an overhead for all the rest.

The approach is as follows:

» gpecial user cuts are registered in the UserLimits class (or its descendant), which is associated with the logical
volume class.

The current default listis:
« max allowed step size
« max total track length
« max total time of flight
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* min kinetic energy
e min remaining range

The user can instantiate a UserLimits object only for the desired logical volumes and do the association.

Thefirst item (max step size) is automatically taken into account by the G4 kernel while the others items must
be managed by the user, as explained below.

Example(see basic/B2/B2a or B2b): in the Tracker region, in order to force the step size not to exceed
one half of the Tracker chamber thickness (chanber W dt h), it is enough to put the following code in
B2aDet ect or Constructi on: : Defi neVol umes():

GAdoubl e maxStep = 0. 5*chanber W dt h;
fStepLimt = new GAUserLimits(maxStep);
trackerLV->Set UserLimts(fStepLimt);

andinPhysi csLi st , theprocess A4St epLi mi t er needsto be attached to each particle's process manager
where step limitation in the Tracker region is required:

/] Step limtation seen as a process
GAStepLimiter* stepLimter = new GAStepLimter();
pmanager - >AddDi scr et eProcess(StepLiniter);

If aprovided Geant4 physicslistisused, asFTFP_BERT in B2 example, thenthe G4St epLi mi t er Physi cs,
which will take care of attaching the GASt epLi mi t er process to al particles, can be added to the physics
listinthemai n() function:

GAVModul ar Physi csLi st* physicsLi st = new FTFP_BERT;
physi csLi st - >Regi st er Physi cs(new (A4St epLi m t er Physi cs());
runManager - >Set User I ni ti al i zati on( physi csList);

The GAUser Li mi t s classisinsour ce/ gl obal / managenent .

Concerning the others cuts, the user must define dedicaced process(es). He registersthis process (or its descen-
dant) only for the desired particlesin their process manager. He can apply hiscutsinthe Dol t of this process,
since, viaGATr ack, he can access the logical volume and UserLimits.

An example of such process (called User SpecialCuts) is provided in the repository, but not inserted in any
process manager of any particle.

Example: neutr ons. One may need to abandon the tracking of neutrons after agiven time of flight (or acharged
particlein amagnetic field after agiven total track length ... etc ...).

Example(see basic/B2/B2a or B2b): in the Tracker region, in order to force the tota
time of flight of the neutrons not to exceed 10 milliseconds, put the following code in
B2aDet ect or Constructi on: : Defi neVol unes():

G4doubl e maxTi me = 10*ns;
fStepLimt = new GAUserLi mit s( DBL_MAX, DBL_MAX, maxTi ne) ;
trackerLV->Set UserLimts(fStepLimt);

and put the following code in a physicslist:

GAProcessManager * pnmanager = (ANeut ron: : Neut ron- >Get ProcessManager () ;
pmanager - >AddPr ocess(new G4User Speci al Cuts(),-1,-1,1);

If a provided Geant4 physics list is used, then a Speci al Cut sBui | der class can be defined in a similar
way as (ASt epLi m t er Physi ¢s and added to the physicslist inthemai n() function:
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GAVMbdul ar Physi csLi st* physi csLi st = new FTFP_BERT;
physi csLi st - >Regi st er Physi cs(new Speci al Cut sBui | der ());
runManager - >Set User I ni ti al i zati on(physi csList);

(The default GAUser Speci al Cut s classisinsour ce/ processes/transportati on.)

5.5. Cuts per Region
5.5.1. General Concepts

Beginning with Geant4 version 5.1, the concept of aregion has been defined for use in geometrical descriptions.
Details about regions and how to use them are available in Section 4.1.3.1. Asan example, suppose auser defines
three regions, corresponding to the tracking volume, the calorimeter and the bulk structure of a detector. For
performance reasons, the user may not be interested in the detailed development of electromagnetic showersin
the insensitive bulk structure, but wishes to maintain the best possible accuracy in the tracking region. In such a
use case, Geant4 allows the user to set different production thresholds ("cuts") for each geometrical region. This
ability, referred to as "cuts per region”, is also a new feature provided by the Geant4 5.1 release. The general
concepts of production thresholds were presented in the Section 5.4.

Please note that this new feature isintended only for users who

1. aresimulating the most complex geometries, such as an LHC detector, and
2. areexperienced in simulating el ectromagnetic showers in matter.

We strongly recommend that results generated with this new feature be compared with results using the same
geometry and uniform production thresholds. Setting completely different cut values for individual regions may
break the coherent and comprehensive accuracy of the simulation. Therefore cut values should be carefully opti-
mized, based on a comparison with results obtained using uniform cuts.

5.5.2. Default Region

The world volume is treated as aregion by default. A GARegi on object is automatically assigned to the world
volume and is referred to as the "default region”. The production cuts for this region are the defaults which are
defined in the UserPhysicsList. Unlessthe user defines different cut valuesfor other regions, the cutsin the default
region will be used for the entire geometry.

Please note that the default region and its default production cuts are created and set automaticaly by
GAARunManager . The user is not allowed to set a region to the world volume, nor to assign other production
cuts to the default region.

5.5.3. Assigning Production Cuts to a Region

In the Set Cut s() method of the user's physics list, the user must first define the default cuts. Then a
GAPr oduct i onCut s object must be created and initialized with the cut value desired for a given region. This
object must in turn be assigned to the region object, which can be accessed by nhame from the GARegi onSt or e.
An example Set Cut s() code follows.

Example5.10. Setti ng production cuts to a region

voi d MyPhysi csLi st:: Set Cut s()

{
/] default production thresholds for the world vol une
Set Cut sWt hDef aul t () ;

/] Production thresholds for detector regions
GARegi on* region;

GAString regNang;

GAProduct i onCut s* cuts;
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regName = "tracker";

regi on = GARegi onStore: : Get | nst ance() - >Get Regi on(r egNang) ;

cuts = new AProductionCuts;

cut s- >Set Producti onCut (0. 01*nm); // same cuts for gammm, e- and e+
regi on- >Set Producti onCut s(cuts);

regName = "cal orineter";
regi on = GARegi onStore: : Get | nst ance() - >Get Regi on(r egNang) ;
cuts = new AProductionCuts;
cut s- >Set Product i onCut (0. 01* nm APr oduct i onCut s: : Get | ndex( " ganma") ) ;
cut s- >Set Product i onCut (0. 1* mm G4Pr oducti onCut s: : Get | ndex("e-"));
cut s- >Set Product i onCut (0. 1* nm) G4Pr oducti onCut s: : Get | ndex("e+"));
regi on- >Set Producti onCut s(cuts);
}

5.6. Physics Table

5.6.1. General Concepts

In Geant4, physics processes use many tables of cross sections, energy losses and other physics values. Be-
fore the execution of an event loop, Pr epar ePhysi csTabl e() and Bui | dPhysi csTabl e() methods
of AVPr ocess are invoked for all processes and as a part of initialisation procedure cross section tables are
prepared. Energy loss processes calculate cross section and/or energy loss values for each pair of material and
production cut value used in geometry for a give run. A change in production cut values therefore require these
cross sections to be re-calculated. Cross sections for hadronic processes and gamma processes do not depend on
the production cut but sampling of final state may depend on cuts, so full re-initilisation is performed.

The KAPhysi csTabl e classis used to handle cross section tables. GAPhysi csTabl e isacollection of in-
stancesof APhysi csVect or (and derived classes), each of which has cross section valuesfor aparticle within
agiven energy range traveling in a material. By default the linear interpolation is used, alternatively spline may
be used if the flag of spline is activated by SetSpline method of the G4Physi csVect or

5.6.2. Material-Cuts Couple

Users can assign different production cuts to different regions (see Section 5.5). This means that if the same
material isused in regions with different cut values, the processes need to prepare several different cross sections
for that material.

The (APr oduct i onCut sTabl e has AMat er i al Cut sCoupl e objects, each of which consists of a ma-
terial paired with a cut value. These (AMat er i al Cut sCoupl es are numbered with an index which is
the same as the index of a GAPhysi csVect or for the corresponding GAMat er i al Cut sCoupl ein the
APhysi csTabl e. Thelist of Material CutsCouples used in the current geometry setup is updated before start-
ing the event loop in each run.

5.6.3. File I/O for the Physics Table

Calculated physics tables for electromagnetic processes can be stored in files. The user may thus eliminate the
time required for the calculation of physics tables by retrieving them from the files.

Using the built-in user command "stor ePhysicsTable" (see Section 7.1), stores physics tables in files. Informa-
tion on materials and cuts defined in the current geometry setup are stored together with physics tables because
calculated values in the physics tables depend on Material CutsCouple. Note that physics tables are calculated
before the event loop, not in the initidlization phase. So, at least one event must be executed before using the
"storePhysicsTable" command.

Calculated physics tables can be retrieved from files by using the "retrievePhysicsTable" command. Materials
and cuts from files are compared with those defined in the current geometry setup, and only physics vectors
corresponding to the Material CutsCouples used in the current setup are restored. Note that nothing happens just
after the "retrievePhysicsTable" command is issued. Restoration of physics tables will be executed in parallel
with the calculation of physicstables.
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5.6.4. Building the Physics Table

Inthe ARunManager Kernel : : Runl niti al i zati on() method, after thelist of Material CutsCouplesis
updated, the &AVUser Physi csLi st : : Bui | dPhysi csTabl e() methodisinvoked to build physicstables
for al processes.

Initially, the GAVProcess: : Prepar ePhysi csTabl e() method is invoked. Each process crestes
(APhysi csTabl e objects as necessary. It then checks whether the Material CutsCouples have been modified
after arunto determineif the corresponding physics vectors can be used in the next run or need to be re-calcul ated.

Next, the G4VProcess:: RetrievePhysicsTabl e() method is invoked if  the
AAVUser Physi csLi st:: fRetri evePhysi csTabl e flag is asserted. After checking materials and cuts
in files, physics vectors corresponding to the Material CutsCouples used in the current setup are restored.

Finally,the AVPr ocess: : Bui | dPhysi csTabl e() methodisinvoked and only physicsvectorswhich need
to be re-calculated are built.

At the end of program G4Physi csTabl e should be deleted. Before deletion of atable it should be cleaned up
using the method G4Physi csTabl e: : cl ear AndDest r oy() . This method should be called in amiddle of
therun if an old table is removed and a new oneis created.

5.7. User Limits
5.7.1. General Concepts

The user can define artificial limits affecting to the Geant4 tracking.

G4User Li mi t s( GAdoubl e uSt epMax = DBL_MAX,
GAdoubl e uTrakMax = DBL_NAX,
G4doubl e uTi mreMax = DBL_NAX,
GAdoubl e uEkKinM n = 0.,
G4doubl e uRangM n = 0. );
uSt epVax Maximum step length
uTr ak Max Maximum total track length
uTi neMax Maximum global time for atrack
uEki nM n Minimum remaining kinetic energy for atrack
uRangM n Minimum remaining range for atrack

Note that uSt epMax is affecting to each step, while all other limits are affecting to atrack.

Theuser canassign (AUser Li i t s tological volume and/or to aregion. User limitsassigned to logical volume
do not propagate to daughter volumes, while User limits assigned to region propagate to daughter volumes unless
daughters belong to another region. If both logical volume and associated region have user limits, those of logical
volume win.

A G4UserLimits object must be instantiated for the duration of whatever logical volume or region to which it
is assigned. It is the responsibility of the user's code to delete the object after the assigned volume(s)/region(s)
have been deleted.

5.7.2. Processes co-working with G4UserLimits

In addition to instantiating G4User Li mi t s and setting it to logical volume or region, the user has to assign the
following process(es) to particle types he/she wants to affect. If none of these processes is assigned, that kind of
particleis not affected by GAUser Li mi t s.
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Limitation to step (uSt epMax)

(ASt epLi mi t er process must be defined to affected particle types. This process limits a step, but it does
not kill atrack.

Limitationsto track (uTr akMax, uTi meMax, uEki nM n, uRangM n)

HAUser Speci al Cut s process must be defined to affected particle types. This process limits a step and
kills the track when the track comes to one of these limits. Step limitation occurs only for the final step.

Example of GAUser Li m t's can be found in examples/basic/B2 : see B2aDet ect or Constructi on (or
B2bDet ect or Constructi on). The GASt epLi ni t er processis added in the Geant4 physics list via the
GASt epLi m t er Physi cs classinthenai n() functioninexanpl eB4a. cc (or exanpl eB4b. cc ).

5.8. Track Error Propagation

The error propagation package servesto propagate one particle together with its error from agiven trajectory state
until a user-defined target is reached (a surface, avolume, a given track length,...).

5.8.1. Physics

The error propagator package computes the average tragjectory that a particle would follow. This means that the
physics list must have the following characteristics:

» No multiple scattering

» No random fluctuations for energy loss
» No creation of secondary tracks

» No hadronic processes

It has also to be taken into account that when the propagation is done backwards (in the direction opposed to the
onethe original track traveled) the energy loss has to be changed into an energy gain.

All  this is done in the GA4ErrorPhysicsList class, that is automaticaly set by
(AErr or Propagat or Manager asthe GEANT4 physicslist. It sets GAEr r or Ener gyLoss asunique elec-
tromagnetic process. This process uses the GEANTA4 class GAEner gyLossFor Ext r apol at or to compute
the average energy loss for forwards or backwards propagation. To avoid getting too different energy loss calcu-
lation when the propagation is done forwards (when the energy at the beginning of the step is used) or backwards
(when the energy at the end of the step is used, always smaller than at the beginning) GAEr r or Ener gyLoss
computes once the energy loss and then replaces the original energy loss by subtracting/adding half of this value
(what is approximately the same as computing the energy loss with the energy at the middle of the step). In this
way, a better calculation of the energy loss is obtained with a minimal impact on the total CPU time.

The user may use his’her own physics list instead of GAEr r or Physi csLi st . Asit is not needed to define a
physics list when running this package, the user may have not realized that somewhere else in his/her application
it has been defined; therefore a warning will be sent to advert the user that he is using a physics list different to
(AEr r or Physi csLi st . If anew physicslist isused, it should also initialize the GAEr r or Messenger with
the classes that serve to limit the step:

GAError EnergyLoss* elLossProcess = new GAError Ener gyLoss;

GAError St epLengt hLi mi t Process* stepLengt hLi m t Process = new GAError St epLengt hLi m t Pr ocess;
GAError MagFi el dLi mi t Process* nagFi el dLi mi t Process = new GAErr or MagFi el dLi i t Process;

new GAError Messenger ( st epLengt hLi mi t Process, nagFi el dLi m t Process, elLossProcess );

To ease the use of this package in the reconstruction code, the physics list, whether GAEr r or Physi csLi st
or the user's one, will be automatically initialized before starting the track propagation if it has not been done
by the user.
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5.8.2. Trajectory state

The user has to provide the particle trgjectory state at the initial point. To do thisit hasto create an object of one
of the children classes of AEr r or Tr aj St at e, providing:

 Particletype
» Position
e Momentum

» Trajectory error matrix

GAErrorTraj State( const GAString& part Type,
const G4Poi nt 3D& pos,
const (4Vect or 3D& nom
const GAErrorTraj Err& errmat = GAErrorTraj Err(5,0) );

A particle trgjectory is characterized by five independent variables as a function of one parameter (e.g. the path
length). Among the five variables, one is related to the curvature (to the absolute value of the momentum), two
arerelated to the direction of the particle and the other two are related to the spatial location.

There are two possible representations of these five parameters in the error propagator package: as
a free trgjectory state, class GAError Traj St at eFree, or as a trgectory state on a surface, class
GAError Traj St at eonSur f ace.

5.8.2.1. Free trajectory state

In the free tragjectory state representation the five trajectory parameters are

» G4double fInvP

G4double fLambda

G4double fPhi

G4double fY Perp
» G4doublefzZPerp

where f | nvP isthe inverse of the momentum. f Lanbda and f Phi are the dip and azimuthal angles related to
the momentum components in the following way:
p_x = p cos(lanmbda) cos(phi) p_y = p cos(lanbda) sin(phi) p_z = p sin(lanbda)

thatis, | anbda = 90 - thet a, wheret het a isthe usual angle with respect to the Z axis.

f Yper p and f Zper p are the coordinates of the trajectory in alocal orthonormal reference frame with the X axis
along the particle direction, the Y axis being parallel to the X-Y plane (obtained by the vectorial product of the
global Z axis and the momentum).

5.8.2.2. Trajectory state on a surface

In the trgjectory state on a surface representation the five trgjectory parameters are
* Gd4double finvP

+ G4double fPV

* Gd4double fPW

» G4double fV
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» G4double fW

where f | nvP isthe inverse of the momentum; f PV and f PWare the momentum components in an orthonormal
coordinate system with axisU, V and W; f V and f Ware the position components on this coordinate system.

For this representation the user has to provide the plane where the parameters are calculated. This can be done by
providing two vectors, V and W, contained in the plane:

GAErrorSurfaceTraj State( const AString& part Type,
const GAPoi nt 3D& pos,
const G4Vect or 3D& npm
const (4Vect or 3D& vecV,
const G(4Vect or 3D& vecW
const GAErrorTrajErr& errmat = GAErrorTraj Err(5,0) );

or by providing a plane

GAError SurfaceTraj State( const AString& part Type,
const GAPoi nt 3D& pos,
const G4Vect or 3D& npm
const GAPl ane3D& pl ane,
const AErrorTrajErr& errmat = G4ErrorTraj Err(5,0) );

In this second case the vector V is calculated as the vector in the plane perpendicular to the global vector X (if the
plane normal isequal to X, Z isused instead) and W is calcul ated as the vector in the plane perpendicular to V.

5.8.3. Trajectory state error

The 5X5 error matrix should also be provided at the creation of the trajectory state as a G4Error Traj Err
object. If it is not provided a default object will be created filled with null values.

Currently the GAEr ror Tr aj Err isa AErr or Symivat ri x, asimplified version of CLHEP HepSyniva-
trix.

The error matrix is given in units of GeV and cm. Therefore you should do the conversion if your code is using
other units.

5.8.4. Targets

The user has to define up to where the propagation must be done: the target. The target can be a surface
AErrorSurfaceTar get, which is not part of the GEANT4 geometry. It can also be the surface of a
GEANT4 volume AEr r or Geonmol umeTar get , so that the particle will be stopped when it enters this
volume. Or it can be that the particle is stopped when a certain track length is reached, by implementing a
AError TrackLengt hTar get .

5.8.4.1. Surface target

When the user chooses a AEr r or Sur f aceTar get as target, the track is propagated until the surface is
reached. This surface is not part of GEANT4 geometry, but usually traverses many GEANT4 volumes. The class
GAError Navi gat or takes care of the double navigation: for each step the step length is calculated as the min-
imum of the step length in the full geometry (up to a GEANT4 volume surface) and the distance to the user-de-
fined surface. Todoit, GAEr r or Navi gat or inheritsfrom (ANavi gat or and overwrites the methods Com
put eSt ep() and Conput eSaf et y() . Two types of surface are currently supported (more types could be
easily implemented at user request): plane and cylindrical.

5.8.4.1.1. Plane surface target
GAEr r or Pl aneSur f aceTar get implements an infinite plane surface. The surface can be given as the four
coefficients of the plane equation ax+by+cz+d = O:

GAEr ror Pl aneSur f aceTar get (Adoubl e a=0,
G4doubl e b=0,
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GAdoubl e ¢=0,
G4doubl e d=0);

or as the normal to the plane and a point contained in it:

GAEr ror Pl aneSur f aceTar get (const G4Nor mal 3D &n,
const (A4Poi nt 3D &p) ;

or as three points contained in it:

GAEr ror Pl aneSur f aceTar get (const (4Poi nt 3D &p1,
const (APoi nt 3D &p2,
const (APoi nt 3D &p3);

5.8.4.1.2. Cylindrical surface target
AError Cyl Sur f aceTar get implementsan infinite-length cylindrical surface (acylinder without end-caps).
The surface can be given as the radius, the trandation and the rotation

GAError Cyl SurfaceTar get ( const GAdoubl e& radi us,
const (AThreeVector & trans=GAThr eeVect or (),
const GARotati onMatri x& rot nFG4Rotati onMatri x() );

or asthe radius and the affine transformation

GAError Cyl SurfaceTarget ( const G4doubl e& radi us,
const AAffineTransform& trans );

5.8.4.2. Geometry volume target

When the user choosesaGAEr r or GeonVol uneTar get astarget, thetrack is propagated until the surface of a
GEANT4 volumeisreached. User can choose if the track will be stopped only when the track enters the volume,
only when the track exits the volume or in both cases.

The object has to be instantiated giving the name of alogical volume existing in the geometry:

GAErr or GeonVol uneTar get ( const (AString& nane );

5.8.4.3. Track Length target

When the user chooses a GAEr r or Tr ackLengt hTar get as target, the track is propagated until the given
track length is reached.
The object has to be instantiated giving the value of the track length:

GAError Tr ackLengt hTar get (const (Adoubl e maxTrkLength );

It isimplemented as a GAVDi scr et ePr ocess and it limits the step in Post St epGet Physi cal | nt er -
act i onLengt h. To easeits use, the processis registered to all particles in the constructor.

5.8.5. Managing the track propagation

The user needs to propagate just one track, so there is no need of run and events. neither of
GAVPri mar yGener at or Acti on. AEr r or Pr opagat or createsatrack from the information given in the
GAError Traj St at e and manages the step propagation. The propagation is done by the standard GEANT4
methods, invoking G4St eppi ngManager : : St eppi ng() to propagate each step.

After one step is propagated, GAEr r or Pr opagat or takes cares of propagating the track errors for this step,
what isdoneby GAEr r or Tr aj St at eFr ee: : Propagat eEr r or () . The equations of error propagation are
only implemented in the representation of GA4Er r or Tr aj St at eFr ee. Thereforeif theuser hasprovided instead
aGAError Traj St at eOnSur f ace object, it will be transformed into a G4Er r or Tr aj St at eFr ee at the
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beginning of tracking, and at the end it is converted back into G4Er r or Tr aj St at eOnSur f ace on the target
surface (on the normal plane to the surface at the final point).

The user AVUser Tracki ngActi on: : PreUser Tr acki ngActi on( const GATrack* ) and
AVUser Tracki ngActi on: : PreUser Tr acki ngActi on( const GA4Track* ) areasoinvoked at
the beginning and at the end of the track propagation.

GAEr r or Pr opagat or stops the tracking when one of the three conditionsis true:

 Energy isexhausted

» World boundary is reached

» User-defined target is reached

In case the defined target is not reached, GAEr r or Pr opagat or : : Propagat e() returns a negative value.

The propagation of a trajectory state until a user defined target can be done by invoking the method of
GAEr r or Propagat or Manager

G4int Propagate( AErrorTraj State* currentTS, const (AErrorTarget* target,
GAError Mode node = GAError Mode_Pr opForwards );

Y ou can get the pointer to the only instance of GA4Er r or Pr opagat or Manager with

GAEr r or Propagat or Manager * gd4engr = GAError Propagat or Manager : : Get Err or Pr opagat or Manager () ;
Another possibility is to invoke the propagation step by step, returning control to the user after each step. This
can be done with the method

G4i nt Propagat eOneSt ep( G4ErrorTraj State* currentTS,
GAError Mode node = AErr or Mode_PropForwards ) ;

In this case you should register the target first with the command

GAEr r or Propagat or Dat a: : Get GAEr r or Propagat or Dat a() - >Set Tar get ( t heG4eTarget );

5.8.5.1. Error propagation
Asinthe GEANT3-based GEANE package, the error propagation is based on the equati ons of the European Muon
Collaboration, that take into account:

 Error from curved trgjectory in magnetic field
 Error from multiple scattering
* Error from ionization

The formulas assume propagation along an helix. This means that it is necessary to make steps small enough to
assure magnetic field constantness and not too big energy loss.

5.8.6. Limiting the step

There are three ways to limit the step. The first oneis by using a fixed length value. This can be set by invoking
the user command :
GAUl manager : : Get Ul poi nt er () - >Appl yConmmand( "/ geant 4e/l i m ts/stepLength MY_VALUE MY_UNIT");

The second oneis by setting the maximum percentage of energy loss in the step (or energy gain is propagation is
backwards). This can be set by invoking the user command :

230



Tracking and Physics

G4Ul manager : : Get Ul poi nt er () - >Appl yCommand( "/ geant 4e/ i m ts/energyLoss MY_VALUE");

Thelast oneis by setting the maximum difference between the value of the magnetic field at the beginning and at
the end of the step. Indeed what is limited is the curvature, or exactly the value of the magnetic field divided by
the value of the momentum transversal to the field. This can be set by invoking the user command :

AUl nanager : : Get Ul poi nt er () - >Appl yConmmand( "/ geant 4e/lim ts/ magFi el d MY_VALUE");

The classes that limit the step are implemented as GEANT4 processes. Therefore, the invocation
of the above-mentioned commands should only be done after the initialization (for example after
GAEr r or Propagat or Manager: : I ni t Geant 4e() .

5.9. Exotic Physics

The Geant4 toolkit has recently been extended to include "exotic physics'. This covers the area of phonon prop-
agation and crystal channelling. These two domains are applicable for Dark Matter experiments (phonon excita-
tion) and beam extraction and collimation (crystal channelling). The framework within Geant4 is similar in that
amacroscopic periodic crystal lattice is required for both and wave functions are propagated within the medium
(rather than discrete particles asin the case of conventional Geant4). Contained hereis a brief description of how
to modify a Geant4 application to include the crystal as both a material and a geometry (plane orientations).

5.9.1. Physics

For a more complete description and understanding the user is referred to the extended examples category "ex-
oticphysics' and the references therein.

5.9.2. Material

The implementation of solid-state processes in Geant4 requires the addition of two important features, the
crystal unit cell with all its parameters and the support for other data required by the processes. The extend-
ed data for a materia is stored in a class derived from the virtual class G4VMat er i al Ext ensi on. The
AExt enededMat eri al classcollectsthe pointersto concreteinstancesof GAVMat er i al Ext ensi on. The
ACryst al Ext ensi on classis aderived class of AVVat eri al Ext ensi on and collects information on
the physics properties of a perfect crystal. In particular, the class contains a pointer toaGA4Cr yst al Uni t Cel |

object, the elasticity tensor, amap of ACr yst al At onBase objects associated with aG4El enent and avec-
tor of GAAt oni cBond. The AACryst al Uni t Cel | class collects information on the mathematical descrip-
tion of the crystal unit cell, i.e. the sizes and the angles of the unit cell, the space group, the Bravais lattice and
the lattice system, and methods for the calculation of the volume in the direct and reciprocal space, the spac-
ing between two planes, the angle between two planes, and for the filling of the reduced elasticity tensor. The
HACryst al Ext ensi on constructor takes as argument a pointer to a G4Mat er i al object and has to be reg-
istered to the AExt endedMat eri al to which it is attached. The ACr yst al At onBase class stores the
position of atoms in the crystal unit cell. Since the G4Cr yst al At onBase class is mapped to a GAEl enent

in the AACryst al Materi al , each GAEl enent should have an associated GACr yst al At onBase. The
GAAt oni cBond class contains information on the atomic bond in the crystal. For each instance of the class two
GAEl enment s have to be specified as well as the atom number in the GACr yst al At onBase associated to the
HAEl enment .

5.9.2.1. Code Implementation

5.9.3. Geometry

TheALogi cal Cryst al Vol une acceptsonly apointer toaGACr yst al Ext ensi on inits constructor and
stores the definition of the orientation of the crystalline structure with respect to the solid to which it is attached.
By convention, the crystal < 100 > direction is by default set parallel to the ${[1,0,0]}$ direction in the Geant4
reference system, and the < 010 > axis lays on the plane which contains the [1,0,0] and [0,1,0] directions in the
Geant4 reference system.
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Geant4 has two user initialization classes and one user action class whose methods the user must override in order
to implement asimulation. They require the user to define the detector, specify the physicsto be used, and define
how initial particles are to be generated. These classes are described in Section 6.1.

Additionally, users may define any of several optional user actions, to collect data during event generation from
steps, tracks, or whole events, to accumulate data during runs, or to modify the state of new tracks as they are
created. These user actions are described in Section 6.2.

To support the accumulation of datain the actions mentioned above, users may define subclasses for some of the
container objects used during event generation and tracking. These are described in Section 6.3.

6.1. Mandatory User Actions and Initializations

Three user initialization class objects are registered with the run manager (Section 3.4.1.2) in the user's mai n()
program, which takes ownership. The user must not delete these objects directly, and they must be created using
'new'. Withinthe(AUser Act i onl ni ti al i zat i on class(Section6.1.3), theuser must instantiate and regi ster
a concrete G4VUser Pri mar yGener at or Act i on subclass, which generates the primary particles for each
event.

6.1.1. AVUser Det ect or Constructi on

Example6.1. AVUser Det ect or Constructi on

cl ass AVUser Det ect or Constructi on

{
public:
GAVUser Det ect or Const ruction();
virtual ~GAVUser Det ect or Construction();

public:
virtual GAVPhysi cal Vol ume* Construct() = 0;
virtual void Construct SDandField() = O;
¥

Inthe Const ruct () method, material and geometry has to be descrived. Detailed discussions on material and
geometry are given in Section 2.3 and Section 2.2. Detector sensitivity and electromagnetic field should be de-
finedin Const r uct SDandFi el d() , asobjectsdefined in thismethod are thread-local if they are used in mul-
ti-threaded mode. Detailed discussions on Detector sensitivity and electromagnetic field are given in Section 4.4
and Section 4.3.

6.1.2. Physics Lists

The concept of aphysics list arises from the fact that Geant4 can not offer a single modeling algorithm to cover
the entire energy domain from zero to the TeV scale, for all known processes and particles. Instead, a combination
of ideas and approachesistypically used to perform a simulation task.

A schematic view of the Geant4 modeling of the processes of particle passage through matter may be presented
asfollows:

e PhysicsModel = final state generator
* Physics Process = cross section + model
e PhysicsList = list of processes for each particle

The "patchwork" concept is especially true in the Geant4 hadronic physics domain: models are valid only over
finite energy ranges, and there maybe competing models in the same range or one model maybe working better
than the other for a specific group of particles, while its competitor may be better for other species. For thisreason
models have to be combined to cover the large energy range; every two adjacent models may have an overlap
in their validity range.
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AVUser Physi csLi st

Thisis an abstract class for constructing particles and processes. An introduction into the concept of the Geant4
Physics List and the Geant4 Physics Processesis also given in Section 2.5 and further in Section 5.2.

While the fabrication of aphysicslist is, in principle, achoice of auser, thetoolkit is distributed with a number of
pre-fabricated physicslistsfor the convenience of many user applications. These physicslists are supported by the
Geant4 development team and can be recommended for specific physics tasks. However, based on the interests
and needs of a specific project, auser may want to implement her or his own custom physics list.

Thefollowing sections offer several examples that show how to instantiate or select one or another pre-fabricated
Physics List from the Geant4 standard collection, as well as guidance composing a custom Physics List from pre-
fachricated components or even entirely from scratch.

To view the contents of a Physics List, there are two useful methods: DunpList() and
DunpCut Val ueTabl e(G4i nt fl ag) .

6.1.2.1. Reference Physics Lists

Number of ready to use Physics Lists are available with Geant4 kernel. Below an example of instantiation of
FTFP_BERT Physics List classis shown. The full set of reference Physics Listsis described in Geant4 web.

Example6.2. Creating FTFP_BERT PhysicsList.

G4int verbose = 1;
FTFP_BERT* physlist = new FTFP_BERT(ver bose);
runhvanager - >Set User I ni ti al i zati on( physlist);

6.1.2.2. Building Physics List Using Factory

Geant4 provides aclass GAPhysLi st Fact or y allowing to defined Physics List by its name. The last for char-
acters in the name defines an electromagnetic (EM) physics options. By default standard EM physics is used,
" EMV" corresponding to standard option1, " _EMX" - to standard option2, " _LIV" to EM Livermore physics,
" PEN" - to EM Penelope physics.

Example 6.3. Creating PhysicsList by name.

4int verbose = 1;

GAPhysLi st Factory factory;

GAVModul ar Physi csLi st* physlist = factory. Get Ref erencePhysLi st (" FTFP_BERT_EW") ;
physli st. Set Ver boselLevel (ver bose) ;

runManager - >Set User I ni ti al i zati on( physlist);

Theclass APhysLi st Fact or y provides also another interface allowing to defined Physics List by the envi-
ronment variable PHYSLIST.

Example 6.4. Creating PhysicsList by name.

4int verbose = 1;

GAPhysLi st Factory factory;

GAVModul ar Physi csLi st* physlist = factory. Ref erencePhysList();
physli st. Set Ver boseLevel (ver bose) ;

runManager - >Set User I ni ti al i zati on(physlist);

6.1.2.3. Building Physics List from Physics Builders

Technically speaking, one canimplement physicslist in a"flat-out” manner, i.e. specify al necessary particlesand
associated processes in a single piece of code, asit will be shown later in this document. However, for practical
purposesit is often more convenient to group together certain categories and make implementation more modular.

One very useful concept is a Modular Physics List, G4VModul ar Physi csLi st, that is a sub-class of
AVUser Physi csLi st s and allows auser to organize physics processesinto "building blocks", or "modules’,
then compose a physics list of such modules. The concept allows to group together, at a relatively high level,
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desired combinations of selected particles and related processes. One of the advantages of such approach is that
it allows to combine pre-fabricated physics modules that are centrally provided by Geant4 kernel with user's ap-
plications.

&AModul ar Physi csLi st hasall thefunctionalitiesasG4VUser Physi csLi st class, plusseveral addition-
al functionalities. One of theimportant methodsisRegi st er Physi cs( &4VPhysi csConst ruct or * ) for
"registering” the above mentioned pre-fabriced physics modules. There also methods for removing or replacing
physics modules.

Example below shows how (AVNMbdul ar PhysLi st can be implemented.

Example 6.5. Creating PhysicsList by name.

MyPhysi csLi st:: MyPhysi csLi st () : &4VMbdul ar Physi csLi st ()
{

(ADat aQuestionaire it(photon, neutron, no, no, no, neutronxs);
GAcout << "<<< Geant4 Physics List: MyPhysicsList " <<Gendl;
Gdcout <<HAendl ;

def aul t Cut Val ue = 0. 7*mm

Gdint ver = 1;

Set Ver boselLevel (ver);

/1 EM Physi cs
Regi st er Physi cs( new GAEnSt andar dPhysi cs(ver) );

/1 Synchroton Radi ati on & GN Physics

Regi st er Physi cs( new GAEnExtr aPhysi cs(ver) );
/| Decays

Regi st er Physi cs( new GADecayPhysi cs(ver) );

/| Hadron physics

Regi st er Physi cs( new G4Hadr onEl asti cPhysi csXS(ver) );
Regi st er Physi cs( new GAQSt oppi ngPhysi cs(ver) );

Regi st er Physi cs( new G41 onBi nar yCascadePhysi cs(ver) );
Regi st er Physi cs( new GAHadr onl nel asti cQBBC(ver));

/1 Neutron tracking cut
Regi st er Physi cs( new 4Neut ronTr acki ngCut (ver) );
}

Note that each module to be registered with a Modular Physics List is a G4VPhysi csConst ruct or (or a
derived object), i.e. a"sublist" that holds groups of particles and accompanying physics processes. A user can
find these and other similar modules in the source/physics listg/list area of Geant4 core code, and can combine
selected ones with custom modules, if desired.

In order to compose a custom physics module, two mandatory methods of a GAVPhysi csConst r uct or must
be implemented: Const ruct Particl e() and Construct Process() ; beyond that the implementation
can be structured according to the devel oper's taste.

Another useful concept in the modular approach to composing aPhysicsList isthe concept of so called "builders”.
This concept allows to encapsulate certain implementation details into smaller-scale software components, and
offersthe flexibility of re-using those component in different modules. At the general level, the schemeisthis:

* Particles (hadrons) are created, and physics models to be used to simulate applicable processes are specified,
usualy in a particular range of validity.

 Physicsprocessesfor each particle typein the builder are created, and each processis outfitted with one or more
hadronic physics models, as specified.

* If necessary, a cross section data set for a given particle type is added.

This concept iswidely used through the Geant4 hadronic domain, but the ideawould be equally applicablein the
electromagnetic area.

All builders can be found in the source/physics_lists/builders directory. There are basically two types of builders:

» Particle Builders
» Particle-Model Builders
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A particle builder is somewhat "superior” here, asit specifies a particle or a group of particles, what category of
processes are applicable, how to outfit a process with specified model(s), and how processes are to be registered
with the GAPr ocessManager . A particle-model builder instantiates a given model and implements details of
associating it with one or more processes applicable to a given particle type. Some models can not be instantiated
through asingleinterface class, but instead they need, in turn, to be composed from several components (examples
are QGS and FTF).

Useful example buldersto review and to consider as inspirations can be the following:

» G4PiKBuilder (.hh and .cc) - groups pions and kaons, together with alist of associated hadronic processes.

* G4BertiniPiKBuilder (.hh and .cc) - instrantiates Bertini cascade model and implements how to outfit pion and
kaon physics processes with this model. It also sets default validity range for the model.

* GAFTFPPiKBuilder (.hh and .cc) - composes a high energy FTF-based model and implements how to outfit
hadronic processes for pions and kaons with the model. This exampleillustrates that a hadronic model does not
aways have a single interface class, but it needs to be created from several components. In particular, in this
builder a "high energy generator" object (G4TheoFSGenerator) is created and is outfited with GAFTFModel
string model (which also givesthisbuilder itsname), wewell as string fragmentation algorithm and intra-nuclear
transport model. Please note that the quasi-elastic scattering is not set as FTF model hasits own mechanism for
it. A cross-section data set is specified for pions. A default validity range is aso specified.

One detail to remember is that, in principle, the validity range for a given model can be setup for each particle
type individually. But in these referenced applications the validity range is setup to be the same for a group of
particles (i.e. for anumber of corresponding inelastic hadronic processes). Once a builder is instantiated, one can
override the default validity range (via SetMinEnery or SetMaxEnergy methods), but the new value will be, again,
given to agroup of particles/processes. Also note that the validity range can be overriden only before calling the
Build() method of abuilder. Again, the approach is just a specifics of this particular implementation. Obvioudly,
if alimited validity range is selected for a specific particle/model/process, one has to supplement another model
or several models, to cover the entire range.

Onemoreuseful classisthe GAPhysi csLi st Hel per whichisaserviceclassthat wrapsaround the technicali-
tiesof the physics processregistering in Geant4 and allowsauser to easily associate aprocesswith aparticles, with-
out knowing many details about various types of processes (discrete, continuous, etc.) and their internal ordering
with APr ocessManager . Curious users may eventually want to go deeper into details of G4ProcessM anager
classand, in particular, its group of AddPr ocess(. . . ) methods, asit isthe basis of G4PhysicsListHel per im-
plementation. But for practical purposes, the use of G4PhysicsListHelper islikely to be sufficient in most cases.

Other useful details, including several elements of the software design philosophy and class diagrams, are given
in Section 2.5.

6.1.2.4. Building Physics List from Scratch

The user must derive a concrete class from (4VUser Physi csLi st and implement three virtual methods:

e ConstructParticl e() toinstantiate each requested particle type;

e Construct Physi cs() toinstantiate the desired physics processes and register each of them;

e Set Cut s( G4doubl e aVal ue) tosetacutvalueinrangefor all particlesinthe particletable, whichinvokes
the rebuilding of the physics table.

At early stageof theinitialisation of Geant4 themethod Const r uct Par ti cl e() of G4VUser Physi csLi st
isinvoked. The Const ruct Process() method must awaysinvoke the AddTr ansportati on() method
in order to insure particle transportation. AddTr ansport ati on() must never be overridden. Thisis done au-
tomatically if AVUser Physi csLi st inheritsof G4VModul ar Physi csLi st . Itisrecommended for users
as the most robust interface to Physics List. Geant4 examples demonstrate different methods how to create user
Physics List.

6.1.3. User Action Initialization

All user action classes must be defined through the protected method Set User Act i on() . Bui | d() methos
should be used for defining user action classes for worker threads as well as for the sequential mode. Bui | d-
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For Mast er () should be used only for defining UserRunAction for the master thread. Bui | dFor Mast er ()
is not invoked in the sequential mode. In case the user uses hisher own St eppi ngVer bose class, it must be
instantiated inthe method | ni ti al i zeSt eppi ngVer bose() and returned.

HAVUser Actionlnitialization

Example6.6. AVUser Actionlnitialization

cl ass GAVUser Actionlnitialization

{
public:
GAVUser Actionlnitialization();
virtual ~&4VUserActionlnitialization();

public:
virtual void Build() const = 0;
virtual void Buil dForMaster() const;
virtual GAVSteppi ngVerbose* InitializeSteppi ngVerbose() const;

pr ot ect ed:
voi d Set User Acti on( G4VUser Pri mar yGener at or Acti on*) const;
voi d Set User Acti on( G4User RunActi on*) const;
voi d Set User Acti on( G4User Event Acti on*) const;
voi d Set User Acti on( GAUser St acki ngActi on*) const;
voi d Set User Acti on( G4User Tr acki ngActi on*) const;
voi d Set User Acti on( GAUser St eppi ngActi on*) const;

IE
GAVUser Pri mar yGener at or Acti on
Example 6.7. GAVUser Pri mar yGener at or Acti on

cl ass GAVUser Pri mar yGener at or Act i on

{
public:
GAVUser Pri mar yGener at or Action();
virtual ~GAVUser Pri maryGener at or Acti on();

public:

virtual void CeneratePrinmari es(G4iEvent* anEvent) = O;

}
6.2. Optional User Actions

There are five virtual classes whose methods the user may override in order to gain control of the simulation at
various stages. Each method of each action class has an empty default implementation, allowing the user to inherit
and implement desired classes and methods.

Objects of user action classes must be registered with GARunManager (Section 3.4.1.2), which takes ownership
of them. The user must not del ete these objects directly, and they must be created using 'new'.

6.2.1. Usage of User Actions

HAUser RunAct i on
This class has three virtual methods which are invoked by GARunManager for each run:

Gener at eRun()

Thismethod isinvoked at the beginning of BeantOn. Because the user can inherit the class ZARun and create
his’/her own concrete class to store some information about the run, the Gener at eRun() method is the
placeto instantiate such an object. It isalso theideal placeto set variables which affect the physicstable (such
as production thresholds) for a particular run, because Gener at eRun() isinvoked before the calculation
of the physicstable.

236



User Actions

Begi nO RunActi on()

Thismethod isinvoked before entering the event loop. A typical use of this method would beto initialize and/
or book histograms for a particular run. This method is invoked after the calculation of the physics tables.

EndOf RunActi on()

This method is invoked at the very end of the run processing. It is typically used for a ssimple analysis of
the processed run.

Example 6.8. GAUser RunAct i on

cl ass GAUser RunActi on

{
public:
GAUser RunActi on();
virtual ~GAUser RunAction();

public:
virtual GARun* GenerateRun();
virtual void Begi nOf RunAction(const ARun*);
virtual void EndOf RunActi on(const GARun*);
Iz

HAUser Event Acti on

This class has two virtual methods which are invoked by G4Event Manager for each event:

begi nO Event Acti on()

This method is invoked before converting the primary particlesto GATr ack objects. A typical use of this
method would be to initialize and/or book histograms for a particular event.

endCf Event Acti on()

This method isinvoked at the very end of event processing. It is typically used for a simple analysis of the
processed event. If the user wants to keep the currently processing event until the end of the current run, the
user can invoke f pEvent Manager - >KeepTheCur r ent Event () ; sothatitiskeptin G4Run object.
This should be quite useful if you simulate quite many events and want to visualize only the most interest
ones after the long execution. Given the memory size of an event and its contents may be large, it isthe user's
responsibility not to keep unnecessary events.

Example 6.9. GAUser Event Acti on

cl ass GAUser Event Act i on

{
public:
GAUser Event Action() {;}
virtual ~XAUserEventAction() {;}
virtual void Begi nOf Event Acti on(const GAEvent *);
virtual void EndOf Event Acti on(const (AEvent*);
pr ot ect ed:
GAEvent Manager * f pEvent Manager ;

)
AUser St acki ngActi on

This class has three virtual methods, Cl assi f yNewTr ack, NewSt age and Pr epar eNewEvent which the
user may overridein order to control thevarioustrack stacking mechanisms. ExampleN04 could be agood example
to understand the usage of this class.

Cl assi fyNewTrack() is invoked by GAStackManager whenever a new GATrack object is
"pushed" onto a stack by G4Event Manager. C assifyNewTlrack() returns an enumerator,
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(AC assi fi cati onOf NewTr ack, whose value indicates to which stack, if any, the track will be sent. This
value should be determined by the user. G4Cl assi fi cati onOf NewTr ack hasfour possible values:

« fUrgent -track isplaced in the urgent stack

» fWAIi ting - track is placed in the waiting stack, and will not be simulated until the urgent stack is empty
» f Post pone - track is postponed to the next event

* fKill -thetrack isdeleted immediately and not stored in any stack.

These assignments may be made based on the origin of the track which is obtained as follows:

G4int parent_I D = aTrack->get _parent!| D) ;

where

e parent | D = Oindicatesaprimary particle
e parent | D > 0 indicatesasecondary particle
» parent | D < 0 indicates postponed particle from previous event.

NewSt age() isinvoked when the urgent stack is empty and the waiting stack contains at least one 4 Tr ack
object. Here the user may kill or re-assign to different stacks all the tracks in the waiting stack by calling the
st ackManager - >Red assi f y() method which, inturn, callsthe d assi f yNewTr ack() method. If no
user action is taken, all tracks in the waiting stack are transferred to the urgent stack. The user may also decide
to abort the current event even though some tracks may remain in the waiting stack by calling st ackManag-

er - >cl ear () . Thismethod is valid and safe only if it is called from the GAUser St acki ngAct i on class.
A global method of event abortion is

G4Ul nanager * U nanager = GAUl nanager: : Get Ul pointer();
Ul manager - >Appl yCommand("/ event/ abort");

Pr epar eNewEvent () isinvoked at the beginning of each event. At this point no primary particles have been
converted to tracks, so the urgent and waiting stacks are empty. However, there may betracksin the postponed-to-
next-event stack; for each of these the Cl assi f yNewTr ack() method is called and the track is assigned to
the appropriate stack.

Example 6.10. AUser St acki ngActi on

#i ncl ude "4d assi fi cati onOf NewTr ack. hh"

cl ass GAUser St acki ngActi on

{
public:
GAUser St acki ngAction();
virtual ~G4User St acki ngAction();
prot ect ed:
G4St ackManager * st ackManager;
public
e
[/l virtual nethods to be inplenented by user
e
/1
virtual 4d assificationCOf NewTrack
Cl assi f yNewTr ack(const GATrack*);
/1
N R R e
/1
virtual void NewsStage();
/1
N R R e
/1
virtual void PrepareNewEvent ();
/1
N R R e
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}
HAUser Tr acki ngActi on
Example 6.11. GAUser Tr acki ngActi on

/| GAUser Tr acki ngActi on. hh

/] Description:
/1 This class represents actions taken place by the user at
/] the start/end point of processing one track.

LILETEEELLE iy
cl ass GAUser Tr acki ngActi on
LILETEEELLE iy

/1 Constructor & Destructor
GAUser Tr acki ngAction(){};
virtual ~&GAUser Tracki ngAction(){}

/1 Menmber functions
virtual void PreUserTracki ngActi on(const G4Track*){}
virtual void PostUser Tracki ngActi on(const GA4Track*){}

/1 Menber data
GATr acki ngManager * f pTr acki ngManager ;

HAUser St eppi ngActi on
Example 6.12. GAUser St eppi ngActi on

/| GAUser St eppi ngActi on. hh

/] Description:
/1 This class represents actions taken place by the user at each
I end of stepping.

LEELLEELL iy
cl ass GAUser St eppi ngActi on
LEELLEELL iy

/1 Constructor and destructor
GAUser St eppi ngAction(){}
virtual ~GAUser St eppi ngAction(){}

/1 Member functions
virtual void UserSteppi ngActi on(const AStep*){}

239



User Actions

/1 Menber data
GASt eppi ngManager * f pSt eppi ngManager ;

bi

6.2.2. Killing Tracks in User Actions and Energy Conserva-
tion

In either of user action classes described in the previous section, the user can implement an unnatural/unphysical
action. A typical exampleisto kill atrack, which is under the simulation, in the user stepping action. In this case
the user have to be cautious of the total energy conservation. The user stepping action itself does not take care the
energy or any physics quantity associated with the killed track. Therefore if the user want to keep the total energy
of an event in this case, the lost track energy need to be recorded by the user.

The sameistrue for user stacking or tracking actions. If the user has killed atrack in these actions the all physics
information associated with it would be lost and, for example, the total energy conservation be broken.

If the user wants the Geant4 kernel to take care the total energy conservation automatically when he/she has
killed artificially a track, the user has to use a killer process. For example if the user uses G4UserLimits and
G4UserSpecial Cuts process, energy of the killed track is added to the total energy deposit.

6.3. User Information Classes

Additional user information can be associated with various Geant4 classes. There are basically two ways for the
user to do this:

* derive concrete classes from base classes used in Geant4. These are classes for run, hit, digit, trajectory and tra-
jectory point, which are discussed in Section 6.2 for G4Run, Section 4.4 for G4V Hit, Section 4.5 for G4V Digit,
and Section 5.1.6 for G4V Trgjectory and G4V TrajectoryPoint

* create concrete classes from provided abstract base classes and associate them with classes used in Geant4.
Geant4 classes which can accommodate user information classes are G4Event, G4Track, G4PrimaryV ertex,
G4PrimaryParticle and G4Region. These classes are discussed here.

6.3.1. G4VUserEventinformation

AVUser Event | nf or mat i on isan abstract class from which the user can derive his’her own concrete class
for storing user information associated with a G4Event class object. It is the user's responsibility to construct a
concrete class object and set the pointer to a proper G4Event object.

Within a concrete implementation of G4UserEventAction, the SetUserEventinformation() method of
G4EventManager may be used to set a pointer of a concrete class object to G4Event, given that the G4Event object
isavailable only by "pointer to const”. Alternatively, the user may modify the GenerateEvent() method of his/her
own RunManager to instantiate a G4V UserEventlnformation object and set it to G4Event.

The concrete class object is deleted by the Geant4 kernel when the associated G4Event object is del eted.

6.3.2. G4VUserTrackInformation

Thisis an abstract class from which the user can derive his’her own concrete class for storing user information
associated with a G4Track class object. It is the user's responsibility to construct a concrete class object and set
the pointer to the proper G4Track object.

Within a concrete implementation of G4UserTrackingAction, the SetUserTrackinformation() method of
G4TrackingManager may be used to set a pointer of a concrete class object to G4Track, given that the G4Track
object is available only by "pointer to const".

240



User Actions

The ideal place to copy a G4V UserTrackinformation object from a mother track to its daughter tracks is
HAUser Tr acki ngActi on: : Post User Tr acki ngActi on() .

Example6.13. Copying GAVUser Tr ackl nf or mat i on from mother to daughter tracks

voi d REO1Tr acki ngActi on: : Post User Tr acki ngAct i on(const GATrack* aTrack)

GATr ackVect or* secondari es = fpTracki ngManager - >G nmeSecondari es() ;
i f (secondari es)

REO1Tr ackl nformati on* info = (REOL1Trackl nfornation*) (aTrack->Get User| nformation());
size_t nSeco = secondari es->size();
i f (nSeco>0)

for(size_t i=0; i < nSeco; i++)
REO1Tr ackl nf or mati on* i nfoNew = new REO1Tr ackl nformati on(i nfo);
(*secondaries)[i]->SetUserlnformation(infoNew);
}
}
}
}

The concrete class object is deleted by the Geant4 kernel when the associated G4Track object is deleted. In case
the user wants to keep the information, it should be copied to atrajectory corresponding to the track.

6.3.3. G4VUserPrimaryVertexinformation and
G4VUserPrimaryTrackinformation

These abstract classes allow the user to attach information regarding the generated primary vertex and prima-
ry particle. Concrete class objects derived from these classes should be attached to G4Pr i mar yVert ex and
GAPrimaryParti cl e class objects, respectively.

The concrete class objects are deleted by the Geant4 Kernel when the associated G4PrimaryVertex or
G4PrimaryParticle class objects are del eted along with the deletion of G4Event.

6.3.4. G4VUserRegionInformation

This abstract base class alows the user to attach information associated with a region. For example, it would be
quite beneficial to add some methods returning a boolean flag to indicate the characteristics of the region (e.g.
tracker, calorimeter, etc.). With this example, the user can easily and quickly identify the detector component.

Example 6.14. A sampleregion information class

cl ass REO1Regi onl nformati on : public GAVUser Regi onl nf or mati on

{
public:
REO1Regi onl nf or mati on() ;
~REO1Regi onl nf or mati on() ;
void Print() const;
private:
G4bool i sWorl d;
G4bool i sTracker;
(4Abool isCal orineter;
public:
inline void SetWrld(G4bool v=true) {isworld = v;}
inline void SetTracker(&4bool v=true) {isTracker = v;}
inline void SetCalorineter(&bool v=true) {isCalorineter = v;}
inline G4bool |sWrld() const {return isWrld;}
inline Abool |sTracker() const {return isTracker;}
inline G4bool |sCalorineter() const {return isCalorineter;}
=

The following code is an example of a stepping action. Here, atrack is suspended when it enters the "cal orimeter
region" from the "tracker region”.
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Example 6.15. Sample use of aregion information class

voi d REO1St eppi ngActi on: : User St eppi ngActi on(const GAStep * theStep)

{
/] Suspend a track if it is entering into the calorineter
/1 check if it is alive
GATrack * theTrack = theStep->Cet Track();
i f(theTrack->Get TrackStatus()!=fAlive) { return; }
/] get region information
GASt epPoi nt * thePrePoint = theSt ep->Get PreSt epPoint ();
G4Logi cal Vol une * t hePrelLV = t hePrePoi nt - >Get Physi cal Vol une() - >Get Logi cal Vol une() ;
REO1Regi onl nf or mati on* t hePreRl nfo
= (REO1Regi onl nf or mati on*) (t hePr eLV- >Get Regi on() - >Get User | nf or mati on()) ;
GASt epPoi nt * thePost Poi nt = t heSt ep- >Get Post St epPoi nt () ;
G4Logi cal Vol une * t hePost LV = t hePost Poi nt - >Get Physi cal Vol une() - >Get Logi cal Vol une();
REO1Regi onl nf or mati on* t hePost Rl nf o
= (REO1Regi onl nf or mati on*) (t hePost LV- >Get Regi on() - >Get User I nfor mati on());
/Il check if it is entering to the calorineter vol une
if(!(thePreRInfo->IsCalorinmeter()) & (thePostRInfo->IsCalorineter()))
{ theTrack->Set Tr ackSt at us(f Suspend); }
}

6.4. Multiple User Actions

Starting from Geant4 Version 10.3 it is possible to attach multiple instances of the same type of user action to a
single run manager. This is achieved via the use of a special proxy classes to which multiple child user actions
are attached. This is allowed for run-, event-, tracking- and stepping-type user actions (AUser RunAct i on,
(AUser Event Acti on, GAUser Tr acki ngAct i on, GAUser St eppi ngAct i on).

Thekernel till seesasingle user action of each type, the proxy will forward the callsfrom kernel to all the attached
child user actions.

Example 6.16. An example of the use of the use of multiple user-actions.

#i ncl ude "&AMil ti RunActi on. hh"

#i ncl ude "&4Mul ti Event Acti on. hh"

#i ncl ude "GAMul ti Tracki ngActi on. hh"

#i ncl ude "&AMuil ti St eppi ngActi on. hh"
/...

void MyUserActionlnitialization::Build()
{

/] Exanple with nultiple-event action, simlartly
/1 for the other cases
// multi- user actions extend std::vector
auto nmul ti Action = new GAMul ti Event Acti on { new MyEvent Acti onl, new MyEvent Action2 } ;
/...
mul ti Acti on->push_back( new MyEvent Action3 );
Set User Action( nultiAction );
/...
}

6.4.1. Exceptions

This functionality is not implemented for the the stacking user action and primary generation action. There is
no multiple G4User St acki ngAct i on equivalent since this would require a complex handling of the casein
which conflicting classifications are issued. For the case of G4VUser Pri mar yGener at or Act i on the use
case of the multiple user actions is already addressed by the design of the class itself. User can implement one
or more generators in the actions.

For the case of AMulti RunAction only one of the child user actions can implement the
HAUser RunAct i on: : Gener at eRun() method returning anon null, user derived G4Run object, otherwise
an exception isthrown.

242
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7.1. Built-in Commands

Geant4 has various built-in user interface commands, each of which corresponds roughly to a Geant4 category.
These commands can be used

* interactively viaa (Graphical) User Interface - (G)UI,
» inamacro file via/control/execute <command>,
 within C++ code with the ApplyCommand method of G4Ulmanager.

Note

The availability of individual commands, the ranges of parameters, the available candidates on individ-
ual command parameters vary according to the implementation of your application and may even vary
dynamically during the execution of your job.

The following is a short summary of available commands. Y ou can also see the al available commands by exe-
cuteing 'help’ in your Ul session.

e List of built-in commands

7.2. User Interface - Defining New Commands

7.2.1. G4UImessenger

AUl nessenger isabase classwhich represents a messenger that delivers command(s) to the destination class
object. Concrete messengers are instantiated by, and owned by, the functional classes for which they provide a
user interface; messengers should be deleted by those classesin their own destructors.

Y our concrete messenger should have the following functionalities.

 Construct your command(s) in the constructor of your messenger.
 Destruct your command(s) in the destructor of your messenger.

These requirements mean that your messenger should keep all pointersto your command objects as its data mem-
bers.

Y ou can use AUl conmrand derived classes for the most frequent types of command. These derived classes have
their own conversion methods according to their types, and they make implementation of the Set Newval ue()
and Get Cur r ent Val ue() methods of your messenger much easier and simpler.

AUl comand objects are owned by the messenger. If instantiated via new, they should be deleted in the mes-
senger destructor.

For complicated commands which take various parameters, you can use the G4Ul comand base class, and con-
struct GAUI par anet er objects by yourself. Y ou don't need to delete G4UI par anet er object(s).

In the Set Newval ue() and Get Current Val ue() methods of your messenger, you can compare the
AUl comand pointer given in the argument of these methods with the pointer of your command, because your
messenger keeps the pointers to the commands. Thus, you don't need to compare by command name. Please re-
member, in the cases where you use G4UI conmaind derived classes, you should store the pointers with the types
of these derived classes so that you can use methods defined in the derived classes according to their types without
casting.

AUl manager / G4Ul command/ AUl par anet er have very powerful type and range checking routines.
You are strongly recommended to set the range of your parameters. For the case of a numerical value (i nt or
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doubl e), therange can be given by a4 St r i ng using C++ notation, e.g.,"X > 0 & X < 10". For the
case of astring type parameter, you can set a candidate list. Please refer to the detailed descriptions below.

Get Current Val ue() will beinvoked after the user's application of the corresponding command, and before
the Set NewVal ue() invocation. ThisGet Cur r ent Val ue() method will be invoked only if

* at least one parameter of the command has arange
* at least one parameter of the command has a candidate list

 at least the value of one parameter is omitted and this parameter is defined as omittable and cur r ent Val -
ueAsDef aul t

For the first two cases, you can re-set the range or the candidate list if you need to do so, but these ““re-set"
parameters are needed only for the case where the range or the candidate list varies dynamically.

A command can be “state sensitive', i.e, the command can be accepted only for a certain
AApplicationSt at e(s). For example, the/ r un/ beanOn command should not be accepted when Geant4

is processing another event (T~ G4State EventProc” state). Y ou can set the states available for the command with
the Avai | abl eFor St at es() method.

7.2.2. G4Ulcommand and its derived classes

Methods available for all derived classes
These are methods defined in the G4Ul comrand base class which should be used from the derived classes.
* voi d Set Cui dance(char*)

Define a guidance line. You can invoke this method as many times as you need to give enough amount of
guidance. Please note that the first line will be used as atitle head of the command guidance.

e void avail abl eFor St at es((4ApplicationState si,...)
If your command is vaid only for certain states of the Geant4 kernel, specify these states by this
method. Currently available states are AState_Prelnit, GAState Init, AState_Ildle,
(ASt at e_GeonCl osed, andASt at e_Event Pr oc. Refer to the section 3.4.2 for meaning of each state.

Please note that the Pause state had been removed from G4Appl i cat i onSt at e.
» voi d Set Range(char* range)

Define arange of the parameter(s). Use C++ notation, eg.,"x > 0 && x < 10", with variable name(s)
defined by the Set Par anet er Narre() method. For the caseof aGAThr eeVect or , you can set therelation
between parameters, e.g.,"x > y".
G4Uldirectory
ThisisaG4Ul command derived class for defining adirectory containing commands. It is owned by, and should
be deleted in the destructor of, the associated GAUImessenger class, after all of its contained commands have
been deleted.
e AUl directory(char* directoryPath)

Constructor. Argument isthe (full-path) directory, which must begin and terminate with °/ .
G4UlcmdWithoutParameter
ThisisaG4Ul command derived class for acommand which takes no parameter.
 G4Ul cndW t hout Par anet er (char* commandPat h, (AUl nessenger* theMessenger)

Constructor. Arguments are the (full-path) command name and the pointer to your messenger.
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G4UlcmdWithABool

ThisisaG4Ul command derived class which takes one boolean type parameter.

AU cmdW t hABool (char* commandpat h, GAUl manager * t heMessenger)

Constructor. Arguments are the (full-path) command name and the pointer to your messenger.
voi d Set Par anet er Name(char* paranNanme, (4bool onittabl e)

Define the name of the boolean parameter and set the omittable flag. If omittable istrue, you should define the
default value using the next method.
voi d Set Def aul t Val ue( G4bool def Val )

Define the default value of the boolean parameter.
AAbool Get NewBool Val ue(G4String paranttring)

Convert GASt ri ng parameter value given by the Set NewVal ue() method of your messenger into boolean.
AString convert ToStri ng(Gibool currVal)

Convert the current boolean value to G4 St r i ng whichshould be returned by the Get Cur r ent Val ue()
method of your messenger.

G4UlcmdWithAnInteger

ThisisaG4Ul comuand derived class which takes one integer type parameter.

AUl cndW t hAnl nt eger (char* commandpat h, G4Ul manager* t heMessenger)

Constructor. Arguments are the (full-path) command name and the pointer to your messenger.
voi d Set Par anet er Nane(char* paranName, Gibool omttable)

Define the name of the integer parameter and set the omittable flag. If omittable istrue, you should define the
default value using the next method.
voi d Set Def aul t Val ue( G4i nt def Val )

Define the default value of the integer parameter.
4int CGet Newl nt Val ue(AStri ng paranftring)

Convert GASt r i ng parameter value given by the Set Newval ue() method of your messenger into integer.
(AString convert ToString(G4int currVal)

Convert the current integer value to (ASt r i ng, which should be returned by the Get Cur r ent Val ue()
method of your messenger.

G4UlcmdWithADouble

ThisisaG4Ul comuand derived class which takes one doubl e type parameter.

AU cnmdW t hADoubl e(char* commandpat h, AUl manager * t heMessenger)

Constructor. Arguments are the (full-path) command name and the pointer to your messenger.
voi d Set Par amet er Nane(char* paranmName, Gibool om ttabl e)

Define the name of the double parameter and set the omittable flag. If omittable is true, you should define the
default value using the next method.
voi d Set Def aul t Val ue( G4doubl e def Val)

Define the default value of the double parameter.
Adoubl e Get NewDoubl eVal ue(AString paranttring)

Convert GASt r i ng parameter value given by the Set Newval ue() method of your messenger into double.
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AString convert ToStri ng(Gidoubl e currVval)

Convert the current double value to G4St ri ng which should be returned by the Get Cur r ent Val ue()
method of your messenger.

G4UlcmdWithAString

ThisisaG4Ul command derived class which takes one string type parameter.

AU cmdW t hASt ri ng(char* commandpat h, AUl manager * t heMessenger)

Constructor. Arguments are the (full-path) command name and the pointer to your messenger.
voi d Set Par anet er Nane(char* paranName, Gibool om ttabl e)

Define the name of the string parameter and set the omittable flag. If omittable is true, you should define the
default value using the next method.
voi d Set Def aul t Val ue(char* def Val)

Define the default value of the string parameter.
voi d Set Candi dat es(char* candi dat eLi st)

Defineacandidatelist which can betaken by the parameter. Each candidate listed in thislist should be separated
by a single space. If this candidate list is given, a string given by the user but which is not listed in this list
will be rejected.

G4UlcmdWith3Vector

ThisisaG4AU command derived class which takes one three vector parameter.

AU cnmdW t h3Vect or (char* comandpat h, GAUl manager* t heMessenger)

Constructor. Arguments are the (full-path) command name and the pointer to your messenger.
voi d Set Par anet er Nane(char* paramNamX, char* paranmNamy, char* paranNani,
AAbool omittable)

Define the names of each component of the three vector and set the omittable flag. If omittable is true, you
should define the default value using the next method.
voi d Set Def aul t Val ue( G4Thr eeVect or def Val )

Define the default value of the three vector.
GAThr eeVect or CGet New3Vect or Val ue( AStri ng paranftri ng)

Convert the A4St r i ng parameter value given by the Set NewVal ue() method of your messenger into a
GAThr eeVect or .
AString convert ToStri ng(GAThreeVect or currVal)

Convert the current three vector to G4St ri ng, which should be returned by the Get Cur r ent Val ue()
method of your messenger.

G4UlcmdWithADoubleAndUnit

ThisisaG4Ul comuand derived class which takes one doubl e type parameter and its unit.

AU cnmdW t hADoubl eAndUni t (char* commandpat h, AUl nanager* theMessenger)

Constructor. Arguments are the (full-path) command name and the pointer to your messenger.
voi d Set Par anmet er Nane(char* paranName, Gibool omttable)

Define the name of the double parameter and set the omittable flag. If omittable is true, you should define the
default value using the next method.
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voi d Set Def aul t Val ue( G4doubl e def Val)
Define the default value of the double parameter.
voi d Set Unit Cat egory(char* unit Cat egory)

Define acceptable unit category.
voi d SetDefaul tUnit(char* defUnit)

Define the default unit. Please use this method and the Set Uni t Cat egor y() method alternatively.
Adoubl e Get NewDoubl eVal ue(AString paranttring)

Convert GASt r i ng parameter value given by the Set NewVal ue() method of your messenger into double.
Please note that the return value has already been multiplied by the value of the given unit.
Adoubl e Get NewDoubl eRawal ue( AStri ng paranttri ng)

Convert A4St ri ng parameter value given by the Set NewVal ue() method of your messenger into double
but without multiplying the value of the given unit.
GAdoubl e Get NewUni t Val ue( AStri ng paranftring)

Convert GASt r i ng unit value given by the Set NewVal ue() method of your messenger into double.
AString convert ToStri ng(Gibool currVal, char* unitNane)

Convert the current double valueto a GASt r i ng, which should be returned by the Get Cur r ent Val ue()
method of your messenger. The double value will be divided by the value of the given unit and converted to
astring. Given unit will be added to the string.

G4UlcmdWith3VectorAndUnit

ThisisaG4Ul comand derived class which takes one three vector parameter and its unit.

AU cmdW t h3Vect or AndUni t (char* commandpat h, AUl nanager* theMessenger)

Constructor. Arguments are the (full-path) command name and the pointer to your messenger.
voi d Set Par anet er Nane( char * par amNanX, char* par anNan, char*
par anNaniZ, G4bool om ttable)

Define the names of each component of the three vector and set the omittable flag. If omittable is true, you
should define the default value using the next method.
voi d Set Def aul t Val ue( G4Thr eeVect or def Val )

Define the default value of the three vector.
voi d Set Unit Cat egory(char* unit Cat egory)

Define acceptable unit category.
voi d SetDefaul tUnit(char* defUnit)

Define the default unit. Please use this method and the Set Uni t Cat egor y() method alternatively.
AThr eeVect or Get New3Vect or Val ue( G4Stri ng paranttri ng)

Convert a A4St ri ng parameter value given by the Set Newval ue() method of your messenger into a
GAThr eeVect or . Please note that the return value has aready been multiplied by the value of the given unit.
GAThr eeVect or Get New3Vect or Rawval ue( G4St ri ng paranttri ng)

Convert aGASt r i ng parameter value given by the Set NewVal ue() method of your messenger into three
vector, but without multiplying the value of the given unit.
GAdoubl e Get NewUni t Val ue( AStri ng paranftring)

Convert a(4St ri ng unit value given by the Set NewVal ue() method of your messenger into a double.
AString convert ToStri ng(G4ThreeVector currVal, char* unit Nane)
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Convert the current three vector to a &4 St r i ng which should be returned by the Get Cur r ent Val ue()
method of your messenger. The three vector value will be divided by the value of the given unit and converted
to astring. Given unit will be added to the string.

Additional comments on the Set Par anet er Nane() method

You can add one additional argument of G4bool type for every Set Par anet er Nane() method mentioned
above. Thisadditional argument isnamed cur r ent AsDef aul t FI ag and the default value of thisargument is
f al se. If you assign this extra argument ast r ue, the default value of the parameter will be overriden by the
current value of the target class.

7.2.3. An example messenger

Thisexampleisof GAPart i cl eGunMessenger , which is made by inheriting G4Ul command.

Example 7.1. An exampleof G4Parti cl eGunMessenger. hh.

#i f ndef G4Particl eGunMessenger_h
#define AParticl eGnMessenger_h 1

class HAParticl eQun;

class HAParticl eTabl e;

cl ass AUl conmand;

class AUl directory;

cl ass AUl cndW t hout Par anet er ;
class AUl cndW t hAStri ng;

cl ass AU cndW t hADoubl eAndUni t ;
cl ass AU cndW t h3Vect or ;

cl ass AU cndW t h3Vect or AndUni t ;

#i ncl ude " AUl nessenger. hh"
#i ncl ude "gl obal s. hh"

class AParticl eGunMessenger: public GAU nessenger

public:
GAParticl eGunMessenger (G4Particl eGun * fPtcl Gun);
~GAParticl eGunMessenger () ;

public:
voi d Set Newval ue( G4Ul conmand * commrand, G4Stri ng newval ues) ;
GAString GetCurrentVal ue( U conmand * conmand) ;

private:
GHAParticle@n * fParticl eGun;
G4ParticleTabl e * particl eTabl e;

private: //commands

AUl directory * gunDirectory;
G4Ul cndW t hout Par anet er * listCmd;

AUl cndW t hAString * particl eCnd;
G4Ul cnmdW t h3Vect or * directi onOd;

GAUl cndW t hADoubl eAndUnit * ener gyCnd;
G4Ul cndW t h3Vect or AndUnit * positionCnd;
G4Ul cndW t hADoubl eAndUnit * ti meCnd;

b

#endi f

Example 7.2. An exampleof G4Parti cl eGunMessenger. cc.

#i ncl ude "GAParticl eGunMessenger. hh"
#i ncl ude "&AParti cl eGun. hh"

#i ncl ude "ACeanti no. hh"

#i ncl ude " &AThr eeVect or. hh"

#i ncl ude "G4Particl eTabl e. hh"

#i ncl ude "&4Ul directory. hh"
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#i ncl ude " &AUl cndW t hout Par anet er . hh"
#i ncl ude "&4U cmdW t hAStri ng. hh"

#i ncl ude " GAUl cndW t hADoubl eAndUni t . hh"
#i ncl ude "&4U cmdW t h3Vect or. hh"

#i ncl ude " &AUl cndW t h3Vect or AndUni t . hh"
#i ncl ude <i ostream h>

GAParticl eGunMessenger:: GAParti cl eGunMessenger (GAParticl eGun * fPtcl Gun)
:fParticle@n(fPtcl Gun)

{
particleTabl e = AParticl eTabl e: : Get Parti cl eTabl e() ;

gunDirectory = new AUl di rectory("/gun/");
gunDi rect ory- >Set Gui dance("Particle GQun control comrands.");

l'istCrd = new GAU cndW t hout Par aneter ("/gun/list",this);
|'i st Cd- >Set Gui dance("Li st avail able particles.");
|'i st Cnd- >Set Gui dance(" | nvoke GAParticl eTable.");

particleCmd = new AU cnmdW t hAStri ng("/ gun/particle",this);
particl eCrd- >Set Gui dance("Set particle to be generated.");
particl eCmd- >Set Gui dance(" (geantino is default)");
particl eCrd- >Set Par anet er Nane( " parti cl eNane", true);
particl eCnd- >Set Def aul t Val ue("geanti no");
GAString candi dat eLi st ;
Gdint nPtcl = particleTabl e->entries();
for(G4int i=0;i<nPtcl;i++)
{
candi dat eLi st += particl eTabl e->CGet Particl eNane(i);

candi dat eLi st += ;
}
particl eCmd- >Set Candi dat es( candi dat eLi st ) ;

directionCmd = new G4U cndW t h3Vect or ("/ gun/direction”, this);

di recti onCnd- >Set Gui dance(" Set nonentum direction.");

di recti onCnd- >Set Gui dance("Directi on needs not to be a unit vector.");
di recti onCnd- >Set Par anet er Nane( " Px", "Py", "Pz", true, true);
directi onCnd- >Set Range("Px !=0 || Py I=0 || Pz I=0");

energyCnd = new AUl cndW t hADoubl eAndUni t ("/ gun/ energy", this);
ener gyCnd- >Set Gui dance(" Set ki netic energy.");

ener gyCnd- >Set Par anet er Nane( " Ener gy", true, true);

ener gyCnd- >Set Def aul t Uni t (" GeV") ;

ener gyCnd- >Set Uni t Candi dat es("eV keV MeV GeV TeV');

posi ti onCmd = new GAU cndW t h3Vect or AndUni t ("/ gun/ posi tion",this);
posi ti onCnd- >Set Gui dance("Set starting position of the particle.");
posi ti onCnd- >Set Par anet er Name(" X", "Y","Z", true, true);

posi ti onCnd- >Set Def aul t Unit ("cnt') ;

posi ti onCmd- >Set Uni t Candi dat es("m cron mm cm m kni') ;

timeCmd = new G4U cndW t hADoubl eAndUni t ("/gun/ti me", this);
ti meCnd- >Set Cui dance("Set initial tine of the particle.");
ti meCnd- >Set Par anet er Name("t 0", true, true);

ti meCnmd- >Set Def aul t Uni t (" ns");

ti meCmd- >Set Uni t Candi dates("ns nms s");

/] Set initial value to GAParticl eCGun
fParticleGun->SetParticleDefinition( GAGeantino:: CGeantino() );

fParticl eGun->Set Particl eMonent unDi recti on( G4ThreeVector(1.0,0.0,0.0) );
fParticleGn->SetParticleEnergy( 1.0*GeV );

fParticl eGun->SetParticl ePosition(&ThreeVector(0.0*cm 0.0*cm 0.0*cm));
fParticleGn->SetParticleTime( 0.0*ns );

GAParticl eGunMessenger:: ~GAParti cl eGunMessenger ()
{

delete |istCnd;

del ete particl eCd;

del ete directi onCnd;

del et e ener gyCnd;

del ete positionCnd;

delete tinmeCnd;

del ete gunDirectory;
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voi d GA4Particl eGunMessenger : : Set Newval ue(
G4Ul conmand * command, GAStri ng newval ues)
{
if( conmand==listCnd )
{ particl eTabl e->dunpTabl e(); }
el se i f( command==particleCrd )

GAParticleDefinition* pd = particl eTabl e->fi ndParticl e(newal ues) ;
if(pd !'= NULL)
{ fParticleQn->SetParticleDefinition( pd ); }

el se i f( command==directi onCnd )
{ fParticleGun->SetParticleMnentunDirection(directi onCnd->
Get New3Vect or Val ue( newval ues) ); }
el se if( command==ener gyCnd )
{ fParticl eGn->SetParticl eEnergy(energyCnd- >
Get NewDoubl eVal ue(newval ues)); }
el se i f( command==positionCrd )
{ fParticleGun->SetParticl ePosition(
di recti onCnd- >Get New3Vect or Val ue( newval ues)); }
else if( command==ti neCrd )
{ fParticleGn->SetParticleTine(ti mreCnd->
Get NewDoubl eVal ue(newval ues)); }

}
GAString G4Particl eGunMessenger : : Get Current Val ue( AUl conmand * conmmand)
{

GAString cv;

i f( command==di rectionCnd )
{ cv = directionCrd->Convert ToStri ng(
fParticl eGn->CGetParticleMnentunDirection()); }
el se if( command==ener gyCnd )
{ cv = energyCnd->ConvertToStri ng(
fParticleGun->CetParticleEnergy(),"GV'); }
el se i f( command==positionCrd )
{ cv = positionCnrd->ConvertToStri ng(
fParticl eGn->GetParticlePosition(),"cnt); }
el se if( command==ti neCrd )
{ cv = tinmeCnd->ConvertToString(
fParticleGn->CetParticleTinme(),"ns"); }
el se if( command==particleCrd )
{ /! update candidate |ist
GAString candi dateLi st;
Gdint nPtcl = particleTabl e->entries();
for(G4int i=0;i<nPtcl;i++)

candi dat eLi st += particl eTabl e->Get Part i cl eName(i)
candi dateLi st += " ";

}
particl eCrd- >Set Candi dat es(candi dat eLi st) ;
}

return cv;

}
7.2.4. How to control the output of G4cout/G4cerr

Instead of std::cout and std::cerr, Geant4 uses G4cout and Acer r . Output streams from Gdcout / GAcerr
arehandled by GAUI manager which allowsthe application programmer to control the flow of the stream. Output
strings may therefore be displayed on another window or stored in afile. Thisis accomplished as follows:

1. Deriveaclassfrom G4Ul sessi on and implement the two methods:

G4i nt Recei veGAcout (const (AString& cout String);
G4int Recei veGAcerr (const (AString& cerrString);

These methods receive the string stream of G4cout and (Acer r, respectively. The string can be handled
to meet specific requirements. The following sample code shows how to make alog file of the output stream:

ostream | ogFi |l e;
| ogFi | e. open(" MyLogFi | ") ;
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G4int MySessi on: : Recei veG4Acout (const GAString& cout String)

| ogFile << coutString << flush;
return O;

}
Set thedestination of G4cout / GAcer r using (AUl manager : : Set Cout Dest i nati on(sessi on).

Typically this method is invoked from the constructor of AUl sessi on and its derived classes, such
as AU GAG AUl t em nal . This method sets the destination of GAcout/ KAcerr to the session.
For example, when the following code appears in the constructor of G4Ult er mi nal , the method
Set Cout Desti nati on(this) tells Ulmanager that this instance of G4Ul t er mi nal receives the
stream generated by Gdcout .

GU term nal :: AUl termi nal ()

U = AU manager: : Get Ul poi nter();
Ul - >Set Cout Dest i nati on(this);
/1

}

Similarly, Ul - >Set Cout Dest i nati on( NULL) must be added to the destructor of the class.
Write or modify the main program. To modify exanpl eB1 to produce alog file, derive a class as described
in step 1 above, and add the following lines to the main program:

#i ncl ude " MySessi on. hh"
mai n()
{
/] get the pointer to the User I|nterface manager
GAUl nanager* U = GAU manager: : Get Ul poi nter();
/] construct a session which recei ves GAcout/ GAcerr
M/Sessi on * LoggedSession = new MySessi on;
Ul - >Set Cout Dest i nati on( LoggedSessi on) ;
/| session->SessionStart(); // not required in this case
// .... do sinulation here ...

del et e LoggedSessi on;
return O;

Note

GAcout / GAcer r should not be used in the constructor of aclassif theinstance of the classisintended
tobeused asst at i ¢. Thisrestriction comesfrom the language specification of C++. See the documents
below for details:

* M.A.Ellis, B.Stroustrup, ~ Annotated C++ Reference Manual", Section 3.4[ Ellis1990 ]
» P.J.Plauger, “The Draft Standard C++ Library" [ Plauger1995 |
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Chapter 8. Visualization

8.1. Introduction to Visualization

The Geant4 visualization system was developed in response to a diverse set of requirements.”

Quick response to study geometries, trgjectories and hits
High-quality output for publications

Flexible camera control to debug complex geometries

Tools to show volume overlap errors in detector geometries
Interactive picking to get more information on visualized objects

agkrwdrE

Noonegraphicssystemisideal for al of these requirements, and many of thelarge softwareframeworksinto which
Geant4 has been incorporated already have their own visualization systems, so Geant4 visualization was designed
around an abstract interface that supports a diverse family of graphics systems. Some of these graphics systems
use a graphics library compiled with Geant4, such as OpenGL, Qt, while others involve a separate application,
such as HepRApp or DAWN.

Most examples include a vis.mac to perform typical visualization for that example. The macro includes optional
code which you can uncomment to activate additional visualization features.

8.1.1. What Can be Visualized

Simulation data can be visualized:

» Detector components
< A hierarchical structure of physical volumes
* A piece of physical volume, logical volume, and solid
* Particle trgjectories and tracking steps
» Hitsof particlesin detector components
» Scoring data

Other user defined objects can be visualized:

* Polylines, such as coordinate axes

» 3D Markers, such as eye guides

» Text, descriptive character strings, comments or titles
o Scales

» Logos

8.1.2. You have a Choice of Visualization Drivers

The many graphics systems that Geant4 supports are complementary to each other.

* OpenGL
¢ View directly from Geant4
« Requiresaddition of GL librariesthat arefreely avialablefor all operating systems (and pre-installed on many)
* Rendered, photorealistic image with some interactive features
e zoom, rotate, translate
« Fast response (can usually exploit full potential of graphics hardware)
Print to EPS (vector and pixel graphics)

« Qt
* View directly from Geant4
» Requires addition of Qt and GL libraries that are freely available on most operating systems
» Rendered, photorealistic image
e Many interactive features
e zoom, rotate, translate
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» Fast response (can usually exploit full potential of graphics hardware)
» Expanded printing ability (vector and pixel graphics)
« Easy interface to make movies
¢ Openlnventor
* View directly from Geant4
» Requires addition of Openinventor libraries (freely available for most Linux systems).
» Rendered, photorealistic image
e Many interactive features
e zoom, rotate, trandate
 click to "seeinside" opagque volumes
 Fast response (can usually exploit full potential of graphics hardware)
» Expanded printing ability (vector and pixel graphics)
* HepRep
» Create afileto view in a HepRep browser such as HepRApp, FRED or WIRED4
* Requires a HepRep browser (above options work on any operating system)
« Wireframe or simple areafills (not photorealistic)
e Many interactive features
e zoom, rotate, trandlate
« click to show attributes (momentum, etc.)
* special projections (FishEye, etc.)
« control visibility from hierarchical (tree) view of data
e Hierarchical view of the geometry
¢ Export to many vector graphic formats (PostScript, PDF, etc.)
« DAWN
* Create afileto view in the DAWN Renderer
* Reguires DAWN, available for al Linux and Windows systems.
« Rendered, photorealistic image
* Nointeractive features
 Highest quality technical rendering - output to vector PostScript

* VRML
* Create afileto view in any VRML browser (some as web browser plug-ins).
¢ Requires VRML browser (many different choices for different operating systems).
* Rendered, photorealistic image with some interactive features
e zoom, rotate, tranglate
 Limited printing ability (pixel graphics, not vector graphics)
* RayTracer
e Createajpegfile
¢ Formsimage by using Geant4's own tracking to follow photons through the detector
e Can show geometry but not trgjectories
e Can render any geometry that Geant4 can handle (such as Boolean solids)
 Supports shadows, transparency and mirrored surfaces
* gMocren
» Create agMocren file suiable for viewing in the gMocren volume data visualization application
« Represents three dimensional volume data such as radiation therapy dose
e Can asoinclude geometry and trajectory information
* ASClITree
e Text dump of the geometry hierarchy
< Not graphical
e Control over level of detail to be dumped
« Can calculate mass and volume of any hierarchy of volumes
« Wt (WARNING: thisdriver is experimental and should be used with caution)
» View directly from Geant4 across a Web browser.
» Requires addition of Wt librarie that is freely available on most operating systems.
* Require aWeb browser with WebGL enable.
» Rendered, photorealistic image
* Many interactive features
e zoom, rotate, trandate
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» Fast response (can usually exploit full potential of graphics hardware)

8.1.3. Choose the Driver that Meets Your Needs

« If you want very responsive photorealistic graphics (and have the OpenGL libraries installed)
* OpenGL isagood solution (if you have the Motif extensions, this also gives GUI control)

* If you want to have the User Interface and all Visualization windows in the same window
¢ Only Qt can do that

« If you want very responsive photorealistic graphics plus more interactivity (and have the Openlnventor or Qt
libraries installed)
« Openlnventor or Qt are good solutions

« If you want GUI control, very responsive photorealistic graphics plus more interactivity (and have the Qt li-
brariesinstalled).
* Qtisagood solution

« If you want GUI control, want to be able to pick on items to inquire about them (identity, momentum, etc.),
perhaps want to render to vector formats, and awireframe look will do
* HepRep will meet your needs

« If you want to render highest quality photorealistic images for use in a poster or atechnical design report, and
you can live without quick rotate and zoom
 DAWN istheway to go

« If you want to render to a 3D format that others can view in avariety of commodity browsers (including some
web browser plug-ins)
* VRML istheway to go

* If you want to visualize a geometry that the other visualization drivers can't handle, or you need transparency
or mirrors, and you don't need to visualize trgjectories
* RayTracer will do it
* If you want to visualization volume data, such as radiation therapy dose distributions
« gMocren will meet your needs
o If you just want to quickly check the geometry hierarchy, or if you want to calculate the volume or mass of
any geometry hierarchy
¢ ASCIITreewill meet your needs
« If you to interact with your application with a Web Broswser
« Wtwill doit. WARNING: thisdriver is experimental and should be used with caution
» You can also add your own visualization driver.
¢ Geant4's visualization system is modular. By creating just three new classes, you can direct Geant4 informa-
tion to your own visualization system.

8.1.4. Controlling Visualization

Y our Geant4 code stays basically the same no matter which driver you use.
Visualization is performed either with commands or from C++ code.

» Some visualization drivers work directly from Geant4

e OpenGL

. Qt

¢ Openlnventor

* RayTracer

e ASClITree

« Wt (WARNING: thisdriver is experimental and should be used with caution)
* For other visuaization drivers, you first have Geant4 produce a file, and then you have that file rendered by

another application (which may have GUI control)

e HepRep

« DAWN

« VRML

e gMocren
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8.1.5. Visualization Details

The following sections of this guide cover the details of Geant4 visualization:

» Section 8.2 Adding Visualization to Y our Executable

» Section 8.3 The Visualization Drivers

* Section 8.4 Controlling Visualization from Commands

* Section 8.5 Controlling Visualization from Compiled Code
 Section 8.6 Visualization Attributes

* Section 8.7 Enhanced Trajectory Drawing

 Section 8.9 Polylines, Markers and Text

» Section 8.10 Making aMovie

Other useful references for Geant4 visualization outside of this user guide;

Introduction to Geant4 Visualization ( pdf, ppt)

Geant4 Visualization Commands ( pdf, ppt)

Geant4 Advanced Visualization ( pdf, ppt)

How to Make aMovie ( pdf, ppt)

Geant4 Visualization Tutoria using the HepRApp HepRep Browser

Geant4 Visualization Tutorial using the OpenGL Event Display

Geant4 Visualization Tutorial using the DAWN Event Display

Macro files distributed in Geant4 source in basic examples, vi s. mac and exanpl es/ basi c/ B4/
macr os/ vi sTutor/ .

8.2. Adding Visualization to Your Executable

This section explains how to incorporate your selected visualization driversinto the mai n() function and create
an executable for it. In order to perform visualization with your Geant4 executable, you must compile it with
support for the required visualization driver(s). You may be dazzled by the number of choices of visualization
driver, but you need not use all of them at onetime.

8.2.1. Installing Visualization Drivers

Depending on what has been installed on your system, several kinds of visualization driver are available. One or
many driversmay be chosen for realization in compilation, depending on your visualization requirements. Features
and notes on each driver are briefly described in Section 8.3 "Visualization Drivers', along with linksto detailed
web pages for the various drivers.

Note that not al drivers can be installed on al systems; Table 8.1 in Section 8.3 lists al the available drivers
and the platforms on which they can be installed. For any of the visualization drivers to work, the corresponding
graphics system must be installed beforehand.

Visualization drivers that do not depend on external libraries are by default incorporated into Geant4 libraries
during their installation. Here "installation of Geant4 libraries' means the generation of Geant4 libraries by com-
pilation. The automatically incorporated visualization drivers are: DAWNFILE, HepRepFile, HepRepX ML, Ray-
Tracer, VRML1FILE, VRML2FILE and ATree and GAGTree.

The OpenGL, Qt, Openinventor and RayTracerX drivers are not incorporated by default. Nor are the DAWN-
Network and VRML-Network drivers, because they require the network setting of the installed machine. These
drivers must be selected when you build the Geant4 Toolkit itself. This proceedure is described in detail in the
Installation Guide, to which you should refer.

8.2.2. How to Realize Visualization Drivers in an Exe-
cutable

Y ou can realize and use any of the visualization driver(s) you want in your Geant4 executable, provided they are
among the set installed beforehand into the Geant4 libraries. A warning will appear if thisis not the case.
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In order to realize visualization drivers, you must instantiate and initialize a subclass of G4Vi sManager that
implements the pure virtual function Regi st er Gr aphi csSyst ens() . This subclass must be compiled in
the user's domain to force the loading of appropriate libraries in the right order. The easiest way to do thisisto
use AVi sExecut i ve, aprovided class with included implementation. G4Vi sExecut i ve issensitiveto the
AVI S_USE. . . variables mentioned below.

If you do wish to write your own subclass, you may do so. You will see how to do this by looking at
(AVi sExecuti ve.i cc. A typical extract is:

Regi st er G aphi csSyst em (new GADAWNFI LE) ;

#i f def GAVI S_USE_OPENGLX
Regi st er G aphi csSyst em (new G4QpenGLI nmedi at eX) ;
Regi st er G aphi csSyst em (new G4QpenCLSt or edX) ;
#endi f

If youwishtouse G4Vi sExecut i ve but register an additional graphics system, XXX say, you may do so either
before or after initiaizing:

vi sManager - >Regi st er Gr aphi csSyt en( new XXX) ;
vi sManager->Initialize();

By default, you get the DAWNFILE, HepRepFile, RayTracer, VRMLIFILE, VRML2FILE, ATreeand GAGTree
drivers. Additionally, you may choose from the OpenGL-Xlib, OpenGL-Moatif, Qt, Openlnventor, RayTracerX,
DAWN-Network and VRML-Network drivers, each of which canbeset at "Crake" or "GNUMakef i | e st ep”,
see Section 2. (Of course, this has to be chosen from the set incorporated into the Geant4 libraries during their
compilation.)

For more details, see Section 8.3 "Visualization Drivers' and pages linked from there.

8.2.3. Visualization Manager

Visualization procedures are controlled by the "Visuaization Manager”, a class which must inherit from
AVi sManager defined in the visualization category. Most users will find that they can just use the default
visualization manager, G4Vi sExecut i ve. The Visualization Manager accepts users requests for visualization,
processes them, and passes the processed requirements to the abstract interface, i.e., to the currently selected vi-
sualization driver.

8.2.4. How to Write the mai n() Function

In order for your Geant4 executable to perform visualization, you must instantiate and initialize "your" Visual-
ization Manager in the mai n() function. The core of the Visualization Manager is the class G4Vi sManager ,
defined in the visualization category. This class requires that one pure virtual function be implemented, namely,
voi d Regi st er G aphi csSyst ens(). The easiest way to do thisis to use (4Vi sExecut i ve, as de-
scribed above (but you may write your own class - see above).

Example 8.1 shows the form of themai n() function.

Example 8.1. Theform of themai n() function.

[]----- C++ source codes: Instantiation and initialization of G4Vi sManager

/1 Your Visualization Manager
#i ncl ude " AVi sExecuti ve. hh"

// Instantiation and initialization of the Visualizati on Manager
#i fdef AVI S_USE
GAVi sManager * vi sManager = new GAVi sExecuti ve;
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/| GAVi sExecutive can take a verbosity argunent - see /vis/verbose gui dance.
/| GAVi sManager* vi sManager = new (AVi sExecutive("Qiet");

vi sManager->Initialize();

#endi f

#i f def GAVI S_USE
del et e vi sManager ;
#endi f

[]----- end of C++

Alternatively, you can implement an empty Regi st er G- aphi csSyst ens() function, and register visualiza-
tion drivers you want directly in your mai n() function. See Example 8.2.

Example 8.2. An alternative stylefor themai n() function.

[]----- C++ source codes: How to register a visualization driver directly
Il in main() function

GAVi sManager * vi sManager = new GAVi sExecuti ve;
vi sManager -> Regi st er G aphi csSyst em (new MyG aphi csSystem) ;

del et e vi sManager

[]----- end of C++

Do not forget to del ete the instantiated Visualization Manager by yourself. Note that a graphics system for Geant4
Visualization may run as a different process. In that case, the destructor of G4Vi sManager might have to ter-
minate the graphics system and/or close the connection.

We recommend that the instantiation, initialization, and deletion of the Visualization Manager be protected by C-
pre-processor commands, as in the basic examples. To see the behaviour of C-pre-processor macro G4VI S_USE
and G4Ul _USE, see Section 2.

Example 8.3 shows an example of the mai n() function available for Geant4 Visualization.

Example 8.3. An example of themai n() function available for Geant4 Visualization.

[]----- C++ source codes: An exanple of main() for visualization
#i ncl ude " 4Vi sExecuti ve. hh"
#i ncl ude " AUl Executi ve. hh"

int main(int argc, char *argv[])
{
/1 Run Manager
GARunManager * runManager = new G4ARunManager ;

/| Detector conponents
runManager - >set _userlnitialization(new MyDet ect or Construction);
runManager - >set _userlnitializati on(new MyPhysi csLi st);

/] UserAction classes.

runManager - >set _user Acti on(new MyRunActi on);

runManager - >set _user Acti on(new MyPri mar yGener at or Act i on) ;
runManager - >set _user Acti on(new MyEvent Acti on);
runManager - >set _user Acti on(new MySt eppi ngActi on);

#i fdef AVI S_USE
G4Vi sManager * vi sManager = new (4Vi sExecuti ve;
vi sManager->Initialize(argc, argv);

#endi f

/1 Define (QU

#i f def G4U _USE
AUl Executive * ui = new AUl Executi ve;
ui - >SessionStart ();
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del ete ui;
#endi f
del et e runManager;

#i f def GAVI S_USE
del et e vi sManager;
#endi f

return O;

[]----- end of C++

Useful information on incorporated visualization drivers can be displayed in initializing the Visualization Man-

ager. Thisis done by setting the verbosity flag to an appropriate number or string:

Si npl e graded nessage schene -

0) quiet, /1 Nothing is printed.

1) startup, /] Startup and endup nessages are printed...
2) errors, /1 ...and errors...

3) war ni ngs, /1 ...and warnings...

4) confirmations, // ...and confirm ng nmessages. ..

5) paraneters, /1 ...and paraneters of scenes and views...
6) all /1 ...and everything avail abl e.

For example, inyour mai n() function, write the following code:

G4Vi sManager * vi sManager = new (AVi sExecutive("Qiet");

vi sManager->lnitialize();

(This can also be set with the/ vi s/ ver bose command.)

8.3. The Visualization Drivers

As explained in the Introduction to Visualization , Geant4 provides many different choices of visualization sys-
tems. Features and notes on each driver are briefly described here along with links to detailed web pages for the

various drivers.
Details are given below for:

» Section 8.3.2 OpenGL
e Section 8.3.3 Qt

* Section 8.3.4 Openl nventor

* Section 8.3.5 Openlnventor Extended

» Section 8.3.6 HepRepFile
 Section 8.3.7 HepRepXML
 Section 8.3.8 DAWN

» Section 8.3.10 VRML

e Section 8.3.11 RayTracer

» Section 8.3.12 gMocren

» Section 8.3.14 ASClITree
» Section 8.3.15 GAGTree

» Section 8.3.16 XMLTree

» Section 8.3.13 Wt

give first letter or a digit:

8.3.1. Availability of drivers on the supported systems

Table 8.1 lists required graphics systems and supported platforms for the various visualization drivers

Driver

Required Graphics System

Platform

OpenGL-Xlib

OpenGL

Linux, UNIX, Mac with Xlib
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clients.

OpenGL-Motif OpenGL Linux, UNIX, Mac with Motif
OpenGL-Win32 OpenGL Windows

Qt Qt, OpenGL Linux, UNIX, Mac, Windows
Wt Wt for server side/Web browser for | Linux, UNIX, Mac, Windows

Openlnventor-X

Openlinventor (Coin3D), OpenGL

Linux, UNIX, Mac with Xlib and
Motif

Openl nventor-X-Extended

Openlnventor (Coin3D), OpenGL

Linux, UNIX, Mac with Xlib and
Motif

Openlnventor-Win32

Openlinventor, OpenGL

Windows

HepRep

HepRApp, FRED or WIRED4 Hep-
Rep Browser

Linux, UNIX, Mac, Windows

DAWNFILE Fukui Renderer DAWN Linux, UNIX, Mac, Windows
DAWN-Network Fukui Renderer DAWN Linux, UNIX

VRMLFILE any VRML viewer Linux, UNIX, Mac, Windows
VRML-Network any network-enabled VRML viewer | Linux, UNIX

RayTracer any JPEG viewer Linux, UNIX, Mac, Windows
ASClITree none Linux, UNIX, Mac, Windows
GAGTree GAG Linux, UNIX, Mac, Windows
XMLTree any XML viewer Linux, UNIX, Mac, Windows
Table 8.1. Required graphics systems and supported platforms for the various

visualization drivers.

8.3.2. OpenGL

These drivers have been developed by John Allison and Andrew Walkden (University of Manchester). It is an
interface to the de facto standard 3D graphics library, OpenGL. It is well suited for real-time fast visualization
and demonstration. Fast visualization is realized with hardware acceleration, reuse of shapes stored in a display
list, etc. NURBS visualization is also supported.

Severa versions of the OpenGL drivers are prepared. Versions for Xlib, Motif, Qt and Win32 platforms are
available by default. For each version, there are two modes: immediate mode and stored mode. The former has no
limitation on data size, and the latter isfast for visualizing large data repetitively, and so is suitable for animation.

Output can be exported to EPS (both vector and pixel graphics) using vis/ogl/printEPS.

More information can be found here : Section 8.4.15

If you want to open a OGL viewer, the generic way is:

/ vi s/ open OGL

According to your G4VIS _USE... variables it will open the correct viewer. By default, it will be open in stored
mode. You can specify to open an "OGLS" or "OGLI" viewer, or even "OGLSXm","OGLIXm",... If you don't
have Motif or Qt, al control is done from Geant4 commands:

/vi s/ open OGLI X

/vis/viewer/set/vi ewoi nt ThetaPhi 70 20

/vis/viewer/zoom 2
etc.

But if you have Matif libraries or Qt install, you can control Geant4 from Motif widgets or mouse with Qt:
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/vi s/ open OGLSQ

The OpenGL driver added Smooth shading and Transparency since Geant4 release 8.0.
Further information (OpenGL and Mesa):

* http://www.opengl.org/

* http://www.mesa3d.org

* http://geant4.slac.stanford.edu/Presentations/vis/G40penGL Tutorial/G40penGL Tutoria .html using the
OpenGL Graphics System

8.3.3. Qt

This driver has been developed by Laurent Garnier (IN2P3, LAL Orsay). It is an interface to the powerful appli-
cation framework, Qt, now free on most platforms. This driver a so requires the OpenGL library.

The Qt driver iswell suited for real-time fast visualization and demonstration. Fast visualization is realized with
hardware acceleration, reuse of shapes stored in a display list, etc. NURBS visualization is also supported. All
OpenGL features are implemented in the Qt driver, but one also gets mouse control of rotation/translation/zoom,
the ability to save your scene in many formats (both vector and pixel graphics) and an easy interface for making
movies.

Two display modes are available: Immediate mode and Stored mode. The former has no limitation on data size,
and the latter isfast for visualizing large data repetitively, and so is suitable for animation.

Thisdriver has the feature to open avis window into the Ul window as anew tab. Y ou can have as many tabsyou
want and mix them from Stored or Immediate mode. To see the visualization window in the Ul :

/vis/open OG. (Generic way. For Stored node if you have define your GAVIS_USE_QT vari abl e)
B /vis/open Ol (for |mediate node)
B /vis/open OGS (for Stored npde)
B /vis/open OGLIQ@ (for |Imediate node)
B /vis/open OGALSQ@ (for Stored nopde)

Further information (Qt):

. Qt
e Geant4 Visualization Tutorial using the Qt Driver

8.3.4. Openlinventor

These drivers were developed by Jeff Kallenbach (FNAL) and Guy Barrand (IN2P3) based on the Hepvis class
library originated by Joe Boudreau (Pittsburgh University). The Openlnventor drivers and the Hepvisclasslibrary
are based on the well-established Openl nventor technology for scientific visualization. They have high extendibil-
ity. They support high interactivity, e.g., attribute e diting of picked objects. Some Openlnventor viewers support
"stereoscopic” effects.

It is also possible to save a visualized 3D scene as an Openlnventor-formatted file, and re-visualize the scene
afterwards.

Because it is connected directly to the Geant4 kernel, using same language as that kernel (C++), Openlnventor
systems can have direct access to Geant4 data (geometry, trajectories, etc.).

Because Openlnventor uses OpenGL for rendering, it supports lighting and transparency.

Openlnventor provides thumbwheel control to rotate and zoom.
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Openlnventor supports picking to ask about data. [Control Clicking] on a volume turns on rendering of that
volume's daughters. [Shift Clicking] a daughter turns that rendering off: If modeling opague solid, effect is like
opening a box to look inside.

Further information (HEPVis and OpenScientist):

e Geant4 Inventor Visudization with OpenScientist http://openscientist.lal.in2p3.fr/v15r0/html/
osc_g4 vis ui.html

» Overall OpenScientist Home http://openscientist.lal.in2p3.fr/v15r0/html/osc_g4 vis ui.html

* HEPVis http://www-pat.fnal.gov/graphics/HEPViswww

Further information (Openlnventor):

http://0ss.sgi.com/projects/inventor

» Josie Wernecke, "The Inventor Mentor", Addison Wesley (ISBN 0-201-62495-8)
 Josie Wernecke, "The Inventor Toolmaker", Addison Wesley (ISBN 0-201-62493-1)

» "The Open Inventor C++ Reference Manual", Addison Wesley (ISBN 0-201-62491-5)

8.3.5. Openlinventor Extended Viewer

Thisdriver was developed by Rastislav Ondrasek, Pierre-Luc Gagnon and Frederick Jones (TRIUMF). It extends
thefunctionality of the Openlnventor driver, described in the previous section, by adding anumber of new features
to the viewer.

At present this driver is supported only on Linux/Unix/MacOS platforms and is not available for Windows. It
requires the Coin3D implementation of Openlnventor.

All of the viewer functions and behavior of the basic Openlnventor driver are included and remain unchanged.
The added viewer functions are implemented via dropdown menu items, buttons, a new navigation panel, and
keyboard and mouse inputs.

Reference path navigation

Most of the added features are concerned with navigation along a"reference path" which isa piecewise linear path
through the geometry. The reference path can be any particle trgjectory, which may be chosen in the application
by an attaching avisualization attribute to it, or at run time by selecting atrajectory with the mouse. ViaLoad and
Save menu items, areference path can be read from afile and the current reference path can be written to afile.

Once a reference path is established, the viewer pops up a Navigation Panel showing a list of all elements in
the geometry, ordered by their "distance” along the reference path (based on the perpendicular from the element
center to the path).

Navigation controls
[L,R,U,D refer to the arrow keys on the keyboard)]

» Select an element from thelist: navigate along the path to the element's "location™ (distance along the reference
path).

» Shift-L and Shift-R: navigate to the previous or next element on the path (with wraparound).

» L and R: rotate 90 degrees around the vertical axis

» U and D: rotate 90 degrees around the path

Ctrl-L and Ctrl-R: rotate 90 degrees around the horizontal axis

All these keys have a"repeat” function for continuous motion.

The rotation keys put the camera in a definite orientation, whereas The Shift-L and Shift-R keys can be used to
"fly" along the path in whatever camera orientation isin effect. NOTE: if this appears to be "stuck”, try switching
from orthonormal camerato perspective camera ("cube” viewer button).

Menu Items:
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» Tools/ Goto start of reference path: useful if you get lost
» Tools/ Invert reference path: flips the direction of travel and the distance readout

Reference path animation
Thisisaspecial mode which flys the camera steadily along the path, without wraparound. The controls are;

e Tools Menu - Animate Ref Particle: start animation mode
» Page-Up: increase speed

» Page-Down: decrease speed

U (arrow key): raise camera

D (arrow key): lower camera

» ESC: exit animation mode

For suitable geometries the U and D keys can be used to get "Star Wars' style fly-over and fly-under effects.
Bookmarks

At any time, the viewpoint and other camera parameters can be saved in afile as alabelled "bookmark". The view
can then be restored later in the current run or in another run.

The default name for the bookmark file is ".bookmarkFile" The first time a viewpoint is saved, this file will be
created if it does not already exist. When the viewer is first opened, it will automatically read thisfile if present
and load the viewpoints into the left-hand panel of the viewer's auxiliary window.

Controls:

» Select viewpoint from list; restore this view

» Right-arrow VIEWER button: go to next viewpoint Left-arrow VIEWER button: go to next viewpoint
"Floppy Disk" button: save current view. The user can type in a label for the view, or use the default label
provided.

» FileMenu - Open Viewpoint File: loads an existing bookmark file

e FileMenu - New Viewpoint File: creates a new bookmark file for saving subsequent views

Special picking modes
Controls:

» "Console" VIEWER button: enable brief trajectory picking and mouse-over element readout For trgjectories,
the list of al trajectory pointsis replaced by the first and last point only, allowing easier identification of the
particle without scrolling back. Passing the mouse over an element will give a readout of the volume name,
material, and position on the reference path.

o "Star" VIEWER button: select new reference path The cursor will change to a small cross (+) after which a
trajectory can be selected to become the new reference path.

Conveniencefeature
It is now possible to escape from the Open Inventor viewer without using the mouse.

In addition to the File - Escape menu item, pressing the "€" key on the keyboard will exit from the viewer's X
event loop. The viewer will become inactive and control will return to the Geant4 Ul prompt.

8.3.6. HepRepFile

TheHepRepFiledriver createsaHepRep XML filein the HepRepl format suitable for viewing with the HepRApp
HepRep Browser.

The HepRep graphics format is further described at http://www.d ac.stanford.edu/~perl/heprep .

To write just the detector geometry to thisfile, use the command:
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/vis/viewer/flush

Or, to aso include trajectories and hits (after the appropriate /vis/viewer/add/trajectories or /vis/viewer/add/hits
commands), just issue;

/run/ beann 1

HepRepFile will write afile called G4Datal.heprep to the current directory. Each subsequent file will have afile
name like G4Datal.heprep, G4Data2.heprep, etc.

View the file using the HepRApp HepRep Browser, available from:;
http://www.slac.stanford.edu/~perl/HepRApp/ .

HepRApp allows you to pick on volumes, trgjectories and hitsto find out their associated HepRep Attributes, such
as volume name, particle ID, momentum, etc. These same attributes can be displayed as labels on the relevant
objects, and you can make visibility cuts based on these attributes ("show me only the photons", or "omit any
volumes made of iron™).

HepRApp can read heprep filesin zipped format as well as unzipped, so you can save space by applying gzip to
the heprep file. Thiswill reduce the file to about five percent of its original size.

Several commands are available to override some of HepRepFile's defaults

» You can specify adifferent directory for the heprep output files by using the setFileDir command, as in:

/vis/heprep/setFileDr <soneC herDir/soneCQ her SubDir >

» You can specify adifferent file name (the part before the number) by using the setFileName command, asin:
/vi s/ heprep/setFil eName <ny_file_nane>

which will produce files named <my_file_name>0.heprep, <my_file_name>1.heprep, etc.
* You can specify that each file should overwrite the previous file (always rewriting to the same file name) by
using the setOverwrite command, asin:

/vi s/ heprep/setOverwrite true

This may be useful in some automated applications where you always want to see the latest output file in the
same location.

» Geant4 visualization supports a concept called "culling”, by which certain parts of the detector can be made
invisible. Since you may want to control visibility from the HepRep browser, turning on visibility of detector
parts that had defaulted to be invisible, the HepRepFile driver does not omit these invisible detector parts from
the HepRep file. But for very large files, if you know that you will never want to make these parts visible, you
can choose to have them left entirely out of the file. Use the /visheprep/setCullInvisibles command, asin:

/vi s/ heprep/setCul |l | nvisibles true

Further information:

» HepRAPpp Users Home Page:  http://www.slac.stanford.edu/~perl/HepRA pp/
» HepRep graphics format: http://www.dlac.stanford.edu/~perl/heprep
e Geant4 Visualization Tutorial using the HepRApp HepRep Browser

http://geant4.slac.stanford.edu/Presentations/vis/ GAHepRA pp T utorial/G4HepRA ppT utoria .html
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8.3.7. HepRepXML

The HepRepXML driver creates a HepRep file in the HepRep2 format suitable for viewing with the WIRED4
Plugin to the JAS3 Analysis System or the FRED event display.

This driver can write both Binary HepRep (.bheprep) and XML HepRep (.heprep) files. Binary HepRep files
are a one-to-one tranglation of XML HepRep files, but they are considerably shorter and faster to parse by a
HepRepViewer such as WIRED 4.

Both Binary HepRep and XML HepRep can be compressed using the standard zlib library if linked into Geant4
using G4LIB_USE ZLIB. If a standard zlib is not available (WIN32-VC for instance) you should also set
GALIB_BUILD_ZLIB to build G4zlib included with Geant4.

HepRep files (Binary and XML) can contain multiple HepRep events/geometries. If the file contains more than
one HepRep it is not strictly XML anymore. Files can be written in .heprep.zip, .heprep.gz or .heprep format and
their binary versions .bheprep.zip, .bheprep.gz or .bheprep.

The .heprep.zip is the default for file output, the .heprep is the default for stdout and stderr.
(Optional) To set the filename with a particular extension such as: .heprep.zip, .heprep.gz, .hep-
rep, .bheprep.zip, .bheprep.gz or .bheprep use for instance:

/vis/scene/create fil enane. bheprep. zip

(Optional) To create separate files for each event, you can set a suffix such as "-0001" to start writing files
from filename-0001.bheprep.zip to filename-9999.bheprep.zip (or up), while "-55-sub™ will start write files file-
name-55-sub.bheprep.zip to filename-99-sub.bheprep.zip (or up).

/ vi s/ hepr ep/ set Event Nunber Suf fi x -0001
(Note: suffix hasto contain at least one digit)

(Optional) To route the HepRep XML output to stdout (or stderr), by default uncompressed, use:

/vi s/ scene/ create stdout

(Optional) To add attributes to each point on atragjectory, use:

/ vi s/ heprep/ addPoi nt Attri butes 1
Be aware that this may increase the size of the output dramatically.

(Optional) Y ou may use the commands:

/vis/viewer/zoom to set an initial zoom factor

/vi s/ viewer/set/vi ewpoi nt Thet aPhi to set an initial view point

/ vi s/ hepr ep/ set Coor di nat eSyst em uvw to change the coordi nate system where uvw
can be "xyz", "zxy", ...

(Optional) You may decide to write .zip files with events and geometry separated (but linked). Thisresultsin a
smaller zip file, as the geometry is only written once. Use the command:

/vi s/ heprep/ appendGeonetry fal se

(Optional) To close the file, remove the SceneHandler, use:
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/ vi s/ sceneHandl er/ renove scene-handl er-0

Limitations: Only one SceneHandler can exist at any time, connected to asingle Viewer. Since the HepRep format
isamodel rather than aview thisisnot areal limitation. In WIRED 4 you can create as many views (SceneHan-
dlers) asyou like.

Further infor mation:

» WIRED4 Plugin to the JAS3 Analysis System
» FRED event display
» HepRep graphics format: http://www.dlac.stanford.edu/~perl/heprep

8.3.8. DAWN

The DAWN drivers are interfaces to  Fukui Renderer DAWN, which has been developed by Satoshi Tanaka,
Minato Kawaguti et a (Fukui University). Itisavectorized 3D PostScript processor, and so well suited to prepare
technical high quality outputs for presentation and/or documentation. It is also useful for precise debugging of
detector geometry. Remote visualization, off-line re-visualization, cut view, and many other useful functions of
detector simulation are supported. A DAWN process is automatically invoked as a co-process of Geant4 when
visualization is performed, and 3D data are passed with inter-process communication, via afile, or the TCP/IP
socket.

When Geant4 Visualization is performed with the DAWN driver, the visualized view is automatically saved to
afile named g4. eps in the current directory, which describes a vectorized (Encapsulated) PostScript data of
the view.

There are two kinds of DAWN drivers, the DAWNFILE driver and the DAWN-Network driver. The DAWNFILE
driver isusually recommended, sinceit isfaster and safer in the sense that it is not affected by network conditions.

The DAWNFILE driver sends 3D datato DAWN viaan intermediate file, named g4. pr i min the current direc-
tory. Thefile g4. pri mcan be re-visualized later without the help of Geant4. Thisis done by invoking DAWN
by hand:

% dawn g4. prim
DAWN files can also serve as input to two additional programs:

A standalone program, DAWNCUT, can perform a planar cut on aDAWN image. DAWNCUT takes as input
a.prim file and some cut parameters. Its output is a new .prim file to which the cut has been applied.

» Another standalone program, DAVID, can show you any volume overlap errors in your geometry. DAVID
takes as input a .prim file and outputs a new .prim file in which overlapping volumes have been highlighted.
The use of DAVID is described in section Section 4.1.11 of this manual.

The DAWN-Network driver is amost the same as the DAWNFILE driver except that
» 3D data are passed to DAWN viathe TCP/IP the socket (default) or the named pipe, and that,

If you have not set up network configurations of your host machine, set the environment variable
GADAWN_NAMED Pl PEto"1", e.g., % set env GADAWN_NAMED Pl PE 1. This setting switches the default
socket connection to the named-pipe connection within the same host machine. The DAWN-Network driver also
saves the 3D datato thefileg4. pri minthe current directory.

8.3.9. Remote Visualization with the DAWN-Network Driver

Visualization in Geant4 is considered to be "remote” when it is performed on a machine other than the Geant4
host. Some of the visualization drivers support this feature.

Usually, the visualization host is your local host, while the Geant4 host is a remote host where you log in, for
example, with thet el net command. This enables distributed processing of Geant4 visualization, avoiding the
transfer of large amounts of visualization data to your terminal display via the network. This section describes

265


http://wired.freehep.org/index.html
http://www.fisica.uniud.it/~glast/FRED/
http://www.slac.stanford.edu/~perl/heprep
http://geant4.kek.jp/GEANT4/vis/DAWN/About_DAWN.html

Visualization

how to perform remote Geant4 visualization with the DAWN-Network driver. In order to do it, you must install
the Fukui Renderer DAWN on your local host beforehand.

The following steps realize remote Geant4 visualization viewed by DAWN.

1. Invoke DAWN with"-G" option on your local host:

Local _Host> dawn -G

Thisinvokes DAWN with the network connection mode.
Login to the remote host where a Geant4 executable is placed.
3. Set an environment variable on the remote host as follows:

N

Renot e_Host > set env GADAWN_HOST_NAME | ocal _host _nane

For example, if you are working in the local host named "arkoop.kek.jp", set this environment variable as
follows:

Renot e_Host > set env GADAWN_HOST_NAME ar koop. kek. j p

ThistellsaGeant4 process running on the remote host where Geant4 Visualization should be performed, i.e.,
where the visualized views should be displayed.
4. Invoke a Geant4 process and perform visualization with the DAWN-Network driver. For example:

I dl e> /vis/open DAWN
1 dl e> /vis/drawol unme
I dl e> /vis/viewer/flush

In step 4, 3D scene data are sent from the remote host to the local host as DAWN-formatted data, and the local
DAWN will visualize the data. The transferred data are saved as afile named g4. pr i min the current directory
of thelocal host.

Further infor mation:

« hitp://geant4.kek jp/ GEANT4/viSDAWN/About_ DAWN.html
« hitp://geant4.kek jp/GEANTA/ViISDAWN/GAPRIM_FORMAT 24/

Further infor mation:

» Fukui Renderer DAWN: http://geant4.kek.jp/ GEANT4/VisDAWN/About DAWN.html

e The DAWNFILE driver: http://geantd.kek.jp/ GEANT4/viSGEANT4/DAWNFILE_driver.html

e The DAWN-Network driver: http://geant4.kek.jp/ GEANT4/ViSGEANT4/DAWNNET _driver.html

» Environmental variablesto customize DAWN and DAWN drivers: http://geant4.kek.jp/ GEANT4/viss DAWN/
DAWN_ENV.html, http:/geant4.kek.jp/GEANT4/ViSSGEANT4/g4vis on_linux.html

» DAWN format (g4.prim format) manual: http://geant4.kek.jo/ GEANT4/ViSDAWN/GAPRIM_FORMAT _24/

e Geant4 Fukui University Group Home Page: http://geant4.kek.jp/ GEANT4/vig/

 DAWNCUT: http://geant4.kek.jp/ GEANT4/viSDAWN/About DAWNCUT.html

* DAVID: http://geant4.kek.jp/GEANT4/ViSDAWN/About DAVID.html

e Geant4 Visuadization Tutoria using the DAWN Renderer: http://geant4.slac.stanford.edu/Presentations/vis/
GDAWNTutorial/GADAWNTutorial .html

8.3.10. VRML

These driverswere devel oped by Satoshi Tanakaand Y asuhide Sawada (Fukui University). They generate VRML
files, which describe 3D scenes to be visualized with a proper VRML viewer, at either alocal or aremote host. It
realizes virtual-reality visualization with your WWW browser. There are many excellent VRML viewers, which
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enable one to perform interactive spinning of detectors, walking and/or flying inside detectors or particle showers,
interactive investigation of detailed detector geometry etc.

There are two kinds of VRML drivers: the VRMLFILE driver, and the VRML-Network driver. The VRMLFILE
driver isusually recommended, sinceit isfaster and safer in the sense that it is not affected by network conditions.

The VRMLFILE driver sends 3D data to your VRML viewer, which is running on the same host machine as
Geant4, viaan intermediate file named g4. wr | created in the current directory. Thisfile can be re-visualization
afterwards. In visualization, the name of the VRML viewer should be specified by setting the environment variable
AVRM__VI EVIER beforehand. For example,

% setenv GAVRML_VI ENER " net scape"
Its default value is NONE, which means that no viewer isinvoked and only thefile g4. wr | is generated.
Remote Visualization with the VRML-Network Driver

Visudization in Geant4 is considered to be "remote” when it is performed on a machine other than the Geant4
host. Some of the visualization drivers support this feature.

Usually, the visualization host is your local host, while the Geant4 host is a remote host where you log in, for
example, with thet el net command. This enables distributed processing of Geant4 visualization, avoiding the
transfer of large amounts of visualization data to your terminal display viathe network.

In order to perform remote visualization with the VRML-Network driver, the following must be installed on your
local host beforehand:

1. aVRML viewer
2. theJavaapplication g4vr m vi ew.

The Java application g4vr m vi ewisincluded as part of the Geant4 package and is located at:

sour ce/ vi sual i zati on/ VRM./ g4vr m vi ew
Installation instructions for g4vr m vi ew can be found in the READVE file there, or on the WWW page below.
The following steps realize remote Geant4 visualization displayed with your local VRML browser:

1. Invoketheg4vr m vi ewon your local host, giving aVRML viewer name as its argument:
Local _Host> java g4vrnl view VRM._viewer_nanme

For example, if you want to use the Netscape browser as your VRML viewer, execute g4vr nl vi ew as
follows:

Local _Host> java g4vrmnl vi ew netscape

Of course, the command path to the VRML viewer should be properly set.
Log in to the remote host where a Geant4 executable is placed.
3. Set an environment variable on the remote host as follows:

N

Renot e_Host > set env GAVRM._HOST_NAME | ocal _host _nane

For example, if you are working on the local host named "arkoop.kek.jp", set this environment variable as
follows:
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Renot e_Host > set env GAVRML_HOST_NAME ar koop. kek. j p

Thistellsa Geant4 process running on the remote host where Geant4 Visualization should be performed, i.e.,
where the visualized views should be displayed.
4. Invoke a Geant4 process and perform visualization with the VRML-Network driver. For example:

1 dl e> /vis/open VRM.2
1 dl e> /vis/drawol urme
1 dl e> /vis/viewer/update

In step 4, 3D scene data are sent from the remote host to the local host as VRML-formatted data, and the VRML
viewer specified in step 3 isinvoked by the g4vr m vi ew process to visualize the VRML data. The transferred
VRML data are saved as afile named g4. wr | in the current directory of the local host.

Further information:
* http://geantd.kek.jp/ GEANTA4/ViSGEANT4/VRML _net_driver.html
Further information (VRML drivers):

* http://geant4.kek.jp/GEANT4/ViSGEANT4/VRML_file_driver.html
* http://geant4.kek.jp/GEANT4/ViSGEANT4/VRML_net_driver.html

Sample VRML files:
« http://geant4.kek.jp/GEANTA/ViISGEANT4A/VRML2_FIG/
Further information (VRML language and browsers):

* http://www.vrmlsite.com/

8.3.11. RayTracer

This driver was developed by Makoto Asai and Minamimoto (Hirosihma Instutute of Technology). It performs
ray-tracing visualization using the tracking routines of Geant4. It is, therefore, available for every kinds of shapes/
solids which Geant4 can handle. It is aso utilized for debugging the user's geometry for the tracking routines of
Geant4. It is well suited for photo-realistic high quality output for presentation, and for intuitive debugging of
detector geometry. It produces a JPEG file. This driver is by default listed in the available visualization drivers
of user's application.

Some pieces of geometries may fail to show up in other visualization drivers (due to algorithms those drivers use
to compute visualizabl e shapes and polygons), but RayTracer can handle any geometry that the Geant4 navigator
can handle.

Because RayTracer in essence takes over Geant4's tracking routines for its own use, RayTracer cannot be used
to visualize Trajectories or hits.

An X-Window version, called RayTracerX, can be selected by setting GEANT4_USE_RAYTRACER _X11 (for
CMake) at Geant4 library build time and application (user code) build time (assuming you use the standard visu-
alization manager, 4Vi sExecut i ve, or an equally smart vis manager). RayTracerX builds the same jpeg file
as RayTracer, but simultaneously renders to screen so you can watch as rendering grows progressively smoother.

RayTracer has its own built-in commands - / vi s/ rayTr acer/ .... Alternatively, you can treat it as a normal
vissystem and use/ vi s/ vi ewer / ... commands, e.g:

/vi s/ open RayTracer X

/vi s/ drawVol ure

/vis/viewer/set/viewoi nt Thet aPhi 30 30
/vis/viewer/refresh
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The view parameters are trand ated into the necessary RayTracer parameters.

RayTracer is compute intensive. If you are unsure of a good viewing angle or zoom factor, you might be advised
to choose them with a faster renderer, such as OpenGL, and transfer the view parameters with / vi s/ vi ew
er/ copyVi ewFrom

/vi s/ open OGL

/vi s/ dr awVol urre

/vis/viewer/zoom # plus any /vis/viewer/commands that get you the view you want.
/vi s/ open RayTracer X

/vi s/ vi ewer/ copyVi ewFr om vi ewer - 0

/vis/viewer/refresh

8.3.12. gMocren

The gMocrenFile driver creates a gdd file suitable for viewing with the gMocren volume visualizer. gMocren, a
sophisticated tool for rendering volume data, can show volume data such as Geant4 dose distrubutions overlaid
with scoring grids, trajectories and detector geometry. gMocren provides additional advanced functionality such
as transfer functions, colormap editing, image rotation, image scaling, and image clipping.

gMocren isfurther described at http://geant4.kek.jp/gMocren/ . At thislink you will find the gMocren download,
the user manual, atutorial and some example gdd data files.

Please note that the gMaocren file driver is currently considered a Beta release. Users are encouraged to try this
driver, and feedback is welcome, but users should be aware that features of this driver may change in upcoming
releases.

To send volume data from Geant4 scoring to a gMocren file, the user needs to tell the gMocren driver the name
of the specific scoring volume that is to be displayed. For scoring done in C++, thisis the name of the sensitive
volume. For command-based scoring, this is the name of the scoring mesh.

/ vi s/ gMocr en/ set Vol umeNane <vol ume_nanme>
The following is an example of the minimum command sequence to send command-based scoring data to the a

gMacren file:

# an exanpl e of a command-based scoring definition

/ scor e/ creat e/ boxMesh scori ngMesh # name of the scoring nesh

/ scor e/ nesh/ boxSi ze 10. 10. 10. cm # di mensi on of the scoring nesh

/ score/ mesh/nBin 10 10 10 # nunber of divisions of the scoring nesh
/ score/ quantity/energyDeposit eDep # quantity to be scored

/ scor el cl ose

# configuration of the gvocren-file driver
/vi s/ scene/create

/ vi s/ open ghbcrenFile

/ vi s/ gMocr en/ set Vol uneNane scori ngMesh

To add detector geometry to thisfile:

/vis/viewer/flush

To add trajectories and primitive scorer hitsto thisfile:

/vis/scene/add/trajectories
/ vi s/ scene/ add/ pshits
/run/ beantn 1

gMacrenFilewill write afile named G4 _00.gd to the current directory. Subsequent draws will create files named
g4 01.gdd, g4 02.gdd, etc. An alternate output directory can be specified with an environment variable:

export GAGWocr enFi |l e_DEST_DI R=<sonmeQ her Di r/ someQ her SubDi r/ >
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View the resuling gMocren files with the gMocren viewer, available from: http://geant4.kek.jp/gMocren/ .

8.3.13. Wt (WARNING: this driver is experimental and
should be used with caution)

This driver has been developed by Laurent Garnier (IN2P3, LAL Orsay). It provide an interface to a geant4
applicationinsideaWeb browser. Thisdriver also requiresthe Wt library and aWeb browser with WebGL enable.
Seeif your Web browser support WebGL on Wikipediat\WebGL#Support

The Wt driver is well suited for real-time fast visualization and demonstration. Available as experimental in
Geant4.10 version, all OpenGL features are not implemented but basics interactions as mouse control of rota-
tion/trand ation/zoom are present.

Wt driver rely on WebGL, it aims to render the same way as Qt, but inside a Web browser. The use of WebGL
(instead of OpenGL for Qt), allow it to be available wherever aWeb browser with WebGL is activate.

Sour cesfiles:
See CMake configuration in order to compile Geant4 with Wt support.

As a Geant4 with Wt driver application will be availableinside aWeb browser, your need at first to launch aweb
server in order to be able to see the web page. Hopefully, Wt came with its own web server included. This web
server will be multi-user, that means that you could have many users using your application from everywhere. As
the support for Wt driver is experimental, the multi-user aspect is not well manage. In Geant4.10, many users will
have access at the same Run manager at the sametime and evn to thefilesand datas, this could cause sometroubles.

As a Geant4 application using Wt driver is a client/server application, the way to build the main function is a
bit different.

Example 8.4. Thetypical mai n() routine available for visualization with Wt driver.

[]----- C++ source codes: nmin() function for visualization
#i f def AVI S_USE

#i ncl ude " AVi sExecuti ve. hh"

#endi f

/1 W includes
#if defined( AUl _USE_WI)
#i ncl ude <W/WAppl i cation>
#i ncl ude <W/WEnvi r onment >
#i ncl ude <W/WServer >

/] Main W driver function. It will be call once by user |aunching the application
// Inside this function, you have to put all your Geant4 initialisation

/1 (as in main() function on other graphic drivers)

W ::WApplication *createApplication(const W::\WEnvironnment& env)

{

/] Create a new instance of W:: Application
W :: WAppl i cati on* nyApp = new W :: WApplication(env);

/] Set title and styl eSheet
WApp->set Title( "Geant4 on the web" );
WApp- >useSt yl eSheet (" ext ki t chen. css");

/] Get the pointer to the User Interface manager
GAUl manager * U manager = GAUl nanager: : Get Ul poi nter();

char* nanme = "Exanpl eNO3 \0";
AUl Executi ve* ui = new G4Ul Executive(1, &ane, "W");

/] Start the session
ui - >SessionStart();
del ete ui;
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return nyApp;

}
#endi f

int main(int argc,char** argv) {

/'l Instantiation and initialization of the Visualization Manager
#i f def GAVI S_USE
/'l visualization manager
G4Vi sManager * vi sManager = new (AVi sExecuti ve;
/| GAVi sExecutive can take a verbosity argunment - see /vis/verbose guidance.
/| GAVi sManager* vi sManager = new (AVi sExecutive("Qiet");
vi sManager->lnitialize();
#endi f

/] replace the "normal" user interface by the Wb server
#i f ndef G4Ul _USE_WI

/] Get the pointer to the User Interface manager

GAUl manager * Ul manager = GAUl nanager: : Get Ul poi nter();
#el se

try {
Il Create a W::Wserver
W :: WBerver server(argv[0]);
server. set Server Configuration(argc, argv, WHTTP_CONFI GURATI ON) ;
server. addEnt ryPoi nt (W : : Application, createApplication);
/1 Run it !
if (server.start()) {
int sig = W::Wserver::waitFor Shut down();

server.stop();

} catch (W::WBerver:: Exception& e) {
std::cerr << e.what() << "\n";

return 1;

} catch (std::exception& e) {
std::cerr << "exception: " << e.what() << "\n";
return 1;

}

/1 Wait for clients
W ::VWRun(argc, argv, &createApplication);

/] Job term nation
#i f def G4VI S_USE
del et e vi sManager ;

#endi f
#endi f
return O;
}
[]----- end of C++

This driver will display the Ul and vis window inside a Web browser page. As with Qt driver, you can have as
many tabs with viewer you want. To see the visualization window :

/vi s/ open OGL
other paraneters as OCGLI, OGS, OGLIW, OGLSW wll have all the sane effect

Execution of the server: Asyour application will contain a web server, you will have to launch the web server
first and set some specific arguments for internet :

« docroot: document root for static files as css, images...
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* http-address: The address where this application will be deploy. (eg:0.0.0.0)
 http-port: HTTP port (e.g. 80)

More informations on Wt web site The command line for launching your application will be the following :

nyExanpl e --docroot "where your ressources are" --http-address 0.0.0.0 --http-port 8080

Execution of a client: All clients can reach your application server at the following address :

http://0.0.0.0:8080 (for users on the same conputer as the server)
http://Your. Server.|p: 8080 (for external users)

If this address is unreachable, check if the specify port is not already in use and is fully open.
Further information (Wt):

« Wt

8.3.14. Visualization of detector geometry tree

ASCIITREE isavisualization driver that is not actually graphical but that dumps the volume hierarchy asasimple
text tree.

Each call to /visiviewer/flush or /vis/drawTree will dump the tree.

ASCIITree has command to control its verbosity, / vi s/ ASCI | Tr ee/ ver bose. The verbosity value controls
the amount of information available, e.g., physical volume name alone, or also logical volume and solid names.
If the volume is "sensitive" and/or has a "readout geometry”, this may also be indicated. Also, the mass of the
physical volume tree(s) can be printed (but beware - higher verbosity levels can be computationally intensive).

At verbosity level 4, ASCIITree cal culates the mass of the complete geometry tree taking into account daughters
up to the depth specified for each physical volume. The calculation involves subtracting the mass of that part of the
mother that is occupied by each daughter and then adding the mass of the daughter, and so on down the hierarchy.

/vi s/ ASCI | Tr ee/ Ver bose 4
/vis/viewer/flush
"HadCal ori met er Physical ": 0 / "HadCal ori neterLogi cal" / "HadCal ori net er Box" ( 4Box) ,
1.8 n8 , 11.35 g/cn8
"HadCal Col uimPhysical ":-1 (10 replicas) / "HadCal Col umLogi cal " / "HadCal Col utmBox" ( G4Box) ,
180000 cnB, 11.35 g/cnB
"HadCal Cel | Physical":-1 (2 replicas) / "HadCal Cel | Logi cal" / "HadCal Cel | Box" ( &4Box),
90000 cnB8, 11.35 g/cnB
"HadCal Layer Physical ":-1 (20 replicas) / "HadCal LayerLogical" / "HadCal Layer Box" ( G4Box),
4500 cnB, 11.35 g/cnB
"HadCal Sci nti Physical":0 / "HadCal Sci nti Logi cal" / "HadCal Sci nti Box" (G4Box),
900 cnB, 1.032 g/cnB

Cal cul ati ng mass(es)...
Overall volume of "worldPhysical":0, is 2400 nB
Mass of tree to unlimted depth is 22260.5 kg

Some more examples of ASCIITreein action:

I dl e> /vis/ASCI | Tree/ ver bose 1

I dl e> /vis/drawlree

Set verbosity with "/vis/ASCI | Tree/ ver bose "
< 10: - does not print daughters of repeated placenents, does not repeat replicas.
>= 10: prints all physical vol unes.

The level of detail is given by verbosity%0:

for each vol unme:
>= 0: physical vol une nane.
>= 1: logical volune nane (and nanes of sensitive detector and readout geonetry, if any).
>= 2: solid nane and type.
>= 3: volune and density.

HHHHHHHHH
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# ==

5: daughter-subtracted vol une and nass.

# and in the summary at the end of printing:

# ==
"Cal orineter", copy no.
"Layer", copy no. -1,
" Absor ber ",
"CGap", copy no.

copy no.

0, belongs to | ogical
bel ongs to | ogi cal

0, belongs to |ogical
0, belongs to | ogical

Idl e> /vis/ASCl | Tree/ ver bose 15

I dl e> /vis/drawlree

4: daughter-included nass of top physical

vol ume(s) in scene to depth specified.

volune "Cal ori neter"

vol une "Layer" (10 replicas)
vol une " Absor ber"
vol une " Gap"

"tube_phys":0 / "tube_L" / "tube"(&ATubs), 395841 cnB, 1.782 ny/cnB,
9. 6539e-08 nmmB, 1.72032e-10 ngy

"di vi ded_t ube_phys":0 / "divided_tube_L" /
1.782 ng/cn8, 7587.54 cnB,

"di vi ded_t ube” (GATubs) ,

13.521 g

65973. 4 cn8B,

"di vi ded_t ube_i nset _phys":0 / "divided_tube_inset_L" / "divided_tube_inset"(G4Tubs),

"sub_di vi ded_t ube_phys": 0 / "sub_divi ded_tube_L" /
14596.5 cnB, 1.782 ng/cnB,

Cal cul ati ng mass(es)...
Overal |

vol ume of "expHall _P":0,

is 8000 nB

is 78414 kg

58385.9 cnB, 1.782 ng/cnB, 6.03369e-09 mB, 1.0752e-11 ny
"sub_di vi ded_t ube" (ATubs),
12196.5 cnB, 21.7341 g

and the daughter-included nmass to unlinited depth

For the complete list of commands and options, seethe Control...UlCommands section of this user guide.

8.3.15. GAG Tree

The GAGTree driver provides a listing of the detector geometry tree within GAG, the Geant Adaptive GUI,
from the envi ronnent s/ MOMO MOMO. | ar file present under the Geant4 source distribution. GAG alows
"folding/un-folding" a part of the geometry tree, using the Tree Widget in Java:

[Eia;

x|

Geant4d History Help || log to_File [vj to_Terminal [ JAS

g‘é““" | /Vis/GAGTIee/verbose 10 -
vis .
[jenable
[ disable
[yverbose 3
[y drawTree gl |/visiopen
D Avaveviolinne | i|fvis/open [<graphics-systen-name:-] [<pixel s=]
Aravevi | ‘IFor this graphics system, creates a scene handler ready for drawing
[ dreview: | [The scene handler kecomescurent.
[ open /| “[The scene handler name is auto-generated.
[ specify | i[the 2nd 15 the window sze hmt.
o ggicc};n“ | “leraphics- system-name| GAGTrea v:‘(s)
[-] Tee i -
[ verbose V]Jlﬁ)(elﬁ 600 @
& (05 scene DTREE IEIEE
& [ sceneHandler [ exampleNO3
@ [ viewer @ [ World.0.0
Calorimeter.0.1
S Im8 ce s ? ?ﬁ].ayer ~L;2 et H Sear H ‘
fexampleND 3 in Idle D Ahsorher 0.3
[ 6ap.0.4
0 33740 812 /
o ([layer.-1.5 £ 1520116 58% fhome
@ CJlayer.-1.8 2 733320 BTE fwin
[(yabsorber 0.8
[y Gap.0.10
@ Jlayer.-1.11
® [Jlayer-114
[y Absorber.0.15
[y Gap.016
o Jlayer -117
@ [Jlayer.-1.20
@ [Jlayer -1.23
Absorber 0.24
D
[ycap.0.2s
e Jlayer -1.26
Lo [layer-129
2 5 kterm 4 kierm % kierm b GAG 068
| 2| % viewer-0..] % DTREE Pl

8.3.16. XML Tree

The XML description of the geometry tree can be created in Geant4 by the XML Tree driver. The XML source
can aso be edited on thefly. The created XML files are visualizable with any XML browser (in Windows, agood

XML viewer is XML Notepad).

 Folding and un-folding:
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£l Output - XML Motepad

File  Edit “iew Inzert Toolz Help

D|S|E| of &[5 da| Plos| «|+|e|e]+]=[F

Structure | | alues
El'Ij o ld
1]

i@ copy_no

& logical_volume "Wiar Id
& =zolid name "Wiar Id
i @ zolid_tvpe G4 B
B3 Calorimeter
Y copy_no 0
$ logical_volume Calorimeter
% =olid name Calorimeter
i @ zolid_tvpe G4 B
E@ Lawer

i @ copy_no -1
- @ logical_volume Laver
- @ =zolid_name Layer
- @ solid_tvpe G4 Box
-3 Absorber
o 68

n iap
i @ Copy_no 1]

logical_wolume Giap
zolid_name Gap
zolid_tvpe 54 Box

For Help, pres= F1 v

 Searching astring:

<ML Motepad

Edit  Wiew Insert Toolz Help

D||E| of #[5e|@] da] F[os| «|+|e[+[+]=[=

Structure | Yalues
== torld
- COpY_No 0
- @ logical_volume YWar|d
- § zolid_name Wiar Id
o @ zolid_tvpe G4 Blox
E@ Calarimeter
‘ Copy_ho 0
o logical_ valume Calorimeter

§ =olid name Calorimeter

o @ zolid_type G4 Baox

=23 e
% copv_no -1

logical volume Lawer
z0lid_name Layer
solid, [t

i Absa
-{Z3 Gap | Find what: ILa_l,Jer

Search in
[~ Caontent

¥ Element Tags
[~ atribute Mames

' Diirection
[T Attribute Walues
[ Comments " Up 1% Down

[T Match case

Far Help, prezs Fl
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8.4. Controlling Visualization from Commands

This section describes just a few of the more commonly used visualization commands. For the complete list of
commands and options, seethe Control...UlCommands section of this user guide.

For simplicity, this section assumes that the Geant4 executable was compiled incorporating the DAWNFILE and
the OpenGL-Xlib drivers. For details on creating an executable for visualization see Section 8.2.

NOTA BENE: THIS SECTION IS NOT A COMPLETE DESCRIPTION OF ALL VISUALISATION COM-
MANDS, THEY ARE TOO NUMEROUS AND CONTINUALLY EVOLVING. PLEASE REFER TO THE
COMMAND GUIDANCE, Control...UlCommands OR SIMPLY TYPE "Isvis" OR "help". SOME VIEWERS,
NOTABLE Qt, OFFER INTERACTIVE GUIDANCE UNDER THE "Help" MENU."

8.4.1. Scene, scene handler, and viewer

In using the visualization commands, it is useful to know the concept of "scene", "scene handler”, and "viewer".
A "scene" is a set of visualizable raw 3D data. A "scene handler” is a graphics-data modeler, which processes
raw datain a scene for later visualization. And a"viewer" generates images based on data processed by a scene
handler. Roughly speaking, a set of a scene handler and a viewer corresponds to a visualization driver.

The steps of performing Geant4 visualization are explained bel ow, though some of these steps may be donefor you
so that in practice you may use as few as just two commands (such as /vis/open OGLIX plus /vis/drawVolume).
The seven steps of visuaization are:

Step Command Alternative command
1 Create a scene handler and | /vis/sceneHandler/create  |/vis/open
aviewer Ivislviewer/create
2 Create an empty scene Ivid/scene/create Ivig/drawVolume
Add raw 3D datato the cre- | /vis/scene/add/volume
ated scene
4 Attach the current scene to|/vis/sceneHandler/attach

the current scene handler

5 Set camera parameters,|E.g., /vis/viewer/set/view-
drawing style  (wire-|point
frame/surface), etc

6 Make the viewer execute|/vis/viewer/refresh
visualization
7 Declare the end of visual-|/vis/viewer/flush

ization for flushing

Table 8.2.
For details about the commands, see below.

These seven steps can be controlled explicitly to create multiple scenes and multiple viewers, each with its own
set of parameters, with easy switching from one scene to another. But for the most common case of just having
one scene and one viewer, many steps are handled implicitly for you.

8.4.2. Create a scene handler and a viewer: / vi s/ open
command

Command "/ vi s/ open" creates a scene handler and a viewer, which corresponds to Step 1.
Command: /vi s/ open [driver_tag_nane]

e Argument
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A name of (amode of) an available visualization driver.
» Action

Create avisualization driver, i.e. a set of a scene hander and aviewer.
» Example: Create an OpenGL generic driver with itsimmediate mode

I dl e> /vis/open OGLI
» Additional notes

For immediate viewers, such as OGL I, your geometry will immediately be rendered in the new GL window
How to list available driver_tag name:

I dl e> hel p /vis/open

or

I dl e> hel p /vis/sceneHandl er/create

Thelist is, for example, displayed as follows:

Candi dates : DAWNFI LE OGL

For additional options, seethe Contral...UlCommands section of this user guide.

8.4.3. Create an empty scene: /vi s/ scene/ creat e com-
mand

Command "/ vi s/ scene/ cr eat e" creates an empty scene, which corresponds to Step 2.

Command: /vis/scenel/create [scene_nane]

e Argument

A name for this scene. Created for you if you don't specify one.

8.4.4. Visualization of a physical volume: / vi s/ dr aw\Vol -
ume command

Command "/ vi s/ dr awMol une" adds a physical volume to the scene. It also does some of the other steps, if
you haven't done them explicitly. It takes care of steps 2, 3, 4 and 6. Command "/ vi s/ vi ewer / f | ush" should
follow in order to do the final Step 7.

Commands:

[ vi s/ drawol une [ physi cal - vol une- nane]

Idl e> /vis/viewer/flush
e Argument

A physical-volume name. The default value is "world", which is omittable.
» Action

Creates a scene consisting of the given physical volume and asks the current viewer to draw it. The scene
becomes current. Command "/ vi s/ vi ewer / f | ush" should follow this command in order to declare end
of visualization.
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» Example: Visualization of the whole world with coor dinate axes

I dl e> /vis/drawol unme
I dl e> /vis/scene/add/axes 0 0 0 500 mm
I dl e> /vis/viewer/flush

8.4.5. Visualization of alogical volume: / vi s/ speci fy
command

Command "/ vi s/ speci f y" visualizes alogical volume. If allows you to control how much details is shown
and whether to show booleans, voxels and readout geometries. It also does some of the other steps, if you haven't
done them explicitly. It takes care of steps 2, 3, 4 and 6. Command "/ vi s/ vi ewer / f | ush" should follow the
command in order to do thefinal Step 7.

Command: /vis/specify [l ogical-volune-nane][depth-of-descent] [bool eans-
flag] [voxel s-flag] [readout-flag]

* Argument

A logical-volume name.
» Action

Creates ascene consisting of the given logical volume and asksthe current viewer to draw it. The scene becomes
current.

» Example (visualization of a selected logical volume with coordinate axes)

I dl e> /vis/specify Absorber

Idl e> /vis/scene/add/axes 0 0 0 500 mm

I dl e> /vis/scene/add/text 0 O O mm 40 -100 -200 LogVol : Absor ber
Idl e> /vis/viewer/flush

For more options, seethe Control...UlCommands section of this user guide.

8.4.6. Visualization of trajectories: / vi s/ scene/ add/ tr a-
j ectories command

Command "/ vi s/ scene/ add/traj ectories [snooth] [rich]" adds trgectories to the current
scene. Theoptional parameters™smooth” and/or "rich" (you may specify either, both or neither) invoke, if "smooth"
is specified, the storing and displaying of extra points on curved trajectories and, if "rich” is specified, the storing,
for possible subsequent selection and display, of additional information, such as volume names, creator process,
energy deposited, global time. Be aware, of course, that thisimposes computational and memory overheads. Note
that thisautomatically issuesthe appropriate”/ t r acki ng/ st or eTr aj ect or y" command so that trgjectories
are stored (by default they are not). The visualization is performed with the command "/ r un/ bean®n" unless
you have non-default values for /vis/scene/endOf EventAction or /vis/scene/endOfRunAction (described below).

Command: /vi s/ scene/add/trajectories [smooth] [rich]
» Action

The command adds trajectories to the current scene. Trajectories are drawn at end of event when the scenein
which they are added is current.
» Example: Visualization of trajectories

I dl e> /vis/scene/add/trajectories
Idl e> /run/beann 10
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» Additional note 1
See the section Section 8.7.3 Enhanced Trajectory Drawing for details on how to control how trajectories are

color-coded.
» Additional note 2

Events may be kept and reviewed at end of run with
I dl e> /vis/revi ewKept Events
Keep all eventswith
I dl e> /vis/scene/ endO Event Acti on accunul ate [ maxNunber]

(see Section 8.4.12)

or keep some chosen subset with
GAEvent Manager : : Get Event Manager () - >KeepTheCur r ent Event () ;

as described in Example 6.8.

To suppress drawing during arun

I dl e> /vis/disabl e
I dl e> /run/beanOn 10000

then at end of run

I dl e> /vis/enable
I dl e> /vis/revi ewKept Events

+ Additional note3
Visualising events as they are being generated inevitably slows the simulation. Visualisation can be suspend-

ed with/ vi s/ di sabl e as suggested above. You may also switch off trajectory production with / t r ack-
i ng/ storeTraj ectory 0.Whenusing OpenGL, the following can help:

Idle> /vis/ogl/flushAt [ endOf Event endOf Run eachPrimtive NthPrinmitive NthEvent never ]

By default, this valueis set to /vislogl/flushAt NthEvent 100
For more options, seethe Control...UlCommands section of this user guide.

8.4.7. Visualization of hits: / vi s/ scene/ add/ hits com-
mand

Command "/ vi s/ scene/ add/ hi t s" adds hits to the current scene, assuming that you have a hit class and
that the hits have visualization information. The visualization is performed with the command "/ r un/ beantn"

unless you have non-default values for /vis/scene/fendOf EventAction or /vis/scene/endOfRunAction (described
above).

8.4.8. Visualization of Scored Data

Scored data can be visualized using the commands "/ scor e/ dr awPr oj ecti on" and"/ scor e/ dr awCol -
um"”. For details, see examples/extended/runAndEvent/REQ3.
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8.4.9. HepRep Attributes for Hits

The HepRep file formats, HepRepFile and HepRepXML, attach various attributes to hits such that you can view
these attributes, label trajectories by these attributes or make visibility cuts based on these attributes. Exampl es of
adding HepRep attributes to hit classes can be found in examples /extended/analysis’A01 and /extended/runAn-
dEvent/REOL.

For example, in example REO1's class REQ1Cal orimeterHit.cc, available attributes will be:

» Hit Type

e Track ID

« ZCdlID

e Phi Cel ID

» Energy Deposited

» Energy Deposited by Track
 Position

* Logica Volume

You can add additional attributes of your choosing by modifying the relevant part of the hit class (look for the
methods GetAttDefs and CreateAttValues).

8.4.10. Basic camera workings: /vi s/ vi ewer/ commands

Commands in the command directory "/ vi s/ vi ewer / " set camera parameters and drawing style of the current
viewer, which correspondsto Step 5. Notethat the cameraparameters and the drawing style should be set separately
for each viewer. They can be initialized to the default values with command "/ vi s/ vi ewer / r eset ". Some
visuaization systems, such as the VRML and HepRep browsers also allow camera control from the standalone
graphics application.

Just a few of the camera commands are described here. For more commands, see the Control...UlCommands
section of this user guide.

The view is defined by atarget point (initially at the centre of the extent of all objectsin the scene), an up-vector
and a viewpoint direction - see Figure 8.1. By default, the up-Vector is parallel to the y-axis and the viewpoint
directionisparallel to the z-axis, so the the view showsthe x-axisto the right and the y-axis upwards - a projection
on to the canonical x-y plane - see Figure 8.2.

The target point can be changed witha/ vi s/ vi ewer / set command or withthe/ vi s/ vi ewer / pan com-
mands. The up-vector and the viewpoint direction can also be changed with / vi s/ vi ewer / set commands.
Care must be taken to avoid having the two vectors paralel, for in that case the view is undefined.

up vector

X

viewpoint direction

point

Figure8.1. Up-vector and viewpoint direction
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y

e

up vector

viewpoint direction
i
ﬁz
Figure 8.2. Thedefault view
Command: /vi s/ vi ewer/set/vi ewpoi nt ThetaPhi [theta] [phi] [deg|rad]

e Arguments

Arguments "theta" and "phi" are polar and azimuthal camera angles, respectively. The default unit is "degree”.
» Action

Set aview point in direction of (theta, phi).
» Example: Set theviewpoint in direction of (70 deg, 20 deg) /

1 dl e> /vis/viewer/set/viewoint ThetaPhi 70 20

« Additional notes

Camera parameters should be set for each viewer. They are initialized with command "/ vi s/ vi ewer/r e-
set ". Alternatively, they can be copied from another viewer with the command "/ vi s/ vi ewer/ copy-
Vi ewFr om vi ewer - 0", for example.

Command: /vi s/ vi ewer/ zoom [ scal e_factor]
e Argument

The scale factor. The command multiplies magnification of the view by this factor.
» Action

Zoom up/down of view.
» Example: Zoom up by factor 1.5

I dl e> /vis/viewer/zoom 1.5
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Additional notes

A similar pair of commands, scale and scaleTo allow non-uniform scaling (i.e., zoom differently along different
axes). For details of thisand lots of other commands, seethe Control...UlCommands section of thisuser guide.

Some viewers have limits to how large the zoom factor can be. This problem can be circumnavigated to some
degree by using zoomand scal e together. If

I dl e> /vis/viewer/zoonTo 1el0
does not work, please try

Idle> /vis/viewer/scal eTo 1e5 1e5 leb
1 dl e> /vis/viewer/zoomlo 1e5

Of course, with such high zoom factors, you might want to know whither you are zooming. Use "/ vi s/
vi ewer/ set/target Poi nt"

Camera parameters should be set for each viewer. They are initialized with command "/ vi s/ vi ewer/ r e-
set ". Alternatively, they can be copied from another viewer with the command "/ vi s/ vi ewer / copy-
Vi ewFrom vi ewer - 0", for example.

Command: /vi s/ viewer/set/style [styl e nane]

Arguments

Candidate values of the argument are "wireframe" and "surface”. ("w" and "'s" also work.)
Action

Set adrawing style to wireframe or surface.
Example: Set thedrawing styleto" surface"
Idle> /vis/viewer/set/style surface

Additional notes

The style of some geometry components may have been forced one way or the other through calls in compiled
code. The set/style command will NOT override such force styles.

Drawing style should be set for each viewer. The drawing style is initialized with command "/ vi s/ vi ew
er/reset". Alternatively, it can be copied from another viewer with the command "/ vi s/ vi ewer/ set /
al | vi ewer-0", for example.

8.4.11. Declare the end of visualization for flushing: / vi s/
vi ewer/fl ush command

Command: /vi s/ viewer/fl ush

Action

Declare the end of visualization for flushing.
Additional notes

Command "/ vi s/ vi ewer / f | ush" should follow "/ vi s/ dr awMol une", "/ vi s/ speci fy", etcin or-
der to complete visualization. It corresponds to Step 7.

Theflush is done automatically after every /run/beamOn command unless you have non-default valuesfor /vis/
scene/endOfEventAction or /vis/scene/endOf RunAction (described above).
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8.4.12. End of Event Action and End of Run Action: / vi s/
vi ewer/ endOf Event Acti on and / vi s/ vi ewer/ end-
Of RunActi on commands

By default, a separate picture is created for each event. You can change this behavior to accumulate multiple
events, or even multiple runs, in asingle picture.

Command: /vi s/ scene/ endf Event Acti on [refresh|accunul at e]
» Action

Control how often the picture should be cleared. r ef r esh means each event will be written to anew picture.
accunul at e means events will be accumulated into a single picture. Picture will be flushed at end of run,
unlessyou haveaso set/ vi s/ scene/ endf RunActi on accunul ate

 Additional note

You may instead choose to use update commands from your BeginOfRunAction or EndOfEventAction, asin
early examples, but now the vis manager ia able to do most of what most users require through the above
commands.

Command: /vi s/ scene/ endOf RunAction [refresh|accunul at e]
* Action

Control how often the picture should be cleared. r ef r esh means each run will be written to a new picture.
accunul at e meansrunswill be accumulated into asingle picture. To start anew picture, you must explicitly
issue/ vi s/ vi ewer/refresh,/vis/viewer/updateor/vis/viewer/flush

8.4.13. HepRep Attributes for Trajectories

The HepRep file formats, HepRepFile and HepRepX ML, attach various attributes to trajectories such that you can
view these attributes, label trajectories by these attributes or make visibility cuts based on these attributes. If you
use the default Geant4 trajectory class from /tracking/src/G4Trajectory.cc (this is what you get with the plain /
vi s/ scene/ add/ traj ect ori es command), available attributes will be:

e Track ID

e ParentID

» Particle Name

» Charge

» PDG Encoding

¢ Momentum 3-Vector

* Momentum magnitude

* Number of points

Using/ vi s/ scene/ add/ traj ectori es ri ch will get you additional attributes. Y ou may aso add addi-
tional attributes of your choosing by modifying therelevant part of G4Trajectory (look for the methods GetAttDefs
and CreateAttValues). If you are using your own tragjectory class, you may want to consider copying these methods
from GATragjectory.

8.4.14. How to save a view.

/vi s/ viewer/save
Thiswill saveto afilethat can be read in again with

/control /execute
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If you save several views you may "fly through” them with
/vi s/viewer/interpolate

See "Making aMovie" Section 8.10.

(Use the Geant4 "help” command to see details.)

8.4.15. How to save a view to an image file

Most of the visualization drivers offer waysto save visualized viewsto PostScript (PS) or Encapsul ated PostScript
(EPS). Some, in addition, offer Portable Document Format (PDF). OpenGL offers a big range of formats - see
below.

« DAWNFILE

The DAWNFILE driver, which co-works with Fukui Renderer DAWN, generates "vectorized" PostScript da-
tawith "analytical hidden-line/surface removal", and so it is well suited for technical high-quality outputs for
presentation, documentation, and debugging geometry. In the default setting of the DAWNFILE drivers, EPS
filesnamed "g4_00. eps, g4_01.eps, g4_02. eps,..." are automatically generated in the current di-
rectory each time when visualization is performed, and then a PostScript viewer "gv"is automatically invoked
to visualize the generated EPSfiles.

For large data sets, it may take time to generate the vectorized PostScript data. In such a case, visualize the 3D
scene with afaster visualization driver beforehand for previewing, and then use the DAWNFILE drivers. For
example, the following visualizes the whol e detector with the OpenGL-Xlib driver (immediate mode) first, and
then with the DAWNFILE driver to generate an EPSfile g4_XX. eps to save the visualized view:

# I nvoke the OpenGL visualization driver in its i medi ate node
/vi s/ open OGLI X

# Canera setting
/vis/viewer/set/viewoi nt ThetaPhi 20 20

# Canera setting
/ vi s/ dr awVol une
/vis/viewer/flush

# I nvoke the DAWNFI LE vi sual i zation driver
/vi s/ open DAWNFI LE

# Canera setting
/vis/viewer/set/vi ewoi nt ThetaPhi 20 20

# Camera setting
/ vi s/ dr awVol une
/vis/viewer/flush

Thisisagood example to show that the visualization drivers are complementary to each other.
* Openlnventor

In the Openlnventor drivers, you can simply click the "Print" button on their GUI to generate a PostScript file
asahard copy of avisualized view.
* OpenGL

The OpenGL drivers can also generate image files, either from a pull-down menu (Motif and Qt drivers) or
with/ vi s/ ogl / expor t . Available formats are: eps ps pdf svg bmp cur ddsicnsico jp2 jpeg jpg pbm pgm
png ppm tif tiff wbmp webp xbm xpm. The default is pdf. It can generate either vector or bitmap PostScript
datawith/ vi s/ ogl / set/ pri nt Mode ("vectored" or "pixmap"). Y ou can change the filename by / vi s/
ogl / set/ printFil ename Andtheprintsizeby/ vi s/ ogl / set/ pri nt Si ze Ingenerating vectorized
PostScript data, hidden-surface removal is performed based on the painter's algorithm after dividing facets of
shapesinto small sub-triangles.
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Note that a fundamental limitation of the gl2ps library used for this printing causesthe/ vi s/ vi ewer / set /
hi ddenMar ker command to beignored. Trajectorieswill always be fully drawn in the printEPS output even
when the hiddenMarker hidden line removal option has been set to hide these trajectoriesin the corresponding
OpenGL view.

The/vi s/ ogl/set/printSi ze command can be used to print EPS files even larger than the current
screen resolution. This can allow creation of very large images, suitable for creation of posters, etc. The only
size limitation is the graphics card's viewport dimension: GL_MAX_VIEWPORT_DIMS

# I nvoke the OpenGL visualization driver in its stored node
/ vi s/ open OGLSX

# Canera setting
/vis/viewer/set/vi ewoi nt ThetaPhi 20 20

# Camera setting
/ vi s/ dr awol une
/vis/viewer/flush

# set print node to vectored
#/ vi s/ ogl / set/ print Mode vect or ed

# set print size |larger than screen
/vis/logl/set/printSize 2000 2000

# print
/vi s/ ogl / export

* HepRep

The HepRApp HepRep Browser and WIRED4 JAS Plug-1n can generate a wide variety of bitmap and vector
output formats including PostScript and PDF.

8.4.16. Culling

"Culling" means to skip visualizing parts of a 3D scene. Culling is useful for avoiding complexity of visuaized
views, keeping transparent features of the 3D scene, and for quick visualization.

Geant4 Visualization supports the following 3 kinds of culling:

 Culling of invisible physical volumes
 Culling of low density physical volumes.
 Culling of covered physical volumes by others

In order that one or al types of the above culling are on, i.e., activated, the global culling flag should aso be on.

Table 8.3 summarizes the default culling policies.

Culling Type Default Value
global ON
invisible ON
low density OFF
covered daughter OFF

Table8.3. Thedefault culling policies.
The default threshold density of the low-density culling is 0.01 g/cm3.

The default culling policies can be modified with the following visualization commands. (Below the argument
fl ag takesavaueof t rue or f al se.)

# gl obal
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/vis/viewer/set/culling global flag

# invisible
/vis/viewer/set/culling invisible flag

# | ow density

# "value" is a proper value of a treshold density
# "unit" is either g/cnB, ng/cnB or kg/nB8
/vis/viewer/set/culling density flag value wunit

# covered daughter
/vis/viewer/set/culling coveredDaughters flag density

The HepRepFile graphic system will, by default, include culled objects in the file so that they can still be made
visiblelater from controlsin the HepRep browser. If this behavior would causefilesto betoo large, you caninstead
choose to have culled objects be omitted from the HepRep file. See details in the HepRepFile Driver section of
this user guide.

8.4.17. Cut view

Sectioning

"Sectioning" meansto make athin dice of a 3D scene around agiven plane. At present, this function is supported
by the OpenGL drivers. The sectioning is realized by setting a sectioning plane before performing visualization.
The sectioning plane can be set by the command,

/vis/viewer/set/sectionPlane on x y z units nx ny nz

wherethe vector (X,y,z) definesapoint on the sectioning plane, and the vector (nx,ny,nz) definesthe normal vector
of the sectioning plane. For example, the following sets a sectioning planeto ayz plane at x = 2 cm:

I dl e> /vis/viewer/set/sectionPlane on 2.0 0.0 0.0 cm 1.0 0.0 0.0
Cutting away
"Cutting away" means to remove a half space, defined with a plane, from a 3D scene.

* Cutting away is supported by the DAWNFILE driver "off-line". Do the following:
 Perform visualization with the DAWNFILE driver to generate a file g4. pri m describing the whole 3D
scene.
* Make the application "DAWNCUT" read the generated file to make a view of cutting away.
Seethefollowing WWW pagefor details: http://geant4.kek.jp/ GEANT4/vissDAWN/About DAWNCUT .html
» Alternatively, add up to three cutaway planes:

/vi s/ vi ewer/addCut awayPl ane 0 0

0
/vi s/ vi ewer/ addCut awayPl ane 0 0 1

0ml 0
0moO 0

and, for more that one plane, you can change the mode to
e (@) "add" or, equivaently, "union" (default) or
e (b) "multiply" or, equivalently, "intersection”:

/vis/viewer/set/cutawayMde nmultiply

To de-activate:

/vi s/ vi ewer/ cl ear Cut awayPl anes

OpenGL supports this feature.
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8.4.18. Multithreading commands

Multithreading

Visualising events inevitably slows things down. With multithreading this effect is all the greater. See Sec-
tion 8.4.6, Additional Note 3, for some advice. If you wish to continue visualising, multithreading mode offers
the following fine tuning.

Since Geant4 version 10.2, in multithreading mode, events generated by worker threads are put in a queue and
extracted by a specia visualisation thread. If the queue gets full, workers are suspended until the visualisation
thread catches up. To mitigate or avoid thistry using

/vi s/ multithreadi ng/ maxEvent QueueSi ze <N>
/vis/mltithreadi ng/acti onOnEvent QueueFul | <wait| di scard>

(See command guidance for details.)

8.5. Controlling Visualization from Compiled Code

While a Geant4 simulation is running, visualization can be performed without user intervention. This is
accomplished by calling methods of the Visualization Manager from methods of the user action class-
es (AUser RunActi on and (AUser Event Acti on, for example). In this section methods of the class
AWi sManager , which is part of the gr aphi cs_r eps category, are described and examples of their use
are given.

8.5.1. G4VVisManager

The Visualization Manager isimplemented by classesG4Vi sManager andG4Vi sExecut i ve. SeeSection 8.2

"Making a Visualization Executable". In order that your Geant4 be compilable either with or without the visu-
alization category, you should not use these classes directly in your C++ source code, other than in the mai n()
function. Instead, you should use their abstract base class G4Wi sManager , defined inthei nt er cons cate-

gory.

The pointer to the concrete instance of the real Visualization Manager can be obtained as follows:

[]-=---- Getting a pointer to the concrete Visualization Manager instance
GAWi sManager * pWi sManager = GAWi sManager : : Get Concr et el nst ance() ;

The method GAVWVi sManager : : Get Concr et el nst ance() returns NULL if Geant4 is not ready for visu-
alization. Thus your C++ source code should be protected as follows:

[]----- How to protect your C++ source codes in visualization
if (pWisMnager) {

pV\ﬁ shvanager ->Draw (...);
.
8.5.2. Visualization of detector components
If you have already constructed detector components with logical volumes to which visualization attributes are

properly assigned, you are almost ready for visualizing detector components. All you have to do is to describe
proper visualization commands within your C++ codes, using the Appl yComand() method.

For example, the following is sample C++ source codes to visualize the detector components:

[]----- C++ source code: How to visualize detector conponents (2)
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/1 ... using visualization commands in source codes
GAWi sManager * pWi sManager = AWi sManager : : Get Concr et el nst ance() ;
i f (pWi sManager)

. (camera setting etc) ...

G4Ul manager : : Get Ul poi nt er () - >Appl yCommand( "/ vi s/ dr awol une") ;
GAUl manager : : Get Ul poi nt er () - >Appl yCommand( "/ vi s/ vi ewer/fl ush");

I]----- end of C++ source code

In the above, you should also describe / vi s/ open command somewhere in your C++ codes or execute the
command from (G)UI at the executing stage.

8.5.3. Visualization of trajectories

In order to visualize trajectories, you can use the method voi d (ATraj ectory: : Drawlraj ectory()
defined in the tracking category. In the implementation of this method, the following drawing method of
AW sManager isused:

[]----- A draw ng net hod of (APolyline
virtual void GAWisMnager::Draw (const G4Polyline& ...) ;

Therea implementation of this method is described in the class G4Vi sManager .

At the end of one event, a set of trgjectories can be stored as a list of (ATr aj ect ory objects. There-
fore you can visudize trajectories, for example, at the end of each event, by implementing the method
MyEvent Acti on: : EndOf Event Acti on() asfollows:

[]----- C++ source codes
voi d ExNO3Event Acti on: : EndCf Event Acti on(const GAEvent * evt)
{

I/ extract the trajectories and draw t hem
if (GAWisManager: : Get Concr et el nst ance())

{

GATr aj ect oryCont ai ner* trajectoryContai ner = evt->GetTraj ectoryContainer();
G4int n_trajectories = 0;
if (trajectoryContainer) n_trajectories = trajectoryContainer->entries();

for (G4int i=0; i < n_trajectories; i++)
{ GATrajectory* trj=(ATrajectory*)((*(evt->CGetTrajectoryContainer()))[il]);
if (drawFlag == "all") trj->Drawlrajectory(50);
else if ((drawFlag == "charged") &&(trj->GetCharge() != 0.))
trj->Drawlraj ectory(50);
else if ((drawFlag == "neutral ") &&(trj->GetCharge() == 0.))

trj->Drawlraj ectory(50);

[]----- end of C++ source codes

8.5.4. Enhanced trajectory drawing

It is possible to use the enhanced trajectory drawing functionality in compiled code as well as from commands.
Multiple trajectory models can beinstantiated, configured and registered with G4VisManager. For details, seethe
section on Section 8.7.4 Enhanced Trajectory Drawing.

8.5.5. HepRep Attributes for Trajectories

The HepRep file formats, HepRepFile and HepRepX ML, attach various attributes to trajectories such that you can
view these attributes, label trajectories by these attributes or make visibility cuts based on these attributes. If you
use the default Geant4 trajectory class, from /tracking/src/G4Trajectory.cc, available attributes will be;
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e Track ID

e Parent ID

 Particle Name

e Charge

» PDG Encoding

¢ Momentum 3-Vector
¢ Momentum magnitude
* Number of points

Y ou can add additional attributes of your choosing by modifying the relevant part of G4Trgjectory (look for the
methods GetAttDefs and CreateAttVaues). If you are using your own trgjectory class, you may want to consider
copying these methods from G4Trgjectory.

8.5.6. Visualization of hits

Hits are visualized with classes GASquare or (AC rcle, or other user-defined classes in-
heriting the abstract base class AVMar ker (Section 8.9). Drawing methods for hits are not
supported by default. Instead, ways of their implementation are guided by virtua methods,
AVHI t::Draw() and GAVHi t sCol | ecti on: : DrawAl | Hi t s(), of the abstract base classes G4VHi t
and G4VHi t sCol | ect i on. These methods are defined as empty functions in the di gi t s+hi t s category.
Y ou can overload these methods, using the following drawing methods of class G4VWVi sManager , in order to
visualize hits:

[]----- Drawi ng net hods of G4Square and GACircle
virtual void AWisManager::Draw (const GACircleg&, ...) ;
virtual void GAWisManager::Draw (const GASquare&, ...) ;

Thereal implementations of these Dr aw( ) methods are described in class G4Vi sManager .

The overloaded implementation of GAVHi t s: : Draw() will be held by, for example, class MyTrackerHits in-
heriting G4VHi t asfollows:

[]----- C++ source codes: An exanple of giving concrete inplenentation of
/1 GAVHi t::Draw(), using class MyTrackerHit : public GAVHt {...}

void MyTrackerHit::Draw)

GAWi sManager * pVWi sManager = GAVWi sManager : : Get Concr et el nst ance() ;
i f (pVVi sManager)
{

// define a circle in a 3D space

GACi rcle circl e(pos);

circle. Set ScreenSi ze(0. 3) ;

circle.SetFillStyle(GACircle::filled);

/1 make the circle red

G4Col our colour(1.,0.,0.);

GAVi sAttributes attribs(col our);
circle.SetVisAttributes(attribs);

/1 make a 3D data for visualization
pWVi sManager - >Draw( circl e);

I]----- end of C++ source codes

The overloaded implementation of G4VHi t sCol | ecti on: : DrawAl | Hi t s() will be held by, for example,
class MyTrackerHitsCollection inheriting class G4VHi t sCol | ect i on asfollows:

[]----- Ct++ source codes: An exanple of giving concrete inplenentation of
/1 GAVHi t sCol | ection::Draw(),
/1 using class MyTrackerHit : public GAVH tsCol | ection{...}
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/1
void MyTrackerHitsCol | ection::DrawAl | Hi ts()
{

Aint n_hit theCol | ection.entries();

for(Gdint i=0;i < n_hit;i++)

theCol l ection[i].Draw();

[]----- end of C++ source codes

Thus, you can visualize hits as well as trgjectories, for example, at the end of each event by implementing the
method MyEvent Act i on: : EndCf Event Acti on() asfollows:

voi d MyEvent Acti on: : EndCf Event Acti on()

{
const GAEvent* evt = fpEvent Manager - >Cet Const Current Event () ;

GASDvanager * SDnman = G4SDManager : : Get SDVpoi nter () ;

GAString col Nam

dint trackerCol I 1D = SDman->Get Col | ecti onl D( col Name" Tr acker Col | ecti on");
Gdint calorinmeterCollID = SDman->Cet Col | ecti onl D( col Nan=" Cal Col | ecti on");

GATraj ectoryContai ner * trajectoryContai ner = evt->GetTraj ect oryContai ner();
Aint n_trajectories = 0;

i f(trajectoryContainer)

{ n_trajectories = trajectoryContainer->entries(); }

GAHCof Thi sEvent * HCE = evt - >Get HCof Thi sEvent () ;

&int n_hitCollection = 0;

i f (HCE)

{ n_hitCollection = HCE->Cet Capacity(); }

GAWi sManager * pWi sManager = G4Wi sManager : : Get Concr et el nst ance() ;

i f (pVVi sManager)

{
/] Decl are begi ninng of visualization
GAUl manager : : Get Ul poi nt er () - >Appl yCommand( "/ vi s/ scene/ not i f yHandl ers");
/] Draw trajectories
for(G4int i=0; i < n_trajectories; i++)
{
(*(evt->CGetTraj ectoryContainer()))[i]->Drawlrajectory();
/] Construct 3D data for hits
M/ Tr acker Hi t sCol | ecti on* THC
= (MyTracker Hi tsCol | ecti on*) (HCE- >Get HC(t racker Col | I D)) ;
if(THC) THC >DrawAl | Hits();
MyCal ori met er Hi t sCol | ecti on* CHC
= (MyCal orineterHitsCol |l ecti on*) (HCE->CGet HC(cal ori neterCol 1 I D)) ;
if(CHC) CHC >DrawAl | Hits();
/| Declare end of visualization
G4Ul manager : : Get Ul poi nt er () - >Appl yCommand( "/ vi s/ vi ewer / updat e") ;
}
}
[f----- end of C++ codes

You can re-visualize a physical volume, where a hit is detected, with a highlight color, in addition to the whole
set of detector components. It is done by calling a drawing method of a physical volume directly. The method is:

I]----- Drawi ng net hods of a physical vol une
virtual void Draw (const (AVPhysical Vol une&, ...) ;
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Thismethod is, for example, called in amethod My XXXHi t : : Dr aw( ) , describing the visualization of hits with
markers. The following is an example for this:

[]-=---- C++ source codes: An exanple of visualizing hits with
void MyCalorineterHit::Draw()

{
GAWi sManager * pVVi sManager = G4VWi sManager : : Cet Concr et el nst ance() ;
i f (pVWVi sManager)

{
GATr ansf or nBD trans(rot, pos);
GAVi sAttributes attribs;
G4Logi cal Vol une* | ogVol = pPhys->Get Logi cal Vol unme();
const AVi sAttributes* pVA = | ogVol - >Get Vi sAttri butes();
if(pVA) attribs = *pVA
G4Col our colour(1.,0.,0.);
attribs. Set Col our (col our);
attribs. Set ForceSol i d(true);

/]----- Re-vi sual i zati on of a sel ected physical volume with red col or
pWi sManager - >Dr aw( *pPhys, attri bs, trans);

/]----- end of C++ codes

8.5.7. HepRep Attributes for Hits

The HepRep file formats, HepRepFile and HepRepXML, attach various attributes to hits such that you can view
these attributes, label trajectories by these attributes or make visibility cuts based on these attributes. Examples of
adding HepRep attributes to hit classes can be found in examples /extended/analysis/A01 and /extended/runAn-
dEvent/REOL.

For example, in example REO1's class REQ1Cal orimeterHit.cc, available attributes will be:

* Hit Type

* Track ID

« ZCdlID

» Phi Cell ID

* Energy Deposited

» Energy Deposited by Track
* Position

* Logica Volume

You can add additional attributes of your choosing by modifying the relevant part of the hit class (look for the
methods GetAttDefs and CreateAttValues).

8.5.8. Visualization of text
In Geant4 Visualization, atext, i.e., a character string, is described by class G4Text inheriting GAVMar ker as

well asG4Squar e and ACi r ¢l e. Therefore, theway to visualizetext isthe sasme asfor hits. The corresponding
drawing method of G4VWi sManager is:

[]-=---- Drawi ng nmet hods of AText
virtual void GAWi sManager::Draw (const AText&, ...);

Therea implementation of this method is described in class (AVi sManager .

8.5.9. Visualization of polylines and tracking steps

Polylines, i.e., sets of successive line segments, are described by class G4Pol yl i ne. For G4Pol yl i ne, the
following drawing method of class AWi sManager is prepared:
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[]----- A drawi ng nmet hod of G4Pol yli ne
virtual void AWisManager::Draw (const GAPolyline& ...) ;

Therea implementation of this method is described in class A4Vi sManager .

Using this method, C++ source codes to visualize G4Pol yl i ne are described as follows:

N EEEEY C++ source code: How to visualize a polyline
GAWi sManager * pWi sManager = AW sManager : : Get Concr et el nst ance() ;

if (pWisMnager) {
G4APol yl i ne polyline ;

..... (C++ source codes to set vertex positions, color, etc)

pWi sManager -> Draw(pol yline);

[]----- end of C++ source codes

Tracking steps are able to be visualized based on the above visualization of G4Pol yl i ne. You can visuaize
tracking steps at each step automatically by writing a proper implementation of class MySteppingAction inheriting
HAUser St eppi ngAct i on, and also with the help of the Run Manager.

First, you must implement a method, My St eppi ngAct i on: : User St eppi ngActi on() . A typical imple-
mentation of this method is as follows:

[]----- Ct++ source code: An exanple of visualizing tracking steps
voi d MySt eppi ngActi on: : User St eppi ngActi on()
{

GAWi sManager * pWi sManager = AW sManager : : Get Concr et el nst ance() ;
if (pWisMnager) {

[]----- Get the Stepping Manager
const GASt eppi ngManager* pSM = GCet St eppi ngManager () ;

[]----- Define a |line segnment

GAPol yl i ne pol yli ne;

G4doubl e charge = pSM >Get Track()->Get Defi ni ti on() - >Get PDGChar ge() ;
G4Col our col our;

if (charge < 0.) colour = G4Colour(1., 0., 0.);
else if (charge < 0.) colour = G4Col our(0., 0., 1.);
el se col our = G4Col our(0., 1., 0.);

GAVisAttributes attribs(col our);

pol yli ne. Set Vi sAttributes(attribs);

pol yl i ne. push_back( pSM >Get St ep() - >Get Pr eSt epPoi nt () - >Get Posi ti on());
pol yl i ne. push_back( pSM >Get St ep() - >Get Post St epPoi nt () - >CGet Posi tion());

[]----- Call a draw ng nethod for (APolyline
pWi sManager -> Draw( pol yline);
}
}
[]----- end of C++ source code

Next, in order that the above C++ source code works, you have to pass the information of the MySteppingAction
to the Run Manager in the mai n() function:

[]----- C++ source code: Passing what to do at each step to the Run Manager

int main()

{
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// Run Manager
GARunManager * runManager = new ARunManager ;

/] User initialization classes

runManager - >Set User Act i on( new MySt eppi ngActi on);

I]----- end of C++ source code

Thus you can visualize tracking steps with various visualization attributes, e.g., color, at each step, automatically.

Aswell astracking steps, you can visualize any kind 3D object made of line segments, using class G4Pol yl i ne
and its drawing method, defined in class G4VVi sManager . See, for example, theimplementation of the/ vi s/
scene/ add/ axes command.

8.5.10. Visualization User Action

Y ou can implement the Dr aw method of G4VUser Vi sAct i on, e.g., the class definition could be:

cl ass Standal oneVi sAction: public GAVUser Vi sAction {
void Draw);
) ;

and the implementation:

voi d Standal oneVi sAction::Drawm) {
GAWi sManager * pVi svanager = AVWi sManager : : Get Concr et el nst ance() ;
if (pVisManager) {

/1 Sinple box...
pVi sManager - >Dr am({ ZABox( " box", 2*m 2*m 2*nm) ,
GAVi sAttributes(&G4Col our(1,1,0)));

/1 Bool ean solid...

GABox boxA("boxA", 3*m 3*m 3*m) ;

G4Box boxB("boxB", 1*m 1*m 1*n) ;

GASubtractionSol i d subtracted("subtracted_boxes", &o0xA, &o0xB,

GATr ansl at e3D(3*m 3*m 3*m) ) ;

pVi sManager - >Dr aw subt r act ed,
GAVi sAttri butes(&4Col our (0, 1,1)),
GATransl at e3D(6*m 6*m 6*m) ) ;

}
}

Explicit use of polyhedron objectsis equivalent, e.q.:

/1 Same, but explicit pol yhedron...

GAPol yhedr on* pA = G4Box("boxA", 3*m 3*m 3*n) . Cr eat ePol yhedron() ;
G4Pol yhedron* pB = ABox("boxB", 1*m 1*m 1*n) . Cr eat ePol yhedron() ;
pB- >Tr ansf or n{ G4Tr ansl at e3D(3*m 3*m 3*m) ) ;

G4Pol yhedr on* pSubtracted = new 4Pol yhedr on( pA- >subt ract (*pB)) ;
GAVi sAttributes subVisAtts(&Col our(0,1,1));

pSubt ract ed- >Set Vi sAttri but es(&ubVi sAtts);

pVi sManager - >Dr awm * pSubt r act ed, ATr ansl at e3D(6*m 6*m 6*m) ) ;

del ete pA;

del ete pB;

del ete pSubtract ed;

If efficiency isan issue, create the objects in the constructor, delete them in the destructor and draw them in your
Dr aw method. Anyway, an instance of your class needs to be registered with the vis manager, e.g.:
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G4Vi sManager * vi sManager = new (4Vi sExecuti ve;
vi sManager->Initialize ();

vi sManager - >Set User Act i on
(new St andal oneVi sActi on,
GAVi sExtent (-5*m 5*m -5*m 5*m -5*m 5*m)); // 2nd argunent optional.

then activate by adding to a scene, e.g:

/control /verbose 2

/vi s/verbose c

/vi s/ open OGLSXm

/vi s/ scene/ create

#/ vi s/ scene/ add/ user Act i on

/vi s/ scene/ add/ user Action -10 10 -10 10 -10 10 m
#/ vi s/ scene/ add/ axes 0 0 0 10 m

#/ vi s/ scene/ add/ scal e 10 m

/vi s/ sceneHandl er/ attach

[vis/viewer/refresh

The extent can be added on registration or on the command line or neither (if the extent of the scene is set by
other components). Y our Dr awmethod will be called whenever needed to refresh the screen or rebuild a graphics
database, for any chosen viewer. The scene can be attached to any scene handler and your drawing will be shown.

8.5.11. Standalone Visualization

The above raises the possibility of using Geant4 as a "standalone" graphics package without invoking the run
manager. The following main program, together with a user visualization action and a macro file, will allow you
to view your drawing interactively on any of the supported graphics systems.

#i ncl ude "gl obal s. hh"

#i ncl ude "AVi sExecuti ve. hh"
#i ncl ude " &AVi sExt ent . hh"

#i ncl ude " 4Ul manager . hh"

#i ncl ude "G4Ul t er m nal . hh"
#i ncl ude "&4U tcsh. hh"

#i ncl ude " St andal oneVi sActi on. hh"
int main() {

G4Vi sManager * vi sManager = new (AVi sExecuti ve;
vi sManager->Initialize ();

vi sManager - >Set User Act i on
(new St andal oneVi sActi on,
GAVi sExtent (-5*m 5*m -5*m 5*m -5*m 5*m)); // 2nd argunent optional .

GAUl manager* U = GAUl manager: : Get Ul poi nter ();
Ul - >Appl yCommand ("/control /execute standal one. g4nt);

AUl sessi on* session = new AUl tern nal (new G4Ul t csh);
sessi on->SessionStart();

del ete session;
del et e vi sManager;

8.6. Visualization Attributes

Visualization attributes are extra pieces of information associated with the visualizable objects. Thisinformation
is necessary only for visualization, and is not included in geometrical information such as shapes, position, and
orientation. Typical examples of visualization attributes are Color, Visible/Invisible, Wireframe/Solid. For exam-
ple, in visualizing a box, the Visualization Manager must know its colour. If an object to be visualized has not
been assigned a set of visualization attributes, then an appropriate default set is used automatically.
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A set of visudization attributes is held by an instance of class G4Vi sAttri but es defined in the
gr aphi cs_r eps category. Inthefollowing, weexplainthemainfieldsof theG4Vi sAt t r i but es oneby one.

8.6.1. Visibility

Visibility is a boolean flag to control the visibility of objects that are passed to the Visualization Manager for
visuaization. Visihility is set with the following access function:

void GAVisAttributes::SetVisibility (&G4bool visibility);

If you givef al se totheargument, and if culling is activated (see below), visualization is skipped for objects for
which this set of visualization attributesis assigned. The default value of visibility ist r ue.

Note that whether an object is visible or not is also affected by the current culling policy, which can be tuned
with visualization commands.

By default the following public static function is defined:

static const GAVisAttributes& Getlnvisible();

which returns areference to a const object in which visibility issettof al se. It can be used as follows:

experinental Hal | _| ogi cal -> SetVisAttributes (GAVisAttributes:: Getlnvisible());

Direct access to the public static const data member G4Vi sAttri but es: : I nvi si bl e isaso possible but
deprecated on account of initialisation issues with dynamic libraries.

8.6.2. Colour

8.6.2.1. Construction

ClassAACol our (an equivalent classname, G4Col or , isalso available) has4 fields, which represent the RGBA
(red, green, blue, and alpha) components of colour. Each component takes a value between O and 1. If anirrele-
vant value, i.e., avalue less than O or greater than 1, is given as an argument of the constructor, such avalueis
automatically clipped to 0 or 1. Alphais opacity. Its default value 1 means "opaque”.

A (ACol our object isinstantiated by giving red, green, and blue components to its constructor, i.e.,

GACol our : : G4Col our ( GAdouble r = 1.0,
G4double g = 1.0,
GHAdouble b = 1.0,
G4double a = 1.0);

/] O<=red, green, blue <= 1.0
The default value of each component is 1.0. That isto say, the default colour is "white" (opague).

For example, colours which are often used can be instantiated as follows:

GACol our white ) Il

(ACol our white (1.0, 1.0, 1.0) ; [//

GACol our gray (0.5, 0.5, 0.5) ; [// gray
(ACol our bl ack (0.0, 0.0, 0.0) ; [// black
ACol our red (1.0, 0.0, 0.0) ; // red
G4ACol our green (0.0, 1.0, 0.0) ; [// green
(ACol our bl ue (0.0, 0.0, 1.0) ; // blue
GACol our cyan (0.0, 1.0, 1.0) ; [//

GACol our mmgenta (1.0, 0.0, 1.0) ; // negenta
GACol our yellow (1.0, 1.0, 0.0) ; [//
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It is also possible to instantiate common colours through static public data member functions:

stati
stati
stati
stati
stati
stati
stati
stati
stati
stati

const
const
const
const
const
const
const
const
const
const

O0O0O000000O0

G4Col our & Wi te
GACol our & Gray
GACol our & G ey
G4Col our & Bl ack
G4Col our & Red

G4Col our & Green
G4Col our & Bl ue
GACol our & Cyan
G4Col our & Magen
G4Col our & Yel |l o

For example, alocal G4Col our could be constructed as:

G4ACol

our myRed(GACol our:: Red());

After instantiation of aG4Col our object, you can access to its components with the following access functions:

G4doubl e GACol our: : Get Red
GAdoubl e GACol our: : Get Green
GAdoubl e G4Col our : : Get Bl ue

8.6.2.2. Colour Map

() const ;
() const ;
() const ;

/Il Get the red conponent .
// Get the green conponent.
/] Get the blue conponent.

(ACol our aso provides a static colour map, giving access to predefined G4Col our 'sthrougha (ASt ri ng
key. The default mapping is:

)
0
iiGey )
::Black )
:: Red ()
::Green )
;1 Blue ()
:: Cyan )
:: Magenta ()
:Yellow ()

Colours can be retrieved through the GetCol our method:

bool

For exampl

GACol o

}

el se {

GACol our : : Get Col our (const GAString& key, (ACol our& result)

el

ur myCol our (G4Col our: : Bl ack());
if (ACol our:: Get Col our("red", nyCol our)
/1 Successfully retrieved colour "red". nyCol our is now red

) {

// Colour did not exist in map. nyColour is still black

}

If the key is not registered in the colour map, a warning message is printed and the input colour is not changed.
The colour map is case insensitive.

It is also possible to load user defined G4Col our 's into the map through the public AddToMap method. For

example:

GACol o

ur myCol our (0.2, 0.2, 0.2, 1);
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GACol our : : AddToMap( " cust om', mnyCol our);

Thisloads a user defined G4 Col our with key "custom™ into the colour map.

8.6.2.3. Colour and G4VisAttributes

Class(AVi sAt t ri but es holdsitscolour entry asan object of classG4Col our . A G4Col our objectispassed
toaG4AVi sAt tri but es object with the following access functions:

I]----- Set functions of G4VisAttributes.
voi d GAVisAttributes:: Set Col our (const GACol our& col our);
void GAVi sAttri butes:: Set Col or (const (4Col or& color );

We can also set RGBA components directly:

[]----- Set functions of G4VisAttributes

void GAVi sAttributes:: Set Col our ( GAdoubl e red
GAdoubl e green |,
HAdoubl e blue
G4doubl e al pha = 1.0);

void GAVisAttributes:: SetColor ( Adouble red ,
G4doubl e green ,

GAdoubl e bl ue
G4doubl e al pha = 1.);

The following constructor with G4Col our asitsargument is also supported:

[]----- Constructor of GAVisAttributes
GAVi sAttributes:: GAVisAttri butes (const (ACol our & col our);

Note that colour assigned to a G4Vi sAt tri but es object is not always the colour that ultimately appears in
the visualization. The ultimate appearance may be affected by shading and lighting models applied in the selected
visualization driver or stand-alone graphics system.

8.6.3. Forcing attributes

As you will see later, you can select a "drawing style" from various options. For example, you can select your
detector components to be visualized in "wireframe" or with "surfaces’. In the former, only the edges of your
detector are drawn and so the detector looks transparent. In the latter, your detector looks opague with shading
effects.

The forced wireframe and forced solid styles make it possible to mix the wireframe and surface visualization (if
your selected graphics system supports such visualization). For example, you can make only the outer wall of your
detector "wired" (transparent) and can see inside in detail.

Forced wireframe style is set with the following access function:

void GAVi sAttri butes:: Set ForceWrefrane (Gibool force);

If you givet r ue as the argument, objects for which this set of visualization attributes is assigned are always
visualized in wireframe even if in general, the surface drawing style has been requested. The default value of the
forced wireframe styleisf al se.

Similarly, forced solid style, i.e., to force that objects are always visualized with surfaces, is set with:

voi d GAVisAttributes:: Set ForceSolid (G4bool force);

The default value of the forced solid styleisf al se, too.
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Y ou can also force auxiliary edgesto be visible. Normally they are not visible unless you set the appropriate view
parameter. Forcing the auxiliary edges to be visible means that auxiliary edges will be seen whatever the view
parameters.

Auxiliary edges are not genuine edges of the volume. They may bein a curved surface made out of polygons, for
example, or in plane surface of complicated shape that has to be broken down into simpler polygons. HepPoly-
hedron breaks all surfaces into triangles or quadrilaterals. There will be auxiliary edges for any volumes with a
curved surface, such as atube or a sphere, or avolume resulting from a Boolean operation. Normally, they are not
shown, but sometimesit is useful to see them. In particular, a sphere, because it has no egdes, will not be seenin
wireframe mode in some graphics systems unless requested by the view parameters or forced, as described here.

To force auxiliary edgesto be visible, use:

voi d GAVi sAttributes:: Set For ceAuxEdgeVi si bl e (G4bool force);
The default value of the force auxiliary edgesvisibleflagisf al se.

For volumes with edgesthat are parts of acircle, such asatube (G4Tubs), etc., it is possible to force the precision
of polyhedral representation for visualisation. Thisis recommended for volumes containing only a small angle of
circle, for example, athin tube segment.

For visualisation, a circle is represented by an N-sided polygon. The default is 24 sides or segments. The user

may change this for all volumes in a particular viewer at run time with /visiviewer/set/lineSegmentsPerCircle;
alternatively it can be forced for a particular volume with:

voi d GAVi sAttri butes:: Set ForceLi neSegnentsPerCircle (G4int nSegnents);

8.6.4. Other attributes

Hereisalist of Set methods for class4Vi sAt t ri but es:

void SetVisibility (G4bool ) ;

voi d Set Daught erslnvi sible (Gibool);

voi d Set Col our (const G4Col our &) ;

voi d Set Col or (const GACol or &) ;

voi d Set Col our (GAdoubl e red, GAdoubl e green, Adoubl e bl ue,
G4doubl e al pha = 1.);

voi d Set Col or (GAdoubl e red, GAdoubl e green, Adoubl e bl ue,
G4doubl e al pha = 1.);

void SetLineStyle (Li neStyle);

voi d SetLineWdth (GAdoubl e) ;

voi d Set ForceWr efrane (G4bool ) ;

voi d Set ForceSolid (GAbool ) ;

voi d Set For ceAuxEdgeVi si bl e (&4bool ) ;

voi d Set For ceLi neSegnentsPerCircl e (&4i nt nSegnents);

/1 Allows choice of circle approximtion. A circle of 360 degrees
/1 will be conposed of nSegnents |ine segnents. |If your solid has
/1 curves of D degrees that you need to divide into N segnents,

/| specify nSegnents = N * 360 / D.

void SetStartTi ne (GAdoubl e) ;

voi d Set EndTi ne (GAdoubl e) ;

voi d Set Att Val ues (const std::vector<4Att Val ue>*);

voi d Set AttDefs (const std:: map<String, G4At t Def >*) ;

8.6.5. Constructors of G4VisAttributes

The following constructors are supported for classG4Vi sAt tri but es:

[f----- Constructors of class GAVisAttributes
GAVisAttributes (void);

GAVi sAttributes (GAbool visibility);

GAVi sAttributes (const G4Col our & col our);

GAVi sAttributes (G4bool visibility, const G4Col our & col our);
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8.6.6. How to assign G4VisAttributes to a logical volume

In constructing your detector components, you may assign aset of visualization attributesto each "logical volume"
in order to visualize them later (if you do not do this, the graphics system will use adefault set). Y ou cannot make
asolid such as G4Box hold a set of visualization attributes; this is because a solid should hold only geometrical
information. At present, you cannot make a physical volume hold one, but there are plans to design a memory-ef-
ficient way to do it; however, you can visualize a transient piece of solid or physical volume with a temporary
assigned set of visualization attributes.

Class (ALogi cal Vol une holds a pointer of G4Vi sAttri but es. Thisfield is set and referenced with the
following access functions:

[]----- Set functions of GAVisAttributes
void GAVisAttributes::SetVisAttributes (const GAVisAttributes* pVA);
void GAVisAttributes::SetVisAttributes (const AVisAttributes& VA);

[]----- Get functions of GAVisAttributes
const GAVisAttributes* GAVisAttributes:: GetVisAttributes () const;

The following is sample C++ source codes for assigning a set of visualization attributes with cyan colour and
forced wireframe style to alogical volume:

[]----- C++ source codes: Assigning AVisAttributes to a | ogical volune

// Instantiation of a |ogical volune
nyTarget Log = new GALogi cal Vol ume( nyTar get Tube, BGO, "TLog", 0, 0, 0);

/1l lInstantiation of a set of visualization attributes with cyan col our
GAVi sAttributes * cal TubeVi sAtt = new AVi sAttributes(&4Colour(0.,1.,1.));

/] Set the forced wireframe style
cal TubeVi sAtt - >Set ForceW refrane(true);

/'l Assignnent of the visualization attributes to the |ogical vol unme
nmyTar get Log- >Set Vi sAttri but es(cal TubeVi sAtt);

[]----- end of C++ source codes

Note that the life of the visualization attributes must be at least as long as the objects to which they are assigned; it
isthe users' responsibility to ensure this, and to delete the visualization attributes when they are no longer needed
(or just leave them to die at the end of the job).

8.6.7. Additional User-Defined Attributes

Geant4 Trajectories and Hits can be assigned additional arbitrary attributes that will be displayed when you click
on the relevant object in the WIRED or FRED HepRep browsers. WIRED then lets you label objects by any of
these attributes or cut visibility based on these attributes.

Define the attributes with lines such as:

std:: map<G4AString, AAtt Def >* store = AAttDef Store:: Getlnstance("ATraj ectory”, i sNew);

GAString PN("PN');

(*store)[PN] = GAAttDef (PN, "Particle Nanme","Physics","","&4String");

GAString | Mom( "l Mont') ;

(*store)[IMon] = GAAttDef (I Mom "Mnentum of track at start of trajectory", "Physics", ""
"GAThreeVector");

Then fill the attributes with lines such as:

std::vect or<&4Att Val ue>* val ues = new std:: vect or <&At t Val ue>;
val ues- >push_back( G4At t Val ue("PN', Particl eNanme, ""));

s. seekp(std::ios::beg);

S << ABestUnit(initial Momentum "Energy") << std::ends;

val ues- >push_back( G4At t Val ue("1 Mont', c,""));

See geantd/source/tracking/src/G4Trajectory.cc for agood example.
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(AAt t Val ue objectsarelight, containing just the value; for the long description and other sharable information
the 4At t Val ue object refers to a AAt t Def object. They are based on the HepRep standard described at
http://www.slac.stanford.edu/~perl/heprep/ . Geant4 also provides an 4 At t Def St or e.

Geant4 provides some default examples of the use of this facility in the trajectory classes in /sourcef/tracking
such as ATr aj ect ory, ASnoot hTr aj ectory. ATraj ectory: : Creat eAtt Val ues shows how
(AAt t Val ue objectscan bemadeand ATr aj ect ory: : Get At t Def s shows how to make the correspond-
ing AAt t Def objects and use the AAt t Def St or e. Note that the "user" of CreateAttValues guarantees to
destroy them; thisisaway of alowing creation on demand and leaving the A Tr aj ect or y object, for example,
free of such objectsin memory. The commentsin GAVTr aj ect or y. hh explain further and additional insights
might be obtained by looking at two methods which usethem, namely GAVTr aj ect ory: : Dr awTr aj ect ory
and AVTr aj ect ory: : ShowTr aj ectory.

Hits classes in examples /extended/analysis/A01 and /extended/runAndEvent/REO1 show how to do the same
for your hits. The base class no-action methods CreateAttVaues and GetAttDefs should be overridden in your
concrete class. The commentsin G4VHi t . hh explain further.

In addition, the wuser is free to add a G4std::vector<AttValue>* and a
Astd: : vect or <AAt t Def >* to a GAVi sAttri but es object as could, for example, be used by a
ALogi cal Vol une object.

At the time of writing, only the HepRep graphics systems are capable of displaying the G4AttValue information,

but this information will become useful for all Geant4 visualization systems through improvementsin release 8.1
or later.

8.7. Enhanced Trajectory Drawing

8.7.1. Default Configuration

Trajectory drawing styles are specified through trajectory drawing models. Each drawing model has a default
configuration provided through a G4VisTrajContext object. The default context settings are shown below.

Property Default Setting
Line colour grey

Line visibility true

Draw line true

Draw auxiliary points false

Auxiliary point type sgquares

Auxiliary point size

2 pixels or mm*

Auxiliary point size type screen
Auxiliary point fill style filled
Auxiliary point colour magenta
Auxiliary point visibility true
Draw step point false
Step point type circles
Step point size 2 pixels or mm*
Step point size type screen
Step point fill style filled
Step point colour yellow
Step point visibility true
Timedliceinterval 0
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* Depending on size type. If size type == screen, pixels are assumed and no unit need be supplied. If size type
==world, aunit must be supplied, e.g., 10 cm.

Note:

« Different visualisation drivers handle trgjectory configuration in different ways, so trajectories may not neces-
sarily get displayed as you have configured them.

8.7.2. Trajectory Drawing Models

A trgjectory drawing model can override the default context according to the properties of a given trajectory. The
following models are supplied with the Geant4 distribution:

» GATrgjectoryGenericDrawer (generic)

» GATrgjectoryDrawByCharge (drawByCharge)

» GATrajectoryDrawByParticlel D (drawByParticlel D)

» GATrgjectoryDrawByOriginVolume (drawByOriginV olume)

» GATrgjectoryDrawByTouchedV olume (drawByTouchedV olume)
» GATrajectoryDrawByAttribute (drawByAdttribute)

Both the context and model properties can be configured by the user. The models are described briefly below,
followed by some example configuration commands.

GA4TrajectoryGenericDrawer
Thismodel simply draws all trgjectories in the same style, with the properties provided by the context.
G4TrajectoryDrawByCharge

Thisisthe default model - if no model is specified by the user, this model will be constructed automatically. The
trajectory lines are coloured according to charge, with all other configuration parameters provided by the default
context. The default colouring scheme is shown below.

Char ge Col our
1 Bl ue

1 Red
0 Green

GA4TrajectoryDrawByParticlelD

Thismodel colourstrajectory lines according to particle type. All other configuration parameters are provided by
the default context. By default, all trajectories are coloured grey. Chosen particle types can be highlighted with
specified colours.

GA4TrajectoryDrawByOriginVolume

This model colours trgjectory lines according to the trajectory's originating volume name. The volume can be
either alogical or physical volume. Physical volume takes precedence over logical volume. All trajectories are
coloured grey by default.

G4TrajectoryDrawByTouchedVolume

This model colours trajectory lines if it touches one or more volumes according to the physical volume name(s).
It requires rich trajectories, GARichTrajectory (/ vi s/ scene/ add/ traj ectori es ri ch). All trgjectories
are coloured grey by default.

G4TrajectoryDrawByAttribute

This model draws trajectories based on the HepRep style attributes associated with trajectories. Each attribute
drawer can be configured with interval and/or single value data. A new context object is created for each inter-
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val/single value. This makes it possible to have different step point markers etc, as well as line colour for trajec-
tory attributes falling into different intervals, or matching single values. The single value data should override the
interval data, allowing specific values to be highlighted. Units should be specified on the command line if the
attribute unit is specified either as a G4BestUnit or if the unit is part of the value string.

8.7.3. Controlling from Commands

Multiple trajectory models can be created and configured using commandsinthe”/ vi s/ nodel i ng/ tr aj ec-
t ori es/ " directory. It isthen possible to list available models and select one to be current.

Model configuration commands are generated dynamically when amodel is instantiated. These commands apply
directly tothat instance. Thismakesit possibleto have multipleinstances of the drawByCharge model for example,
each independently configurable through it's own set of commands.

See the interactive help for more information on the available commands.

8.7.3.1. Example commands

#Create a generic model named generic-0 by default

/vi s/ model i ng/trajectories/create/generic

#Configure context to colour all trajectoriesred

/vi s/ nmodel i ng/trajectories/generic-0/default/setLineCol our red

#Create a drawByCharge model named drawCharge-0 by default (Subsequent models will be named drawBy-
Charge-1, drawByCharge-2, etc.)

/vi s/ nmodel i ng/trajectories/create/drawByChar ge

#Create a drawByCharge model named testChargeM odel

/vi s/ model i ng/trajectories/create/drawByCharge test Char geModel

#Configure drawByCharge-0 model

/vi s/ nmodel i ng/trajectories/drawByCharge-0/set 1 red
/vi s/ model i ng/trajectories/drawByCharge-0/set -1 red
/vi s/ nmodel i ng/trajectories/drawByCharge-0/set 0 white

#Configure testCharge model through G4Colour components

/vi s/ model ing/trajectories/testChargeMddel /setRGBA 1 0 1 1 1
/vi s/ nmodel i ng/trajectories/testChargeMdel /setRGBA -1 0.5 0.5 0.5 1
/vi s/ model ing/trajectories/testChargeMddel /setRGBA O 1 1 0 1

#Create a drawByParticlel D model named drawByParticlel D-0

/vi s/ model ing/trajectories/create/drawByParticlel D

#Configure drawByParticlel D-0 model

/vi s/ nmodel i ng/trajectories/drawByParticlel D-0/set ganma red
/vi s/ model ing/trajectories/drawByParticlel D-0/setRGBA e+ 1 01 1

#List available models
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/vis/modeling/trajectories/list

#select drawByParticlel D-0 to be current

/vi s/ nmodel i ng/trajectories/select drawByParticlel D-0

#Create a drawByAttribute model named drawByAttribute-0

/vi s/ nmodel ing/trajectories/create/drawByAttribute

#Configure drawByAttribute-0 model

/vi s/ model ing/trajectories/drawByAttribute-0/verbose true

#Select attribute "CPN"

/vi s/ model ing/trajectories/drawByAttribute-0/setAttribute CPN

#Configure single value data

[ vi
/vi
[ vi
/vi
[ vi

[ vi
/vi
[ vi
/vi
[ vi

s/ nodel i
s/ nodel i
s/ nodel i
s/ nodel i
s/ nodel i

s/ nodel i
s/ nodel i
s/ nodel i
s/ nodel i
s/ nodel i

ng/trajectori
ng/trajectori
ng/trajectori
ng/trajectori
ng/trajectori

ng/trajectori
ng/trajectori
ng/trajectori
ng/trajectori
ng/trajectori

es/ drawByAttri but e- 0/ addVal ue
es/ drawByAttri but e- 0/ addVal ue
es/ drawByAttri but e- 0/ addVal ue
es/ drawByAttri but e- 0/ addVal ue
es/ drawByAttri but e- 0/ addVal ue

es/ drawByAttri but e-0/ brem key/ set Li neCol our

brem key eBrem
anni hi | _key anni hi |
decay_key Decay
mul on_key mnul oni

es/ drawByAt tri but e- 0/ anni hi | _key/ set Li neCol our
es/drawByAttri but e- 0/ decay_key/ set Li neCol our
es/ drawByAttri but e-0/ el on_key/ set Li neCol our

es/ drawByAttri but e- 0/ mul on_key/ set Li neCol our

#Create a drawByAttribute model named drawByAttribute-1

/vi s/ nmodel i ng/trajectori

#Select "IMag" attribute

/vi s/ model ing/trajectori

#Configure interval data

[ vi
[ vi
[ vi
[ vi
[ vi
[ vi

[ vi
[ vi
[ vi
[ vi
[ vi
[ vi

s/ model i
s/ nodel i
s/ model i
s/ nodel i
s/ model i
s/ nodel i

s/ nodel i
s/ model i
s/ nodel i
s/ model i
s/ nodel i
s/ model i

ng/trajectori
ng/trajectori
ng/trajectori
ng/trajectori
ng/trajectori
ng/trajectori

ng/trajectori
ng/trajectori
ng/trajectori
ng/trajectori
ng/trajectori
ng/trajectori

es/create/ drawByAttri bute

es/drawByAttri bute-1/setAttribute

es/ drawByAttri but e- 1/ addl nt er val
es/drawByAttri but e- 1/ addl nt er val
es/ drawByAttri but e- 1/ addl nt er val
es/drawByAttri but e- 1/ addl nt er val
es/ drawByAttri but e- 1/ addl nt er val
es/drawByAttri but e- 1/ addl nt er val

es/drawByAttribute-1/i
es/ drawByAttribute-1/i
es/drawByAttribute-1/i
es/ drawByAttribute-1/i
es/drawByAttribute-1/i
es/ drawByAttribute-1/i

nt erval 1/ set Li
nt erval 2/ set Li
nt erval 3/ set Li
nt erval 4/ set Li
nt erval 5/ set Li
nt erval 6/ set Li

el on_key el oni
red
green
cyan
yel | ow
magent a
| Mag
interval 1 0.0 keV 2.5MeV
interval2 2.5 MeV 5 MeV
interval 3 5 MV 7.5 MeV
interval4 7.5 MeV 10 MeV
interval 5 10 MeV 12.5 MeV
interval 6 12. 5 MeV 10000 MeV
neCol our RGBA 0.8 0
neCol our RGBA 0.23 0.4
neCol our RGBA 0 1 0
neCol ourRGBA 1 1 0
neCol our RGBA 1 0.3
neCol ourRGBA 1 0 0

#Create a drawByEncounteredV olume model named drawByEncounteredV olume-0

/vi s/ model i ng/trajectories/create/drawByEncount er edVol une

#Change the color for a specific encountered shape
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/vi s/ model i ng/ traj ectories/drawByEncount er edVol unme- 0/ set Shapel cyan

8.7.4. Controlling from Compiled Code

It is possible to use the enhanced trajectory drawing functionality in compiled code as well as from commands.
Multiple trajectory models can be instantiated, configured and registered with G4VisManager. Once registered,
the models are owned by G4VisManager, and must not be deleted by the user.

Only one model may be current. For example:

G4Vi sManager * vi sManager = new G4Vi sExecuti ve;
vi sManager->lnitialize();

GATr aj ect oryDrawByParti cl el D* nodel = new ATraj ect oryDrawByParti cl el D;
GATr aj ect oryDrawByParticl el D npdel 2 = new GATraj ect oryDrawByParticlel D("test");

nodel - >Set Def aul t ("cyan") ;

nodel - >Set (" gamm", "green");

nodel - >Set ("e+", "magenta");

nodel - >Set ("e-", G4Col our (0.3, 0.3, 0.3));

vi sManager - >Regi st er Model ( nodel ) ;
vi sManager - >Regi st er Model ( nodel 2) ;

vi sManager - >Sel ect Tr aj ect or yMbdel ( nodel - >Nane() ) ;

8.7.5. Drawing by time

To draw by time, you need to use G4RichTrajectory, for example:

/vis/scene/add/trajectories rich

or

/vis/scene/add/trajectories rich snooth

When you run, you need to create a trajectory model and set the time dlice interval (remembering that paticles
are often relativistic and travel 30 cm/ns):

/vi s/ nmodel i ng/trajectories/create/drawByCharge

/vi s/ model i ng/ trajectories/drawByChar ge-0/ def aul t/ set DrawSt epPts true

/vi s/ nmodel i ng/ trajectories/drawByCharge-0/def aul t/set St epPtsSi ze 5

/vi s/ model i ng/ traj ectories/drawByChar ge-0/ def aul t/ set DrawAuxPts true

/vi s/ model i ng/trajectories/drawByChar ge- 0/ def aul t/ set AuxPtsSi ze 5

/vi s/ model i ng/trajectories/drawByCharge-0/defaul t/setTinmeSlicelnterval 0.1 ns
/vi s/ nmodeling/trajectories/list

and use a graphics driver that can display by time:

/vi s/ open OGL

[ vi s/ dr awNol une
/vis/scene/add/trajectories rich
/vis/ogl/set/startTime 0.5 ns
/vis/logl/set/endTime 0.8 ns

/ run/ bean®tn

[vis/viewer/refresh

A good way to see the particles moving through the detector is:

/vis/logl/set/fade 1
/vi s/ ogl/set/displayHeadTi ne true
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/control/alias tinmeRange 1
/control/l oop novie.loop startTinme -{tineRange} 40 0.1

where f ade gives avapour-trail effect, di spl ayHeadTi ne displays the time of the leading edge as 2D text,
and novi e. | oop isamacrofile:

/vis/ogl/set/startTinme {startTime} ns {ti meRange} ns

From there, it's straightforward to Section 8.10 make amovie.

8.8. Trajectory Filtering

Trajectory filtering allows you to visualise a subset of available trajectories. This can be useful if you only want
to view interesting trajectories and discard uninteresting ones. Trajectory filtering can be run in two modes:

 Soft filtering: In this mode, uninteresting trajectories are marked invisible. Hence, they are still written, but
(depending on the driver) will not be displayed. Some drivers, for example the HepRepFile driver, will alow
you to selectively view these soft filtered trajectories

» Hard filtering: In this mode, uninteresting trajectories are not drawn at all. This mode is especially useful if
the job produces huge graphics files, dominated by data from uninteresting trajectories.

Trajectory filter modelsare used to apply filtering according to specific criteria. Thefollowing modelsare currently
supplied with the Geant4 distribution:

» GATraectoryChargeFilter (chargeFilter)

o GATrgectoryParticleFilter (particleFilter)

e GATrajectoryOriginVolumeFilter (originV olumeFilter)

» GATrgjectory TouchedV olumeFilter (touchedV olumeFilter)
o GATrgjectoryAttributeFilter (attributeilter)

Multiple filters are automatically chained together, and can configured either interactively or in commands or in
compiled code. The filters can be inverted, set to be inactive or set in a verbose mode. The above models are
described briefly below, followed by some example configuration commands.

GA4TrajectoryChargeFilter

Thismodd filterstrajectoriesaccording to charge. In standard running mode, only trajectorieswith charges match-
ing those registered with the model will pass thefilter.

GA4TrajectoryParticleFilter

Thismodel filters tragjectories according to particle type. In standard running mode, only trajectories with particle
types matching those registered with the model will pass the filter.

GA4TrajectoryOriginVolumekFilter

This model filters trajectories according to originating volume name. In standard running mode, only trajectories
with originating volumes matching those registered with the model will pass the filter.

GA4TrajectoryTouchedVolumekFilter

Thismodel filterstrajectoriesthat touch one or morevolumesaccording to the physical volume name(s). It requires
rich trgjectories, G4RichTrgjectory (/ vi s/ scene/ add/ t raj ect ori es ri ch). Instandard running mode,
only trajectories that touch volumes matching those registered with the model will pass the filter.

GA4TrajectoryAttributeFilter

This model filters trajectories based on the HepRep style attributes associated with trajectories. Each attribute
drawer can be configured with interval and/or single value data. Single value data should override the interval
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data. Units should be specified on the command line if the attribute unit is specified either as a G4BestUnit or if
the unit is part of the value string.

8.8.1. Controlling from Commands

Multiple trajectory filter models can be created and configured using commands in the "/ vi s/ filter-
i ng/traj ectories/"directory. All generated filter models are chained together automatically.

Model configuration commands are generated dynamically when afilter model is instantiated. These commands
apply directly to that instance.

See the interactive help for more information on the available commands.

8.8.2. Example commands

# Create a particle filter. Configure to pass only gammas. Then
# invert to pass anything other than ganmas. Set verbose printout,
# and then deactivate filter

/vis/filtering/trajectories/create/particleFilter
/vis/filtering/trajectories/particleFilter-0/add ganma
/vis/filtering/trajectories/particleFilter-0/invert true
/vis/filtering/trajectories/particleFilter-0/verbose true
/vis/filtering/trajectories/particleFilter-0/active fal se

# Create a charge filter. Configure to pass only neutral trajectories.
# Set verbose printout. Reset filter and reconfigure to pass only
# negativly charged trajectories.

/vis/filtering/trajectories/create/chargeFilter
/vis/filtering/trajectories/chargeFilter-0/add O
/vis/filtering/trajectories/chargeFilter-0/verbose true

/vis/filtering/trajectories/chargeFilter-0/reset true
/vis/filtering/trajectories/chargeFilter-0/add -1

# Create an attribute filter named attributeFilter-0
/vis/filtering/trajectories/create/attributeFilter

# Select attribute "I Mg"
/vis/filtering/trajectories/attributeFilter-0/setAttribute | Mg

# Select trajectories with 2.5 MeV <= | Mag< 1000 MeV
/vis/filtering/trajectories/attributeFilter-0/addlnterval 2.5 MeV 1000 MeV

# List filters
/vis/filtering/trajectories/list

Note that although parti cl eFilter-0 and chargeFil ter-0 are automatically chained, parti cl e-
Fi | t er - 0 will not have any effect since it is has been deactivated.

8.8.3. Hit and Digi Filtering

The attribute based filtering can be used on hits and digitisations as well as trgjectories. To active the interactive
attribute based hit filtering, afilter call should be added to the "Draw" method of the hit (or digi) class:

void MyHit:: Draw()
{

if (! pwisManager->FilterH t(*this)) return;
}

Interactive filtering can then be done through the commandsin/ vi s/ filtering/ hits ordi gi.
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8.9. Polylines, Markers and Text

Polylines, markers and text are defined in the gr aphi cs_r eps category, and are used only for visualization
(Section 8.5). Users may create any of these objects with local scope; once drawn, they may safely be deleted or
allowed to go out of scope.

8.9.1. Polylines

A polyline is a set of successive line segments. It is defined with a class G4Pol yl i ne defined in the
gr aphi cs_r eps category. A polylineis used to visualize tracking steps, particle trajectories, coordinate axes,
and any other user-defined objects made of line segments.

HAPol yl i ne isdefined asalist of G4Poi nt 3D objects, i.e., vertex positions. The vertex positions are set to a
APol yl i ne object with the push_back() method.

For example, an x-axis with length 5 cm and with red color is defined in Example 8.5.

Example 8.5. Defining an x-axiswith length 5 cm and with colour red.

[]----- C++ source codes: An exanple of defining a line segnment
// Instantiate an enply polyline object
GHAPolyline x_axis;

/1 Set red line colour

G4Col our red(1.0, 0.0, 0.0);
GAVisAttributes att(red);
x_axis.SetVisAttributes(&att);

I/ Set vertex positions
X_axi s. push_back( GAPoi nt3D(0., 0., 0.) );
x_axi s. push_back( G4Poi nt3D(5.*cm 0., 0.) );

[]----- end of C++ source codes

8.9.2. Markers

Here we explain how to use 3D markersin Geant4 Visualization.

What are Markers?

Markers set marksat arbitrary positionsinthe 3D space. They are often used to visualize hits of particlesat detector
components. A marker is a 2-dimensional primitive with shape (square, circle, etc), color, and special properties
(a) of dways facing the camera and (b) of having the possibility of a size defined in screen units (pixels). Here
"size" means "overal size", e.g., diameter of circle and side of square (but diameter and radius access functions
are defined to avoid ambiguity).

So the user who constructs a marker should decide whether or not it should be visualized to agiven sizein world
coordinates by setting the world size. Alternatively, the user can set the screen size and the marker is visualized
to its screen size. Finally, the user may decide not to set any size; in that case, it is drawn according to the sizes
specified in the default marker specified in the class (AVi ewPar anet er s.

By default, "square’ and "circle" are supported in Geant4 Visualization. The former is described with class
ASquar e, and the latter with classG4Gi r ¢l e:

Marker Type ClassName
circle ACircle
right square ASquar e

These classes are inherited from class G4VMar ker . They have constructors as follows:
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I]----- Constructors of AC rcle and ASquare
GACircle::GAC rcl e (const GAPoi nt 3D& pos );
G4Squar e: : G4ASquar e (const G4Poi nt 3D& pos) ;

Access functions of class (4VMar ker are summarized below.
Access functions of markers

Example 8.6 shows the access functions inherited from the base class G4VMar ker .

Example 8.6. The accessfunctionsinherited from the base class G4VMar ker .

[f----- Set functions of G4VMarker

voi d GAVMarker: : Set Posi tion( const (4Point3D& );

voi d GAVMar ker : : Set Wr | dSi ze( GAdoubl e );

voi d GAVMar ker: : Set Wr | dDi anet er ( G4doubl e ) ;

voi d GAVMar ker : : Set Wor | dRadi us( G4doubl e );

voi d GAVMar ker: : Set ScreenSi ze( GAdoubl e );

voi d GAVMar ker : : Set Scr eenDi anet er ( G4doubl e ) ;

voi d GAVMar ker: : Set Scr eenRadi us( GAdoubl e );

void GAVMarker::SetFillStyle( FillStyle );

// Note: enum GAVMarker::FillStyle {noFill, hashed, filled};

[]----- Get functions of 4VMarker

GAPoi nt 3D G4AVMar ker : : Get Posi tion () const;

GAdoubl e AVMar ker: : Get Wor | dSi ze () const;

GAdoubl e GAVMar ker : : Get Wor | dDi aneter () const;

GAdoubl e AVMar ker : : Get Wor | dRadi us () const;

GAdoubl e GAVMar ker : : Get ScreenSi ze () const;

GAdoubl e AVMar ker : : Get ScreenDi aneter () const;

GAdoubl e GAVMar ker : : Get Scr eenRadi us () const;

FillStyle GAVMarker:: GetFill Style () const;

/1 Note: enum GAVMarker::FillStyle {noFill, hashed, filled};

Example 8.7 shows sample C++ source code to define avery small red circle, i.e., a dot with diameter 1.0 pixel.
Such adot is often used to visualize a hit.

Example 8.7. Sample C++ source codeto defineavery small red circle.

If----- C++ source codes: An exanple of defining a red small maker
GG rcle circle(position); // Instantiate a circle with its 3D
[/l position. The argunment "position"
/1 is defined as G4Poi nt 3D i nstance
circle. Set ScreenDi aneter (1.0); // Should be circle.SetScreenD anet er
/[l (1.0 * pixels) - to be inplenmented
circle.SetFillStyle (ACrcle::filled); // Make it a filled circle

GACol our colour(1.,0.,0.); // Define red col or

GAVisAttributes attribs(col our); /1 Define a red visualization attribute
circle.SetVisAttributes(attribs); /] Assign the red attribute to the circle
If----- end of C++ source codes

8.9.3. Text

Text, i.e., a character string, is used to visualize various kinds of description, particle name, energy, coordinate
names etc. Text is described by the class A Text . The following constructors are supported:

[]----- Constructors of GAText
GAText (const (AString& text);
GAText (const AString& text, const GAPoi nt 3D& pos);

where the argument t ext is the text (string) to be visualized, and pos is the 3D position at which the text is
visualized.

Text is currently drawn only by the OpenGL drivers, such as OGLIX, OGLIXm and Openlnventor. It is not yet
supported on other drivers, including the Windows OpenGL drivers, HepRep, etc.
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Notethat classG4Text asoinherits G4VMar ker . Size of text isrecognized as"font size", i.e., height of thetext.
All the access functions defined for class GAVVar ker mentioned above are available. In addition, the following
access functions are available, too:

[f----- Set functions of AText
voi d GAText:: Set Text ( const GAString& text ) ;
voi d GAText::Set Offset ( double dx, double dy ) ;

[f----- Get functions of AText
GAString AText:: Get Text () const;
GAdoubl e GAText:: Get XOffset () const;
GAdoubl e AText:: Get YO fset () const;

Method Set Text () definestext to be visualized, and Get Text () returnsthe defined text. Method Set OF f -
set () definesx (horizontal) andy (vertical) offsetsin the screen coordinates. By default, both offsetsare zero, and
the text starts from the 3D position given to the constructor or to the method GAVMVar ker : Set Posi tion().
Offsets should be given with the same units as the one adopted for the size, i.e., world-size or screen-size units.

Example 8.8 shows sample C++ source code to define text with the following properties:

» Text: "Welcome to Geant4 Visualization"
 Position: (0.,0.,0.) in the world coordinates
* Horizontal offset: 10 pixels

Vertical offset: -20 pixels

Colour: blue (default)

Example 8.8. An example of defining text.

[]----- C++ source codes: An exanple of defining a visualizable text
[]----- I nstantiation
HAText text ;

text.Set Text ( "Welconme to Geant4 Visualization");
text. Set Position ( GAPoi nt3D(0.,0.,0.) );

/] These three lines are equivalent to:

/] CGAText text ( "Welcone to Geant4 Visualization",
/1l APoi nt 30(0.,0.,0.) );

[]----- Size (font size in units of pixels)
G4doubl e fontsize = 24.; // Should be 24. * pixels - to be inplenented.
text. Set ScreenSi ze ( fontsize );

[]----- O fsets

GAdoubl e x_of f set 10.; // Should be 10. * pixels - to be inplenmented.
G4doubl e y_of f set -20.; // Should be -20. * pixels - to be inplenented.
text.Set Offset( x_offset, y_offset );

[]----- Color (Blue is the default setting, and so the codes bel ow are omi ssi bl e)
GACol our blue( 0., 0., 1. );
GAVi sAttributes att ( blue );
text.SetVisAttributes ( att );

[]----- end of C++ source codes

8.10. Making a Movie

These instructions are suggestive only. The following procedures have not been tested on al platforms. There
are clearly some instructions that apply only to Unix-like systems with an X-Windows based windowing system.
However, it should not be difficult to take the ideas presented here and extend them to other platforms and systems.

The procedures described here need graphics drivers that can produce picture files that can be converted to aform
suitable for an MPEG encoder. There may be other ways of capturing the screen images and we would be happy
to hear about them. Graphics drivers currently capable of producing picture files are: More informations about
MPEG encoder

Driver Filetype
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DAWNFILE prim then eps using dawn
HepRepFile HepRepl

HepRep HepRep2

OGLX jpeg, eps, pdf, ppm, ...

Qt jpeg, eps, pdf, ppm, ...
RayTracer jpeg

VRMLFILE vrml

So far, only DAWNFILE, OGLX, OGLQt and RayTracer have been "road tested". Once in a standard format,
such as eps, the convert program from ImageMagick can convert to ppm files suitable for ppmtompeg available
here: http://netpbm.sourceforge.net/

8.10.1. Using "/vis/viewer/interpolate".

By saving views with "/vis/viewer/save' (see Section 8.4.14) one may "fly through" them with "/visiviewer/in-
terpolate”. One of the optionsin "/visiviewer/interpolate” isto export image files (OpenGL and Qt only) see Sec-
tion 8.10.2 below) that may then be used to make a movie.

(Use the Geant4 "help" command to see details.)

For example, with iMovie (Apple Mac) one may import the created files (PDF recommended) and by reducing
the cliplength to 0.1 s (that seems to be the minimum) one may make a reasonable movie.

8.10.2. OGLX

Make a macro something like this:

/control/verbose 2

/vi s/ open OGL 600x600-0+0

/ vi s/ dr awNol une

/vis/viewer/reset

/vis/viewer/set/style surface
/vis/viewer/set/projection perspective 50 deg
/control/alias phi 30

/control /| oop novie.loop theta 0 360 1

which invokes movie.loop, which is something like:

/vis/viewer/set/vi ewoint ThetaPhi {theta} {phi}
/vis/viewer/zoom 1. 005
/vis/ogl/print EPS

This produces lots of epsfiles. Then...

make_npeg2encode_parfile.sh GAOpend._*eps

Then edit mpeg2encode.par to specify file type and size, etc.:

$ di ff npeg2encode. par~ npeg2encode. par

7c7

<1 /* input picture file format: 0=*.Y,*. U *.V, 1=*.yuv, 2=*.ppm*/

> 2 /* input picture file format: 0=*.Y,*. U *.V, 1=*.yuv, 2=*.ppm*/

15, 17c15, 17

< /* horizontal _size */

< [* vertical _size */

<38 /* aspect_ratio_information 1=square pel, 2=4:3, 3=16:9, 4=2.11:1 */

> 600 /* horizontal _size */
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> 600 /* vertical _size */
> 1 /* aspect_ratio_information 1=square pel, 2=4:3, 3=16:9, 4=2.11:1 */

Then convert to ppm:

for i in GA0penG*eps;
do j =" basenanme $i .eps’; command="convert $i $j.ppnt'; echo $command; $comrand; done

Then

npeg2encode npeg2encode. par A0penG.. npg

Then, on Mac, for example:

open AQpenGL. mpg

opens amovie player.

8.10.3. Ot

The Qt driver provides one of the easiest ways to make a movie. Of course, you first need to add the Qt libraries
and link with Qt, but once you have that, Qt provides a ready-made function to store all updates of the OpenGL
frame into the movie format. Y ou then use loops (as defined in OGL X section above) or even move/rotate/zoom
you scene by mouse actions to form your movie.

The Qt driver automatically handlesall of the movie-making steps described in the OGL X section of this document
- storing the files, converting them and assembling the finished movie. You just have to take care of installing
an mpeg_encoder.

To make amovie:

» Right click to display a context menu, "Action”-<"Movie parameters’.
» Select MPEG encoder path if it was not found.

 Select the name of the output movie.

e Let go! Hit SPACE to Start/Pause recording, RETURN to STOP

Then, open your movie (on Mac, for example):

open AQpenGL. mpg

opens a QuickTime player.

8.10.4. DAWNFILE

You need to invoke dawn in "direct” mode, which picks up parameters from .DAWN_1.history, and suppress
the GUI:

al i as dawn='dawn -d'
export DAWN _BATCH=1

Change OGL to DAWNFILE in the above set of Geant4 commands and run. Then convert to ppm files as above:
for i in g4_*.eps;
do j =" basename $i .eps’; command="convert $i $j.ppnt; echo $comrand; $command; done

Then make a .par file:

make_npeg2encode_parfile.sh g4_*ppm
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and edit mpeg2encode.par:

$ di ff npeg2encode. par ~ npeg2encode. par

7c7

<1 /* input picture file format: 0=*.Y,*. U *.V, 1=*.yuv, 2=*.ppm */
> 2 /* input picture file format: 0=*.Y,*. U *.V, 1=*.yuv, 2=*.ppm */
9c9

<1 /* nunber of first franme */

>0 /* nunber of first franme */

15, 16c15, 16

< /* horizontal _size */

< [* vertical _size */

> 482 /* horizontal _size */
> 730 /* vertical _size */

Then encode and play:

npeg2encode npeg2encode. par DAWN. npg
open DAWN. npg

8.10.5. RayTracerX

/control/verbose 2

/ vi s/ open RayTracer X 600x600- 0+0

# (Raytracer doesn't need a scene; snoother not to /vis/drawol une.)
/vis/viewer/reset

/vis/viewer/set/style surface

/vis/viewer/set/projection perspective 50 deg

/control/alias phi 30

/control /| oop novie.loop theta 0 360 1

where movie.loop is as above. This produces lots of jpeg files (but takes 3 days!!!). Then...

make_npeg2encode_parfil e. sh g4RayTracer*j peg

Then edit mpeg2encode.par to specify file type and size, etc.:

$ di ff npeg2encode. par.ori g npeg2encode. par

7c7

<1 /* input picture file format: 0=*.Y,*.U *.V, 1=*.yuv, 2=*. ppm */

> 2 /* input picture file format: 0=*.Y,*.U *.V, 1=*.yuv, 2=*. ppm */

15, 17c15, 17

< /* horizontal _size */

< [* vertical _size */

<38 /* aspect_ratio_information 1=square pel, 2=4:3, 3=16:9, 4=2.11:1 */

> 600 /* horizontal _size */
> 600 /* vertical _size */
> 1 /* aspect_ratio_information 1=square pel, 2=4:3, 3=16:9, 4=2.11:1 */

Then convert to ppm, encode and play:

for i in g4*jpeg

do j =" basenanme $i .jpeg ; command="convert $i $j.ppnt'; echo $command; $command; done

npeg2encode npeg2encode. par g4RayTracer. npg
open g4RayTracer. npg
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Chapter 9. Analysis

9.1. Introduction

The new analysis category based on g4tool swas added in the Geant4 9.5 rel ease with the aim to provide the usersa
“light” analysistool available directly with Geant4 installation without aneed to link their Geant4 application with
an external analysis package. It consists of the analysis manager classes and it includes also the g4tools package.

g4tools provides code to write and read histograms and ntuples in several formats: ROOT, XML AIDA format
and CSV (commarseparated values format). It isa part of inlib and exlib libraries, that include also other facilities
like fitting and plotting.

The analysis classes provide a uniform, user-friendly interface to g4tools and hide the differences according to
a selected output technology from the user. They take care of a higher-level management of the g4tools objects
(files, histograms and ntuples), handle allocation and removal of the objects in memory and provide the access
methods to them viaindexes. They arefully integrated in the Geant4 framework: they follow Geant4 coding style
and also implement the built-in Geant4 user interface commands that can be used by users to define or configure
their analysis objects.

An example of use of analysis manager classes is provided in basic example B4, in the BARunAct i on and
B4Event Act i on classes.

9.2. Analysis Manager Classes

The analysis manager classes provide uniform interfaces to the g4tools package and hide the differences between
use of g4tools classes for the supported output formats (ROOT, AIDA XML and CSV).

An analysis manager classis available for each supported output format:

* (ACsvAnal ysi sManger
* (A4Root Anal ysi sManger
e AXm Anal ysi sManger

For asimplicity of use, each analysis maneger provides the complete access to all interfaced functions though it
isimplemented via a more complex design.

The managers are implemented as singletons. User code will access a pointer to a single instance of the desired
manager. The manager hasto be created and deleted from the user code. All objects created via analysis manager
are deleted automatically with the manager. The concrete types of the analysis manager as well as the handled
g4tools objects, are hidden behind anamespace which is selected by including adedicated includefile. Thisallows
the user to use al output technologiesin an identical way via these generic types:

e (AAnal ysi sManger : the public analysis interface

* AAnaHLl][ 2, 3] : on€ftwo,three]-dimensional histogram
* AAnaP1[ 2] : oneftwo]-dimensional profile

e GANt upl e: ntuple

In addition to the G4Anal ysi sManager functions, a set of Geant4 Ul commands for creating histograms and
setting their properties isimplemented in associated messenger classes.

9.2.1. Analysis Manager

To use Geant4 analysis, an instance of the analysis manager must be created. The analysis manager object is
created with the first call to G4Anal ysi sManager: : | nst ance(), the next cals to this function will just
provide the pointer to this analysis manager object. The client code is responsible for deleting the created object
what isin our example donein the run action destructor.
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The example of the code for creating the analysis manager extracted from the basic B4 exampleis given below:

#i ncl ude "B4Anal ysi s. hh"

B4RunAct i on: : B4ARunAct i on()
G4User RunActi on()

{

/|l Create anal ysis nanager
aut o anal ysi sManager = G4Anal ysi sanal ysi sManager ager: : I nst ance() ;
anal ysi sManager - >Set Ver boselLevel (1) ;
anal ysi sManager - >Set Fi rst Hi st ol d(1);
}

B4RunAct i on: : ~B4RunAct i on()

del ete AAnal ysi sManager: : | nstance();
}

It isrecommended, but not necessary, to create the analysis manager in the user run action constructor and delete it
initsdestructor. This guarantees correct behavior in multi-threading mode. The code specific to the output format
ishiddenin B4Anal ysi s. hh where the selection of the output format takes place.

#i f ndef B4Anal ysis_h
#define B4Analysis_h 1

#i ncl ude "g4root. hh"
[/ #i ncl ude "g4xm . hh"
/'l #i ncl ude "g4csv. hh"
#endi f

The level of informative printings can be set by Set Ver boselLevel ( G4i nt) . Currently the levels from 0
(default) up to 4 are supported.

The verbose level can be also set viathe Ul command:

[ anal ysi s/ ver bose | evel

9.2.2. Files handling

The analysis manager can handle only one base file at atime. Below we give an example of opening and closing
afile extracted from the basic example B4:

#i ncl ude "B4Anal ysi s. hh"

voi d B4RunAct i on: : Begi nOf RunAct i on(const GARun* run)
{
/] Get anal ysis nmanager
aut o anal ysi sManager = G4Anal ysi sanal ysi sManager ager: : | nst ance() ;

// Open an output file
anal ysi sManager - >OpenFi | e("B4") ;
}

voi d B4RunActi on: : EndOf RunAct i on(const GARun* aRun)
{
/] Save hi stograns
aut o anal ysi sManager = G4Anal ysi sanal ysi sManager ager: : I nst ance() ;
anal ysi sManager->Wite();
anal ysi sManager - >Cl oseFi |l e();

}
The following functions are defined for handling files:
G4bool OpenFil e(const GAString& fileName = "");

G4bool Wite();
Gdbool C oseFile();
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The file name can be defined either directly with OpenFi | e(const GAStri ng&) call or separately via
Set Fi | eNane(const (AString&) function beforecalling OpenFi | e() . Itisnot possible to change the
filenamewhen afileisopen and not yet closed. If afileextensionisnot specifiedinf i | eNane, itisautomatically
completed according to a selected output format.

The file can be optionally structured in sub-directories. Currently only one directory for histograms
and/or one directory for ntuples are supported. The directories are created automatically if their names
are set to non-empty string values via Set Hi st oDi r ect or yNane( const AString& andor
Set Nt upl eDi rect or yNane(const (AStri ng&) . Thissetting isignored with the output formats which
do not support this feature (XML, CSV).

The following commands for handling files and directories are available:

[ anal ysi s/ set Fi | eName nane # Set name for the output file
/ anal ysi s/ set H st oDi r Nane nane # Set name for the histograns directory
[ anal ysi s/ set Nt upl eDi r Nane nane # Set name for the histograns directory

Depending on the selected output format more files can be generated when more than one ntuple is defined in a
user application. Thisisthe case of XML and CSV, which do not allow writing morethan one ntuplein afile. The
ntuple file name is then generated automatically from the base file name and the ntuple name.

The analysis manager can handle only one base file at atime, but several base files can be generated sucessively
from Geant4 session, typically one file is saved per run. A new file can be open only after a previous file was
closed. An example of generated more files per session is provided in basic/B5 example and its run2.mac macro.
Appending existing filesis not supported. When an existing file is open again, its content is overwritten.

9.2.3. Histograms

The code for handling histograms given in the following example is extracted the B4 example classes. In this
example, the histograms are created in the run action constructor and they are filled in the end of event.

#i ncl ude "B4Anal ysis. hh"

B4RunAct i on: : BARunAct i on()
: G4User RunActi on()
{
/| Create anal ysis manager
...

/1l Creating histograns
anal ysi sManager - >Creat eH1(" 1", "Edep i n absorber”, 100, 0., 800*MeV);
anal ysi sManager - >Creat eH1(" 2", "Edep i n gap", 100, 0., 100*MeV);

}

voi d B4aEvent Acti on: : EndCOf Event Act i on(const GARun* aRun)

{
/1 Fill histograns
aut o anal ysi sManager = G4Anal ysi sanal ysi sManager ager: : I nst ance() ;
anal ysi sManager - >Fi | | HL(1, f EnergyAbs);
anal ysi sManager->Fi | | HL(2, fEnergyGap);
}

9.2.3.1. Creating Histograms

A one-dimensional (1D) histogram can be created with one of these two (AAnal ysi sManager functions:

Gdint CreateHl(const GAString& nane, const AString& title,
G4i nt nbins, GAdoubl e xmi n, G4doubl e xnmax,

const GAString& unitNanme = "none",
const (AString& fcnNane = "none",
const GAString& bi nScheneNane = "linear");

Gdint CreateHl(const GAString& nane, const AString& title,
const std::vector<G4doubl e>& edges,
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const (AString& unitName = "none",
const GAString& fcnName = "none");

where nane and ti t | e parameters are self-descriptive. The histogram edgeds can be defined either via the
nbi ns, xm n and xnmax parameters (first function) representing the number of bins, the minimum and maximum
histogram values, or viatheconst st d: : vect or <&Adoubl e>& edges parameter (second function) rep-
resenting the edges defined explicitly. The other parameters in both functions are optional and their meaning is
explained in Section 9.2.3.6.

Two-dimensional (2D) and three-dimensiona (3D) histograms can be created with one of these two functions
analogous to those for 1D histograms:

G4int CreateH2(const GAString& nane, const AString& title,
G4i nt nxbi ns, G4doubl e xm n, GAdoubl e xmax,
G4i nt nybi ns, G4doubl e ym n, Adoubl e ymax,

const GAString& xunitNanme = "none",
const GAString& yunitNanme = "none",
const GAString& xfcnName = "none",
const (AString& yfcnName = "none",

const GAString& xbi nScheme = "linear",
const GAString& ybi nScheme = "linear");

G4int CreateH2(const GAString& nane, const AString& title,
const std::vector<Gidoubl e>& xedges,
const std::vector<G4doubl e>& yedges,

const GAString& xunitNanme = "none",
const GAString& yunitNanme = "none",

const GAString& xfcnName = "none",
const AString& yfcnName = "none");

G4int CreateH3(const GAString& nane, const AString& title,
G4i nt nxbi ns, G4doubl e xm n, GAdoubl e xmax,

G4i nt nybi ns, GAdoubl e ym n, 4doubl e ymax,
G4int nzbins, G4double zm n, GAdoubl e zmax,
const GAString& xunitNanme = "none",

const GAString& yunitNane = "none",

const GAString& zunitNanme = "none",

const GAString& xfcnName = "none",

const GAString& yfcnName = "none",

const GAString& zfcnName = "none",

const GAString& xbi nSchemeNane = "linear",
const GAString& ybi nSchemeNane = "linear"”,
const GAString& zbi nSchemeNane = "l|inear");

G4int CreateH3(const GAString& nane, const AString& title,
const std::vector<G4doubl e>& xedges,
const std::vector<G4doubl e>& yedges,
const std::vector<G4doubl e>& zedges,
const GAString& xunitNanme = "none",

const GAString& yunitNane = "none",
const GAString& zunitNanme = "none",
const GAString& xfcnName = "none",
const GAString& yfcnName = "none",
const (AString& zfcnName = "none");

The meaning of parameters is the same as in the functions for 1D histograms, they are just applied in x, y and
z dimensions.

The histograms created with G4Anal ysi sManager get automatically attributed an integer identifier which
valueis returned from the "Create" function. The default start value is 0 and it is incremented by 1 for each next
created histogram. The numbering of 2D and 3D histograms is independent from 1D histograms and so the first
created 2D (or 3D) histogram identifier is equal to the start value even when several 1D histograms have been
already created.

Thestart histogram identifier value can be changed either withthe Set Fi r st Hi st ol d( G4i nt ) method, which
applies the new value to al histogram types, or with the Set Fi r st HNI d( G4i nt) , whereN = 1, 2, 3
methods, which apply the new value only to the relevant histogram type. The first method is demonstrated in the
example.
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The histogram names "1", "2" in the demonstrated example are defined to correspond the histograms identifiers
inasimilar way asinext ended/ anal ysi s/ AnaEx01 example. This choiceis however fully in hands of the
user who can prefer longer and more meaningful names.

All histograms created by 4Anal ysi sManager are automatically deleted with deleting the
A Anal ysi sManager object.

Histograms can be also created via Ul commands. The commands to create 1D histogram:

/anal ysi s/ hl/create # Create 1D hi st ogram
name title [nbin mn max] [unit] [fcn] [binScheme]

The commands to create 2D histogram:

[ anal ysi s/ h2/ create # Create 2D hi stogram
name title [nxbin xm n xmax xunit xfcn xbi nSchene nybin ymin ymax yunit yfcn yBi nSchene]

The commands to create 3D histogram:

/anal ysi s/ h3/create # Create 3D hi stogram
nane title [nxbin xmn xmax xunit xfcn xbi nSchene nybin ym n ymax yunit yfcn yBi nSchene nzbin zmin zmax zunit zfcn

9.2.3.2. Configuring Histograms

The properties of aready created histograms can be changed with use of one of these two functions sets. For 1D
histograms:

G4bool SetH1(G4int id,
&4i nt nbins, GAdoubl e xnmin, Adoubl e xmax,

const GAString& unitName = "none",
const GAString& fcnNane = "none",
const GAString& bi nScheneNanme = “linear");

G4bool SetH1(G4int id,
const std::vector<G4doubl e>& edges,
const GAString& unitName = "none",
const GAString& fcnNanme = "none");

for 2D histograms:

G4bool SetH2(G4int id,
&4i nt nxbi ns, 4doubl e xmi

n, (G4doubl e xmax,
&4int nybins, G4double ymn

G4doubl e ynax,

const GAString& xunit Nanme "none",

const (A4String& yunitNanme "none",

const GAString& xfcnName = "none",

const (4String& yfcnNane = "none",

const GAString& xbi nScheneNane = "linear",
const (A4String& ybi nSchenmeNane = "linear");

G4bool SetH2(G4int id,
const std::vector<G4doubl e>& xedges,
const std::vector<G4doubl e>& yedges,
const GAString& xunitNanme = "none",
const GA4String& yunitNanme = "none",
const GAString& xfcnName "none",
const (4String& yfcnNane = "none");

and for 3D histograms:

G4bool Set H3( G4int id,
&4int nxbi ns, Adoubl e xm n, GAdoubl e xmax,
G4int nzbins, 4double zm n, Gidoubl e zmax,
G4int nybi ns, G4doubl e ynin, 4doubl e ymax,
const GAString& xunitNanme = "none",
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const

const

const

const

const

const

const

const

Gdbool Set H3( G4i nt
const
const
const
const
const
const
const
const
const

GAString& yuni t Nane = "none
GAString& zuni t Nane = "none"
GAString& xfcnNane = "none"
GAString& yfcnNanme = "none"
GAString& zfcnNane = "none

GAStri ng& xbi nScheneNane = "linear",
GAString& ybi nScheneNane = "linear",
GAString& zbi nScheneNane = "linear")
id,

std: : vect or <G4doubl e>& xedges
st d: : vect or <G4doubl e>& yedges
std: : vect or <G4doubl e>& zedges

GAStri ng& xuni t Nane = "none"
GAString& yuni t Name = "none"
GAString& zuni t Nane = "none"
GAString& xfcnNane = "none"
GAString& yfcnNanme = "none"
GAString& zfcnNanme = "none")

The histogram is accessed viaitsinteger identifier. The meaning of the other parametersisthe sameasin "Create"

functions.

Histogram properties can be also defined via Ul commands. The commands to define 1D histogram:

[ anal ysi s/ hl/ set

id nbin mn max [unit]

[fcn]

The commands to define 2D histogram:

# Set paraneters for
[ anal ysi s/ h2/ set
id nxbin xm n xmax

# Set paraneters per
[ anal ysi s/ h2/setX id
[ anal ysi s/ h2/setY id

the 2D hi stogram of #id
xunit xfcn xbi nSchene nybin ymin ymax yunit
di mensi on

nbin mn max [unit]
nbin mn max [unit]

[fcn]
[fen]

[ bi nSchene] # Set
[ bi nSchene] # Set

The commands to define 3D histogram:

# Set paraneters for
[ anal ysi s/ h3/set =
id nxbin xmn xmax

# Set paraneters per
[ anal ysi s/ h3/setX id
[ anal ysi s/ h3/setY id
[ anal ysi s/ h3/setY id

the 3D histogram of #id
xunit xfcn xbi nSchenme nybin ym n ynmax yunit

di mensi on

nbin mn max [unit]
nbin mn max [unit]
nbin mn max [unit]

[fecn]
[fcn]
[fen]

[ bi nSchene] # Set
[ bi nSchene] # Set
[ bi nSchene] # Set

[bi nSchene] # Set paraneters

yfcn yBi nSchene

X- par anet er s
y- par anmet er s

yfcn yBi nScheme nzbin zmn zmax zunit zfcn zBi nSche

X- par anet er s
y- par aneters
z-paraneters

A limited set of parametersfor histograms plotting, the histogram and the histogram axistitles, can be also defined

viafunctions:

Gdbool SetHiTitle(&int id, const GAString& title)
Gdbool Set HIXAxi sTitle(G4int id, const GAString& title)
Gdbool Set HLYAxi sTitle(G4int id, const AString& title);
/1

Gdbool Set H2Title(&4int id, const GAString& title)
Gdbool Set H2XAxi sTitle(G4int id, const GAString& title)
Gdbool Set H2YAxi sTitl e(G4int id, const AString& title);
Gdbool Set H2ZAxi sTitle(G4int id, const GAString& title)
/1

Gdbool SetH3Title(&int id, const GAString& title)
Gdbool Set H3XAxi sTitle(G4int id, const AString& title);
Gdbool Set H3YAxi sTitle(G4int id, const GAString& title)
G4bool Set H3ZAxi sTitle(G4int id, const AString& title);

The corresponding Ul commands:

/analysis/hl/setTitle id title

# Set title for the 1D hi stogram of #id
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/anal ysi s/ hl/setXaxis id title # Set x-axis title for the 1D hi stogram
/anal ysis/hl/setYaxis id title # Set y-axis title for the 1D histogram

The same set of commandsis available for the other histogram types and profiles, under the appropriate directory.

9.2.3.3. Filling Histograms

The histogram values can be filled using the functions:

Gdbool FillHL(&int id, G4doubl e val ue,
GAdoubl e wei ght = 1.0);

Gdbool Fill H(&int id, Gidouble xval ue, GAdoubl e yval ue,
GAdoubl e wei ght = 1.0);

G4bool FillH3(G4int id,
GAdoubl e xval ue, G4doubl e yval ue, G4doubl e zval ue,
GAdoubl e wei ght = 1.0);

where the weight can be given optionally.

The histograms can be also scaled with a given factor using the functions:

G4bool Scal eH1(&4int id, GAdouble factor);
Gdbool Scal eH2(Hint id, GAdouble factor);
G4bool Scal eH3(H4int id, GAdouble factor);

9.2.3.4. Accessing Histograms

Besides the fast access to histograms via their integer identifiers, the histograms can be also accessed by their
namesusingthe G4Anal ysi sManager function providing the conversion from anamein ahistogram identifier:

G4int GetHlld(const GAString& nane, G4bool warn
G4i nt Get H2l d(const GAString& nane, Gi4bool warn
G4int GetH3ld(const GAString& nane, G4bool warn

true) const;
true) const;
true) const;

If ahistogram with agiven nameis not found, awarning isissued unlessit is explicitly disabled by the user. This
way is however less efficient and it is not recommended for frequently called functionsase.g. Fi I | ().

The analysis manager provides also the direct access to the g4tools histogram objects. The concrete histogram
typeis hidden behind a selected namespace. In example B4, the g4tools histogram functionsrrean() andr ns()
arecadled:

aut o anal ysi sManager = G4Anal ysi sanal ysi sManager ager: : | nst ance() ;
if ( anal ysi sManager->CGet H1(1) ) {

GAcout << "\n ----> print histogranms statistic \n" << dendl ;
GAcout << " EAbs : mean = " << anal ysi sManager - >Get H1( 1) - >nean()
<< " rme = " << anal ysi sManager->Get H1(1) - >rns(),

<< Hendl ;

...
}

9.2.3.5. Activation of Histograms

The activation option allows the user to activate only selected histograms. When this option is activated, only the
histograms marked as activated are returned, filled or saved in afile. This feature is intensively used in extend-
ed/electromagnetic examples where all histograms are first created inactivated:

aut o anal ysi sManager = G4Anal ysi sanal ysi sManager ager: : | nst ance() ;
anal ysi sManager - >Set Acti vati on(true);

/] define histogram paraneters nane, title, nbins, vmn, vmax

G4int id = anal ysi sManager->CreateHl(nane, title, nbins, vmn, vmax);
anal ysi sManager - >Set H1Act i vation(id, false);

and then selected histograms are activated in macros, using the analysis "set" command:
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[ anal ysi s/ hl/set 1 100 O 50 cm #track length of primry
/anal ysi s/ hl/set 2 100 O 300 none #nb steps of primry

The activation option is not switched on by default. It has to be activated either via analysisManager
Set Acti vati on(true) cal asaboveor viathe Ul command:

[ anal ysi s/ set Activation true|fal se # Set activation option

When no parameters need to be changed a histogram can be activated using "setActivation" command:

[ anal ysi s/ hl/set Activation id true|false # Set activation to histogram #id
/anal ysi s/ hl/set ActivationToAll true|false # Set activation to all 1D hi stograns.

9.2.3.6. Histograms Properties

The following properties, additional to those defined in g4tools, can be added to histograms via
A Anal ysi sManager :

» Unit: if ahistogram is defined with a unit, all filled values are automatically converted to this defined unit and
the unit is added to the histogram axistitle.

 Function: if ahistogram is defined with a function, the function is automatically executed on the filled values
and its name is added to the histogram axis title. When a histogram is defined with both unit and function the
unit is applied first. The available functions: | og, | 0gl10, exp .

* Binning scheme: user can select logarithmic binning scheme besides the linear one (default). The available
binning schemes: | i near, |og .

» Activation: see previous section.
e ACII option: if activated the histogram is also printed in an ASCI| file when Write() function is called.

* Plotting option: if activated the histogram is plotted in afile of Postscript format when Write() functioniscalled.
See more detailsin Section 9.2.5.

9.2.4. Profiles

Profile histograms (profiles) are used to display the mean value of Y and its error for each bin in X. The displayed
error is by default the standard error on the mean (i.e. the standard deviation divided by the sgrt(n).) An example
of use of 1D profiles can be found in ext ended/ el ect romagnet i ¢/ Test EnR. Though the functions for
creating and manipulating profiles are very similar to those for histograms, they are described in this section.

9.2.4.1. Creating Profiles

A one-dimensional (1D) profile can be created with one of these two G4Anal ysi sManager functions:

G4int CreatePl(const (AString& nanme, const AString& title,
G4i nt nbins, GAdoubl e xm n, G4doubl e xnmax,
G4doubl e ymin = 0, GAdoubl e ymax = O,

const GAString& xunitNanme = "none",

const (AString& yunitName = "none",

const GAString& xfcnNanme = "none",

const (AString& yfcnName = "none",

const (AString& xbi nSchenmeNanme = "linear");

Gdint CreatePl(const GAString& nane, const AString& title,
const std::vector<G4doubl e>& edges,
G4doubl e ymin = 0, G4double ynmax = O,
const (AString& xunitName = "none",
const GAString& yunitNane = "none",
const (AString& xfcnNanme "none",
const GAString& yfcnNanme "none");
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wherenane andt i t | e parameters are self-descriptive. The profile edgeds can be defined either viathe nbi ns,
xm n and xmax parameters (first function) representing the number of bins, the minimum and maximum profile
values, or viathe const st d: : vect or <Gddoubl e>& edges parameter (second function) representing
the edges defined explicitly. If ym n and ynmax parameters are provides, only values between these limnits will
be considered at filling time. The other parameters in both functions are optional and their meaning is explained
in Section 9.2.4.4.

A two-dimensional (2D) profile can be created with one of these two functions analogous to those for 1D profiles:

G4int CreateP2(const GAString& nane, const AString& title,
G4i nt nxbi ns, G4doubl e xm n, GAdoubl e xmax,
G4i nt nybi ns, Adoubl e ym n, Adoubl e ymax,
GAdoubl e znin = 0, G4double zmax = O,

const GAString& xunitNanme = "none",
const GAString& yunitNane = "none",
const GAString& zunitNanme = "none",
const GAString& xfcnNanme "none",

const GAString& yfcnName = "none",

const GAString& zfcnNanme = "none",
const GAString& xbi nSchemeNane = "linear",
const GAString& ybi nSchenmeName = "linear");

Gdi nt CreateP2(const GAString& nane, const AString& title,
const std::vector<G4doubl e>& xedges,
const std::vector<G4doubl e>& yedges,
G4doubl e zmin = 0, G4double zmax = O,
const GAString& xunitNanme = "none",
const GAString& yunit Nanme "none",
const GAString& zunit Nanme "none",
const GAString& xfcnName = "none",
const GAString& yfcnNanme = "none",
const (AString& zfcnName = "none");

The meaning of parameters is the same as in the functions for 1D profiles, they are just applied in x, y and z
dimensions.

The profiles created with G4Anal ysi sManager get automatically attributed an integer identifier which value
isreturned from the "Create" function. The default start valueis 0 and it isincremented by 1 for each next created
profile. The numbering of 2D profilesisindependent from 1D profilesand so thefirst created 2D profileidentifier
isequal to the start value even when several 1D profiles have been already created.

Thestart profileidentifier value can be changed either withthe Set Fi r st Pr of i | el d( G4i nt) method, which
applies the new value to both 1D and 2D profile types, or with the Set Fi r st PNl d( G4i nt) , whereN = 1,
2 methods, which apply the new value only to the relevant profile type.

All  profiles created by G4Anal ysi sManager are automatically deleted with deleting the
G Anal ysi sManager object.

Profiles can be also created via Ul commands. The commands to create 1D profile:

[ anal ysi s/ pl/create # Create 1D profile
name title [nxbin xmn xmax xunit xfcn xbi nSchene ymin ymax yunit yfcn]

The commands to create 2D profile:

[ anal ysi s/ p2/ create # Create 2D profile
nanme title [nxbin xm n xmax xunit xfcn xbi nScheme nybin ynmin ymax yunit yfcn yBinScheme zmin zmax zunit zfcn]

9.2.4.2. Configuring Profiles

The properties of already created profiles can be changed with use of one of these two functions sets. For 1D
profiles:

G4bool SetP1(Gint id,
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i nt nbins, GAdouble xnin, Adoubl e xmax,
G4doubl e ymin = 0, Adouble ymax = 0,

const (AString& xunitNanme "none",

const GAString& yunit Nanme "none",

const (A4String& xfcnNane = "none",

const GAString& yfcnName = "none",

const (A4String& xbi nSchenmeNane = "linear");

G4bool SetP1(G4int id,
const std::vector<G4doubl e>& edges,
GAdoubl e ym n = 0, Adouble ynax = O,

const GAString& xunitName = "none",
const GA4String& yunitNanme = "none",

const GAString& xfcnName = "none",
const (4String& yfcnNane = "none");

and for 2D profiles:

G4bool Set P2( G4int id,
&4int nxbi ns, 4doubl e xm n, G4doubl e xmax,
G4i nt nybins, G4doubl e ymi n, GAdoubl e ymax,
HAdouble zmin = 0, G4double znmax = O,
const GAString& xunitName = "none",
const GAString& yunitName = "none",

const GAString& zunit Name "none",
const GAString& xfcnName = "none",
const GAString& yfcnName = "none",
const GAString& zfcnName = "none",

const GAString& xbi nSchemeNane = "linear",
const GAString& ybi nScheneNane = "linear");

Gdbool Set P2( G4int id,
const std::vector <G4doubl e>& xedges,
const std::vector<G4doubl e>& yedges,
GAdoubl e zmin = 0, GAdouble znmax = O,

const GAString& xunitName = "none",
const GAString& yunitName = "none",
const GAString& zunitNanme = "none",
const GAString& xfcnName = "none",
const GAString& yfcnName = "none",
const GAString& zfcnName = "none");

The profile is accessed via its integer identifier. The meaning of the other parameters is the same asin "Create"
functions.

Profiles properties can be also defined via Ul commands. The commands to define 1D profile;

[ anal ysi s/ pl/ set # Set paraneters for the 1D hi stogram of #id
id nxbin xmn xmax xunit xfcn xbi nScheme ymi n ymax yunit yfcn

The commands to create or define 2D profile:

/ anal ysi s/ p2/ set # Set paraneters for the 2D profile of #id
id nxbin xmn xmax xunit xfcn xbi nScheme nybin ymn ymax yunit yfcn yBi nScheme zmin znmax zunit zfcn

A limited set of parameters for profiles plotting, the profile and the profile axis titles, can be also defined via
functions:

Gdbool SetPiTitle(&4int id, const GAString& title);
(G4bool Set PIXAxi sTitle(G4int id, const GAString& title);
Gdbool Set PIYAxi sTitle(G4int id, const AString& title);
/1

Gdbool SetP2Title(&4int id, const GAString& title);
G4bool Set P2XAxi sTitle(G4int id, const GAString& title);
Gdbool Set P2YAxi sTitle(G4int id, const AString& title);
(G4bool Set P2ZAxi sTitle(&int id, const GAString& title);

The parameters can be also set via the same set of Ul commands as the histogram parameters available under the
appropriate directory.
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9.2.4.3. Filling Profiles

The profile values can be filled using the functions:

Gibool FillP1(G4int id,
GAdoubl e xval ue, Adoubl e yval ue,
GAdoubl e wei ght = 1.0);
G4bool FillP2(G4int id,
GAdoubl e xval ue, G4doubl e yval ue, G4doubl e zval ue,
GAdoubl e wei ght = 1.0);

where the weight can be given optionally.

The profiles can be also scaled with a given factor using the functions:

G4bool Scal eP1(int id, GAdouble factor);
G4bool Scal eP2(&4int id, GAdouble factor);

9.2.4.4. Profiles Properties

All histogram featuresdescribed in sections" Accessing Histograms', " Activation of Histograms' and "Histograms
Properties” (Section 9.2.3.4, Section 9.2.3.5 and Section 9.2.3.6) are aso available for profiles.

9.2.5. Plotting

Since Geant4 10.2 versionitispossibleto produce agraphics output filein the Postscript format containing selected
histograms and profiles. Histograms and profiles plotting can be activated using G4A nalysisManager functions:

aut o anal ysi sManager = G4Anal ysi sanal ysi sManager ager: : | nst ance() ;
anal ysi sManager - >Set H1Pl ot ti ng(id, true);
// etc for H2, H3, P1, P2

or using the Ul commands

/anal ysi s/ hl/setPlotting id true|false # (In)Activate plottig for 1D histogram #id
/anal ysi s/ hl/setPlotti ngToAl | true|false # (In)Activate plottig for all 1D histograns.
# etc. for h2, h3, pl, p2

If Geant4 libraries are built with support for Freetype font rendering, user can choose from three plotting styles:

* ROOT_default: ROOT style with high resolution fonts (default)
« hippodraw: hippodraw style with high resolution fonts
* inlib_default: PAW style with low resolution fonts")

otherwise only thei nl i b_def aul t stylewith low resolution fonts is available.

The page size of the graphics output is fixed to A4 format. Users can choose the page layout which is defined by
the number columns and the number of rows in a page. Depending on the selected plotting style, the maximum
number of plotsis limited to 3 columns x 5 rows for the styles with high resolution fonts and to 2 columns x 3
rowsfor thei nl i b_defaul t style.

Finally, users can a so customize the plot dimensions, which represent the plotter window size (width and height)
in pixels.

The customization of the plotting can be done viathe Ul commandsin/ anal ysi s/ pl ot directory:

/anal ysi s/ plot/setStyle styleNanme
[ anal ysi s/ pl ot/ set Layout col ums rows
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[ anal ysi s/ pl ot/ set Di nensi ons w dt h hei ght

Opening more configuration parameters for users customisation can be considered in future according to the users
feedback.

9.2.6. Ntuples

Inthefollowing examplethe code for handling ntuples extracted from basic example B4, fromthe B4RunAct i on
and B4Event Act i on classes, is presented.

#i ncl ude "B4Anal ysi s. hh"

B4RunAct i on: : B4ARunAct i on()
GAUser RunAct i on()

{
/1l Create anal ysis manager
/11

/] Create ntuple

man- >Cr eat eNt upl e("B4", "Edep and TrackL");
man- >Cr eat eNt upl eDCol unm( " Eabs") ;

man- >Cr eat eNt upl eDCol umm( " Egap") ;

man- >Fi ni shNt upl e() ;

}

voi d B4Event Acti on: : EndCf Event Acti on(const GARun* aRun)
{
G Anal ysi sManager* man = G4Anal ysi sManager: : | nstance();
man- >Fi | | Nt upl eDCol um( 0, fEner gyAbs);
man- >Fi | | Nt upl eDCol um( 1, fEnergyGap);
man- >AddNt upl eRow( ) ;
}

Since 10.0 release, thereisno limitation for the number of ntuplesthat can behandled by G4Anal ysi sManager .
Handling of two ntuplesis demostrated in extended analysis’/AnaEx01 example.

9.2.6.1. Creating Ntuples

An ntuple can be created using the following set of functions:

G4int CreateNtupl e(const GAString& nanme, const GAString& title);

/Il Create colums in the |ast created ntuple
G4i nt Cr eat eNt upl eXCol utm( const GAStri ng& nane) ;
voi d Fini shNtupl e();

/Il Create colums in the ntuple with given id
Gdi nt Creat eNt upl eXCol uim( G4i nt ntupl el d, const GAString& nane);
void FinishNtuple(Gint ntupleld);

Thefirst set isdemonstrated in the example. The columns can take the values of G4i nt , GAf | oat , GAdoubl e
or GASt ri ngtypewhichisalso reflected in the Cr eat eNt upl eXCol uim() function names. where X can be
I, F, Dor S.

Itisalso possible to define ntuple columns of st d: : vect or of G4i nt , GAf | oat or GAdoubl e valuesusing
the functions:

[/ Create colums of vector in the |ast created ntuple
G4i nt Cr eat eNt upl eXCol umm(
const GAString& nane, std::vector<Xtype>& vector);

/] Create colums of vector in the ntuple with given id

G4i nt Cr eat eNt upl eXCol um( G4i nt ntupl el d,
const GAString& nane, std::vector<Xtype>& vector);

where [ X, Xtype] canbe [I, G4int], [F, Afloat] or [D, Adouble].

323



Anaysis

When al ntuple columns are created, the ntuple has to be closed using Fi ni shNt upl e() function.

The ntuples created with GAAnal ysi sManager get automatically attributed an integer identifier which value
isreturned from the "Create" function. The default start valueis 0 and it isincremented by 1 for each next created
ntuple. The start ntuple identifier value can be changed with the Set Fi r st Nt upl el d( G4i nt) function.

Theinteger identifiers are also attributed to the ntuple columns. The numbering of ntuple columns is independent
for each ntuple, the identifier default start value is 0 and it is incremented by 1 for each next created column
regardlessitstype (I, F, D or S). (If the third ntuple column of a different type than doubl e (i nt orf | oat)is
created in the demonstrated example, itsidentifier will have the value equal 2.) The start ntuple column identifier
value can be changed with the Set Fi r st Nt upl eCol urml d( &4i nt) function.

When callsto Cr eat eNt upl e- Col unm() and Fi ni shNt upl e() succeed thecall to Cr eat eNt upl e(),
thent upl el d argument need not to be specified even when creating several ntuples. However this order is not
enforced and the second set of functions with nt upl el d argument is provided to allow the user to create the
ntuples and their columns in whatever order.

All ntuples and ntuple columns created by G4Anal ysi sManager are automatically deleted with deleting the
HAAnal ysi sManager object.

9.2.6.2. Filling Ntuples

The ntuple values can be filled using the functions:

/1 Methods for ntuple with id = FirstNtupleld

G4bool Fill Ntupl el Col um(G4int id, Gdint value);

G4bool Fill Nt upl eFCol um( G4i nt id, GAfloat val ue);

G4bool Fil | Nt upl eDCol uim( G4i nt id, GAdoubl e val ue);

G4bool Fill Nt upl eSCol um( &G4int id, const AString& val ue);
G4bool AddNt upl eRow() ;

/1 Methods for ntuple with id > FirstNtupleld (when nore ntuples exist)
Gdbool Fill Ntupl el Col um(&int ntupleld, Gint columld, G4int value);
G4bool Fill Nt upl eFCol um( G4i nt ntupl eld, &Gdint columld, GAfloat val ue);
Gdbool Fil | Nt upl eDCol unn( G4i nt ntupleld, Gdint columld, GAdouble val ue);
G4bool Fill Nt upl eSCol um( G4int ntupleld, Gdint id, const AString& val ue);
G4bool AddNt upl eRow( G4i nt ntupl el d);

If only one ntuple is defined in the user application, the ntuple identifier, nt upl el d, need not to be specified
and the first set can be used. The second set of functions has to be used otherwise. When all ntuple columns are
filled, the ntuple fill hasto be closed by calling AddNt upl eRow() .

9.2.6.3. Accessing Ntuples

The ntuples g4tool s obj ects can be accessed by their identifier. The concrete ntupletypeishidden behind a selected
namespace:

aut o anal ysi sManager = G4Anal ysi sanal ysi sManager ager: : | nst ance() ;
/] 1f only one ntuple is defined

GANt upl e* ntupl e = anal ysi sManager - >Get Nt upl e() ;

/1 1f nore ntuples

Gdint ntuple id = ...;

GANt upl e* ntupl e = anal ysi sManager - >Get Nt upl e( nt upl el d) ;

9.2.7. Parallel Processing

Aswell asall other Geant4 categories, the analysis code has been adapted for multi-threading. In multi-threading
mode, the analysis manager instances areinternally created on the master and thread workers and data accounting
isprocessed in paralel on workers threads.

Histograms produced on thread workers are automatically merged on Wi t e() call and theresult iswrittenina
master file. Merging is protected by a mutex locking, using G4Aut oLock utility.
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Ntuples produced on thread workers are, by default, written on separate files, which names are generated auto-
matically from abase file name, athread identifier and eventually also an ntuple name. Since Geant4 version 10.3
it is possible to activate merging of ntuples with ROOT output type:

aut o anal ysi sManager = G4Anal ysi sManager: : | nstance();
anal ysi sManager - >Set Nt upl eMer gi ng(true);

The ntuples produced on workers will be then progressively being merged to the main ntuples on the master. By
default, the ntuples are written at the same file as the final histograms. Users can also select merging in a given
number of files or change the default basket size value (32000) :

aut o anal ysi sManager = (AAnal ysi sManager: : | nst ance();

i nt nof ReducedNt upl eFil es = 2;

G4i nt basket Si ze = 64000;

anal ysi sManager - >Set Nt upl eMer gi ng(true, nof ReducedNt upl eFi | es, basketSi ze);

No merging of ntuplesis provided with CSV and AIDA XML formats.

No changes are required in the user client analysis code for migration to multi-threading. It is however recom-
mended to instantiate and delete the analysis manager in the user run action constructor and destructor respec-
tively. The master instance is necessary when histograms are used in the user application or if merging ntuples
is selected (available only with ROOT output); in case only ntuples are in use and merging is not activated, the
master instance need not to be created.

To simplify the scaling of a Geant4 application across nodes on a cluster Geant4 provides the support of MPI.
In particular it is possible to run a hybrid MPI/MT application that uses MPI to scale across nodes and MT to
scale across cores. This is demonstrated in the extended example par al | el / MPI / exMPI 03 which includes
usage of Geant4 analysis.

9.2.8. Coexistence of Several Managers

The specific manager classes are singletons and so it is not possible to create more than one instance of an analysis
manager of onetype, eg. GARoot Anal ysi sManager . However two analysismanager objectsof different types
can coexist. Then instead of the generic G4Anal ysi sManager typedef the concrete type of each manager has
to be given explicitly.

#i ncl ude " ACsvAnal ysi sManager . hh"
#i ncl ude " GAXm Anal ysi sManager . hh"

GACsvAnal ysi sManager * csvManager = (ACsvAnal ysi sManager: : | nstance();
&AXnml Anal ysi sManager * xnml Manager = GAXnl Anal ysi sManager: : | nst ance() ;

Or:

#i ncl ude "g4csv_defs. hh"
#i ncl ude "g4xm _defs. hh"

GACsv: : HAAnal ysi sManager * csvManager
&AXnl : . GAAnal ysi sManager * xnl Manager

GAGCsv: : AAAnal ysi sManager: : | nst ance() ;
&GAXm : : GAAnal ysi sManager: : | nst ance() ;

9.2.9. Supported Features and Limitations

The analysis category based on g4tools is provided with certain limitations that can be reduced according to the
feedback from Geant4 users and devel opers.

Below isasummary of currently supported featuresin Root, Csv and Xml manager classes:

» Histogram types: 1D, 2D, 3D of doubl e
 Profiletypes. 1D, 2D of doubl e
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e Ntuple column typess int, float, double, (AString, std::vector<int>,
std::vector<float> std::vector<doubl e>
» Optiona directory structure limited to one directory for histograms and/or one for ntuples

9.3. Analysis Reader Classes

The analysisreader classes allow to read in gdanalysis objects from the files generated by the analysis manager(s)
during processing Geant4 application.

An analysis reader classis available for each supported output format:

* (ACsvAnal ysi sReader
* (ARoot Anal ysi sReader
e GAXn Anal ysi sReader

For asimplicity of use, each analysis manager provides the complete access to all interfaced functions though it
isimplemented via a more complex design.

Thereadersareimplemented as singletons. User code will accessapointer to asingleinstance of the desired reader
object. The reader has to be created and deleted from the user code. All objects created via analysis reader are
deleted automatically with the manager. The concrete types of the analysis reader as well as the handled g4tools
objects, are hidden behind a namespace which is selected by including a dedicated include file. This alows the
user to use all output technologiesin an identical way via these generic types:

* (AAnal ysi sReader : the public reader interface
GAAnaHL[ 2, 3] : oneftwo,three]-dimensional histogram
HAAnaPl[ 2] : ong[two]-dimensional profile

* GARM upl e: read ntuple

While the histograms and profiles objects handled by the analysis reader are of the same type as those handled by
the analysis manager, the redaer's ntuple type is different.

All objects read with G4Anal ysi sReader (histograms, profiles and ntuples) get automatically attributed an
integer identifier which value is returned from the "Read" ot "GetNtuple" function. The default start value is 0
and it isincremented by 1 for each next created object. The numbering each object type isindependent from other
objects types and also from the numbering of the same object type in analysis manager. The start identifier value
can be changed in the same way as with the analysis manager (see Section 9.2.3.1).

The read objects can be accessed in the analysis reader via their integer identifiers or by their names in the same
way asin the analysis manager (see Section 9.2.3.4). Note that the type of read ntupleis different from the ntuple
type in the analysis manager.

The specific manager classesare singletonsand so it is not possible to create more than one instance of an analysis
reader of onetype, eg. GARoot Anal ysi sReader . However two analysis reader objects of different types can
coexist. Then instead of the generic &4Anal ysi sReader typedef the concrete type of each manager hasto be
given explicitly in asimilar way as for the analysis managers (see Section 9.2.8).

Aswell as al other Geant4 categories, the analysis code has been adapted for multi-threading. In multi-threading
mode, the analysisreader instances are internally created on the master or thread workers, depending on the client
code call, and data reading can be processed in parallel on workers threads.

9.3.1. Analysis Reader

For reading in the output files created with G4Anal ysi sManager , an instance of the analysis reader must be
created. The analysis reader object is created with the first call to G4Anal ysi sReader: : | nst ance(), the
next callsto thisfunction will just provide the pointer to thisanalysis manager object. Theclient codeisresponsible
for deleting the created object.

The example of the code for creating the analysis reader is given below:
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#i ncl ude "g4root. hh"
[/ #i ncl ude "g4csv. hh"
/1 #i ncl ude "g4xm . hh"

Il Create (or get) analysis reader
G4Anal ysi sReader* anal ysi sReader = (AAnal ysi sReader: : | nstance() ;
anal ysi sReader - >Set Ver boselLevel (1);

/] code to read data

/] Delete anal ysis reader
del et e AAnal ysi sReader: : | nstance();

The level of informative printings can be set by Set Ver boselLevel (&4i nt) . Currently the levels from O
(default) up to 4 are supported.

9.3.2. Files handling

The name of file to be read can be specified either viaG4Anal ysi sReader : : Set Fi | eNane() function, or
directly when reading an aobject. It is possible to change the base file name at any time. The analysis reader can
handle more than onefile at same time.

AAnal ysi sReader * anal ysi sReader = G4Anal ysi sReader: : I nstance();
/] Define a base file nane
anal ysi sReader - >Set Fi | eNarme(" MyFi | eNarme") ;

The following functions are defined for handling files:

voi d Set Fil eNane(const GAString& fil eNane);
GAString GetFil eNane() const;

A file is open only when any "Read" function is called. When more objects are read from the same file (Xml,
Root), the file is open only once. When reading an object without specifying the file name explicitly in "Read"
call, the object is searched in all open filesin the order of their creation time.

9.3.3. Histograms and Profiles

In the following example the code for reading an histogram is presented.

/] Code to create (or get) analysis reader
G4Anal ysi sReader * anal ysi sReader = G4Anal ysi sReader: : I nstance();

/| Define a base file nanme
anal ysi sReader - >Set Fi | eNane(" M/Fi | eNane") ;

/] Read 1D hi st ogram of "Edep" nane
G4int hlld = anal ysi sReader - >ReadH1( " Edep") ;
if ( hild >=0) {
G4H1* hl = anal ysi sReader - >Get H1( hll d);
if ( h1) {
Gidcout << "
<< "

Hi: "

mean: " << hl->nean() << " rme: " << hl->rms() << Gdendl;

}
}

/] Del ete anal ysis reader
del ete AAnal ysi sReader: : | nstance();

The histograms and profiles can be read with these G4Anal ysi sReader functions:

G4int ReadHl(const GAString& hiName, const GAString& fileName = "");
G4int ReadH2(const (AString& h2Name, const GAString& fileName = "");
G4int ReadH3(const (AString& h3Name, const GAString& fileName = "");
G4int ReadPl(const (AString& hiName, const GAString& fileName = "");
G4int ReadP2(const GAString& h2Name, const GAString& fileName = "");
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where hNnane is the name of the object to be read from afile. The file name can be defined explicitly for each
reading object.

All histograms and profiles created by G4Anal ysi sReader are automatically deleted with deleting the
AAnal ysi sReader object.

9.3.4. Ntuples

In the following example the code for reading ntuplesis presented.

/] Code to create (or get) analysis reader
G Anal ysi sReader * anal ysi sReader = G4Anal ysi sReader: : I nstance();

/1l Define a base file nanme
anal ysi sReader - >Set Fi | eNanme(" MyFi | eNane") ;

/! Read ntuple
Gdint ntupleld = anal ysi sReader - >Get Nt upl e(" TrackL"); ;
if ( ntupleld >= 0 ) {
G4doubl e tracklL;
anal ysi sReader - >Set Nt upl eDCol um( " Labs", trackL);
GAcout << "Ntuple TrackL, reading sel ected colum Labs" << endl;
whil e ( anal ysi sReader->Get Nt upl eRow() ) {
GAcout << counter++ << "th entry: "
<< " TrackL: " << trackL << std::endl;
}
}

/| Delete anal ysis reader
del et e G4Anal ysi sReader: : | nstance();

When the ntuple columns are associated with the variables of the appropriate type, the ntuple they can beread in
aloop with Get Nt upl eRow( ) function. The function returns true until all dataareread in.

On overview of all available functions for ntuple reading is given below:

/] Methods to read ntuple froma file
G4int Get Ntupl e(const GAString& ntupl eName, const GAString& fileNanme = "");

/] Methods for ntuple with id = FirstNtupleld

Gdbool Set Nt upl eXCol unm(const (AStri ng& col umNane, Xtype& val ue);

G4bool  Set Nt upl eXCol utm( const GAString& col utmNane, std: : vect or <Xt ype>& vector);
G4bool Get Nt upl eRow() ;

/1 Methods for ntuple with id > FirstNupleld
G4bool Set Nt upl eXCol um( G4i nt ntupl el d,
const (AString& col umNane, Xtype& val ue);
G4bool Set Nt upl eXCol um( G4i nt ntupl el d,
const (AString& col umNane, std::vector<Xtype>& vector);
G4bool Cet Nt upl eRow( G4i nt ntupl el d);

where [ X, Xtype] inSetNtupleXColum() canbe [I, &int], [F, Afloat], [D
HAdouble] or [S, GAString].Thecolumnsof std:: vect or typeare not supported for ASt ri ng.

All ntuples and ntuple columns created by (4Anal ysi sReader are automatically deleted with deleting the
AAnal ysi sReader object.

9.4. Accumulables

The classes for users accumul ables management were added in 10.2 release for the purpose of simplification of
users application code. The accumulables objects are named variables registered to the accumulable manager,
which provides the acces to them by name and performs their merging in multi-threading mode according to their
defined merge mode. Their usage is demonstrated in the basic examples B1 and B3a.

To better reflect the meaning of these objects, the classes base name "Parameter” used in 10.2 was changed in
"Accumulable’ in 10.3. Further integration in the Geant4 framework is foreseen in the next Geant4 versions.
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9.4.1. GAAccumulable<T>

HAAccumul abl e<T> templated class can be used instead of built-in typesin order to facilitate merging of the
values accumulated on workers to the master thread. The G4Accunul abl e<T> object has, besides its value of
the templated type T, also a name, the initial value, which the valueis set to in Reset () function and a merge
mode, specifying the operation which is performed in Mer ge() function.

The accumulable object can be either instatiated using its constructor and  reg-
isterd in HAAccumul abl esManager explicitly, or it can be created using
HAAccumul abl esManager: : Creat eAccunul abl e() function, their registering is then automatic. The
first way is used in the basic examples B1 and B3a:

/1 BlRunActi on. hh
class BlRunAction : public GAUser RunAction

{
...
private:
GAAccunul abl e<G4doubl e> f Edep;
GAAccunul abl e<Gddoubl e> f Edep2;
=

/1 BlRunAction. cc
BlRunAct i on: : BLRunAct i on()
: GAUser RunAction(),
f Edep(" Edep", 0.),
f Edep2( " Edep2", 0.) /1 the accunulable is initialized with a name and a value = initVal ue
/1 (the name can be om tted)

/..

/| Register accunulable to the accurnul abl e manager

G4Accumul abl eManager * accumul abl eManager = G4Accunul abl eManager: : | nst ance() ;
accunul abl eManager - >Regi st er Accunul abl e(f Edep) ;

accumul abl eManager - >Regi st er Accunul abl e( f Edep2) ;

}

An dternative way of creating an accumulable using GAAccunul abl esManager isdemonstrated below:

/1 BlRunActi on. cc
B1RunActi on: : BLRunActi on()
: GAUser RunActi on()
{
/..
/1 Accumul abl es can be al so created via accunul abl e manager
G4Accunul abl eManager * accurnul abl eManager = G4Accunul abl eManager: : | nst ance() ;
accumul abl eManager - >Cr eat eAccunul abl e<Gidoubl e>(" EdepBi s", 0.);
accunul abl eManager - >Cr eat eAccunul abl e<G4doubl e>( " Edep2Bi s", 0.);

}

The AAccurul abl esManager takes ownership of the accumulables created by its Cr eat eAccunul a-
bl e() function the accumulables allocated in the user code has to be deleted in the user code.

Since Geant4 10.3, the name of the accumulable can be omitted. A generic name "accumulable N", where N is
the current number of registered obects, will be then attributed.

In multi-threading mode all accumulables registered to G4Accumnul abl esManager accumulated on workers
can be merged to the master thread by calling G4Accunul abl esManager : : Merge() function. This step
may be not necessary in future after a planned closer integration of G4Accumulable classes in the Geant4 kernel.

/1 BlRunAction. cc
voi d B1RunActi on: : EndOf RunActi on(const GARun* run)
{
...
/1 Merge accumul abl es
G4Accunul abl eManager * accumnul abl eManager = G4Accunul abl eManager: : | nst ance() ;
accunul abl eManager - >Mer ge() ;

}
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The merging mode can be specified using the third (or the second one, if the name is omitted)
AAAccumul abl e<T> constructor argument. The merge modes are defined in G4AMer geMbde  class enumer-
ation:

enum cl ass GAMer geMbde {

kAddi ti on, /1l "O" if bool ean type
kwul tiplication, // "And" if boolean type
kMaxi mum /1l "O" if bool ean type
kM ni num /1 "And" if bool ean type

i
The default accumulable merge operation is addition.

The registered accumulables can be accessed viaAAccurrul abl esManager by name or by theid, attributed
in the order of registering:

/...

GAAccunul abl eManager * accumnul abl eManager = G4Accunul abl eManager: : | nst ance() ;

/| Access accunmul abl es by nane

G4doubl e edepBi s = accunul abl eManager - >Get Accunul abl e<G4doubl e>(" EdepBi s") - >Cet Val ue() ;
G4doubl e edep2Bi s accunul abl eManager - >Get Accurnul abl e<G4doubl e>( " Edep2Bi s") - >Get Val ue() ;

/| Access accunul ables by id
GAVAccunul abl e* accurnul abl e = accurnul abl eManager - >Get Accunul abl e(i d) ;

9.4.2. User defined accumulables

Users can define their own accumulable class derived from GAVAccunul abl e abstract base class. An example
of aProcessCount er Accunul abl e class, implementing an accumulable holding a map of the processes
occurences by the procesesses names, is given below. Such processes occurences map is used in several electro-
magnetic extended examples, e.g. TestEm1.

ProcCounterAccumulable.hh

#i ncl ude " &VAccumul abl e. hh"
#i ncl ude "gl obal s. hh"
#i ncl ude <map>
cl ass ProcCount er Accunmul abl e : public G4VAccumnul abl e
{
public:
Pr ocCount er Accunul abl e(const (AStri ng& nane)
GAVAccunul abl e(nanme, 0), fProcCounter() {}
virtual ~ProcCounterAccumul able() {}

voi d Count Processes(G4String procNane);

virtual void Merge(const G4VAccumul abl e& ot her);
virtual void Reset();

private:
std:: map<GAString, G4i nt > f ProcCount er;

}

ProcCounterAccumulable.cc

voi d ProcCount er Accunul abl e: : Mer ge(const GAVAccunul abl e& ot her)
{
const ProcCount er Accunul abl e& ot her Pr ocCount er Accunul abl e
= static_cast<const ProcCounterAccunul abl e&>(ot her);

std:: map<G4AString, ZAint>::const_iterator it;
for (it = otherProcCounterAccunul abl e. f ProcCount er. begi n();
it !'= otherProcCounterAccunul abl e. f ProcCounter.end(); ++it) {

GAString procNane = it->first;
G4int otherCount = it->second;
if ( fProcCounter.find(procName) == fProcCounter.end()) {
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f ProcCount er [ procNane] = ot her Count ;
}

el se {
f ProcCount er [ procNane] += ot her Count ;

}
}
}

voi d ProcCount er Accunul abl e: : Reset ()

f ProcCounter.clear();

}

Theimplementation of theCount Pr ocesses() functionisidentical asinRun: : Count Processes() func-
tion in TestEm1.

9.5. g4tools

g4t ool s isa"namespace protected" part of i nl i b and exl i b which is of some interest for Geant4, mainly
the histograms, the ntuples and the code to write them at the ROOT, AIDA XML and CSV fileformats. The idea
of g4t ool s isto cover, with avery light and easy to install package, what is needed to do analysisin a"Geant4
batch program".

Asg4t ool s isdistributed through Geant4 and in order to avoid potential namespace clasheswith other codesthat
usethei nl i b/ exl i b todo Geant4 visualization (asfor theg4vi ewapplication or some of the exlib examples),
the inlib and exlib namespaces had been automatically changed to tools in the g4t ool s  distribution. Sincein
principle Geant4 users will not have to deal directly with the g4t ool s classes, but will manipulate histograms
and ntuplesthroughthe &4 Anal ysi sManager , weare not going to extensively document theg4t ool s classes
here. Interested people are encouraged to go at thei nl i b/ exl i b web pagesfor that (see inlib/exlib site).

9.5.1. g4tools package

9.5.1.1. g4tools code is pure header

Asexplainedini nl i b/ exl i b,thecodefounding4t ool s is"pureheader". Thiscomesfromthe need to have
an easy way to build applications, asthei oda one, from smartphone, passing by tabletsand up to various desktops
(UNIX and Windows). For example, if building an application targeted to the Apple AppStore and GooglePlay,
the simplest way isto pass through Xcode and the Android make system (or Ecl i pse), and having not to build
libraries simplifies a lot the handling of all these IDEs for the same application. A fallback of that is that the
installation of g4t ool s (if not using the one coming with Geant4) is straightforward, you simply unzip thefile
containing the source code! To build an application using g4t ool s, asfori nl i b/ exl i b, you simply haveto
declare to your build system the "-1" toward the unfolded directory and do "Build and Run".

9.5.1.2. g4tools test

g4t ool s comes with test programs of its own that may be useful in case of problems (for example porting on
anot yet covered platform). Y ou can build and run them with :

UNI X> <get g4tool s. zi p>
UNI X> <unzi p g4tool s. zi p>
UNI X> cd g4t ool s/test/cpp
UNI X> . /build

UNI X> ./tool s_test_histo
UNI X> ./tool s_test_w oot
UNI X> etc. ..

and on Windows :

DOS> <setup Visual C++ so that CL.exe is in your PATH>

DOS> <get g4tool s. zi p>

DOS> <unzi p g4tool s.zi p> (you can use the unzip.exe of CYGA N)
DOS> cd g4t ool s\test\cpp

DCS> .\ bui | d. bat
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DOS> . \tool s_test_histo. exe
DOS> . \tool s_test_w oot.exe
DOS> etc. ..

9.5.1.3. g4tools in Geant4

Theg4t ool s header filesare distributed in the Geant4 sourceinthesour ce/ anal ysi s/ i ncl ude/ t ool s
directory and in the Geant4 installation, they are installed in i ncl ude/ t ool s directory. The g4t ool s
test programs, included only in Geant4 development versions, can be downloaded with the g4t ool s-
[version]. zipfilefromthei nexl i b download page).

While the Geant4 analysis manager provides the methods for booking and filling the g4tools objects, it does not
interface all public functions. Users can access the g4tools objects (see Section 9.2.3.4) and use the g4tools AP
described in the next section to get the needed informations.

9.5.2. User API

We describe here some of the public methods potentially seen by a user doing analysis.

9.5.2.1. Booking and filling

hld(const std::string& title,unsigned int Xnunber, doubl e Xm n, doubl e Xmax) ;
hld(const std::string& title, const std::vector<doubl e>& edges);

bool fill (double X double Wight = 1);

example:

#i ncl ude <t ool s/ hi sto/hld>
#i ncl ude <t ool s/ randd>

tool s:: histo::hld h("CGauss", 100, -5, 5);
tool s::rgaussd rg(1,2);
for(unsigned int count=0;count<entries;count++) h.fill(rg.shoot(), 1.4);

9.5.2.2. Mean and rms

tool s:: histo::hld h("Guss", 100, -5, 5);

.sid::cout << " nmean " << h.nean() << ", rns " << h.rns() << std::endl;
9.5.2.3. Bin infos
When doing a:

bool fill (double X double Wight = 1);

the histogram class maintains, for each bin, the number of entries, the sum of weights that we can note "Sw", the
sum of W by W "Sw2", the sum of X by Weight "Sxw", the sum of X by X by W "Sx2w". Then bin method names
reflect these notations, for example to get the 50 bin sum of X* X*W :

doubl e Sx2w = h. bi n_Sx2w( 50) ;

and the same for the other sums:

doubl e Sw = h. bi n_Sw(50);

doubl e Sw2 = h. bi n_Sw2(50);

doubl e Sxw = h. bi n_Sxw(50) ;
unsigned int n = h.bin_entries(50);

Y ou can have also all infos on all binswith:
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tool s::histo::hld h(...);

const std::vector<unsigned int>& _entries = h.bins_entries();

const std::vector<doubl e>& _bins_sumw = h. bins_sumw);

const std::vector<doubl e>& _bins_sumw2 = h. bi ns_sum w2();

const std::vector< std::vector<doubl e> >& _bins_sum xw = h. bi ns_sum xw() ;
const std::vector< std::vector<doubl e> >& _bins_sum x2w = h. bi ns_sum x2w() ;

for example to dump bin 50 of an histo booked with 100 bins:

std::cout << "entries[50] " << _entries[50] << std::endl;

std::cout << " sumwf50] ' << _bins_sumw 50] << std::endl;

std::cout << " sum w2[50] " << _bins_sumw2[50] << std::endl;

std::cout << " sum xwf 50] ' << _bins_sumxw 50][0] << std::endl; /10 = xaxis
std::cout << "sum x2w 50] " << _bins_sumx2w[50][0] << std::endl; //0 = xaxis

(Take care that the [Q] entriesin the upper vectors are for the "underflow bin" and the last oneisfor the "overflow
bin").

9.5.2.4. All data
You can get all internal data of an histo through the histo_data class:

const tools::histo::hld::hd_t& hdata = h.dac(); //dac=data access.

and then, for example, find back the binsinfos with:

const std::vector<unsigned int>& _entries = hdata. mbin_entries;

const std::vector<doubl e>& _bins_sum w = hdata. m bi n_Sw;

const std::vector<doubl e>& _bins_sum w2 = hdata. m bi n_Sw2;

const std::vector< std::vector<doubl e> >& _bins_sum xw = hdat a. m bi n_Sxw;
const std::vector< std::vector<doubl e> >& _bins_sum x2w = hdat a. m bi n_Sx2w;
/1 dunmp bin 50 :
std::cout << "entries[50]
std::cout << " sumw 50]
std::cout << " sum w2[ 50]
std::cout << " sumxw 50]
std::cout << "sum x2wf 50]

' << _entries[50] << std::endl;

" << _bins_sumw 50] << std::endl;

' << _bins_sumw2[50] << std::endl;

" << _bins_sumxw{50][0] << std::endl; /1
' << _bins_sumx2w[ 50][0] << std::endl; [/

o o

See the toolg/histo/histo_data class for all internal fields.

9.5.2.5. Projections

From a 2D histo, you can get the x projection with:;

tool s:: histo::hld* projection = tools::histo::projection_x(h2d,"ProjX");
del ete projection;

See test/cpp/histo.cpp for example code. Other dlicing and projection methods are;

/1 h2d -> hld. (User gets ownership of the returned object).

hld* slice_x(const h2d& int y_beg_ibin,int y_end_ibin, const std::string& title);
h1ld* projection_x(const h2d& const std::string& title);

hld* slice_y(const h2d& int x_beg_ibin,int x_end_ibin, const std::string& title);
hld* projection_y(const h2d& const std::string& title);

/1 h2d -> pld. (User gets ownership of the returned object).

pld* profile_x(const h2d& int y_beg_ibin,int y_end_ibin,const std::string& title);
pld* profile_x(const h2d& const std::string&);

pld* profile_y(const h2d& int x_beg_ibin,int x_end_ibin,const std::string& title);
pld* profile_y(const h2d& const std::string& title);

/1 h3d -> h2d. (User gets ownership of the returned object).

h2d* slice_xy(const h3d& int z_beg_ibin,int z_end_ibin,const std::string& title);
h2d* projection_xy(const h3d& const std::string& title);

h2d* slice_yz(const h3d& int x_beg_ibin,int x_end_ibin,const std::string& title);
h2d* projection_yz(const h3d& const std::string& title);

h2d* slice_xz(const h3d& int y_beg_ibin,int y_end_ibin,const std::string&title);
h2d* projection_xz(const h3d& const std::string& title);
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Chapter 10. Examples
10.1. Introduction

The Geant4 toolkit includes several fully coded examples that demonstrate the implementation of the user classes
required to build a customized simulation.

The new "basic" examples cover the most typical use-cases of a Geant4 application while keeping simplicity and
ease of use. They are provided as a starting point for new Geant4 application devel opers.

A set of "extended" examples range from the simulation of a non-interacting particle and atrivial detector to the
simulation of electromagnetic and hadronic physics processes in a complex detector. Some of these examples
require some libraries in addition to those of Geant4.

The "advanced" examples cover the use-cases typical of a "toolkit"-oriented kind of development, where real
complete applications for different simulation studies are provided.

All examples can be compiled and run without modification. M ost of them can be run both in interactive and batch
mode using the input macro files (*. i n) and reference output files (* . out ) provided. Most examples are run
routinely as part of the validation, or testing, of official releases of the Geant4 toolkit.

The previous set of examples oriented to novice users, "novice", has been refactored in "basic” and "extended"
examples sets in Geant4 10.0. The information about the original set of these examples can be found at the last
section of this chapter.

10.2. Basic Examples

10.2.1. Basic Examples Summary

Descriptions of the 5 basic examples are provided here along with links to source code documentation automati-
cally generated with Doxygen.

Example B1 (seeaso Doxygen page)

» Simple geometry with afew solids

» Geometry with simple placements (G4PV Placement)

» Scoring total dose in a selected volume in user action classes
» Geant4 physicslist (QBBC)

Example B2 (seeaso Doxygen page)

» Simplified tracker geometry with uniform magnetic field

» Geometry with simple placements (G4PV Placement) and parameterisation (G4PV Parameterisation)
 Scoring within tracker via G4 sensitive detector and hits

e Geant4 physicslist (FTFP_BERT) with step limiter

* Started from novice NO2 example

Example B3 (seeaso Doxygen page)

Schematic Positron Emission Tomography system

» Geometry with simple placements with rotation (G4PV Placement)
» Radioactive source

Scoring within Crystals via G4 scorers

Modular physics list built via builders provided in Geant4

Example B4 (seeaso Doxygen page)

» Simplified calorimeter with layers of two materials
» Geometry with replica (G4PV Replica)
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 Scoring within layersin four ways: via user actions (@), via user own object (b), via G4 sensitive detector and
hits (c) and via scorers (d)

» Geant4 physicslist (FTFP_BERT)

 Saving histograms and ntuplein afile using Geant4 analysistools

» Ul commands defined using G4GenericM essenger

« Started from novice/NO3 example

Example B5 (seeaso Doxygen page)

A double-arm spectrometer with wire chambers, hodoscopes and calorimeters with alocal constant magnetic
field

» Geometry with placements with rotation, replicas and parameterisation

* Scoring within wire chambers, hodoscopes and calorimeters via G4 sensitive detector and hits

» Geant4 physicslist (FTFP_BERT) with step limiter

» Ul commands defined using G4GenericM essenger

» Saving histograms and ntuplein afile using Geant4 analysistools

» Started from extended/analysis’A01

Table 10.1, Table 10.2 and Table 10.3 display the "item charts" for the examples currently prepared in the basic
level.

Example B1 Example B2
Description Simple application for accounting|Fixed target tracker geometry
dose in a selected volume
Geometry * solids: box, cons, trd * solids: box, tubs
» simple placements with transla-|» simple placements with transla
tion tion (a)
 parameterised volume (b)
* uniform magnetic field
Physics Geant4 physics list: QBBC Geant4 physics list: FTFP_BERT
Primary generator Particle gun Particle gun
Scoring User action classes Sensitive detector & hits
Vis/GUI Detector & trajectory drawing  Detector, trgjectory & hits draw-
ing
* GUI
Stacking - -
Analysis - -

Table10.1. The"item chart" for basic level examplesB1 and B2.

Example B3 Example B4
Description Schematic Positron Emitted Tomog- | Simplified calorimeter with layers of
raphy system two materials
Geometry  solids: box, tubs » solids: box
» simple placementswith rotation |» simple placements with transla-
tion
* replica
* uniform magnetic field
Physics Modular physics list with Geant4|Geant4 physicslist: FTFP_BERT
builders
Primary generator Radioactive source (particle gun|Particle gun
with Fluor ions)
Scoring Multi functional (sensitive) detector |« (@) User action classes
& scorers * (b) User own object (runData)
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(c) Sensitive detector & hits
(d) Multi functional (sensitive) de-
tector & scorers

Detector, trgjectory & hits draw-
ing

+ GUI

Stacking Killing al neutrina -

Anaysis - Histograms 1D, ntuple

Table 10.2. The"item chart" for basic level examples B3 and B4.

Vis/GUI Detector, trajectory & hits drawing

Example B5
Description Double-arm spectrometer with several detectors and a
local constant magnetic field
Geometry « solids: box, tubs
« simple placements with rotation
 replica

e parameterised volume
« local constant magnetic field
< modifying geometry between runs

Physics Geant4 physicslist: FTFP_BERT

Primary generator Particle gun

Scoring Sensitive detectors & hits

Vis/GUI  Detector, trgjectory & hitsdrawing
o User defined visualization attributes

Stacking -

Analysis » Histograms 1D, ntuple

» Saving file per run
Table 10.3. The"item chart" for basic level example B5.

10.2.2. Basic Examples Macros

All basic examples can be run either interactively or in a batch mode (see section Section 2.1 and Section 2.10)
and they are provided with the following set of macros:

einit_vis.nmc

* Vis.mac

* [gui.mac]

e runl. mac, run2.nmac
* exanpl eBN.in

The selection is done automatically according to the application build configuration.

Theinit_vis. mac macro is aways executed just after the Geant4 kernel and user application classes instan-
tiation. It setsfirst some defaults, then performs Geant4 kernel initialization and finally callsthevi s. mac macro
with visualization setting.

Thevi s. mac macros in each of the examples al have the same structure - except for example B1, see below.
There are only afew lines in each example with a setting different from the other examples and so they can be
easily spotted when looking in the macro. Various commands are proposed in commented blocks of lines with
explanations so that auser can just uncomment lines and observe the effect. Additionally, in example B4, thereare
some visualization tutorial macrosin macr os/ vi sTut or/ . See more on visualization in section Section 2.11
and chapter Chapter 8.
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From Release 9.6 thevi s. nac macro in example B1 has additional commands that demonstrate additional func-
tionality of the vis system, such as displaying text, axes, scales, date, |ogo and shows how to change viewpoint and
style. Consider copying these to your favourite example or application. To see even more commands use hel p
or | s or browse the available Ul commandsin section Section 7.1.

The gui . mac macros are provided in examples B2 and B4. This macro is automatically executed if Geant4 is
built with any GUI session. See more on graphical user interfacesin section Section 2.9.

When running interactively, the example program stops after processing the i ni t _vi s. mac macro and the
Geant4 kernel initialization, invoked from the macro, with the prompt | dl e>. At this stage users can typein the
commands from r unl. mac line by line (recommended when running the example for the first time) or execute
all commands at once using the" / contr ol / execut e runl. mac" command.

The r un2. mac macros define conditions for execution a run with a larger number of events and so they are
recommended to be executed in a batch. The exanpl eéBN. i n macros are also supposed to be run in a batch
mode and their outputs from the Geant4 system testing are available in the filesexanpl eBN. out .

10.2.3. Multi-threading
10.2.3.1. Multi-threading mode

All basic examples have been migrated to multi-threading (MT). No specia steps are heeded to build the examples
in multi-threading mode. They will automatically runin MT when they are built against the Geant4 libraries built
with MT mode activated, otherwise they will run in sequential mode.

The choice of multi-threading mode is done be creating GAMIRunManager instead of GARunManager inthe
examplenmai n() :

#i f def GAMULTI THREADED

AMIRunManager * runManager = new GAMIRunManager ;
#el se

GARunManager * runManager = new GARunManager;
#endi f

Thecompiler flag - DGAMJILTI THREADED i sautomatically set when building applications using Geant4's CMake
(via GEANT4_USE _FILE) and GNUmake systems, and is listed in the flags reported by the --cflags option of
the geant4-config program.

10.2.3.2. Action Initializationclass[B1, B2, B3, B4,B5]

A newly introduced BnActionlnitialization class derived from
AVUser Actionlnitialization, presentin al basic examples, instantiates and registers all user action
classes with the Geant4 kernel .

While in sequential mode the action classes are instatiated just once, via invocation of the method
BnActionlnitialization::Build() .Inmulti-threading mode the same method is invoked for each
worker thread, so al user action classes are defined thread-locally.

A run action class is instantiated both thread-locally and globally; that is why its instance is created also in
themethod BnAct i onl ni ti al i zati on:: Bui | dFor Mast er () , whichisinvoked only in multi-threading
mode.

10.2.4. Example B1

Basic concept:

Thisexampledemonstratesasimple (medical) application within which userswill familiarizethemselveswith sim-
ple placement, usethe NIST material database, and can utilize el ectromagnetic and/or hadronic physics processes.
Two items of information are collected in this example: the energy deposited and the total dose for a selected
volume.
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This example uses the Geant4 physics list QBBC, which is instantiated in the main() function. It requires data
files for electromagnetic and hadronic processes. See more on installation of the datasetsin Geant4 Installation
Guide, Chapter 3.3: Note On Geant4 Datasets . Thefollowing datasets: GALEDATA, GALEVELGAMMADATA,
GANEUTRONXSDATA, G4SAIDXSDATA and GAENSDFSTATEDATA are mandatory for this example.

Classes:
» BlDet ect or Constructi on

The geometry is constructed in the B1Det ect or Const r uct i on class. The setup consists of a box shaped
envel ope containing two volumes: a circular cone and a trapezoid.

Some common materials from medical applications are used. The envel ope is made of water and the two inner
volumes are made from tissue and bone materials. These materials are created using the GANi st Manager
class, which allows one to build a material from the NIST database using their names. Available materials and
their compositions can be found in the Appendix Section 6.

The physical volumes are made from Constructive Solid Geometry (CSG) solids and placed without rotation
using the APVPI acenent class.

e B1Pri maryGCeneratorAction

The default kinematics is a 6 MeV gamma, randomly distributed in front of the envelope across 80% of the
transverse (X,Y) plane. This default setting can be changed via the commands of the (APar t i cl eGun class.

* B1St eppi ngActi on
ItisintheUser St eppi ngAct i on() function that the energy deposition is collected for a selected volume.
* BlEvent Acti on

The statistical event by event accumulation of energy deposition. At the end of event, the acummulated values
are passed in BIRunAct i on and summed over the whole run.

e B1RunActi on

Sums the event energy depositions. In multi-threading mode the energy deposition accumulated in
GAAccurul abl e objects per worker ismerged to the master. Information about the primary particleis printed
in this class along with the computation of the dose. An example of creating and computing new units (e.g.,
dose) is aso shown in the class constructor.

GAAccumul abl e<G4doubl e> type instead of GAdoubl e is used for the BLIRunAct i on data members
in order to facilitate merging of the values accumulated on workers to the master. At present the accumu-
lables have to be registered to GAAccunul abl esManager and G4Par anet er sManager : : Mer ge()
has to be called from the users code. This is planned to be further simplified with a closer integration of
GAAccunul abl e classesin the Geant4 kernel next year.

10.2.5. Example B2

This example simulates a simplified fixed target experiment. To demonstrate alternative ways of constructing the
geometry two variants are provided: B2a (explicit construction) and B2b (parametrized volumes).

The set of available particles and their physics processes are defined inthe FTFP_BERT physicslist. This Geant4
physicslistisinstantiated in the main() function. It requires datafiles for electromagnetic and hadronic processes.
See more on installation of the datasetsin Geant4 Installation Guide, Chapter 3.3: Note On Geant4 Datasets . The
following datasets: GALEDATA, GALEVELGAMMADATA, GANEUTRONXSDATA, G4SAIDXSDATA and
G4ENSDFSTATEDATA are mandatory for this example.

This example also illustrates how to introduce tracking constraints like maximum step length via
(ASt epLi mi t er, and minimum kinetic energy, etc., viathe (AUser Speci al Cut s processes. Thisis ac-
complished by adding G4St epLi ni t er Physi cs to the physicslist.
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Classes:

e B2[a, b]DetectorConstruction

The setup consists of a target followed by six chambers of increasing transverse size at defined distances
from the target. These chambers are located in a region called the Tracker region. Their shape are cylin-
ders constructed as simple cylinders (in B2aDet ect or Const r uct i on) and as parametrised volumes (in
B2bDet ect or Constructi on) - seealso B2bChanber Par anet eri sati on class.

In addition, a globa uniform transverse magnetic field can be applied using
Ad obal MagFi el dMessenger, instantiated in Const r uct SDandFi el d() with a non zero field
value, or via an interactive command. An instance of the B2Tr acker SD class is created and associat-
ed with each logical chamber volume (in B2a) and with the one GALogi cal Vol unme associated with
GAPVPar anet er i sed (in B2b).

One can change the materials of the target and the chambers interactively via the commands defined in
B2aDet ect or Messenger (or B2bDet ect or Messenger).

This example aso illustrates how to introduce tracking constraints like maximum step length, minimum ki-
netic energy etc. via the G4UserLimits class and associated G4StepLimiter and G4UserSpecial Cuts process-
es. The maximum step limit in the tracker region can be set by the interactive command defined in
B2aDet ect or Messenger (or B2bDet ect or Messenger).

* B2Pri maryGener at or Acti on

The primary generator action classemploysthe G4Par t i ¢l eGun. Theprimary kinematicsconsistsof asingle
particle which hits the target perpendicular to the entrance face. The type of the particle and its energy can be
changed via the G4 built-in commands of the &4 Par t i cl eGun class.

 B2Event Acti on

The event number is written to the log file every requested number of eventsin Begi nOf Event Acti on()

and EndOf Event Act i on() . Moreover, for the first 100 events and every 100 events thereafter informa-
tion about the number of stored trgjectories in the event is printed as well as the number of hits stored in the
GAVHi t sCol | ecti on.

* B2RunActi on

The run number is printed at Begi nOf RunAct i on() , where the GARunManager isalso informed how to
Set RandomNunber St or e for storing initial random number seeds per run or per event.

» B2TrackerHi t

The tracker hit classis derived from GAVHi t . In this example, atracker hit is a step by step record of the track
identifier, the chamber number, the total energy deposit in this step, and the position of the energy deposit.

 B2Tr acker SD

The tracker sensitive detector class is derived from G4VSensi ti veDet ector. In ProcessHi ts() -
called from the Geant4 kernel at each step - it creates one hit in the selected volume so long as energy is de-
posited in the medium during that step. This hit is inserted in a HitsCollection. The HitsCollection is printed
at the end of each event (viathe method B2Tr acker SD; : EndCOf Event () ), under the control of the "/hits/
verbose 2" command.

10.2.6. Example B3

This example simulates a Schematic Positron Emission Tomography system. To demonstrate alternative ways of
accumulation event statistics in a run two variants are provided: B3a (using new (4Accunul abl e class) and
B3b (using ZARun class).
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Classes:
Geant4 Installation Guide, Chapter 3.3: Note On Geant4 Datasets

» B3Det ect or Constructi on

Crystalsare circularly arranged to form aring. A number rings make up the full detector (gamma camera). This
is done by positionning Crystals in Ring with an appropriate rotation matrix. Several copies of Ring are then
placed in the full detector.

The Crystal material, Lu2S 05, is not included in the G4Nist database. Therefore, it is explicitly built in De-
fineMaterial s().

Crystals are defined as scorers in - Det ect or Construction: : Creat eScorers() . There are two
G4MuultiFunctional Detector objects: onefor the Crystal (EnergyDeposit), and onefor the Patient (DoseDeposit).

» B3Physi cslLi st

The physicslist contains standard el ectromagnetic processes and the radioactiveDecay module for Genericlon.
It is defined in the B3Physi csLi st class as a Geant4 modular physics list with registered Geant4 physics
builders:

e (ADecayPhysi cs

* (ARadi oact i veDecayPhysi cs

e (AEntt andar dPhysi cs

» B3PrimaryCeneratorActi on

The default particle beam is an ion (F18), at rest, randomly distributed within a zone inside a patient and is
defined in Gener at ePrimaries().

 B3aEvent Acti on , B3aRunAction

Energy deposited in crystals is summed by (AScor er. At the end of event, the values acummulated
in B3aEvent Act i on are passed in B3aRunAct i on and summed over the whole run. In multi-thread-
ing mode the data accumulated in GAAccunul abl e objects per workers is merged to the master in
B3aRunAct i on: : EndOFf RunAct i on() and thefinal result is printed on the screen.

AAAccumul abl e<> type instead of GAdoubl e and G4i nt types is used for the B3aRunActi on
data members in order to facilitate merging of the vaues accumulated on workers to the
master. At present the accumulables have to be registered to G4Accumul abl esManager and
AAAccumul abl esManager : : Mer ge() hasto be called from the users code. Thisis planned to be further
simplified with a closer integration of GAAccunul abl e classesin the Geant4 kernel next year.

* B3bRun , B3bRunAction
Energy deposited in crystals is summed by G4Scorer. B3Run:: RecordEvent () col-
lects information event by event from the hits collections, and accumulates statistics for
B3RunActi on: : EndOf RunAct i on() . In multi-threading mode the statistics accumulated per worker is
merged to the master in Run: : Mer ge() .

» B3St acki ngActi on

Beta decay of Fluorine generates a neutrino. One wishes not to track this neutrino; therefore one killsit imme-
diately, before created particles are put in a stack.

10.2.7. Example B4

This example simulates a simple Sampling Calorimeter setup. To demonstrate several possible ways of data scor-
ing, the example is provided in four variants: B4a, B4b, B4c, B4d. (See also examples/extended/el ectromagnet-
ic/TestEm3).
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The set of available particles and their physics processes are defined inthe FTFP_BERT physicslist. This Geant4
physicslistisinstantiated in the main() function. It requires datafiles for electromagnetic and hadronic processes.
See more on installation of the datasetsin Geant4 Installation Guide, Chapter 3.3; Note On Geant4 Datasets. The
following datasets: GALEDATA, GALEVELGAMMADATA, GANEUTRONXSDATA, G4SAIDXSDATA and
GAENSDFSTATEDATA are mandatory for this example.

Classes:

B4[c, d] DetectorConstruction

The calorimeter is a box made of a given number of layers. A layer consists of an absorber plate and of a
detection gap. The layer is replicated. In addition a transverse uniform magnetic field can be applied using
Ad obal MagFi el dMessenger , instantiated in Const r uct SDandFi el d() withanon zerofield val-
ue, or viainteractive commands.

B4Pri mar yGener at or Acti on

The primary generator action classusesAPar t i ¢l eGun. It definesasingle particle which hitsthe calorime-
ter perpendicular to the input face. The type of the particle can be changed via the G4 built-in commands of
theAParti cl eGun class.

B4RunActi on

It accumulates statistics and computes dispersion of the energy deposit and track lengths of charged particles
with the aid of analysistools. H1D histograms are created in Begi nOf RunAct i on() for the energy deposit
and track length in both Absorber and Gap volumes. The same valuesare a so saved in an ntuple. The histograms
and ntuple are saved in the output file in a format accoring to a selected technology in B4Anal ysi s. hh.
In EndOF RunAct i on( ), the accumulated statistics and computed dispersion are printed. When running in
multi-threading mode, the histograms accumulated on threads are automatically merged in asingle output file,
while the ntuple is written in files per thread.

Classes in B4a (scoring via user actions):

B4aSt eppi ngAct i on

In User St eppi ngAct i on() the energy deposit and track lengths of charged particles in each step in the
Absober and Gap layers are collected and subsequently recorded in B4aEvent Act i on.

B4aEvent Acti on

It defines data members to hold the energy deposit and track lengths of charged particles in the Absorber and
Gap layers. InEndOF Event Act i on() , these quantities are printed and filled in H1D histograms and ntuple
to accumul ate statistic and compute dispersion.

Classes in B4b (via user own object):

B4bRunDat a

A data class, derived from GARun, which defines data members to hold the energy deposit and track lengths
of charged particles in the Absober and Gap layers. It isinstantiated in BAbRunAct i on: : Gener at eRun.
The data are collected step by step in B4bSt eppi ngAct i on, and the accumulated values are entered in
histograms and an ntuple event by event in B4AbEvent Act i on.

B4bSt eppi ngAct i on

InUser St eppi ngAct i on() theenergy deposit and track lengths of charged particlesin Absorber and Gap
layers are collected and subsequently recorded in B4AbRunDat a.

B4bEvent Acti on
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In EndOf Event Act i on( ), the accumulated quantities of the energy deposit and track lengths of charged
particles in Absorber and Gap layers are printed and then stored in B4bRunDat a.

Classes in B4c (via Geant4 sensitive detector and hits):

» B4cDet ect or Construction

In addition to materials, volumes and uniform magnetic field definitionsasin B4Det ect or Const r ucti on,
inConst ruct SbandFi el d() twoinstancesof theB4cCal or i met er SDclassare created and associated
with Absorber and Gap volumes.

e B4cCal orHit

The calorimeter hit classisderived from GAVHi t . It defines data membersto store the energy deposit and track
lengths of charged particlesin a selected volume.

e B4cCal ori net er SD

The calorimeter sensitive detector class is derived from 4VSensi ti veDet ect or . Two instances of this
classarecreatedinB4cDet ect or Const r uct i on and associated with Absorber and Gap volumes. In| ni -

tialize(),itcreatesone hit for each calorimeter layer and one more hit for accounting the total quantities
in al layers. Thevauesare accounted in hitsinthe Pr ocessHi t s() function, which iscalled by the Geant4
kernel at each step.

e B4cEvent Acti on

In EndOF Event Act i on() , the accumulated quantities of the energy deposit and track lengths of charged
particlesin Absorber and Gap layers are printed and then stored in the hits collections.

Classes in B4d (via Geant4 scorers):
* B4dDet ect or Construction

In addition to materials, volumes and uniform magnetic field definitionsasin B4Det ect or Constr ucti on,
in Const ruct SDandFi el d() sensitive detectorsof GAMul ti Funct i onal Det ect or type with prim-
itive scorers are created and associated with Absorber and Gap volumes.

 B4dEvent Acti on

In EndOF Event Acti on() , the accumulated quantities of the energy deposit and track lengths of charged
particlesin Absober and Gap layers are printed and then stored in the hits collections.

10.2.8. Example B5

This example simulates a a double-arm spectrometer with wire chambers, hodoscopes and calorimeters with a
uniform local magnetic field.

The set of available particles and their physics processes are defined in the FTFP_BERT physicslist. This Geant4
physicslistisinstantiated in the main() function. It requires datafiles for electromagnetic and hadronic processes.
See more on installation of the datasetsin Geant4 Installation Guide, Chapter 3.3: Note On Geant4 Datasets . The
following datasets: GALEDATA, GALEVELGAMMADATA, GANEUTRONXSDATA, G4SAIDXSDATA and
GAENSDFSTATEDATA are mandatory for this example.

This example also illustrates how to introduce tracking constraints like maximum step length via
(ASt epLi mi t er, and minimum kinetic energy, etc., viathe (AUser Speci al Cut s processes. Thisis ac-
complished by adding G4St epLi ni t er Physi cs to the physicslist.

This example can be built with excluding visualization and/or Geant4 user interface via G4Vl S_USE and
AUl _USE compiler options (see exampleB5.cc). These options are defined by default with Geant4 configura-
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tion; they can be switched off at compilation time viathe CMake options G4VI S_NONE or AUl _NONE or via
the environment variables of the same name if using GNUmake build.

Classes:
» B5Det ect or Construction ,

The spectrometer consists of two detector arms. One arm provides position and timing information of the inci-
dent particle while the other collects position, timing and energy information of the particle after it has been
deflected by a magnetic field centered at the spectrometer pivot point.

First arm: box filled with air, also containing:
« 1 hodoscope (15 vertical strips of plastic scintillator)
1 drift chamber (horizontal argon gas layerswith a"virtual wire" at the center of each layer)

Second arm: box filled with air, also containing:

1 hodoscope (25 vertical strips of plastic scintillator)

« 1 drift chamber (5 horizontal argon gas layers with a"virtual wire" at the center of each layer)

* 1 electromagnetic calorimeter: a box sub-divided along x,y and z axes into cells of Csl (see aso
B5Cel | Par anet eri sati on class)

< 1 hadronic calorimeter: a box sub-divided along x,y, and z axes into cells of lead, with a layer of plastic
scintillator placed at the center of each cell

The magnetic field region is represented by an air-filled cylinder which contains the field (see
B5Magnet i cFi el d).. The maximum step limit in the magnetic field region is also set viathe G4UserLimits
classinasimilar way asin Example B2.

Therotation angle of the second arm and the magnetic field value can be set viathe interactive command defined
using the GACGener i cMessenger class.

» B5Pri maryGener at or Acti on

The primary generator action class employs the G4ParticleGun. The primary kinematics consists of a single
particle which isis sent in the direction of the first spectrometer arm.

The type of the particle and its several properties can be changed via the Geant4 built-in commands of the
AParti cl e@un classor this example command defined using the G4Gener i cMessenger class.

 B5Event Acti on

An event consists of the generation of a single particle which istransported through the first spectrometer arm.
Here, a scintillator hodoscope records the reference time of the particle before it passes through a drift cham-
ber where the particle position is measured. Momentum analysis is performed as the particle passes through a
magnetic field at the spectrometer pivot and then into the second spectrometer arm. In the second arm, the par-
ticle passes through another hodoscope and drift chamber before interacting in the el ectromagnetic cal orimeter.
Hereit islikely that particles will induce electromagnetic showers. The shower energy is recorded in a three-
dimensional array of Csl crystals. Secondary particles from the shower, as well as primary particles which do
not interact in the Csl crystals, pass into the hadronic calorimeter. Here, the remaining energy is collected in a
three-dimensional array of scintillator-lead sandwiches.

In first execution of Begi nOF Event Acti on() the hits collectionsidentifiers are saved in data members of
theclassand then usedin EndOf Event Act i on() for accessing the hists collectionsand filling the accounted
information in defined histograms and ntuples and printing its summary in alog file. The frequency of printing
can be tuned with the built-in command " / r un/ pri nt Progr ess frequency".

* B5RunActi on

The run action class handles the histograms and ntuples with the aid of Geant4 analysistoolsin asimilar way as
in Example B4. From Release 10.2 the vectors of energy depositsin Electromagnetic and Hadronic cal orimeter
cells are also stored in the ntuple.
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» Hit and Sensitive Detector Classes

All the information required to simulate and analyze an event is recorded in hits. This information is recorded
in the following sensitive detectors:

» Hodoscope ( B5SHodoscopeSD, B5HodoscopeHi t)
* particletime
* strip ID, position and rotation

 Drift chamber: ( B5Dr i ft Chanber SD, B5Dri ft Chanber Hi t)
* particletime
* particle position
e layer ID

 Electromagnetic calorimeter: ( BSEmCal or i net er SD, B5EntCal ori neterHit)
 energy deposited in cell
« cell ID, position and rotation

e Hadronic calorimeter: ( BSHadCal ori met er SD, B5HadCal ori neterHit)
 energy deposited in cell
« cell column ID and row ID, position and rotation

The hit classes include methods Get At t Def s and Cr eat eAt t Val ues to define and then fill extra"Hep-
Rep-style" Attributes that the visualization system can use to present extra information about the hits. For ex-
ample, if you pick aB5HadCal ori net er Hi t in OpenGL or a HepRep viewer, you will be shown the hit's
"Hit Type", "Column ID", "Row ID", "Energy Deposited”" and "Position".

These attributes are essentially arbitrary extra pieces of information (integers, doubles or strings) that are carried
through the visualization. Each attribute is defined oncein G4At t Def object and thenisfilled for each hitina
(AAt t Val ue object. These attributes can also be used by commands to filter which hits are drawn: " / vi s/
filtering/hits/drawByAttribute".

Detector Geometry and trajectories also carry HepRep-style attributes, but these are filled automatically in the
base classes. HepRep is further described at: http://www.dlac.stanford.edu/~perl/heprep/

10.3. Extended Examples
10.3.1. Extended Example Summary

Geant4 extended examples serve three purposes:

* testing and validation of processes and tracking,
* demonstration of Geant4 tools, and
* extending the functionality of Geant4.

The code for these examples is maintained as part of the categories to which they belong. Links to descriptions
of the examples are listed below.

10.3.1.1. Analysis

AnaEx01 - histogram and tuple manipulations using Geant4 internal g4tools system
AnaEx02 - histogram and tuple manipulations using ROOT

AnaEx03 - histogram and tuple manipulations using the AIDA interface

B1Con - modified basic example B1 showing how to use a Convergence Tester
[A01] - thisexamples has been refactored in Example B5 in the basic set.

10.3.1.2. Common

* ReadMe - aset of common classes which can be reused in other examples demonstrating just a particular
feature. This module is going to be enhanced in future.
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10.3.1.3. Biasing

» Variance Reduction - examples (BO1, BO2 and B03) on variance reduction techniques and scoring and appli-
cation of Reverse MonteCarlo in Geant4 ReverseMC
» Generic biasing examples illustrate the usage of a biasing scheme implemented since version Geant4 10.0.
¢ GBO1 Thisexampleillustrates how to bias process cross-sectionsin this scheme.
e GBO02 Illustrates aforce collision scheme similar to the MCNP one.
e GBO3 Illustrates geometry based biasing.
* GBO04 Illustrates a bremsstrahlung splitting.
* GBO5 Illustrates a”splitting by cross-section” technique: a splitting-based technique using absorption cross-
section to control the neutron population.
« GBO06 Illustrates the usage of parallel geometries with generic biasing.

10.3.1.4. Electromagnetic

e TestEmO - how to print cross-sections and stopping power used in input by the standard EM package

* TestEm1 - how to count processes, activate/inactivate them and survey the range of charged particles. How
to define a maximum step size

e TestEm2 - shower development in an homogeneous material : longitudinal and lateral profiles

» TestEm3 - shower development in a sampling calorimeter : collect energy deposited, survey energy flow and
print stopping power

e TestEm4 - 9 MeV poaint like photon source: plot spectrum of energy deposited in asingle media

* TestEm5 - how to study transmission, absorption and reflection of particlesthrough asingle, thin or thick, layer.

e TestEm6 - physicslist for rare, high energy, electromagnetic processes. gamma conversion and e+ annihilation
into pair of muons

» TestEm7 - how to produce a Bragg curve in water phantom. How to compute dosein tallies

e TestEm8 - test of photo-absorption-ionisation model in thin absorbers, and transition radiation

* TestEm9 - shower development in acrystal calorimeter; cut-per-region

e TestEm10 - XTR transition radiation model, investigation of ionisation in thin absorbers

* TestEm1l - how to plot a depth dose profilein arectangular box

e TestEm12 - how to plot a depth dose profile in spherical geometry : point like source

» TestEm13 - how to compute cross sections of EM processes from rate of transmission coefficient

e TestEm14 - how to compute cross sections of EM processes from direct eval uation of the mean-free path. How
to plot final state

» TestEm15 - compute and plot final state of Multiple Scattering as an isolated process

e TestEm16 - simulation of synchrotron radiation

» TestEm17 - check the cross sections of high energy muon processes

e TestEm18 - energy lost by a charged particle in asingle layer, due to ionization and bremsstrahlung

Check basic quantities

Total cross sections, mean free paths ... EmO, Em13, Em14

Stopping power, particle range ... EmO, Em1, Em5, Em11, Em12
Final state : energy spectra, angular distributions Emi4

Energy loss fluctuations Em18

Multiple Coulomb scattering

as an isolated mechanism Emi5

as aresult of particle transport Em5

More global verifications

Single layer: transmission, absorption, reflexion Em5
Bragg curve, tallies Em7
Depth dose distribution Em11, Em12
Shower shapes, Moliere radius Em2
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Sampling calorimeters, energy flow Em3
Crystal calorimeters Em9
Other specialized programs
High energy muon physics Em17
Other rare, high energy processes Em6
Synchrotron radiation Em16
Transition radiation Em8
Photo-absorption-ionization model Em10

Table 10.4. TestEm by theme

10.3.1.5. Error Propagation

» ReadMe - error propagation utility

10.3.1.6. Event Generator

» exgps - illustrating the usage of the G4Gener al Par ti cl eSour ce utility

* particleGun - demonstrating three different ways of usage of G4Par t i cl eGun, shooting primary particles
in different cases

 userPrimaryGenerator - demonstrating how to create a primary event including several vertices and several
primary particles per vertex

* HepMCExO01 - simplified collider detector using HepM C interface and stacking

* HepMCEX02 - connecting primary particlesin Geant4 with various event generators using the HepM C interface

* MCTruth - demonstrating a mechanism for Monte Carlo truth handling using HepM C as the event record

» pythia - illustrating the usage of Pythia as Monte Carlo event generator, interfaced with Geant4, and showing
how to implement an external decayer (example decayer6)

10.3.1.7. Exotic Physics

e Channeling - simulates channeling of 400 GeV/c protonsin abent crystal.

» Monopole - illustrating how to measure energy deposition in classical magnetic monopole
e Phonon - demonstrates simulation of phonon propagation in cryogenic crystals

* UCN - simulates the passage of ultra-cold neutrons (UCN) in a hollow pipe.

10.3.1.8. Fields

* BlineTracer - tracing and visualizing magnetic field lines

« field01 - tracking using magnetic field and field-dependent processes

 field02 - tracking using electric field and field-dependent processes

 field03 - tracking in a magnetic field where field associated with selected logical volumes varies

 fieldO4 - definition of overlapping fields either magnetic, electric or both

 fieldO5 - demonstration of "spin-frozen" condition, how to cancel the muon g-2 precession by applying an
electric field

 fieldO6 - exercising the capability of tracking massive particlesin agravity field

10.3.1.9. Geant3 to Geant4

» Genera ReadMe - converting ssmple geometries in Geant3.21 to their Geant4 equivalents (example clGeom-
etry)

10.3.1.10. Geometry

* Genera ReadMe
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Examples

transforms - demonstrating various ways of definition of 3D transformations for placing volumes

10.3.1.11. Hadronic

Hadr0O0 - example demonstrating the usage of G4PhysListFactory to build physics lists and usage of
G4HadronicProcessStore to access the cross sections

Hadr01 - example based on the application IION developed for simulation of proton or ion beam interaction
with awater target. Different aspects of beam target interaction are included

Hadr02 - example application providing simulation of ion beam interaction with different targets. Hadronic
aspects of beam target interaction are demonstrated including longitudinal profile of energy deposition, spectra
of secondary particles, isotope production spectra.

Hadr03 - example demonstrating how to compute total cross section from the direct evaluation of the mean
free path, how to identify nuclear reactions and how to plot energy spectrum of secondary particles

Hadr04 - example focused on neutronHP physics, especially neutron transport, including thermal scattering
Hadr05 - demonstrates the usage of G4GenericPhysicsList to build the concrete physicslist at the run time
Hadr06 - demonstrates survey of energy deposition and particle's flux from a hadronic cascade

Hadr07 - demonstrates survey of energy deposition and particle's flux from a hadronic cascade. Show how to
plot a depth dose profile in arectangular box.

FissionFragment - This example demonstrates the Fission Fragment model as used within the neutron_hp
model. It will demostrate the capability for fission product containmentby the cladding in a water moderated
sub-critical assembly. It could also be further extended to calculate the effective multiplication factor of the
subcritical assembly for various loading schemes.

NeutronSource - NeutronSource isan example of neutrons production. It illustrates the cooperative work of nu-
clear reactions and radioactive decay processes. It surveys energy deposition and particle's flux. It uses Physic-
sConstructor objects.

10.3.1.12. Medical Applications

DICOM - geometry set-up using the Geant4 interface to the DICOM image format

electronScattering - benchmark on electron scattering

electronScattering2 - benchmark on electron scattering (second way to implement the same benchmark as the

above)

fanoCavity - dose deposition in an ionization chamber by a monoenergetic photon beam

fanoCavity2 - dose deposition in an ionization chamber by an extended one-dimensional monoenergetic elec-

tron source

GammaTherapy - gammaradiation field formation in water phantom by electron beam hitting different targets

dna - Set of examples using the Geant4-DNA physics processes and models.

e dnaphysics - The dnaphysics example shows how to simulate track structures in liquid water using the
Geant4-DNA physics processes and models.

» microdosimetry - The microdosimetry example simulatesthetrack of a5 MeV protonin liquid water. Geant4
standard EM models are used in the World volume while Geant4-DNA models are used in a Target volume,
declared as a Region.

e range - Simulation of ranges.

* svalue - This example shows how to simulate S-values in spheres of liquid water using the Geant4-DNA
physics processes and models.

* wvalue - This example shows how to simulate W-values in liquid water using the Geant4-DNA physics
processes and models.

¢ cheml - Simple activation of the chemistry module.

e chem2 - Usage of TimeStepAction in the chemistry module.

« chem3 - Activate the full interactivity with the chemistry module.

« chem4 - Simulation of G radiochemical yields with the chemistry module.

» wholeNuclearDNA - Description of the full nucleus of a biological cell.

e pdbddna - Usage of the Protein Data Bank (PDB) file format to build geometries.

 clustering - Clustering application for direct damage extraction.

10.3.1.13. Optical Photons

General ReadMe
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Examples

OpNovice - simulation of optical photons generation and transport. (It was moved in extended examples from
novice/N06 with removal of novice examples.)

LXe - optical photonsin aliquid xenon scintillator

WLS - application simulating the propagation of photons inside a Wave Length Shifting (WLS) fiber

10.3.1.14. Parallel Computing

General ReadMe

MPI - interface and examples of applications (exMPI101, exMPI02 and exMPI03) parallelized with different
MPI compliant libraries, such asLAM/MPI, MPICH2, OpenMPI, etc.

TBB - demonstrate how to interface a simple application with the Intel Threading Building Blocks library
(TBB), and organise MT event-level parallelism as TBB tasks

ThreadsafeScorers - demonstratesavery simple application where an energy deposit and # of stepsisaccounted
in thread-local (i.e. oneinstance per thread) hits maps with underlying types of plain-old data (POD) and global
(i.e. one instance) hits maps with underlying types of atomics.

TopC - set of examples (ParNO2 and ParNO4) derived from novi ce using paralelism at event level with
the TopC application

10.3.1.15. Parameterisations

Par01 - Demonstrates the use of parameterisation facilities. (It was moved in extended examples from novice/
NO5 with removal of novice examples.)

Par02 - Shows how to do "track and energy smearing” in Geant4, in order to have avery fast ssmulation based
on assumed detector resolutions.

Gflash - Demonstrates the use of the GFLASH parameterisation library. It uses the GFLASH equations(hep-
ex/0001020, Grindhammer & Peters) to parametrise electromagnetic showersin matter

10.3.1.16. Persistency

General ReadMe

GDML - examples set (G01, G02, GO3 and G04) illustrating import and export of a detector geometry with
GDML, and how to extend the GDML schema or use the auxiliary information field for defining additional
persistent properties

POl - storing calorimeter hits using reflection mechanism with Root

P02 - storing detector description using reflection mechanism with Root

P03 - illustrating import and export of a detector geometry using ASCI| text description and syntax

10.3.1.17. Polarisation

PolO1 - interaction of polarized beam (e.g. circularly polarized photons) with polarized target

10.3.1.18. Radioactive Decay

rdecayOl1 - demonstrating basic functionality of the G4Radi oact i veDecay process
rdecay02 (Exrdm) - decays of radioactive isotopes as well as induced radioactivity resulted from nuclear in-
teractions

10.3.1.19. Run & Event

REO1 - information between primary particles and hits and usage of user-information classes

REO2 - simplified fixed target application for demonstration of primitive scorers

REO3 - use of Ul-command based scoring; showing how to create parallel world(s) for defining scoring
mesh(es)

REO4 - demonstrating how to define alayered mass geometry in parallel world

REQ5 - demonstrating interfacing to the PY THIA primary generator, definition of a'readout’ geometry, event
filtering using the stacking mechanism. (It was moved in extended examples from novice/N04 with removal
of novice examples.)
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Examples

» REO6 - demonstrating how to modify part of the geometry setup at run-time, detector description parameteri-
sation by materials, sharing of a sensitive detector definition for different sub-detectors, different geometrical
regions definition with different production thresholds, customization of the G4Run (It was moved in extended
examples from novice/NO7 with removal of novice examples.)

10.3.1.20. Visualization

» Genera ReadMe - examples (perspective, standalone and userVisAction) of customisation for visualization

10.4. Advanced Examples

Geant4 advanced examples illustrate realistic applications of Geant4 in typical experimental environments. Most
of them also show the usage of analysis tools (such as histograms, ntuples and plotting), various visualization
features and advanced user interface facilities, together with the simulation core.

Note: Maintenance and updates of the code is under the responsibility of the authors. These applications are
therefore not subject to regular system testing and no guarantee can be provided.

The advanced examplesinclude:

 air_shower , Simulation of a Fresnel lens focusing direct or reflected UV light onto a photomultiplier. Object
parameterisation and replication capabilities of Geant4 are used to describe the lens geometry. The exampleis
inspired in the configuration of the ULTRA experiment (NIM A 570 (2007) 22).

» amsEcal , illustrating simulation in the AM S electro-magnetic calorimeter.

» brachytherapy, illustrating atypical medical physics application simulating energy deposit in aPPhantom filled
with soft tissue.

» ChargeExchangeM C , The program was used to simulate real experiments in Petersburg Nuclear Physics
Institute (PNPI, Russia).

» composite calorimeter , test-beam simulation of the CMS Hadron calorimeter at LHC.

» dna_physics, this example explains how to use Geant4-DNA physics for the very low energy transport of
particlesin liquid water. See more information at http://geant4-dna.org.

» eRosita, simplified version of the simulation of the shielding of the eROSITA X-ray mission; it demonstrates
the ssimulation of PIXE (Particle Induced X-ray Emission) asdescribed in M.G. Piaet a., PIXE simulation with
Geant4, |EEE Trans. Nucl. Sci., val. 56, no. 6, pp. 3614-3649, 2009.

» gammaknife, reproducing in details agammaknife device for stereotactic radiosurgery. In particular, the gam-
maknifemodel Cissimulated, whichischaracterized by asymmetrical displacement of the Co60 sources. Dose
distributions are acquired in a water spherical phantom using voxelized geometries. The possibility to change
the source pattern in order to simulate different gammaknife modelsis in development and new versions with
these additional features will be released.

e gammaray_telescope, illustrating an application to typical gammaray telescopeswith aflexible configuration.

» hadrontherapy , is an example for people interested in Monte Carlo studies related to proton/ion therapy.
Hadrontherapy permits the simulation of a typical hadron therapy beam line (with al its elements) and the
calculation of fundamentals quantities of interest: 3D dose distributions, fluences, and average LET for both
primary and secondary particles, etc.. A typical beamline for laser-driven ion beams is also included in this
last version.

* human_phantom , implementing an Anthropomorphic Phantom body built importing the description from a
GDML representation.

* iort_therapy , specificaly developed to address typical needs related to the IntraOperative Radio-Therapy
(IORT) technique. Thistechnique deliversasingle dose of radiation directly to the tumor bed, or to the exposed
tumor, during surgery. The idea of iort_therapy is to provide a useful tool for Users interested to radiation
dosimetry, dose planning and radio-protection studies in IORT. In fact, the application allows to reconstruct
dose distribution curves in water or other materials, to plan dose distribution in the tumor treatment region
with different clinical set-up, and to optimize radio-protection of normal patient tissues simulating a composite
metallic shielding disc. iort_therapy simulates the collimator beam line system of a typical medical mobile
linac, the phantom, the detector and the composite metallic shielding disc. Via external macro commandsit is
possible to change the physic models, the collimator beam line, the phantom, the detector and shielding disc
geometries, the visualization, the beam particle characteristics, and to activate the Graphical Users Interface
(QT libraries are requested)
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Examples

|IAr_calorimeter , smulating the Forward Liquid Argon Calorimeter (FCAL) of the ATLAS Detector at LHC.
medical_linac, illustrating atypical medical physics application simulating energy deposit in a Phantom filled
with water for atypical linac used for intensity modulated radiation therapy. The experimental set-up is very
similar to one used in clinical practice.

microbeam , simulates the cellular irradiation beam line installed on the AIFIRA electrostatic accelerator fa-
cility located at CENBG, Bordeaux-Gradignan, France.

microelectronics , smulates the track of a5 MeV proton in silicon using very low energy electromagnetic
Geant4 MicroElec processes. It illustrates how to combine these discrete processes with usual Geant4 condensed
history ones, using different processes for different regions of the geometry and different energy ranges.
nanobeam , simulates the beam optics of the "nanobeam line" installed on the AIFIRA €electrostatic accel erator
facility located at CENBG, Bordeaux-Gradignan, France.

purging_magnet , illustrating an application that simulates electrons traveling through a 3D magnetic field;
used in amedical environment for simulating a strong purging magnet in a treatment head.

radioprotection , illustrating the response characterization of a novel diamond microdosimeter for radiation
protection in human space missions and aviation.

underground_physics, illustrating an underground detector for dark matter searches.

xray_fluorescence, illustrating the emission of X-ray fluorescence and PIXE.

xray_telescope, illustrating an application for the study of the radiation backgroundinatypical X-ray telescope.

10.5. Novice Examples

The old "novice" set of examplesis now replaced with anew "basic” set, covering the most typical use-cases of
a Geant4 application with keeping simplicity and ease of use.

The source code of the last version of the novice examples set (in 9.6.p02 release) can be viewed in the Geant4
LXR code browser

The new location of each examplein 10.0 release:

NO1 - removed

NO2 - basic/B2

NO3 - basic/B4

NO4 - extended/runAndEvent/REQ5
NO5 - extended/parameterisations/Par01
NO6 - extended/optical/OpNovice

NO7 - extended/runAndEvent/RE06
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Appendix . Appendices
1. CLHEP Foundation Library

CLHEPisaset of Class Libraries containing many basic classes for use in High Energy Physics.

Both a CLHEP Reference Guide and a User Guide are available.
Origin and current situation of CLHEP

CLHEP started in 1992 as alibrary for fundamental classes mostly needed for, and in fact derived from, the MC
event generator MC++ written in C++. Since then various authors added classes to this package, including several
contributions made by developersin the Geant4 Collaboration.

Geant4 and CLHEP

The Geant4 project contributed to the development of CLHEP. The random number package, physics units and
constants, and some of the numeric and geometry classes had their originsin Geant4.

Geant4 also benefits from the development of CLHEP. In addition to the already mentioned classes for random
numbers and numerics, we use the classes for points, vectors, and planes and their transformations in 3D space,
and lorentz vectors and their transformations. Although these classes have Geant4 names like G4ThreeV ector,
these are just typedefs to the CLHEP classes.

Sincerelease 9.5 of Geant4, therelevant classes of the CLHEP libraries are distributed as embedded module within
Geant4. It istherefore no longer necessary to build and link against an external CLHEP instal lation (solution which
is still supported as option).

2. Geant4Config.cmake CMake Config File
2.1. Usage of Geant4Config.cmake

CGeant 4Conf i g. cnmake isdesigned to be used with CMake's fi nd_package command. When found, it
sets several CMake variables and provides a mechanism for checking and activating optional features of Geant4.
Thisallows you to use it in many ways in your CMake project to configure Geant4 for use by your application.

The most basic usage of Geant 4Confi g. cnake in a CMakelists.txt file is just to locate Geant4 with no
requirements on its existence, version number or components:

find_package( CGeant 4)

If you must find Geant4, then you can use

find_package(Geant 4 REQUI RED)

Thiswill cause CMake to fail with an error should an install of Geant4 not be located.

When an install of Geant4 is found, the module sets a sequence of CMake variables that can be used elsewhere
in the project:

* Geant 4_FOUND
Set to CMake boolean true if an install of Geant4 was found.
e CGeant 4_| NCLUDE_DI RS

Set to a list of directories containing headers needed by Geant4. May contain paths to third party headers if
these appear in the public interface of Geant4.
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Appendices

Geant 4_LI BRARI ES
Set to thelist of libraries that need to be linked to an application using Geant4.
Geant 4_DEFI NI TI ONS

The list of compile definitions needed to compile an application using Geant4. Thisis most typically used to
correctly activate Ul and Visualization drivers.

Geant 4_CXX_FLAGS
The compiler flags used to build thisinstall of Geant4. Usually most important on Windows platforms.
Geant 4_CXX_FLAGS_<CONFI G

The compiler flagsrecommended for compiling Geant4 and applicationsin mode CONFI G(e.g. Release, Debug,
etc). Usually most important on Windows platforms.

CGeant 4_CXXSTD
The C++ standard, e.g. "c++11" against which thisinstall of Geant4 was compiled.
Geant4_TLS_MODEL

The thread-local storage model, e.g. "i ni ti al - exec" against which this install of Geant4 was compiled.
Only set if the install was compiled with multithreading support.

Geant 4_USE_FI LE

A CMake script which can be included to handle certain CM ake steps automatically. Most useful for very basic
applications.

Geant4_builtin_cl hep_FOUND
A CMake boolean which is set to true if thisinstall of Geant4 was built using the internal CLHEP.
Geant 4_system cl hep_| SGRANULAR

A CMake boolean which is set to true if thisinstall of Geant4 was built using the system CLHEP and linked
to the granular CLHERP libraries.

Geant4_bui Il tin_expat _FOUND

A CMake boolean which is set to trueif thisinstall of Geant4 was built using the internal Expat.
Geant4 _builtin_zlib FOUND

A CMake boolean which is set to trueif thisinstall of Geant4 was built using the internal zlib.
Geant 4_DATASETS

A CMake list of the names of the physics datasets used by physics models in Geant4. It is provided to help
iterate over the Geant 4_DATASET XXX _YYY variables documented below.

Geant 4 _DATASET <NAME> ENVWAR
The name of the environment variable used by Geant4 to locate the dataset with name <NAVE>.
Geant 4 DATASET_ <NAME> PATH

The absolute path to the dataset with name <NAME>. Note that the setting of this variable does not guarantee
the existence of the dataset, and no checking of the path is performed. This checking is not provided because
the action you take on non-existing data will be application dependent.
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Appendices

You can accessthe Geant 4 DATASET XXX _YYY variablesin a CMake script in the following way:

fi nd_package( Geant 4_REQUI RED) # Find Geant4

foreach(dsname ${Geant 4_DATASETS}) # lterate over dataset nanes
i f (NOT EXI STS ${ Geant 4_DATASET_${dsname} PATH}) # Check exi stence
nessage( WARNI NG "${dsnane} not |ocated at ${Geant4_DATASET_${dsnane}_PATH ")
endi f ()
endf or each()

A typical use case for these variablesis to automatically set the dataset environment variables for your appli-
cation without the need to preconfigure the environment. This could typically be via a shell script wrapper
around your application, or runtime configuration of the application environment via the relevant C/C++ API
for your system.

Thetypical usage of f i nd_package and these variables to configure a build requiring Geant4 is thus:

find_package(Geant 4 REQUI RED) # Find CGeant4

i ncl ude_directories(${Geant 4_| NCLUDE_DI RS}) # Add -1 type paths
add_def i ni ti ons(${Geant 4_DEFI NI TI ONS}) # Add -D type defs
set (CMAKE_CXX_FLAGS ${ Geant 4_CXX_FLAGS}) # Optional

add_execut abl e( myg4app mnyg4app. cc) # Conpil e application

target _link_libraries(mygdapp ${CGeant4_LIBRARIES}) # Link it to Geant4

Alternatively, the CMake script pointed to by Geant 4_USE_FI LE may be included:

find_package( Geant 4 REQUI RED) # Find Geant4
i ncl ude(${ Geant 4_USE_FI LE}) # Auto configure includes/flags
add_execut abl e( myg4app myg4app. cc) # Conpil e application

target _link_libraries(nygdapp ${Geant4_LIBRARIES}) # Link it to Geant4

When included, the Geant 4_USE_FI LE script performs the following actions:
1. Addsthedefinitionsin Geant 4_DEFI NI TI ONS to the global compile definitions.

2. Appendsthedirectorieslistedin Geant 4_1 NCLUDE_DI RS tothosethe compiler usesfor search for include
paths, marking them as system include directories.

3. Prepends Geant 4_CXX_FLAGS to CMAKE_CXX_FLAGS, and similarly for the extra compiler flags for
each build mode (Release, Debug etc).

Thisusefileisvery useful for basic applications, but if your use case requires finer control over compiler defini-
tions, include paths and flags you should use the relevant Geant 4_NAME variables directly.

By default, CMake will look in severa platform dependent locations for the Geant 4Confi g. cnake file
(see find_package for listings). You can aso specify the location directly when running CMake by setting the
Ceant 4_DI Rvariableto the path of the directory holding Geant 4Conf i g. cmake. It may be set on the com-
mand lineviaa- D option, or by adding an entry to the CMake GUI. For example, if we have an install of Geant4
located in

+- opt/
+- Ceant 4/
+ lib/
+- | i bG4gl obal . so
+- L.
+- Geant 4- 10. 3. 0/
+- Ceant 4Confi g. cnake

then we would pass the argument - DGeant 4_DI R=/ opt / Geant 4/ | i b/ Geant 4- 10. 3. 0 to CMake. The
CMAKE_PREFI X_PATH variable may also be used to point CMake to Geant4 by adding, to take the example
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above, / opt / Geant 4 to thelist of pathsit holds. This may be set either on the command line or as a path-style
UNIX environment variable.

You can aso, if you wish, build an application against a build of Geant4 without installing it. If you look
in the directory where you built Geant4 itself (e.g. on UNIX, where you ran nake), you see there is a
Geant 4Conf i g. cmake file. Thisisaperfectly validfile, so you can also point CMaketo thisfilewhen building
your application. Simply set Geant 4_DI R to the directory where you built Geant4. This feature is most useful
for Geant4 developers, but it can be useful if you cannot, or do not want to, install Geant4.

A version number may also be supplied to search for a Geant4 install greater than or equal to the supplied version,
eg.

find_package(Geant4 10.0 REQUI RED)

would make CMake search for a Geant4 install whose version number is greater than or equal to 10.0. An exact
version number may also be specified:

find_package(Ceant4 10.3.0 EXACT REQUI RED)

In both cases, CMake will fail with an error if a Geant4 install meeting these version requirementsis not located.

Geant4 can be built with many optional components, and the presence of these can also be required by passing extra
"component”" arguments. For example, to require that Geant4 is found and that it support Qt Ul and visualization,
we can do

find_package(Geant4 REQUI RED qt)

Inthiscase, if CMake finds a Geant4 install that does not support Qt, it will fail with an error. Multiple component
arguments can be supplied, for example

find_package(Geant4 REQUI RED qt gdmi)

requires that we find a Geant4 install that supports both Qt and GDML. If the component(s) is(are) found, any
needed header paths, libraries and compile definitions required to use the component are appended to the vari-
ablesGeant _| NCLUDE_DI RS, Geant 4_LI BRARI ES and Geant 4_DEFI NI Tl ONS respectively. Variables
Geant 4_<COVPONENTNAME>_FOUND are set to TRUE if component COVPONENTNANME is supported by the
installation.

If you want to activate options only if they exist, you can use the pattern

find_package(CGeant 4 REQUI RED)
find_package(Geant4 QUI ET COVPONENTS qt)

whichwill require CMaketo locate acoreinstall of Geant4, and then check for and activate Qt support if theinstall
provides it, continuing without error otherwise. A key thing to note here is that you can call fi nd_package
multipletimesto append configuration of components. If you usethis pattern and need to check if acomponent was
found, you can usethe Geant 4 _<COVPONENTNAME> FOUND variables described earlier to check the support.

The components which can be suppliedto f i nd_package for Geant4 are as follows:
e static
Geant4_stati c_FOUNDis TRUE if theinstall of Geant4 provides static libraries.

Use of thiscomponent forcesthevariable Geant 4_L1 BRARI ESto contain staticlibraries, if they areavailable.
It can therefore be used to force static linking if your application requires this, but note that this does not
guarantee that static version of third party libraries will be used.
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mul tithreaded
Geant4_nul tithreaded_FOUNDis TRUE if theinstall of Geant4 was built with multithreading support.

Notethat thisonly indicates availability of multithreading support and activatesthe required compiler definition
to build a multithreaded Geant4 application. Multithreading in your application requires creation and usage of
the appropriate C++ objects and interfaces as described in the Application Devel opers Guide.

usol i ds

Geant 4_usol i ds_FOUND is TRUE if the install of Geant4 was built with USolids replacing the Geant4
solids.

Note that this only indicates that the replacement of Geant4 solids with USolids has taken place. Further infor-
mation on the use of USolids applicationsis provided in the Application Developers Guide.

gdm
Geant 4_gdm _FOUNDis TRUE if theinstall of Geant4 was built with GDML support.
g3t og4

Geant 4_g3t og4_FOUNDis TRUE if theinstall of Geant4 provides the G3ToG4 library. If so, the G3ToG4
library isadded to Geant 4_L| BRARI ES.

freetype
Geant 4_freetype FOUNDis TRUE if theinstall of Geant4 was built with Freetype support.
ui _tcsh

Geant4_ui _tcsh_FOUNDisTRUE if theinstall of Geant4 provides the TCsh command line User Interface.
Using this component allows use of the TCsh command line interface in the linked application.

ui _w n32

Geant 4_ui _w n32_FOUNDis TRUE if theinstall of Geant4 provides the Win32 command line User Inter-
face. Using this component allows use of the Win32 command line interface in the linked application.

nmot i f

Geant4_notif_ FOUNDis TRUE if theinstall of Geant4 provides the Motif(Xm) User Interface and Visu-
dization driver. Using this component allows use of the Motif User Interface and Visualization Driver in the
linked application.

qt

Geant 4_qt _FOUNDIisTRUE f theinstall of Geant4 providesthe Qt4 User Interface and Visualization driver.
Using this component allows use of the Qt User Interface and Visualization Driver in the linked application.

wt

Geant4_wt FOUNDis TRUE if theinstall of Geant4 provides the Wt Web User Interface and Visualization
driver. Using this component allows use of the Wt User Interface and Visualization Driver in the linked appli-
cation.

Vi s_net wor k_dawn
Geant 4_vi s_net wor k_dawn_FOUNDis TRUE if theinstall of Geant4 providesthe Client/Server network

interface to DAWN visualization. Using this component allows use of the Client/Server DAWN Visualization
Driver in the linked application.
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e vis_network _vrn

Geant4_vis_network_vrm FOUNDisTRUEIf theinstall of Geant4 providesthe Client/Server network
interface to VRML visualization. Using this component allows use of the Client/Server VRML Visualization
Driver in the linked application.

e vis_opengl x11

Geant4_vi s_opengl _x11_FOUND is TRUE if the install of Geant4 provides the X11 interface to the
OpenGL Visuadization driver. Using this component allows use of the X11 OpenGL Visualization Driver in
the linked application.

* vis_opengl _w n32

Geant 4_vi s_opengl _w n32_FOUNDis TRUEIf theinstall of Geant4 providesthe Win32 interfaceto the
OpenGL Visualization driver. Using this component allows use of the Win32 OpenGL Visualization Driver in
the linked application.

* Vi s_openi nvent or

Geant 4_vi s_openi nvent or _FOUND is TRUE if the install of Geant4 provides the Openlnventor Visu-
alization driver. Using this component allows use of the Openlnventor Visualization Driver in the linked ap-
plication.

e ui_all
Activates all available Ul drivers. Does not set any variables, and never causes CMake to fail.
e vis_all
Activates al available Visualization drivers. Does not set any variables, and never causes CMake to fail.

Please note that whilst the above ams to give a complete summary of the functionality of
CGeant 4Conf i g. cmake, it only gives a sampling of the waysin which you may useit, and other CMake func-
tionality, to configure your application. We a so wel come feedback, suggestions for improvement and bug reports
on Geant 4Confi g. cnake.

2.2. Going further with CMake

The preceeding sections show the minimal CMake scripting required to configure, build and install an application
linking against the Geant4 libraries. If your project requires more advanced configuration, CMake provides tools
such as compiler/platform identification and location of additional libraries/executables to link to/use. As this
document is specific to Geant4, we do not cover more advanced usage of CMake and recommend that you consult
the online manuals and tutorials supplied by Kitware.

In particular, for the common use case of finding and using an external software package, see the documentation of
the find_package command, overview of CMake's package location functionality, and thelist of packages
CMake knows about out of the box. Location and use of arequired package works exactly as we haveillustrated
for Geant4. Simply add the required f i nd_package call to your CMake script, and use the supplied variables
or targets for headers paths and library linking, e.g.

find_package(Foo 1.2 REQUI RED) # Find "Foo" of at |least version 1.2
find_package(Bar 3.4 EXACT REQU RED) # Find "Bar" at exactly version 3.4
include_directories(${Foo_| NCLUDE_DI RS}) # Foo's setup supplies a header path

add_Ili brary(MyLi brary SHARED MyLi brary.cc) # Define our library

target_link_libraries(MLibrary # Link it
${ Foo_LI| BRARI ES} # Foo's setup supplies a library path
Bar : : Bar # Bar's setup supplies an "1 MPORTED' target
) # which sets header and library paths automatically
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Y ou should consult the documentation of the packages your project requiresto seeif they supply suitable CMake
configuration files. If they do not, then CMake provide documentation on writing modules to find packages that
do not supply these files. Geant4 cannot provide support for any third party package your project uses, and any
questions should be direct to that package's authors.

2.3. Building an Application against a Build of Geant4

A typical use case for Geant4 developersisto build small testing applications against a fresh build of Geant4. If
rebuilds are frequent, then the testing application builds are also frequent.

CMake can be used to build these test applications using f i nd_package and Geant 4Conf i g. cnake, as
a specia version of the latter is created in the Geant4 build directory. This sets up the variables to point to the
headers in the Geant4 source directory, and the freshly built librariesin the current build directory.

Applications may therefore be built against a non-installed build of Geant4 by running CMake for the application
and setting Geant 4_DI Rto point to the current build directory of Geant4.

3. GNUMake System: Makefiles and Environment
Variables

This section describes how the Geant4 GNUMake infrastructure is implemented in Geant4 and provides a quick
reference guide for the user about the most important environment variables that can be set to configure its be-
haviour.

This system is now deprecated, though it is still provided through the SVN repository for developers, and is
installed by CMake to provide temporary backward compatibility for user applications.

3.1. Geant4Make System

Asdescribed in Section 2.1 of the Installation Guide, the GNUmake processin Geant4 is mainly controlled by the
following GNUmake script files (*. gnk scripts are placed in $G41 NSTALL/ confi g):

« architecture. gnk: defining all the architecture specific settings and paths. System settings are stored in
$GAI NSTALL/ confi g/ sys in separate files.

common. gnk: defining all general GNUmake rules for building objects and libraries.

gl obl i b. gnk: defining al general GNUmake rules for building compound libraries.

bi nmake. gnk: defining the general GNUmake rules for building executables.

GNUmeke scripts: placed inside each directory in the G4 distribution and defining directives specific to build
alibrary (or aset of sub-libraries) or and executable.

To build a single library (or a set of sub-libraries) or an executable, you must explicitly change your current
directory to the one you're interested in and invoke the "make" command from there ("make gl obal " for
building acompound library). Hereisalist of the basic commands or GNUmake "targets' one can invoketo build
libraries and/or executables:

* make

starts the compilation process for building a kernel library or a library associated with an example. Kernel
libraries are built with maximum granularity, i.e. if a category is a compound, this command will build all
the related sub-libraries, not the compound one. The top level GNUmakef i | e in $G41 NSTALL/ sour ce
will aso build in this case a dependency map | i bnane. nap of each library to establish the linking order
automatically at the bi n step. The map will be placed in $GALI B/ SASYSTEM

» nake gl obal

starts the compilation process to build a single compound kernel library per category. If issued after "make",
both ‘granular’ and ‘compound' libraries will be available (NOTE: thiswill consistently increase the disk space
required. Compound libraries will then be selected by default at link time, unless G4LIB_USE_ GRANULAR
is specified).

e nake bi n or make (only for examples/)
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starts the compilation process to build an executable. This command will build implicitly the library associated
with the example and link the final application. It assumes all kerndl libraries are already generated and placed
in the correct $G41 NSTALL path defined for them.

The linking order is controlled automatically in case libraries have been built with maximum granularity, and
thelink list is generated on the fly.
* make dl |

On Windows systemsthiswill start the compilation processto build single compound kernel library per category
and generate Dynamic Link Libraries (DLLS). Once the libraries are generated, the process will imply aso the
deletion of al temporary files generated during the compilation.

i b/ bin/ andtnp/ directories

The $G41 NSTALL environment variable specifies where the installation of the Geant4 toolkit should take place,
therefore kernel libraries will be placed in $G41 NSTALL/ | i b. The $&GAWORKDI R environment variable is set
by the user and specifies the path to the user working directory; temporary files (object-files and data products
of the installation process of Geant4) will be placed in $G4AWORKDI R/ t mp, according to the system architecture
used. Binaries will be placed in $G4WORKDI R/ bi n, according to the system architecture used. The path to
SGAWORKDI R/ bi n/ $G4SYSTEMshould be added to $PATH in the user environment.

3.2. Environment variables

Here is alist of the most important environment variables defined within the Geant4 GNUnmake infrastructure,
with a short explanation of their use.

Werecommend that those environment variableslisted here and marked with (*) NOT beoverriden or set
(explicitly or by accident). They are already set and used internally in the default setup !

System configuration

$CLHEP_BASE DIR
Specifies the path where the CLHEP packageisinstalled in your system.

$USOLIDS_BASE_DIR
Specifies the path where the USolids package isinstalled in your system.

$GASYSTEM
Defines the architecture and compiler currently used.

NOTE: Thisvariableis set automatically if the Conf i gur e script is adopted for the installation. This will
result in the proper settingsalso for configuring the environment with the generated shell scriptsenv. [ c] sh.

Installation paths

$GAINSTALL
Defines the path where the Geant4 toolkit is located. It should be set by the system installer. By defaullt, it
sets to $HOVE/ geant 4, assuming the Geant4 distribution is placed in $HOVE.

$GABASE (*)
Defines the path to the source code. Internally used to define $CPPFLAGS and $LDFLAGS for -1 and -L
directives. It hasto be set to $G41 NSTALL/ src.

$GAWORKDIR
Definesthe path for the user'sworkdir for Geant4. It is set by default to SHOVE/ geant 4, assuming the user's
working directory for Geant4 is placed in $HOVE.

$GAINCLUDE
Defines the path where source header files may be mirrored at installation by issuing gnake i ncl udes
(default isset to $G41 NSTALL/ i ncl ude)
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$G4BIN, $G4BINDIR (*)
Used by the system to specify the place where to store executables. By default they're set to $GAWORKDI R/
bi n and $GABI N $ASYSTEM respectively. The path to $GAWORKDI R/ bi n/ $G4SYSTEM should be
added to $PATH in the user environment. $&4BI N can be overridden.

$GATMP, $GATMPDIR (*)
Used by the system to specify the place where to store temporary files products of the compilation/build of
auser application or test. By default they're set to $GAWORKDI R/ t np and $G4TMP/ $G4SYSTEM respec-
tively. $GATMP can be overridden.

$GALIB, $GALIBDIR (*)
Used by the system to specify the place where to install libraries. By default they're set to $G41 NSTALL/
l'i b and $GALI B/ $GASYSTEMrespectively. $GALI B can be overridden.

Build specific

$GATARGET
Specifies the target (name of the source file defining the main()) of the application/example to be built. This
variableis set automatically for the examples and tests placed in $&41 NSTALL/ exanpl es.

$GADEBUG
Specifies to compile the code (libraries or examples) including symbolic information in the object code for
debugging. The size of the generated object code can increase considerably. By default, code is compiled in
optimised mode ($GAOPTI M SE set).

$GAOPTDEBUG
Only availablefor the g++ compiler, specifiesto compile the code (libraries or examples) in optimised mode,
but including symbolic information in the object code for debugging.

$G4AUSE_STD11
Specifies to compile the code (libraries or examples) with C++11 Standard enabled on compilers supporting
the C++11 Standard.

$GANO_OPTIMISE
Specifies to compile the code (libraries or examples) without compiler optimisation.

$GAPROFILE
On Li nux systems with the g++ compiler, it alows to build libraries with profiling setup for monitoring
with the gpr of tool.

$G4 NO_VERBOSE
Geant4 codeis compiled by default in high verbosity mode ($G4 VERBCSE flag set). For better performance,
verbosity code can be left out by defining $G4 _NO VERBCOSE.

$GALIB_BUILD_SHARED
Flag specifying if to build kernel libraries as shared libraries (libraries will be then used by default). If not
set, static archive libraries are built by default.

$GALIB_BUILD_STATIC
Flag specifying if to build kernel libraries as static archive libraries in addition to shared libraries (in case
$GAALI B_BU LD_SHAREDis set as well).

$GALIB_BUILD_DLL (*)
Internal flag for specifying to build DLL kernel libraries for Windows systems. The flag is automatically set
when requested to build DLLs.

$GALIB_USE DLL
For Windows systems only. Flag to specify to build an application using the installed DLL kernel libraries
for Windows systems. It is required to have this flag set in the environment in order to successfully build an
application if the DLL libraries have been installed.
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$GALIB_USE_GRANULAR
To force usage of "granular” libraries against "compound” libraries at link time in case both have been in-
stalled. The Geant4 building system chooses "compound" libraries by default, if installed.

Ul specific

The most relevant flags for User Interface drivers are just listed here. A more detailed description is given also
in section 2. of this User's Guide.

G4Ul_USE_TERMINAL
Specifies to use dumb terminal interface in the application to be built (default).

G4Ul_USE_TCSH
Specifies to use the tcsh-shell like interface in the application to be built.

G4UI_BUILD_XM_SESSION
Specifiesto include in kernel library the XM Motif-based user interfaces.

G4UI_USE_XM
Specifies to use the XM interfaces in the application to be built.

G4Ul_BUILD_WIN32_SESSION
Specifiesto include in kernel library the WIN32 terminal interface for Windows systems.

G4Ul_USE WIN32
Specifies to use the WIN32 interfaces in the application to be built on Windows systems.

G4Ul_BUILD_QT_SESSION
Specifies to include in kernel library the Qt termina interface. $QTHOVE should specify the path where Qt
libraries and headers are installed

G4UI_USE_QT
Specifiesto use the Qt interfaces in the application to be built.

G4UI_NONE
If set, no Ul sessions nor any Ul libraries are built. This can be useful when running a pure batch job or in
auser framework having its own Ul system.

Visualization specific

The most relevant flags for visualization graphics drivers are just listed here. A description of these variablesis
given also in section 2. of this User's Guide.

$G4VIS BUILD_OPENGLX_DRIVER
Specifiesto build kernel library for visualization including the OpenGL driver with X 11 extension. It requires
$OGLHOVE set (path to OpenGL installation).

$G4AVIS USE_OPENGL X
Specifiesto use OpenGL graphics with X11 extension in the application to be built.

$G4VIS BUILD_OPENGLXM_DRIVER
Specifiesto build kernel library for visualization including the OpenGL driver with XM extension. It requires
$OGLHOVE set (path to OpenGL installation).

$G4AVIS_USE_OPENGLXM
Specifies to use OpenGL graphics with XM extension in the application to be built.

G4VIS BUILD_OPENGLQT_DRIVER
Specifiesto build kerndl library for visualization including the OpenGL driver with Qt extension. It requires
$QTHOME set to specify the path where Qt libraries and headers are installed.

G4VIS_USE_OPENGLQT
Specifies to use OpenGL graphics with Qt extension in the application to be built.
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$G4VIS BUILD_OI_DRIVER
Specifiesto build kernel library for visualization including the Openlnventor driver. It requires $0 HOVE set
(pathsto the Openl nvent or instalation).

$G4VIS USE_OI
Specifies to use Openlnventor graphicsin the application to be built.

$G4VIS BUILD_OIX_DRIVER
Specifiesto build the driver for the free X11 version of Openlnventor.

$G4AVIS_USE_OIX
Specifiesto use the free X11 version of Openlnventor.

$G4VIS BUILD_RAYTRACERX_DRIVER
Specifies to build kernel library for visualization including the Ray-Tracer driver with X11 extension. It re-
quires X11 installed in the system.

$G4AVIS USE_RAYTRACERX
Specifiesto use the X11 version of the Ray-Tracer driver.

$G4VIS BUILD_OIWIN32_DRIVER
Specifiesto build the driver for the free X11 version of Openlnventor on Windows systems.

$G4VIS USE OIWIN32
Specifiesto use the free X11 version of Openlnventor on Windows systems.

$G4VIS BUILD_DAWN_DRIVER
Specifiesto build kernel library for visualization including the driver for DAWN.

$G4VIS USE_DAWN
Specifiesto use DAWN as a possible graphics renderer in the application to be built.

$GADAWN_HOST_NAME
To specify the hostname for use with the DAWN-network driver.

$G4AVIS _NONE
If specified, no visualization driverswill be built or used.

Hadronic physics specific

$GANEUTRONHP_USE_ONLY_PHOTONEVAPORATION
When using high precision neutron code, user may choose to force the use of Photon Evaporation model
instead of using the neutron capture final state data.

$GANEUTRONHP_SKIP_MISSING_ISOTOPES
User can force high precison neutron code to use only exact isotope data files instead of allowing nearby
isotope files to be used. If the exact file is not available, the cross section will be set to zero and a warning
message will be printed.

$GANEUTRONHP_NEGLECT_DOPPLER
Sets neglecting doppler broadening mode for boosting performance.

GDMWL, zl i b and g3t og4 modules

$G4ALIB_BUILD GDML
If set, triggers compilation of aplugin modulegdm for allowing import/export of detector description setups
(geometrical volumes, solids, materials, etc.). By default, the flag is not set; if set, the path to the installation
of XercesC package must be specified through the variable $XERCESCROOT.

$GALIB_USE_GDML
Specifies to use the gdml module. The flag is automatically set if $GALI B_BUI LD _GDM. is set in the
environment.
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$GALIB_USE_USOLIDS
Specifies to adopt the USol i ds primitivesin place of the original Geant4 solids.

$G4LIB_BUILD ZLIB
If set, triggers compilation of a specific zI i b module for the compression of output files (mainly in use
currently for the HepRep graphics driver). By default, the flag is not set and the built-in system library for
compression isadopted instead. Setting thisflag will alsoimplicitely set the flag below. On Windows systems,
if OpenGL or Openlnventor visualization drivers are built, this module is automatically built.

$GALIB_USE_ZLIB
Specifiesto usethe zIl i b module, either system built-in or Geant4 specific.

$G4ALIB_BUILD G3TOG4
If set, triggers compilation of theg3t og4 modulefor conversions of simplelegacy geometries descriptionsto
Geant4. By default, theflagisnot set and the module€'slibrary isnot built. Setting thisflag will alsoimplicitely
set the flag below.

$GALIB_USE_G3TOG4
Specifiesto use the g3t og4 module, assuming the related library has been already installed.

Analysis specific

$GAANALY SIS USE
Specifies to activate the appropriate environment for analysis, if an application includes code for histogram-
ming based on AIDA. Additional setup variables are required ($G4ANALYSI S_Al DA_CONFI G_CFLAGS,
$HAANALYSI S_Al DA_CONFI G_LI BS) to define config options for AIDA ("ai da-config --
cflags" and "ai da-config --1ibs"). Seeingtalation instructions of the specific analysis tools for
details.

Directory paths to Physics Data

$GANEUTRONHPDATA
Path to external data set for Neutron Scattering processes.

$GANEUTRONXSDATA
Path to external data set for evaluated neutron cross-sections.

$GALEDATA
Path to external data set for low energy electromagnetic processes.

$G4PIIDATA
Path to external data set for shell ionisation cross-sections.

$GALEVELGAMMADATA
Path to the data set for Photon Evaporation.

$GARADIOACTIVEDATA
Path to the data set for Radiative Decay processes.

$GA4ENSDFSTATEL.O
Path to the data set for NuclideTable

$G4ABLADATA
Path to nuclear shell effects data set for INCL/ABLA hadronic model.

$GAREALSURFACEDATA
Path to the data set for measured optical surface reflectance for precise optical physics.

3.3. Linking External Libraries with Geant4

The Geant4 GNUmake infrastructure allows to extend the link list of libraries with external (or user defined)
packages which may be required for some user's applications to generate the final executable.
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3.3.1. Adding external libraries which do *not* use Geant4

In the GNUmakef i | e of your application, before including bi nmake. gnk, specify the extra library in EX-
TRALI BS either usingthe- L. . . -1 ... syntax or by specifying the full pathname, e.g.:

EXTRALIBS : = -L<your-path>/lib -I<nyExtraLi b>

or

EXTRALI BS : = <your-path>/1ib/lib<nyExtralib>. a

You may aso specify EXTRA LI NK_DEPENDENCI ES, which is added to the dependency of the target exe-
cutable, and you may also specify arule for making it, e.g.:

EXTRA LI NK_DEPENDENCI ES : = <your-path>/1ib/lib<nyExtralLi b>. a

<your-pat h>/1ib/ i b<nyExtraLib>. a:
cd <your-path>/1ib; $(MAKE)

Note that you almost certainly need to augment CPPFLAGS for the header files of the external library, e.g.:

CPPFLAGS+=- | <your - pat h>/i ncl ude

See Example 94.

Example 94. An example of a customised GNUmakefile for an application or example
using an external module not bound to Geant4.

nanme := sim
GATARGET : = $(nane)
AEXLIB : = true

CPPFLAGS += -|$(HOME)/ Xpl otter/incl ude

EXTRALI BS += -L$(HOME)/ Xpl otter/lib -1 Xplotter

EXTRA_LI NK_DEPENDENCI ES : = $(HOME)/ Xpl otter/lib/1ibXplotter.a
. PHONY: al |

all: lib bin

i ncl ude $( G4l NSTALL)/ confi g/ bi nmake. gnk

$(HOMVE)/ Xplotter/lib/libXplotter. a:
cd $(HOVE)/ Xpl otter; $(MAKE)

3.3.2. Adding external libraries which use Geant4

In addition to the above, specify, in EXTRALI BSSOURCEDI RS, alist of directories containing source filesin its
src/ subdirectory. Thus, your GNUrakef i | e might contain:

EXTRALI BS += $( GAWORKDI R) / t mp/ $( GASYSTEM) / <nyApp>/| i b<nyApp>. a \
-L<your-path>/lib -I<myExtraLi b>

EXTRALI BSSOURCEDI RS += <your - pat h>/ <nyApp> <your - pat h>/ <MyExt r aMbdul e>

EXTRA_LI NK_DEPENDENCI ES : = $( GAWORKDI R) / t np/ $( GASYSTEM) / <nyApp>/ | i b<nyApp>. a

MYSOURCES : = $(w | dcard <your - pat h>/ <myApp>/ src/ *cc)

$( GAVORKDI R) / t mp/ $( GASYSTEM) / <nyApp>/ | i b<myApp>. a:  $( MYSOURCES)
cd <your - pat h>/ <nyApp>; $( MAKE)

See Example 95.
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Example 95. An example of a customised GNUmakefile for an application or example
using external modules bound to Geant4.

B o m m o m e o o e o e e e e e e e e e e e e e e e e e e e e e e e e
# GNUmakefile for the application "phys" depending on modul e "reco"
B o m m o m e o o e o e e e e e e e e e e e e e e e e e e e e e e e e
nane := phys

GATARGET : = $(nane)
GAEXLIB : = true

EXTRALI BS += $( GAWORKDI R) / t np/ $( GASYSTEM / $(nane) / | i bphys. a \
-L$(HOME) /reco/lib -lIreco
EXTRALI BSSOURCEDI RS += $( HOME) / phys $( HOME) / reco
EXTRA LI NK_DEPENDENCI ES : = $( GAWORKDI R) / t np/ $( GASYSTEM) / $( nane) / | i bphys. a

. PHONY: all
all: lib bin

i ncl ude $( G4l NSTALL)/ confi g/ bi nmake. gnk

MYSOURCES : = $(wi | dcard $(HOMVE)/ phys/src/*cc)
$( AWORKDI R) / t mp/ $( GASYSTEM) / $( nane) / | i bphys. a: $( MYSOURCES)
cd $(HOME) / phys; $( MAKE)

4. Development and Debug Tools

Although not in the scope of this user manual, in this appendix section we provide a set of references to rather
known and established development tools and environments we think are useful for code development in C++in
genera. It'sarather limited list, far from being complete of course.

4.1. Unix/Linux

» The KDevelop environment on Linux systems.

e The GNU Data Display Debugger (DDD).

» Valgrind, asystem for debugging and profiling Linux programs.

» Parasoft Insure++ run-time debugger and memory checker

e Parasoft C++ Test source code analyzer.

» MicroFocus Together Visual Modeling for Software Architecture Design tool.

4.2. Windows

» Microsoft Visua Studio development environment.

 Parasoft Insure++ run-time debugger and memory checker

e Parasoft C++ Test source code analyzer.

 Enterprise Architect UML Visua Modeling tool.

» MicroFocus Together Visual Modeling for Software Architecture Design tool.

5. Python Interface
Pythonisapopular scripting language with an interactive interpreter. Geant4Py, a Geant4-Python bridge, provides

abridgefor Geant4 classes. Thisenablesto directly access Geant4 classesfrom Python scripting. User applications
can be easily configured with many Python third-party modules, such as PyROQOT, on the Python software bus.

Geant4Py is supplied in the directory envi r onnent s/ g4py/ of the Geant4 source package.

5.1. Installation

5.1.1. Software Requirements

Geant4Py requires the Boost-C++ external library, which helps Python binding of C++ codes.
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5.1.2. Building Geant4Py module

Building system is completely migrated to CMake system. Before building library, GEANT4_INSTALL envi-
ronment variable should be set to the path specified by "CMAKE_INSTALL_PREFIX" when building Geant4.

# export GEANT4_| NSTALL="Ceant4 install path" (zsh, bash)
# setenv GEANT4_| NSTALL "Geant4 install path" (csh)

Then

# nkdir build
# cd build

# cmake ..

# make

# make install

If you want to run the testing component,

# cd build/tests
# make; make install

By default, Geant4Py isinstalled in "g4py"/lib(64) directory.

5.2. Using Geant4Py

PYTHONPATH environment variable should be set at tun time. PY THONPATH environment variable indi-
cates Python module search directories, given by a colon-separated list of directories. Practically, the variable is
(your g4py directory)/lib:(your g4py directory)/lib/exanpl es: (your g4py di-
rectory)/lib/tests.

5.2.1. Import Geant4

To use Geant4Py, you start with importing the module called " Geant4".

# python

Python 2.7.5 (default, Mar 9 2014, 22:15:05)

[GCC 4.2.1 Conpatible Apple LLVM 5.0 (clang-500.0.68)] on darwi n

Type "hel p", "copyright", "credits" or "license" for nore informtion.
>>> from Geant4 inport *

R R

Geant 4 versi on Nane: geant4-10-01 (5- Decenber - 2014)
Copyright : Geant4 Col |l aboration
Reference : NIM A 506 (2003), 250-303
WWV : http://cern.ch/ geant4

R R

Vi sual i zati on Manager instantiating...
>>>

5.2.2. Access to Geant4 Globals

When importing the Geant4 module, the GARunManager object will be automatically instantiated. Geant4 sin-
gleton objects are also automatically instantiated. These singleton objects can be accessed by "gX XX X" variables,
like "gRunManager".

gLossTabl eManager gTerm nate
gAppl yU Comrand gMat eri al Tabl e gTracki ngManager
gCont r ol Execut e gNi st Manager gTransport ati onManager
gEl enent Tabl e gParticlelterator gUl nanager
gEntal cul at or gParticl eTabl e gVi sManager
gEvent Manager gProcessTabl e
gExcept i onHandl er gProduct i onCut sTabl e
g&ADat e gRunManager
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gGAVERS| ON_NUMBER gRunManager Ker nel
g&AVer si on gSt ackManager
gCeonet r yManager gStart U Sessi on
gCet Curr ent Val ues gSt at eManager

5.2.3. Call Geant4 Methods

Once aPython object of aGeant4 classinstantiated, Geant4 methods can be directly called the ssmeway asin C++.

>>> from Geant4 inport *

R R

Geant 4 versi on Nane: geant4-10-01 (5- Decenber - 2014)
Copyright : Geant4 Col | aboration
Reference : NIM A 506 (2003), 250-303
WAV : http://cern.ch/ geant4

R R

Vi sual i zati on Manager instantiating...

>>> print gRunManager . Get Ver si onStri ng()
Ceant 4 version Nane: geant4-10-01 (5- Decenber - 2014)

5.3. Site-modules

Geant4Py provides additional utility modules called "gdpy" inthedirectory si t e- nodul es. It consists of pred-
ifined geometries, materials, physics lists, primary generator actions, and so on.

5.3.1. ezgeom module

The ezgeom module provides an alternative way of defining simple geometry. An example code for defining a
simple geometry is shown here:

i nport g4py.ezgeom
from g4py. ezgeom i nport GAEzVol une

def Construct Geon():
print "* Constructing geonetry..."
# reset world material
air= GAMvaterial . GetMaterial ("G4_AR")
g4py. ezgeom Set Wor | dvat eri al (air)

# a target box is placed

gl obal target

target = GAEzVol une(" Target")

au= AMaterial.CetMaterial ("GA_Au")

target. Creat eTubeVol une(au, 0., 1.*cm 1.*nm)
target. Pl acel t (G4ThreeVector (0., 0.,-10.*cm))

5.3.2. NISTmaterials module

The NISTmaterials module provides an instant use of Geant4 NIST materials. An example code for creating NIST
materials:

from Geant4 inport *
import g4py. N STrmaterials

g4py. Nl STmat eri al s. Construct ()
print Geant4.gMaterial Tabl e

5.3.3. ParticleGun module

The ParticleGun module provides aprimary generator actionwith G4 Par t i cl eGun. Anexample codeisshown
here:
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i mport g4py. Particl eGun

# normal way for constructing user primary generator action
#pgPGA= g4py. Particl eGun. Parti cl eGunActi on()

#gRunManager . Set User Act i on( pgPGA)

#pg= pgPGA. Get Parti cl eGun()

# 2nd way, short-cut way
pg= g4py. Particl eGun. Construct ()

# set paraneters of particle gun

pg. Set Parti cl eByNane("e-")

pg. Set Parti cl eEner gy(300. * MeV)

primary_positi on= GAThreeVector(0.,0., -14.9*cm)
primary_direction= GAThreeVector(0.2, 0., 1.)

pg. Set Parti cl ePosi tion(primary_position)

pg. Set Parti cl eMonment unDi recti on(pri mary_direction)

5.4. Examples

There are some examples of Geant4Py in the directories”t est s/ " and " exanpl es/".
Inthe"t est s/ " directory,

gtest0l : exposes a user application

gtest02 : test for using site-nodul e packages

gtest03 : test for ezgeom package

gtest04 : test for getting command tree and comrmand i nformation
gtest05 : test for constructing CSG geonetries in Python
gtest06 : test for constructing/visualizing bool ean geoentries
gtest07 : test for checking overl apped geonetries

The" exanpl es/ " directory contains a set of examples of Geant4Py.
demos/water_phantom

An exampleof "water phantom dosimetry". Thisdemo program showsthat a Geant4 application well coworks
with Root on Python front end. VisManager, PrimaryGeneratorAction, UserAction-s, histogramming with
Root are implemented in Python;

* dose calculation in awater phantom
» Python overloading of user actions
* on-line histogramming with Root
* visualization
education
Educational examples with Graphical User Interface using TKi nt er
* lessonl
Thefirst version of the courseware of the mass attenuation coefficient.
* |esson2

GUI interface of EXNO3, which can control geometry configuration, intial particle condition, physics process-
es, cut value, magnetic field and visualization outputs.

emplot
Examples of plotting photon cross sections and stopping powers with Root.
gdml

Examples of writing/reading user's geometry to/from a GDML file
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6. Geant4 Material Database

6.1. Simple Materials (Elements)

4 Nane density(g/cm3) 1(eV)

1 ™&4_H 8. 3748e- 05 19.2

2 Gi_He 0.000166322 41.8

3 GA_Li 0.534 40

4 (4_Be 1.848 63.7

5 G&4.B 2.37 76

6 G4 C 2 81

7 G4A_N 0.0011652 82

8 &40 0. 00133151 95

9 G4_F 0. 00158029 115
10 G4_Ne 0.000838505 137
11 4_Na 0.971 149
12 &A_My 1.74 156
13 &_A 2.699 166
14 &4_Si 2.33 173
15 ™4_P 2.2 173
16 &4_S 2 180
17 &_d 0. 00299473 174
18 A_Ar 0. 00166201 188
19 &4_K 0. 862 190
20 &4_Ca 1.55 191
21 &4_Sc 2.989 216
22 GA_Ti 4. 54 233
23 _V 6.11 245
24 &A_Cr 7.18 257
25 4_Mn 7.44 272
26 GA_Fe 7.874 286
27 &_Co 8.9 297
28 GA_N 8.902 311
29 &4_Cu 8.96 322
30 G4_Zn 7.133 330
31 &4_G& 5.904 334
32 G4 _Ge 5.323 350
33 G4_As 5.73 347
34 G4_Se 4.5 348
35 G4_Br 0.0070721 343
36 G4_Kr 0. 00347832 352
37 G4_Rb 1.532 363
38 G4_Sr 2.54 366
39 Y 4. 469 379
40 GA_Zr 6. 506 393
41 G4_Nb 8.57 417
42 G4_Mo 10. 22 424
43 G4_Tc 11.5 428
44 G4_Ru 12. 41 441
45 G4_Rh 12. 41 449
46 G4_Pd 12.02 470
47 G4_Ag 10.5 470
48 G4_Cd 8. 65 469
49 G4_In 7.31 488
50 G4_Sn 7.31 488
51 G4_Sb 6. 691 487
52 G4_Te 6.24 485
53 | 4.93 491
54 G4_Xe 0. 00548536 482
55 G4_Cs 1.873 488
56 G4_Ba 3.5 491
57 G4_lLa 6. 154 501
58 G4_Ce 6. 657 523
59 G4_Pr 6.71 535
60 &4_Nd 6.9 546
61 4_Pm 7.22 560
62 G4_Sm 7.46 574
63 &4_Eu 5.243 580
64 &_ 7.9004 591
65 &4_Tb 8. 229 614
66 G4_Dy 8.55 628
67 4_Ho 8.795 650
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G4_A-150_TI SSUE
0.101327
0. 7755

0. 035057
0. 0523159
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0.018378
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3
6
1
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G4_ACETYLENE 0.0010967

2
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GA_ADENI NE
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5
5
5
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007
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001
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TI SSUE_| CRP
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G4A_AIR 0.00120479
0. 000124
0. 755268
0.231781
0. 012827

GA_ALANI NE

3

7
1
2
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3.97

65.1

64.2

58.2

71. 4

63. 2

85.7

71.9

145.2
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10

8 3
G4_AMBER
1 0. 10593
6 0. 788974
8 0. 105096
G4 AMVON A
7 1
1 3
G4_ANI LI NE
6 6
1 7
7 1
GA_ANTHRACENE
6 14
1 10
G4_B-100_BONE
1 0. 0654709
6 0. 536944
7 0. 0215
8 0. 032085
9 0. 167411
20 0. 176589
G4_BAKELI TE
1 0. 057441
6 0. 774591
8 0. 167968
G4_BARI UM _FLUORI DE
56 1
9 2
G4_BARI UM SULFATE
56 1
16 1
8 4
G4_BENZENE
6 6
1 6
G4_BERYLLI UM OXI DE
4 1
8 1
&4_BGO
83 4
32 3
8 12
G4_BLOOD_ | CRP
1 0.102
6 0.11
7 0.033
8 0.745
11 0.001
15 0.001
16 0. 002
17 0.003
19 0. 002
26 0.001
G4_BONE_COMPACT _| CRU
1 0. 064
6 0.278
7 0.027
8 0.41
12 0.002
15 0.07
16 0.002
20 0. 147
G4_BONE_CORTI CAL_| CRP
1 0. 034
6 0. 155
7 0. 042
8 0.435
11 0.001
12 0.002
15 0.103
16 0.003
20 0.225
G4_BORON_CARBI DE
5 4
6 1
G4_BORON_OXI DE

0. 000826019

1.0235

1.283

4

89

0. 87865

1

1

2

.01

.13

. 06

85

92

52

1.812

63.2

53.7

66. 2

69.5

85.9

72. 4

375.9

285.7

63. 4

93.2

534.1

75.2

91.9

110

84.7

99. 6
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5 2
8 3
G4_BRAI N_| CRP 1.04
1 0.107
6 0.145
7 0.022
8 0.712
11 0.002
15 0.004
16 0.002
17 0.003
19 0.003
G4_BUTANE 0. 00249343
6 4
1 10
G4_N-BUTYL_ALCOHOL 0. 8098
6 4
1 10
8 1
&4_C 552 1.76
1 0. 02468
6 0.501611
8 0. 004527
9 0. 465209
14 0.003973
G4_CADM UM TELLURI DE 6.2
48 1
52 1
G4_CADM UM TUNGSTATE 7.9
48 1
74 1
8 4
G4_CALCl UM CARBONATE 2.8
20 1
6 1
8 3
G4_CALCI UM FLUCRI DE 3.18
20 1
9 2
G4_CALCI UM OXI DE 3.3
20 1
8 1
G4_CALCI UM SULFATE 2.96
20 1
16 1
8 4
G4_CALCI UM TUNGSTATE 6. 062
20 1
74 1
8 4
G4_CARBON_DI OXI DE 0. 00184212
6 1
8 2
G4_CARBON_TETRACHLORI DE 1.594
6 1
17 4
G4_CELLULOSE_CELLOPHANE 1.42
6 6
1 10
8 5
G4_CELLULOSE_BUTYRATE 1.2
1 0.067125
6 0. 545403
8 0.387472
G4_CELLULOSE_NI TRATE 1.49
1 0.029216
6 0.271296
7 0.121276
8 0.578212
G4_CERI C_SULFATE 1.03
1 0.107596
7 0. 0008
8 0. 874976
16 0.014627
58 0. 002001
G4_CESI UM _FLUCRI DE 4.115
55 1

73.3

48. 3

59.9

86.8

539.3

468. 3

136.4

166

176.1

152.3

395

85 CO2

166. 3

87

76.7

440.7

371



Appendices

10

9 1
G4_CESI UM | ODI DE
55 1
53 1
G4_CHLOROBENZENE
6 6
1 5
17 1
GA_CHLOROFORM
6 1
1 1
17 3
G4_CONCRETE
1 0.01
6 0.001
8 0. 529107
11 0.016
12 0.002
13 0. 033872
14 0. 337021
19 0.013
20 0. 044
26 0.014
G4_CYCLOHEXANE
6 6
1 12
G4_1, 2- DI CHLOROBENZENE
6 6
1 4
17 2
G4_DI CHLORODI ETHYL_ETHER
6 4
1 8
8 1
17 2
G4_1, 2- DI CHLOROETHANE
6 2
1 4
17 2
G4_DI ETHYL_ETHER
6 4
1 10
8 1
G4 N, N- DI METHYL_FORMAM DE
6 3
1 7
7 1
8 1
G4_DI METHYL_SULFOXI DE
6 2
1 6
8 1
16 1
G4_ETHANE
6 2
1 6
G4_ETHYL_ALCOHOL
6 2
1 6
8 1
G4_ETHYL_CELLULOSE
1 0. 090027
6 0. 585182
8 0.324791
G4_ETHYLENE
6 2
1 4
G4_EYE_LENS_ | CRP
1 0.096
6 0.195
7 0. 057
8 0. 646
11 0.001
15 0.001
16 0.003
17 0.001

G4_FERRI C_OXI DE

1.1058

1.4832

0.779

1.3048

1.2199

1.2351

0.71378

0. 9487

1.1014

0.00125324

0. 7893

0.00117497

553.1

89.1

156

135.2

56. 4

106.5

103.3

111.9

60

66. 6

98. 6

45. 4

62.9

69. 3

50.7

73.3

227.3
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26 2
8 3
G4_FERROBORI DE
26 1
5 1
G4_FERROUS_OXI DE
26 1
8 1
G4_FERROUS_SULFATE
1 0. 108259
7 2. 7e-05
8 0. 878636
11 2.2e-05
16 0. 012968
17 3. 4e-05
26 5. 4e- 05
G4_FREON- 12
6 0. 099335
9 0. 314247
17 0. 586418
G4_FREON- 12B2
6 0. 057245
9 0. 181096
35 0. 761659
G4_FREON- 13
6 0. 114983
9 0. 545621
17 0. 339396
G4_FREON- 13B1
6 1
9 3
35 1
G4_FREON- 1311
6 0. 061309
9 0. 290924
53 0. 647767
G4_GADOLI Nl UM_OXYSULFI DE
64 2
8 2
16 1
G4_GALLI UM ARSENI DE
31 1
33 1
A4_GEL_PHOTO_EMULSI ON
1 0. 08118
6 0. 41606
7 0. 11124
8 0. 38064
16 0.01088
G4_Pyrex_d ass
5 0. 0400639
8 0. 539561
11 0. 0281909
13 0.011644
14 0. 377219
19 . 00332099
4_GLASS_LEAD
8 0. 156453
14 0. 080866
22 0. 008092
33 0. 002651
82 0. 751938
G4_GLASS_PLATE
8 0. 4598
11 0. 0964411
14 0. 336553
20 0. 107205
G4_GLUTAM NE
6 5
1 10
7 2
8 3
G4_GLYCEROL
6 3
1 8
8 3
G4_GUANI NE

1.024

1.8

1.2914

1.2613

261

248.6

76. 4

143

284.9

126.6

210.5

293.5

493. 3

384.9

74.8

134

526. 4

145. 4

73.3

72.6

75

373



Appendices

6 5
1 5
7 5
8 1
G4_GYPSUM 2.32 129.7
20 1
16 1
8 6
1 4
G4_N-HEPTANE 0. 68376 54. 4
6 7
1 16
G4_N- HEXANE 0. 6603 54
6 6
1 14
G4_KAPTON 1.42 79.6
6 22
1 10
7 2
8 5
G4_LANTHANUM OXYBROM DE 6. 28 439.7
57 1
35 1
8 1
G4_LANTHANUM OXYSULFI DE 5.86 421.2
57 2
8 2
16 1
G4_LEAD_OXI DE 9.53 766. 7
8 0.071682
82 0.928318
G4_LI THI UM AM DE 1.178 55.5
3 1
7 1
1 2
G4_LI THI UM _CARBONATE 2.11 87.9
3 2
6 1
8 3
G4_LI THI UM FLUORI DE 2.635 94
3 1
9 1
G4_LI THI UM _HYDRI DE 0.82 36.5
3 1
1 1
G4_LI THI UM | ODI DE 3.494 485.1
3 1
53 1
G4_LI THI UM OXI DE 2.013 73.6
3 2
8 1
G4_LI THI UM TETRABORATE 2.44 94.6
3 2
5 4
8 7
G4_LUNG | CRP 1.04 75.3
1 0.105
6 0.083
7 0.023
8 0.779
11 0.002
15 0.001
16 0.002
17 0.003
19 0.002
G4_MB_WAX 1.05 67.9
1 0.114318
6 0. 655824
8 0.0921831
12 0. 134792
20 0. 002883
G4_MAGNESI UM CARBONATE 2.958 118
12 1
6 1
8 3
G4_MAGNESI UM FLUCRI DE 3 134.3
12 1
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GA_METHANE 0. 000667151

9 2
&4_MAGNESI UM OXI DE
12 1
8 1
G4_MAGNES! UM TETRABORATE
12 1
5 4
8 7
G4_MERCURI C_| ODI DE
80 1
53 2
6 1
1 4
G4_METHANOL
6 1
1 4
8 1
G4_M X_D_WAX
1 0.13404
6 0. 77796
8 0. 03502
12 0. 038594
22 0.014386
G4_MBS20_TI SSUE
1 0.081192
6 0. 583442
7 0.017798
8 0. 186381
12 0. 130287
17 0. 0009
G4_MUSCLE_SKELETAL_| CRP
1 0.102
6 0.143
7 0. 034
8 0.71
11 0.001
15 0.002
16 0.003
17 0.001
19 0. 004
G4_MUSCLE_STRI ATED | CRU
1 0. 102102
6 0.123123
7 0. 035035
8 0.72973
11 0. 001001
15 0. 002002
16 0. 004004
19 0. 003003
G4_MJSCLE_W TH_SUCROSE
1 0.0982341
6 0. 156214
7 0. 035451
8 0. 710101
G4_MUSCLE_W THOUT SUCROSE
1 0. 101969
6 0. 120058
7 0. 035451
8 0. 742522
G4_NAPHTHALENE
6 10
1 8
G4_NI TROBENZENE
6 6
1 5
7 1
8 2
7 2
8 1
G4_NYLON- 8062
1 0. 103509
6 0. 648416
7 0. 0995361
8 0. 148539

G4_NYLON- 6- 6

3.58

2.53

6. 36

0.7914

0.99

1.04

1.11

1.07

1.145

1.19867

G4_NI TROUS_OXI DE 0. 00183094

143. 8

108.3

684.5

41.7

67.6

60. 9

75.1

75.3

74.7

74.3

74.2

68. 4

75.8

84.9

64.3

63.9
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6 6
1 11
7 1
8 1
4 G4_NYLON- 6- 10
1 0. 107062
6 0. 680449
7 0.099189
8 0.1133
4 &4 _NYLON-11_RILSAN
1 0. 115476
6 0. 720818
7 0.0764169
8 0. 0872889
2 GA4_OCTANE
6 8
1 18
2 G4_PARAFFI N
6 25
1 52
2 G4_N- PENTANE
6 5
1 12
8 G4_PHOTO EMULSI ON
1 0.0141
6 0.072261
7 0. 01932
8 0. 066101
16 0. 00189
35 0. 349103
47 0. 474105
53 0. 00312
2 G4_PLASTI C_SC_VI NYLTOLUENE
6 9
1 10
2 G4_PLUTONI UM DI OXI DE
94 1
8 2
3 G4_POLYACRYLONI TRI LE
6 3
1 3
7 1
3 G4_POLYCARBONATE
6 16
1 14
8 3
3 G4_POLYCHLOROSTYRENE
6 8
1 7
17 1
2 G4_POLYETHYLENE
6 1
1 2
3 G4_MYLAR
6 10
1 8
8 4
3 G4_PLEXI GLASS
6 5
1 8
8 2
3 G4_POLYOXYMETHYLENE
6 1
1 2
8 1
2 G4_POLYPROPYLENE
6 2
1 4
2 G4_POLYSTYRENE
6 8
1 8
2 G4 TEFLON
6 2
9 4
3 G4_POLYTRI FLUOROCHLOROETHYLENE
6 2
9 3

1.425

0.7026

0. 6262

3.815

1.032

11. 46

1.3

1.4

1.425

2.

1

63. 2

61.6

54.7

55.9

53.6

331

64.7

746.5

69. 6

73.1

81.7

57.4 (C_2H_4) _N-Pol yet hyl ene

78.7

74

77. 4

56.5 (C_2H_4) _N-Pol ypropyl ene

68.7

99.1

120.7
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17 1
G4_POLYVI NYL_ACETATE 1.19 73.7
6 4
1 6
8 2
G4_POLYVI NYL_ALCOHOL 1.3 69.7
6 2
1 4
8 1
G4_POLYVI NYL_BUTYRAL 1.12 67.2
6 8
1 14
8 2

G4_POLYVI NYL_CHLORI DE 1.3 108. 2
6 2
1 3

17 1

G4_POLYVI NYLI DENE_CHLORI DE 1.7 134.3
6 2
1 2

17 2
G4_POLYVI NYLI DENE_FLUCRI DE 1.76 88.8
6 2
1 2
9 2
G4_POLYVI NYL_PYRROLI DONE 1.25 67.7

6 6

1 9

7 1

8 1
G4_POTASSI UM | ODI DE 3.13 431.9

19 1

53 1
G4_POTASSI UM OXI DE 2.32 189.9

19 2

8 1
G4_PROPANE 0. 00187939 47.1

6 3

1 8
G4_| PROPANE 0.43 52

6 3

1 8
G4_N- PROPYL_ALCOHOL 0. 8035 61.1

6 3

1 8

8 1
G4_PYRI DI NE 0.9819 66. 2

6 5

1 5

7 1
G4_RUBBER BUTYL 0.92 56.5

1 0.143711

6 0. 856289
G4_RUBBER_NATURAL 0.92 59.8

1 0.118371

6 0. 881629
G4_RUBBER _NEOPRENE 1.23 93

1 0. 05692

6 0. 542646

17 0. 400434

G4_SI LI CON_DI OXI DE 2.32 139.2 Si02

14 1

8 2
G4_SI LVER BROM DE 6.473 486.6

47 1

35 1
G4_SI LVER CHLORI DE 5.56 398. 4

47 1

17 1
G4_SI LVER HALI DES 6.47 487.1

35 0. 422895

47 0.573748

53 0. 003357
&4_SI LVER | ODI DE 6.01 543.5

47 1

53 1
G4_SKI N_I CRP 1.09 72.7
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1 0.1
6 0. 204
7 0. 042
8 0. 645
11 0. 002
15 0.001
16 0. 002
17 0.003
19 0.001
G4_SCDI UM _CARBONATE 2.532 125
11 2
6 1
8 3
G4_SCDI UM | ODI DE 3. 667 452
11 1
53 1
G4_SODI UM_MONOXI DE 2.27 148.8
11 2
8 1
G4_SODI UM NI TRATE 2.261 114.6
11 1
7 1
8 3
G4_STI LBENE 0. 9707 67.7
6 14
1 12
G4_SUCRCSE 1. 5805 77.5
6 12
1 22
8 11
G4_TERPHENYL 1.24 71.7
6 18
1 14
G4 TESTIS | CRP 1. 04 75
1 0.106
6 0.099
7 0.02
8 0.766
11 0. 002
15 0.001
16 0. 002
17 0.002
19 0. 002
G4_TETRACHLOROETHYLENE 1. 625 159. 2
6 2
17 4
G4_THALLI UM CHLORI DE 7.004 690. 3
81 1
17 1
G4_TI SSUE_SOFT_| CRP 1.03 72.3
1 0.105
6 0. 256
7 0.027
8 0. 602
11 0.001
15 0.002
16 0.003
17 0.002
19 0. 002
G4_TI SSUE_SOFT_| CRU- 4 1 74.9
1 0.101
6 0.111
7 0.026
8 0.762
G4_TI SSUE- METHANE 0. 00106409 61. 2
1 0. 101869
6 0. 456179
7 0. 035172
8 0. 40678
G4_TI SSUE- PROPANE 0. 00182628 59.5
1 0. 102672
6 0. 56894
7 0. 035022
8 0. 293366
G4_TI TANI UM DI OXI DE 4.26 179.5
22 1
8 2
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G4_TOLUENE
6 7
1 8
G4_TRI CHLOROETHYLENE
6 2
1 1
17 3
G4_TRI ETHYL_PHOSPHATE
6 6
1 15
8 4
15 1
G4_TUNGSTEN_HEXAFLUCRI DE
74 1
9 6
G4_URANI UM DI CARBI DE
92 1
6 2
G4_URANI UM MONCCARBI DE
92 1
6 1
G4_URANI UM OXI DE
92 1
8 2
G4_UREA
6 1
1 4
7 2
8 1
G4_VALI NE
6 5
1 11
7 1
8 2
& _VITON
1 0.009417
6 0. 280555
9 0.710028
G4_WATER
1 2
8 1
G4_WATER VAPCR
1 2
8 1
G4_XYLENE
6 8
1 10
G4_GRAPHI TE

0. 8669

11.28

13.63

10. 96

1.323

1.8

0. 000756182

2.21

62.5

148.1

81.2

354.4

752

862

720.6

72.8

67.7

98. 6

78 H20

71.6 H 20 Gas

61.8

78 G aphite

6.3. HEP and Nuclear Materials

Nconp Nane density(g/cm3) 1(eV) ChFormul a
1 A_| H2 0.0708 21.8
1 GA_I N2 0. 807 82
1 HA_|l 2 1.141 95
1 GA_| Ar 1.396 188
1 &4_| Br 3.1028 343
1 GA_| Kr 2.418 352
1 GA_| Xe 2.953 482
3 G4_PbwWH 8.28 0
8 4
82 1
74 1
1 &_Gl actic le- 25 21.8
1 4_GRAPHI TE_PORQOUS 1.7 78 Graphite
3 GA_LUCI TE 1.19 74
1 0. 080538
6 0. 599848
8 0. 319614
3 G4_BRASS 8.52 0
29 62
30 35
82 3
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3 G4_BRONZE 8.82 0
29 89
30 9
82 2

3 GA_STAI NLESS- STEEL 8 0
26 74
24 18
28 8

3 G4_CR39 1.32 0
1 18
6 12
8 7

3 G4_OCTADECANCOL 0.812 0
1 38
6 18
8 1

6.4. Space (ISS) Materials

Nconp Nane density(g/cm3) 1(eV) ChFornmul a

4 G4_KEVLAR 1.44 0
14
10
2
2
3 G4_DACRON 1.4 0
10
8
4
3 4_NEOPRENE 1.23 0
6 4
1 5
17 1

~N 0 O

o - O

6.5. Bio-Chemical Materials

Nconp Nane density(g/cm3) 1(eV) ChFornmula

4 G4_CYTOSI NE 1.55 72

w0 ~N O 0 ~NOO
N w

0N
N

3 G4_DNA ADENI NE 1 72
4
5
5
4 G4_DNA GUANI NE 1 72

~N o R

w0 ~N O
ol

0N
w

4 G4_DNA THYM NE 1 72
5
5

[0 ol
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7 2
2
G4_DNA_URAC L
3
4
2
2
G4_DNA ADENGSI NE
10
10
5
4
G4_DNA_GUANGSI NE
10
10
5
5
G4_DNA CYTI DI NE
10
9
3
5
G4_DNA _URI DI NE
9
9
2
6
_DNA METHYLUR! DI NE
11
10

0N w0~ 0N [ee]

g~
a1

[Eny

G4 _DNA G
10
10

g0~
a1

[Eny
=

G4_DNA

g0~
= 00 Wwwool

[Eny

G4_DNA

g0 ~NO
= ON O O]

[Eny

G4 DNA MU

10

g0 ~NO R
N

[Eny

72

72

72

72

72

72

72

72

72

72

72

72
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