Top
Back: pnormalf
Forward: inout_lib
FastBack: general_lib
FastForward: inout_lib
Up: grobcov_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.2.4.6 extend

Procedure from library grobcov.lib (see grobcov_lib).

Return:
The list ( (lpp_1,basis_1,segment_1,lpph_1), ... (lpp_s,basis_s,segment_s,lpph_s) )

The lpp are constant over a segment and correspond to the set of lpp of the reduced Groebner basis for each point of the segment.
The lpph corresponds to the lpp of the homogenized ideal and is different for each segment. It is given as a string.

Basis: to each element of lpp corresponds an I-regular function given in full representation. The
I-regular function is the corresponding element of the reduced Groebner basis for each point of the segment with the given lpp. For each point in the segment, the polynomial or the set of polynomials representing it, if they do not specialize to 0, then after normalization, specializes to the corresponding element of the reduced Groebner basis. In the full representation at least one of the polynomials representing the I-regular function specializes to non-zero.

With the default option ("rep",0) the segments are given in P-representation.
With option ("rep",1) the segments are given
in C-representation.
With option ("rep",2) both representations of the segments are given.

The P-representation of a segment is of the form
((p_1,(p_11,..,p_1k1)),..,(p_r,(p_r1,..,p_rkr))
representing the segment U_i (V(p_i) \ U_j (V(p_ij))), where the p's are prime ideals.

The C-representation of a segment is of the form
(E,N) representing V(E)\V(N), and the ideals E and N are radical and N contains E.

Note:
The basering R, must be of the form Q[a][x], a=parameters, x=variables, and should be defined previously. The ideal must be defined on R.

parametric ideal, full representation.

Example:
 
LIB "grobcov.lib";
ring R=(0,a0,b0,c0,a1,b1,c1,a2,b2,c2),(x), dp;
short=0;
ideal S=a0*x^2+b0*x+c0,
a1*x^2+b1*x+c1,
a2*x^2+b2*x+c2;
"System S="; S;
==> System S=
==> S[1]=(a0)*x^2+(b0)*x+(c0)
==> S[2]=(a1)*x^2+(b1)*x+(c1)
==> S[3]=(a2)*x^2+(b2)*x+(c2)
def GCS=grobcov(S,"rep",2,"comment",1);
==> Begin grobcov with options:  can,1,comment,1,out,0,null,0,nonnull,1,ext,0\
   ,rep,2
==> Begin cgsdr with options: can,1,comment,1,out,0,null,0,nonnull,1
==> Homogenizing the whole ideal: option can=1
==> Homogenized system = 
==> BH[1]=(a1^2*c2^2-a1*b1*b2*c2-2*a1*c1*a2*c2+a1*c1*b2^2+b1^2*a2*c2-b1*c1*a2\
   *b2+c1^2*a2^2)
==> BH[2]=(a0*b1*c2-a0*c1*b2-b0*a1*c2+b0*c1*a2+c0*a1*b2-c0*b1*a2)
==> BH[3]=(a0*a1*c2^2-a0*c1*a2*c2-b0*a1*b2*c2+b0*b1*a2*c2-c0*a1*a2*c2+c0*a1*b\
   2^2-c0*b1*a2*b2+c0*c1*a2^2)
==> BH[4]=(a0*a1*c1*c2-a0*c1^2*a2-b0*a1*c1*b2+b0*b1*c1*a2-c0*a1^2*c2+c0*a1*b1\
   *b2+c0*a1*c1*a2-c0*b1^2*a2)
==> BH[5]=(a0*a1*c1^2*b2-a0*b1*c1^2*a2+b0*a1^2*c1*c2-b0*a1*b1*c1*b2-b0*a1*c1^\
   2*a2+b0*b1^2*c1*a2-c0*a1^2*b1*c2-c0*a1^2*c1*b2+c0*a1*b1^2*b2+2*c0*a1*b1*c\
   1*a2-c0*b1^3*a2)
==> BH[6]=(a0^2*c2^2-a0*b0*b2*c2-2*a0*c0*a2*c2+a0*c0*b2^2+b0^2*a2*c2-b0*c0*a2\
   *b2+c0^2*a2^2)
==> BH[7]=(a0^2*c1*c2-a0*b0*c1*b2-a0*c0*a1*c2+a0*c0*b1*b2-a0*c0*c1*a2+b0^2*c1\
   *a2-b0*c0*b1*a2+c0^2*a1*a2)
==> BH[8]=(a0^2*c1^2-a0*b0*b1*c1-2*a0*c0*a1*c1+a0*c0*b1^2+b0^2*a1*c1-b0*c0*a1\
   *b1+c0^2*a1^2)
==> BH[9]=(b1*a2*c2-c1*a2*b2)*x+(-a1*c2^2+b1*b2*c2+c1*a2*c2-c1*b2^2)*@t
==> BH[10]=(a1*c2-c1*a2)*x+(b1*c2-c1*b2)*@t
==> BH[11]=(a1*b2-b1*a2)*x+(a1*c2-c1*a2)*@t
==> BH[12]=(b0*a2*c2-c0*a2*b2)*x+(-a0*c2^2+b0*b2*c2+c0*a2*c2-c0*b2^2)*@t
==> BH[13]=(b0*c1*a2-c0*b1*a2)*x+(-a0*c1*c2+b0*c1*b2+c0*a1*c2-c0*b1*b2)*@t
==> BH[14]=(b0*a1*c1-c0*a1*b1)*x+(-a0*c1^2+b0*b1*c1+c0*a1*c1-c0*b1^2)*@t
==> BH[15]=(a0*c2-c0*a2)*x+(b0*c2-c0*b2)*@t
==> BH[16]=(a0*b2-b0*a2)*x+(a0*c2-c0*a2)*@t
==> BH[17]=(a0*c1-c0*a1)*x+(b0*c1-c0*b1)*@t
==> BH[18]=(a0*b1-b0*a1)*x+(a0*c1-c0*a1)*@t
==> BH[19]=(a2)*x^2+(b2)*x*@t+(c2)*@t^2
==> BH[20]=(a1)*x^2+(b1)*x*@t+(c1)*@t^2
==> BH[21]=(a0)*x^2+(b0)*x*@t+(c0)*@t^2
==> // ** int division with `/`: use `div` instead in line >>forif (!(i<=size\
   (L)/2)) break;<<
==> // ** int division with `/`: use `div` instead in line >>forif (!(i<=size\
   (L)/2)) break;<<
==> // ** int division with `/`: use `div` instead in line >>forif (!(i<=size\
   (L)/2)) break;<<
==> // ** int division with `/`: use `div` instead in line >>forif (!(i<=size\
   (L)/2)) break;<<
==> // ** int division with `/`: use `div` instead in line >>forif (!(i<=size\
   (L)/2)) break;<<
==> // ** int division with `/`: use `div` instead in line >>forif (!(i<=size\
   (L)/2)) break;<<
==> Begin KSW with null =  0  nonnull =  1
==> Number of segments in KSW (total) =  49
==> Time in KSW =  3
==> Number of lpp segments =  7
==> Time in KSW + group + Prep =  7
==> Time in LCUnion + combine =  1
==> Time in grobcov =  8
==> Number of segments of grobcov =  7
"grobcov(S,'rep',2,'comment',1)="; GCS;
==> grobcov(S,'rep',2,'comment',1)=
==> [1]:
==>    [1]:
==>       _[1]=1
==>    [2]:
==>       _[1]=1
==>    [3]:
==>       [1]:
==>          [1]:
==>             _[1]=0
==>          [2]:
==>             [1]:
==>                _[1]=(a1^2*c2^2-a1*b1*b2*c2-2*a1*c1*a2*c2+a1*c1*b2^2+b1^2*\
   a2*c2-b1*c1*a2*b2+c1^2*a2^2)
==>                _[2]=(a0*b1*c2-a0*c1*b2-b0*a1*c2+b0*c1*a2+c0*a1*b2-c0*b1*a\
   2)
==>                _[3]=(a0*a1*c2^2-a0*c1*a2*c2-b0*a1*b2*c2+b0*b1*a2*c2-c0*a1\
   *a2*c2+c0*a1*b2^2-c0*b1*a2*b2+c0*c1*a2^2)
==>                _[4]=(a0*a1*c1*c2-a0*c1^2*a2-b0*a1*c1*b2+b0*b1*c1*a2-c0*a1\
   ^2*c2+c0*a1*b1*b2+c0*a1*c1*a2-c0*b1^2*a2)
==>                _[5]=(a0*a1*c1^2*b2-a0*b1*c1^2*a2+b0*a1^2*c1*c2-b0*a1*b1*c\
   1*b2-b0*a1*c1^2*a2+b0*b1^2*c1*a2-c0*a1^2*b1*c2-c0*a1^2*c1*b2+c0*a1*b1^2*b\
   2+2*c0*a1*b1*c1*a2-c0*b1^3*a2)
==>                _[6]=(a0^2*c2^2-a0*b0*b2*c2-2*a0*c0*a2*c2+a0*c0*b2^2+b0^2*\
   a2*c2-b0*c0*a2*b2+c0^2*a2^2)
==>                _[7]=(a0^2*c1*c2-a0*b0*c1*b2-a0*c0*a1*c2+a0*c0*b1*b2-a0*c0\
   *c1*a2+b0^2*c1*a2-b0*c0*b1*a2+c0^2*a1*a2)
==>                _[8]=(a0^2*c1^2-a0*b0*b1*c1-2*a0*c0*a1*c1+a0*c0*b1^2+b0^2*\
   a1*c1-b0*c0*a1*b1+c0^2*a1^2)
==>    [4]:
==>       [1]:
==>          _[1]=0
==>       [2]:
==>          _[1]=(-a0*b1*c2+a0*c1*b2+b0*a1*c2-b0*c1*a2-c0*a1*b2+c0*b1*a2)
==>          _[2]=(a1^2*c2^2-a1*b1*b2*c2-2*a1*c1*a2*c2+a1*c1*b2^2+b1^2*a2*c2-\
   b1*c1*a2*b2+c1^2*a2^2)
==>          _[3]=(a0*a1*c2^2-a0*b1*b2*c2-a0*c1*a2*c2+a0*c1*b2^2+b0*b1*a2*c2-\
   b0*c1*a2*b2-c0*a1*a2*c2+c0*c1*a2^2)
==>          _[4]=(a0^2*c2^2-a0*b0*b2*c2-2*a0*c0*a2*c2+a0*c0*b2^2+b0^2*a2*c2-\
   b0*c0*a2*b2+c0^2*a2^2)
==>          _[5]=(a0*a1*c1*c2-a0*b1^2*c2+a0*b1*c1*b2-a0*c1^2*a2+b0*a1*b1*c2-\
   b0*a1*c1*b2-c0*a1^2*c2+c0*a1*c1*a2)
==>          _[6]=(a0^2*c1*c2-a0*b0*b1*c2-a0*c0*a1*c2+a0*c0*b1*b2-a0*c0*c1*a2\
   +b0^2*a1*c2-b0*c0*a1*b2+c0^2*a1*a2)
==>          _[7]=(a0^2*c1^2-a0*b0*b1*c1-2*a0*c0*a1*c1+a0*c0*b1^2+b0^2*a1*c1-\
   b0*c0*a1*b1+c0^2*a1^2)
==>          _[8]=(2*a0*a1*b1*c1*c2-a0*a1*c1^2*b2-a0*b1^3*c2+a0*b1^2*c1*b2-a0\
   *b1*c1^2*a2-b0*a1^2*c1*c2+b0*a1*b1^2*c2-b0*a1*b1*c1*b2+b0*a1*c1^2*a2-c0*a\
   1^2*b1*c2+c0*a1^2*c1*b2)
==>    [5]:
==>       1
==> [2]:
==>    [1]:
==>       _[1]=x
==>    [2]:
==>       _[1]=(b1*a2*c2-c1*a2*b2)*x+(-a1*c2^2+b1*b2*c2+c1*a2*c2-c1*b2^2)
==>    [3]:
==>       [1]:
==>          [1]:
==>             _[1]=(a1^2*c2^2-a1*b1*b2*c2-2*a1*c1*a2*c2+a1*c1*b2^2+b1^2*a2*\
   c2-b1*c1*a2*b2+c1^2*a2^2)
==>             _[2]=(a0*b1*c2-a0*c1*b2-b0*a1*c2+b0*c1*a2+c0*a1*b2-c0*b1*a2)
==>             _[3]=(a0*a1*c2^2-a0*c1*a2*c2-b0*a1*b2*c2+b0*b1*a2*c2-c0*a1*a2\
   *c2+c0*a1*b2^2-c0*b1*a2*b2+c0*c1*a2^2)
==>             _[4]=(a0*a1*c1*c2-a0*c1^2*a2-b0*a1*c1*b2+b0*b1*c1*a2-c0*a1^2*\
   c2+c0*a1*b1*b2+c0*a1*c1*a2-c0*b1^2*a2)
==>             _[5]=(a0*a1*c1^2*b2-a0*b1*c1^2*a2+b0*a1^2*c1*c2-b0*a1*b1*c1*b\
   2-b0*a1*c1^2*a2+b0*b1^2*c1*a2-c0*a1^2*b1*c2-c0*a1^2*c1*b2+c0*a1*b1^2*b2+2\
   *c0*a1*b1*c1*a2-c0*b1^3*a2)
==>             _[6]=(a0^2*c2^2-a0*b0*b2*c2-2*a0*c0*a2*c2+a0*c0*b2^2+b0^2*a2*\
   c2-b0*c0*a2*b2+c0^2*a2^2)
==>             _[7]=(a0^2*c1*c2-a0*b0*c1*b2-a0*c0*a1*c2+a0*c0*b1*b2-a0*c0*c1\
   *a2+b0^2*c1*a2-b0*c0*b1*a2+c0^2*a1*a2)
==>             _[8]=(a0^2*c1^2-a0*b0*b1*c1-2*a0*c0*a1*c1+a0*c0*b1^2+b0^2*a1*\
   c1-b0*c0*a1*b1+c0^2*a1^2)
==>          [2]:
==>             [1]:
==>                _[1]=(a2)
==>                _[2]=(a1)
==>                _[3]=(a0)
==>             [2]:
==>                _[1]=(b1*c2-c1*b2)
==>                _[2]=(a1*c2-c1*a2)
==>                _[3]=(a1*b2-b1*a2)
==>                _[4]=(b0*c2-c0*b2)
==>                _[5]=(b0*c1-c0*b1)
==>                _[6]=(a0*c2-c0*a2)
==>                _[7]=(a0*b2-b0*a2)
==>                _[8]=(a0*c1-c0*a1)
==>                _[9]=(a0*b1-b0*a1)
==>    [4]:
==>       [1]:
==>          _[1]=(-a0*b1*c2+a0*c1*b2+b0*a1*c2-b0*c1*a2-c0*a1*b2+c0*b1*a2)
==>          _[2]=(a1^2*c2^2-a1*b1*b2*c2-2*a1*c1*a2*c2+a1*c1*b2^2+b1^2*a2*c2-\
   b1*c1*a2*b2+c1^2*a2^2)
==>          _[3]=(a0*a1*c2^2-a0*b1*b2*c2-a0*c1*a2*c2+a0*c1*b2^2+b0*b1*a2*c2-\
   b0*c1*a2*b2-c0*a1*a2*c2+c0*c1*a2^2)
==>          _[4]=(a0^2*c2^2-a0*b0*b2*c2-2*a0*c0*a2*c2+a0*c0*b2^2+b0^2*a2*c2-\
   b0*c0*a2*b2+c0^2*a2^2)
==>          _[5]=(a0*a1*c1*c2-a0*b1^2*c2+a0*b1*c1*b2-a0*c1^2*a2+b0*a1*b1*c2-\
   b0*a1*c1*b2-c0*a1^2*c2+c0*a1*c1*a2)
==>          _[6]=(a0^2*c1*c2-a0*b0*b1*c2-a0*c0*a1*c2+a0*c0*b1*b2-a0*c0*c1*a2\
   +b0^2*a1*c2-b0*c0*a1*b2+c0^2*a1*a2)
==>          _[7]=(a0^2*c1^2-a0*b0*b1*c1-2*a0*c0*a1*c1+a0*c0*b1^2+b0^2*a1*c1-\
   b0*c0*a1*b1+c0^2*a1^2)
==>          _[8]=(2*a0*a1*b1*c1*c2-a0*a1*c1^2*b2-a0*b1^3*c2+a0*b1^2*c1*b2-a0\
   *b1*c1^2*a2-b0*a1^2*c1*c2+b0*a1*b1^2*c2-b0*a1*b1*c1*b2+b0*a1*c1^2*a2-c0*a\
   1^2*b1*c2+c0*a1^2*c1*b2)
==>       [2]:
==>          _[1]=(-a1*c2+c1*a2)
==>          _[2]=(-a1*b2+b1*a2)
==>          _[3]=(-a0*c2+c0*a2)
==>          _[4]=(-a0*b2+b0*a2)
==>          _[5]=(-a0*c1+c0*a1)
==>          _[6]=(-a0*b1+b0*a1)
==>          _[7]=(-a1*b1*c2+a1*c1*b2)
==>          _[8]=(-a0*b1*c2+a0*c1*b2)
==>          _[9]=(-a0*b0*c2+a0*c0*b2)
==>          _[10]=(-a0*b0*c1+a0*c0*b1)
==>    [5]:
==>       x
==> [3]:
==>    [1]:
==>       _[1]=1
==>    [2]:
==>       _[1]=1
==>    [3]:
==>       [1]:
==>          [1]:
==>             _[1]=(a2)
==>             _[2]=(a1)
==>             _[3]=(a0)
==>          [2]:
==>             [1]:
==>                _[1]=(a2)
==>                _[2]=(b1*c2-c1*b2)
==>                _[3]=(a1)
==>                _[4]=(b0*c2-c0*b2)
==>                _[5]=(b0*c1-c0*b1)
==>                _[6]=(a0)
==>    [4]:
==>       [1]:
==>          _[1]=(a2)
==>          _[2]=(a1)
==>          _[3]=(a0)
==>       [2]:
==>          _[1]=(a2)
==>          _[2]=(a1)
==>          _[3]=(a0)
==>          _[4]=(-b1*c2+c1*b2)
==>          _[5]=(-b0*c2+c0*b2)
==>          _[6]=(-b0*c1+c0*b1)
==>    [5]:
==>       @t
==> [4]:
==>    [1]:
==>       _[1]=x
==>    [2]:
==>       _[1]=(b2)*x+(c2)
==>    [3]:
==>       [1]:
==>          [1]:
==>             _[1]=(a2)
==>             _[2]=(b1*c2-c1*b2)
==>             _[3]=(a1)
==>             _[4]=(b0*c2-c0*b2)
==>             _[5]=(b0*c1-c0*b1)
==>             _[6]=(a0)
==>          [2]:
==>             [1]:
==>                _[1]=(b2)
==>                _[2]=(a2)
==>                _[3]=(b1)
==>                _[4]=(a1)
==>                _[5]=(b0)
==>                _[6]=(a0)
==>    [4]:
==>       [1]:
==>          _[1]=(a2)
==>          _[2]=(a1)
==>          _[3]=(a0)
==>          _[4]=(-b1*c2+c1*b2)
==>          _[5]=(-b0*c2+c0*b2)
==>          _[6]=(-b0*c1+c0*b1)
==>       [2]:
==>          _[1]=(b2)
==>          _[2]=(a2)
==>          _[3]=(b1)
==>          _[4]=(a1)
==>          _[5]=(b0)
==>          _[6]=(a0)
==>    [5]:
==>       x*@t
==> [5]:
==>    [1]:
==>       _[1]=1
==>    [2]:
==>       _[1]=1
==>    [3]:
==>       [1]:
==>          [1]:
==>             _[1]=(b2)
==>             _[2]=(a2)
==>             _[3]=(b1)
==>             _[4]=(a1)
==>             _[5]=(b0)
==>             _[6]=(a0)
==>          [2]:
==>             [1]:
==>                _[1]=(c2)
==>                _[2]=(b2)
==>                _[3]=(a2)
==>                _[4]=(c1)
==>                _[5]=(b1)
==>                _[6]=(a1)
==>                _[7]=(c0)
==>                _[8]=(b0)
==>                _[9]=(a0)
==>    [4]:
==>       [1]:
==>          _[1]=(b2)
==>          _[2]=(a2)
==>          _[3]=(b1)
==>          _[4]=(a1)
==>          _[5]=(b0)
==>          _[6]=(a0)
==>       [2]:
==>          _[1]=(c2)
==>          _[2]=(b2)
==>          _[3]=(a2)
==>          _[4]=(c1)
==>          _[5]=(b1)
==>          _[6]=(a1)
==>          _[7]=(c0)
==>          _[8]=(b0)
==>          _[9]=(a0)
==>    [5]:
==>       @t^2
==> [6]:
==>    [1]:
==>       _[1]=0
==>    [2]:
==>       _[1]=0
==>    [3]:
==>       [1]:
==>          [1]:
==>             _[1]=(c2)
==>             _[2]=(b2)
==>             _[3]=(a2)
==>             _[4]=(c1)
==>             _[5]=(b1)
==>             _[6]=(a1)
==>             _[7]=(c0)
==>             _[8]=(b0)
==>             _[9]=(a0)
==>          [2]:
==>             [1]:
==>                _[1]=1
==>    [4]:
==>       [1]:
==>          _[1]=(c2)
==>          _[2]=(b2)
==>          _[3]=(a2)
==>          _[4]=(c1)
==>          _[5]=(b1)
==>          _[6]=(a1)
==>          _[7]=(c0)
==>          _[8]=(b0)
==>          _[9]=(a0)
==>       [2]:
==>          _[1]=1
==>    [5]:
==>       0
==> [7]:
==>    [1]:
==>       _[1]=x^2
==>    [2]:
==>       _[1]=(a2)*x^2+(b2)*x+(c2)
==>    [3]:
==>       [1]:
==>          [1]:
==>             _[1]=(b1*c2-c1*b2)
==>             _[2]=(a1*c2-c1*a2)
==>             _[3]=(a1*b2-b1*a2)
==>             _[4]=(b0*c2-c0*b2)
==>             _[5]=(b0*c1-c0*b1)
==>             _[6]=(a0*c2-c0*a2)
==>             _[7]=(a0*b2-b0*a2)
==>             _[8]=(a0*c1-c0*a1)
==>             _[9]=(a0*b1-b0*a1)
==>          [2]:
==>             [1]:
==>                _[1]=(a2)
==>                _[2]=(b1*c2-c1*b2)
==>                _[3]=(a1)
==>                _[4]=(b0*c2-c0*b2)
==>                _[5]=(b0*c1-c0*b1)
==>                _[6]=(a0)
==>    [4]:
==>       [1]:
==>          _[1]=(-b1*c2+c1*b2)
==>          _[2]=(-b0*c2+c0*b2)
==>          _[3]=(-a1*c2+c1*a2)
==>          _[4]=(-a1*b2+b1*a2)
==>          _[5]=(-a0*c2+c0*a2)
==>          _[6]=(-a0*b2+b0*a2)
==>          _[7]=(-b0*c1+c0*b1)
==>          _[8]=(-a0*c1+c0*a1)
==>          _[9]=(-a0*b1+b0*a1)
==>       [2]:
==>          _[1]=(a2)
==>          _[2]=(a1)
==>          _[3]=(a0)
==>          _[4]=(-b1*c2+c1*b2)
==>          _[5]=(-b0*c2+c0*b2)
==>          _[6]=(-b0*c1+c0*b1)
==>    [5]:
==>       x^2
def FGC=extend(GCS,"rep",0,"comment",1);
==> Time in extend =  23
"Full representation="; FGC;
==> Full representation=
==> [1]:
==>    [1]:
==>       _[1]=1
==>    [2]:
==>       _[1]=1
==>    [3]:
==>       [1]:
==>          [1]:
==>             _[1]=0
==>          [2]:
==>             [1]:
==>                _[1]=(a1^2*c2^2-a1*b1*b2*c2-2*a1*c1*a2*c2+a1*c1*b2^2+b1^2*\
   a2*c2-b1*c1*a2*b2+c1^2*a2^2)
==>                _[2]=(a0*b1*c2-a0*c1*b2-b0*a1*c2+b0*c1*a2+c0*a1*b2-c0*b1*a\
   2)
==>                _[3]=(a0*a1*c2^2-a0*c1*a2*c2-b0*a1*b2*c2+b0*b1*a2*c2-c0*a1\
   *a2*c2+c0*a1*b2^2-c0*b1*a2*b2+c0*c1*a2^2)
==>                _[4]=(a0*a1*c1*c2-a0*c1^2*a2-b0*a1*c1*b2+b0*b1*c1*a2-c0*a1\
   ^2*c2+c0*a1*b1*b2+c0*a1*c1*a2-c0*b1^2*a2)
==>                _[5]=(a0*a1*c1^2*b2-a0*b1*c1^2*a2+b0*a1^2*c1*c2-b0*a1*b1*c\
   1*b2-b0*a1*c1^2*a2+b0*b1^2*c1*a2-c0*a1^2*b1*c2-c0*a1^2*c1*b2+c0*a1*b1^2*b\
   2+2*c0*a1*b1*c1*a2-c0*b1^3*a2)
==>                _[6]=(a0^2*c2^2-a0*b0*b2*c2-2*a0*c0*a2*c2+a0*c0*b2^2+b0^2*\
   a2*c2-b0*c0*a2*b2+c0^2*a2^2)
==>                _[7]=(a0^2*c1*c2-a0*b0*c1*b2-a0*c0*a1*c2+a0*c0*b1*b2-a0*c0\
   *c1*a2+b0^2*c1*a2-b0*c0*b1*a2+c0^2*a1*a2)
==>                _[8]=(a0^2*c1^2-a0*b0*b1*c1-2*a0*c0*a1*c1+a0*c0*b1^2+b0^2*\
   a1*c1-b0*c0*a1*b1+c0^2*a1^2)
==>    [4]:
==>       1
==> [2]:
==>    [1]:
==>       _[1]=x
==>    [2]:
==>       [1]:
==>          _[1]=(a1*b2-b1*a2)*x+(a1*c2-c1*a2)
==>          _[2]=(a0*b2-b0*a2)*x+(a0*c2-c0*a2)
==>          _[3]=(a0*b1-b0*a1)*x+(a0*c1-c0*a1)
==>    [3]:
==>       [1]:
==>          [1]:
==>             _[1]=(a1^2*c2^2-a1*b1*b2*c2-2*a1*c1*a2*c2+a1*c1*b2^2+b1^2*a2*\
   c2-b1*c1*a2*b2+c1^2*a2^2)
==>             _[2]=(a0*b1*c2-a0*c1*b2-b0*a1*c2+b0*c1*a2+c0*a1*b2-c0*b1*a2)
==>             _[3]=(a0*a1*c2^2-a0*c1*a2*c2-b0*a1*b2*c2+b0*b1*a2*c2-c0*a1*a2\
   *c2+c0*a1*b2^2-c0*b1*a2*b2+c0*c1*a2^2)
==>             _[4]=(a0*a1*c1*c2-a0*c1^2*a2-b0*a1*c1*b2+b0*b1*c1*a2-c0*a1^2*\
   c2+c0*a1*b1*b2+c0*a1*c1*a2-c0*b1^2*a2)
==>             _[5]=(a0*a1*c1^2*b2-a0*b1*c1^2*a2+b0*a1^2*c1*c2-b0*a1*b1*c1*b\
   2-b0*a1*c1^2*a2+b0*b1^2*c1*a2-c0*a1^2*b1*c2-c0*a1^2*c1*b2+c0*a1*b1^2*b2+2\
   *c0*a1*b1*c1*a2-c0*b1^3*a2)
==>             _[6]=(a0^2*c2^2-a0*b0*b2*c2-2*a0*c0*a2*c2+a0*c0*b2^2+b0^2*a2*\
   c2-b0*c0*a2*b2+c0^2*a2^2)
==>             _[7]=(a0^2*c1*c2-a0*b0*c1*b2-a0*c0*a1*c2+a0*c0*b1*b2-a0*c0*c1\
   *a2+b0^2*c1*a2-b0*c0*b1*a2+c0^2*a1*a2)
==>             _[8]=(a0^2*c1^2-a0*b0*b1*c1-2*a0*c0*a1*c1+a0*c0*b1^2+b0^2*a1*\
   c1-b0*c0*a1*b1+c0^2*a1^2)
==>          [2]:
==>             [1]:
==>                _[1]=(a2)
==>                _[2]=(a1)
==>                _[3]=(a0)
==>             [2]:
==>                _[1]=(b1*c2-c1*b2)
==>                _[2]=(a1*c2-c1*a2)
==>                _[3]=(a1*b2-b1*a2)
==>                _[4]=(b0*c2-c0*b2)
==>                _[5]=(b0*c1-c0*b1)
==>                _[6]=(a0*c2-c0*a2)
==>                _[7]=(a0*b2-b0*a2)
==>                _[8]=(a0*c1-c0*a1)
==>                _[9]=(a0*b1-b0*a1)
==>    [4]:
==>       x
==> [3]:
==>    [1]:
==>       _[1]=1
==>    [2]:
==>       _[1]=1
==>    [3]:
==>       [1]:
==>          [1]:
==>             _[1]=(a2)
==>             _[2]=(a1)
==>             _[3]=(a0)
==>          [2]:
==>             [1]:
==>                _[1]=(a2)
==>                _[2]=(b1*c2-c1*b2)
==>                _[3]=(a1)
==>                _[4]=(b0*c2-c0*b2)
==>                _[5]=(b0*c1-c0*b1)
==>                _[6]=(a0)
==>    [4]:
==>       @t
==> [4]:
==>    [1]:
==>       _[1]=x
==>    [2]:
==>       [1]:
==>          _[1]=(b2)*x+(c2)
==>          _[2]=(b1)*x+(c1)
==>          _[3]=(b0)*x+(c0)
==>    [3]:
==>       [1]:
==>          [1]:
==>             _[1]=(a2)
==>             _[2]=(b1*c2-c1*b2)
==>             _[3]=(a1)
==>             _[4]=(b0*c2-c0*b2)
==>             _[5]=(b0*c1-c0*b1)
==>             _[6]=(a0)
==>          [2]:
==>             [1]:
==>                _[1]=(b2)
==>                _[2]=(a2)
==>                _[3]=(b1)
==>                _[4]=(a1)
==>                _[5]=(b0)
==>                _[6]=(a0)
==>    [4]:
==>       x*@t
==> [5]:
==>    [1]:
==>       _[1]=1
==>    [2]:
==>       _[1]=1
==>    [3]:
==>       [1]:
==>          [1]:
==>             _[1]=(b2)
==>             _[2]=(a2)
==>             _[3]=(b1)
==>             _[4]=(a1)
==>             _[5]=(b0)
==>             _[6]=(a0)
==>          [2]:
==>             [1]:
==>                _[1]=(c2)
==>                _[2]=(b2)
==>                _[3]=(a2)
==>                _[4]=(c1)
==>                _[5]=(b1)
==>                _[6]=(a1)
==>                _[7]=(c0)
==>                _[8]=(b0)
==>                _[9]=(a0)
==>    [4]:
==>       @t^2
==> [6]:
==>    [1]:
==>       _[1]=0
==>    [2]:
==>       _[1]=0
==>    [3]:
==>       [1]:
==>          [1]:
==>             _[1]=(c2)
==>             _[2]=(b2)
==>             _[3]=(a2)
==>             _[4]=(c1)
==>             _[5]=(b1)
==>             _[6]=(a1)
==>             _[7]=(c0)
==>             _[8]=(b0)
==>             _[9]=(a0)
==>          [2]:
==>             [1]:
==>                _[1]=1
==>    [4]:
==>       0
==> [7]:
==>    [1]:
==>       _[1]=x^2
==>    [2]:
==>       [1]:
==>          _[1]=(a2)*x^2+(b2)*x+(c2)
==>          _[2]=(a1)*x^2+(b1)*x+(c1)
==>          _[3]=(a0)*x^2+(b0)*x+(c0)
==>    [3]:
==>       [1]:
==>          [1]:
==>             _[1]=(b1*c2-c1*b2)
==>             _[2]=(a1*c2-c1*a2)
==>             _[3]=(a1*b2-b1*a2)
==>             _[4]=(b0*c2-c0*b2)
==>             _[5]=(b0*c1-c0*b1)
==>             _[6]=(a0*c2-c0*a2)
==>             _[7]=(a0*b2-b0*a2)
==>             _[8]=(a0*c1-c0*a1)
==>             _[9]=(a0*b1-b0*a1)
==>          [2]:
==>             [1]:
==>                _[1]=(a2)
==>                _[2]=(b1*c2-c1*b2)
==>                _[3]=(a1)
==>                _[4]=(b0*c2-c0*b2)
==>                _[5]=(b0*c1-c0*b1)
==>                _[6]=(a0)
==>    [4]:
==>       x^2

Top Back: pnormalf Forward: inout_lib FastBack: general_lib FastForward: inout_lib Up: grobcov_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 3-1-6, Dec 2012, generated by texi2html.