|
D.4.10.2 modS
Procedure from library modstd.lib (see modstd_lib).
- Usage:
- modS(I,L); I ideal, L intvec of primes
if size(#)>0 std is used instead of groebner
- Return:
- an ideal which is with high probability a standard basis
- Note:
- This procedure is designed for fast experiments.
It is not tested whether the result is a standard basis.
It is not tested whether the result generates I.
Example:
| LIB "modstd.lib";
list L = 3,5,11,13,181,32003;
ring r = 0,(x,y,z,t),dp;
ideal I = 3x3+x2+1,11y5+y3+2,5z4+z2+4;
I = homog(I,t);
ideal J = modS(I,L);
J;
==> J[1]=x3+25101020x2t+25101020t3
==> J[2]=z4+15060612z2t2-15060611t4
==> J[3]=y5+20537198y3t2-34228663t5
|
|