

 April 18, 2003 Copyright Metadot Corp., 2003

Metadot Portal Server

Developers’ Guide

Version 5.6

April 18, 2003

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 -1

Table of Contents

1. Overview..1

1.1 Dynamic Generation of Site Content...1
1.1.1 Gizmos and “Category” pages ...2
1.1.2 “MyPage” pages and channels...2

1.2 Levels of Administrative Access..3
1.3 “Backend” portal management ..3
1.4 Layout and Configuration ..3

2. Database Tables ...4

3. Access Control...6

3.1 Overview..6
3.1.1 Permissions-editing interface...6

3.2 Specifying Access Control for a GizmoBuilder subclass ..8
3.2.1 Numeric Access Levels and Bundle Permissions ..8
3.2.2 Implement

get_default_permissions..9

3.2.3 Object permissions instantiation and checking..10
3.3 Groups, Permissions, and Access Control Lists..11

3.3.1 Recursive Permissions Propagation and Application...12
3.4 The Access Broker ...13
3.5 Steps required to build a class which supports AC ..13
3.6 The Auditable Interface..14

3.6.1 “Must-Provide” Methods ...14
3.6.2 OVERRIDEABLE Methods ..15
3.6.3 NON-OVERRIDEABLE Methods ...15

4. Customizing Metadot’s User/Registration and Authentication Functionality...................17

4.1 User and Registration Customization: Tutorial..17
4.1.1 Customization Steps...18

4.2 Customizing Authentication and Session Handling classes...20
4.2.1 Authenticator class...20
4.2.2 SessionHandler class..21

5. Building Gizmos..23

5.1 The

instance

 table ..23
5.2 The UploadsManager Utility ...24
5.3 The GizmoBuilder class...24

5.3.1 Write a constructor and specify field mappings...25
5.3.2 Define display methods for the gizmo ...27
5.3.3 Gizmos and Access Control ...30
5.3.4 Overriding Existing GizmoBuilder Methods...30

5.4 Making new Gizmos available to the system...31

6. Basic Tools...32

7. GizmoTools ...32

8. GizmoTags and Templates...33

8.1 Gizmo Tags in Page Description Fields (Advanced) ...33
8.2 Gizmotags Tutorial...34
8.3 Changing Gizmotag Styles ..35

8.3.1 Example: ..35
8.4 Metadot Gizmo Tags..35
8.5 Developing Gizmo Tags...38

8.5.1 Two required GizmoTag methods..38

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 0

9. Themes ..40

9.1 Examining the Themes Configuration ...40
9.2 Changing or Adding a Theme Configuration set ...41

10. SystemApps...43

11. The Gizmo Browser...44

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 1

The

Metadot Portal Server

 is an open-source point-and-click website builder that allows
non-technical users to build powerful websites and portals in just a few minutes. It provides
many content management and collaboration features, including pluggable applications called
Gizmos, as well as a dashboard feature like “My Yahoo”. The Metadot Portal Server is fully cus-
tomizable by the site administrator. Logo, colors, content and components can be edited using a
standard web browser.

The Metadot Portal Server is based on Apache, Perl and MySql, and runs on Unix-based operating
systems like Linux, Solaris, and MacOS X, as well as Windows. Developers can create new Giz-
mos using the open gizmo architecture and, if they like, contribute them to the open source
project. The Metadot Portal Server has been deployed in many global corporations and leading
universities. It is reliable and scalable, and can support large communities of users.

The purpose of this document is to provide more information about the Metadot Portal Server’s
development interface, for developers who wish to extend the system’s functionality, or modify
the system’s default look or layout. For information about system installation and configuration,
or general usage, see the

Users

’ and

Administrators

’ guides included in this distribution. We
highly recommend that you read the Users’ and Admin guides first before reading this document,
since they provide a good overview of the site features. We also recommend that you install and
get hands-on experience with using and adding content to the site before you begin development.

1. Overview

In this section, we provide an overview, from a developer’s perspective, of some of the Metadot
Portal Server’s functionality and components. For some of the Perl modules described in this
guide, Perl POD documentation is also available to the developer. The POD documentation can
provide additional information about some of the specific methods referenced.

1.1 Dynamic Generation of Site Content

Pages delivered by the the Metadot Portal Server software are all dynamically generated from
content stored in a relational database. The content may include static HTML fragments, but all of
the delivered pages are built dynamically.

There are two basic types of pages. The first type of page can be labeled, in Metadot terminology,
a “Category” page. These are pages for which users, if they have the appropriate permissions, can
create new content, such as sub-pages (sub-categories), discussions, polls, news items, etc. The
second type of page provides a customized set of information

channels

 for each user. These are the
“My Page” site pages. For their “My Page”, a user does not create content directly, but builds
his/her page from pre-existing content channels.

A Metadot site supports a community of registered users. Once a user has registered and created
an account, they may log on. A logged-in user can typically view more of a site than a non-logged
in user, and can add and modify site content. Metadot supports a variety of models for authenti-
cating and registering a user, including use of LDAP directories; and for browsing information
about the user base.

In conjunction with the code that generates site content, the Metadot Portal Platform includes
"backend" functionality, which runs asynchronously to its portal requests. The backend scripts
gather information from the internet, process it, manage user subscriptions (described below) and
perform various site cleaning tasks.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 2

1.1.1 Gizmos and Category pages

Most of the pages generated by a Metadot Portal Server are populated by an information class
called a “Gizmo”.

Categories

 are a subclass of Gizmo, and other content objects such as Items, Dis-
cussions, NewsItems, Tables, etc., are Gizmos as well. Categories are the primary organiza-
tional/container metaphor for this type of page: a category can have any number of child gizmos
added to it, including sub-categories; and this creates a ‘tree’ of gizmo objects. Site pages are then
dynamically built from this content tree, with a category object’s children contributing to the ren-
dered content of the category as a web page. For example, if a user creates a child Discussion for a
Category page, then a ‘summary’ view of the Discussion info will typically be included when the
Category page is rendered.

A gizmo may be a child of only one parent, but

shortcuts

 (essentially, symbolic links) can be cre-
ated to allow a gizmo to appear to be associated with more than one parent.

Gizmos are subject to the Metadot Portal Server’s

access control

 scheme (as described in Section 3);
their visibility and editability can be controlled with respect to each user. This means that a page
may ‘render’ differently for different users, depending upon what page content the user has per-
mission to view or modify.

When a user account is created, a set of Category pages is created for the new user, over which
they have editorial control. This area is called the user’s “My Website” pages. On these pages,
they can create new content, including child pages, and set the permissions of the content to deter-
mine who can edit or view it. There may be other parts of the site, in addition to the “My Website”
area, for which others have given a user edit permissions as well.

Some types of Gizmos can export their information as

channels

(see below).

1.1.2 MyPage pages and channels

The ‘MyPage’ pages built for each user of the portal, are different than the rest of the portal. Con-
ceptually, each

MyPage

 displays the information from a set of information

channels

, where the
channels can be selected and arranged on the page according to the user’s specifications. A user
can also subscribe to change notifications on the channels.

Nearly all of the information pushed to the MyPage channels is locally warehoused (cached) so
that it is available quickly on demand. Behind the scenes, the information delivered to a

MyPage

 is
of four different types:

•

External channels: information from external RSS channels, locally parsed and cached.

•

Internal channels: information exported from Category News and Discussion Gizmos. (Not all
Gizmo types can currently export their contents as a channel).

•

“Gizmo Tools”: Display information from non-RSS external sources, such as information about
whether a web server is up.
All Gizmo Tools are subclassed from

GizmoTool

.

•

“Basic Tools”: Basic Tools are HTML fragments inserted into a

MyPage

. Typically they imple-
ment external search tools of some type (e.g. web search or map generation), though there is no
restriction on what the HTML can contain. By their nature, “Basic Tools” have no locally
cached content.

A user’s MyPage is built by accessing the user's page preferences (selected channels and page lay-
out), in conjunction with the cached channel content. The same channel content may be accessed

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 3

and shared by many users. Internally-derived channels respect the permissions settings of their
original information sources and thus not all channels may be viewable by all site users.

In addition to channels, users may also select to display on their MyPage other information
sources such as weather indicators and webserver monitors.

A portal 'backend' script runs periodically to perform channel management tasks. It fetches the
external channels, then converts all the information sources, internal and external, to an html
channel format, and stores the html channel content in the database (thus locally warehousing or
caching the content so that it is available quickly on demand). The refresh interval for the cached
information is configurable by the portal administrator. In addition, the script checks user sub-
scriptions and sends out

change notifications

 on the channel content as appropriate. The change
notifications can be delivered through various media such as email and pager.

1.2 Levels of Administrative Access

A Metadot site has two levels of administrative access:

Site Managers

, and

Admins

. Typically there
is one Admin per site, and multiple Site Managers. Site Managers have a subset of the capabilities
of the Admin. They can edit any site content, and manage users and groups. They can add and
edit “My Page” content, and change the site look and feel. However, the Admin has access to a
number of site configuration parameters that the Site Managers can not access.

1.3 Backend portal management

A portal site runs two server-side scripts periodically. The first performs channel management
tasks, as described in the section above. The tasks are scheduled, with run times stored in the
database. Some tasks run just once a day, others run every hour, etc. The second script performs
various cleanup tasks.

If

virtual servers

are in use, as described in the Administrator’s guide, then this means that several
different content databases are set up, each accessed by a different virtual server. In this case, the
scripts run through their set of scheduled tasks for each database in turn.

1.4 Layout and Configuration

Much of the “look and feel” of a Metadot site is configurable through the browser interface.
High-level layout (the way the content of each page is rendered) is determined by selecting one of
several basic layout modes. It is possible to switch a site back and forth between styles dynami-
cally.

Two of the layout modes provide a relatively fixed, non-template-based layout style, and two use
HTML

templates

. Embedded in the templates are Metadot tags called GizmoTags. The GizmoTags
allow various content to be inserted into the HTML page, resulting in more control over what goes
where and how the page looks, than is possible with the fixed layout styles. One of the tem-
plate-based modes is the

Themes

 mode, in which a fixed layout template is used for each page
type, and the site manager has the ability to change logos and colors for the pages

1

. The second
template mode is Metadot’s “Style 4”, in which a site manager has the ability to tailor the set of
templates used by the site to their own specifications. This provides more control, but also typi-

1. Currently, there is no browser-based interface for modifying the

Themes

 layout.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 4

cally requires a higher initial outlay of effort in setting up the sites, than is required with the fixed
layout styles. Section 8 describes template and gizmo tag use in more detail.

It is also possible to configure, through a browser interface, many of the table cell colors used on
the site (in order to render object frames, etc.), and to configure the style rules used for the site
pages. More info is provided in the Administrator’s guide.

In the remainder of this guide, we provide more detail about the aspects of the Metadot Portal
Server system that a developer must be familiar with in order to generate new Gizmos and
gizmo-based “applications”.

2. Database Tables

While you may not need to directly access the database tables that underlay the system, it is useful
to have a model of how they are employed. The database serves as a persistent store for all of the
objects served up to the dynamically-generated Metadot Portal Server pages. The system does
very little out-of-database caching, and thus performs a set of database queries for each page that
it builds.

Here we list some of the more important information objects in the system and the database tables
they map to. You may wish to revisit this section after you’ve read the sections below.

Gizmos: all types of Gizmos (Categories, Discussions, Tables, Items, etc.) use the

instance

 table
to store their data. In addition, some gizmos utilize secondary tables as well. The Discussion
gizmo keeps its messages in the

message

 table. The Poll gizmo uses

poll_response

 and

poll_vote

.

GizmoTools: The GizmoTool parameter info is in the

gizmoitemparam

 table as attribute/value
information; and

gizmotoolitem

 is used to associate sets of gizmotool parameters with chan-
nels.

Basic Tools: The description of a basic tool (e.g. the HTML used to render it) is stored in the

instance

 table.

User information is stored in the

user

 and

extended_user

 tables. Required “core” fields are in
the

user

 table. Then, subclasses of the default user class map their specific fields to the

extended_user

 table, allowing different Metadot sites to be configured to support different user
profile information (see Section 4).

Groups: information about groups and the users in each group is stored in the tables

grp

 and

grpmembers.

Channels: channel information is stored in

channel

 and

channelitem

 tables.

The

mypage

 table holds information about the ‘my page’ channel selection and layout for each
user.

The

permissions

 table holds information about the permissions for every Auditable object (see
Section 3).

The

session

 table holds user session data.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 5

The

uploads

 table holds the file “attachments” associated with portal objects (where these objects
are typically Gizmos, but need not be).

The

subscription

 table holds the

channels

 to which each user has subscribed (for example, an
external news channel), and info about the form in which they wish to receive the change notifica-
tions (e.g., daily digests).

The

params

 table holds all of the system parameters; all of the site’s configuration information.
This includes layout and ‘look’ information as well as the variables that determine site operation
(for example, the mail server address).

The

event_log

table is used to log information about nearly every site request. This informa-
tion can then be displayed in the browser via an administrative interface. The event table is
cleaned periodically by one of the portal’s “backend” scripts. See the Administrator’s guide for
more information. (Note: not available in open-source release).

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 6

3. Access Control

3.1 Overview

Metadot’s Access Control (AC) system is the infrastructure that allows the system to check
whether a given user can perform a given operation over an object. Most of the access control
information is contained in a Permissions hash associated with each Gizmo object. The Permis-
sions information is consulted when determining whether or not an operation is allowed.

The permissions information for an object consists of operation

bundles,

which associate groups of
operations on the object with a permissions level for those operations; and an access control list,
where users and groups on the list are given ‘owner’ permissions for specified operations.

A bundle specification is defined for each gizmo class. For a given gizmo (such as Item), the devel-
oper may define a

view

 bundle, and associate it with the operations

show

,

show_as_bullet

, and
so on. Then, the developer may define an

edit

 bundle, and associate it with a set of editing opera-
tions such as

modify

, and so on. The Operations class supports modifications of the bundle
structures.

For each operations bundle defined for a class, the designer must define a

default access level

 for the
bundle, and a

minimum access level

 for the bundle (described in more detail below). The

default

access level is the level set for the object when it is created. The

minimum

 access level defines the
lowest (most permissive) access level to which the bundle can be set. The “access level” corre-
sponds to the status of the user attempting to access the object. There are four possible access lev-
els: public access, logged in, owner, site manager, and admin. As is further described below, when an
object is created, its default access settings are used in conjunction with the access levels of the
object’s parent, to instantiate the new object’s Permissions info.

A user’s status is matched against the permissions info, as is further described below, to check that
the operation requested by the user is allowed. So, for example, if an object’s view bundle permis-
sion was set to ‘logged in’, then a user of the site can not perform the ‘view’ operations on the
object (essentially, can not see it), until they log in. As another example, the Discussion gizmo has
a Moderate bundle, for which both the default and minimum access levels are set to “owner”, so
that non-owners can not moderate the discussion.

 In addition, the Permissions hash for a given object may include an access control list, where the
users and groups on the list are given ‘owner’ permissions for specified operations.

The logic of the permissions framework is contained primarily in the Auditable abstract class,
from which most of the portal objects are subclassed. Auditable uses an object’s Permissions infor-
mation, in conjunction with the User info, to determine whether the User is allowed to perform a
given operation on the object. Certain methods in the Auditable interface need to be implemented
by the subclass, and for Gizmos, this implementation is facilitated by using the GizmoBuilder
class. It is recommended that any new gizmo classes inherit from GizmoBuilder (see Section 5 for
more information on building gizmos using GizmoBuilder).

3.1.1 Permissions-editing interface

All objects that inherit from Auditable, including GizmoBuilder and its subclasses, can support a
permissions-editing interface. One of the GizmoBuilder’s operations bundles is the edit permis-
sions bundle, which is used to determine whether a given user can edit the permissions for the

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 7

objects. By default, only the object’s owner (and site managers and admins), can edit an object’s
permissions.

When edit mode is enabled on the site, each object will display a ‘key’ icon next to its ‘edit’ icon, if
the user is privileged to edit the object’s permissions. When this key is clicked, a form comes up
which allows the user to modify the access levels for each of the objects bundles. In the form, there
will be one pulldown menu for each of the object’s operations bundles.

 For example, the top of the permissions form for editing a Discussion object looks like this:

This form is generated because the developer of the Discussion gizmo has defined bundles for
each of the listed classes of operations (View, Edit,... Post, Moderate), and has specified which Dis-
cussion methods are associated with each bundle. Further down on the form (not shown), is the
interface for adding users and groups to the object’s access control list. The information in this form
essentially describes the contents of the object’s permissions hash.

FIGURE 1. The key icon brings up the permissions-editing form for a content
object.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 8

3.2 Specifying Access Control for a GizmoBuilder subclass

This section describes in more detail the required interface for specifying a GizmoBuilder sub-
class’s permissions information. Briefly,

• A set of operations bundles must be defined for the class.

• The class must implement a get_default_permissions method which returns this operations
object.

3.2.1 Numeric Access Levels and Bundle Permissions

Access levels are represented numerically in Metadot. They are defined in Auditable.pm, and are
as follows:

• No Access: 11

• Admin: 10

• Site Manager: 9

• Owner: 8

• Logged In: 2

• Public Access: 0

An Operations object stores information about allowed access levels for an object’s operations.
This is done by defining permissions bundles, each of which is associated with names of one or
more of the object’s operations.

Each permissions bundle is defined with a bundle name, a “print name”, and the default and min-
imum permissions levels for that bundle, by using the Operations add_bundle method. For
example, where $ac is an Operations object,
 $ac->add_bundle('DISP', 'View', '0', '0');
defines a bundle with name ‘DISP’, which will be shown as ‘View’ in the permissions editing
form. Both default and minimum permissions levels for ‘View’ operations are 0, which corre-
sponds to ‘public access’.

Then, a set of operations is associated with the bundle, by using the operations add_op method.
For example,
 $ac->add_op('DISP','show');
sets the ‘show’ operation to be part of the ‘View’ bundle. This means that in the permissions edit-
ing form for the corresponding object, the permissions settings for ‘View’ will be used whenever
the object gets a request to perform the ‘show’ operation

The bundle operations effectively describe the external (browser-based) API for the gizmo: these
are the operations that a user can request on the object via a CGI query. Each operation in the bun-
dles must be implemented by an object method. The method name is not the same as the opera-
tion name, but rather must be derived from it by prepending ‘www_’. The mapping from
operation name to method name is implemented in Metadotclass.pm, from which all Gizmos
are inherited. In Metadotclass, the handle method prepends ‘www_’ to any op passed as a
cgi parameter1. In practical terms, this means that when defining an operations bundle for a

1. This scheme allows future extensions of the display logic in which methods for different display media, in addition to
www , can be later developed and mapped to object operations.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 9

gizmo class, there must be a ‘www_<op_name>’ method in your class for each <op_name> in
the bundle.

Figure 2 shows the bundle definitions for GizmoBuilder.pm.

3.2.2 Implement get_default_permissions

Each GizmoBuilder subclass must implement a get_default_permissions class method,
which must return the default Operations object to use for that class. Typically, the default Opera-
tions object is stored as a class variable. Usually, it will make sense for a given gizmo to build its
bundle permissions by starting from the bundles defined by its parent class, and using the Opera-
tions methods to add, delete, and modify entries from those bundles. Note that care must be taken
to copy, or clone, the parent’s Operation object before modifications if necessary.

In the case of GizmoBuilder, its get_default_permissions method returns a new default Operations
object. Thus, its subclasses may use this operations object as a starting point for modifications

sub get_default_permissions {
 my $self = shift;
 my $ac = Operations->new;
 #modify the ac
 $ac->add_bundle('DISP', 'View', '0', '0');
 $ac->modify_bundle('DISP', 'DEFAULTS_TO', 'on');
 $ac->add_op('DISP','show');
 $ac->add_op('DISP','download');

 $ac->add_bundle('MOD', 'Edit', '8', '2');
 $ac->add_op('MOD', 'create');
 $ac->add_op('MOD', 'modify');
 $ac->add_op('MOD', 'save');
 $ac->add_op('MOD', 'up');
 $ac->add_op('MOD', 'down');
 $ac->add_op('MOD', 'paste');
 $ac->add_op('MOD', 'delfile');
 $ac->add_op('MOD', 'delfileok');
 if ($self->is_gizmo_shortcut_available()) {
 $ac->add_op('DISP', 'create_shortcut');
 }
 $ac->add_bundle('DEL', 'Delete and Cut', '8', '8');
 $ac->add_op('DEL', 'delete');
 $ac->add_op('DEL', 'delete_ok');
 $ac->add_op('DEL', 'cut');
 $ac->add_op_parent_dependency('DEL', 'cut', 'MOD');

 $ac->add_bundle('EDITP', 'Change
Permissions', '8', '8');
 $ac->add_op('EDITP', 'edit_permissions');
 $ac->add_op('EDITP', 'set_permissions');
 $ac->add_op('EDITP', 'change_owner');
 return $ac;
}

FIGURE 2. An example of the syntax used to define operations bundles for an object. The example shown is
from GizmoBuilder.pm, which constructs and returns the set of bundles shown above.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 10

without needing to clone it. Figure 3 shows how the Discussion class modifies the Gizmo-
Builder’s default operations bundle, and then defines its own get_default_permissions method to
return the result. [In addition to the ‘add’ methods shown in this example, the Operations class
also provides remove_bundle and remove_op methods, which can be used to edit the parent
class’ bundle settings as well].

3.2.3 Object permissions instantiation and checking

As described above, each gizmo must implement a get_default_permissions method.
When a new gizmo is created, it is instantiated with a set of initial bundle permissions. It will
inherit bundle permission settings from its parent as appropriate, and uses the defined permis-
sions defaults, via get_default_permissions, where it can not inherit from the parent. An
object’s permissions are represented by an object of the Permissions class1. These instantiated
permissions, for each object, are stored in the permissions table in the db.

The is_allowed_to_do method in Auditable is the method which actually implements the
permissions checking logic on an instantiated object. This method will obtain the permissions
structure for the object, and will check, given a User object and an operation, whether or not the
user is allowed to do that operation. All Gizmos inherit from Auditable.

All external requests for an object to perform an operation (e.g., a request from a client browser),
go through the index.pl handler. index.pl accesses the referenced object’s
is_allowed_to_do method to decide whether or not to allow the request for the operation.

The following code sample is from index.pl. Given an incoming CGI request like this one:
 http://<your.domain.com>/metadot/index.pl?iid=1118&isa=Discussion&op=show
index.pl will make the following check:

if ($gizmo_object){
 unless($gizmo_object->is_allowed_to_do($op, $USER, 1)) {
$object->print_click_back("Error", "index.pl:
Sorry, you are not allowed to do

operation:
 -$op-
$0");
exit(0);

 }
}

If the current user does not have permissions to ‘show’ the given Discussion, an error page is
returned.

1. In the database, an object s permissions information is represented as a frozen hash record in the permissions table.
In a future version of Metadot, we plan to pull the permissions info out of the frozen hash representation so that it
is more directly queryable.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 11

3.3 Groups, Permissions, and Access Control Lists

Via the permissions-editing interface for an object, it is possible to add both groups and individual
users to an access control list for the object, whereby the users on the ACL can be treated as “owner”
for a specified subset of the object’s permissions bundles. An object’s access control list is stored as
part of its permissions hash. The ACL is used by Auditable’s is_allowed_to_do method to
identify if the given user should be considered as “owner” for a given operation.

This interface is supported for all classes that implement the Auditable interface, and thus is sup-
ported for all GizmoBuilder subclasses.

In Figure 4 below, the “Legal” group has been added to the ACL but has not yet been given any
special permissions, in addition to “View”, for the Discussion object. The user “Bob Jones” has

my $default_permissions = Discussion->SUPER::get_default_permissions;

$default_permissions->add_bundle('POST', 'Post', '2','2');
$default_permissions->add_bundle('MODERATE', 'Moderate', '8','8');

$default_permissions->add_op('MOD','modify_message');
$default_permissions->add_op('MOD','save_message');
$default_permissions->add_op('MOD','create_shortcut');
$default_permissions->add_op('MOD','invite');

$default_permissions->add_op('POST','reply');
$default_permissions->add_op('POST','send');
$default_permissions->add_op('POST','compose');

$default_permissions->add_op('MODERATE','moderate');
$default_permissions->add_op('MODERATE','delete_message');
$default_permissions->add_op('MODERATE','delete_message_ok');
$default_permissions->add_op('MODERATE','approve');

sub get_default_permissions {
 return $default_permissions;
}

FIGURE 3. Modify a (copy of) the parent class Operations object by adding additional bundles and bundle
ops. Then override the parent s get_default_permissions method to return the modified info. The
example shown is from Discussion.pm. GizmoBuilder builds a fresh Operations structure with each call to
get_default_permissions. If, however, the parent class were to cache its permissions object as a class variable,
then the subclass would need to first clone the object before modifying it.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 12

been added to the ACL, and can access the ops in the “Edit” and “Delete and Cut” bundles as if he
were the owner. However, he can not access, e.g. the “Post” permissions as owner.

If the “User overrides group permissions” box is checked, then this means that the specified indi-
vidual permissions will be applied even if the user is in the group and the group permissions are
less constraining.

3.3.1 Recursive Permissions Propagation and Application

Child objects created for a given object will inherit the parent’s ACL for the bundles that they have
in common, with the child’s default bundle permissions used for the remainder. The bundle set-
tings may be further modified manually after creation.

Note that the child permissions are not reapplied retroactively. That is, changing the permissions
for a parent after a child has been created will not automatically affect the child’s permissions.
However, there are two ways to apply a parent’s permissions to its children, one dynamic and one
static. See the “Propagating Permissions Changes” section from the Admin’s Guide, at
<metadot>doc/md_guides/install/recursive_perms.html, for more information.

FIGURE 4. Example of adding a group and a user to an object s access control list. Each entity has
permissions to perform their checked set of ops as owner .

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 13

3.4 The Access Broker

In some cases, you may need finer-grained access control logic than at the operations level. This
can happen, e.g., if you want to change part of the implementation of a method based on the cur-
rent user.

A Metadot::AccessBroker::Default subclass can be defined to support this finer-grained access
control. The AccessBroker class can contain the logic for a specific set of access decisions related to
a given app or context, and this class can be consulted as necessary. See the code for examples of
AccessBroker usage.

3.5 Steps required to build a class which supports AC

For completeness, this section describes in more detail the steps required to build a class which
uses Auditable to support access control, for any case where you are not subclassing Gizmo-
Builder. In most cases, you will not need to use this information. The preferred means of build-
ing new gizmos is by subclassing the GizmoBuilder class. In that case, these methods are already
implemented, and you need only to follow the instructions in the section above.

For a non-GizmoBuilder class, the steps are as follows:

1. Inherit from the Auditable class by including Auditable in the @ISA array.

2. Implement the following methods:

 is_a
 name
 id
 save
 uid
 parent_id

See Section 3.6 for details on each of them.

3. Generate the Access Control (AC) information for that object. The preferred way to do this is via
the Operations object. See the Operations.pm documentation for more information, and see the
GizmoBuilder class for an example of its use. [Other Metadot classes still use a ‘deprecated’
approach and construct a AC hash— essentially the Operations object —by hand (see Gizmo::Cat-
egory for an example)]. For any new classes, use the Operations object.

4. Build a method called get_AC which returns the Operations object (the AC hash). The
GizmoBuilder class implements a method called get_default_permissions, which is
used to deliver the Operations object. If you are subclassing GizmoBuilder to build a
gizmo, then you can override get_default_permissions to add to or modify the Opera-
tions information for your subclass. See Gizmo::Discussion for an example. As discussed
in the previous sections, the Operations bundles define the set of ‘permissions’ put-downs that
the user will see in the ‘edit permissions’ form. This is illustrated in Figure 5.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 14

5. Override method &get_parent if class objects can have parents. This method must return a par-
ent object which must also belong to Auditable.

6. Call $self->init_permissions() at the end of the object’s constructor method, after
methods in step 2. above are implemented. See the Gizmo class for an example.

7. Call save_permissions() from the object’s save() routine. See the Gizmo class for an
example.

8. Call save_permissions() from the object’s add() method (or from whichever method com-
mits a new object of the class to the database).

9. Call delete_permissions() from the class destructor.

10. Do permissions enforcement by way of the is_allowed_to_do() method (see index.pl and
Category.pm for examples of this). One must be particularly careful in sheltering all Access Con-
trolled code sections around is_allowed_to_do() conditionals.

11. Implement www_edit_permissions and call edit_permissions_form() from it (see
Gizmo::www_edit_permissions for example).

12. Override &go_back_to_parent_after_editing_permissions to return false for
classes that require browsers to return to the object itself whose permissions are being edited, such
as Category.

3.6 The Auditable Interface

This section describes the Auditable interface. This interface is implemented by GizmoBuilder,
and all new gizmos should inherit from GizmoBuilder.

3.6.1 Must-Provide Methods

&get_AC: Should return the AC hash of the class.
There should be an AC hash for every non-abstract class in the system.

FIGURE 5. The permissions pull-down menus in an object s edit permissions form are determined by its
Operations permissions bundles. This set of pull-down menus for a Discussion object matches the bundles shown
defined in Figure 2 and Figure 3.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 15

&is_a: Should return the class name, as a string.

&name: Should return the name of this particular instance of Auditable,
which is used to generate the Edit Permissions page.

&id: Should return a unique ID associated with this instance.
If only one instance is expected to ever exist for this class this method should return 1.

&save: The only requirement for this method is to call &save_permissions.
Normally this method will also save non-Auditable object data to disk (e.g. Gizmo::save).

&uid: Should return the User ID for the owner of a particular instance of Auditable.

&parent_id: Should return the ID of the parent of a particular instance of Auditable.
If class instances can’t have parents the ID must return 0.

3.6.2 OVERRIDEABLE Methods

&get_parent: Should return the Auditable object representing the parent of a
particular instance of Auditable. If class objects can’t have parents
then it shouldn’t be overridden.

&go_back_to_parent_after_editing_permissions: Should
return false on classes that require browsers to return to the object itself whose
permissions are being edited, such as Category. Otherwise it shouldn’t be overridden.
Should be called from www_edit_permissions
(See Gizmo::www_edit_permissions for example of its use).

3.6.3 NON-OVERRIDEABLE Methods

&is_allowed_to_do: Should be called from all places in the class
 code where Access Control enforcement is needed.
See Category.pm, index.pl and MyPage.pm for examples of this).

&edit_permissions_form: Should be called from
www_edit_permissions and will return the HTML of
the Edit Permissions form, which should be sent to client browsers.

&init_permissions: Should be called at the end of the
class constructor, right after the “must-provide” methods of
Section 3.6.1 are guaranteed to return true data.

&delete_permissions: Should be called from the class destructor,
but before the “must-provide” methods of Section 3.6.1 cease to work.

&save_permissions: Should be called from save()
and from any method that commits this objects data to disk for later restoring.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 16

&get_bundle_level &set_bundle_level &get_bundle_of_op:
These are used to modify/query minimum permissions associated with
a particular instance of Auditable.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 17

4. Customizing Metadot’s User/Registration and
Authentication Functionality

Metadot’s user management classes make it easy to customize Authentication and Registration
behavior by subclassing. This means that you, as a developer, can modify Metadot’s behavior with
respect to Authentication and Registration without needing to modify the existing base classes.

Customization requires subclassing the appropriate User, Register, Authenticator and Ses-
sion-Handler classes, and overriding the methods necessary to achieve the behavior you want.
Then, information must be placed in the site’s metadot.conf file to tell the relevant Factory
classes which subclasses to return.

 Section 4.1 provides a tutorial on customizing User and Register classes. Section 4.2 describes
how to use and subclass Authenticator and SessionHandler classes.

4.1 User and Registration Customization: Tutorial

This section provides a tutorial on the process of customizing user information and registration
functionality. The user- and registration-related classes are as follows:

Metadot::User::Default, and its subclasses in Metadot/User/*:
Metadot::User::Default is Metadot’s main user management class. Its main function is to provide a
front-end to data storage of info about a user. Its various methods allow adding and deleting
users, and editing of users data.

The Metadot::User::FlexUser subclass provides a more flexible definition of the fields in a user’s
profile. The FlexUser class provides a mechanism for mapping registration/profile fields to fields
in an extended_user database table. By subclassing FlexUser to change the default mapping,
arbitrary registration/profile fields can be defined.

 FlexUser is the default class used when the regular login/password authentication method is
used for a site—this is the class that will be enabled with an out-of-the-box Metadot install.

Metadot::User::Default is used when LDAP authentication is enabled.

Metadot::Register, and its subclasses in Metadot/Register/* :
Metadot::Register handles the registration process. It provides methods to generate and process
the HTML form for user registration data. It will invoke Methods of the User class to create users
after validating registration form input. The Metadot::Register::FlexRegister subclass is used in
the default Metadot install.

Metadot::UserFactory
Metadot::RegisterFactory
These Factory classes return the correct User or Register subclasses based on the configuration
information in the site’s metadot.conf file.

In this tutorial, we will go through the exercise of subclassing Metadot’s Default User and Regis-
tration classes in order to provide new functionality. The end result of the tutorial exercise will be
the ‘Metadot::User::FlexUser’ and ‘Metadot::Register::FlexRegister’ classes in the code distribu-
tion.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 18

4.1.1 Customization Steps

To build FlexUser and FlexRegister as subclasses of the default User and Register classes, we will
need to take the following steps:

 STEP 1. Define the configuration data structure.

Subclass User::Default to make it store and retrieve fields according to configuration. We will
need to extend the storage subsystem to be able to store and retrieve custom user fields.

 STEP 2. Override methods for User Registration Form generation and processing.

Subclass Register::Default to make it render and process registration forms according to
configuration.

 STEP 3. Override methods for user data saving and retrieving.

Make sure we override all methods in User::Default and Register::Default that rely on
knowledge of storage details, since we are going to extend the storage subsystem to allow for cus-
tomizable parameters.

We will call the new User and Registration classes FlexUser and FlexRegister. These classes
are already part of the Metadot main distribution and we are going to refer to their methods con-
stantly during this explanation. Please be sure to have them by your side when studying this tuto-
rial (either by printing them or viewing them in your editor).

Our new User and Registration classes are easily pluggable into the Metadot system, because the
user and registration classes to be used are selected at runtime via the system’s
etc/metadot.conf configuration file. Thus, if we want FlexUser and FlexRegister to be
used instead of the Default classes, we do not need to make any configuration changes to the Perl
code, but only need to add the following lines to our metadot.conf file:

user_type = FlexUser registration_type = FlexRegister

Let’s move forward with the tutorial.

 STEP 1. Defining the configuration data structure.

In order for the registration form to be custom generated, we need to provide a specification of
what fields are need in the generated form, and what their names, lengths, and other parameters
are. We use a plain perl data structure for this. We have named this structure $FIELDS_CONFIG
and it currently lives in file FlexUser.pm. Please take a look at it. Most of the fields of the fields
structure are self-explanatory. Some may not be as clear, so here are some comments about them:

The DISPLAY_SETS parameter is used for form generation and is mainly there for cosmetic pur-
poses. Each field in the form will belong to one of the defined display sets. Form fields will then be
rendered in a separately-framed set for each defined display set. Fields are assigned to display sets
using the “display_set” parameter, which is defined as an index number (first defined set will be 0
and so on). Any number of sets can be defined.

Form fields are defined as an array of hashes under the FIELDS key of the data structure. The
order in which they are listed in the array will be the order used to display them within the dis-
play set where they belong.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 19

The storage type for each field defines where it is going to be stored It can take a value of “pri-
mary” and “secondary”. The former will be stored in Metadot’s primary (legacy) ‘user’ table, and
the latter will be stored according to a mapping in the new “extended_user” table, that we have
defined for this new class. The extended_user table (please take a look at its code at the bottom of
FlexUser.pm) has room enough for a number of 255 character strings and some Text fields of
64K characters. Each “secondary” field needs to be assigned to a slot in this table, and we use the
“store_at_column” parameter to define this mapping.

Note that some fields in the structure have a “field_type” set to “textarea”. These will be rendered
as HTML textareas instead of the default “text” boxes. If no “field_type” is included, the default
will be “text”. Currently, only text and textarea form fields are supported.

In order for this configuration to be available to consumer classes (i.e., the FlexRegister class,
which will need it for form generation and processing) we create the get_fields_config()
method. Please take a look at it. You will note that this method does some validation to make sure
that some of the fields are always present in the config data structure. We require these to preserve
backward compatibility with the old Default class and because those fields are required by
many of the system modules.

 STEP 2. Override methods for User Registration Form generation and processing.

These methods live in the Register::Default class. The methods involved are
Register::Default::www_register_form (generates the registration form) and
Register::Default::www_register (will process registration form).

We define methods to override both of these, in a new Register::FlexRegister class. The
www_register_form method will generate the form according to the fields defined in the
$FIELDS_CONFIG structure in FlexUser. www_register will process this form and will call
FlexUser::add to have the new data saved. Note how these methods use the configuration data
to generate the right HTML and execute the requested validation of form data.

The other two methods overridden in FlexRegister are save_modify_settings_form and
show_modify_settings_form. These methods are in charge of displaying and processing the
same user data forms but for the case of users or administrators modifying existing users data.

 STEP 3. Override methods for user data saving and retrieving.

In order to allow for customizable fields, we need to implement a storage backend capable of stor-
ing data according to a custom-defined mapping. We do this by having our storage table consist of
a number of blank columns not tied to any particular user field. What gets stored on these col-
umns will depend on the mapping defined in the $FIELDS_CONFIG data structure.

Given that fields are customizable, we will not use hard-wired accessors/mutators for user
instances. We instead define the methods FlexUser::get_value and FlexUser::set_value
for this purpose.

We override method User::Default::add, which is the method in charge of inserting new
user data to the database. We do this so that custom fields that are non-legacy (i.e, those marked as
“secondary” in the config data structure) can be saved in the extended_user table. Similarly, we
override User::Default::save so that fields can be stored in the extended_user table when
data of existing users is modified.

The new configuration data structure introduces fields for first, initial, and last names. These are
required and come as substitutes of the “fullname” legacy field. Thus, in order for FlexUser to
remain backward compatible with clients of the old User::Default class, we need to keep sup-

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 20

porting the fullname field. We do this by overriding the “fullname” accessor/mutator method
and by keeping the fullname field of the old user table in sync with the contents of the new first,
initial and last name fields.

We also override methods www_show_users and show_user_list. These methods are used to
display the user management console. We override them to provide extended functionality for
searching and sorting according to first and last names, to improve on the older “fullname”-based
interface.

4.2 Customizing Authentication and Session Handling classes

Authentication is the mechanism through which user-entered credentials (usually a user name
and password) are validated. Session handling is the mechanism for establishing users identities
across HTTP requests, independently of whether the user is authenticated or not. Metadot allows
for easy customization of these functions via its Authenticator and SessionHandler classes.
In this section we will explain how to customize Authenticator functionality via subclassing and
we will comment on how the SessionHandler class works.

The primary classes are:

Metadot::Authenticator, and its subclasses in Metadot/Authenticator/*
Metadot::SessionHandler, and its subclasses in Metadot/SessionHandler/*

Metadot::AuthenticatorFactory
Metadot::SessionHandlerFactory
These Factory classes return the correct Authenticator or SessionHandler subclasses based on the
configuration information in the site’s metadot.conf file.

4.2.1 Authenticator class

The Authenticator class is in charge of authenticating users. It is invoked on every hit to estab-
lish the identity of users. It provides methods to generate and process forms for input of user cre-
dentials. What particular subclass of authenticator is used should be specified by adding a line to
etc/metadot.conf as follows:

authenticator_type = UserPassAuthenticator

(if none is specified, UserPassAuthenticator is used)

The main method you should be aware of in Authenticator is Authenticator::authenti-
cate. This method is not intended to be overridden. It acts as a template that will call some
abstract methods (meant to be overridden in subclasses) to perform authentication. This method
will return a User and a Session object to the framework, to be used during the life of the request.

It will be useful to refer to method Authenticator::authenticate in Authenticator.pm
as we discuss it. Authentication happens as follows:

1. The method Authenticator::determine_action is called. This method will return a
token that will be used for determining whether a new session must be created (if you review the
concrete implementation of this method in
UserPassAuthenticator::determine_action you’ll see that it prescribes session cre-
ation immediately after a login form has been submitted).

2. A SessionHandler object is created. This will be used to either create or restore a new session
depending on the case.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 21

3. If a new session needs to be created, it is so by calling the create_session method (to be over-
ridden by concrete Authenticators) and asking the SessionHandler object to keep track of it by
invoking its persist_session method.

4. If a session id (in the form of a request parameter "key") is available it means that a session already
exists for this user, so we restore that by invoking the restore_session method (with the ses-
sion id as parameter) in the session handle object.

5. If a session has neither been created nor restored, we first ask the session handler for one, and if it
fails to do so we assume this is the first request of an anonymous user and consequently create a a
new session for her, restore the profile of the anonymous user (a system default user) and return
these.

6. At this point we certainly have a session object available and use it to restore the user object associ-
ated with it.

7. If the user is logged in then we refresh her session at this point. Refreshing means resetting the
countdown timer for session expiration.

8. We return the User and Session objects of the authenticated user.

At this point you may be asking: But where are the username and password verified? This step
should happen on session creation and should be implemented by concrete Authenticators in
method create_session. For examples of this please look at the concrete implementations of
create_session in classes UserPassAuthenticator and LDAPAuthenticator.

Other important methods in Authenticator are the ones used for generating and processing login
forms. We include this function inside Authenticator because any given authenticator may take
different input parameters as login credentials (e.g., a smartcard authenticator may only take a sin-
gle one-time-valid authentication code). The relevant methods to be overridden for this purpose
are show_login_form, show_my_page_login_box (a login box formatted as a MyPage ele-
ment) and process_login_form. Again, please look at concrete implementations of these in
UserPassAuthenticator and LDAPAuthenticator for reference.

A good example of customizing the Authenticator class can be found in the LDAPAuthentica-
tor class included with the standard Metadot distribution. LDAPAuthenticator is a subclass of
the standard UserPassAuthenticator. LDAPAuthenticator modifies the parent class to
have authentication take place against an LDAP server, instead of the statically stored username
and password of Metadot's default class.

4.2.2 SessionHandler class

The SessionHandler class implements a session handling strategy. That is, it provides the
means for identifying users across HTTP requests. Currently we only provide a browser-cookie
implementation for this. Other session tracking strategies (such as URL rewriting) should be
implemented by subclassing SessionHandler. Note that other strategies would probably
require making changes in other parts of the framework as well (URL rewriting, for instance,
would require that session ids be encoded in all URLs generated in the system, something that is
not currently doable from within the scope of SessionHandler).

Methods in SessionHandler that must be overridden by subclasses are persist_session
(will start tracking a session across HTTP requests); delete_session (will stop tracking a ses-
sion) and restore_session (will restore a Session object previously being tracked by the ses-
sion handler). Please refer to CookieSessionHandler.pm for a concrete implementation of the
SessionHandler class.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 22

In order to substitute a different subclass of SessionHandler, the following line should be
added to <metadot>/etc/metadot.conf:

session_handler_type = CookieSessionHandler

(if none is specified, CookieSessionHandler will be used)

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 23

5. Building Gizmos

As described in Section 1, the Gizmo class is the parent class for most of the “information objects”
used in the Metadot Portal Server, in particular those objects which can be used to create content
on “Category” pages. All Gizmos store their data in the instance table.

The GizmoBuilder class, which subclasses Gizmo, provides a set of interfaces and methods to
facilitate Gizmo construction. In particular, the GizmoBuilder class will provide a default cre-
ate/modify interface for the gizmo, so that new gizmos can be created with very little new code.

All new Gizmos should subclass GizmoBuilder.

All gizmos (that is, subclasses of GizmoBuilder) must be placed in the
<metadot>/metadot/Gizmo subdirectory; this allows them to be automatically recognized by
the system. All ‘visible’ gizmos in the Gizmo subdirectory will be listed in the “Add New..”
pull-down menu that is displayed when site editing is enabled. There are two ways to indicate
which gizmos are visible and should be listed in the Add menu. See Section 5.4 for more informa-
tion. (See the Users’ and Administrator’s guides for more information about the existing gizmos).

This section describes how to build new gizmos by subclassing GizmoBuilder. In addition, it is of
course possible to subclass existing gizmos.

5.1 The instance table

All gizmos “encapsulate” a record in the instance table. All but a set of reserved fields may be
used to store data for a gizmo. The following fields in the instance table are reserved:

+-----------------+--------------
| Field | Type
+-----------------+--------------
| UID | int(11)
| IID | int(11)
| ParentIID | int(11)
| IsA | varchar(20)

In addition to its required fields, the instance table has a number of free fields of different data
types which may be used to store gizmo data. The free fields are the following. The first group of
fields below, such as “name”, “description”, etc. should be used in a semantically consistent man-
ner across gizmos; this allows default display methods to work consistently. See existing gizmos
for more information. (However, these fields are not required to be used consistently; only the
fields listed above are reserved). The second group of fields below are “extras” which may be
used for any purpose.

----------------+--------------
Field | Type
----------------+--------------
Name | varchar(80)
Description | text
Cool | varchar(5)
URL | varchar(222)
Keywords | varchar(255)
showfrom | datetime
file1 | varchar(255)
longdescription | text

t1 | text
t2 | text
t3 | text

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 24

t4 | text
t5 | text
c1 | varchar(111)
c2 | varchar(111)
c3 | varchar(111)
c4 | varchar(111)
c5 | varchar(111)
d1 | date
d2 | date
d3 | date
d4 | date
d5 | date
i1 | int(11)
i2 | int(11)
i3 | int(11)
i4 | int(11)
i5 | int(11)
t6 | text
t7 | text
t8 | text
t9 | text
t10 | text

Of course, it is always possible to create auxiliary tables for use with a new gizmo in addition to
using the free instance fields.

5.2 The UploadsManager Utility

Older versions of Metadot allowed only one file “attachment” (or associated file) per gizmo. The
location of this file was stored in the file1 field of the instance record for the object.

In Metadot 5.0 and higher, file attachments are now managed by the UploadsManager class. The
UploadsManager handles both access-controlled and ‘public’ files. Access-controlled uploads are
put in a non-web-server-accessible directory, and accessed (downloaded) via a cgi query, which
checks that the user has permission to view the download. Public files are put in a
web-server-accessible directory. There can now be multiple associated files, of either type, per
gizmo. The file information is now stored in the uploads database table. All new gizmos should
use the UploadsManager interface for any associated files, as described in the example below.

5.3 The GizmoBuilder class

The GizmoBuilder class subclasses the Gizmo class. It provides an easy way to create Gizmos.

GizmoBuilder provides a set of methods to

• manage Gizmo data -- both reading from and saving the data to the database; and

• to generate the forms for creating and modifying new instances of the Gizmo.

The developer then just needs to:

• define the which fields of the instance table will be used by the gizmo, and

• write display methods for the Gizmo (that is, to define how a gizmo instance is rendered on a
web page).

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 25

Using GizmoBuilder, a new gizmo can be created in a few steps, listed below. There are also
some optional steps that can be taken to modify Gizmos if developers wish to change the default
settings provided to them by GizmoBuilder.

5.3.1 Write a constructor and specify field mappings

Gizmos can use all the fields of the instance database table. So, in the constructor, specify which
of those fields you will be using in your gizmo. At the same time, specify labels for those fields,
and specify which fields are required. By doing so, you allow the Metadot framework to automat-
ically generate a form for your gizmo that asks people to fill in the appropriate fields, and ensures
that required fields are actually filled in.

5.3.1.1 Mapping instance fields to form fields

The following code from GizmoBuilder shows the default form type mapping used by
GizmoBuilder, which associates fields in the instance table with a “formtype”. This formtype
is translated, by the GizmoBuilder when constructing a gizmo create or modify form, into a
form input element with specific characteristics. For example, a formtype of “smalltext” corre-
sponds to an input element of type text and maxlength 10, and a formtype of “longtext” corre-
sponds to an input element of type textarea. See the GizmoBuilder code for translations of all
the formtypes.

sub _initialize {
 my $self = shift;
 $self->{_intro_text_string} = "";

 ## set the form type for each field
 $self->{fields}->{name}->{formtype} = "text";
 $self->{fields}->{description}->{formtype} = "mediumtext";
 $self->{fields}->{long_description}->{formtype} = "longtext";
 $self->{fields}->{cool}->{formtype} = "radio";
 $self->{fields}->{url}->{formtype} = "text";
 $self->{fields}->{keywords}->{formtype} = "mediumtext";
 $self->{fields}->{show_from}->{formtype} = "smalltext";
 $self->{fields}->{t1}->{formtype} = "longtext";
 $self->{fields}->{t2}->{formtype} = "longtext";
etc...

When building a new gizmo, if the defined form types are sufficient, then it is only necessary to
define the set of instance record fields that will be used for the gizmo (in addition to the required
fields), and to associate a form label with each of them. This is accomplished by the
set_field_info method. It takes arguments a set of triplets, where the first element in each
triplet is the name of the field (e.g. ‘name’ or ‘description’), the second element in each triplet is the
label to be used in the gizmo’s create and modify forms for that field, and the third is the number
0 or 1. A ‘1’ means that the form field is to be treated as ‘required’, meaning that if the user must
fill it in.

 $self->set_field_info (
 "name", "Calendar Name", 1,
 "description", "Description", 0,
 "keywords", "Keywords and Synonyms", 0,
 "c3", "Show Event Quick List", 0,
 "c1", "Title row background color", 0,
 "c2", "Footer background color", 0,
);

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 26

The gizmo developer may also want to redefine some of the preset form types for the gizmo fields.
This can be done via the set_field_type method. For example, the code below redefines the
‘c3’ field to be of type ‘checkbox’ instead of the default ‘smalltext’.

 $self->set_field_type('c3','checkbox');

The allowable formtypes are the following:

• smalltext, hidden, text, mediumtext, longtext, radio, checkbox,
select, file, and other.

The ‘other’ formtype is a special case. No defaults are used; the form element HTML must be
explicitly specified. ‘Other’ form fields are set using the set_field_form_text method. It
takes two arguments: the field name, and the form text to use. The method sets formtype to
‘other’. For example, the following two lines set the ‘c1’ and ‘c2’ fields to HTML generated by a
special-purpose instance method for the example gizmo.

 $self->set_field_form_text('c1', $self->_get_form_text('c1'));
 $self->set_field_form_text('c2', $self->_get_form_text('c2'));

5.3.1.2 Example of GizmoBuilder subclass constructor

The constructor for a GizmoBuilder subclass should define the form field info and do some
other bookkeeping. Here is an example constructor (the line numbers, of course, would not be
used in actual code). This is in fact the Item constructor. The Item gizmo is a simple gizmo which
allows the user to specify a name, abstract (short description), longer description, and and
optional downloadable file attachment.

1. sub new {
2. my $proto = shift;
3. my $id = shift;
4.
5. my $class = ref($proto) || $proto;
6. my $self;
7.
8. if (defined ($id)){
9. $self = $class->SUPER::new($id);
10. } else {
11. $self = $class->SUPER::new();
13. $self->{cool}='No';
14. }
15.
16. $self->{is_a} = __PACKAGE__;

17. $self->set_field_info (
18. "name", "Item Name", 1,
19. "url", "URL <i>e.g. http://www.yourcompany.com</i>", 0,
20. "description", "Description", 0,
21. "item_attachment_file", "Attachment file", 0,
22. "keywords", "Keywords and Synonyms", 0,
23. "cool", "Star this Item", 0,
24.);

25. $self->set_field_type('item_attachment_file', 'user_selected_upload');

26. bless ($self, $class); # reconsecrate
27. return $self;
28. }

Here is a line-by -line explanation of the code above.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 27

1. This line names the subroutine. The new subroutine will be called by the metadot framework
when it instantiates your gizmo

2. This line assigns the name of the class to the $proto variable

3. This line assigns the id (an optional parameter) to the $id variable

5. This line ensures that if the class name passed in was actually a reference to a class, we use the
actual class name.

8-14. These lines are important: if an id is passed in, that means we are instantiating a gizmo which
has previously been created and then stored into the database. If an id is not passed in, we are
instead instantiating a new gizmo.

13. This line means that gizmos are not starred by default

16. This line takes the package that the gizmo is in (such as Item, or Table), and assigns it to the
is_a instance variable

17-24. These lines specify which fields of the instance table are going to be populated for this
particular gizmo class, and the form field labels to use with them. The first parameter is the name
of the instance table field. The second parameter is the label, used when displaying forms when
the item is created or edited. The third parameter is set to 1 if it is a required field. Otherwise, it is
set to zero. (If a field is required, then the form submission will generate an error if it is left blank).
The exception in this list is the “item_attachment_file” field. It does not map to an actual instance
table field, but instead will be mapped to an entry in the uploads table. This is set via the code in
line 25 (see below).

25. This line indicates that the ‘item_attachment_file’ field is of type ‘user_selected_upload’, which
means that it will be handled by the UploadsManager. This example just shows one field of type
‘user_selected_upload’, but potentially a gizmo may support multiple uploads fields.

26. This line makes $self into a perl object.

5.3.2 Define display methods for the gizmo

In addition to the constructor, a subclass of GizmoBuilder should define the following methods:

 show_summary
 show

These are the canonical display methods for a new Gizmo. If no operation on a gizmo is specified,
‘show’ is the default.

The simple example below shows ‘hard-coded’ generation of HTML. It is, of course, possible to
use other approaches to generate the object’s “display” HTML instead. For example, some Meta-
dot gizmos use a Template-Toolkit template to build their HTML.

show_summary is used to render a ‘list view’ of the gizmo in its parent page, as in the screen shot
below. Often, the ‘summary view’ for a gizmo will include a link that when clicked on invokes the
gizmo’s show method. See the show_summary method in <metadot>/Gizmo/Discussion.pm
for a relatively complex example.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 28

The show method is used to display the ‘full’ view for a Gizmo, as in the screen shot below. For
example, for a Discussion gizmo, the ‘show’ method is called when a user clicks on one of the dis-
cussion links on a category page.

In writing the display methods, you can use getter methods to retrieve the data for the gizmo,
where the data is persisted as a field in the instance table, and is instantiated by the Gizmo-
Builder class. A list of all getter and setter methods is given in the SYNOPSIS of the POD documen-
tation for GizmoBuilder.

Below is an example of a show method, again for the Item gizmo. This method displays the Item’s
name, and (if set), its abstract, description, and a download link to the gizmo’s file attachment.

1. sub show {
2. my $self = shift;
3.
4. my $name = $self->get_name();
5. my $description = $self->get_description();
6. my $url = $self->get_url();
7. my $keywords = $self->get_keywords();
8. my $file = $self->get_file_1();
9. my ($file, $file_icon) = $self->get_upload_filename_icon_and_url({

 id => $self->id(),
 isa => $self->is_a(),
 field_name => 'item_attachment_file',
});

FIGURE 6. summary view of a number of discussions, in their parent category page.

FIGURE 7. full view of a discussion, rendered by the Discussion s show method.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 29

10. my $cool_icon = $self->get_cool_icon();
11. my $longdescription = $self->get_long_description();
12. my $html = '';
13.
14. $html .= ($url) ?
 "$name\n" : "$name\n";
15. $html .= $cool_icon;
16. $html .= "
$description\n" if ($description);
17. $html .= "<P>$longdescription\n" if ($longdescription);
18. $html .= "

File attached: $file $file_icon\n" if ($file);
19. $html .= "

Synonyms: $keywords\n" if ($keywords);
20.
21. return $html;
22. }

Line-by-line explanation:

1. This line names the subroutine

2. This line assigns the object to the $self variable. $self is analogous to the 'this' object in Java.

4-11. These lines retrieve values from the object into variables. Note line 9. in particular. This line
handles the special case of a file attachment associated with the object via its
“item_attachment_file” field. Retrieval of the file attachment information is handled ultimately
via the UploadsManager utility. If the object had been defined to have more than one uploaded
file associated with it, then a call to $self->get_upload_filename_icon_and_url would be made for
each such field. The icon that is returned indicates the file type (derived from the file suffix).

14-19. These lines use the variables previously retrieved to generate HTML that contains those
variables. It is, of course, possible to use other approaches to generate the object’s “display”
HTML. For example, some gizmos use a Template Toolkit template to build their HTML.

In addition to the two methods above, other display methods may be written. The name of any new
method must start with the prefix ‘www”. For example, one could write a method called
www_show_details, which would provide a way to show additional fields that you have chosen
not to display in your show method. You can then do all of the processing in the
www_show_details method, or it can call additional helper methods.

The ‘www’ prefix is required in order to utilize Metadot’s ‘rendering’ framework. In
Metadotclass.pm, from which all Gizmos are inherited, the handle method listed below
prepends ‘www’ to any op passed as a cgi parameter. (In the future, the framework can be
extended to support other types of rendering in addition to HTML).

sub handle {
 my $self = shift;
 my $op = shift;
 $self->debug_msg(3, "Portal::handle($op)");
 ## for HTML RENDERING
 my $handler = "www_$op";
 $self->$handler();
}

Therefore, the name of any new display methods, or other external interface methods, that you
write for a new gizmo must prepend ‘www’ as well. Below is the www_show method for the
Gizmo class, from which all gizmo subclasses are inherited. www_show calls the ‘show’ method
implemented for the given gizmo subclass.

sub www_show {

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 30

 my $self = shift;
 $self->debug_msg(3, "Gizmo::www_show()");

 my $iid = $self->defined_or_exit($self->id,"id is missing.");

 my $title = $self->name();
 my $content = $self->show();
 $self->print_portal($content);
}

5.3.3 Gizmos and Access Control

When adding new www_ methods, there is an additional issue that must be addressed. As
described in Section 3, Metadot security is based on the idea of controlling access to the www_
methods— essentially, the methods that define the gizmo’s external, browser API. These methods
are grouped into bundles, with one or more operations per bundle. The operations map to methods,
and permissions are assigned to bundles. So, a the operation corresponding to a new method, e.g.
the show_details operation corresponding to the www_show_details method, would need to be
added to either a new or existing operations bundle. If you do not remember to add a new opera-
tion to one of the gizmo’s bundles, then you will be blocked from calling that operation from the
browser interface.

The Operations class stores the association between the operations (or subroutines) and bundles.
To get an operations instance, call the get default permissions as a class method on the superclass
of your gizmo (GizmoBuilder). That call looks like this:

my $default_permissions = Discussion->SUPER::get_default_permissions;

Once you have the object, you can modify it as described in the documentation of the Operations
class. See Gizmo::Discussion for an example of how the GizmoBuilder module’s default permis-
sions can be further modified.

Note that both the retrieval and the modification of the operations object take place as class opera-
tions.

Once you are finished modifying the Operations object, you need to make it available as a class
method call named get_default_permissions, as below. Note that this class method will
override the superclass’ method of the same name:

sub get_default_permissions {
 return $default_permissions;
}

5.3.4 Overriding Existing GizmoBuilder Methods

In addition to writing your own new methods, such as www_show_details, you can override
existing www_ methods which are inherited from GizmoBuilder. Documentation on these meth-
ods is found in the documentation of the Gizmo and GizmoBuilder modules.

These methods are:

 www_save();
 www_delfile();
 www_delfileok ();

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 31

 www_show ;
 www_change_owner ;
 www_edit_permissions ;
 www_modify ([$errormsg]);
 www_save ;
 www_delete ;
 www_delete_ok ;
 www_up ;
 www_down ;
 www_cut ;
 www_paste ;
 www_download ;

5.4 Making new Gizmos available to the system

All new Gizmos must be put in the Gizmo subdirectory; this will allow the system to automati-
cally identify them. Any new gizmos will by default appear in the “Manage..” menu listing that
appears for a user when editing is enable. If a gizmo of the new Gizmo type is created for a cate-
gory, it will appear in the center “content” panel for that category (where Tables, Discussions, and
Items also appear). The content is grouped by Gizmo type; that is, all Items are displayed
together; all Discussions are displayed together, etc.

To have more extensive control over where gizmos are placed on a page, the use of templates and
gizmotags is required. See Section 8 below for more information.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 32

6. Basic Tools

Basic Tools can appear on a MyPage, and are essentially just HTML that implements a search or
query interface of some sort. The information comprising a Basic Tool is stored in the instance
table in the portal’s database, not as a channel (since the Basic Tools have no cached informa-
tion).

To modify and add Basic Tools, log in as Admin, then select Manage..->Toolbox from the Manage..
pulldown menu. From the resulting page, click on the subcategory “Generic Elements for
MyPage”. All of the Items on this page correspond to “Basic Tools” — the HTML in the descrip-
tion field for each Item is used to display that tool on the MyPage. From this page, edit the existing
Basic Tools Items, or add a new Basic Tool by adding an Item to the page, and inserting the HTML
that makes up the Basic Tool as the Item’s description. Any new Items added to this page will then
appear in the “Tools” list accessed from the MyPage Configuration form.

7. GizmoTools

All GizmoTools are specializations of the GizmoTool class, and must reside in the GizmoTool
subdirectory for them to be identified as available for use on a MyPage. For example, the Gizmo-
Tool subdirectory currently contains two GizmoTools; WebMonitor and WeatherTool. The doc
subdirectory of GizmoTool contains a sample GizmoTool called SampleTool.pm, which indi-
cates the methods that need to be implemented by the GizmoTool subclass.

Each GizmoTool must implement a refresh_item method, as described in SampleTool.pm.
This method is invoked when the “backend” process, metadotd.pl, runs, and populates channel
information for the GizmoTool at that time. The GizmoTool must implement a display method,
and the channel info plus the GizmoTool parameter settings and display method determines how
the channel is rendered on a MyPage.

The GizmoTool configuration parameters are stored in the database in the gizmoitemparam
table. A corresponding channelitem entry stores the result of running the refresh_item
method.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 33

8. GizmoTags and Templates

GizmoTags and templates provide a way to change the page layout and “look” of Metadot pages.
GizmoTags are constructs embedded in the HTML templates, and are expanded during the page
rendering process to insert content inline. The gizmo tags each correspond to a perl module, as
described in more detail below, and it is the perl module which implements the generation of the
inline content. The term ‘gizmo tag’ is a bit of a misnomer: the gizmo tag module may and typi-
cally does generate content pertaining to a gizmo object, but it may also generate arbitrary content
as well (for example, one gizmo tag inserts a “fortune” into the page).

The gizmo tags correspond to modules defined in <metadot>/metadot/GizmoTags. When a
display request is received, a gizmo tag-enabled template is “expanded” by executing the ‘exec’
method corresponding to each tag object, and inserting the resultant HTML in the template.

Templates, and the use of GizmoTags, are activated by choosing “Style 4” in the Con-
fig->Style&Colors page. It is suggested that you start with the default templates shown there
and modify them to suit your needs. As is described below, the gizmo tags embedded in the
default templates are what determine the page content rendered using the templates, and there-
fore, as you edit the default templates, make sure that you do not inadvertently delete any gizmo
tags which provide content that you want to retain.

The first template, ‘maintemplate’, is used for creating Metadot’s front page. The second tem-
plate, ‘subtemplate’, is used for subcategory pages. The third template, the ‘utility’ template,
is used to display the ‘detailed view’ of all gizmos except Category. E.g., the utility template is the
one used if you execute the ‘show’ op for a Discussion object.

You can make your site look different by changing the places from where GizmoTags are called, by
adding or removing GizmoTags, or by changing the HTML tables layout in the templates.

GizmoTags also provide a way for developers to distribute Metadot enhancements in simple and
self-contained manner. Developers only need to put their code in a GizmoTag perl module and
distribute it. Site administrators can then copy this module to their metadot install directories and
add a GizmoTag to render it to their site templates. For more on how to program GizmoTags see
the “Developing GizmoTags” section below.

8.1 Gizmo Tags in Page Description Fields (Advanced)

While not documented further, it is possible to use gizmo tags in page description fields.

However, two important warnings must be noted:

Gizmotag processing does not currently guard against loops generated by using the "wrong"
gizmo tags in a description field. For example, using a md_catdesc tag (see list below), which gen-
erates the page description, within a page description, will cause an infinite loop when you try to
display the page.

Gizmo tags in a description field are NOT preserved if a page is edited using Windows IE. This is
because in Windows IE, a WYSIWG HTML editor is used to edit the page's description field.
(Thanks to interactivetools.com). This editor will remove any non-standard HTML. You will need
to add and edit gizmo tags in a description field using a different browser.

Update: As of Metadot 5.5.2.1, it is now possible to use square brackets as well as angle brackets
for specifying gizmo tags. This allows the gizmotags to be preserved in a page description field

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 34

when using the WYSIWYG HTML editor. For example, this construction will now work:
 [gizmotag name="md_quota_meter"][/gizmotag]

To see GizmoTags in action, follow this simple tutorial:

8.2 Gizmotags Tutorial

The following set of steps will illustrate from a user standpoint how gizmotags work. Then, the
subsections below describe in more detail how they are implemented.

1. From the main page, log in as “admin” and then Enable Editing

2. From the “Manage” menu go to “Style & Colors”.

3. Select “Style 4” on the Global Look selector. This will make the system generate its pages from
the templates that follow.

4. There are three templates in Style & Colors: ‘maintemplate’, ‘subtemplate’, and ‘utilitytemplate’.
The first one is used for generating the front page. Let’s work with that.

5. Cut and paste the Template for the Style & Colors page to the HTML or text editor of your
choice. (This will make the template easier to edit than in the browser text area). .

6. Lets try moving the news column to the left side of the page. We assume that you are starting
from the template that comes with Metadot’s default content.

7. In the template file in your editor, search for the GizmoTag for rendering the news column, or
‘newscol’. The name of the GizmoTag is md_newscol (search for the ‘md_newscol’ string). You’ll
see start and end markers in HTML like this:

 <!-- GIZMOTAG : md_newscol : Begin -->
 <!-- GIZMOTAG : md_newscol : End -->

These are just comments placed there to let you easily find GizmoTags in your template. The only
requirement for GizmoTags to work is that the GizmoTag tags themselves be present, like follows:

 <GIZMOTAG NAME=”md_newscol”>
 </GIZMOTAG>

The tag element is GIZMOTAG; the ‘name’ attribute is the name of the tag. This name must corre-
spond to the name of some module in <metadot>/metadot/GizmoTags for the template to
find and expand the tag.

Note that the template in the default metadot content also includes HTML between these two tags,
similar to the content that will be rendered when the template is interpreted. This chunk of HTML
between an open and close pair of gizmo tags is optional, and will be removed when the tag is
“expanded” and the content from the expansion inserted. It can be useful to have this default
HTML in the template in order to allow an HTML editor to render the template similarly to how it
will look when all its tags are expanded. If the referenced gizmotag object (e.g. the “md_newscol”
object in this example) does not actually exist, then the tag will not be expanded. In this case the
default HTML will be retained and displayed.

8. For this example, suppose we want to move this gizmo tag so that it appears in the same place
where the ‘md_v_subnav’ GizmoTag is. ‘md_v_subnav’ is the one in charge of rendering the ver-
tical subcategories column. We need to create an html table around the ‘md_v_subnav’ GizmoTag

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 35

and move the ‘md_newscol’ GizmoTag to a row in it. The layout that you should put in the tem-
plate where ‘md_v_subnav’ is should look like this:

<table>
 <tr>
 <td>
 <GIZMOTAG NAME=”md_v_subnav”>
 </GIZMOTAG>
 </td>
 </tr>
 <tr>
 <td>
 <GIZMOTAG NAME=”md_newscol”>
 </GIZMOTAG>
 </td>
 </tr>
</table>

For clarity we have left out the HTML comments and the default HTML within the gizmo tags.

After you do this change, copy the template back to the Colors & Styles page, save and return to
the main page. That’s it! You should now see that the newscolumn appears on the left side.

8.3 Changing Gizmotag Styles

Each GizmoTag is defined to have an associated CSS style class name. For the associated style
class to have any effect when the gizmo tag is used, a style rule for the class must be defined in the
HTML. With templates, the “Style Sheet” box in the Manage..->Styles & Colors config page is not
used. Instead, any style rules used within a template must be defined in the template HTML itself.
To do this, you must identify the style name for the GizmoTag you want to modify, and then
define a style for it in your template (some gizmotag styles are already defined in the default tem-
plates). You will find GizmoTag style names listed in a column in the GizmoTag browser, accessed
through the Gizmo Browser page mode. (See Section 11 for more information).

8.3.1 Example:

‘md_date’ is a GizmoTag that will display today’s date and time when rendered. To change the
font style and color for the ‘md_date’ GizmoTag, go to Manage->Style&Colors and enter the
following line inside the <style></style> section for the template you are modifying:

 .tagDateClass { font-family: Helvetica, Verdana,Arial,sans-serif;
 font-size: 10pt; color: red;}

Make sure your Global Look style is set to 4, and save your template. You’ll notice that the date
now appears in red and with a smaller type.

8.4 Metadot Gizmo Tags

The following are the GizmoTags that come bundled with the Metadot distribution. These tags
correspond to modules under the <metadot>/metadot/GizmoTags directory. Any of them
may be embedded in a template via a GIZMOTAG as described in the examples above. To find
other useful GizmoTags, please visit the Gizmo Gallery section at metadot.net.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 36

Some of these gizmo tags take additional attribute “arguments” in addition to the required name
attribute. (For example, see the md_imagesrc gizmo tag below).

All gizmotags may be passed the optional attribute/value pair no_comments=”1”. For exam-
ple:

<gizmotag name=”md_title” no_comments=”1”>...</gizmotag>

The ‘no_comments’ attribute suppresses the comment lines that are normally placed around each
expanded gizmotag in the html. Sometimes the comments are detrimental, for example if you
wish to place the gizmotag expansion results in a <title>..</title> HTML element. The
‘no_comments’ option works for any gizmotag, including ones that you might write yourself.

NOTE: All gizmo tags starting with ‘md_’ are considered reserved for tags that are distributed in
the Metadot core (ie. your GizmoTag names shouldn’t start with ‘md_’ unless they are intended to
be in the metadot core). See the Gizmo Gallery section in metadot.net for existing GizmoTags to
make sure the name you choose is not already taken.

md_adminbar : Will display a bar with two combos for adding gizmos to a page and for going to
different management sections. It will also display a button to enable/disable Edit mode. The two
combos will only show up when in Edit mode.

md_applicationlist: display Applications, the list of all the applications within the category

md_calendar_month: displays the month view of a calendar for navigation.

md_catlist: display categories, the list of all the sub-categories within the category.

md_catdesc : Will display the description field of the current category.

md_catname: Will display the name field of the current category.

md_catpath: Will display the path of clickable names from home to current category.

md_gizmopath: Will display the path of clickable names from home to current gizmo. A more
general version of the md_catpath gizmotag.

md_clipboard: displays the clipboard interface

md_cat2col: Will display the categories and subcategories under the current category as a wide
two column list.

md_date: Will display today’s date and time (e.g.. Sun Oct 7 16:55:57 2001).

md_discussionlist: display Discussions, the list of all the discussions within the category

md_editpanel: Generates the ‘edit panel’ info for the current object — the edit, permissions, cut,
etc. icons.

md_fortune: Display a random (sometimes funny) message.

md_h_topcat: Displays a horizontal list with the topmost categories.

md_h_topnav: Displays a horizontal list with subcategories of the current category.

md_imagelist: Display list of all ImageItem children of the category

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 37

md_imagesrc: Given image name passed as an ‘image’ attribute, generates full server path to
image (as configured when the site was set up). You will want to use this gizmotag with the
‘no_comments’ attribute as described above to suppress the extra comment output. For example:

<gizmotag name=”md_imagesrc” image=”xyz.gif” no_comments=”1”>..</gizmotag>

md_itemlist: Display list of all Item children of the category

md_gizmolist: Display the list of all the gizmos within the category by gizmo type (excepting
Categories, Polls and News Gizmos).

md_newslist: Displays a list with all newsitems in the current category.

md_newscol: Display newsitems under the current category in column format.

md_newsitemlist: Display list of all News Item children of the category

md_poll: Displays all polls under the current category in vertical column format.

md_pollist: Display list of all Poll children of the category

md_scrollviewlist: Display list of all ScrollView children of the category

md_tablelist: Display list of all Table children of the category

md_title: Generates the name (title) of the current object. If you are using this gizmotag to gen-
erate the title for an html template page, call it with the ‘no_comments’ attribute as described
above to suppress the extra comment output.

md_username: Displays the name of the current logged in user.

md_quota_meter: Displays the remaining disk quota for file uploads of the current user.

md_v_subnav: Display a vertical navigation bar with subcategories of the current category.

md_v_subnav_flex: Display a parameterizable vertical navigation bar with subcategories of the
current category. This tag supports the following parameters, passed as additional gizmotag
attribute/value pairs:
 - show_parents: tells the nav bar to show the parents of the current page
 - unconditional_expansion_depth: tells the nav bar how many levels should be uncondi-
tionally expanded.

md_v_subnav2: Displays a vertical navigation bar with subcategories of the current category.

md_h_applist: Displays horizontally the applications list.

md_search: Displays the search box. Can take optional attribute img_src specifying an image to
use for the search button. For example,
 <gizmotag name=”md_search” img_src=”../images/search_button.gif”>...</gizmotag>
Of course, the image must be installed in the specified directory in the web server.

md_todays_events: displays the event listing panel for the current date

md_welcome: Displays the currently logged-in username and a link for signing in.

md_users_online: Indicate how many users are currently logged in, and have been active
within the last 15 minutes.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 38

md_links_panel: Displays a panel images linked to user functions. If the user is not logged in,
the panel contains links for: ‘register’, ‘login’, ‘my website’, and ‘my page’. When the user logs in,
the panel contains links for: ‘logout’, ‘profile’, ‘my website’, and ‘my page’.

md_gizmorunner: This tag allows displaying objects other than the current object inline. This is
done by specifying the type (the ‘isa’) and iid of the object that you wish to display inline, as so:
 <gizmotag name=”md_gizmorunner” isa=”Table” iid=”1234”>...</gizmotag>
You may optionally include an “op” attribute also; if this value is not specified, then ‘show’ is
used as the default. (To find the iid — the unique id — of the object, it is simplest to just display it
in your browser and note the iid in the URL generated for the display operation).

8.5 Developing Gizmo Tags

Creating a GizmoTag requires only that you know where or how to get the content it will display
when rendered. Typically, all infrastructure to generate and render the content is already part of
the system functionality. You will usually retrieve content by calling methods in modules within
Metadot or from your own extensions to Metadot. You could also get data by directly querying the
database, but we don’t recommend this approach because the Metadot’s database structure is sub-
ject to change from version to version.

GimzoTags are perl modules that inherit from the GizmoTag class. Inheriting from the GizmoTag
class and overriding a couple of methods of it is the only requirement for GizmoTags.

GizmoTag modules should be placed under the GizmoTag directory in your Metadot install direc-
tory. GizmoTags will be recognized and added to the system automatically when placed under
this directory.

8.5.1 Two required GizmoTag methods

There are two GizmoTags methods that must be overridden (implemented) in any subclass. One
of them is the ‘new’ method, which is called internally to create a new instance of this GizmoTag.
The other one is the ‘md_tag_exec’ method, which is invoked by the system to render the Giz-
moTag.

The ‘new’ method is used mainly to describe what the GizmoTag does so that it can be placed in
the “installed GizmoTags” browser that appears for site Admins when Edit mode is enabled.

The ‘md_tag_exec’ method is in charge of generating the HTML content of the gizmo tag. This
method generates content data, often by accessing other Metadot methods, and then formats the
content for display as HTML.

Let’s look at the complete code of a GizmoTag so you get the idea. The following GizmoTag will
display today’s date when rendered.

 1: package md_date;
 2: use GizmoTag;
 3: @ISA = (“GizmoTag”);
 4: use strict;
 5:
 6: sub new {
 7: my $proto = shift;
 8: my $class = ref($proto) || $proto;
 9: my $self = $class->SUPER::new();
10: $self->{name} = ‘md_date’;
11: $self->{version} = ‘$Revision: 1.3 $’;

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 39

12: $self->{authorname} = ‘Mirko Scavazzin’;
13: $self->{email} = ‘mirko@metadot.com’;
14: $self->{url} = ‘http://www.metadot.net/’;
15: $self->{license} = ‘GNU/GPL’;
16: $self->{styleclass} = ‘tagDateClass’;
17: $self->{embeddedstyleclasses} = [];
18: $self->{description} = ‘return local time and date (i.e. Sun Oct 7 16:55:57
2001)’;
19: bless ($self, $class);
20: return $self;
21: }
22:
23: sub md_tag_exec {
24: my $self = shift;
25:
26: return “<DIV>get_styleclass() . “>” . localtime(time) .
“</DIV>”;
27: }
28:
29: 1;

Line 1 is the package name, and is also the name by which the gizmo tag will be invoked from
templates. It is important that the name you use is not already taken by other GizmoTags. All
gizmo tags starting with ‘md_’ are considered reserved for tags that are distributed in the Metadot
core (i.e., your tags shouldn’t start with ‘md_’ unless they are intended to be in the metadot core).
See the Gizmo Gallery section in metadot.net for existing GizmoTags to make sure the name you
choose is not already taken.

Lines 2 and 3 are for inheriting from class GizmoTag and should always be present.

On Line 6, subroutine ‘new’ is a standard object oriented perl constructor.

From lines 10 to 20 we fill in necessary data for the GizmoTag. Of these maybe the only fields not
self-evident are ‘url’, ‘styleclass’ and ‘embeddedstyleclasses’.

On line 14 ‘url’ is the URL where you can find the latest version of this GizmoTag. We recommend
that you upload your GizmoTags to the Gizmo Gallery in metadot.net if you want to make them
available to the public as OpenSource.

On line 16 ‘styleclass’ is the name of the CSS styleclass definition that has to be included in the
template <styles> section to override the default styles in this GizmoTag. The name you put in this
field should be used as the style name in the HTML generated in the ‘md_tag_exec’ method.

On line 17 ‘embeddedstyleclasses’ is a field reserved for future functionality. In your GizmoTags
you can make that point to an empty array reference (‘[]’) as well.

On line 23 we have the ‘md_tag_exec’ method. This is the one in charge of generating the tags’s
content. As you can see it is rather simple how we do it.

On line 26 we generate a return string with the HTML of the tag. Note that we use the SPAN tag to
associate the CSS style name declared on line 16 to the HTML of the GizmoTag. Note that we
retrieve the style name using the ‘get_styleclass’ method inherited from the parent class. The con-
tent, which in this case is simply today’s date and time, comes from calling the standard perl local-
time(time) functions.

That’s it! For further knowledge you can look at other GizmoTags in the Metadot directory of your
4.0 install or download new ones from the GizmoTags section of the Gizmo Gallery at meta-
dot.net.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 40

9. Themes

Before reading this section, you may wish to read the “Themes” page in the admin documenta-
tion:
 <metadot>/doc/md_guides/install/themes.html
so that you are familiar with the user interface and basic functionality. Selecting “Themes” as the
site’s Style provides an interface where page layout is fixed, but site colors, text colors, and header
logos can be modified easily.

There is not currently a browser-based interface for modifying the template HTML for a given
Theme, nor a browser-based interface for switching between Themes, particularly with respect to
switching between alternate HTML layouts. (Other theme parameters can be modified via the
Themes Styles & Colors interface). However, the underlying code and database structure for
themes supports defining more than one theme (in terms of its color settings and HTML tem-
plates), and then using a specified theme as the Theme for the site. [An admin browser interface,
to provide access to the Themes html, is planned for the future].

With some work, it is possible to create or modify a site's Themes without a browser-based inter-
face, but for a given site, you may not have the need to do this. If you simply need to develop a
new "look" for the site, it will probably be sufficient if you select Style 4 from the Styles and Colors
configuration page, instead of themes; then modify the Style 4 template layout and gizmo tags as
described in Section 8 .

If, however, you want to change the HTML templates for a Theme, this can be done without too
much difficulty via your database client interface.

9.1 Examining the Themes Configuration

Look at the value of the template_theme parameter in the params table, by running the follow-
ing query (from a mysql client interface):

select * from params where name = 'template_theme';

This query shows you the name of the current theme, e.g. theme2 .

(For the current Metadot release, the 'theme2' template is in use).

Then look at the themes definitions in the themes database table. E.g., enter the following query:

select theme, pname from theme;

You will see configuration information for one or more themes. For a given theme, the value fields
for the following parameters hold template HTML: theme_maintemplate, theme subtem-
plate, and theme_utilitytemplate. In addition, the value fields for the following parame-
ters hold page header HTML: theme_adminheader, and theme_simpleheader. Additional
fields hold color and logo settings for the Theme. These fields can be viewed as the “configuration
set” for a given Theme.

For a given theme, the three theme templates are roughly equivalent to the Style 4 Main Template,
Sub-Template, and Utility Template defined in the Advanced Styles and Colors page, in that they
both use GizmoTags to place content in specified locations on the page. However, there is one key
difference: the Themes templates contain specialized gizmo tags which insert Template-Tool-
kit-derived HTML fragments based on the current theme's parameter settings.

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 41

The three specialized gizmotags are the modules:
 <metadot>/metadot/GizmoTag/md_theme1*.pm.
These sub-templates control the header and left-nav-bar layout for the theme, as well as the style
rules for the theme. The Template-Toolkit templates used by these gizmotags are in
<metadot>/metadot/Metadot/templates, and these files utilize information about the cur-
rent theme's parameters, such as the current header logo used by the theme, in order to generate
HTML fragments specific to that the current theme.

This implementation has two important implications.

First is that the specialized gizmotags, which construct HTML using the Theme’s parameters (e.g.,
navbar color and text), are providing the “hooks” to the color and logo values set in the Styles &
Colors page. If you want to replace the Themes HTML, you will need to retain these gizmotags
(or build similar ones) in order to have the site pages change properly when the Styles & Colors
settings change.

Second, since some Themes HTML content comes from the static Template-Toolkit files used by
these specialized gizmotags, then this means that there are some aspects of Themes page layout
that are encoded in static files, not in the database. An example is the left-nav-bar width generated
by the md_theme1_lefttable.pm gizmotag. In a virtual server setup, with multiple Metadot
servers running off the same code base, all virtual servers will share the same Template-Toolkit
template files. You will need to make new gizmotags if you want to make a change to one of these
Template-Toolkit files for just some of your virtual sites; e.g., if you want to use Themes mode for
all your sites, but change the left-nav-bar width for the Themes layout in only one of your virtual
sites. (This limitation will be addressed in a future release; however, note that if you want to
change the layout or look for one virtual site, you can do this straightforwardly using Tem-
plates/Style 4 rather than Themes for that site, as described in Section 8).

9.2 Changing or Adding a Theme Configuration set

To change a Theme’s HTML, you may need to modify either the HTML strings stored in the
themes table for that theme (the theme_maintemplate, theme_subtemplate, or
theme_utilitytemplate strings), or modify one of the Template-Toolkit template sub-files
used by the special gizmotags, as described above. The location of the modification will depend
upon what aspect of the page's layout you need to change. For example, if you want to change
some aspect of the header HTML, or the Theme's CSS definitions, this will require changing a
sub-template file. If you want to change the width of the center 'content panel', this is defined in
the HTML strings stored in the database.

Using your MySql client interface, you can examine and modify the HTML strings for a given
theme. The three HTML strings — theme_maintemplate, theme_subtemplate , and
theme_utilitytemplate — are the templates used for the front page, other site pages, and
non-page gizmos, respectively, when Themes mode is enabled.

The two header HTML parameters -- theme_adminheader and theme_simpleheader, are
used for various form and admin pages. They contain “hooks” to utilize the Themes banner
image settings. You probably will not need to modify them.

If you like, you can create a new theme configuration set by defining a new name for the theme,
and adding its parameters to the theme table by inserting new records with the 'theme' field set to
your new theme name. If you do this, it is best to use the configuration set of an existing theme as
a starting point. When you have completed the new Theme, you can configure your site to use it
by updating the params table:

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 42

update params set value = ‘<new theme name>’ where name = ‘template_theme’

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 43

10. SystemApps

The SystemApp provides a foundation for building stand-alone portal apps. A SystemApp is not
associated with any object instantiation. It does not require use of any particular db tables or
require the implementation of any particular interface methods. Therefore, it allows new 'applica-
tion functionality' to be added to the system without needing to modify existing code. Meta-
dot::SystemApp is an 'abstract' class; the actual apps should be subclassed from it. SystemApp
inherits from Portal and Auditable.

A SystemApp subclass is invoked by giving the full path to the SystemApp module as the 'isa'
parameter of the cgi query, as in this example:

 http://127.0.0.1/metadot/index.pl?isa=Metadot::SystemApp::TestApp&op=show

The 'op' parameter will be used to call the www_<op> method of the system app ('www_show' in
this example).

SystemApp, as an abstract class, provides a set of access control methods, and implements the
method www_show. www_show calls the method 'main', which is expected to be implemented by
every SystemApp subclass. The subclass' implementation of 'main' must return an html string,
which will be wrapped in SystemApp->www_show by code to generate headers and footers, in
order to generate a result page. Therefore, for the 'show' op, the SystemApp subclass need only
generate its content html via the implementation of 'main', not the entire result page. See
Metadot::SystemApp::TestApp for an example.

A SystemApp subclass may implement any other op it wishes in addition to 'show'; however, it
must generate the full result page in that case, including any desired headers, etc.

SystemApps inherit from Auditable to take advantage of Metadot's built-in access control mecha-
nism. See Section 3 for more information about how to add access control to your classes. Sys-
temApps will by default show the "change permissions" (key) icon when the show operation is
invoked on them and editing is enabled. If your system app implements other operations you will
have to invoke the inherited method called "show_portal_panel" to generate the html for the
change permissions icon and add it to your page.

A system app has access to the system globals $PARAMS,%FORM, $SESSION, and $USER. It can
be invoked with arbitrary parameters as well. E.g., below is an example of invoking a “Form-
Demo” system app and passing it a set of parameter values:

http://127.0.0.1/metadot/index.pl?isa=Metadot::SystemApp::FormDemo&op=show&mode=edit&f
orm_descr=formdata_demo&pkey=instance.iid,1642&pkey=message.mid,40

Metadot Portal Server Developers’ Guide April 18, 2003 Copyright Metadot Corp., 2003 44

11. The Gizmo Browser

The GizmoBrowser is activated under the Manage.. -> Enable GB menu item for admin users
(editing must be enabled to see this menu). It presents the admin user with table-based view of all
the children of the current page, and allows them to be inspected and edited. This can be particu-
larly helpful when the Template style (Style 4 on the
Manage..-> Styles & Colors admin page) is in use for a site. This is because when tem-
plates are used, the GizmoTags embedded in the template determine the page content. If there is
no embedded gizmo tag to address a given child object, it will not be exposed to the viewer. (See
Section 8 for more information about GizmoTags).

Therefore, the Gizmo Browser allows the template builder to see all the underlying child content
for a page, inspect the children, and confirm that the template includes the right gizmo tags to dis-
play desired content based on the list of children.

To disable the Gizmo Browser when you are finished with inspection mode, and return to the reg-
ular page view, choose Manage.. -> Disable GB from the admin’s pull-down menu.

