GNATcheck Reference Manual
Release 2019

May 18, 2019

GNATcheck Reference Manual 2019

This page is intentionally left blank.

2 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

1 About This Manual

2 Introduction

3 Format of the Report File

4 General gnatcheck Switches

5 gnatcheck Rule Options

6 Adding the Results of Compiler Checks to gnatcheck Output
7 Mapping gnatcheck Rules Onto Coding Standards

8 Rule exemption

8.1 Using pragma Annotate to Control Rule Exemption
8.2 gnatcheck AnnotationsRules L.

9 Predefined Rules

9.1 Style-RelatedRules e
9.1.1 Tasking e e

Multiple_Entries_In_Protected_Definitions
Volatile_Objects_Without_Address_Clauses

9.1.2 Object Orientation v v i v v it e e
Constructors o v i i i e e e e e e e e e
Deep_Inheritance_Hierarchies
Direct_Calls_To_Primitives
Downward_View_ConversSions v v v v v v uone..
No_Inherited_Classwide_Pre
Specific_Pre_Post i e
Specific_Parent_Type_Invariant
Specific_Type_Invariants
Too_Many_Parents it i e
Too_Many_Primitives
Visible_Components v v v v ..

9.1.3 Portability
Bit_Records_Without_Layout_Definition.
Forbidden_ Attributes
Forbidden_Pragmas« c v v v v v v v v ittt i e e
Implicit_SMALL_For_Fixed_Point_Types

Incomplete_Representation_Specifications

CONTENTS

11

13

15

17

19

21

23

........... 23
........... 24

GNATcheck Reference Manual

GNATcheck Reference Manual 2019

No_Explicit_Real RanNge v v v v v i vttt e e e e e e e e e e e e e e 37
No_Scalar_Storage_Order_Specified v, 37
Predefined NUMETricC_TYPES . v v v v v v v et e e e e e e e e e e e e e e e e e e 38
Printable_ ASCIT v v i ittt e e et e e e e e e e e e e 38
Separate_Numeric_Error_Handlers i v neneno. 38
Program Structureo 39
Deep_Library_HierarcChy i i i ittt e e e e e e e e e e 39
Deeply Nested_GeneriCS . . . v v v v v v i et e e e e e e e e e e e e e e e e 39
LoCAl_PacCKAOES v v v v v v e 40
Non_Visible ExCeptions i i i i i i i i it e e e e e e e e e 40
Raising_External_Exceptions o v v i i it 41
Programming Practice e e e 41
Address_Specifications_For_Initialized_Objects 41
Address_Specifications_For_Local _Objects 42
ANONYMOUS_ATYTAYS + v v v v e v et et e e e e e e e e e e e e e e e e e 42
Binary_Case_Statements @ i i i e e e e e e e e e 42
Default_Values_For_Record_Componentsouuuwunuunwno.. 43
Deriving_From_Predefined_TyPe v v v v v it ittt e e e e e 43
Enumeration_Ranges_In_CASE_Statements. 44
Enumeration_Representation_Clauses v vv v 44
Exceptions_As_Control _FlOoW v v i i i ittt et e et e e e 44
Exits_From_Conditional_LOOPS . . v v v v v v ittt e e e e e e e e e e e 45
EXIT_Statements_With_No_Loop Name v v v v v v v v v it oo 45
Global_Variables v v it it e e e e e e e e e e e e e e e 46
GOTO_Statements v i v it it e e e e e e e e e e e e e e e e e e 46
IMproper_RELUTLNS . . v v v v it e it e e et e e e e e e e e e e e e 46
Local USE _CLAUSES « v v v v v v et e e e e e e e e s e e 47
Maximum_ _ParamefersS . . v v v v v v i e 47
Misplaced_Representation_Ttems v i v ii i i ... 48
Nested SUDPrOgrams v v v v v e 48
Non_Short_Circult_Operators. i v i i v it i it it e et e 49
NUull_Paths . . . e e e e s e e e e e e 49
Objects_Of_AnonymousS_TYPES .« v v v v v vttt e e e e e e e e e e e e e 50
OTHERS_IN_AQgregates . . . v v v i v ittt e e e e e e e e e e e e e e e e e 50
OTHERS_In_CASE_Statements v i v i ittt et et e e e et 51
OTHERS_In_Exception_Handlers v i iinnenneon.. 52
Outbound_Protected_Assignments v, 52
Overly_Nested _Control_StrucCtures v v 53
POS_On_Enumeration_TyPesS . . . v v v v v v it i e e e e e e e e e e e e e e 53
Positional_ Actuals_For_Defaulted_Generic_Parameters 54
Positional_ Actuals_For_Defaulted_Parameters 54
Positional_Components i i i ittt e e e e 55
Positional_Generic_Parameters« o i v i i i i i e e e e e 55
Positional ParametersS . . . v v v v v vt e e e e e e e e 56
ReCcUrsive_SUDPrOgramsS . . . v v v v v vt e e e e e e e e e e e e e e e 56
Single_Value_ Enumeration_TyPEeS . . . v v v v v v v vt et et e e e e e e e 57
Unchecked_Address_Conversions v vt it 57
Unchecked_Conversions_As Actuals« v v v i v i v v i, 58
Unconditional EXiTS . . v v v v v v vt e e e e e e e e e 58
Uninitialized_Global_Variables v i, 59
Unnamed_BlocksS_ANd_LOOPS . v v v v v v v e et e e e e e e e e e e e e e e 59
USE_PACKAGE_CLAUSES .+ v v v v v v et e 60
Readability e 60
Identifier Casing c o v i v i it e e e e e e e 60

4 of 113

GNATcheck Reference Manual

GNATcheck Reference Manual 2019

Identifier PrefiXeS . v v v v v i v vt e e e e e e e e e e 62
ITdentifier SUFfIiXES . . . v i v i v i i e e e e e e e e e e e e e e 65
Max_TIdentifier_Length @ i i i i 67
Misnamed_Controlling_Parameters 68
Name_Clashes v v v i e e e e e e e e e e e e e 68
Object_Declarations_Out_Of_Order v i v i i v i, 69
One_Construct_Per LINe . . v v v v v v v it e e e e e e e e e e 69
Uncommented_BEGIN_In_Package_Bodie€s v v v v v v v i 70

9.1.7 Source Code Presentation i i e e e e e e 70
9.2 Feature Usage Rules 70
0.2.1 Abort_Statements« v v v i i e e e e 70
9.2.2 Abstract_Type_DeclarationsS v v v v v i u i ittt et e e e 71
9.2.3 Anonymous_SUDLYPES . . . vt v i e 71
024 BlOCKS . v v v e e e e e e e e e e e e 71
9.2.5 Complex_Inlined_Subprograms v v vt i v vt eueennn.. 72
9.2.6 Conditional EXPressions v v i i i it e i e e e 72
9.2.7 Controlled_Type_DeclarationsS v v v v v i v it et e et e e e 74
9.2.8 Declarations_In_BlOCKS v v i v it it e e e e e e e e e e e e e 74
9.2.9 Deeply_ Nested Inlining v v i v i v it ittt e e e e e e e e 74
9.2.10 Default_ParametersS v v v v i vt et e e e e e e e e e e e e e e 75
9.2.11 Discriminated_RecordsS i i v v it it e e e e 75
9.2.12 Explicit_Full_Discrete_RaANgesS v v v v vt v it et e et e e 76
9.2.13 Expression_Functionst i v ittt e e e e 76
9.2.14 Fixed_Equality CheCKS i i v it ittt e e e e e e e e e e e e 77
9.2.15 Float_Equality ChecCks i i v ittt e e e e e e e e e e e e e e 77
9.2.16 Function_Style ProcedUTes v v v v v it ittt et e e e e 78
9.2.17 Generics_In_SUbProOgramsS . . . « v v v v v vt i e et e e e e e e e e e e 78
9.2.18 Implicit_IN_Mode_ParametersS v v v v v i m ittt e e e e e e 78
9.2.19 Improperly_Located_Instantiations 79
9.220 Library_Level SUDPrOgramsS v v v v v v vt ettt e e e e e e e 79
9221 Membership_TestsS . . . v v i i i it e e e e e e e e e e e e e e e e e e 79
9222 Non_Qualified _Aggregates v v v i it i it e e e e e e e 80
0.2.23 Number_Declarations v v v v v v e e e e 81
9.224 Numeric_TIndexXiNg v v v v v i it e e e e e e e e e e e e e e e e 81
9.2.25 Numeric_Literals i i it e e e e e e e e e e e 81
9.2.26 Parameters_Out_Of_Order i v i i i ittt e e e e e e 82
9227 Predicate_Testing« v i i i i it e e e e e e e e e e 82
9.2.28 Relative_Delay_Statements v i v i, 84
9.2.29 Representation_Specifications i 84
9.2.30 Quantified EXPresSions v v v v v v ittt e e e e e e e e e e e 85
9.231 Raising_Predefined_Exceptions 86
0.232 SUDPTOGTaAmM_ACCESS « ¢ v v v vt e et e e e e e e e e e e e e e e e e e 86
9.2.33 Too_Many_Dependencies o i v i it e e e e e 86
9.2.34 Unassigned_OUT_ParametersS v v v v v i m i ittt e e e e e 87
9.2.35 Unconstrained_Array_RetUrNS v v v vt it i ittt et e e e e e 87
9.2.36 Unconstrained_ATrTaysS . . . o v v v v vt et e e e e e e e e e e e e 88
9.3 Metrics-Related Rules e e e 88
9.3.1 Metrics_Essential_Complexity o i i i i i i it it et e e e e 89
932 Metrics_Cyclomatic_Complexity i i i v i i i it i e 89
933 Metrics_LSLOC . . . i i i it e e e e e e e e e e e e e e e e 90
9.4 SPARK AdaRules e 90
9.4.1 Annotated_COommENntsS v v v v i v i et e e e e e e e e e e e e e e e 90
942 Boolean_Relational_ Operators i v i i it iie it i 91
943 Expanded_Loop_EXit_Names v v v v vt ittt et e e et e e e 92

GNATcheck Reference Manual 50f 113

GNATcheck Reference Manual 2019

944
9.4.5
9.4.6
9.4.7
9.4.8
9.4.9

Non_SPARK_Attributes @ @ @ @ i i i i i e e e e e e e
Non_Tagged _Derived _TVPES v v v v v v v v v e e e e e e e e e e e e e e
Outer_Loop_EXIits v i i it e e e e e e e e e e e e e e e
Overloaded_Operators o i i i i i i i i ittt e et
SLiCES v v v it e s e
Universal_RanNgesS . . . v v v v i i v i e

10 Example of gnatcheck Usage

11 List of Rules

A GNU Free Documentation License

Index

97

101

105

111

6 of 113

GNATcheck Reference Manual

GNATcheck Reference Manual 2019

GNAT, The GNU Ada Development Environment

The GNAT Ada Compiler
Version 2019

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.1 or any later version published by the Free Software Foundation; with the Invariant Sections being
‘GNU Free Documentation License’, with the Front-Cover Texts being ‘GNATcheck Reference Manual’, and with no
Back-Cover Texts. A copy of the license is included in the section entitled ‘GNU Free Documentation License’.

GNATcheck Reference Manual 7 of 113

GNATcheck Reference Manual 2019

This page is intentionally left blank.

8 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

CHAPTER
ONE

ABOUT THIS MANUAL

The gnatcheck tool in GNAT can be used to enforce coding conventions by analyzing Ada source programs with
respect to a set of rules supplied at tool invocation. This manual describes the complete set of predefined rules that
gnatcheck can take as input.

What This Manual Contains

This manual contains a description of gnatcheck, an ASIS-based utility that checks properties of Ada source files
according to a given set of semantic rules

e Introduction, gives the general overview of the gnatcheck tool
Format of the Report File, describes the structure of the report file generated by gnatcheck
General gnatcheck Switches, describes switches that control the general behavior of gnatcheck
gnatcheck Rule Options, describes options used to control a set of rules to be checked by gnatcheck

Adding the Results of Compiler Checks to gnatcheck Output, explains how the results of the check performed
by the GNAT compiler can be added to the report generated by gnatcheck

Rule exemption, explains how to turn off a rule check for a specified fragment of a source file
Predefined Rules, contains a description of each predefined gnatcheck rule, organized into categories.
Example of gnatcheck Usage, contains a full example of gnatcheck usage

List of Rules, gives an alphabetized list of all predefined rules, for ease of reference.

The name of each rule (the ‘rule identifier’) denotes the condition that is detected and flagged by gnarcheck. The rule
identifier is used as a parameter of the +R or —R switch to gnatcheck.

What You Should Know Before Reading This Manual

You should be familiar with the Ada language and with the usage of GNAT in general; please refer to the GNAT User’s
Guide.

GNATcheck Reference Manual 9 of 113

GNATcheck Reference Manual 2019

This page is intentionally left blank.

10 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

CHAPTER
TWO

INTRODUCTION

The gnatcheck tool is an ASIS-based utility that checks properties of Ada source files according to a given set of
semantic rules.

In order to check compliance with a given rule, gnatcheck has to semantically analyze the Ada sources. Therefore,
checks can only be performed on legal Ada units. Moreover, when a unit depends semantically upon units located
outside the current directory, the source search path has to be provided when calling gnatcheck, either through a
specified project file or through gnatcheck switches as described below.

If the set of sources to be processed by gnatcheck contains sources with preprocessing directives then the needed
options should be provided to run preprocessor as a part of the gnatcheck call, and detected rule violations will
correspond to preprocessed sources.

A number of rules are predefined in gnatcheck and are described later in this chapter. You can also add new rules, by
modifying the gnatcheck code and rebuilding the tool. In order to add a simple rule making some local checks, a small
amount of straightforward ASIS-based programming is usually needed.

Invoking gnatcheck on the command line has the form:

$ gnatcheck [switches] {filename}
[-files={arg_list_filename}]
[-cargs gcc_switches] —-rules rule_options
where

* switches specify the general tool options

* Each filename is the name (including the extension) of a source file to process. ‘Wildcards’ are allowed, and the
file name may contain path information.

* Each arg_list_filename is the name (including the extension) of a text file containing the names of the source
files to process, separated by spaces or line breaks.

* gcc_switches is a list of switches for gcc. They will be passed on to all compiler invocations made by gnatcheck
to generate the ASIS trees. Here you can provide —I switches to form the source search path, and use the
—gnatec switch to set the configuration file, etc.

* rule_options is a list of options for controlling a set of rules to be checked by gnatcheck (gnatcheck Rule
Options).

Eithera filename oran arg_list_filename must be supplied.

GNATcheck Reference Manual 11 of 113

GNATcheck Reference Manual 2019

This page is intentionally left blank.

12 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

CHAPTER
THREE

FORMAT OF THE REPORT FILE

The gnatcheck tool outputs on stderr all messages concerning rule violations except if running in quiet mode.
By default it also creates a text file that contains the complete report of the last gnatcheck run, this file is named
gnatcheck.out. A user can specify generation of the XML version of the report file (its default name is
gnatcheck.xml) If gnatcheck is called with a project file, the report file is located in the object directory defined
by the project file (or in the directory where the argument project file is located if no object directory is defined),
if ——subdirs option is specified, the file is placed in the subrirectory of this directory specified by this option.
Otherwise it is located in the current directory; the —o or —ox option can be used to change the name and/or location
of the text or XML report file. This text report contains:

 general details of the gnatcheck run: date and time of the run, the version of the tool that has generated this
report, full parameters of the gnatcheck invocation, reference to the list of checked sources and applied rules
(coding standard);

* summary of the run (number of checked sources and detected violations);

* list of exempted coding standard violations;

* list of non-exempted coding standard violations;

* list of problems in the definition of exemption sections;

* list of language violations (compile-time errors) detected in processed sources;

The references to the list of checked sources and applied rules are references to the text files that contain the
corresponding information. These files could be either files supplied as gnatcheck parameters or files created by
gnatcheck; in the latter case these files are located in the same directory as the report file.

The content of the XML report is similar to the text report except that it explores the set of files processed by gnatcheck
and the coding standard used for checking these files.

GNATcheck Reference Manual 13 of 113

GNATcheck Reference Manual 2019

This page is intentionally left blank.

14 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

CHAPTER
FOUR

GENERAL GNATCHECK SWITCHES

The following switches control the general gnatcheck behavior

——version Display Copyright and version, then exit disregarding all other options.
—-help Display usage, then exit disregarding all other options.

-P file Indicates the name of the project file that describes the set of sources to be processed. The exact set of
argument sources depends on other options specified, see below.

-U If a project file is specified and no argument source is explicitly specified (either directly or by means of —files
option), process all the units of the closure of the argument project. Otherwise this option has no effect.

-U main_unit If a project file is specified and no argument source is explicitly specified (either directly or by
means of —files option), process the closure of units rooted at main_unit. Otherwise this option has no effect.

—Xname=value Indicates that external variable name in the argument project has the value value. Has no effect if
no project is specified as tool argument.

—-subdirs=dir Use the specified subdirectory of the project objects file (or of the project file directory if the
project does not specify an object directory) for tool output files. Has no effect if no project is specified as tool
argument or if ——no_obJjects_dir is specified.

—-no_objects_dir Place all the result files into the current directory instead of project objects directory.

—-RTS=rts—-path Specifies the default location of the runtime library. Same meaning as the equivalent gnatmake
flag (see GNAT User’s Guide).

—a Process all units including those with read-only ALI files such as those from the GNAT Run-Time library.

——incremental Incremental processing on a per-file basis. Source files are only processed if they have been
modified, or if files they depend on have been modified. This is similar to the way gnatmake/gprbuild
only compiles files that need to be recompiled. A project file is required in this mode, and the gnat driver
(as in gnat check) is not supported. Note that rules requiring a global analysis (Recursive_Subprograms,
Deeply_Nested_Inlining) are not supported in —incremental mode.

-h List all the rules checked by the given gnatcheck version.

—jnnnn Use nnnn processes to carry out the tree creations (internal representations of the argument sources). On a
multiprocessor machine this speeds up processing of big sets of argument sources. If # is 0, then the maximum
number of parallel tree creations is the number of core processors on the platform.

-1 Use full source locations references in the report file. For a construct from a generic instantiation a full source
location is a chain from the location of this construct in the generic unit to the place where this unit is instantiated.

—log Duplicate all the output sent to stderr into a log file. The log file is named gnatcheck. log. If a project
file is specified as gnatcheck parameter then it is located in the project objects directory (or in the project file
directory if no object directory is specified). Otherwise it is located in the current directory.

GNATcheck Reference Manual 15 of 113

GNATcheck Reference Manual 2019

—mnnnn Maximum number of diagnostics to be sent to stdout, where nnnn is in the range 0...1000; the default
value is 500. Zero means that there is no limitation on the number of diagnostic messages to be output.

—q Quiet mode. All the diagnostics about rule violations are placed in the gnatcheck report file only, without
duplication on stdout.

—s Short format of the report file (no version information, no list of applied rules, no list of checked sources is
included)

—xml Generate the report file in XML format. Is not allowed in incremental mode.
—nt Do not generate the report file in text format. Enforces —xm1, is not allowed in incremental mode.
—files=filename

Take the argument source files from the specified file. This file should be an ordinary text file
containing file names separated by spaces or line breaks. You can use this switch more than once in
the same call to gnatcheck. You also can combine this switch with an explicit list of files.

——ignore=filename
Do not process the sources listed in a specified file. This option cannot be used in incremental mode.
—-show-rule Add the corresponding rule name to the diagnosis generated for its violation.

——check-redefinition For a parametrized rule check if a rule parameter is defined more than once in the set
of rule options specified and issue a warning if parameter redefinition is detected

——include-file=file Append the content of the specified text file to the report file

—t Print out execution time.

—v Verbose mode; gnatcheck generates version information and then a trace of sources being processed.
—-o report_file Setname of the text report file to report_file.

—ox report_file Setname of the XML report file to report_file. Enforces —xm1, is not allowed in incremental
mode.

——write-rules=template_file Write to femplate_file the template rule file that contains all the rules
currently implemented in gnatcheck turned off. A user may edit this template file manually to get his own
coding standard file.

If a project file is specified and no argument source is explicitly specified (either directly or by means of ~files
option), and no —U is specified, then the set of processed sources is all the immediate units of the argument project.

If the argument project file is defines aggregate project, and it aggregates more than one (non-aggregate) project,
gnatcheck runs separately for each (non-aggregate) project being aggregated by the argument project, and a separate
report file is created for each of these runs. Also such a run creates an umbrella report file that lists all the
(non-aggregate) projects that are processed separately and for each of these projects contains the reference for the
corresponding report file.

If the argument project file defines an aggregate project but it aggregates only one (non-aggregate) project, the
gnatcheck behavior is the same as for the case of non-aggregate argument project file.

16 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

CHAPTER
FIVE

GNATCHECK RULE OPTIONS

The following options control the processing performed by gnatcheck.

+R[:rule_synonym:]rule_id[:param{,param}] Turn on the check for a specified rule with the specified
parameter(s), if any. rule_id must be the identifier of one of the currently implemented rules (use —h for the
list of implemented rules). Rule identifiers are not case-sensitive. Each param item must be a non-empty string
representing a valid parameter for the specified rule. If the part of the rule option that follows the colon character
contains any space characters then this part must be enclosed in quotation marks.

rule_synonym is a user-defined synonym for a rule name, it can be used to map gnatcheck rules onto a user
coding standard.

-Rrule_id[:param] Turn off the check for a specified rule with the specified parameter, if any.

—from=rule_option_filename Read the rule options from the text file rule_option_filename, referred to as a
‘coding standard file’ below.

The default behavior is that all the rule checks are disabled.

If a rule option is given in a rule file, it can contain spaces and line breaks. Otherwise there should be no spaces
between the components of a rule option.

If more than one rule option is specified for the same rule, these options are summed together. If a new option
contradicts the rule settings specified by previous options for this rule, the new option overrides the previous settings.

A coding standard file is a text file that contains a set of rule options described above.

The file may contain empty lines and Ada-style comments (comment lines and end-of-line comments). There can be
several rule options on a single line (separated by a space).

A coding standard file may reference other coding standard files by including more —~from=rule_option_filename
options, each such option being replaced with the content of the corresponding coding standard file during processing.

In case a cycle is detected (that is, rule_file_1 reads rule options from rule_file_2, and rule_file_2
reads (directly or indirectly) rule options from rule_file_1), processing fails with an error message.

If the name of the coding standard file does not contain a path information in absolute form, then it is treated as
being relative to the current directory if gnatcheck is called without a project file or as being relative to the project file
directory if gnatcheck is called with a project file as an argument.

GNATcheck Reference Manual 17 of 113

GNATcheck Reference Manual 2019

This page is intentionally left blank.

18 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

CHAPTER
SIX

ADDING THE RESULTS OF COMPILER CHECKS TO GNATCHECK
OUTPUT

The gnatcheck tool can include in the generated diagnostic messages and in the report file the results of the checks
performed by the compiler. Though disabled by default, this effect may be obtained by using +R with the following
rule identifiers and parameters:

Restrictions To record restrictions violations (which are performed by the compiler if the pragma Restrictions
or Restriction_Warnings are given), use the Restrictions rule with the same parameters as pragma
Restrictions orRestriction_Warnings.

This rule allows parametric rule exemptions, the parameters that are allowed in the definition of exemption
sections are the names of the restrictions except for the case when a restriction requires a non-numeric parameter,
in this case the parameter should be the name of the restriction with the parameter, as it is given for the rule.

Style_Checks To record compiler style checks (see Style Checking section in GNAT User’s Guide), use the
Style_Checks rule.

This rule takes a parameter in one of the following forms:

e All_Checks, which enables the standard style checks corresponding to the ~gnatyy GNAT style check
option, or

* astring with the same structure and semantics as the st ring_LITERAL parameter of the GNAT pragma
Style_Checks (see “Pragma Style_Checks” in the GNAT Reference Manual).

For example, the +RStyle_Checks:0 rule option activates the compiler style check that corresponds to
—gnatyoO style check option.

Warnings To record compiler warnings (see Warning Message Control section in GNAT User’s Guide), use the
Warnings rule with a parameter that is a valid static_string_expression argument of the GNAT pragma
Warnings (see “Pragma Warnings” in the GNAT Reference Manual). Note that in case of gnatcheck ‘s’
parameter, that corresponds to the GNAT —gnatws option, disables all the specific warnings, but not suppresses
the warning mode, and ‘e’ parameter, corresponding to —gnatwe that means “treat warnings as errors”, does
not have any effect.

This rule allows parametric rule exemptions, the parameters that are allowed in the definition of exemption
sections are the same as the parameters of the rule itself. Note that parametric exemption sections have their
effect only if either . d parameter is specified for the Warnings rule or if the ——show-rules option is set.

To disable a specific restriction check, use ~-RRestrictions gnatcheck option with the corresponding restriction
name as a parameter. —R is not available for Style_Checks and Warnings options, to disable warnings and style
checks, use the corresponding warning and style options.

GNATcheck Reference Manual 19 of 113

GNATcheck Reference Manual 2019

This page is intentionally left blank.

20 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

CHAPTER
SEVEN

MAPPING GNATCHECK RULES ONTO CODING STANDARDS

If a user would like use gnatcheck to check if some code satisfies to a given coding standard, the following approach
can be used to simplify mapping of the coding standard requirements onto gnatcheck rules:

» when specifying rule options, use synonyms for the rule names that are relevant to your coding standard:

+R :My_Coding_Rule_1: Gnatcheck_Rule_1: paraml

+R :My_Coding_Rule_N: Gnatcheck_Rule_N

* call gnatcheck with —show-rule option that adds the rule names to the generated diagnoses. If a synonym is used
in the rule option that enables the rule, then this synonym will be used to annotate the diagnosis instead of the
rule name:

foo.adb:2:28: something is wrong here [My_Coding_ Rule_1]

bar.ads:17:3: this is not good [My_Coding_Rule_N]

Currently this approach does not work for compiler-based checks integrated in gnatcheck (implemented by Restric-
tions, Style_Checks and Warnings rules.

GNATcheck Reference Manual 21 of 113

GNATcheck Reference Manual 2019

This page is intentionally left blank.

22 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

CHAPTER
EIGHT

RULE EXEMPTION

One of the most useful applications of gnatcheck is to automate the enforcement of project-specific coding standards,
for example in safety-critical systems where particular features must be restricted in order to simplify the certification
effort. However, it may sometimes be appropriate to violate a coding standard rule, and in such cases the rationale
for the violation should be provided in the source program itself so that the individuals reviewing or maintaining the
program can immediately understand the intent.

The gnatcheck tool supports this practice with the notion of a ‘rule exemption’ covering a specific source code section.
Normally rule violation messages are issued both on stderr and in a report file. In contrast, exempted violations
are not listed on stderr; thus users invoking gnatcheck interactively (e.g. in its GPS interface) do not need to pay
attention to known and justified violations. However, exempted violations along with their justification are documented
in a special section of the report file that gnatcheck generates.

8.1 Using pragma Annotate to Control Rule Exemption

Rule exemption is controlled by pragma Annotate when its first argument is ‘gnatcheck’. The syntax of gnatcheck‘s
exemption control annotations is as follows:

pragma Annotate (gnatcheck, exemption_control, Rule_Name [, Jjustification]);

exemption_control ::= Exempt_On | Exempt_Off

Rule_Name string_literal

justification ::= string_literal

When a gnatcheck annotation has more than four arguments, gnatcheck issues a warning and ignores the additional
arguments. If the arguments do not follow the syntax above, gnatcheck emits a warning and ignores the annotation.

The Rule_Name argument should be the name of some existing gnatcheck rule. Otherwise a warning message is
generated and the pragma is ignored. If Rule_Name denotes a rule that is not activated by the given gnatcheck call,
the pragma is ignored and no warning is issued. The exception from this rule is that exemption sections for Warnings
rule are fully processed when Restrictions rule is activated.

A source code section where an exemption is active for a given rule is delimited by an exempt_on and exempt_off
annotation pair:

pragma Annotate (gnatcheck, Exempt_On, "Rule_Name", "justification");
—-— source code section
pragma Annotate (gnatcheck, Exempt_Off, "Rule Name");

GNATcheck Reference Manual 23 of 113

GNATcheck Reference Manual 2019

For some rules it is possible specify rule parameter(s) when defining an exemption section for a rule. This means that
only the checks corresponding to the given rule parameter(s) are exempted in this section:

pragma Annotate (gnatcheck, Exempt_On, "Rule Name: Parl, Par2", "justification");
—-— source code section
pragma Annotate (gnatcheck, Exempt_Off, "Rule_Name: Parl, Par2");

A parametric exemption section can be defined for a rule if a rule has parameters and these parameters change the
scope of the checks performed by a rule. For example, if you define an exemption section for ‘Restriction’ rule with
the parameter ‘No_Allocators’, then in this section only the checks for No_Allocators will be exempted, and the
checks for all the other restrictions from your coding standard will be performed as usial.

See the description of individual rules to check if parametric exemptions are available for them and what is the format
of the rule parameters to be used in the corresponding parameters of the Annotate pragmas.

8.2 gnatcheck Annotations Rules

* An ‘Exempt_Off’ annotation can only appear after a corresponding ‘Exempt_On’ annotation.

» Exempted source code sections are only based on the source location of the annotations. Any source construct
between the two annotations is part of the exempted source code section.

» Exempted source code sections for different rules are independent. They can be nested or intersect with one
another without limitation. Creating nested or intersecting source code sections for the same rule is not allowed.

* A matching ‘Exempt_Off’ annotation pragma for an ‘Exempt_On’ pragma that defines a parametric exemption
section is the pragma that contains exactly the same set of rule parameters for the same rule.

» Parametric exemption sections for the same rule with different parameters can intersect or overlap in case if the
parameter sets for such sections have an empty intersection.

* Malformed exempted source code sections are reported by a warning, and the corresponding rule exemptions
are ignored.

* When an exempted source code section does not contain at least one violation of the exempted rule, a warning
is emitted on stderr.

 If an ‘Exempt_On’ annotation pragma does not have a matching ‘Exempt_Off” annotation pragma in the same
compilation unit, a warning is issued and the exemption section is considered to last until the end of the
compilation unit source.

24 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

CHAPTER
NINE

PREDEFINED RULES

The description of the rules currently implemented in gnatcheck is given in this chapter. The rule identifier is used as
a parameter of gnatcheck‘s +R or —R switches.

Be aware that most of these rules apply to specialized coding requirements developed by individual users and may
well not make sense in other environments. In particular, there are many rules that conflict with one another. Proper
usage of gnatcheck involves selecting the rules you wish to apply by looking at your independently developed coding
standards and finding the corresponding gnatcheck rules.

If not otherwise specified, a rule does not do any check for the results of generic instantiations.

9.1 Style-Related Rules

The rules in this section may be used to enforce various feature usages consistent with good software engineering, for
example as described in Ada 95 Quality and Style.

9.1.1 Tasking

The rules in this subsection may be used to enforce various feature usages related to concurrency.

Multiple_Entries_In Protected Definitions

Flag each protected definition (i.e., each protected object/type declaration) that declares more than one entry.
Diagnostic messages are generated for all the entry declarations except the first one. An entry family is counted
as one entry. Entries from the private part of the protected definition are also checked.

This rule has no parameters.

Example

protected PO is
entry Get (I : Integer);
entry Put (I : out Integer); -— FLAG
procedure Reset;
function Check return Boolean;
private
Val : Integer := 0;
end PO;

GNATcheck Reference Manual 25 of 113

GNATcheck Reference Manual 2019

Volatile_Obijects_Without_Address_Clauses

Flag each volatile object that does not have an address specification. Only variable declarations are checked.

An object is considered as being volatile if a pragma or aspect Volatile is applied to the object or to its type, if the
object is atomic or if the GNAT compiler considers this object as volatile because of some code generation reasons.

This rule has no parameters.

Example

with Interfaces, System, System.Storage_Elements;
package Foo is
Variable: Interfaces.Unsigned_8
with Address => System.Storage_Elements.To_Address (0), Volatile;

Variablel: Interfaces.Unsigned_8 -—— FLAG
with Volatile;

type My_Int is range 1 .. 32 with Volatile;
Variable3 : My_Int; -— FLAG
Variabled4 : My_Int

with Address => Variable3'Address;
end Foo;

9.1.2 Object Orientation

The rules in this subsection may be used to enforce various feature usages related to Object-Oriented Programming.

Constructors

Flag any declaration of a primitive function of a tagged type that has a controlling result and no controlling parameter.
If a declaration is a completion of another declaration then it is not flagged.

This rule has no parameters.

Example

type T is tagged record
I : Integer;
end record;

function Fun (I : Integer) return T; -— FLAG
function Bar (J : Integer) return T renames Fun; -— FLAG
function Foo (K : Integer) return T is ((I => K)); —-— FLAG

26 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

Deep_Inheritance_Hierarchies

Flags a tagged derived type declaration or an interface type declaration if its depth (in its inheritance hierarchy) exceeds
the value specified by the N rule parameter. Types in generic instantiations which violate this rule are also flagged;
generic formal types are not flagged. This rule also does not flag private extension declarations. In the case of a private
extension, the corresponding full declaration is checked.

In most cases, the inheritance depth of a tagged type or interface type is defined as O for a type with no parent and
no progenitor, and otherwise as 1 + max of the depths of the immediate parent and immediate progenitors. If the
declaration of a formal derived type has no progenitor, or if the declaration of a formal interface type has exactly one
progenitor, then the inheritance depth of such a formal derived/interface type is equal to the inheritance depth of its
parent/progenitor type, otherwise the general rule is applied.

If the rule flags a type declaration inside the generic unit, this means that this type declaration will be flagged in any
instantiation of the generic unit. But if a type is derived from a format type or has a formal progenitor and it is not
flagged at the place where it is defined in a generic unit, it may or may not be flagged in instantiation, this depends of
the inheritance depth of the actual parameters.

This rule has the following (mandatory) parameter for the +R option:

N Integer not less than -1 specifying the maximal allowed depth of any inheritance hierarchy. If the rule parameter is
set to -1, the rule flags all the declarations of tagged and interface types.

Example

type I0 is interface;
type Il is interface and IO;
type I2 is interface and I1;

type TO is tagged null record;

type Tl is new T0 and I0 with null record;

type T2 is new TO and Il with null record;

type T3 is new TO and I2 with null record; -- FLAG (if rule parameter 1is 2)

Direct_Calls To Primitives

Flag any non-dispatching call to a dispatching primitive operation, except for:

* acall to the corresponding primitive of the parent type. (This occurs in the common idiom where a primitive
subprogram for a tagged type directly calls the same primitive subprogram of the parent type.)

* acall to a primitive of an untagged private type, even though the full type may be tagged, when the call is made
at a place where the view of the type is untagged.

This rule has the following (optional) parameters for the +R option:

Except_Constructors Do not flag non-dispatching calls to functions if the function has a controlling result and no
controlling parameters (in a traditional OO sense such functions may be considered as constructors).

Example

package Root is
type T_Root is tagged private;

GNATcheck Reference Manual 27 of 113

GNATcheck Reference Manual 2019

procedure Primitive_1 (X : in out T_Root);
procedure Primitive_2 (X : in out T_Root);
private
type T_Root is tagged record
Comp : Integer;
end record;
end Root;

package Root.Child is
type T_Child is new T_Root with private;

procedure Primitive_1 (X : in out T_Child);
procedure Primitive_2 (X : in out T_Child);
private
type T_Child is new T_Root with record
B : Boolean;
end record;
end Root.Child;

package body Root.Child is

procedure Primitive_1 (X : in out T_Child) is

begin
Primitive_1 (T_Root (X)); —-— NO FLAG
Primitive_2 (T_Root (X)); -— FLAG
Primitive_2 (X); -— FLAG

end Primitive_1;

procedure Primitive_2 (X : in out T_Child) is
begin

X.Comp := X.Comp + 1;
end Primitive_2;

end Root.Child;

Downward View Conversions

Flag downward view conversions.

This rule has no parameters.

Example

package Foo is
type Tl is tagged private;
procedure Procl (X : in out T1l'Class);

type T2 is new Tl with private;
procedure Proc2 (X : in out T2'Class);

private
type Tl is tagged record
C : Integer := 0;

end record;

28 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

type T2 is new Tl with null record;
end Foo;

package body Foo is

procedure Procl (X : in out Tl'Class) is

Var : T2 := T2 (X); —-— FLAG
begin
Proc2 (T2'Class (X)); —-— FLAG

end Procl;

procedure Proc2 (X : in out T2'Class) is
begin

X.C := X.C + 1;
end Proc2;

end Foo;

No_Inherited Classwide_Pre

Flag a declaration of an overriding primitive operation of a tagged type if at least one of the operations it overrides or
implements does not have (explicitly defined or inherited) Pre’Class aspect defined for it.

This rule has no parameters.

Example

package Foo is

type Int is interface;
function Test (X : Int) return Boolean is abstract;
procedure Proc (I : in out Int) is abstract with Pre'Class => Test (I);

type Intl is interface;
procedure Proc (I : in out Intl) is abstract;

type T is tagged private;

type NT1 is new T and Int with private;
function Test (X : NT1l) return Boolean; —-— FLAG
procedure Proc (X : in out NT1);

type NT2 is new T and Intl with private;
procedure Proc (X : in out NT2); -— FLAG

private

type T is tagged record
I : Integer;

end record;

type NT1 is new T and Int with null record;
type NT2 is new T and Intl with null record;

end Foo;

GNATcheck Reference Manual 29 of 113

GNATcheck Reference Manual 2019

Specific_Pre_ Post

Flag a declaration of a primitive operation of a tagged type if this declaration contains specification of Pre or/and Post
aspect.

This rule has no parameters.

Example

type T is tagged private;
function Checkl (X : T) return Boolean;
function Check2 (X : T) return Boolean;

procedure Procl (X : in out T) -— FLAG
with Pre => Checkl (X);

procedure Proc2 (X : in out T) -— FLAG
with Post => Check2 (X);

function Funl (X : T) return Integer -— FLAG
with Pre => Checkl (X),
Post => Check2 (X);

function Fun2 (X : T) return Integer
with Pre'Class => Checkl (X),
Post'Class => Check2 (X);

function Fun3 (X : T) return Integer -— FLAG
with Pre'Class => Checkl (X),
Post'Class => Check2 (X),
Pre => Checkl (X),
Post => Check2 (X);

Specific_Parent_ Type Invariant

Flag any record extension definition or private extension definition if a parent type has a Type_Invariant aspect defined
for it. A record extension definition is not flagged if it is a part of a completion of a private extension declaration.

This rule has no parameters.

Example

package Packl is
type PT1 is tagged private;
type PT2 is tagged private
with Type_Invariant => Invariant_2 (PT2);

function Invariant_ 2 (X : PT2) return Boolean;

private
type PT1 is tagged record
I : Integer;
end record;

30 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

type PT2 is tagged record
I : Integer;
end record;

type PT1_N is new PT1l with null record;
type PT2_N is new PT2 with null record; -- FLAG
end Packl;

package Pack2 is

type N_PT1 is new Packl.PT1l with private;

type N_PT2 is new Packl.PT2 with private; -- FLAG
private

type N_PT1 is new Packl.PT1l with null record;

type N_PT2 is new Packl.PT2 with null record;
end Pack2;

Specific_Type Invariants

Flag any definition of (non-class-wide) Type_Invariant aspect that is a part of a declaration of a tagged type or a tagged
extension. Definitions of Type_Invariant’Class aspects are not flagged. Definitions of (non-class-wide) Type_Invariant
aspect that are parts of declarations of non-tagged types are not flagged.

This rule has no parameters.

Example

type PT is private
with Type_Invariant => Test_PT (PT);
function Test_PT (X : PT) return Boolean;

type TPT1 is tagged private
with Type_Invariant => Test_TPT1 (TPT1); —-— FLAG
function Test_TPT1 (X : TPT1l) return Boolean;

type TPT2 is tagged private
with Type_Invariant'Class => Test_TPT2 (TPT2);
function Test_ TPT2 (X : TPT2) return Boolean;

Too_Many_ Parents

Flag any tagged type declaration, interface type declaration, single task declaration or single protected declaration that
has more than N parents, where N is a parameter of the rule. A parent here is either a (sub)type denoted by the subtype
mark from the parent_subtype_indication (in case of a derived type declaration), or any of the progenitors from the
interface list (if any).

This rule has the following (mandatory) parameters for the +R option:

N Positive integer specifying the maximal allowed number of parents/progenitors.

GNATcheck Reference Manual 31 of 113

GNATcheck Reference Manual 2019

Example

type I1 is interface;
type I2 is interface;
type I3 is interface;
type I4 is interface;

type T_Root is tagged private;

Too_Many Primitives

Flag any tagged type declaration that has more than N user-defined primitive operations (counting both inherited and
not overridden and explicitly declared, not counting predefined operators). Do not flag type declarations that are
completions of private type or extension declarations.

This rule has the following (mandatory) parameters for the +R option:

N Positive integer specifying the maximal number of primitives when the type is not flagged.

Example

package Foo is
type PT is tagged private; -— FLAG (if rule parameter is 3 or less)

procedure P1 (X : in out PT);

procedure P2 (X : in out PT) is null;

function F1 (X : PT) return Integer;

function F2 (X : PT) return Integer is (F1 (X) + 1);

type Il is interface;

procedure P1 (X : in out Il) is abstract;
procedure P2 (X : in out Il) is null;

type I2 is interface and I1; -— FLAG (if rule parameter is 3 or less)
function F1 (X : I2) return Integer is abstract;
function F2 (X : I2) return Integer is abstract;

private

type PT is tagged record
I : Integer;
end record;
end Foo;

Visible_Components

Flag all the type declarations located in the visible part of a library package or a library generic package that can
declare a visible component. A visible component can be declared in a record definition which appears on its own or

32 of 113 GNATcheck Reference Manual

type T_1 is new T_Root with private;

type T_2 is new T_Root and Il with private;

type T_3 is new T_Root and Il and I2 with private;

type T_4 is new T_Root and Il and I2 and I3 with private; —-- FLAG (if rule parameter 15 3 or less)

GNATcheck Reference Manual 2019

as part of a record extension. The record definition is flagged even if it contains no components.

Record definitions located in private parts of library (generic) packages or in local (generic) packages are not flagged.
Record definitions in private packages, in package bodies, and in the main subprogram body are not flagged.

This rule has the following (optional) parameters for the +R option:

Tagged_Only Only declarations of tagged types are flagged.

Example

with Types;
package Foo is
type Null_Record is null record; -— FLAG

type Not_Null Record is record -— FLAG
I : Integer;
B : Boolean;

end record;

type Tagged_Not_Null_Record is tagged record -— FLAG
I : Integer;
B : Boolean;

end record;

type Private_Extension is new Types.Tagged_Private with private;

type NoN_Private_Extension is new Types.Tagged_Private with record -- FLAG
B : Boolean;
end record;

private
type Rec is tagged record
I : Integer;
end record;

type Private_Extension is new Types.Tagged_Private with record
C : Rec;
end record;
end Foo;

9.1.3 Portability

The rules in this subsection may be used to enforce various feature usages that support program portability.

Bit_Records_Without_Layout_Definition

Flag record type declarations if a record has a component of a modular type and the record type does not have a record
representation clause applied to it.

This rule has no parameters.

GNATcheck Reference Manual 33 of 113

GNATcheck Reference Manual 2019

Example

package Pack is
type My_Mod is mod 8;

type My_Rec is record -— FLAG
I : My_Mod;
end record;
end Pack;

Forbidden_ Attributes

Flag each use of the specified attributes. The attributes to be detected are named in the rule’s parameters.
This rule has the following parameters:
* For the +R option

Attribute_Designator Adds the specified attribute to the set of attributes to be detected and sets the detection checks
for all the specified attributes ON. If Attribute_Designator does not denote any attribute defined in the Ada
standard or in the GNAT Reference Manual, it is treated as the name of unknown attribute.

GNAT All the GNAT-specific attributes are detected; this sets the detection checks for all the specified attributes ON.
ALL All attributes are detected; this sets the rule ON.
¢ For the -R option

Attribute_Designator Removes the specified attribute from the set of attributes to be detected without affecting
detection checks for other attributes. If Attribute_Designator does not correspond to any attribute defined in
the Ada standard or in the GNAT Reference Manual, this option is treated as turning OFF detection of all
unknown attributes.

GNAT Turn OFF detection of all GNAT-specific attributes
ALL Clear the list of the attributes to be detected and turn the rule OFF.

Parameters are not case sensitive. If Astribute_Designator does not have the syntax of an Ada identifier and therefore
can not be considered as a (part of an) attribute designator, a diagnostic message is generated and the corresponding
parameter is ignored. (If an attribute allows a static expression to be a part of the attribute designator, this expression
is ignored by this rule.)

When more than one parameter is given in the same rule option, the parameters must be separated by commas.
If more than one option for this rule is specified for the gnatcheck call, a new option overrides the previous one(s).

The +R option with no parameters turns the rule ON, with the set of attributes to be detected defined by the previous
rule options. (By default this set is empty, so if the only option specified for the rule is +RForbidden_Attributes
(with no parameter), then the rule is enabled, but it does not detect anything). The —R option with no parameter turns
the rule OFF, but it does not affect the set of attributes to be detected.

The rule allows parametric exemption, the parameters that are allowed in the definition of exemption sections are
Attribute_Designators. Each Attribute_Designator used as a rule exemption parameter should denote a predefined or
GNAT-specific attribute.

34 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

Example

-— 1f the rule is activated as +RForbidden Attributes:Range,First,Last
procedure Foo is

type Arr is array (1 .. 10) of Integer;

Arr_Var : Arr;

subtype Ind is Integer range Arr'First .. Arr'Last; -- FLAG (twice)
begin
for J in Arr'Range loop -—- FLAG
Arr_Var (J) := Integer'Succ (J);

Forbidden_Pragmas

Flag each use of the specified pragmas. The pragmas to be detected are named in the rule’s parameters.
This rule has the following parameters:
* For the +R option

Pragma_Name Adds the specified pragma to the set of pragmas to be checked and sets the checks for all the specified
pragmas ON. Pragma_Name is treated as a name of a pragma. If it does not correspond to any pragma name
defined in the Ada standard or to the name of a GNAT-specific pragma defined in the GNAT Reference Manual,
it is treated as the name of unknown pragma.

GNAT All the GNAT-specific pragmas are detected; this sets the checks for all the specified pragmas ON.
ALL All pragmas are detected; this sets the rule ON.
* For the —R option

Pragma_Name Removes the specified pragma from the set of pragmas to be checked without affecting checks for
other pragmas. Pragma_Name is treated as a name of a pragma. If it does not correspond to any pragma defined
in the Ada standard or to any name defined in the GNAT Reference Manual, this option is treated as turning
OFF detection of all unknown pragmas.

GNAT Turn OFF detection of all GNAT-specific pragmas
ALL Clear the list of the pragmas to be detected and turn the rule OFF.

Parameters are not case sensitive. If Pragma_Name does not have the syntax of an Ada identifier and therefore can
not be considered as a pragma name, a diagnostic message is generated and the corresponding parameter is ignored.

When more than one parameter is given in the same rule option, the parameters must be separated by a comma.
If more than one option for this rule is specified for the gnatcheck call, a new option overrides the previous one(s).

The +R option with no parameters turns the rule ON with the set of pragmas to be detected defined by the previous
rule options. (By default this set is empty, so if the only option specified for the rule is +RForbidden_Pragmas
(with no parameter), then the rule is enabled, but it does not detect anything). The —R option with no parameter turns
the rule OFF, but it does not affect the set of pragmas to be detected.

Note that in case when the rule is enabled with ALL parameter, then the rule will flag also pragmas Annotate used to
exempt rules, see Rule exemption. Even if you exempt this Forbidden_Pragmas rule then the pragma Annotate that
closes the exemption section will be flagged as non-exempted. To avoid this, turn off the check for pragma Annotate
by using ~-RForbidden_Pragmas:Annotate rule option.

The rule allows parametric exemption, the parameters that are allowed in the definition of exemption sections are
pragma names. Each name used as a rule exemption parameter should denote a predefined or GNAT-specific pragma.

GNATcheck Reference Manual 35 0f 113

GNATcheck Reference Manual 2019

Example

-— 1f the rule is activated as +RForbidden_ Pragmas:Pack
package Foo is

type Arr is array (1 .. 8) of Boolean;
pragma Pack (Arr); -— FLAG

I : Integer;
pragma Atomic (I);

end Foo;

Implicit_SMALL_For_Fixed Point_ Types

Flag each fixed point type declaration that lacks an explicit representation clause to define its * Small value. Since
" Small can be defined only for ordinary fixed point types, decimal fixed point type declarations are not checked.

This rule has no parameters.

Example

package Foo is
type Fraction is delta 0.01 range -1.0 .. 1.0;
type Fractionl is delta 0.01 range -1.0 .. 1.0; -- FLAG

type Money is delta 0.01 digits 15;

for Fraction'Small use 0.01;
end Foo;

Incomplete_Representation_Specifications

Flag all record types that have a layout representation specification but without Size and Pack representation

specifications.

This rule has no parameters.

Example

package Pack is
type Rec is record -—- FLAG
I : Integer;
B : Boolean;
end record;

for Rec use record
I at 0 range 0 ..31;
B at 4 range 0 .. 7;

36 of 113

GNATcheck Reference Manual

GNATcheck Reference Manual 2019

end record;
end Pack;

No_Explicit_Real_ Range

Flag a declaration of a floating point type or a decimal fixed point type, including types derived from them if no explicit
range specification is provided for the type.

This rule has no parameters.

Example
type F1l is digits §; -— FLAG
type F2 is delta 0.01 digits 8; -— FLAG

No_Scalar_ Storage_Order_Specified

Flag each record type declaration, record extension declaration, and untagged derived record type declaration if a
record_representation_clause that has at least one component clause applies to it (or an ancestor), but neither the type
nor any of its ancestors has an explicitly specified Scalar_Storage_Order attribute.

This rule has no parameters.

Example

with System;
package Foo is

type Recl is record -— FLAG
I : Integer;
end record;

for Recl use
record
I at 0 range 0 .. 31;
end record;

type Rec2 is record
I : Integer;
end record;

for Rec2 use
record
I at 0 range 0 .. 31;
end record;

pragma Attribute_Definition (Scalar_Storage_Order, Rec2, System.Low_Order_First);
end Foo;

GNATcheck Reference Manual 37 of 113

GNATcheck Reference Manual 2019

Predefined_Numeric_Types

Flag each explicit use of the name of any numeric type or subtype declared in package Standard.

The rationale for this rule is to detect when the program may depend on platform-specific characteristics of the
implementation of the predefined numeric types. Note that this rule is overly pessimistic; for example, a program
that uses St ring indexing likely needs a variable of type Integer. Another example is the flagging of predefined
numeric types with explicit constraints:

subtype My_Integer is Integer range Left .. Right;
Vy_Var : My_Integer;

This rule detects only numeric types and subtypes declared in package Standard. The use of numeric types and
subtypes declared in other predefined packages (such as System.Any_Priority or Ada.Text_IO.Count)is
not flagged

This rule has no parameters.

Example

package Foo is
I : Integer; —-— FLAG
F : Float; —-— FLAG
B : Boolean;

type Arr is array (1 .. 5) of Short_Float; -- FLAG
type Res is record
Cl : Long_Integer; -— FLAG
C2 : Character;

end record;

end Foo;

Printable ASCII
Flag source code text characters that are not part of the printable ASCII character set, a line feed, or a carriage return
character (i.e. values 10, 13 and 32 .. 126 of the ASCII Character set).

If a code line contains more than one symbol that does not belong to the printable ASCII character set, the generated
diagnosis points to the first (leftmost) character and says that there are more in this line.

This rule has no parameters.

Separate_Numeric_ Error_Handlers

Flags each exception handler that contains a choice for the predefined Constraint_Error exception, but does not
contain the choice for the predefined Numeric_Error exception, or that contains the choice for Numeric_Error,
but does not contain the choice for Constraint_Error.

This rule has no parameters.

38 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

Example

exception
when Constraint_Error => -- FLAG
Clean_Up;
end;

9.1.4 Program Structure

The rules in this subsection may be used to enforce feature usages related to program structure.

Deep_Library_ Hierarchy

Flag any library package declaration, library generic package declaration or library package instantiation that has
more than N parents and grandparents (that is, the name of such a library unit contains more than N dots). Child
subprograms, generic subprograms subprogram instantiations and package bodies are not flagged.

This rule has the following (mandatory) parameters for the +R option:

N Positive integer specifying the maximal number of ancestors when the unit is not flagged.

Example

package Parent.Childl.Child2 is -- FLAG (if rule parameter is 1)
I : Integer;

end;

Deeply Nested Generics

Flag a generic declaration nested in another generic declaration if the nesting level of the inner generic exceeds the
value specified by the N rule parameter. The nesting level is the number of generic declarations that enclose the given
(generic) declaration. Formal packages are not flagged by this rule.

This rule has the following (mandatory) parameters for the +R option:

N Nonnegative integer specifying the maximum nesting level for a generic declaration.

Example

package Foo is

generic
package P_G_0 is
generic
package P_G_1 is
generic -— FLAG (if rule parameter is 1)
package P_G_2 is
I : Integer;
end;

GNATcheck Reference Manual 39 of 113

GNATcheck Reference Manual 2019

end;
end;

end Foo;

Local_Packages

Flag all local packages declared in package and generic package specs. Local packages in bodies are not flagged.

This rule has no parameters.

Example

package Foo is
package Inner is -— FLAG
I : Integer;
end Inner;
end Foo;

Non_Visible_ Exceptions
Flag constructs leading to the possibility of propagating an exception out of the scope in which the exception is
declared. Two cases are detected:

¢ An exception declaration in a subprogram body, task body or block statement is flagged if the body or statement
does not contain a handler for that exception or a handler with an others choice.

* A raise statement in an exception handler of a subprogram body, task body or block statement is flagged if it
(re)raises a locally declared exception. This may occur under the following circumstances:

— it explicitly raises a locally declared exception, or

— it does not specify an exception name (i.e., it is simply raise;) and the enclosing handler contains a
locally declared exception in its exception choices.

Renamings of local exceptions are not flagged.

This rule has no parameters.

Example

procedure Bar is

Var : Integer :=- 13;

procedure Inner (I : in out Integer) is
Inner_Exception_1 : exception; -— FLAG
Inner_Exception_2 : exception;

begin

if T = 0 then

raise Inner_Exception_1;
elsif T = 1 then

raise Inner_Exception_2;

40 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

else
I :=1-1;
end if;
exception
when Inner_Exception_2 =>
I :=0;
raise; -— FLAG
end Inner;

begin
Inner (Var);
end Bar;

Raising External_ Exceptions

Flag any raise statement, in a program unit declared in a library package or in a generic library package, for an
exception that is neither a predefined exception nor an exception that is also declared (or renamed) in the visible part
of the package.

This rule has no parameters.

Example

package Exception_Declarations is
Ex : exception;
end Exception_Declarations;
package Foo is
procedure Proc (I : in out Integer);
end Foo;
with Exception_Declarations;
package body Foo is
procedure Proc (I : in out Integer) is
begin
if I < 0 then
raise Exception_Declarations.Ex; —-— FLAG
else
I :=1-1;
end if;
end Proc;
end Foo;

9.1.5 Programming Practice

The rules in this subsection may be used to enforce feature usages that relate to program maintainability.

Address_Specifications_For_Initialized Objects

Flag address clauses and address aspect definitions if they are applied to object declarations with explicit initializations.

This rule has no parameters.

GNATcheck Reference Manual 41 of 113

GNATcheck Reference Manual 2019

Example

I : Integer := 0;
Var0 : Integer with Address => I'Address;

Varl : Integer := 10;
for Varl'Address use Var(O'Address; -— FLAG

Address_Specifications_For_Local_ Objects

Flag address clauses and address aspect definitions if they are applied to data objects declared in local subprogram
bodies. Data objects declared in library subprogram bodies are not flagged.

This rule has no parameters.

Example

package Pack is
Var : Integer;
procedure Proc (I : in out Integer);
end Pack;
package body Pack is
procedure Proc (I : in out Integer) is
Tmp : Integer with Address => Pack.Var'Address; -— FLAG
begin
I := Tmp;
end Proc;
end Pack;

Anonymous_Arrays

Flag all anonymous array type definitions (by Ada semantics these can only occur in object declarations).

This rule has no parameters.

Example

type Arr is array (1 .. 10) of Integer;

Varl : Arr;

Var2 : array (1 .. 10) of Integer; -— FLAG

Binary Case_Statements

Flag a case statement if this statement has only two alternatives, one containing exactly one choice, the other containing
exactly one choice or the OTHERS choice.

This rule has no parameters.

42 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

Example

case Var is -— FLAG
when 1 =>
Var := Var + 1;
when others =>
null;
end case;

Default_Values_For_ Record Components

Flag a record component declaration if it contains a default expression. Do not flag record component declarations in
protected definitions. Do not flag discriminant specifications.

This rule has no parameters.

Example

type Rec (D : Natural := 0) is record
I : Integer := 0; —-— FLAG
B : Boolean;

case D is
when 0 =>

C : Character := 'A'; -— FLAG
when others =>
F : Float;
end case;

end record;

Deriving From_ Predefined Type

Flag derived type declaration if the ultimate ancestor type is a predefined Ada type. Do not flag record extensions and
private extensions. The rule is checked inside expanded generics.

This rule has no parameters.

Example

package Foo is
type T is private;

type My_String is new String; -- FLAG
private

type T is new Integer; -— FLAG
end Foo;

GNATcheck Reference Manual 43 of 113

GNATcheck Reference Manual 2019

Enumeration_Ranges_In_CASE_Statements

Flag each use of a range of enumeration literals as a choice in a case statement. All forms for specifying a range
(explicit ranges such as A .. B, subtype marks and ' Range attributes) are flagged. An enumeration range is
flagged even if contains exactly one enumeration value or no values at all. A type derived from an enumeration type
is considered as an enumeration type.

This rule helps prevent maintenance problems arising from adding an enumeration value to a type and having it
implicitly handled by an existing case statement with an enumeration range that includes the new literal.

This rule has no parameters.

Example

procedure Bar (I : in out Integer) is
type Enum is (A, B, C, D, E);
type Arr is array (A .. C) of Integer;

function F (J : Integer) return Enum is separate;

begin
case F (I) is
when Arr'Range => —-- FLAG
I :=1+ 1;
when D .. E => —-— FLAG
null;
end case;
end Bar;

Enumeration_Representation_Clauses

Flag enumeration representation clauses.

This rule has no parameters.

Example

type Enuml is (Al, B1l, C1);
for Enuml use (Al => 1, Bl => 11, Cl => 111); -— FLAG

Exceptions_As_Control_Flow

Flag each place where an exception is explicitly raised and handled in the same subprogram body. A raise statement
in an exception handler, package body, task body or entry body is not flagged.

The rule has no parameters.

Example

44 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

procedure Bar (I : in out Integer) is
begin
if I = Integer'Last then
raise Constraint_Error; —-— FLAG
else
I :=1-1;
end if;
exception
when Constraint_FError =>
I := Integer'First;
end Bar;

Exits_From_Conditional_Loops

Flag any exit statement if it transfers the control out of a for loop or a while loop. This includes cases when the
exit statement applies to a FOR or while loop, and cases when it is enclosed in some for or while loop, but

transfers the control from some outer (unconditional) 1oop statement.

The rule has no parameters.

Example
function Bar (S : String) return Natural is
Result : Natural := 0;
begin
for J in S'Range loop
exit when S (J) = '@"'; -— FLAG
Result := Result + J;
end loop;
return O;
end Bar;

EXIT_ Statements_With_No_Loop_Name

Flag each exit statement that does not specify the name of the loop being exited.

The rule has no parameters.

Example

procedure Bar (I, J : in out Integer) is
begin
loop
exit when I < J;
I I - 1;
J J + 1;
end loop;
end Bar;

- FLAG

GNATcheck Reference Manual

45 of 113

GNATcheck Reference Manual 2019

Global_Variables

Flag any variable declaration that appears immediately within the specification of a library package or library generic
package. Variable declarations in nested packages and inside package instantiations are not flagged.

This rule has the following (optional) parameters for the +R option:

Only_Public Do not flag variable declarations in private library (generic) packages and in package private parts.

Example
package Foo is
Varl Integer; -— FLAG
procedure Proc;
private
Var2 Boolean; -— FLAG
end Foo;

GOTO_Statements

Flag each occurrence of a got o statement.

This rule has no parameters.

Example

for K in 1 10 loop

if K = 6 then
goto Quit;

end if;
null;

end loop;

<<Quit>>

return;

—-— FLAG

Improper_ Returns

Flag each explicit return statement in procedures, and multiple return statements in functions. Diagnostic
messages are generated for all return statements in a procedure (thus each procedure must be written so that it
returns implicitly at the end of its statement part), and for all return statements in a function after the first one. This
rule supports the stylistic convention that each subprogram should have no more than one point of normal return.

This rule has no parameters.

Example

procedure Proc (I in out Integer) is
begin
if I = 0 then
return;

FLAG

46 of 113

GNATcheck Reference Manual

GNATcheck Reference Manual 2019

end if;

I =1 (I + 1);
end Proc;

function Factorial (I : Natural) return Positive is
begin
if I = 0 then
return 1;
else
return I * Factorial (I - 1); -— FLAG
end if;
exception
when Constraint_Error =>
return Natural'Last;
end Factorial;

- FLAG

Local_USE_Clauses

Use clauses that are not parts of compilation unit context clause are flagged. The rule has an optional parameter for
+R option:

Except_USE_TYPE_Clauses Do not flag local use type clauses.

Example

with Packl;
with Pack2;
procedure Proc is
use Packl; -— FLAG

procedure Inner is
use type Pack2.T; -

FLAG (if Except_USE_TYPE_Clauses 1is not set)

Maximum Parameters

Flag any subprogram declaration, subprogram body declaration, expression function declaration, null procedure
declaration, subprogram body stub or generic subprogram declaration if the corresponding subprogram has more
than N formal parameters, where N is a parameter of the rule.

A subprogram body, an expression function, a null procedure or a subprogram body stub is flagged only if there is no
separate declaration for this subprogram. Subprogram renaming declarations and subprogram instantiations, as well
as declarations inside expanded generic instantiations are never flagged.

This rule has the following (mandatory) parameters for the +R option:

N Positive integer specifying the maximum allowed total number of subprogram formal parameters.

GNATcheck Reference Manual 47 of 113

GNATcheck Reference Manual 2019

Example

package Foo is

procedure Proc_1l (I : in out Integer);

procedure Proc_2 (I, J : in out Integer);

procedure Proc_3 (I, J, K : in out Integer);

procedure Proc_4 (I, J, K, L : in out Integer); —-- FLAG (if rule parameter is 3)

function Fun_4 -— FLAG (if rule parameter is 3)
(I : Integer;
J : Integer;
K : Integer;
L : Integer) return Integer is (I + J » K - L);

end Foo;

Misplaced_Representation_TItems

Flag a representation item if there is any Ada construct except another representation item for the same entity between
this clause and the declaration of the entity it applies to. A representation item in the context of this rule is either a
representation clause or one of the following representation pragmas:

* Atomic J.15.8(9/3)

* Atomic_Components J.15.8(9/3)

* Independent J.15.8(9/3)

* Independent_Components J.15.8(9/3)
* Pack J.15.3(1/3)

¢ Unchecked_Union J.15.6(1/3)

* Volatile J.15.8(9/3)

* Volatile_Components J.15.8(9/3)

This rule has no parameters.

Example

type Intl is range 0 .. 1024;

type Int2 is range 0 .. 1024;

for Int2'Size use 16; -— NO FLAG
for Intl'Size use 16; -— FLAG

Nested_ Subprograms

Flag any subprogram declaration, subprogram body declaration, subprogram instantiation, expression function
declaration or subprogram body stub that is not a completion of another subprogram declaration and that is declared
within subprogram body (including bodies of generic subprograms), task body or entry body directly or indirectly

48 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

(that is - inside a local nested package). Protected subprograms are not flagged. Null procedure declarations are not
flagged. Procedure declarations completed by null procedure declarations are not flagged.

This rule has no parameters.

Example

procedure Bar (I, J : in out Integer)

procedure Procl;
procedure Proc2 is separate;
procedure Procl is
begin
I :=1+ J;

end Procl;

begin

procedure Foo (K : Integer) is null;

FLAG

FLAG

Non_Short_Circuit_Operators

Flag all calls to predefined and and or operators for any boolean type. Calls to user-defined and and or and to
operators defined by renaming declarations are not flagged. Calls to predefined and and or operators for modular

types or boolean array types are not flagged.

This rule has no parameters.

Example

Bl (=1 >0 and J > 0; -— FLAG
B2 := I < 0 and then J < 0;

B3 (=1 >Jor J > 0; -— FLAG
B4 := 1 < J or else I < 0;

Null_ Paths

Flag a statement sequence that is a component of an IF, CASE or LOOP statement if this sequences consists of NULL

statements only.

This rule has no parameters.

Example

if T > 10 then

J := 5;
elsif I > 0 then

null; -— FLAG
else

GNATcheck Reference Manual

49 of 113

GNATcheck Reference Manual 2019

J = J + 1;
end if;

case J is
when 1 =>

I :=1+ 1;
when 2 =>

null; -- FLAG
when 3 =>

J = J + 1;
when others =>

null; —-— FLAG

end case;

Objects_Of_ Anonymous_Types

Flag any object declaration located immediately within a package declaration or a package body (including generic
packages) if it uses anonymous access or array type definition. Record component definitions and parameter
specifications are not flagged. Formal object declarations defined with anonymous access definitions are flagged.

This rule has no parameters.

Example

package Foo is
type Arr is array (1 .. 10) of Integer;
type Acc is access Integer;

A : array (1 .. 10) of Integer; -— FLAG
B : Arr;
C : access Integer; -— FLAG
D : Acc;
generic
Fl : access Integer; -— FLAG
F2 : Acc;

procedure Proc_G
(P1 : access Integer;
P2 : Acc);
end Foo;

OTHERS_In_ Aggregates
Flag each use of an others choice in extension aggregates. In record and array aggregates, an others choice is
flagged unless it is used to refer to all components, or to all but one component.

If, in case of a named array aggregate, there are two associations, one with an others choice and another with a
discrete range, the others choice is flagged even if the discrete range specifies exactly one component; for example,
(1..1 => 0, others => 1).

This rule has no parameters.

50 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

Example

package Foo is
type Arr is array (1 .. 10) of Integer;

type Rec is record
Cl : Integer;
C2 : Integer;
C3 : Integer;
C4 : Integer;
end record;

type Tagged_Rec is tagged record
Cl : Integer;
end record;

type New_Tagged_Rec is new Tagged_Rec with record
C2 : Integer;
C3 : Integer;
C4 : Integer;

end record;

Arr_Varl : Arr := (others => 1);
Arr_Var2 : Arr := (1 => 1, 2=> 2, others => 0); -— FLAG
Rec_Varl : Rec := (Cl => 1, others => 0);
Rec_Var2 : Rec := (1, 2, others => 3); -— FLAG
Tagged_Rec_Var : Tagged_Rec := (Cl => 1);
New_Tagged_Rec_Var : New_Tagged_Rec := (Tagged_Rec_Var with others => 0); -- FLAG
end Foo;
OTHERS_In_ CASE_Statements
Flag any use of an others choice in a case statement.
This rule has no parameters.
Example
case J is
when 1 =>
I :=1+ 1;
when 3 =>
J :=J + 1;
when others => -— FLAG
null;
end case;
GNATcheck Reference Manual 51 of 113

GNATcheck Reference Manual 2019

OTHERS_In_Exception_Handlers

Flag any use of an others choice in an exception handler.

This rule has no parameters.

Example

exception
when Constraint_Error =>
I:= Integer'Last;
when others => -— FLAG
I := 1I_01d;
raise;

Outbound_Protected_Assignments

Flag an assignment statement located in a protected body if the variable name in the left part of the statement denotes
an object declared outssided ourside this protected type or object.

This rule has no parameters.

Example

package Pack is
Var : Integer;

protected P is
entry E (I : in out Integer);

procedure P (I : Integer);
private
Flag : Boolean;
end P;
end Pack;

package body Pack is
protected body P is
entry E (I : in out Integer) when Flag is
begin
I := Var + I;
Var := I; —-— FLAG
end E;

procedure P (I : Integer) is
begin
Flag := I > 0;
end P;
end P;
end Pack;

52 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

Overly Nested Control_Structures

Flag each control structure whose nesting level exceeds the value provided in the rule parameter.
The control structures checked are the following:
e 1f statement
* case statement
¢ loop statement
* selective accept statement
* timed entry call statement
* conditional entry call statement
 asynchronous select statement
The rule has the following parameter for the +R option:
N Positive integer specifying the maximal control structure nesting level that is not flagged
If the parameter for the +R option is not specified or if it is not a positive integer, +R option is ignored.

If more than one option is specified for the gnatcheck call, the later option and new parameter override the previous
one(s).

Example

if T > 0 then
for Idx in I .. J loop
if J < 0 then
case I is
when 1 =>

if Idx /= 0 then -- FLAG (if rule parameter 1is 3)
J :=J / Idx;
end if;
when others =>
J := J + Idx;
end case;
end if;
end loop;
end if;

POS_On_Enumeration_Types

Flag ' Pos attribute in case if the attribute prefix has an enumeration type (including types derived from enumeration
types).

This rule has no parameters.

Example

GNATcheck Reference Manual 53 of 113

GNATcheck Reference Manual 2019

procedure Bar (Chl, Ch2 : Character; I : in out Integer) is
begin
if Chl'Pos in 32 .. 126 -— FLAG
and then
Ch2'Pos not in 0 .. 31 -— FLAG
then
I := (Chl'Pos + Ch2'Pos) / 2; —-— FLAG (twice)
end if;
end Bar;

Positional Actuals_ For Defaulted Generic_Parameters

Flag each generic actual parameter corresponding to a generic formal parameter with a default initialization, if
positional notation is used.

This rule has no parameters.

Example

package Foo is

function Fun_1 (I : Integer) return Integer;
function Fun_2 (I : Integer) return Integer;
generic

I_Parl : Integer;

I_Par2 : Integer :=
with function Fun_1
with function Fun_3

1;

(I : Integer) return Integer is <>;
_3 (I

package Pack_G is

Integer) return Integer is Fun_2;

Var_1l : Integer := I_Parl;
Var_2 : Integer := I_Par2;
Var_3 : Integer := Fun_1 (Var_1l);
Var_4 : Integer := Fun_3 (Var_2);

end Pack_G;
package Pack_I_1 is new Pack_G (1);

package Pact_I_2 is new Pack_G
(2, I_Par2 => 3, Fun_1 => Fun_2, Fun_3 => Fun_1);

package Pack_I_3 is new Pack_G (1,

2, -— FLAG
Fun_2, -— FLAG
Fun_1); -— FLAG

end Foo;

Positional Actuals_For Defaulted Parameters

Flag each actual parameter to a subprogram or entry call where the corresponding formal parameter has a default
expression, if positional notation is used.

This rule has no parameters.

54 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

Example
procedure Proc (I : in out Integer; J : Integer := 0) is
begin
I :=1+ J;
end Proc;
begin
Proc (Varl, Var2); -— FLAG

Positional_Components

Flag each array, record and extension aggregate that includes positional notation.

This rule has no parameters.

Example

package Foo is
type Arr is array (1 .. 10) of Integer;

type Rec is record
C_Int : Integer;
C_Bool : Boolean;
C_Char : Character;
end record;

Var_Rec_1 : Rec := (C_Int => 1, C_Bool => True, C_Char => 'a');

Var_Rec_2 : Rec := (2, C_Bool => False, C_Char => 'b'); -— FLAG

Var_Rec_3 : Rec := (1, True, 'c'); -— FLAG
end Foo;

Positional Generic Parameters

Flag each positional actual generic parameter except for the case when the generic unit being instantiated has exactly

one generic formal parameter.

This rule has no parameters.

Example

with Ada.Text_TI0; use Ada.Text_IO;

with Ada.Unchecked_Conversion;

procedure Bar (I : in out Integer) is
type My_Int is range -12345 .. 12345;

function To_My_Int is new Ada.Unchecked_Conversion
(Source => Integer, Target => My_1Int);

function To_Integer is new Ada.Unchecked_Conversion

GNATcheck Reference Manual

55 of 113

GNATcheck Reference Manual 2019

(My_Int, Integer); -— FLAG (twice)

package My_Int_IO is new Ada.Text_IO.Integer_IO (My_Int);

Positional Parameters

Flag each positional parameter notation in a subprogram or entry call, except for the following:
» Parameters of calls to attribute subprograms are not flagged;
» Parameters of prefix or infix calls to operator functions are not flagged;
* If the called subprogram or entry has only one formal parameter, the parameter of the call is not flagged;
* If a subprogram call uses the Object. Operation notation, then
— the first parameter (that is, Object) is not flagged;
— if the called subprogram has only two parameters, the second parameter of the call is not flagged;
This rule has the following (optional) parameters for the +R option:

All if this parameter is specified, all the positional parameter associations that can be replaced with named associations
according to language rules are flagged

Example

procedure Bar (I : in out Integer) is
function My_Max (Left, Right : Integer) return Integer renames Integer'Max;

procedure Procl (I : in out Integer) is
begin
I :=1+ 1;

end Procl;

procedure Proc2 (I, J : in out Integer) is
begin

I :=1+ J;
end Proc2;

L, M : Integer := 1;
begin
Procl (L);
Proc2 (L, M); -— FLAG (twice)

Proc2 (I => M, J => L);

L := Integer'Max (10, M);
M := My_Max (100, Right => L); —-— FLAG

end Bar;

Recursive_Subprograms

Flags specs (and bodies that act as specs) of recursive subprograms. A subprogram is considered as recursive in a
given context if there exists a chain of direct calls starting from the body of, and ending at this subprogram within this

56 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

context. A context is provided by the set of Ada sources specified as arguments of a given gnatcheck call. Neither
dispatching calls nor calls through access-to-subprograms are considered as direct calls by this rule.

Generic subprograms and subprograms detected in generic units are not flagged. Recursive subprograms in expanded
generic instantiations are flagged.

This rule does not take into account subprogram calls in aspect definitions.
The rule has an optional parameters for +R option:

Skip_Dispatching_Calls Do not take into account dispatching calls when building and analyzing call chains.

Example

function Factorial (N : Natural) return Positive is —-—- FLAG
begin
if N = 0 then
return 1;
else
return N * Factorial (N - 1);
end if;
end Factorial;

Single_Value_ Enumeration_Types

Flag an enumeration type definition if it contains a single enumeration literal specification

This rule has no parameters.

Example

type Enum3 is (A, B, C);
type Enuml is (D); -— FLAG

Unchecked Address_Conversions

Flag instantiations of Ada.Unchecked_Conversion if the actual for the formal type Source is the
System.Address type (or a type derived from it), and the actual for the formal type Target is an access
type (including types derived from access types). This include cases when the actual for Source is a private type and
its full declaration is a type derived from System.Address, and cases when the actual for Target is a private
type and its full declaration is an access type. The rule is checked inside expanded generics.

This rule has no parameters.

Example

with Ada.Unchecked_Conversion;
with System;
package Foo is
type My_Address is new System.Address;

GNATcheck Reference Manual 57 of 113

GNATcheck Reference Manual 2019

type My_Integer is new Integer;
type My_Access is access all My_Integer;

function Address_To_Access is new Ada.Unchecked_Conversion —-- FLAG
(Source => My_Address,
Target => My_Access);
end Foo;

Unchecked_Conversions_As_ Actuals

Flag call to instantiation of Ada .Unchecked_Conversion if it is an actual in procedure or entry call or if it is a
default value in a subprogram or entry parameter specification.

This rule has no parameters.

Example

with Ada.Unchecked_Conversion;

procedure Bar (I : in out Integer) is
type Tl is array (1 .. 10) of Integer;
type T2 is array (1 .. 10) of Integer;

function UC is new Ada.Unchecked_Conversion (T1l, T2);

Varl : Tl := (others => 1);
Var2 : T2 := (others => 2);
procedure Init (X : out T2; Y : T2 := UC (Varl)) is -— FLAG
begin
X :=Y;
end Init;

procedure Ident (X : T2; Y : out T2) is
begin

Y := X;
end Ident;

begin
Ident (UC (Varl), Var2); —-— FLAG
end Bar;

Unconditional Exits

Flag unconditional exit statements.

This rule has no parameters.

58 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

Example
procedure Find_A (S : String; Idx : out Natural) is
begin

Idx := 0;

for J in S'Range loop
if S (J) = 'A' then
Idx := J;
exit; -- FLAG
end if;
end loop;
end Find_A;

Uninitialized Global Variables

Flag an object declaration located immediately within a package declaration, a generic package declaration or a
package body, if it does not have an explicit initialization. Do not flag deferred constant declarations and declarations
of objects of limited types.

This rule has no parameters.

Example

package Foo is

Varl : Integer; -— FLAG
Var2 : Integer := 0;
end Foo;

Unnamed_Blocks_And_Loops

Flag each unnamed block statement. Flag a unnamed loop loop statement if this statement is enclosed by another loop
statement or if it encloses another loop statement.

The rule has no parameters.

Example
procedure Bar (S : in out String) is
I : Integer := 1;
begin
if S'Length > 10 then
declare -— FLAG
S1 : String (S'Range);
Last : Positive := Sl'Last;
Idx : Positive := 0;
begin
for J in S'Range loop -— FLAG
S1 (Last - Idx) := S (J);
Idx = Idx + 1;

GNATcheck Reference Manual 59 of 113

GNATcheck Reference Manual 2019

for K in S'Range loop -— FLAG
S (K) := Character'Succ (S (K));
end loop;
end loop;
S := S1;
end;
end if;
end Bar;

USE_PACKAGE_Clauses

Flag all use clauses for packages; use type clauses are not flagged.

This rule has no parameters.

Example

with Ada.Text_I0;
use Ada.Text_IO; -— FLAG
procedure Bar (S : in out String) is

9.1.6 Readability

The rules described in this subsection may be used to enforce feature usages that contribute towards readability.

Identifier_Casing

Flag each defining identifier that does not have a casing corresponding to the kind of entity being declared. All defining
names are checked. For the defining names from the following kinds of declarations a special casing scheme can be
defined:

* type and subtype declarations;

* enumeration literal specifications (not including character literals) and function renaming declarations if the
renaming entity is an enumeration literal;

* constant and number declarations (including object renaming declarations if the renamed object is a constant);
* exception declarations and exception renaming declarations.
The rule may have the following parameters for +R:
» Type=casing_scheme
Specifies casing for names from type and subtype declarations.
* Enum=casing_scheme

Specifies the casing of defining enumeration literals and for the defining names in a function renaming
declarations if the renamed entity is an enumeration literal.

60 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

» Constant=casing_scheme

Specifies the casing for defining names from constants and named number declarations, including the object
renaming declaration if the renamed object is a constant

» Exception=casing_scheme
Specifies the casing for names from exception declarations and exception renaming declarations.
 Others=casing_scheme

Specifies the casing for all defining names for which no special casing scheme is specified. If this parameter is
not set, the casing for the entities that do not correspond to the specified parameters is not checked.

* Exclude=dictionary_file
Specifies casing exceptions.

Where:

casing_scheme ::= upper|lower |mixed

upper means that the defining identifier should be upper-case. lower means that the defining identifier should be lower-
case mixed means that the first defining identifier letter and the first letter after each underscore should be upper-case,
and all the other letters should be lower-case

If a defining identifier is from a declaration for which a specific casing scheme can be set, but the corresponding
parameter is not specified for the rule, then the casing scheme defined by Others parameter is used to check this
identifier. If Ot hers parameter also is not set, the identifier is not checked.

dictionary_file is the name of the text file that contains casing exceptions. The way how this rule is using the casing
exception dictionary file is consistent with using the casing exception dictionary in the GNAT pretty-printer gnatpp,
see GNAT User’s Guide.

There are two kinds of exceptions:

identifier If a dictionary file contains an identifier, then each occurrence of that (defining) identifier in the checked
source should use the casing specified included in dictionary_file

wildcard A wildcard has the following syntax

wildcard ::= *simple_identifierx |
+*simple_identifier |
simple_identifierx

simple_identifier ::= letter{letter_or_digit}

simple_identifier specifies the casing of subwords (the term ‘subword’ is used below to denote the part of a
name which is delimited by _’ or by the beginning or end of the word and which does not contain any ‘_’ inside). A
wildcard of the form simple_identifierx defines the casing of the first subword of a defining name to check,
the wildcard of the form xsimple_identifier specifies the casing of the last subword, and the wildcard of the
form xsimple_identifierx specifies the casing of any subword.

If for a defining identifier some of its subwords can be mapped onto wildcards, but some other cannot, the casing of
the identifier subwords that are not mapped onto wildcards from casing exception dictionary is checked against the
casing scheme defined for the corresponding entity.

If some identifier is included in the exception dictionary both as a whole identifier and can be mapped onto some
wildcard from the dictionary, then it is the identifier and not the wildcard that is used to check the identifier casing.

If more than one dictionary file is specified, or a dictionary file contains more than one exception variant for the same
identifier, the new casing exception overrides the previous one.

GNATcheck Reference Manual 61 of 113

GNATcheck Reference Manual 2019

Casing check against dictionary file(s) has a higher priority than checks against the casing scheme specified for a given
entity/declaration kind.

+R option should contain at least one parameter.

There is no parameter for —R option, it just turns the rule off.

The rule allows parametric exemption, the parameters that are allowed in the definition of exemption sections are:
Type Exempts check for type and subtype name casing

Enum Exempts check for enumeration literal name casing

Constant Exempts check for constant name casing

Exception Exempts check for exception name casing

Others Exempts check for defining names for which no special casing scheme is specified.

Exclude Exempts check for defining names for which casing schemes are specified in exception dictionaries

Example

-— 1f the rule is activated as '+RIdentifier Casing:Type=upper,others=mixed’
package Foo is
type ENUM_1 is (Al, B1l, Cl);

type Enum_2 is (A2, B2, C2); -— FLAG

Varl : Enum_1 := Al;

VAR2 : ENUM_2 := A2; -— FLAG
end Foo;

Identifier Prefixes
Flag each defining identifier that does not have a prefix corresponding to the kind of declaration it is defined by. The
defining names in the following kinds of declarations are checked:

* type and subtype declarations (task, protected and access types are treated separately);

 enumeration literal specifications (not including character literals) and function renaming declarations if the
renaming entity is an enumeration literal;

* exception declarations and exception renaming declarations;
* constant and number declarations (including object renaming declarations if the renamed object is a constant).
Defining names declared by single task declarations or single protected declarations are not checked by this rule.

The defining name from the full type declaration corresponding to a private type declaration or a private extension
declaration is never flagged. A defining name from an incomplete type declaration is never flagged.

The defining name from a subprogram renaming-as-body declaration is never flagged.
For a deferred constant, the defining name in the corresponding full constant declaration is never flagged.

The defining name from a body that is a completion of a program unit declaration or a proper body of a subunit is
never flagged.

The defining name from a body stub that is a completion of a program unit declaration is never flagged.

Note that the rule checks only defining names. Usage name occurrence are not checked and are never flagged.

62 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

The rule may have the following parameters:
* For the +R option:
» Type=string
Specifies the prefix for a type or subtype name.
* Concurrent=string

Specifies the prefix for a task and protected type/subtype name. If this parameter is set, it overrides
for task and protected types the prefix set by the Type parameter.

* Access=string

Specifies the prefix for an access type/subtype name. If this parameter is set, it overrides for access
types the prefix set by the Type parameter.

* Class_Access=string

Specifies the prefix for the name of an access type/subtype that points to some class-wide type. If
this parameter is set, it overrides for such access types and subtypes the prefix set by the Type or
Access parameter.

* Subprogram_Access=string

Specifies the prefix for the name of an access type/subtype that points to a subprogram. If this
parameter is set, it overrides for such access types/subtypes the prefix set by the Type or Access
parameter.

* Derived=stringl:string2

Specifies the prefix for a type that is directly derived from a given type or from a subtype thereof.
stringl should be a full expanded Ada name of the ancestor type (starting from the full expanded
compilation unit name), string2 defines the prefix to check. If this parameter is set, it overrides for
types that are directly derived from the given type the prefix set by the Type parameter.

* Constant=string

Specifies the prefix for defining names from constants and named number declarations, including the
object renaming declaration if the renamed object is a constant

* Enum=string

Specifies the prefix for defining enumeration literals and for the defining names in a function
renaming declarations if the renamed entity is an enumeration literal.

» Exception=string

Specifies the prefix for defining names from exception declarations and exception renaming
declarations.

Exclusive

Check that only those kinds of names for which specific prefix is defined have that prefix (e.g., only
type/subtype names have prefix 7_, but not variable or package names), and flag all defining names
that have any of the specified prefixes but do not belong to the kind of entities this prefix is defined
for. By default the exclusive check mode is ON.

For the —R option:

All_Prefixes Removes all the prefixes specified for the identifier prefix checks, whether by default or as specified by
other rule parameters and disables the rule.

Type Removes the prefix specified for type/subtype names. This does not remove prefixes specified for specific type
kinds and does not disable checks for these specific kinds.

GNATcheck Reference Manual 63 of 113

GNATcheck Reference Manual 2019

Concurrent Removes the prefix specified for task and protected types.

Access Removes the prefix specified for access types. This does not remove prefixes specified for specific access

types (access to subprograms and class-wide access)
Class_Access Removes the prefix specified for access types pointing to class-wide types.
Subprogram_Access Removes the prefix specified for access types pointing to subprograms.

Derived Removes prefixes specified for derived types that are directly derived from specific types.

Constant Removes the prefix specified for constant and number names and turns off the check for these names.

Exception Removes the prefix specified for exception names and turns off the check for exception names.

Enum Removes the prefix specified for enumeration literal names and turns off the check for them.

Exclusive Turns of the check that only names of specific kinds of entities have prefixes specified for these kinds.

If more than one parameter is used, parameters must be separated by commas.

If more than one option is specified for the gnatcheck invocation, a new option overrides the previous one(s).

The +RIdentifier_ Prefixes option (with no parameter) enables checks for all the name prefixes specified by

previous options used for this rule. If no prefix is specified, the rule is not enabled.

The -RIdentifier_Prefixes option (with no parameter) disables all the checks but keeps all the prefixes

specified by previous options used for this rule.

There is no default prefix setting for this rule. All checks for name prefixes are case-sensitive

If any error is detected in a rule parameter, that parameter is ignored. In such a case the options that are set for the rule

are not specified.

The rule allows parametric exemption, the parameters that are allowed in the definition of exemption sections are:

Type Exempts check for type and subtype name prefixes

Concurrent Exempts check for task and protected type/subtype name prefixes

Access Exempts check for access type/subtype name prefixes

Class_Access Exempts check for names of access types/subtypes that point to some class-wide types
Subprogram_Access Exempts check for names of access types/subtypes that point to subprograms
Derived Exempts check for derived type name prefixes

Constant Exempts check for constant and number name prefixes

Exception Exempts check for exception name prefixes

Enum Exempts check for enumeration literal name prefixes

Exclusive Exempts check that only names of specific kinds of entities have prefixes specified for these kinds

Example

package Foo is
type Type_Enum_1 is (Al, B1l, Cl);

type Enum_2 is (A2, B2, C2); -— FLAG
Const_Cl : constant Type_Enum_ 1 := Al;
Const2 : constant Enum_2 := A2; —-— FLAG

-— 1f the rule is activated as '+RIdentifier. Prefixes:Type=Type_,Constant=Const_,Exce]

ptioN=X_"'

64 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

X_Exc_1 : exception;
Exc_2 : exception; -— FLAG
end Foo;

Identifier Suffixes
Flag the declaration of each identifier that does not have a suffix corresponding to the kind of entity being declared.
The following declarations are checked:

* type declarations

* subtype declarations

* object declarations (variable and constant declarations, but not number, declarations, record component
declarations, parameter specifications, extended return object declarations, formal object declarations)

* package renaming declarations (but not generic package renaming declarations)
The default checks (enforced by the Default rule parameter) are:
¢ type-defining names end with _T, unless the type is an access type, in which case the suffix must be _2A
¢ constant names end with _C
* names defining package renamings end with _R
* the check for access type objects is not enabled
Defining identifiers from incomplete type declarations are never flagged.

For a private type declaration (including private extensions), the defining identifier from the private type declaration
is checked against the type suffix (even if the corresponding full declaration is an access type declaration), and the
defining identifier from the corresponding full type declaration is not checked.

For a deferred constant, the defining name in the corresponding full constant declaration is not checked.
Defining names of formal types are not checked.
Check for the suffix of access type data objects is applied to the following kinds of declarations:

* variable and constant declaration

* record component declaration

e return object declaration

* parameter specification

* extended return object declaration

* formal object declaration

If both checks for constant suffixes and for access object suffixes are enabled, and if different suffixes are defined for
them, then for constants of access type the check for access object suffixes is applied.

The rule may have the following parameters:

* For the +R option (unless the parameter is Default, then only the explicitly specified suffix is checked, and
no defaults are used):

Default Sets the default listed above for all the names to be checked.

* Type_Suffix=string

GNATcheck Reference Manual 65 of 113

GNATcheck Reference Manual 2019

Specifies the suffix for a type name.
* Access_Suffix=string

Specifies the suffix for an access type name. If this parameter is set, it overrides for access types the
suffix set by the Type_ Suf fix parameter. For access types, string may have the following format:
suffixI(suffix2). That means that an access type name should have the suffix! suffix except for the case
when the designated type is also an access type, in this case the type name should have the suffix/ &
suffix2 suffix.

* Class_Access_Suffix=string

Specifies the suffix for the name of an access type that points to some class-wide type. If
this parameter is set, it overrides for such access types the suffix set by the Type_Suffix or
Access_Suffix parameter.

* Class_Subtype_Suffix=string

Specifies the suffix for the name of a subtype that denotes a class-wide type.
* Constant_Suffix=string

Specifies the suffix for a constant name.
¢ Renaming_Suffix=string

Specifies the suffix for a package renaming name.
* Access_Obj_Suffix=string

Specifies the suffix for objects that have an access type (including types derived from access types).
¢ Interrupt_Suffix=string

Specifies the suffix for protected subprograms used as interrupt handlers.
* For the —R option:

All_Suffixes Remove all the suffixes specified for the identifier suffix checks, whether by default or as specified by
other rule parameters. All the checks for this rule are disabled as a result.

Type_Suffix Removes the suffix specified for types. This disables checks for types but does not disable any other
checks for this rule (including the check for access type names if Access_Suffix is set).

Access_Suffix Removes the suffix specified for access types. This disables checks for access type names but does not
disable any other checks for this rule. If Type_Suffix is set, access type names are checked as ordinary type
names.

Class_Access_Suffix Removes the suffix specified for access types pointing to class-wide type. This disables specific
checks for names of access types pointing to class-wide types but does not disable any other checks for this rule.
If Type_Suffix is set, access type names are checked as ordinary type names. If Access_Suffix is set,
these access types are checked as any other access type name.

Class_Subtype_Suffix Removes the suffix specified for subtype names. This disables checks for subtype names but
does not disable any other checks for this rule.

Constant_Suffix Removes the suffix specified for constants. This disables checks for constant names but does not
disable any other checks for this rule.

Renaming_Suffix Removes the suffix specified for package renamings. This disables checks for package renamings
but does not disable any other checks for this rule.

Access_Obj_Suffix Removes the suffix specified for objects of access types, this disables checks for such objects. It
does not disable any other checks for this rule

66 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

Interrupt_Suffix Removes the suffix specified for protected subprograms used as interrupt handlers. It does not
disable any other checks for this rule.

If more than one parameter is used, parameters must be separated by commas.
If more than one option is specified for the gnatcheck invocation, a new option overrides the previous one(s).

The +RIdentifier_Suffixes option (with no parameter) enables checks for all the name suffixes specified by
previous options used for this rule.

The -RIdentifier_Suffixes option (with no parameter) disables all the checks but keeps all the suffixes
specified by previous options used for this rule.

The string value must be a valid suffix for an Ada identifier (after trimming all the leading and trailing space characters,
if any). Parameters are not case sensitive, except the string part.

If any error is detected in a rule parameter, the parameter is ignored. In such a case the options that are set for the rule
are not specified.

The rule allows parametric exemption, the parameters that are allowed in the definition of exemption sections are:
Type Exempts check for type name suffixes

Access Exempts check for access type name suffixes

Access_Obj Exempts check for access object name suffixes

Class_Access Exempts check for names of access types that point to some class-wide types

Class_Subtype Exempts check for names of subtypes that denote class-wide types

Constant Exempts check for constant name suffixes

Renaming Exempts check for package renaming name suffixes

Example

—-— 1f the rule is activated as '+RIdentifier Suffixes:Access_Suffix=_PTR, Type_Suffix=|T,Constant_St
package Foo is

type Int is range 0 .. 100; -— FLAG
type Int_T is range 0 .. 100;
type Int_A is access Int; -— FLAG

type Int_PTR is access Int;

Const : constant Int := 1; -— FLAG
Const_C : constant Int := 1;
end Foo;

Max Identifier_ Length

Flag any defining identifier that has length longer than specified by the rule parameter. The rule has a mandatory
parameter for +R option:

N The maximal allowed identifier length specification.

GNATcheck Reference Manual 67 of 113

GNATcheck Reference Manual 2019

Example
type My_Type is range -100 .. 100;
My_Variable_With_A_Long_Name : My_Type; -— FLAG (if rule parameter is 27 or smaller)

Misnamed_Controlling Parameters

Flag a declaration of a dispatching operation, if the first parameter is not a controlling one and its name is not This
(the check for parameter name is not case-sensitive). Declarations of dispatching functions with a controlling result
and no controlling parameter are never flagged.

A subprogram body declaration, subprogram renaming declaration, or subprogram body stub is flagged only if it is
not a completion of a prior subprogram declaration.

This rule has no parameters.

Example

package Foo is
type T is tagged private;

procedure P1 (This : in out T);
procedure P2 (That : in out T); -— FLAG
procedure P1 (I : Integer; This : in out T); -- FLAG

Name_Clashes

Check that certain names are not used as defining identifiers. The names that should not be used as identifiers must
be listed in a dictionary file that is a rule parameter. A defining identifier is flagged if it is included in a dictionary file
specified as a rule parameter, the check is not case-sensitive. More than one dictionary file can be specified as the rule
parameter, in this case the rule checks defining identifiers against the union of all the identifiers from all the dictionary
files provided as the rule parameters.

This rule has the following (mandatory) parameters for the +R option:
dictionary_file The name of a dictionary file.

A dictionary file is a plain text file. The maximum line length for this file is 1024 characters. If the line is longer than
this limit, extra characters are ignored.

If the name of the dictionary file does not contain any path information and the rule option is specifies in a rule file,
first the tool tries to locate the dictionary file in the same directory where the rule file is located, and if the attempt fails
- in the current directory.

Each line can be either an empty line, a comment line, or a line containing a list of identifiers separated by space or
HT characters. A comment is an Ada-style comment (from —- to end-of-line). Identifiers must follow the Ada syntax
for identifiers. A line containing one or more identifiers may end with a comment.

Example

68 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

—-— If the dictionary file contains names 'One' and 'Two":

One : constant Integer 1; -— FLAG
Two : constant Float = 2.0; -— FLAG
Constant_One : constant Float = 1.0;

Object_Declarations_Out_Of Order

Flag any object declaration that is located in a library unit body if this is preceding by a declaration of a program unit
spec, stub or body.

This rule has no parameters.

Example

procedure Proc is
procedure Procl is separate;

I : Integer; —-— FLAG

One_Construct_Per_Line
Flag any statement, declaration or representation clause if the code line where this construct starts contains some other
Ada code symbols preceding or following this construct. The following constructs are not flagged:

* enumeration literal specification;

 parameter specifications;

* discriminant specifications;

* mod clauses;

* loop parameter specification;

* entry index specification;

* choice parameter specification;

In case if we have two or more declarations/statements/clauses on a line and if there is no Ada code preceding the first
construct, the first construct is flagged

This rule has no parameters.

Example

procedure Swap (I, J : in out Integer) is
Tmp : Integer;

begin
Tmp := I;
I :=J; J := Tmp; -— FLAG

end Swap;

GNATcheck Reference Manual 69 of 113

GNATcheck Reference Manual 2019

Uncommented_BEGIN_In_Package_Bodies

Flags each package body with declarations and a statement part that does not include a trailing comment on the line
containing the begin keyword; this trailing comment needs to specify the package name and nothing else. The
begin is not flagged if the package body does not contain any declarations.

If the begin keyword is placed on the same line as the last declaration or the first statement, it is flagged independently
of whether the line contains a trailing comment. The diagnostic message is attached to the line containing the first
statement.

This rule has no parameters.

Example

package body Foo is
procedure Proc (I : out Integer) is
begin
I := Var;
end Proc;

package body Inner is

procedure Inner_Proc (I : out Integer) is
begin
I := Inner_Var;
end ;
begin -- Inner
Inner_Var := 1;
end Inner;
begin -- FLAG
Var := Inner.Inner_Var + 1;
end Foo;

9.1.7 Source Code Presentation

This subsection is a placeholder; there are currently no rules in this category.

9.2 Feature Usage Rules

The rules in this section can be used to enforce specific usage patterns for a variety of language features.

9.2.1 Abort_ Statements

Flag abort statements.

This rule has no parameters.

Example

70 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

if Flag then
abort T; -— FLAG
end if;

9.2.2 Abstract_Type_Declarations

Flag all declarations of abstract types. For an abstract private type, both the private and full type declarations are
flagged.

This rule has no parameters.

Example
package Foo is
type Figure is abstract tagged private; -— FLAG
procedure Move (X : in out Figure) is abstract;
private
type Figure is abstract tagged null record; -— FLAG
end Foo;

9.2.3 Anonymous_Subtypes

Flag all uses of anonymous subtypes except for the following:

* when the subtype indication depends on a discriminant, this includes the cases of a record component definitions
when a component depends on a discriminant, and using the discriminant of the derived type to constraint the
parent type;

* when a self-referenced data structure is defined, and a discriminant is constrained by the reference to the current
instance of a type;

A use of an anonymous subtype is any instance of a subtype indication with a constraint, other than one that occurs
immediately within a subtype declaration. Any use of a range other than as a constraint used immediately within a
subtype declaration is considered as an anonymous subtype.

The rule does not flag ranges in the component clauses from a record representation clause, because the language rules
do not allow to use subtype names there.

An effect of this rule is that for loops such as the following are flagged (since 1. . N is formally a ‘range’):
Declaring an explicit subtype solves the problem:

This rule has no parameters.

9.2.4 Blocks

Flag each block statement.

This rule has no parameters.

GNATcheck Reference Manual 71 of 113

GNATcheck Reference Manual 2019

Example
if I /= J then
declare -— FLAG
Tmp Integer;
begin
™™MP := I;
I = J;
J 1= Tmp;
end;
end if;

9.2.5 Complex_Inlined_ Subprograms
Flag a subprogram (or generic subprogram, or instantiation of a subprogram) if pragma Inline is applied to it and at
least one of the following conditions is met:

* it contains at least one complex declaration such as a subprogram body, package, task, protected declaration, or
a generic instantiation (except instantiation of Ada . Unchecked_Conversion);

* it contains at least one complex statement such as a loop, a case or an if statement;
* the number of statements exceeds a value specified by the N rule parameter;
Subprogram renamings are also considered.
This rule has the following (mandatory) parameter for the +R option:

N Positive integer specifying the maximum allowed total number of statements in the subprogram body.

Example

procedure Swap (I,

procedure Swap (I,

begin

if T /= J then

J : in out Integer)

J : in out Integer)

declare
Tmp Integer;
begin
T™™P := I;
I = J;
J = Tmp;
end;
end if;
end Swap;

with Inline => True;

is -— FLAG

9.2.6 Conditional_ Expressions

Flag use of conditional expression.

This rule has the following (optional) parameters for the +R option:

72 of 113

GNATcheck Reference Manual

GNATcheck Reference Manual 2019

Except_Assertions Do not flag a conditional expression if it is a subcomponent of the following constructs:
argument of the following pragmas
Language-defined

¢ Assert
GNAT-specific

* Assert_And_Cut

¢ Assume

* Contract_Cases

* Debug

* Invariant

e Loop_Invariant

* Loop_Variant

* Postcondition

* Precondition

* Predicate

e Refined_Post
definition of the following aspects
Language-defined

e Static_Predicate

* Dynamic_Predicate

* Pre

* Pre’Class

* Post

* Post’Class

* Type_Invariant

e Type_Invariant’Class
GNAT-specific

* Contract_Cases

* Invariant

* Invariant’Class

* Predicate

e Refined_Post

Example

GNATcheck Reference Manual 73 of 113

GNATcheck Reference Manual 2019

Varl : Integer := (if I > J then 1 else 0); -— FLAG
Var2 : Integer := 1 + J;

9.2.7 Controlled Type_Declarations

Flag all declarations of controlled types. A declaration of a private type is flagged if its full declaration declares a
controlled type. A declaration of a derived type is flagged if its ancestor type is controlled. Subtype declarations are
not checked. A declaration of a type that itself is not a descendant of a type declared in Ada .Finalization but
has a controlled component is not checked.

This rule has no parameters.

Example

with Ada.Finalization;
package Foo is
type Resource is new Ada.Finalization.Controlled with private; -- FLAG

9.2.8 Declarations In Blocks

Flag all block statements containing local declarations. A declare block with an empty declarative_part or with a
declarative part containing only pragmas and/or use clauses is not flagged.

This rule has no parameters.

Example
if I /= J then
declare -— FLAG
Tmp : Integer;
begin
T™™MP := I;
I = J;
J = Tmp;
end;
end if;

9.2.9 Deeply Nested_Inlining

Flag a subprogram (or generic subprogram) if pragma Inline has been applied to it, and it calls another subprogram to
which pragma Inline applies, resulting in potential nested inlining, with a nesting depth exceeding the value specified
by the N rule parameter.

This rule requires the global analysis of all the compilation units that are gnatcheck arguments; such analysis may
affect the tool’s performance.

This rule has the following (mandatory) parameter for the +R option:

74 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

N Positive integer specifying the maximum level of nested calls to subprograms to which pragma Inline has been
applied.

Example

procedure P1 (I : in out integer
procedure P2 (I : in out integer
procedure P3 (I : in out integer
procedure P4 (I : in out integer

) with Inline => True; -— FLAG
) with Inline => True;

) with Inline => True;

) with Inline => True;

procedure P1 (I : in out integer) is

begin

P2 (I
end;

procedure P2 (I : in out integer) is
begin

P3 (I
end;

procedure P3 (I : in out integer) is
begin

P4 (I
end;

procedure P4 (I : in out integer) is
begin

I :=1+ 1;
end;

9.2.10 Default Parameters

Flag all default expressions in parameters specifications. All parameter specifications are checked: in subprograms
(including formal, generic and protected subprograms) and in task and protected entries (including accept statements
and entry bodies).

This rule has no parameters.

Example

procedure P (I : in out Integer; J : Integer := 0); -- FLAG
procedure QO (I : in out Integer; J : Integer);

9.2.11 Discriminated_ Records

Flag all declarations of record types with discriminants. Only the declarations of record and record extension types
are checked. Incomplete, formal, private, derived and private extension type declarations are not checked. Task and
protected type declarations also are not checked.

GNATcheck Reference Manual 75 of 113

GNATcheck Reference Manual 2019

This rule has no parameters.

Example

type Idx is range 1 .. 100;

type Arr is array (Idx range <>) of Integer;

subtype Arr_10 is Arr (1 .. 10);

type Rec_1 (D : Idx) is record -— FLAG
A : Arr (1 .. D);

end record;

type Rec_2 (D : Idx) is record -— FLAG
B : Boolean;
end record;

type Rec_3 is record
B : Boolean;
end record;

9.2.12 Explicit_Full_Discrete_Ranges

Flag each discrete range that has the form A’ First .. A’Last.

This rule has no parameters.

Example
subtype Idx is Integer range 1 .. 100;
begin
for J in Idx'First .. Idx'Last loop -— FLAG
K := K + J;
end loop;

for J in Idx loop
L :=L + J;
end loop;

9.2.13 Expression_Functions

Flag each expression function declared in a package specification (including specification of local packages and
generic package specifications).

This rule has no parameters.

Example

76 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

package Foo is

function F (I : Integer) return Integer is —-— FLAG
(if I >0 then I - 1 else I + 1);

9.2.14 Fixed_Equality_ Checks

Flag all calls to the predefined equality operations for fixed-point types. Both ‘= and ‘/=" operations are checked.
User-defined equality operations are not flagged, nor are uses of operators that are renamings of the predefined equality
operations. Also, the ‘=‘ and /=" operations for floating-point types are not flagged.

This rule has no parameters.

Example

package Pack is

type Speed is delta 0.01 range 0.0 .. 10_000.0;
function Get_Speed return Speed;
end Pack;

with Pack; use Pack;
procedure Process is

Speedl : Speed := Get_Speed;
Speed2 : Speed := Get_Speed;
Flag : Boolean := Speedl = Speed?2; -— FLAG

9.2.15 Float_Equality_ Checks

Flag all calls to the predefined equality operations for floating-point types and private types whose completions are
floating-point types. Both ‘= and ‘/=" operations are checked. User-defined equality operations are not flagged, nor
are uses of operators that are renamings of the predefined equality operations. Also, the ‘=‘ and /=" operations for
fixed-point types are not flagged.

This rule has no parameters.

Example

package Pack is

type Speed is digits 0.01 range 0.0 .. 10_000.0;
function Get_Speed return Speed;
end Pack;

with Pack; use Pack;
procedure Process is

Speedl : Speed := Get_Speed;
Speed2 : Speed := Get_Speed;
Flag : Boolean := Speedl = Speed?2; -— FLAG

GNATcheck Reference Manual 77 of 113

GNATcheck Reference Manual 2019

9.2.16 Function_Style_Procedures

Flag each procedure that can be rewritten as a function. A procedure can be converted into a function if it has
exactly one parameter of mode out and no parameters of mode in out. Procedure declarations, formal procedure
declarations, and generic procedure declarations are always checked. Procedure bodies and body stubs are flagged
only if they do not have corresponding separate declarations. Procedure renamings and procedure instantiations are
not flagged.

If a procedure can be rewritten as a function, but its out parameter is of a limited type, it is not flagged.
Protected procedures are not flagged. Null procedures also are not flagged.

This rule has no parameters.

Example

procedure Cannot_be_a_function (A, B : out Boolean);
procedure Can_be_a_function (A : out Boolean); -— FLAG

9.2.17 Generics_In_Subprograms

Flag each declaration of a generic unit in a subprogram. Generic declarations in the bodies of generic subprograms
are also flagged. A generic unit nested in another generic unit is not flagged. If a generic unit is declared in a local
package that is declared in a subprogram body, the generic unit is flagged.

This rule has no parameters.

Example

procedure Proc is

generic -— FLAG
type FT is range <>;
function F_G (I : FT) return FT;

9.2.18 Implicit_IN_Mode_Parameters

Flag each occurrence of a formal parameter with an implicit in mode. Note that access parameters, although they
technically behave like in parameters, are not flagged.

This rule has no parameters.

Example

procedure Procl (I : Integer); -— FLAG
procedure Proc2 (I : in Integer);

procedure Proc3 (I : access Integer);

78 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

9.2.19 Improperly Located_Instantiations
Flag all generic instantiations in library-level package specs (including library generic packages) and in all subprogram
bodies.

Instantiations in task and entry bodies are not flagged. Instantiations in the bodies of protected subprograms are
flagged.

This rule has no parameters.

Example

with Ada.Text_I0; use Ada.Text_IO;
procedure Proc is
package My_Int_IO is new Integer_IO (Integer); -— FLAG

9.2.20 Library Level_ Subprograms

Flag all library-level subprograms (including generic subprogram instantiations).

This rule has no parameters.

with Ada.Text_I0; use Ada.Text_IO;
procedure Proc is -- FLAG

9.2.21 Membership_Tests

Flag use of membership test expression.
This rule has the following (optional) parameters for the +R option:

Multi_Alternative_Only Flag only those membership test expressions that have more than one membership choice in
the membership choice list.

Float_Types_Only Flag only those membership test expressions that checks objects of floating point type and private
types whose completions are floating-point types.

Except_Assertions Do not flag a membership test expression if it is a subcomponent of the following constructs:
argument of the following pragmas
Language-defined
* Assert
GNAT-specific
* Assert_And_Cut
* Assume
* Contract_Cases
* Debug
* Invariant

* Loop_Invariant

GNATcheck Reference Manual 79 of 113

GNATcheck Reference Manual 2019

e Loop_Variant

* Postcondition

* Precondition

* Predicate

e Refined_Post
definition of the following aspects
Language-defined

e Static_Predicate

* Dynamic_Predicate

* Pre

* Pre’Class

e Post

* Post’Class

* Type_Invariant

e Type_Invariant’Class
GNAT-specific

¢ Contract_Cases

* Invariant

e Invariant’Class

* Predicate

* Refined_Post

These three parameters are independent on each other.

Example
procedure Proc (S : in out Speed) is
begin

if S in Low .. High then -— FLAG

9.2.22 Non_Qualified_Aggregates

Flag each non-qualified aggregate. A non-qualified aggregate is an aggregate that is not the expression of a qualified
expression. A string literal is not considered an aggregate, but an array aggregate of a string type is considered as a
normal aggregate. Aggregates of anonymous array types are not flagged.

This rule has no parameters.

80 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

Example

type Arr is array (1 .. 10) of Integer;

Varl : Arr := (1 => 10, 2 => 20, others => 30); -— FLAG
Var2 : array (1 .. 10) of Integer := (1 => 10, 2 => 20, others => 30);

9.2.23 Number_ Declarations

Number declarations are flagged.

This rule has no parameters.

Example

Numl : constant := 13; -— FLAG
Num2 : constant := 1.3; -— FLAG
Constl : constant Integer := 13;

Const2 : constant Float := 1.3;

9.2.24 Numeric_Indexing

Flag numeric literals, including those preceded by a predefined unary minus, if they are used as index expressions in
array components. Literals that are subcomponents of index expressions are not flagged (other than the aforementioned
case of unary minus).

This rule has no parameters.

Example

procedure Proc is
type Arr is array (1 .. 10) of Integer;
Var : Arr;

begin
Var (1) := 10; —-— FLAG

9.2.25 Numeric_Literals

Flag each use of a numeric literal except for the following:
* aliteral occurring in the initialization expression for a constant declaration or a named number declaration, or
* aliteral occurring in an aspect definition or in an aspect clause, or
* an integer literal that is less than or equal to a value specified by the N rule parameter.
* aliteral occurring in a declaration in case the Statements_Only rule parameter is given

This rule may have the following parameters for the +R option:

GNATcheck Reference Manual 81 of 113

GNATcheck Reference Manual 2019

N N is an integer literal used as the maximal value that is not flagged (i.e., integer literals not exceeding this value are
allowed)

ALL All integer literals are flagged

Statements_Only Numeric literals are flagged only when used in statements

If no parameters are set, the maximum unflagged value is 1, and the check for literals is not limited by statements only.
The last specified check limit (or the fact that there is no limit at all) is used when multiple +R options appear.

The —R option for this rule has no parameters. It disables the rule and restores its default operation mode. If the +R
option subsequently appears, will be 1, and the check will not be limited by statements only.

Example

Cl : constant Integer := 10;

AV Integer := Cl;

V2 Integer := 20; -— FLAG

9.2.26 Parameters Out_Of Order
Flag each subprogram and entry declaration whose formal parameters are not ordered according to the following
scheme:
e inand access parameters first, then in out parameters, and then out parameters;
* for in mode, parameters with default initialization expressions occur last
Only the first violation of the described order is flagged.
The following constructs are checked:
* subprogram declarations (including null procedures);
* generic subprogram declarations;
* formal subprogram declarations;
* entry declarations;
* subprogram bodies and subprogram body stubs that do not have separate specifications
Subprogram renamings are not checked.

This rule has no parameters.

Example

procedure Procl (I : in out Integer; B : Boolean) is —-— FLAG

9.2.27 Predicate_Testing

Flag a subtype mark if it denotes a subtype defined with (static or dynamic) subtype predicate and is used as a
membership choice in a membership test expression.

82 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

Flags “Valid attribute reference if the nominal subtype of the attribute prefix has (static or dynamic) subtype predicate.
This rule has the following (optional) parameters for the +R option:
Except_Assertions Do not flag a construct described above if it is a subcomponent of the following constructs:
argument of the following pragmas
Language-defined

* Assert
GNAT-specific

e Assert_And_Cut

* Assume

* Contract_Cases

* Debug

e Invariant

* Loop_Invariant

* Loop_Variant

* Postcondition

* Precondition

* Predicate

e Refined_Post
definition of the following aspects
Language-defined

* Static_Predicate

* Dynamic_Predicate

* Pre

* Pre’Class

e Post

* Post’Class

e Type_Invariant

e Type_Invariant’Class
GNAT-specific

* Contract_Cases

e Invariant

e Invariant’Class

* Predicate

e Refined_Post

GNATcheck Reference Manual 83 of 113

GNATcheck Reference Manual 2019

Example

with Support; use Support;
package Pack is
subtype Even is Integer with Dynamic_Predicate => Even mod 2 = 0;

subtype Small_Even is Even range -100 .. 100;

Bl : Boolean := Ident (101) in Small_Even; —-— FLAG

9.2.28 Relative_Delay Statements

Relative delay statements are flagged. Delay until statements are not flagged.

This rule has no parameters.

Example

if T > 0 then

delay until Current_Time + Big_Delay;
else

delay Small_Delay; -— FLAG
end if;

9.2.29 Representation_Specifications

Flag each record representation clause, enumeration representation clause and representation attribute clause. Flag
each aspect definition that defines a representation aspect. Also flag any pragma that is classified by the Ada Standard
as a representation pragma, and the definition of the corresponding aspects.

This rule has no parameters.

Example
type State is (A,M,W,P);
type Mode is (Fix, Dec, Exp, Signif);
type Byte_Mask is array (0..7) of Boolean
with Component_Size => 1; -— FLAG
type State_Mask is array (State) of Boolean
with Component_Size => 1; -— FLAG
type Mode_Mask is array (Mode) of Boolean;
for Mode_Mask'Component_Size use 1; -— FLAG

84 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

9.2.30 Quantified Expressions

Flag use of quantified expression.
This rule has the following (optional) parameters for the +R option:
Except_Assertions Do not flag a conditional expression if it is a subcomponent of the following constructs:
argument of the following pragmas
Language-defined

* Assert
GNAT-specific

e Assert_And_Cut

¢ Assume

* Contract_Cases

* Debug

* Invariant

e Loop_Invariant

* Loop_Variant

* Postcondition

* Precondition

* Predicate

e Refined_Post
definition of the following aspects
Language-defined

e Static_Predicate

* Dynamic_Predicate

* Pre

* Pre’Class

* Post

* Post’Class

* Type_Invariant

e Type_Invariant’Class
GNAT-specific

* Contract_Cases

e Invariant

* Invariant’Class

* Predicate

e Refined_Post

GNATcheck Reference Manual 85 of 113

GNATcheck Reference Manual 2019

Example

subtype Ind is Integer range 1 .. 10;
type Matrix is array (Ind, Ind) of Integer;

function Check_Matrix (M : Matrix) return Boolean is
(for some I in Ind => -— FLAG
(for all J in Ind => M (I, J) = 0)); -— FLAG

9.2.31 Raising_ Predefined_ Exceptions

Flag each raise statement that raises a predefined exception (i.e., one of the exceptions Constraint_Error,
Numeric_Error, Program_Error, Storage_Error, or Tasking_Error).

This rule has no parameters.

Example

begin
raise Constraint_Error; -— FLAG

9.2.32 Subprogram_Access

Flag all constructs that belong to access_to_subprogram_definition syntax category, and all access definitions that
define access to subprogram.

This rule has no parameters.

Example

type Proc_A is access procedure (I : Integer); -— FLAG

procedure Proc
(I : Integer;
Process : access procedure (J : in out Integer)); —-— FLAG

9.2.33 Too_Many_Dependencies

Flag a library item or a subunit that immediately depends on more than N library units (N is a rule parameter). In case
of a dependency on child units, implicit or explicit dependencies on all their parents are not counted.

This rule has the following (mandatory) parameters for the +R option:

N Positive integer specifying the maximal number of dependencies when the library item or subunit is not flagged.

86 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

Example

-— 1f rule parameter is 5 or smaller:
with Packl;

with Pack2;

with Pack3;

with Pack4;

with Pack5;

with Packé6;

procedure Main is -— FLAG

9.2.34 Unassigned_OUT_Parameters

Flag procedures’ out parameters that are not assigned.

An out parameter is flagged if the sequence of statements of the procedure body (before the procedure body’s
exception part, if any) contains no assignment to the parameter.

An out parameter is flagged in an exception handler in the exception part of the procedure body, if the exception
handler contains neither an assignment to the parameter nor a raise statement.

Bodies of generic procedures are also considered.
The following are treated as assignments to an out parameter:
* an assignment statement, with the parameter or some component as the target

* passing the parameter (or one of its components) as an out or in out parameter, except for the case when it
is passed to the call of an attribute subprogram.

This rule has no parameters.

Warning: This rule only detects a trivial case of an unassigned variable and doesn’t provide a guarantee that there
is no uninitialized access. The rule does not check function parameters (starting from Ada 2012 functions can have
out parameters). It is not a replacement for rigorous check for uninitialized access provided by advanced static
analysis tools.

Example
procedure Proc -—- FLAG
(I : Integer;

Outl : out Integer;
Out2 : out Integer)
is
begin
Ooutl =1 + 1;
end Proc;

9.2.35 Unconstrained_Array_ Returns

Flag each function returning an unconstrained array. Function declarations, function bodies (and body stubs) having
no separate specifications, and generic function instantiations are flagged. Function calls and function renamings are
not flagged.

GNATcheck Reference Manual 87 of 113

GNATcheck Reference Manual 2019

Generic function declarations, and function declarations in generic packages, are not flagged. Instead, this rule flags the
results of generic instantiations (that is, expanded specification and expanded body corresponding to an instantiation).

This rule has the following (optional) parameters for the +R option:

Except_String Do not flag functions that return the predefined St ring type or a type derived from it, directly or

indirectly.
Example
type Arr is array (Integer range <>) of Integer;
subtype Arr_S is Arr (1 .. 10);
function F1 (I : Integer) return Arr; -— FLAG
function F2 (I : Integer) return Arr_S;

9.2.36 Unconstrained_Arrays

Unconstrained array definitions are flagged.

This rule has no parameters.

Example

type Idx is range -100 .. 100;

type U_Arr is array (Idx range <>) of Integer; -— FLAG
type C_Arr is array (Idx) of Integer;

9.3 Metrics-Related Rules

The rules in this section can be used to enforce compliance with specific code metrics, by checking that the metrics
computed for a program lie within user-specifiable bounds. Depending on the metric, there may be a lower bound,
an upper bound, or both. A construct is flagged if the value of the metric exceeds the upper bound or is less than the
lower bound.

The name of any metrics rule consists of the prefix Metrics_ followed by the name of the corresponding
metric: Essential_Complexity,Cyclomatic_Complexity,or LSLOC. (The ‘LSLOC’ acronym stands for
‘Logical Source Lines Of Code’.) The meaning and the computed values of the metrics are the same as in gnatmetric.

For the +R option, each metrics rule has a numeric parameter specifying the bound (integer or real, depending on a
metric). The —R option for the metrics rules does not have a parameter.

Example: the rule

+RMetrics_Cyclomatic_Complexity : 7

means that all bodies with cyclomatic complexity exceeding 7 will be flagged.

To turn OFF the check for cyclomatic complexity metric, use the following option:

88 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

-RMetrics_Cyclomatic_Complexity

9.3.1 Metrics_Essential Complexity

The Metrics_Essential_Complexity rule takes a positive integer as upper bound. A program unit that is an
executable body exceeding this limit will be flagged.

The Ada essential complexity metric is a McCabe cyclomatic complexity metric counted for the code that is reduced
by excluding all the pure structural Ada control statements.

Example

-— 1f the rule parameter is 3 or less

procedure Proc (I : in out Integer; S : String) is -— FLAG
begin
if I in 1 .. 10 then

for J in S'Range loop

if S (J) = " ' then
if I > 10 then
exit;
else
I :=10;
end if;
end if;

I := I + Character'Pos (S (J));
end loop;
end if;
end Proc;

9.3.2 Metrics_Cyclomatic_Complexity
The Metrics_Cyclomatic_Complexity rule takes a positive integer as upper bound. A program unit that is
an executable body exceeding this limit will be flagged.

The McCabe cyclomatic complexity metric is defined in http://www.mccabe.com/pdf/mccabe-nist235r.pdf The goal
of cyclomatic complexity metric is to estimate the number of independent paths in the control flow graph that in turn
gives the number of tests needed to satisfy paths coverage testing completeness criterion.

Example

-— 1f the rule parameter is 6 or less

procedure Proc (I : in out Integer; S : String) is -— FLAG
begin
if I in 1 .. 10 then

for J in S'Range loop

if S (Jd) = ' ' then
if I < 10 then

GNATcheck Reference Manual 89 of 113

http://www.mccabe.com/pdf/mccabe-nist235r.pdf

GNATcheck Reference Manual 2019

I := 10;
end if;
end if;

I := I + Character'Pos (S (J));
end loop;
elsif S = "abs" then
if T > 0 then
I :=1+ 1;
end if;
end if;
end Proc;

9.3.3 Metrics_LSLOC

The Metrics_LSLOC rule takes a positive integer as upper bound. A program unit declaration or a program unit
body exceeding this limit will be flagged.

The metric counts the total number of declarations and the total number of statements.

This rule contains optional parameters for +R option that allows to restrict the rule to specific constructs:

Subprograms Check the rule for subprogram bodies only.

Example

—-— 1f the rule parameter is 20 or less

package Pack is -— FLAG
procedure Procl (I in out Integer);
procedure Proc2 (I in out Integer);
procedure Proc3 (I in out Integer);
procedure Proc4 (I in out Integer);
procedure Proc5 (I : in out Integer);
procedure Proc6 (I in out Integer);
procedure Proc7 (I in out Integer);
procedure Proc8 (I in out Integer);
procedure Proc9 (I : in out Integer);
procedure Procl0 (I : in out Integer);

end Pack;

9.4 SPARK Ada Rules

The rules in this section can be used to enforce compliance with the Ada subset allowed by the SPARK tools.

9.4.1 Annotated Comments

Flags comments that are used as annotations or as special sentinels/markers. Such comments have the following
structure

——<special_character> <comment_marker>

90 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

where
<special_character> character (such as ‘#’, ‘$’, ‘I’ etc.) indicating that the comment is used for a specific purpose

<comment_marker> a word identifying the annotation or special usage (word here is any sequence of characters
except white space)

There may be any amount of white space (including none at all) between <special_character> and
<comment_marker>, but no white space is permitted between ' ——’ and <special_character>. (A white
space here is either a space character or horizontal tabulation)

<comment_marker> must not contain any white space.

<comment_marker> may be empty, in which case the rule flags each comment that starts with
——<special_character> and that does not contain any other character except white space

The rule has the following (mandatory) parameter for the +R option:

S String with the following interpretation: the first character is the special comment character, and the rest is the
comment marker. S must not contain white space.

The —R option erases all definitions of special comment annotations specified by the previous +R options.
The rule is case-sensitive.
Example:

The rule

+RAnnotated_Comments:#hide

will flag the following comment lines

——#hide
——# hide
——# hide
I :=1 + 1; ——# hide

But the line

—— # hide

will not be flagged, because of the space between ‘—* and ‘#’.

The line

——#Hide

will not be flagged, because the string parameter is case sensitive.

9.4.2 Boolean_Relational_Operators
Flag each call to a predefined relational operator (‘<’, >, ‘<=", ‘>=’, ‘=" and ‘/=") for the predefined Boolean type.
(This rule is useful in enforcing the SPARK language restrictions.)

Calls to predefined relational operators of any type derived from Standard.Boolean are not detected. Calls to
user-defined functions with these designators, and uses of operators that are renamings of the predefined relational
operators for Standard.Boolean, are likewise not detected.

GNATcheck Reference Manual 91 of 113

GNATcheck Reference Manual 2019

This rule has no parameters.

Example
procedure Proc (Flag_1l : Boolean; Flag_ 2 : Boolean; I : in out Integer) is
begin
if Flag_1 >= Flag_2 then -— FLAG

9.4.3 Expanded_Loop_Exit_Names

Flag all expanded loop names in exit statements.

This rule has no parameters.

Example
procedure Proc (S : in out String) is
begin
Search : for J in S'Range loop
if S (J) = " ' then
S (J) = '_";
exit Proc.Search; -— FLAG
end if;
end loop Search;
end Proc;

9.4.4 Non_SPARK_Attributes
The SPARK language defines the following subset of Ada 95 attribute designators as those that can be used in SPARK
programs. The use of any other attribute is flagged.
* "Adjacent
e 'Aft
* 'Base
* "Ceiling
* ’'Component_Size
e 'Compose
* "Copy_Sign
e 'Delta
* 'Denorm
* 'Digits
¢ 'Exponent
e 'First

e "Floor

92 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

e "Fore

* "Fraction

e "Last

e 'TLeading_Part

* "Length

¢ "Machine

e "Machine_Emax

e "Machine_Emin

e "Machine_Mantissa
* "Machine_Overflows
e "Machine_Radix
e "Machine_Rounds
* "Max

e "Min

* "Model

e '"Model_Emin

* "Model_Epsilon
e "Model Mantissa
e "Model_Small

¢ "Modulus

* "Pos

* "Pred

* 'Range

* "Remainder

* 'Rounding

e "Safe_First

e 'Safe_Last

* "Scaling

e 'Signed_Zeros

e 'Size

* "Small

e ’Succ

e 'Truncation

* "Unbiased_Rounding
e 'Val

e 'Valid

GNATcheck Reference Manual 93 of 113

GNATcheck Reference Manual 2019

This rule has no parameters.

Example

type Integer_A is access all Integer;

Var : aliased Integer := 1;
Var_A : Integer_A := Var'Access; —-— FLAG

9.4.5 Non_Tagged_Derived_ Types

Flag all derived type declarations that do not have a record extension part.

This rule has no parameters.

Example

type Coordinates is record
X, Y, Z : Float;
end record;

type Hidden_Coordinates is new Coordinates; -— FLAG

9.4.6 Outer_Loop_Exits

Flag each exit statement containing a loop name that is not the name of the immediately enclosing 1 oop statement.

This rule has no parameters.

Example

Outer : for J in S1'Range loop
for K in S2'Range loop

if S1 (J) = S2 (K) then
Detected := True;
exit Outer; -— FLAG
end if;
end loop;

end loop Outer;

9.4.7 Overloaded_Operators

Flag each function declaration that overloads an operator symbol. A function body is checked only if the body does
not have a separate spec. Formal functions are also checked. For a renaming declaration, only renaming-as-declaration
is checked

This rule has no parameters.

94 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

Example

type Rec is record
Cl : Integer;
C2 : Float;

end record;

function "<" (Left, Right : Rec) return Boolean; -— FLAG

9.4.8 Slices

Flag all uses of array slicing

This rule has no parameters.

Example

procedure Proc (S : in out String; L, R : Positive) is
Tmp : String := S (L .. R); -— FLAG

begin

9.4.9 Universal_ Ranges

Flag discrete ranges that are a part of an index constraint, constrained array definition, or for-loop parameter
specification, and whose bounds are both of type universal_integer. Ranges that have at least one bound of a specific
type (suchas 1 .. N, where N is a variable or an expression of non-universal type) are not flagged.

This rule has no parameters.

Example

L : Positive := 1;

S1 : String (L .. 10);

S2 : String (1 .. 10); -— FLAG

GNATcheck Reference Manual 95 of 113

GNATcheck Reference Manual 2019

This page is intentionally left blank.

96 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

CHAPTER
TEN

EXAMPLE OF GNATCHECK USAGE

Here is a simple example. Suppose that in the current directory we have a project file named
gnatcheck_example.gpr with the following content:

project Gnatcheck_Example is

for Source_Dirs use ("src");
for Object_Dir use "obj";
for Main use ("main.adb");

package Check is
for Default_Switches ("ada") use ("-rules", "-from=coding_standard");
end Check;

end Gnatcheck_Example;

And the file named coding_standard is also located in the current directory and has the following content:

-— First, turning on rules, that are directly implemented in gnatcheck
+RAbstract_Type_Declarations

+RAnonymous_Arrays

+RLocal_Packages

+RFloat_Equality_Checks

+REXIT_Statements_With_No_Loop_Name

—-— Then, activating compiler checks of interest:

+RStyle_Checks:e

—— This style check checks if a unit name is present on END keyword that
—-— 1is the end of the unit declaration

And the subdirectory src contains the following Ada sources:

pack.ads:

package Pack is
type T is abstract tagged private;
procedure P (X : T) is abstract;

package Inner is
type My_Float is digits 8;

GNATcheck Reference Manual 97 of 113

GNATcheck Reference Manual 2019

function Is_Equal (L, R : My_Float) return Boolean;
end Inner;
private
type T is abstract tagged null record;
end;

pack.adb:

package body Pack is
package body Inner is
function Is_Equal (L, R : My_Float) return Boolean is
begin
return L = R;
end;
end Inner;
end Pack;

and main.adb

with Pack; use Pack;
procedure Main is

pragma Annotate

(gnatcheck, Exempt_On, "Anonymous_Arrays", "this one is fine");
Float_Array : array (1 .. 10) of Inner.My_Float;
pragma Annotate (gnatcheck, Exempt_Off, "Anonymous_Arrays");

Another_Float_Array : array (1 .. 10) of Inner.My_Float;
use Inner;
B : Boolean := False;

begin
for J in Float_Array'Range loop
if Is_Equal (Float_Array (J), Another_Float_Array (J)) then
B := True;
exit;
end if;
end loop;
end Main;

And suppose we call gnatcheck from the current directory using the project file as the only parameter of the call:

gnatcheck -Pgnatcheck_example.gpr

As aresult, gnatcheck is called to check all the files from the project gnatcheck_example. gpr using the coding
standard defined by the file coding_standard. The gnatcheck report file named gnat check . out will be created
in the ob 7 directory, and it will have the following content:

RULE CHECKING REPORT

1. OVERVIEW

Date and time of execution: 2009.10.28 14:17

98 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

Tool version: GNATCHECK (built with ASIS 2.0.R for GNAT Pro 6.3.0w (20091016))
Command line:

gnatcheck —-files=... -cargs —-gnatec=... -rules —-from=coding_standard

Coding standard (applied rules):
Abstract_Type_Declarations
Anonymous_Arrays
EXIT_Statements_With_No_Loop_Name
Float_Equality_Checks
Local_Packages

Compiler style checks: -gnatye

Number of coding standard violations: 6
Number of exempted coding standard violations: 1

2. DETECTED RULE VIOLATIONS
2.1. NON-EXEMPTED VIOLATIONS

Source files with non-exempted violations
pack.ads
pack.adb
main.adb

List of violations grouped by files, and ordered by increasing source location:
pack.ads:2:4: declaration of abstract type

pack.ads:5:4: declaration of local package

pack.ads:10:30: declaration of abstract type

pack.ads:11:1: (style) "end Pack" required

pack.adb:5:19: use of equality operation for float wvalues

pack.adb:6:7: (style) "end Is_Equal" required

main.adb:9:26: anonymous array type

main.adb:19:10: exit statement with no loop name

2.2. EXEMPTED VIOLATIONS

Source files with exempted violations
main.adb

List of violations grouped by files, and ordered by increasing source location:

main.adb:6:18: anonymous array type
(this one is fine)

2.3. SOURCE FILES WITH NO VIOLATION
No files without wviolations

END OF REPORT

GNATcheck Reference Manual 99 of 113

GNATcheck Reference Manual 2019

This page is intentionally left blank.

100 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

CHAPTER
ELEVEN

This section contains an alphabetized list of all the predefined GNATcheck rules.

Abort_Statements
Abstract_Type_Declarations
Address_Specifications_For_Initialized_Objects
Address_Specifications_For_Local_Objects
Anonymous_Arrays

Anonymous_Subtypes
Binary_Case_Statements
Bit_Records_Without_Layout_Definition
Blocks

Boolean_Relational_Operators
Complex_Inlined_Subprograms
Conditional_Expressions

Constructors
Controlled_Type_Declarations
Declarations _In_Blocks
Deep_Inheritance_Hierarchies
Deep_Library_Hierarchy
Deeply_Nested_Generics
Deeply_Nested_Inlining
Default_Parameters
Default_Values_For_Record_Components
Deriving_From_Predefined_Type
Direct_Calls_To_Primitives
Discriminated_Records
Downward_View_Conversions

Enumeration_Ranges_In_CASE_Statements

LIST OF RULES

GNATcheck Reference Manual

101 of 113

GNATcheck Reference Manual 2019

* Enumeration_Representation_Clauses

e Exceptions_As_Control_Flow

* Exits_From_Conditional_Loops

o EXIT_Statements_With_No_Loop_Name
* Expanded_Loop_Exit_Names

* Explicit_Full_Discrete_Ranges

e Expression_Functions

e Fixed_Equality_Checks

* Float_Equality_Checks

o Forbidden_Attributes

» Forbidden_Pragmas

* Function_Style_Procedures

» Generics_In_Subprograms

* GOTO_Statements

o Implicit_IN_Mode_Parameters

o Implicit_SMALL_For_Fixed_Point_Types
» Improperly_Located_Instantiations

e Improper_Returns

* Incomplete_Representation_Specifications
* Maximum_Parameters

e Library_Level_Subprograms

e Local_Packages

e Local _USE Clauses

* Metrics_Cyclomatic_Complexity

* Metrics_Essential_Complexity

o Metrics_LSLOC

* Misnamed_Controlling_Parameters

e Identifier_Suffixes

* Max_Identifier_Length

* Membership_Tests

* Misplaced_Representation_Items

* Multiple_Entries_In_Protected_Definitions
e Name_Clashes

* Nested_Subprograms

* No_Explicit_Real_Range

e No_Inherited_Classwide_Pre

102 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

* No_Scalar_Storage_Order_Specified
* Non_Qualified_Aggregates

* Non_Short_Circuit_Operators

* Non_SPARK Attributes

* Non_Tagged_Derived_Types

* Non_Visible_Exceptions

o Number_Declarations

o Null_Paths

* Numeric_Indexing

e Numeric_Literals

* Object_Declarations_Out_Of_Order
* Objects_Of_Anonymous_Types

* One_Construct_Per_Line

* OTHERS_In_Aggregates

e OTHERS In_CASE_Statements

e OTHERS_In_Exception_Handlers

* Qutbound_Protected_Assignments

* QOuter_Loop_Exits

* Overloaded_Operators

* Overly_Nested_Control_Structures
* Parameters_Out_Of_Order

* POS_On_Enumeration_Types

e Positional_Actuals_For_Defaulted_Generic_Parameters
e Positional_Actuals_For_Defaulted_Parameters
* Positional_Components

e Positional_Generic_Parameters

* Positional_Parameters

* Predicate_Testing

e Predefined_Numeric_Types

e Printable_ASCII

* Relative_Delay_Statements

* Representation_Specifications

* Quantified_Expressions

* Raising_External_Exceptions

* Raising_Predefined_Exceptions

o Separate_Numeric_Error_Handlers

GNATcheck Reference Manual 103 of 113

GNATcheck Reference Manual 2019

e Single_Value_Enumeration_Types
e Slices

* Specific_Parent_Type_Invariant
 Specific_Pre_Post

* Specific_Type_Invariants

* Subprogram_Access

* Too_Many_Dependencies

* Too_Many_Primitives

» Too_Many_Parents

e Unassigned_OUT_Parameters

o Uncommented_BEGIN_In_Package_Bodies
* Recursive_Subprograms

* Unchecked_Address_Conversions
e Unchecked_Conversions_As_Actuals
o Unconditional_EXxits

* Unconstrained_Array_Returns

* Unconstrained_Arrays

e Uninitialized _Global_Variables

e Universal_Ranges

» Unnamed_Blocks_And_Loops

* USE_PACKAGE_Clauses

* Visible_Components

» Volatile_Objects_Without_Address_Clauses

104 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

APPENDIX
A

GNU FREE DOCUMENTATION LICENSE

Version 1.3, 3 November 2008

Copyright 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense
of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But
this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein. The Document, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with
the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

GNATcheck Reference Manual 105 of 113

http://fsf.org/

GNATcheck Reference Manual 2019

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification
is available to the general public, that is suitable for revising the document straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called Opaque.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any
title page as such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains
XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific
section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To
“Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ”
according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that
this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering
more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as
fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

106 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may
use the same title as a previous version if the original publisher of that version gives permission.

2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the publisher.
Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

A

Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.

7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document’s license notice.

8. Include an unaltered copy of this License.

9. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year,
new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

11. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve
in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein.

12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

13. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.
14. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.

15. Preserve any Warranty Disclaimers.

GNATcheck Reference Manual 107 of 113

GNATcheck Reference Manual 2019

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified
Version by various parties—for example, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you
are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity
for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section
4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice,
and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list
of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one
section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled
“Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace
the individual copies of this License in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on
a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation
is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less
than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

108 of 113 GNATcheck Reference Manual

GNATcheck Reference Manual 2019

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms
of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section
4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights
under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently,
if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you
of the violation by some reasonable means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or
rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a
copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License “or any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide
which future versions of this License can be used, that proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that publishes
copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that
anybody can edit is an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained
in the site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons
Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as
future copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first published
under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC,
(1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

GNATcheck Reference Manual 109 of 113

http://www.gnu.org/copyleft/

GNATcheck Reference Manual 2019

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any
time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with ... Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with
the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two
alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free
software.

110 of 113 GNATcheck Reference Manual

Symbols

+R (gnatcheck), 17
—RTS=rts-path, 15
—check-redefinition, 16
—help, 15

—ignore, 16
—include-file=file, 16
—incremental gnatpp, 15
—no_objects_dir, 15
—show-rule, 16
—subdirs=dir, 15

—version, 15
—write-rules, 16
-P file, 15

-R (gnatcheck), 17
-U, 15

-U main_unit, 15
-Xname=value, 15
-a, 15

-files, 16

-from (gnatcheck), 17
-h, 15

-j, 15

-1, 15

-log, 15

-m, 15

-nt, 16

-0, 16

-0x, 16

-q, 16

-s, 16

-t, 16

-v, 16

-xml, 16

A

Abort_Statements, 70

Abstract_Type_Declarations, 71
Address_Specifications_For_Initialized_Objects, 41
Address_Specifications_For_Local_Objects, 42
Annotated_Comments, 90

Anonymous_Arrays, 42

GNATcheck Reference Manual 2019

INDEX

Anonymous_Subtypes, 71
ASIS, 11

B

Binary_Case_Statements, 42
Bit_Records_Without_Layout_Definition, 33
Blocks, 71

Boolean_Relational_Operators, 91

C

Coding standard file (for gnatcheck), 17
Complex_Inlined_Subprograms, 72
Conditional_Expressions, 72
Constructors, 26
Controlled_Type_Declarations, 74

D

Declarations_In_Blocks, 74
Deep_Inheritance_Hierarchies, 27
Deep_Library_Hierarchy, 39
Deeply_Nested_Generics, 39
Deeply_Nested_Inlining, 74
Default_Parameters, 75
Default_Values_For_Record_Components, 43
Deriving_From_Predefined_Type, 43
Direct_Calls_To_Primitives, 27
Discriminated_Records, 75
Downward_View_Conversions, 28

E

Enumeration_Ranges_In_CASE_Statements, 44
Enumeration_Representation_Clauses, 44
Exceptions_As_Control_Flow, 44
EXIT_Statements_With_No_Loop_Name, 45
Exits_From_Conditional_Loops, 45
Expanded_Loop_Exit_Names, 92
Explicit_Full_Discrete_Ranges, 76
Expression_Functions, 76

F

Feature usage related rules, 70
Fixed_Equality_Checks, 77

GNATcheck Reference Manual

111 of 113

GNATcheck Reference Manual 2019

Float_Equality_Checks, 77
Forbidden_Attributes, 34
Forbidden_Pragmas, 35
Format of the Report File, 13
Function_Style_Procedures, 78

G

Generics_In_Subprograms, 78
Global_Variables, 46
gnatcheck annotations rules, 24
GOTO_Statements, 46

Identifier_Casing, 60

Identifier_Prefixes, 62

Identifier_Suffixes, 65
Implicit_IN_Mode_Parameters, 78
Implicit_SMALL_For_Fixed_Point_Types, 36
Improper_Returns, 46
Improperly_Located_Instantiations, 79
Incomplete_Representation_Specifications, 36

L

Library_Level_Subprograms, 79
Local_Packages, 40
Local_USE_Clauses, 47

M

Max_Identifier_Length, 67
Maximum_Parameters, 47

Membership_Tests, 79

Metrics-related rules, 88
Metrics_Cyclomatic_Complexity, 89
Metrics_Essential_Complexity, 89
Metrics_LSLOC, 90
Misnamed_Controlling_Parameters, 68
Misplaced_Representation_Items, 48
Multiple_Entries_In_Protected_Definitions, 25

N

Name_Clashes, 68
Nested_Subprograms, 48
No_Explicit_Real_Range, 37
No_Inherited_Classwide_Pre, 29
No_Scalar_Storage_Order_Specified, 37
Non_Qualified_Aggregates, 80
Non_Short_Circuit_Operators, 49
Non_SPARK_Attributes, 92
Non_Tagged_Derived_Types, 94
Non_Visible_Exceptions, 40
Null_Paths, 49
Number_Declarations, 81
Numeric_Indexing, 81

Numeric_Literals, 81

O

Object-Orientation related rules, 26
Object_Declarations_Out_Of_Order, 69
Objects_Of_Anonymous_Types, 50
One_Construct_Per_Line, 69
OTHERS_In_Aggregates, 50
OTHERS _In_CASE_Statements, 51
OTHERS_In_Exception_Handlers, 52
Outbound_Protected_Assignments, 52
Outer_Loop_Exits, 94
Overloaded_Operators, 94
Overly_Nested_Control_Structures, 53

P

Parameters_Out_Of Order, 82
Portability-related rules, 33
POS_On_Enumeration_Types, 53

Positional_Actuals_For_Defaulted_Generic_Parameters,

54

Positional_Actuals_For_ Defaulted Parameters, 54

Positional_Components, 55
Positional_Generic_Parameters, 55
Positional_Parameters, 56

Predefined Rules, 25
Predefined_Numeric_Types, 38
Predicate_Testing, 82
Printable_ASCII, 38

Program Structure related rules, 39
Programming Practice related rules, 41

Q

Quantified_Expressions, 85

R

Raising_External_Exceptions, 41
Raising_Predefined_Exceptions, 86
Readability-related rules, 60
Recursive_Subprograms, 56
Relative_Delay_Statements, 84
Representation_Specifications, 84
Rule exemption, 23

S

Separate_Numeric_Error_Handlers, 38
Single_Value_Enumeration_Types, 57
Slices, 95

Source code presentation related rules, 70
SPARK Ada related rules, 90
Specific_Parent_Type_Invariant, 30
Specific_Pre_Post, 30
Specific_Type_Invariants, 31

112 of 113

GNATcheck Reference Manual

GNATcheck Reference Manual 2019

Style-related rules, 25
Subprogram_Access, 86

T

Tasking-related rules, 25
Too_Many_Dependencies, 86
Too_Many_Parents, 31
Too_Many_Primitives, 32

U

Unassigned_OUT_Parameters, 87
Unchecked_Address_Conversions, 57
Unchecked_Conversions_As_Actuals, 58
Uncommented_BEGIN_In_Package_Bodies, 70
Unconditional_EXxits, 58
Unconstrained_Array_Returns, 87
Unconstrained_Arrays, 88
Uninitialized_Global_Variables, 59
Universal_Ranges, 95
Unnamed_Blocks_And_Loops, 59
USE_PACKAGE_Clauses, 60

Using pragma Annotate to control rule exemption, 23

\Y

Visible_Components, 32
Volatile_Objects_Without_Address_Clauses, 26

GNATcheck Reference Manual 113 of 113

	About This Manual
	Introduction
	Format of the Report File
	General gnatcheck Switches
	gnatcheck Rule Options
	Adding the Results of Compiler Checks to gnatcheck Output
	Mapping gnatcheck Rules Onto Coding Standards
	Rule exemption
	Using pragma Annotate to Control Rule Exemption
	gnatcheck Annotations Rules

	Predefined Rules
	Style-Related Rules
	Tasking
	Multiple_Entries_In_Protected_Definitions
	Volatile_Objects_Without_Address_Clauses

	Object Orientation
	Constructors
	Deep_Inheritance_Hierarchies
	Direct_Calls_To_Primitives
	Downward_View_Conversions
	No_Inherited_Classwide_Pre
	Specific_Pre_Post
	Specific_Parent_Type_Invariant
	Specific_Type_Invariants
	Too_Many_Parents
	Too_Many_Primitives
	Visible_Components

	Portability
	Bit_Records_Without_Layout_Definition
	Forbidden_Attributes
	Forbidden_Pragmas
	Implicit_SMALL_For_Fixed_Point_Types
	Incomplete_Representation_Specifications
	No_Explicit_Real_Range
	No_Scalar_Storage_Order_Specified
	Predefined_Numeric_Types
	Printable_ASCII
	Separate_Numeric_Error_Handlers

	Program Structure
	Deep_Library_Hierarchy
	Deeply_Nested_Generics
	Local_Packages
	Non_Visible_Exceptions
	Raising_External_Exceptions

	Programming Practice
	Address_Specifications_For_Initialized_Objects
	Address_Specifications_For_Local_Objects
	Anonymous_Arrays
	Binary_Case_Statements
	Default_Values_For_Record_Components
	Deriving_From_Predefined_Type
	Enumeration_Ranges_In_CASE_Statements
	Enumeration_Representation_Clauses
	Exceptions_As_Control_Flow
	Exits_From_Conditional_Loops
	EXIT_Statements_With_No_Loop_Name
	Global_Variables
	GOTO_Statements
	Improper_Returns
	Local_USE_Clauses
	Maximum_Parameters
	Misplaced_Representation_Items
	Nested_Subprograms
	Non_Short_Circuit_Operators
	Null_Paths
	Objects_Of_Anonymous_Types
	OTHERS_In_Aggregates
	OTHERS_In_CASE_Statements
	OTHERS_In_Exception_Handlers
	Outbound_Protected_Assignments
	Overly_Nested_Control_Structures
	POS_On_Enumeration_Types
	Positional_Actuals_For_Defaulted_Generic_Parameters
	Positional_Actuals_For_Defaulted_Parameters
	Positional_Components
	Positional_Generic_Parameters
	Positional_Parameters
	Recursive_Subprograms
	Single_Value_Enumeration_Types
	Unchecked_Address_Conversions
	Unchecked_Conversions_As_Actuals
	Unconditional_Exits
	Uninitialized_Global_Variables
	Unnamed_Blocks_And_Loops
	USE_PACKAGE_Clauses

	Readability
	Identifier_Casing
	Identifier_Prefixes
	Identifier_Suffixes
	Max_Identifier_Length
	Misnamed_Controlling_Parameters
	Name_Clashes
	Object_Declarations_Out_Of_Order
	One_Construct_Per_Line
	Uncommented_BEGIN_In_Package_Bodies

	Source Code Presentation

	Feature Usage Rules
	Abort_Statements
	Abstract_Type_Declarations
	Anonymous_Subtypes
	Blocks
	Complex_Inlined_Subprograms
	Conditional_Expressions
	Controlled_Type_Declarations
	Declarations_In_Blocks
	Deeply_Nested_Inlining
	Default_Parameters
	Discriminated_Records
	Explicit_Full_Discrete_Ranges
	Expression_Functions
	Fixed_Equality_Checks
	Float_Equality_Checks
	Function_Style_Procedures
	Generics_In_Subprograms
	Implicit_IN_Mode_Parameters
	Improperly_Located_Instantiations
	Library_Level_Subprograms
	Membership_Tests
	Non_Qualified_Aggregates
	Number_Declarations
	Numeric_Indexing
	Numeric_Literals
	Parameters_Out_Of_Order
	Predicate_Testing
	Relative_Delay_Statements
	Representation_Specifications
	Quantified_Expressions
	Raising_Predefined_Exceptions
	Subprogram_Access
	Too_Many_Dependencies
	Unassigned_OUT_Parameters
	Unconstrained_Array_Returns
	Unconstrained_Arrays

	Metrics-Related Rules
	Metrics_Essential_Complexity
	Metrics_Cyclomatic_Complexity
	Metrics_LSLOC

	SPARK Ada Rules
	Annotated_Comments
	Boolean_Relational_Operators
	Expanded_Loop_Exit_Names
	Non_SPARK_Attributes
	Non_Tagged_Derived_Types
	Outer_Loop_Exits
	Overloaded_Operators
	Slices
	Universal_Ranges

	Example of gnatcheck Usage
	List of Rules
	GNU Free Documentation License
	Index

