Oracle Berkeley DB Java Edition

Getting Started with
Berkeley DB Java Edition

Release 3.3

ORACLE
BERKELEY DR

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at:
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/jeoslicense.html

Oracle, Berkeley DB, Berkeley DB Java Edition and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these
marks are reserved. No third-party use is permitted without the express prior written consent of Oracle.

Java™ and all Java-based marks are a trademark or registered trademark of Sun Microsystems, Inc, in the United States and other
countries.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:
http://forums.oracle.com/forums/forum.jspa?forumiD=273

Published 6/4/2008

http://www.oracle.com/technology/software/products/berkeley-db/htdocs/jeoslicense.html
http://forums.oracle.com/forums/forum.jspa?forumID=273

Table of Contents

e =T ol vi
Conventions Used in this BOOKciietiriitiriiiiiiii i eei e eer e rereeenaeenes vi
For More INformationoieeeriritiiiii it reaerereereeeraenneranaeens vi

1. Introduction to Berkeley DB Java Editionc.eeiiiiiiiiiiiiiiiiiieeeeeeiiineeeeeeennnneeeenns 1
FOATUIES ettt e ettt et 1
3 I =T U 3

BaSE APl FEALUIES . .uvernneteieitiiet et eeenteeeereeeereaneeeananeaennesaannesannnens 4
Which APl Should YOU USE? ...neneiiiiiiiiiiiii e eeee et r e eeeeerenaeenanes 4

LTSI 1 2. o] o] § et=Y o] o H PP PPN 5
Database ENVIrONMENESeirieiiiiiiiitiieereie et eeeeereaaeerenneerannaeannes 5
KEY-DAta PairS .uuuuueeeeneeneennnneneeeeeeeeeeeeeeeeeeeeeeesessessessessssssssssssssessssaenns 5
SEOIING DALA tuutteiiiiiiiiiteeiiiiiiteeteeiieeeeeeeenneeeeeessnnneeesessnnnsessessnnnnnnes 6
Storing Data in the DPL ...eiiiiiiiiiiiiiiiiiiii i e eiiieeeeeeennnaaaeans 6

Storing Data using the Base APl ...cciiiiiiiiiiiiiiiii it ieeeiieeeeeenns 6

[D]U o] Aot (=0 D - | ¢ E P PP PP 7
Replacing and Deleting ENtries co.uuueeeiiiiiieteeieiiiiteeeeeeiineeeeeeeernnseeeesannnnes 7
SECONAANY KBYS tiiettttieeiieeteereenineeeeeesenaneeseessnnesesesssnnnssssesssnnnnssenns 8
Using Secondaries With the DPL ...ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieeeeenannns 8

Using Secondaries with the Base APL.ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeaees 8

I = 10T Ut T 0 P 9

N 21U o= 9
Application ConSiderationsiieevieeeeieeriieeeeeeeerrneeeeeeesnnaeeeeessnnnseseesanns 10

JE Backup and RESEOIE .uuuuiiiiiiiiiiiiittiiiiiiteeeeeiiteeeeeeesnneeeeesesnnnnssssesennnnes 10
N [07 YU o] o Yo] o A P PP 11
N QT 0] 0] o o A PP 11
Getting and USINgG JE .viiiiiiiiiiiiiiiiiiii ittt eeeeieeeeseasnneeeeessnnnnsneeesannes 12
N S Cet=] o] 4 (o) I P PP PP 12
Six Things Everyone Should Know about JE LOg FileS ...ccvviiiiiiiiiiiiiiiiiiinneeenannns 13
2. Database ENVIFONMENTS ..ciuuutireitiieit it etereereeereaaeerenaesraneerannnesenaessennesennnes 14
Opening Database ENVIrONMENTES ..viiiiueetiiiiiiiieeeeeeeeirneeeeeeeeinneeeeeeessnnsaeeesannes 14
... 15
Configuring a Shared Cache for Multiple Environmentsccovvieeiiiiiiinnnnnnn. 16
Closing Database ENVIrONMENTSuueeeiiiiiiieetieeeiieeeeeeeerrneeeeeesnrnneeeesesennnneess 17
ENVIrONmMENt PrOpPerties .uuuieeiieeiiiiiiiiiiieiiieiennennnneenenneeneeneeneesaeseesessessenees 18
The EnvironmentConfig Class ..ueeeieeiiieeeeereiiiereeeeeeireeeeeerenrnneeeeseeennaneees 18
EnvironmentMutableContfig ..uuieieiiiiiiiiiiiiiiii it ieeiiieeeeeeeninneaeananns 19
ENVironmMent StatistiCs c.uvereeteretiiei e e ee it eee e reererenaeeeenaesaannasannnens 20
Database Environment Management EXample ..ococveeiiiiiiiiiiiiiiiiiiieieeneiineeeennns 21
I. Programming with the Direct Persistence Layercciviiiiiiiiiiiiiiiiiieiiiiiieeerennnnnnes 24
3. Direct Persistence Layer First STEPS tivvvieeeiiiiiiiiettieeiiineeeeerenineeeesesennnneens 25
o 10 1 V] o] = PPN 25
Opening and Closing Environments and StOrescceeeeieiiineeeeeennnnnnnnns 26

PersiStENt ODJECES tiunrretiiiiiiiii ittt eeeeiieeeeeeeernaeseeeeesnnneeessennnnnnes 27
Saving @ RetrieViNg Data covvuveeiiiiiiiiiieieiiiiteeeeeeiieeeeeeeernneeeeesennnneeeenns 28

4. Working With INAiCES ..uuuueiiiiiiiiiiiiiiiiiiiiiiiieeiiiteeeeeeaineeeeesesnnneesssesnnnnnes 30
ACCESSING INAEXES .uueeetiiiiiiiitteieeiiieeeeeeeeerneeeeeeessnaseeeesssnssssesesnnnnneens 30

6/4/2008 Getting Started with JE Page ii

Accessing Primary INdiCesccvveeviiiiiiiiiiiiiiiiiiiiiiiiiiieniieniienenneena.. 30
Accessing Secondary INdiCeScvvveviiiiiiiiieiiiiiiiiiniieaiieiiieneienenneenne. 30

Creating INAeXES .uiiivuiiiiitiiiitieiiereiteeeneeeerneerenneeeeneseesnessannserannseesns 31
Declaring a Primary INdeXesccovvviiiiiiiiiiiiiiiiniinniinneiiaeineineenneens. 31

Declaring Secondary INAeXeScvveiiiiiiiiiiiiiiiiiiiiienieenieenieeneeenneess 32

Foreign Key Constraintscccvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieneenene. 33

5. Saving and Retrieving ObJeCtSccviitiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeiieenneeeneeenes 3D
A SIMPLe ENtity Class .veeeereerereterrieteereerereeerereeeesneeeesneeeenaseesnsssasnsesanes 39
SIMPLEDA.CLASS +etnttiieittieeittieitteeiteeeieeeeaieeeesneeessaeeessassesnaesssnssesnness 30
Placing Objects in an Entity STOrecooevvieiiiiiiiiiiiiiiiieiieineineenneeeness 37
Retrieving Objects from an Entity Storeccvviiiiiiiiiiiiiiiiiiiiiiininnee.... 40
Retrieving Multiple ObjJectscvveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieiiieeienenee.. 42
Cursor INitializationoovviiiiiiiiiiiiiiii et eeeeeaee. 42

Working with Duplicate Keysccevveeiiiiiiiiiiiiiiiiiiiiiiiiiniiiaiieannene.. 43

LS 2 1= T TP

N o} T Yo -
Deleting Entity ODJECLS ..vvuiiniiiiiiiiiiiiiiiiie i i enieenneenneeenees 47
Replacing Entity ODJECES v.vevueiiiiiiiiiiiiiiiiiiiiieiieeiieeiteeneeeneeenneenens 47

6. A DPL EXAMPLE teinittiiiitiieiitieeiteeeieeeeeneeeeneeeenaeeesnaseesesessnssesnnesesnnseaenes 49
V= 3 Te (o] o - 17 P L
INVENTOIY.JAVA tuvviiiiiiiiiiiiiiiiiiiiii ittt eiieesiiasesenasessnaessnns D1

D =Tt VYool <Y o gy - 1 L P 1o
ExampleDatabasePut.javacieeeiieiiieiiitiiiiiiiiiiiieiiteiiteiitieitienereasseassenss D6
ExamplelnventoryRead.javaeeveeiieiiiiiiiiiiiiiiiiiiiiiiiiiiniiiniiiaeieneienenne.. 60

[I. Programming with the Base APlcccciieeeieenieennees. 6D
R D L= = L= PP <
Opening Databasescevueieeiiiriiiiiiiiiiiiiitieiieeeeiieeeeineeesieeeesneceenneceannss 00
Deferred Write Databasesccvveeiieiiieiiiiiiiiiiiieinieiiieinerenerenneens.. 67
Temporary Databasesccovvveiiiiiiiiiiiiiiiiiiiiiiieiieenieenieeneeeannen. 70

CLlOSING Databases ..uvveeeneeierueerenneereneeeeseeeenneerenneesseeeesneescnneeeanes 71

Database Propertiesoocveiiieiiiiiiiiiiiiiiieiiiieiieeeneeeneeenteeneeenssensss 12
Administrative Methodscoeviiiiiiiiiiiiiiiiiiiiiiiii e eeneeeneee 13
Database EXamPle ...ccceiiieiiieiiieiiiiiiiiieiiteiieiiteeiteenteenteenteensseneses 1D

8. Database RECOIdScoeviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieineineeneenees 18
Using Database RECOIAS ...cvvuiiiiiuiiiiieiiniitieiiteeeieteenneeeeneeecsneeesnneeaaneees 18
Reading and Writing Database Recordscceveiiiiiiiiiiiiiiiniiiaiiiaiinnenne... 80
Writing Records to the Databasecccveiiiiiiiiiiiiiiiiiiiiiiiiniienenen... 80

Getting Records from the Databaseccceeeiiiiiiiiiiiiiiiiiiiieniiennnna... 81

Deleting RECOrdScevieiiieiiiiiiiiiiiiiiiiiieiieiieineeeneeenaeenesenes 83

Data Persistencecccvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicien e 83

Using the BIND APIS ...uvuuiiniiiiiiiiiiiiiiiiiiiiiiiiin e ererieniecaeeaenaena. . 84
Numerical and String ObJeCtS ...cccvviriiiiiiiiiiiiiiiiiiiiiiiiiieiiiieiinennen... 84
Serializable Complex ObJectscccvveiiieiiieiiiiiiiiiiieiiieenieciieineeenese.. 86

USage CaVveats .ivvvieiieiiiiieiiieeereeennaneeessensnneeesseessansessscasannes 87

Serializing ObJeCtS «uvveeiiiiieiiiiiiiiiieiieeieereneeeeaneeeanneeeanaees 87

Deserializing ObJects ...ccvvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiienieenneene. 90

Custom Tuple Bindingsceveveiiriieiiiiieiieirerereeeenneerenneeeenneeesneeeanns 91

USING COMPArators «uveeereereeterrerrnnneerreensanneesseessnneesssssssnnessssassansssssasss 94

6/4/2008 Getting Started with JE Page iii

WHTING COMPArators «vveeiieeetttreeeiieetreenannterseeassnneesssassnnnessseannas 95

Setting ComMPAratorsueeeiereiiiietrieeiietteeeraneeereeennnnessssensnnnaesss 95

Database ReCOrd EXamPle ...cieeueiiiiiiiiiiieiieieitteeinteeeneeeenneeeenneeecnneenns 97

0. USING CUISOIS tuueeeeettrteeneteereeranresseeasanneessesssnnnessssassansasssessnnnsssssannas 108
Opening and ClOSTNG CUMSOIS t..uueieeueeeenuteeeeeeenneeeesneeesnneeesnsesesnseesnnneenn 108
Getting Records UsiNg the CUISOr ...uuieeieeieietieitereieeeeneeeeneeeenneeeenneenns 109
Searching for RECOIASuiivuiiiiieiiiiiieiiteiiteeeieereneerenneeeanaeeannes 111

Working with Duplicate Recordsceevveiiiiiiiiiiiieiieiniieeeeneeeanness 114

Putting Records UsiNG CUMSOIS vuv.uutirruetieeneereneeeraneeeenneerenaeeronaeeenneesannes 116
Deleting Records USING CUIMSOIS ..uieueieeiueeeeneeeenneeeenneeesnneeesnaeesonasesnneens 118
Replacing Records USING CUISOIS ..uuieeueeiereererueeeeneeeeseerenaeeeenneeenneesannes 119
CUISOr EXAMIPLE tinitiiiitiiiiieii et eeieeeeieeeeaneerenneeeanaeessneeeenneesonneen 120

10. Secondary Databases ...ceeueeieeeereiuterenuteerieeeenneeeerneeeenaeeesneesenneeesnneeenns 125
Opening and Closing Secondary Databasesccceeeieiiiiiiriieiinnieeeennneennns 126
Implementing KeY Creators ...ceeeeeieeeereeeeiueeeeieeeeseeessneeesnaeeesnneeanneees 128
Secondary Database Propertiesccceieieiiiiiiiiiiiiiiiiiiiieieiiieeeeneenaneens 131
Reading Secondary Databasesceeeiiiieiiiiiiiiiiiiiiiiiiiieieeeeneeeanneens 131
Deleting Secondary Database RECOrdscuvivieiiiiiiiiieieiieeeneieeenneeennnees 132
USING SECONAArY CUMSOIS wuiiuueteenneerenneeraneeeesneeeenneeeenaseesneesasneesennseeones 133

(D L= o 1= T N Lo | 3 - N 134
USING JOIN CUISOIS «unuieetitiierrieeeetreennnteeeeeannneeesseesaneesssassnnnesss 135
JOINCUISOr ProPerties «uueueiiiiiiiiittiiieiiietereeannaneeeseensanneesseesnnnnes 137
Secondary Database EXampPle ...ueeeeeeieieiiiieeeeieeeeeneeeenneeesnneeesnneeeonnees 138
Opening Secondary Databases with MyDBENVccevvveiiiiieiiinneennnnnn. 139

Using Secondary Databases with ExamplelnventoryReadc........... 142

[ll. Administering JE ApPlICAtIONS ..uieeuutiriietiiiieiieiieeeaieeeeneeeereeeesraeeesneeeennees 146
11. Backing up and Restoring Berkeley DB Java Edition Applications 147
Databases and LOg Files ..vuuiiiieiiiiiiiiiiiiiiiiii it ereneeeneeeeenneeaannees 147

LOZ File OVEIVIEW .uviiiiiiiiiitiiii it ieiteeieteeeeerenneeeenaeeanneesannes 147

Cleaning the LOg Files ..cuuuiiiiuiiiiiiiiiieiieiieeeieeenieeeenneeeannaennn 148

R 2 T L N 148

Database Modifications and SYNCS ..ceeueeireneeieieireieteeneereneerenneeennns 148

NOIMAL RECOVETY . uviiieiiiitiiiit it ieieereieeeeneeeenneeeenaeesanaeennness 149
Performing BaCKUPS ..uueiieietiriietiiiteteitieieerenneereneeeanneeesnneeeonneeenneens 149
Performing @ HOt BaCKUP ..vvieieeiiiiiiiiiiiiiiiiteriieeeeneeeenneenaneens 149
Performing an Offline BaCKUP ...cceuviiiiniiiiiiiiiiiiiiieeiieeeneeeanneenns 149

Using the DbBackup Helper Class «.c.veeeveeeerieeeeieierieeeeneeeeeneeennneens 150
Performing CatastrophiC RECOVEIY ...civiuiiiiiuiiiiieiiiiitieeineeeeneereaeeeanneennn 151

[(o1 =T Te | o Y PP PP 152

12. Administering Berkeley DB Java Edition Applicationsccoccevieiiieiinenen. 154
The JE Properties File ..ooouiiiiiiiiiiiiiiiii it ieeii e et eeeieeeeneeeanaeens 154
Managing the Background Threadscocvveiiiieiiriiiieiieereieeeineeeenneerennns 154

The Cleaner Thread ...c..eiviiiiiiiiiiiiiiiiiiiii et et reeeeaeaes 155

The Checkpointer Threadcceveiiiiieiiiiiiiiiiiiriireiieeeeneeenneeeannes 155

SiZING the CaChe «.neriiiii i e i et e e ert et eeseeeanneaaanas 155

The Command Ling TOOLS ...cvuveiteitiiitiiitiiiteiitiitiitreatretiieirneineennees 156
3107011111 o H PP 157

D 0] e -V [N 158

D0}] o 1 A PPN 160

6/4/2008

Getting Started with JE Page iv

A. Concurrent Processing in Berkeley DB Java Editioncoovviiiiiiiiiiiiiiiiiniinnninannens 162
Multithreaded AppPlICATIONS ...iiiutiriitieii et i eeieeeeeieeeaneeeenaeeesnaeeennnens 162
MULEIProcess APPLICAtIONS t.uueierirtereietieeieeeeeeeeeineeeereeeaeeeessneeessneeesnnseesnnees 163

6/4/2008 Getting Started with JE Page v

Preface

Welcome to Berkeley DB Java Edition (JE). This document introduces JE, version 3.3. It is
intended to provide a rapid introduction to the JE API set and related concepts. The goal of
this document is to provide you with an efficient mechanism with which you can evaluate JE
against your project's technical requirements. As such, this document is intended for Java
developers and senior software architects who are looking for an in-process data management
solution. No prior experience with Berkeley DB Java Edition is expected or required.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in nonospaced font, as are met hod nanes. For example: "The
Envi ronment . openDat abase() method returns a Dat abase class object.”

Variable or non-literal text is presented in italics. For example: "Go to your JE_HOME directory."”

Program examples are displayed in a nonospaced font on a shaded background. For example:

i nport com sl eepycat . j e. Envi ronment ;

/1 Open the environnent. Allowit to be created if it does not already exist.
Envi ronment myDbEnv;

In some situations, programming examples are updated from one chapter to the next. When
this occurs, the new code is presented in monospaced bol d font. For example:

i nport com sl eepycat. | e. Envi ronment ;
i nport com sl eepycat . j e. Envi ronnment Confi g;
inport java.io.File;

/1 Open the environnent. Allowit to be created if it does not already exist.
Envi ronment nmyDbEnv;

Envi ronment Confi g envConfig = new Environnment Config();

envConfig.set All owCreate(true);

myDbEnv = new Environnent (new Fil e("/export/dbEnv"), envConfig);

|:| Finally, notes of interest are represented using a note block such as this.

For More Information

Beyond this manual, you may also find the following sources of information useful when building
a JE application:

6/4/2008 Getting Started with JE Page vi

» Berkeley DB Java Edition Getting Started with Transaction Processing [http://
www.oracle.com/technology/documentation/berkeley-db/je/TransactionGettingStarted/
BerkeleyDB-JE-Txn.pdf]

» Berkeley DB Java Edition Javadoc [http://www.oracle.com/technology/documentation/
berkeley-db/je/java/index.html]

« Berkeley DB Java Edition Collections Tutorial [http://www.oracle.com/technology/
documentation/berkeley-db/je/collections/tutorial/BerkeleyDB-JE-Collections. pdf]

6/4/2008 Getting Started with JE Page vii

http://www.oracle.com/technology/documentation/berkeley-db/je/TransactionGettingStarted/BerkeleyDB-JE-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/je/TransactionGettingStarted/BerkeleyDB-JE-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/je/TransactionGettingStarted/BerkeleyDB-JE-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/je/TransactionGettingStarted/BerkeleyDB-JE-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/je/java/index.html
http://www.oracle.com/technology/documentation/berkeley-db/je/java/index.html
http://www.oracle.com/technology/documentation/berkeley-db/je/java/index.html
http://www.oracle.com/technology/documentation/berkeley-db/je/collections/tutorial/BerkeleyDB-JE-Collections.pdf
http://www.oracle.com/technology/documentation/berkeley-db/je/collections/tutorial/BerkeleyDB-JE-Collections.pdf
http://www.oracle.com/technology/documentation/berkeley-db/je/collections/tutorial/BerkeleyDB-JE-Collections.pdf

Chapter 1. Introduction to Berkeley DB Java Edition

Features

Welcome to Berkeley DB Java Edition (JE). JE is a general-purpose, transaction-protected,
embedded database written in 100% Java (JE makes no JNI calls). As such, it offers the Java
developer safe and efficient in-process storage and management of arbitrary data.

You use JE through a series of Java APIs which give you the ability to read and write your data,
manage your database(s), and perform other more advanced activities such as managing
transactions. The Java APIs that you use to interact with JE come in two basic flavors. The
first is a high-level API that allows you to make Java classes persistent. The second is a
lower-level APl which provides additional flexibility when interacting with JE databases.

|:| For long-time users of JE, the lower-level API is the traditional API that you are probably
accustomed to using.

Regardless of the API set that you choose to use, there are a series of concepts and APIs that
are common across the product. This manual starts by providing a high-level examination of
JE. It then describes the APIs you use regardless of the API set that you choose to use. It then
provides information on using the Direct Persistence Layer (DPL) API, followed by information
on using the more extensive "base” API. Finally, we provide some database administration
information.

Note that the information provided here is intended to focus on only introductory APl usage.
Other books describe more advanced topics, such as transactional usage. See the For More
Information (page vi) section for a listing of other titles in the JE documentation set.

JE provides an enterprise-class Java-based data management solution. All you need to get
started is to add a single jar file to your application’s classpath. See Getting and Using JE
(page 12) for more information.

JE offers the following major features:

« Large database support. JE databases efficiently scale from one to millions of records. The
size of your JE databases are likely to be limited more by hardware resources than by any
limits imposed upon you by JE.

Databases are described in Databases (page 66).

» Database environments. Database environments provide a unit of encapsulation and
management for one or more databases. Environments are also the unit of management for
internal resources such as the in-memory cache and the background threads. Finally, you
use environments to manage concurrency and transactions. Note that all applications using
JE are required to use database environments.

Database environments are described in Database Environments (page 14).

o Multiple thread and process support. JE is designed for multiple threads of control. Both
read and write operations can be performed by multiple threads. JE uses record-level locking

6/4/2008

Getting Started with JE Page 1

for high concurrency in threaded applications. Further, JE uses timeouts for deadlock
detection to help you ensure that two threads of control do not deadlock indefinitely.

Moreover, JE allows multiple processes to access the same databases. However, in this
configuration JE requires that there be no more than one process allowed to write to the
database. Read-only processes are guaranteed a consistent, although potentially out of date,
view of the stored data as of the time that the environment is opened.

Transactions. Transactions allow you to treat one or more operations on one or more databases
as a single unit of work. JE transactions offer the application developer recoverability,
atomicity, and isolation for your database operations.

Note that transaction protection is optional. Transactions are described in the Berkeley DB
Java Edition Getting Started with Transaction Processing guide.

In-memory cache. The cache allows for high speed database access for both read and write
operations by avoiding unnecessary disk I/0. The cache will grow on demand up to a
pre-configured maximum size. To improve your application's performance immediately after
startup time, you can preload your cache in order to avoid disk I/0 for production requests
of your data.

Cache management is described in Sizing the Cache (page 155).

Indexes. JE allows you to easily create and maintain secondary indices for your primary data.
In this way, you can obtain rapid access to your data through the use of an alternative, or
secondary, key.

How indices work is dependent upon the API you are using. If you are using the DPL, see
Working with Indices (page 30). Otherwise, see Secondary Databases (page 125).

Log files. JE databases are stored in one or more numerically-named log files in the
environment directory. The log files are write-once and are portable across platforms with
different endian-ness.

Unlike other database implementations, there is no distinction between database files (that
is, the "material database") and log files. Instead JE employs a log-based storage system to
protect database modifications. Before any change is made to a database, JE writes
information about the change to the log file.

Note that JE's log files are not binary compatible with Berkeley DB's database files. However,
both products provide dump and load utilities, and the files that these operate on are
compatible across product lines.

JE's log files are described in more detail in Backing up and Restoring Berkeley DB Java Edition
Applications (page 147). For information on using JE's dump and load utilities, see The Command
Line Tools (page 156). Finally, for a short list of things to know about log files while you are
learning JE, see Six Things Everyone Should Know about JE Log Files (page 13).

Background threads. JE provides several threads that manage internal resources for you.
The checkpointer is responsible for flushing database data to disk that was written to cache
as the result of a transaction commit (this is done in order to shorten recovery time). The

6/4/2008

Getting Started with JE Page 2

compressor thread removes subtrees from the database that are empty because of deletion
activity. Finally, the cleaner thread is responsible for cleaning and removing unneeded log
files, thereby helping you to save on disk space.

Background thread management is described in Managing the Background Threads (page 154).

» Backup and restore. JE's backup procedure consists of simply copying JE's log files to a safe
location for storage. To recover from a catastrophic failure, you copy your archived log files
back to your production location on disk and reopen the JE environment.

Note that JE always performs normal recovery when it opens a database environment. Normal
recovery brings the database to a consistent state based on change information found in the
database log files.

JE's backup and recovery mechanisms are described in Backing up and Restoring Berkeley
DB Java Edition Applications (page 147).

DPL Features

The DPL is one of two APIs that JE provides for interaction with JE databases. The DPL provides
the ability to cause any Java type to be persistent without implementing special interfaces.
The only real requirement is that each persistent class have a default constructor.

The DPL provides all of the features previously identified in this chapter. In addition, the DPL
offers you:

« A type safe, convenient way to access persistent objects.

» No hand-coding of bindings is required. A binding is a way of transforming data types into a
format which can be stored in a JE database. If you do not use the DPL, you may be required
to create custom bindings for your data types.

See Using the BIND APIs (page 84)for more information on creating data bindings.

Note that Java byte code enhancement is used by the DPL API to provide fully optimized
bindings that do not use Java reflection.

» No external schema is required to define primary and secondary index keys. Java annotations
are used to define all metadata.

« Interoperability with external components is supported using the Java collections framework.
Any index can be accessed using a standard j ava. util| collection.

« Class evolution is explicitly supported. This means you can add fields or widen types
automatically and transparently.

You can also perform many incompatible class changes, such as renaming fields or refactoring
a single class. This is done using a built-in DPL mechanism called mutations. Mutations are
automatically applied as data is accessed so as to avoid downtime to convert large databases
during a software upgrade.

6/4/2008

Getting Started with JE Page 3

Persistent class fields can be private, package-private, protected or public. The DPL can
access persistence fields either by bytecode enhancement or by reflection.

The performance of the underlying JE engine is safe-guarded. All DPL operations are mapped
directly to the underlying APIs, object bindings are lightweight, and all engine tuning
parameters are available.

Java 1.5 generic types and annotations are supported.

Base API Features

If you are not using the DPL, then the following concepts and features are likely to be of interest
to you:

Database records. All database records are organized as simple key/data pairs. Both keys
and data can be anything from primitive Java types to the most complex of Java objects.

Database records are described in Database Records (page 78).

Direct database read and write. You can use methods of a Dat abase object to read and write
database records. Reading and writing using Dat abase objects are described in Database
Records (page 78).

Cursors. Cursors give you the ability to sequentially move through a database. Using cursors,
you can seek to a specific point in the database (using search criteria applied to the key
and/or the data portion of a database record) and then either step forward or step backwards
through the database.

Cursors are described in detail in Using Cursors (page 108).

JCA. JE provides support for the Java Connector Architecture. See JCA Support (page 11)
for more information.

JMX. JE provides support for Java Management Extensions. See JMX Support (page 11) for
more information.

Which API Should You Use?

Of the two APIs that JE makes available to you, we recommend that you use the DPL if all you
want to do is make classes with a relatively static schema to be persistent.

Further, if you are porting an application between Berkley DB and Berkeley DB Java Edition,
then you should not use the DPL as the base APl is a much closer match to the Berkley DB Java
API.

Additionally, if your application uses a highly dynamic schema, then the DPL is probably a poor
choice for your application, although the use of Java annotations can make the DPL work a
little better for you in this situation.

6/4/2008

Getting Started with JE Page 4

The JE Application

This section provides a brief overview to the major concepts and operations that comprise a
JE application. This section is concluded with a summary of the decisions that you need to
make when working with JE.

Note that the core JE classes are all contained in the com sl eepycat . j e package. In addition,
this book describes some classes that are found in com sl eepycat . j e. bi nd. The bind APIs are
used for converting Java objects in and out of byt e arrays.

Database Environments

Regardless of the JE API that you use, your data is stored in databases. If you use the DPL, you
do not manage these databases directly; rather, they are managed for you by the API. On the
other hand, if you use the lower-level JE APIs, then you must manage databases directly. This
is not difficult to do as it mostly involves opening and closing the databases, giving them names,
and so forth. See Databases (page 66) for more information.

That said, JE always requires you to use a database environment. Database environments
provide an unit of encapsulation for one or more databases. Environments correspond to a
directory location on disk, and in them you will find all the files in use by JE. Environments
are also used to manage JE resources such as transactions.

To use a database environment, it must first be created and then opened. In order to create
a database environment, the directory location in which it resides must already exist.

You open a database environment by instantiating an Envi r onment object. Your Envi r onnent
instance is called an environment handle.

Once you have opened an environment, what you do with it depends on the nature of your
application; that is, the JE APl you are using and whether you are using advanced features such
as transactions. (See Berkeley DB Java Edition Getting Started with Transaction Processing for
details on using transactions). However, at a minimum you will always have to open your
environment before you can access your data stored in JE. Also, before you end your application
you should always close your environment.

Environments are described in greater detail in Database Environments (page 14).

Key-Data Pairs

JE stores and retrieves data using key-data pairs. The data portion of this is the data that you
have decided to store in JE for future retrieval. The key is the information that you want to
use to look up your stored data once it has been placed inside a JE database.

For example, if you were building a database that contained employee information, then the
data portion is all of the information that you want to store about the employees: name,
address, phone numbers, physical location, their manager, and so forth.

The key, however, is the way that you look up any given employee. You can have more than
one key if you wish, but every record in your database must have a primary key. If you are

6/4/2008

Getting Started with JE Page 5

using the DPL, then this key must be unique; that is, it must not be used multiple times in the
database. However, if you are using the base API, then this requirement is relaxed. See Duplicate
Data (page 7) for more information.

For example, in the case of an employee database, you would probably use something like the
employee identification number as the primary key as this uniquely identifies a given employee.

You can optionally also have secondary keys that represent indexes into your database. These
keys do not have to be unique to a given record; in fact, they often are not. For example, you
might set up the employee’'s manager's name as a secondary key so that it is easy to locate all
the employee's that work for a given manager.

Storing Data

How you manage your stored information differs significantly, depending on which API you are
using. Both APIs ultimately are doing the same thing, but the DPL hides a lot of the details
from you.

Storing Data in the DPL

The DPL is used to store Java objects in an underlying series of databases. These databases
are accessed using an EntityStore class object.

To use the DPL, you must decorate the classes you want to store with Java annotations that
identify them as either an entity class or a persistent class.

Entity classes are classes that have a primary key, and optionally one or more secondary keys.
That is, these are the classes that you will save and retrieve directly using the DPL. You identify
an entity class using the @ntity java annotation.

Persistent classes are classes used by entity classes. They do not have primary or secondary
indices used for object retrieval. Rather, they are stored or retrieved when an entity class
makes direct use of them. You identify an persistent class using the @er si st ent java annotation.

The primary key for an object is obtained from one of the class’ data members. You identify
which data member to use as the primary key using the @ri mar yKey java annotation.

Note that all non-transient instance fields of a persistent class, as well as its superclasses and
subclasses, are persistent. Static and transient fields are not persistent. The persistent fields
of a class may be private, package-private (default access), protected or public.

Also, simple Java types, such as j ava.lang. String and java. util.Date, are automatically
handled as a persistent class when you use them in an entity class; you do not have to do
anything special to cause these simple Java objects to be stored in the EntityStore.

Storing Data using the Base API

When you are not using the DPL, both record keys and record data must be byte arrays and
are passed to and returned from JE using Dat abaseEnt ry instances. Dat abaseEnt ry only supports
storage of Java byte arrays. Complex objects must be marshaled using either Java serialization,
or more efficiently with the bind APIs provided with JE

6/4/2008

Getting Started with JE Page 6

Database records and byt e array conversion are described in Database Records (page 78).

You store records in a Dat abase by calling one of the put methods on a Dat abase handle. JE
automatically determines the record's proper placement in the database's internal B-Tree using
whatever key and data comparison functions that are available to it.

You can also retrieve, or get, records using the Dat abase handle. Gets are performed by providing
the key (and sometimes also the data) of the record that you want to retrieve.

You can also use cursors for database puts and gets. Cursors are essentially a mechanism by
which you can iterate over the records in the database. Like databases and database
environments, cursors must be opened and closed. Cursors are managed using the Cur sor class.

Databases are described in Databases (page 66). Cursors are described in Using Cursors (page 108).

Duplicate Data

If you are using the base API, then at creation time databases can be configured to allow
duplicate data. Remember that JE database records consist of a key/data pair. Duplicate data,
then, occurs when two or more records have identical keys, but different data. By default, a
Dat abase does not allow duplicate data.

If your Dat abase contains duplicate data, then a simple database get based only on a key
returns just the first record that uses that key. To access all duplicate records for that key,
you must use a cursor.

If you are using the DPL, then you can duplicate date using secondary keys, but not by using
the primary key. For more information, see Retrieving Multiple Objects (page 42).

Replacing and Deleting Entries

If you are using the DPL, then replacing a stored entity object simply consists of retrieving it,
updating it, then storing it again. To delete the object, use the del et () method that is
available on either its primary or secondary keys. If you use the del et ¢() method available on
the secondary key, then all objects referenced by that key are also deleted. See Deleting Entity
Objects (page 47) for more information.

If you are using the base API, then how you replace database records depends on whether
duplicate data is allowed in the database.

If duplicate data is not allowed in the database, then simply calling Dat abase. put () with the
appropriate key will cause any existing record to be updated with the new data. Similarly, you
can delete a record by providing the appropriate key to the Dat abase. del et e() method.

If duplicate data is allowed in the database, then you must position a cursor to the record that
you want to update, and then perform the put operation using the cursor.

To delete records using the base API, you can use either Dat abase. del et e() or Cursor. del ete().
If duplicate data is not allowed in your database, then these two method behave identically.
However, if duplicates are allowed in the database, then Dat abase. del et e() deletes every

6/4/2008

Getting Started with JE Page 7

record that uses the provided key, while Cur sor. del et ¢() deletes just the record at which the
cursor is currently positioned.

Secondary Keys

Secondary keys provide an alternative way to locate information stored in JE, beyond that
which is provided by the primary key. Frequently secondary keys refer to more than one record
in the database. In this way, you can find all the cars that are green (if you are maintaining
an automotive database) or all the people with brown eyes (if you are maintaining a database
about people). In other words, secondary keys represent a index into your data.

How you create and maintain secondary keys differs significantly, depending on whether you
are using the DPL or the base API.

Using Secondaries with the DPL

Under the DPL, you declare a particular field to be a secondary key by using the @econdar yKey
annotation. When you do this, you must declare what kind of an index you are creating. For
example, you can declare a secondary key to be part of a ONE_TO _ONE index, in which case the
key is unique to the object. Or you could declare the key to be MANY_TO ONE, in which case the
key can be used for multiple objects in the data store.

Once you have identified secondary keys for a class, you can access those keys by using the
EntityStore. get Secondaryl ndex() method.

For more information, see Declaring Secondary Indexes (page 32).

Using Secondaries with the Base API.

When you are using the base API, you create and maintain secondary keys using a special type
of a database, called a secondary database. When you are using secondary databases, the
database that holds the data you are indexing is called the primary database.

You create a secondary database by opening it and associating it with an existing primary
database. You must also provide a class that generates the secondary’s keys (that is, the index)
from primary records. Whenever a record in the primary database is added or changed, JE uses
this class to determine what the secondary key should be.

When a primary record is created, modified, or deleted, JE automatically updates the secondary
database(s) for you as is appropriate for the operation performed on the primary.

You manage secondary databases using the Secondar yDat abase class. You identify how to create
keys for your secondary databases by supplying an instance of a class that implements the
Secondar yKeyCreat or interface.

Secondary databases are described in Secondary Databases (page 125).

6/4/2008

Getting Started with JE Page 8

Transactions

Transactions provide a high level of safety for your JE operations by allowing you to manage
one or more operations as if they were a single unit of work. Transactions provide your JE
operations with recoverability, atomicity, and isolation.

Transactions provide recoverability by allowing JE to undo any transactional-protected operations
that may have been in progress at the time of an application or system failure.

Transactions provide atomicity by allowing you to group many operations into a single unit of
work. Either all operations succeed or none of them do. This means that if one write operation
fails for any reason, then all other writes contained within that transaction also fail. This
ensures that the database is never partially updated as the result of an only partially successful
chain of read/write operations.

Transactions provide isolation by ensuring that the transaction will never write to a record that
is currently in use (for either read or write) by another transaction. Similarly, any record to
which the transaction has written can not be read outside of the transaction until the transaction
ends. Note that this is only the default behavior; you can configure your Dat abase, Cursor, or
Transacti on handle to relax its isolation guarantees.

Essentially, transactional isolation provides a transaction with the same unmodified view of
the database that it would have received had the operations been performed in a single-threaded
application.

Transactions may be long or short lived, they can encompass as many operations as you want,
and (if using the base API) they can span databases so long as all participating databases reside
in the same environment.

Transaction usage results in a performance penalty for the application because they generally
require more disk I/0 than do non-transactional operations. Therefore, while most applications
will use transactions for JE writes, their usage is optional. In particular, processes that are
performing read-only operations might not use transactions. Also, applications that use JE for
an easily recreated cache might also choose to avoid transactions.

Using transactions with your JE applications is described in detail in the Berkeley DB Java
Edition Getting Started with Transaction Processing guide.

JE Resources

JE has some internal resources that you may want to manage. Most important of these is the
in-memory cache. You should carefully consider how large the JE cache needs to be. If you set
this number too low, JE will perform potentially unnecessary disk 1/0 which will result in a
performance hit. If you set it too high, then you are potentially wasting RAM that could be put
to better purposes.

Note that the size that you configure for the in-memory cache is a maximum size. At application
startup, the cache starts out fairly small (only about 7% of the maximum allowed size for the
cache). It then grows as is required by your application's database operations. Also, the cache
is not pinned in memory - it can be paged out by your operating system'’s virtual memory system.

6/4/2008

Getting Started with JE Page 9

Beyond the cache, JE uses several background threads to clean the JE log files, to compress
the database by removing unneeded subtrees, and to flush database changes seen in the cache
to the backing data files. For the majority of JE applications, the default behavior for the
background threads should be acceptable and you will not need to manage their behavior. Note
that background threads are started no more than once per process upon environment open.

For more information on sizing the cache and on the background threads, see Administering
Berkeley DB Java Edition Applications (page 154).

Application Considerations

When building your JE application, be sure to think about the following things:

» What data do you want to store? What is best used for the primary key? What is the best
representation for primary record data? If you are using the base API, think about the most
efficient way to move your keys and data in and out of byte arrays. See Database
Records (page 78) for more information.

» Does the nature of your data require duplicate record support? Remember that duplicate
support can be configured only if you are using the base API, and then only at database
creation time. See Opening Databases (page 66) for more information.

If you are supporting duplicate records, you may also need to think about duplicate
comparators (not just key comparators). See Using Comparators (page 94) for more
information.

» What secondary indexes do you need? How can you compute your secondary indexes based
on the data and keys stored in your primary database? Indexes are described in Secondary
Databases (page 125).

» What cache size do you need? See Sizing the Cache (page 155) for information on how to size
your cache.

» Does your application require transactions (most will). Transactions are described in the
Berkeley DB Java Edition Getting Started with Transaction Processing guide.

JE Backup and Restore

To backup your database, copy the . | db files starting from the lowest humbered log file to the
highest numbered log file to your backup media. Be sure to copy the bytes of the individual
database files in order from the lowest to the highest. You do not have to close your database
or otherwise cease database operations when you do this.

Restoring a JE database from a backup consists of closing your JE environment, copying archived
log files back into your environment directory and then opening your JE environment again.

Note that whenever a JE environment is opened, JE runs normal recovery. This involves bringing
your database into a consistent state given the changed data found in the database. If you are
using transactions during normal operations, then JE automatically runs checkpoints for you

6/4/2008

Getting Started with JE Page 10

so as to limit the time required to run this recovery. In any case, running normal recovery is a
routine operation, while performing database restores is not.

For more information on JE backup and restores, and on checkpoints, see Backing up and
Restoring Berkeley DB Java Edition Applications (page 147).

JCA Support

JCA is the Java Connector Architecture. This architecture provides a standard for connecting
the J2EE platform to legacy enterprise information systems (EIS), such as ERP systems, database
systems, and legacy applications not written in Java. JE supports this architecture.

Users who want to run JE within a J2EE Application Server can use the JCA Resource Adapter
to connect to JE through a standard API. Note that the base API is required if you want to do
this. The JE Resource Adapter supports all three J2EE application server transaction types:

« No transaction.
e Local transactions.
e XA transactions.

JCA also includes the Java Transaction APl (JTA), which means that JE supports 2 phase commit
(XA). Therefore, JEs can participate in distributed transactions managed by either a J2EE server
or the applications direct use of the JTA API.

The JE distribution includes an example showing JCA usage in a simple EJB. The Resource
Adaptor has been tested using JBoss 3.2.6, and the Sun Java System Application Server, version
8.1. Instructions for how to build the Resource Adapter and run a simple "smoke test” example
for each of the application servers can be found here:

JE_HOVE/ exanpl es/ j ca/ HOMO- j boss. t xt

and
JE_HOVE/ exanpl es/ j ca/l HOMO- sj sas. t xt

JMX Support

JMX is the Java Management Extensions. This extension provides tools for managing and
monitoring devices, applications, and service-driven networks. JE supports this extension.

The JE distribution supplies an MBean that can be deployed for monitoring a JE environment
in any JMX server (such as an J2EE application server). Alternatively, applications can use JE
helper classes to add JE monitoring to their own JMX MBean implementations.

For information on how to deploy the standalone JE JMX MBean, or on how to use JE helper
classes to build an application-specific MBean, see:

JE_HOVE/ exanpl es/ j mx/ README. t xt

6/4/2008

Getting Started with JE Page 11

Getting and Using JE

You can obtain JE by visiting the JE download page: http://www.oracle.com/technology/
software/products/berkeley-db/je/index.html.

To install JE, simple untar or unzip the distribution to the directory of your choice. If you use
unzip, make sure to specify the - U option in order to preserve case.

For more information on installing JE, see JE_HOME/ docs/ rel notes. htm , where JE_HOME is
the directory where you unpacked JE.

You can use JE with your application by adding JE_HOME/ | i b/ j e- <versi on>. j ar to your
application's classpath.

Beyond this manual, you can find documentation for JE at JE_HOME/ docs/ i ndex. ht nl directory.
In particular, complete Javadoc for the JE API set is available at
JE_HOME/ docs/ j aval i ndex. htmi .

JE Exceptions

Before describing the Java APl usage, it is first useful to examine the exceptions thrown by
those APIs. So, briefly, this section describes the exceptions that you can expect to encounter
when writing JE applications.

All of the JE APIs throw Dat abaseExcept i on. Dat abaseExcepti on extends j ava. | ang. Excepti on.
Also, the following classes are subclasses of Dat abaseExcepti on:

« Dat abaseNot FoundExcept i on
Thrown whenever an operation requires a database, and that database cannot be found.
» Deadl ockException

Thrown whenever a transaction is selected to resolve a deadlock. Upon receiving this
exception, any open cursors must be closed and the enclosing transaction aborted.
Transactions are described in the Berkeley DB Java Edition Getting Started with Transaction
Processing guide.

* RunRecover yExcepti on

Thrown whenever JE experiences a catastrophic error such that recovery needs to be run on
the database. If you receive this exception, you must reopen your environment so as to allow
normal recovery to run. See Databases and Log Files (page 147) for more information on how
normal recovery works.

Note that when reopening your environment, you should stop all database read and write
activities, close all your cursors, close all your databases, and then close and reopen your
environment.

Note that Dat abaseExcepti on and its subclasses belong to the com sl eepycat . j e package.

6/4/2008 Getting Started with JE Page 12

http://www.oracle.com/technology/software/products/berkeley-db/je/index.html
http://www.oracle.com/technology/software/products/berkeley-db/je/index.html

Six Things Everyone Should Know about JE Log Files

JE log files are not like the log files of other database systems. Nor are they like the log files
or database files created by Berkeley DB C Edition. In this guide you will learn more about log
files as you go along, but it is good to keep the following points in mind as you begin using JE.

1. JE log files are "append only". Record insertions, deletions, and updates are always added
at the end of the current file. The first file is named 00000000. j db. When that file grows to
a certain size (10 MB by default) a new file named 00000001. j db becomes the current file,
and so on.

2. There are no separate database files. Unlike Berkeley DB C Edition, databases are not stored
in files that are separate from the transaction log. The transaction log and the database
records are stored together in a single sequential log consisting of multiple log files.

3. The JE cleaner is responsible for reclaiming unused disk space. When the records in a log
file are superseded by deletions or updates recorded in a later log file, the older log file is
no longer fully utilized. The cleaner, which operates by default as a separate thread,
determines the least utilized log files, copies any still utilized records in those files to the
end of the current log file, and finally deletes the now completely un-utilized log file.

See The Cleaner Thread (page 155) for more information on the cleaner.

4. Cleaning does not start immediately and never produces 100% utilization. Until you have
written enough data to create several log files, and some of that data is obsoleted through
deletions and updates, you will not notice any log files being deleted by the cleaner. By
default cleaning occurs in the background and maintains the log files at 50% utilization. You
can configure a higher utilization value, but configuring too high a utilization value will
reduce overall performance.

5. Cleaning is not automatically performed when closing the environment. If you wish to reduce
unused disk space to a minimum at a particular point in time, you must explicitly call a
method to perform log cleaning. See the Closing Database Environments (page 17) for more
information.

6. Log file deletion only occurs after a checkpoint. The cleaner prepares log files to be deleted,
but file deletion must be performed after a checkpoint to ensure that the files are no longer
referenced. Checkpoints occur on their own schedule, which is every 20 MB of log written,
by default. This is part of the reason that you will not see log files being deleted until after
several files have been created.

6/4/2008 Getting Started with JE Page 13

Chapter 2. Database Environments

Regardless of whether you are using the DPL or the base API, you must use a database
environment. Database environments encapsulate one or more databases. This encapsulation
provides your threads with efficient access to your databases by allowing a single in-memory
cache to be used for each of the databases contained in the environment. This encapsulation
also allows you to group operations performed against multiple databases inside a single
transactions (see the Berkeley DB Java Edition Getting Started with Transaction Processing
guide for more information).

If you are using the base APl, most commonly you use database environments to create and
open databases (you close individual databases using the individual database handles). You
can also use environments to delete and rename databases. For transactional applications, you
use the environment to start transactions. For non-transactional applications, you use the
environment to sync your in-memory cache to disk.

If you are using the DPL, all of these things are still being done, but the DPL takes care of it
for you. Under the DPL, the most common thing you will explicitly use an environment for is
to obtain transaction handles.

Regardless of the API that you use, you also use the database environment for administrative
and configuration activities related to your database log files and the in-memory cache. See
Administering Berkeley DB Java Edition Applications (page 154) for more information.

To find out how to use environments with a transaction-protected application, see the Berkeley
DB Java Edition Getting Started with Transaction Processing guide.

Opening Database Environments

You open a database environment by instantiating an Envi r onment object. You must provide
to the constructor the name of the on-disk directory where the environment is to reside. This
directory location must exist or the open will fail.

By default, the environment is not created for you if it does not exist. Set the creation property
to true if you want the environment to be created. For example:

package je.gettingStarted;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. | e. Envi ronment;

i nport com sl eepycat . j e. Envi ronnent Confi g;

inport java.io.File;

/1 Open the environnent. Allow it to be created if it does not already exist.
Envi ronment nyDbEnvironment = nul | ;

6/4/2008

Getting Started with JE Page 14

try {
Envi ronment Confi g envConfig = new Environment Config();

envConfig. set Al l owCreate(true);

myDbEnvi ronment = new Environment (new File("/export/dbEnv"), envConfig);
} catch (DatabaseException dbe) {

/] Exception handling goes here

}

Opening an environment usually causes some background threads to be started. JE uses these
threads for log file cleaning and some administrative tasks. However, these threads will only
be opened once per process, so if you open the same environment more than once from within
the same process, there is no performance impact on your application. Also, if you open the
environment as read-only, then the background threads (with the exception of the evictor
thread) are not started.

Note that opening your environment causes normal recovery to be run. This causes your
databases to be brought into a consistent state relative to the changed data found in your log
files. See Databases and Log Files (page 147) for more information.

Most JE applications only need a single database environment because any number of databases
can be created in a single environment, and the total size of the data in an environment is not
limited. That said, your application can open and use as many environments as you have disk
and memory to manage. Also, you can instantiate multiple Envi ronnent objects for the same
physical environment.

The main reason for multiple environments is that an application must manage multiple unique
data sets. By placing each data set in a separate environment, the application can gain real
advantages in manageability of the data, and with application performance. By placing each
data set in a unique environment, a separate set of log files is created and maintained in a
separate directory, and so you can manipulate the log files for each data set separately. That
is, you can:

» Backup, restore or delete a single data set separately by copying or removing the files for
its environment.

« Balance the load between machines by moving the files for a single data set from one machine
to another.

 Improve /0 performance by placing each data set on a separate physical disk.

» Delete individual data sets very efficiently by removing the environment's log files. This is
much more efficient than deleting individual database records and is also move efficient
than removing databases, and so can be a real benefit if you are managing large temporary
data sets that must be frequently deleted.

Be aware that there is a downside to using multiple environments. In particular, understand
that a single transaction cannot include changes made in more than one environment. If you
need to perform a set of operations in more than one data set atomically (with a single
transaction), use a single environment and distinguish the data sets using some other method.

6/4/2008

Getting Started with JE Page 15

For example, an application running a hosted service for multiple clients may wish to keep
each client's data set separate. You can do this with multiple environments, but then you can
operate on all data sets atomically. If you need to wrap operations for multiple data sets in a
single transaction, consider some other approach to keeping the data sets separate.

You can, for example, distinguish each data set using a unique key range within a single
database. Or you can create a secondary key that identifies the data set. Or you could use
separate databases for each dataset. All of these approaches allow you to maintain multiple
distinct dataset within a single environment, but each obviously adds a level of complexity to
your code over what is required to simply use a unique environment for each data set.

Configuring a Shared Cache for Multiple Environments

By default, each distinct JE environment has a separate, private in-memory cache. If a single
JVM process will keep open multiple environments at the same time, it is strongly recommended
that all such environments are configured to use a shared cache. A shared cache makes much
more efficient use of memory than separate private caches.

For example, imagine that you open 5 environments in a single process and a total of 500 MB
of memory is available for caching. Using private caches, you could configure each cache to
be 100 MB. If one of the environments has a larger active data set than the others, it will not
be able to take advantage of unused memory in the other environment caches. By using a
shared cache, multiple open environments will make better use of memory because the cache
LRU algorithm is applied across all information in all enviornments sharing the cache.

In order to configure an environment to use a shared cache, set
Envi ronment Confi g. set SharedCache() to true. This must be set for every environment in the
process that you want to use the shared cache. For example:

package je.gettingStarted;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. | e. Envi ronment ;
i nport com sl eepycat . j e. Envi ronnment Confi g;

import java.io.File;

/1 Open the environnment. Allow it to be created if it does not already exist.
Environment nyEnvl = null;
Envi ronment nyEnv2 = nul | ;

try {
Envi ronment Confi g envConfig = new Environment Config();

envConfig. set All owCreate(true);
envConfi g. set SharedCache(true);

myEnvl = new Environnent (new File("/export/dbEnv1l"), envConfig);
myEnv2 = new Environnent (new Fil e("/export/dbEnv2"), envConfig);

6/4/2008

Getting Started with JE Page 16

} catch (DatabaseException dbe) {
/] Exception handling goes here

}

Closing Database Environments

You close your environment by calling the Envi ronnent . cl ose() method. This method performs
a checkpoint, so it is not necessary to perform a sync or a checkpoint explicitly before calling
it. For information on checkpoints, see the Berkeley DB Java Edition Getting Started with
Transaction Processing guide. For information on syncs, see Database Modifications and
Syncs (page 148).

i nport com sl eepycat . j e. Dat abaseExcepti on;

i nport com sl eepycat . e. Envi ronment ;

try {
if (nyDoEnvironnment != null) {

myDbEnvi ronment . ¢l ose() ;
}
} catch (DatabaseException dbe) {
/| Exception handling goes here

}

If you are using the DPL, then close your environment(s) only after all other store activities
have completed and you have closed any stores currently opened in the environment. If you
are using the base API, then close your environment(s) only after all other database activities
have completed and you have closed any databases currently opened in the environment.

|:| It is possible for the environment to close before JE's cleaner thread has finished its work.
This happens if you perform a large number of deletes immediately before shutting down
your environment. The result is that your log files may be quit a lot larger than you expect

them to be because the cleaner thread has not had a chance to finish its work.

See The Cleaner Thread (page 155) for details on the cleaner threads.

If you want to make sure that the cleaner has finished running before the environment is
closed, call Envi ronment. cl eanLog() before calling Envi ronnent . cl ose() :

i nport com sl eepycat . e. Dat abaseExcepti on;

i mport com sl eepycat. je. Environnent;

try {
i f (myDbEnvironnent !'= null) {

myDbEnvi ronment . cl eanLog(); // Cean the log before closing
myDbEnvi ronment . cl ose() ;

}
} catch (DatabaseException dbe) {

6/4/2008

Getting Started with JE Page 17

/'l Exception handling goes here

Closing the last environment handle in your application causes all internal data structures to
be released and the background threads to be stopped. If there are any opened databases,
then JE will complain before closing them as well. At this time, and any on-going transactions
are aborted. Also at this time any open cursors are also closed.

Environment Properties

You set properties for the Envi ronment using the Envi r onment Conf i g class. You can also set
properties for a specific Envi ronnent instance using Envi r onment Mit abl eConfi g.

The EnvironmentConfig Class

The Envi ronnent Confi g class makes a large number of fields and methods available to you.
Describing all of these tuning parameters is beyond the scope of this manual. However, there
are a few properties that you are likely to want to set. They are described here.

Note that for each of the properties that you can commonly set, there is a corresponding getter
method. Also, you can always retrieve the Envi r onnent Conf i g object used by your environment
using the Envi ronment . get Confi g() method.

You set environment configuration parameters using the following methods on the
Envi ronnent Confi g class:

« Environnment Confi g. set Al | owCreat e()

If true, the database environment is created when it is opened. If f al se, environment open
fails if the environment does not exist. This property has no meaning if the database
environment already exists. Default is f al se.

o Envi ronment Confi g. set ReadOnl y()

If true, then all databases opened in this environment must be opened as read-only. If you
are writing a multi-process application, then all but one of your processes must set this value
to true. Default is fal se.

You can also set this property using the j e. env. i sReadOnl y parameter in your
env_hone/je. properties file.

« Environment Confi g. set Transacti onal ()
If true, configures the database environment to support transactions. Default is f al se.

You can also set this property using the j e. env. i sTransacti onal parameter in your
env_hone/je. properties file.

For example:

6/4/2008

Getting Started with JE Page 18

package je.gettingStarted,

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. | e. Envi ronment ;
i nport com sl eepycat . j e. Envi ronnment Confi g;

inport java.io.File;

Envi ronment nyDat abaseEnvi ronment = nul | ;
try {
Envi ronment Confi g envConfig = new Environment Config();
envConfig. set Al l owCreate(true);
envConfig. set Transactional (true);
myDat abaseEnvi ronment =
new Environnent (new Fil e("/export/dbEnv"), envConfig);
} catch (DatabaseException dbe) {
Systemerr.println(dbe.toString());
Systemexit(1);
}

EnvironmentMutableConfig

Envi r onment Mut abl eConf i g manages properties that can be reset after the Envi ronnent object
has been constructed. In addition, Envi ronnent Conf i g extends Envi r onment Mut abl eConfi g, so
you can set these mutable properties at Envi ronment construction time if necessary.

The Envi ronnent Mut abl eConfi g class allows you to set the following properties:
» set CachePercent ()

Determines the percentage of JVM memory available to the JE cache. See Sizing the
Cache (page 155) for more information.

» set CacheSi ze()

Determines the total amount of memory available to the database cache. See Sizing the
Cache (page 155) for more information.

e set TxnNoSync()

Determines whether change records created due to a transaction commit are written to the
backing log files on disk. A value of true causes the data to not be flushed to disk. See the
Berkeley DB Java Edition Getting Started with Transaction Processing guide.

e set TxnWit eNoSync()

Determines whether logs are flushed on transaction commit (the logs are still written,
however). By setting this value to true, you potentially gain better performance than if you

6/4/2008

Getting Started with JE Page 19

flush the logs on commit, but you do so by losing some of your transaction durability
guarantees.

There is also a corresponding getter method (get TxnNoSync()). Moreover, you can always
retrieve your environment's Envi r onment Mut abl eConf i g object by using the
Envi ronment . get Mut abl eConfi g() method.

For example:

package je.gettingStarted,

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. | e. Envi ronment ;
i nport com sl eepycat . j e. Envi r onment Miut abl eConfi g;

inport java.io.File;

try {
Envi ronment nyEnv = new Environnment (new Fil e("/export/dbEnv"), null);
Envi r onment Mut abl eConfi g enviMut abl eConfig =
new Envi ronnent Mut abl eConfi g();
envMit abl eConfi g. set TxnNoSync(true);
myEnv. set Mut abl eConf i g(envMit abl eConfi g) ;
} catch (DatabaseException dbe) {
/] Exception handling goes here
}

Environment Statistics

JE offers a wealth of information that you can examine regarding your environment's operations.
The majority of this information involves numbers relevant only to the JE developer and as
such a description of those statistics is beyond the scope of this manual.

However, one statistic that is very important (especially for long-running applications) is
Environnment St at s. get NCacheM ss() . This statistic returns the total number of requests for
database objects that were not serviceable from the cache. This number is important to the
application administrator who is attempting to determine the proper size for the in-memory
cache. See Sizing the Cache (page 155) for details.

To obtain this statistic from your environment, call Envi ronnent . get Stat s() to return an
Envi ronment St at s object. You can then call the Envi ronment St at s. get NCacheM ss() method.
For example:

i nport com sl eepycat . j e. Envi ronment ;

6/4/2008

Getting Started with JE Page 20

| ong cacheM sses = nyEnv. get Stats(null). get NCacheM ss();

Note that Envi ronnent . get St at s() can only obtain statistics from your application's process.
In order for the application administrator to obtain this statistic, you must either use JMX to
retrieve the statistic (see JMX Support (page 11)) or you must print it for examination (for
example, log the value once a minute).

Remember that what is really important for cache sizing is the change in this value over time,
and not the actual value itself. So you might consider offering a delta from one examination
of this statistic to the next (a delta of 0 is desired while large deltas are an indication that the
cache is too small).

Database Environment Management Example

This example provides a complete class that can open and close an environment. It is both
extended and used in subsequent examples in this book to open and close both environments
and databases. We do this so as to make the example code shorter and easier to manage. You
can find this class in:

JE _HOVE/ exanpl es/j e/ gettingStarted/ MyDbEnv. java

where JE_HOME is the location where you placed your JE distribution.

Example 2.1. Database Environment Management Class

First we write the normal class declarations. We also set up some private data members that
are used to manage environment creation. We use the class constructor to instantiate the
Envi ronment Confi g object that is used to configure our environment when we open it.

[l File MyDbEnv.java
package je.gettingStarted;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. | e. Environment;
i nport com sl eepycat. j e. Envi ronnent Confi g;

inport java.io.File;

public class MyDbEnv {
private Environnent nyEnv;
public MyDbEnv() {}
Next we need a method to open the environment. This is responsible for instantiating our

Envi ronment object. Remember that instantiation is what opens the environment (or creates
it if the creation property is set to true and the environment does not currently exist).

6/4/2008 Getting Started with JE Page 21

public void setup(File envHone, bool ean readOnly)
throws Dat abaseException {

Il Instantiate an environment configuration object

Envi ronment Confi g nyEnvConfig = new Environnent Config();

Il Configure the environment for the read-only state as identified by
Il the readOnly paraneter on this method call.

myEnvConfi g. set ReadOnl y(readOnl y);

[l 1f the environment is opened for wite, then we want to be able to
I/ create the environnent if it does not exist.

myEnvConfi g. set Al | owCr eat e(! readOnly);

Il Instantiate the Environnent. This opens it and al so possibly
Il creates it.
myEnv = new Environment (envHonme, nyEnvConfig);

}

Next we provide a getter method that allows us to retrieve the Envi ronnment directly. This is
needed for later examples in this guide.

[/ Getter nethods

public Environnent getEnv() {
return nyEnv;

}

Finally, we need a method to close our Envi ronnent . We wrap this operation in a try block so
that it can be used gracefully in a final | y statement.

/1 Close the environnent
public void close() {
if (myEnv = null) {
try {
myEnv. cl ose();
} catch(DatabaseException dbe) {
Systemerr.println("Error closing environment" +
dbe.toString());

}

This completes the MyDbEnv class. While not particularly useful as it currently exists, we will
build upon it throughout this book so that it will eventually open and close all of the entity
stores or databases required by our applications.

We can now use MyDbEnv to open and close a database environment from the appropriate place
in our application. For example:

package je.gettingStarted;

i nport com sl eepycat. je. Dat abaseEntry;

6/4/2008 Getting Started with JE Page 22

i nport com sl eepycat . j e. Dat abaseExcepti on;

inport java.io.File;

M/DbEnv exanpl eDbEnv = new MyDbEnv();

try {
exanpl eDbEnv. set up(new File("/directory/currently/exists"), true);

} catch(DatabaseException dbe) {
/] Error code goes here

} finally {
exanpl eDbEnv. cl ose() ;
1

6/4/2008 Getting Started with JE Page 23

Part I. Programming with the
Direct Persistence Layer

This section discusses how to build an application using the DPL. The DPL is ideally suited for those
applications that want a mechanism for storing and managing Java class objects in a JE database. Note
that the DPL is best suited for applications that work with classes with a relatively static schema.

The DPL requires Java 1.5.

If you are porting an application from the Berkeley DB API, then you probably want to use the base API
instead of the DPL. For information on using the base API, see Programming with the Base API (page 65).

Chapter 3. Direct Persistence Layer First Steps

This chapter guides you through the first few steps required to use the DPL with your application.
These steps include:

1. Opening your environment as was described in Opening Database Environments (page 14).
2. Opening your entity store.
3. Identifying the classes that you want to store in JE as either a persi stent classoranentity.

Once you have done these things, you can write your classes to the JE databases, read them
back from the databases, delete them from the databases, and so forth. These activities are
described in the chapters that follow in this part of this manual.

Entity Stores

Entity stores are the basic unit of storage that you use with the DPL. That is, it is a unit of
encapsulation for the classes that you want to store in JE. Under the hood it actually interacts
with JE databases, but the DPL provides a layer of abstraction from the underlying JE APIs.
The store, therefore, provides a simplified mechanism by which you read and write your stored
classes. By using a store, you have access to your classes that is more simplified than if you
were interacting with databases directly, but this simplified access comes at the cost of reduced
flexibility.

Entity stores have configurations in the same way that environments have configurations. You
can use a St oreConfi g object to identify store properties. Among these are methods that allow
you to declare whether:

« the store can be created if it does not exist at the time it is opened. Use the
StoreConfig. set Al l owCreat e() method to set this.

» deferred writes are allowed for the store. Use the StoreConfi g. set DeferredWite() method
to set this. See Deferred Write Databases (page 67) for general information on deferred write
databases.

« the store is read-only. Use the StoreConfi g. set ReadOnl y() method to set this.

« the store supports transactions. Use the St oreConfi g. set Transacti onal () method to set
this.

Writing JE transactional applications is described in the Berkeley DB Java Edition Getting
Started with Transaction Processing guide.

EntitySt ore objects also provide methods for retrieving information about the store, such as:
« the store's name. Use the EntitySt ore. get St oreNane() method to retrieve this.

« a handle to the environment in which the store is opened. Use the
EntityStore. get Envi ronment method to retrieve this handle.

6/4/2008

Getting Started with JE Page 25

You can also use the EntityStore to retrieve all the primary and secondary indexes related to
a given type of entity object contained in the store. See Working with Indices (page 30) for
more information.

Opening and Closing Environments and Stores

As described in Database Environments (page 14), an environment is a unit of encapsulation
for JE databases. It also provides a handle by which activities common across the databases
can be managed.

To use an entity store, you must first open an environment and then provide that environment
handle to the EntitySt ore constructor.

For example, the following code fragment configures both the environment and the entity
store such that they can be created if they do not exist. Both the environment and the entity
store are then opened.

package persist.gettingStarted;
inport java.io.File;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . | e. Envi ronment ;
i nport com sl eepycat . j e. Envi ronnment Confi g;

i nport com sl eepycat. persist.EntityStore;
i nport com sl eepycat . persist. StoreConfig;

private Environment nyEnv;
private EntityStore store;

try {
Envi ronment Confi g nyEnvConfig = new Environnent Config();

StoreConfig storeConfig = new StoreConfig();

myEnvConfi g. set Al | owCreat e(! readOnl y);
storeConfig.set Al l owCreate(!readOnly);

/] Open the environment and entity store
myEnv = new Envi ronnment (envHomre, nyEnvConfig);
store = new EntityStore(nmyEnv, "EntityStore", storeConfig);
} catch(Dat abaseException dbe) {
Systemerr.println("Error opening environment and store: " +
dbe.toString());
Systemexit(-1);

6/4/2008

Getting Started with JE Page 26

As always, before you exit your program you should close both your store and your environment.
Be sure to close your store before you close your environment.

if (store !=null) {
try {
store.close();
} catch(DatabaseException dbe) {
Systemerr.printin("Error closing store: " +
dbe.toString());
Systemexit(-1);

}
}
if (myEnv = null) {
try {
Il Finally, close environnent.
myEnv. cl ose();
} catch(DatabaseException dbe) {
Systemerr.printin("Error closing M/DbEnv: " +
dbe.toString());
Systemexit(-1);
}
}

Persistent Objects

When using the DPL, you store data in the underlying JE databases by making objects persistent.
You do this using Java annotations that both identify the type of persistent object you are
declaring, as well as the primary and secondary indices.

The following are the annotations you will use with your DPL persistent classes:

Annotation Description
@Entity Declares an entity class; that is, a class with a
primary index and optionally one or more
indices.
@Persistent Declares a persistent class; that is, a class used

by an entity class. They do not have indices
but instead are are stored or retrieved when
an entity class makes direct use of them.

@PrimaryKey Declares a specific data member in an entity
class to be the primary key for that object.
This annotation must be used one and only one
time for every entity class.

@SecondaryKey Declares a specific data member in an entity
class to be a secondary key for that object.
This annotation is optional, and can be used
multiple times for an entity class.

6/4/2008 Getting Started with JE Page 27

For example, the following is declared to be an entity class:

package persist.gettingStarted;

i nport com sl eepycat . persist.nodel . Entity;
i nport com sl eepycat . persi st. nodel . Pri mar yKey;

@ntity
public class Exanpl eEntity {

[/ The primry key nust be unique in the database.
@r i mar yKey
private String aPrimaryKey;

@econdar yKey(rel at e=MANY_TO_ONE)
private String aSecondaryKey;

[/ The remainder of the class' inplementation is purposefully
[/ omitted in the interest of brevity.

}

We discuss primary and secondary keys in more detail in Working with Indices (page 30).

Saving a Retrieving Data

All data stored using the DPL has one primary index and zero or more secondary indices
associated with it. (Sometimes these are referred to as the primary and secondary keys.) So
to store data under the DPL, you must:

1. Declare a class to be an entity class.
2. Identify the features on the class which represent indexed material.

3. Retrieve the store's primary index for a given class using the Enti tySt ore. get Pri maryl ndex()
method.

4. Put class objects to the store using the Pri maryl ndex. put () method.

In order to retrieve an object from the store, you use the index that is most convenient for
your purpose. This may be the primary index, or it may be some other secondary index that
you declared on your entity class.

You obtain a primary index in the same was as when you put the object to the store: using
EntityStore. getPrinarylndex(). You can get a secondary index for the store using the
EntityStore. get Secondaryl ndex() method. Note that get Secondaryl ndex() requires you to

6/4/2008

Getting Started with JE Page 28

provide a Pri maryl ndex class instance when you call it, so a class's primary index is always
required when retrieving objects from an entity store.

Usually all of the activity surrounding saving and retrieving data is organized within a class or
classes specialized to that purpose. We describe the construction of these data accessor classes
in SimpleDA.class (page 36). But before you perform any entity store activity, you need to
understand indexes. We therefore describe them in the next chapter.

6/4/2008 Getting Started with JE Page 29

Chapter 4. Working with Indices

All entity classes stored in JE using the DPL must have a primary index, or key, identified for
them. All such classes may also have one or more secondary keys declared for them. This
chapter describes primary and secondary indexes in detail, and shows how to access the indexes
created for a given entity class.

One way to organize access to your primary and secondary indexes is to create a data accessor
class. We show an implementation of a data accessor class in SimpleDA.class (page 36).

Accessing Indexes

In order to retrieve any object from an entity store, you must access at least the primary index
for that object. Different entity classes stored in an entity store can have different primary
indexes, but all entity classes must have a primary index declared for it. The primary index is
just the default index used for the class. (That is, it is the data’s primary key for the underlying
database.)

Entity classes can optionally have secondary indexes declared for them. In order to access
these secondary indexes, you must first access the primary index.

Accessing Primary Indices

You retrieve a primary index using the EntityStore. get Pri naryl ndex() method. To do this,
you indicate the index key type (that is, whether it is a String, Integer, and so forth) and the
class of the entities stored in the index.

For example, the following retrieves the primary index for an I nvent ory class (we provide an
implementation of this class in Inventory.java (page 51)). These index keys are of type Stri ng.

Primaryl ndex<String, I nventory> inventoryBySku =
store. get Primaryl ndex(String.class, Inventory.class);

Accessing Secondary Indices

You retrieve a secondary index using the EntitySt ore. get Secondaryl ndex() method. Because
secondary indices actually refer to a primary index somewhere in your data store, to access a
secondary index you:

1. Provide the primary index as returned by EntityStore. get Prinmaryl ndex().
2. ldentify the key data type used by the secondary index (String, Long, and so forth).

3. Identify the name of the secondary key field. When you declare the Secondar yl ndex object,
you identify the entity class to which the secondary index must refer.

For example, the following first retrieves the primary index, and then uses that to retrieve a
secondary index. The secondary key is held by the i t emNane field of the | nventory class.

6/4/2008

Getting Started with JE Page 30

Primaryl ndex<String, I nventory> invent oryBySku =
store.get Primaryl ndex(String.class, Inventory.class);

Secondaryl ndex<String, String, I nventory> invent oryByName =
store. get Secondaryl ndex(i nventoryBySku, String.class, "itemName");

Creating Indexes

To create an index using the DPL, you use Java annotations to declare which feature on the
class is used for the primary index, and which features (if any) are to be used as secondary
indexes.

All entity classes stored in the DPL must have a primary index declared for it.

Entity classes can have zero or more secondary indexes declared for them. There is no limit
on the number of secondary indexes that you can declare.

Declaring a Primary Indexes

You declare a primary key for an entity class by using the @ri mar yKey annotation. This
annotation must appear immediately before the data member which represents the class's
primary key. For example:

package persist.gettingStarted;

i nport com sl eepycat . persist.model . Entity;
i nport com sl eepycat . persi st. nodel . Pri mar yKey;

@ntity
public class Vendor {

private String address;
private String bi zPhoneNunber;
private String city;

private String repName;
private String repPhoneNunber;
private String state;

[/ Primary key is the vendor's name

[/ This assunes that the vendor's nane is
[/ unique in the database.

@r i mar yKey

private String vendor;

For this class, the vendor value is set for an individual Vendor class object by the set Vendor Nang()
method. If our example code fails to set this value before storing the object, the data member
used to store the primary key is set to a null value. This would result in a runtime error.

6/4/2008 Getting Started with JE Page 31

You can avoid the need to explicitly set a value for a class's primary index by specifying a
sequence to be used for the primary key. This results in an unique integer value being used as
the primary key for each stored object.

You declare a sequence is to be used by specifying the sequence keyword to the @ri nar yKey
annotation. You must also provide a name for the sequence. For example: For example:

@r i mar yKey(sequence="Sequence_Nanespace")
| ong nyPri maryKey;

Declaring Secondary Indexes

To declare a secondary index, we use the @econdar yKey annotation. Note that when we do
this, we must declare what sort of an index it is; that is, what is its relationship to other data
in the data store.

The kind of indices that we can declare are:
« ONE_TO ONE

This relationship indicates that the secondary key is unique to the object. If an object is
stored with a secondary key that already exists in the data store, a run time error is raised.

For example, a person object might be stored with a primary key of a social security number
(in the US), with a secondary key of the person's employee nhumber. Both values are expected
to be unique in the data store.

« MANY_TO ONE

Indicates that the secondary key may be used for multiple objects in the data store. That
is, the key appears more than once, but for each stored object it can be used only once.

Consider a data store that relates managers to employees. A given manager will have multiple
employees, but each employee is assumed to have just one manager. In this case, the
manager's employee number might be a secondary key, so that you can quickly locate all
the objects related to that manager's employees.

« ONE_TO MANY

Indicates that the secondary key might be used more than once for a given object. Index
keys themselves are assumed to be unique, but multiple instances of the index can be used
per object.

For example, employees might have multiple unique email addresses. In this case, any given
object can be access by one or more email addresses. Each such address is unique in the
data store, but each such address will relate to a single employee object.

« MANY_TO MANY

There can be multiple keys for any given object, and for any given key there can be many
related objects.

6/4/2008

Getting Started with JE Page 32

For example, suppose your organization has a shared resource, such as printers. You might
want to track which printers a given employee can use (there might be more than one). You
might also want to track which employees can use a specific printer. This represents a
many-to-many relationship.

Note that for ONE_TO ONE and MANY_TO ONE relationships, you need a simple data member (not
an array or collection) to hold the key. For ONE_TO MANY and MANY_TO MANY relationships, you
need an array or collection to hold the keys:

@econdar yKey(rel at e=ONE_TO _ONE)
private String primaryEmail Address

new String();

@econdar yKey(rel at e=ONE_TO_MANY)
private Set<String> email Addresses

new HashSet <String>();

Foreign Key Constraints

Sometimes a secondary index is related in some way to another entity class that is also contained
in the data store. That is, the secondary key might be the primary key for another entity class.
If this is the case, you can declare the foreign key constraint to make data integrity easier to
accomplish.

For example, you might have one class that is used to represent employees. You might have
another that is used to represent corporate divisions. When you add or modify an employee
record, you might want to ensure that the division to which the employee belongs is known to
the data store. You do this by specifying a foreign key constraint.

When a foreign key constraint is declared:

* When a new secondary key for the object is stored, it is checked to make sure it exists as a
primary key for the related entity object. If it does not, a runtime error occurs.

« When a related entity is deleted (that is, a corporate division is removed from the data
store), some action is automatically taken for the entities that refer to this object (that is,
the employee objects). Exactly what that action is, is definable by you. See below.

When a related entity is deleted from the data store, one of the following actions are taken:
o ABORT

The delete operation is not allowed. A runtime error is raised as a result of the operation.
This is the default behavior.

» CASCADE

All entities related to this one are deleted as well. For example, if you deleted a Di vi si on
object, then all Enpl oyee objects that belonged to the division are also deleted.

e NULLIFY

6/4/2008

Getting Started with JE Page 33

All entities related to the deleted entity are updated so that the pertinent data member is
nullified. That is, if you deleted a division, then all employee objects related to that division
would have their division key automatically set to null.

You declare a foreign key constraint by using the rel at edEnt ity keyword. You declare the
foreign key constraint deletion policy using the onRel at edEnt i t yDel et e keyword. For example,
the following declares a foreign key constraint to Di vi si on class objects, and it causes related
objects to be deleted if the Di vi si on class is deleted:

@econdar yKey(rel at e=ONE_TO ONE, rel atedEntity=Division.class,
onRel at edEnt i t yDel et e=CASCADE)
private String division = new String();

6/4/2008 Getting Started with JE Page 34

Chapter 5. Saving and Retrieving Objects

To store an object in an Ent i t ySt or e you must annotate the class appropriately and then store
it using Pri maryl ndex. put () .

To retrieve and object from an Enti t ySt ore you use the get () method from either the
Pri maryl ndex or Secondaryl ndex, whichever is most appropriate for your application.

In both cases, it simplifies things greatly if you create a data accessor class to organize your
indexes.

In the next few sections we:

1. Create an entity class that is ready to be stored in an entity store. This class will have both
a primary index (required) declared for it, as well as a secondary index (which is optional).

See the next section for this implementation.
2. Create a data accessor class which is used to organize our data.

See SimpleDA.class (page 36) for this implementation.
3. Create a simple class that is used to put objects to our entity store.

See Placing Objects in an Entity Store (page 37) for this implementation.
4. Create another class that retrieves objects from our entity store.

See Retrieving Objects from an Entity Store (page 40) for this implementation.

A Simple Entity Class

For clarity's sake, this entity class is a simple a class as we can write. It contains only two data
members, both of which are set and retrieved by simple setter and getter methods. Beyond
that, by design this class does not do anything or particular interest.

Its implementation is as follows:

package persist.gettingStarted;

i nport com sl eepycat . persist.nodel . Entity;

i nport com sl eepycat . persi st. nodel . Pri mar yKey;

inport static com sl eepycat. persist.nodel . Rel ationship.*;
i nport com sl eepycat . persi st. nodel . Secondar yKey;

@ntity
public class SinpleEntityCass {

[l Primary key is pKey
@r i mar yKey

6/4/2008 Getting Started with JE Page 35

private String pKey;

/] Secondary key is the sKey
@econdar yKey(rel at e=MANY_TO_ONE)
private String sKey;

public void setPKey(String data) {

pKey = dat a;

}

public void setSKey(String data) {
sKey = dat a;

}

public String getPKey() {
return pKey;

}

public String get SKey() {
return skey;
}
}

SimpleDA.class

As mentioned above, we organize our primary and secondary indexes using a specialize data
accessor class. The main reason for this class to exist is to provide convenient access to all the
indexes in use for our entity class (see the previous section, A Simple Entity Class (page 35),
for that implementation).

For a description on retrieving primary and secondary indexes under the DPL, see Working with
Indices (page 30)

package persist.gettingStarted;
inport java.io.File;

inport com sl eepycat . j e. Dat abaseExcepti on;

i nport com sl eepycat. persist.EntityStore;

i nport com sl eepycat . persist. Primaryl ndex;

i nport com sl eepycat . persi st. Secondaryl ndex;

public class SinpleDA {
[/ Open the indices
public SinpleDA(EntityStore store)
t hrows Dat abaseException {

Il Primary key for SinpleEntityd ass classes
pl dx = store.getPrimaryl ndex(

6/4/2008 Getting Started with JE Page 36

String.class, SinpleEntityd ass.class);

Il Secondary key for SinpleEntityC ass classes
Il Last field in the getSecondarylndex() nethod nust be
/1 the name of a class menber; in this case, an
Il SinmpleEntityd ass.class data nenber.
sldx = store. get Secondaryl ndex(
pldx, String.class, "sKey");
}

/1 1ndex Accessors

Pri maryl ndex<String, Si npl eEntityC ass> pl dx;

Secondaryl ndex<String, String, Si npl eEntityC ass> sl dx;
}

Placing Objects in an Entity Store

In order to place an object in a DPL entity store, you must:

1. Open the environment and store.

2. Instantiate the object.

3. Put the object to the store using the put () method for the object's primary index.

The following example uses the Si npl eDA class that we show in SimpleDA.class (page 36) to
put a Si npl eEntityd ass object (see A Simple Entity Class (page 35)) to the entity store.

To begin, we import the Java classes that our example needs. We also instantiate the private
data members that we require.

package persist.gettingStarted;

import java.io.File;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . j e. Envi ronment ;

i nport com sl eepycat . j e. Envi ronnment Confi g;

i nport com sl eepycat. persist.EntityStore;
i nport com sl eepycat . persi st. StoreConfig;

public class SinpleStorePut {
private static File envHome = new File("./JEDB");
private Environment envimt;

private EntityStore store;
private SinpleDA sda;

6/4/2008

Getting Started with JE Page 37

Next we create a method that simply opens our database environment and entity store for us.

Il The setup() method opens the environment and store
[/ for us.
public void setup()

throws Dat abaseException {

Envi ronment Confi g envConfig = new Environment Config();
StoreConfig storeConfig = new StoreConfig();

envConfig.set All owCreate(true);
storeConfig.set Al l owCreate(true);

/1 Open the environnent and entity store
envimt = new Envi ronnent (envHone, envConfig);
store = new EntityStore(envimt, "EntityStore", storeConfig);

}

We also need a method to close our environment and store.

/1 Close our environment and store.
public voi d shutdown()
throws Dat abaseException {

store.close();
envmt . cl ose();

}

Now we need to create a method to actually write objects to our store. This method creates
a Si npl eDA object (see SimpleDA.class (page 36) that we will use to access our indexes. Then
we instantiate a serious of Si npl eEntityCd ass (see A Simple Entity Class (page 35)) instances
that we will place in our store. Finally, we use our primary index (obtained from the Si npl eDA
class instance) to actually place these objects in our store.

In Retrieving Objects from an Entity Store (page 40) we show a class that is used to retrieve
these objects.

/] Populate the entity store
private void run()
throws Dat abaseException {

setup();

/1 Qpen the data accessor. This is used to store
Il persistent objects.
sda = new Sinpl eDA(store);

Il Instantiate and store some entity classes

Sinpl eEntityC ass secl = new Sinpl eEntityd ass();
Sinpl eEntityC ass sec2 = new Sinpl eEntityd ass();
Sinpl eEntityC ass sec3 = new Sinpl eEntityd ass();

6/4/2008

Getting Started with JE Page 38

Sinpl eEntityC ass secd
Sinpl eEntityC ass sech

new Sinpl eEntityd ass();
new Sinpl eEntityd ass();

secl. set PKey("keyone");
secl. set SKey("skeyone");

sec2. set PKey("keytwo");
sec2. set SKey("skeyone");

sec3. set PKey("keythree");
sec3. set SKey("skeytwo");

sec4. set PKey("keyfour");
sec4d. set SKey("skeyt hree");

secb. set PKey("keyfive");
secb. set SKey("skeyfour™");

sda. pl dx. put (secl);
sda. pl dx. put (sec2);
sda. pl dx. put (sec3);
sda. pl dx. put (sec4);
sda. pl dx. put (secb);

shut down() ;

}

Finally, to complete our class, we need a mai n() method, which simply calls our run() method.

[/ main
public static void main(String args[]) {

Si npl eSt orePut ssp = new Sinpl eSt orePut () ;

try {
ssp.run();

} catch (DatabaseException dbe) {
Systemerr.printIn("SinmpleStorePut: " + dbe.toString());
dbe. print StackTrace();

} catch (Exception e) {

Systemout. println("Exception: " + e.toString());
e.printStackTrace();

}
Systemout.printin("Al done.");

6/4/2008 Getting Started with JE Page 39

Retrieving Objects from an Entity Store

You retrieve objects placed in an entity store by using either the object's primary index, or
the appropriate secondary index if it exists. The following application illustrates this by
retrieving some of the objects that we placed in an entity store in the previous section.

To begin, we import the Java classes that our example needs. We also instantiate the private
data members that we require.

package persist.gettingStarted;
inport java.io.File;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . j e. Envi ronment ;
i nport com sl eepycat . j e. Envi ronnment Confi g;

i nport com sl eepycat. persist.EntityStore;
i nport com sl eepycat . persi st. StoreConfig;

public class SinpleStoreGet {
private static File envHome = new File("./JEDB");

private Environment envimt;
private EntityStore store;
private SinpleDA sda;

Next we create a method that simply opens our database environment and entity store for us.

Il The setup() method opens the environment and store
[/ for us.
public void setup()

t hrows Dat abaseException {

Envi ronment Confi g envConfig = new Environment Config();
StoreConfig storeConfig = new StoreConfig();

envConfig.set All owCreate(true);
storeConfig.set Al l owCreate(true);

/1 Open the environnent and entity store
envimt = new Envi ronnent (envHone, envConfig);
store = new EntityStore(envimt, "EntityStore", storeConfig);

}

We also need a method to close our environment and store.

/I O ose our environment and store.
publi ¢ voi d shutdown()

6/4/2008 Getting Started with JE Page 40

throws Dat abaseException {

store.close();
envmmt . cl ose();

}

Now we retrieve a few objects. To do this, we instantiate a Si npl eDA (see

SimpleDA.class (page 36)) class that we use to access our primary and secondary indexes. Then
we retrieve objects based on a primary or secondary index value. And finally, we display the
retrieved objects.

/] Retrieve some SinpleEntityC ass objects fromthe store.
private void run()
throws Dat abaseException {

setup();

/1 Qpen the data accessor. This is used to store
Il persistent objects.
sda = new Sinpl eDA(store);

Il Instantiate and store some entity classes
Sinpl eEntityC ass secl = sda. pl dx. get ("keyone");
Sinpl eEntityC ass sec2 = sda. pl dx. get ("keytwo");

Sinpl eEntityC ass sec4 = sda. sl dx. get("skeythree");
Systemout. println("secl;: "
System out. println("sec2:
System out. println("sec4:

+ secl. get PKey());
+ sec2. get PKey());
+ sec4. get PKey());

shut down() ;

}

Finally, to complete our class, we need a mai n() method, which simply calls our run() method.

[/ main
public static void main(String args[]) {

Si npl eSt oreGet ssg = new SinpleStoreGet();

try {
ssg.run();

} catch (DatabaseException dbe) {
Systemerr.printIn("SinpleStoreGet: " + dbe.toString());
dbe. print StackTrace();

} catch (Exception e) {

Systemout. println("Exception: " + e.toString());
e.printStackTrace();

}
Systemout.printin("Al done.");

6/4/2008

Getting Started with JE Page 41

}
Retrieving Multiple Objects

It is possible to iterate over every object referenced by a specific index. You may want to do
this if, for example, you want to examine or modify every object accessible by a specific
primary index.

In addition, some indexes result in the retrieval of multiple objects. For example, MANY_TO ONE
secondary indexes can result in more than one object for any given key (also known as duplicate
keys). When this is the case, you must iterate over the resulting set of objects in order to
examine each object in turn.

There are two ways to iterate over a collection of objects as returned by an index. One is to
use a standard Java | t erat or, which you obtain using an Ent it yCur sor, which in turn you can
obtain from a Pri maryl ndex:

Pri maryl ndex<String, Si npl eEntityd ass> pi =
store. get Primaryl ndex(String.class, SinpleEntityd ass.class);
EntityCursor<Sinpl eEntityCd ass> pi _cursor = pi.entities();
try {
Iterator<SinpleEntityCass> i = pi_cursor.iterator();
while (i.hasNext()) {
/1 Do sonething here

}

} finally {
[/ Always cl ose the cursor
pi _cursor.close();

}

Alternatively, you can use a Java "foreach” statement to iterate over object set:

Primaryl ndex<String, Si npl eEntityC ass> pi =
store. get Primaryl ndex(String.class, SinpleEntityd ass.class);
EntityCursor<Sinpl eEntityCd ass> pi _cursor = pi.entities();
try {
for (SinpleEntitydass seci : pi_cursor) {
/1 do something with each object "seci"

}
/1 Always make sure the cursor is closed when we are done with it.
} finally {

sec_cursor. cl ose();

}
Cursor Initialization

When a cursor is first opened, it is not positioned to any value; that is, it is not initialized.
Most of the Enti t yCur sor methods that move a cursor will initialize it to either the first or last

6/4/2008 Getting Started with JE Page 42

object, depending on whether the operation is moving the cursor forward (all next ... methods)
or backwards (all prev. ..) methods.

You can also force a cursor, whether it is initialized or not, to return the first object by calling
EntityCursor.first(). Similarly, you can force a return of the last object using
EntityCursor.last().

Operations that do not move the cursor (such as EntityCursor. current() or
EntityCursor. del ete() will throw an |1 egal St at eExcepti on when used on an uninitialized
cursor.

Working with Duplicate Keys

If you have duplicate secondary keys, you can return an Entityl ndex class object for them
using Secondar yl ndex. subl ndex() Then, use that object's entities() method to obtain an
EntityCursor instance.

For example:

Primaryl ndex<String, Sinpl eEntityC ass> pi =
store. get Primaryl ndex(String.class, SinpleEntityd ass.class);

Secondaryl ndex<String, String, Si npl eEntityC ass> si =
store. get Secondaryl ndex(pi, String.class, "sKey");

EntityCursor<Sinpl eEntityCd ass> sec_cursor =
si . subl ndex("skeyone").entities();

try {
for (SinpleEntityC ass seci : sec_cursor) {

/1 do something with each object "seci"

/1 Always make sure the cursor is closed when we are done with it.

} finally {
sec_cursor.close(); }

Note that if you are working with duplicate keys, you can control how cursor iteration works
by using the following Entit yCur sor methods:

e next Dup()

Moves the cursor to the next object with the same key as the cursor is currently referencing.
That is, this method returns the next duplicate object. If no such object exists, this method
returns nul I .

e prevDup()

Moves the cursor to the previous object with the same key as the cursor is currently
referencing. That is, this method returns the previous duplicate object in the cursor's set of
objects. If no such object exists, this method returns nul | .

6/4/2008

Getting Started with JE Page 43

Key Ranges

 next NoDup()

Moves the cursor to the next object in the cursor's set that has a key which is different than
the key that the cursor is currently referencing. That is, this method skips all duplicate
objects and returns the next non-duplicate object in the cursor's set of objects. If no such
object exists, this method returns nul | .

e prevNoDup()

Moves the cursor to the previous object in the cursor's set that has a key which is different
than the key that the cursor is currently referencing. That is, this method skips all duplicate
objects and returns the previous non-duplicate object in the cursor's set of objects. If no
such object exists, this method returns nul | .

For example:

Primaryl ndex<String, Sinpl eEntityC ass> pi =
store. get Primaryl ndex(String.class, SinpleEntityd ass.class);

Secondaryl ndex<String, String, Si npl eEntityC ass> si =
store. get Secondaryl ndex(pi, String.class, "sKey");

EntityCursor<Sinpl eEntityCd ass> sec_cursor =
si . subl ndex("skeyone").entities();

try {
Si npl eEntityd ass sec;

Iterator<SinpleEntityCass> i = sec_cursor.iterator();
while (sec = i.nextNoDup() !'= null) {
/1 Do sonething here

}
/1 Al'ways make sure the cursor is closed when we are done with it.
} finally {

sec_cursor.close(); }

You can restrict the scope of a cursor's movement by specifying a range when you create the
cursor. The cursor can then never be positioned outside of the specified range.

When specifying a range, you indicate whether a range bound is inclusive or exclusive by
providing a boolean value for each range. tr ue indicates that the provided bound is inclusive,
while f al se indicates that it is exclusive.

You provide this information when you call Pri maryl ndex. entities() or

Secondaryl ndex. entities(). For example, suppose you had a class indexed by numerical
information. Suppose further that you wanted to examine only those objects with indexed
values of 100 - 199. Then (assuming the numerical information is the primary index), you can
bound your cursor as follows:

6/4/2008

Getting Started with JE Page 44

EntityCursor<SoneEntityC ass> cursor =
primarylndex.entities(100, true, 200, false);

try {
for (SoneEntityC ass sec : cursor {

/'l Do something here to objects ranged from 100 to 199

}
/1 Al'ways make sure the cursor is closed when we are done with it.
} finally {

cursor.close(); }

Join Cursors

If you have two or more secondary indexes set for an entity object, then you can retrieve sets
of objects based on the intersection of multiple secondary index values. You do this using an
EntityJoin class.

For example, suppose you had an entity class that represented automobiles. In that case, you
might be storing information about automobiles such as color, number of doors, fuel mileage,
automobile type, number of passengers, make, model, and year, to hame just a few.

If you created a secondary index based this information, then you could use an EntityJoin to
return all those objects representing cars with, say, two doors, that were built in 2002, and
which are green in color.

To create a join cursor, you:

1. Open the primary index for the entity class on which you want to perform the join.
2. Open the secondary indexes that you want to use for the join.

3. Instantiate an EntityJoi n object (you use the primary index to do this).

4. Use two or more calls to EntityJoin. addCondi ti on() to identify the secondary indexes and
their values that you want to use for the equality match.

5. Call EntityJoin.entities() toobtain a cursor that you can use to iterate over the join
results.

For example, suppose we had an entity class that included the following features:
package persist.gettingStarted;
i nport com sl eepycat . persist.model . Entity;
i nport com sl eepycat . persi st. nodel . Pri mar yKey;

i mport static com sl eepycat. persist.nodel . Rel ationship.*;
i nport com sl eepycat . persi st. nodel . Secondar yKey;

@ntity

6/4/2008

Getting Started with JE Page 45

public class Autonobiles {

/1 Primary key is the vehicle identification nunber
@r i mar yKey
private String vin;

/] Secondary key is the vehicle's make
@econdar yKey(rel at e=MANY_TO_ONE)
private String make;

/] Secondary key is the vehicle's color

@econdar yKey(rel at e=MANY_TO_ONE)
private String col or;

public String getVIN() {

return vin;

}

public String getMke() {
return make;

}

public String getColor() {
return color;

}

Then we could perform an entity join that searches for all the red automobiles made by Toyota
as follows:

Primaryl ndex<String, Aut onobi | es> vi n_pi dx;
Secondaryl ndex<String, String, Aut onobi | es> nmake_si dx;
Secondaryl ndex<String, String, Aut onobi | es> col or _si dx;

EntityJoi n<String, Aut onobil es> join = new EntityJoin(vin_pidx);
join.addCondi ti on(nmake_si dx, " Toyota");
join.addCondition(col or_sidx,"Red");

/1 Now iterate over the results of the join operation
Forwar dCur sor <Aut onphi | es> join_cursor = join.entities();

try {
for (Autonobiles autoi : join_cursor) {
Il do something with each object "autoi"
}

/1 Al'ways make sure the cursor is closed when we are done with it.

6/4/2008 Getting Started with JE Page 46

} finally {
join_cursor.close();
}

Deleting Entity Objects

The simplest way to remove an object from your entity store is to delete it by its primary index.
For example, using the Si mpl eDA class that we created earlier in this document (see
SimpleDA.class (page 36)), you can delete the Si npl eEntityCd ass object with a primary key
of keyone as follows:

sda. pl dx. del et e("keyone");

You can also delete objects by their secondary keys. When you do this, all objects related to
the secondary key are deleted, unless the key is a foreign object.

For example, the following deletes all Si npl eEntityCd ass with a secondary key of skeyone:

sda. sl dx. del et e("skeyone");

You can delete any single object by positioning a cursor to that object and then calling the
cursor's del et e() method.

Primaryl ndex<String, Si npl eEntityd ass> pi =
store. get Primaryl ndex(String.class, SinpleEntityd ass.class);

Secondaryl ndex<String, String, Si npl eEntityd ass> si =
store. get Secondaryl ndex(pi, String.class, "sKey");

EntityCursor<Sinpl eEntityC ass> sec_cursor =
si . subl ndex("skeyone").entities();

try {
Si npl eEntityd ass sec;
Iterator<SinpleEntityCass> i = sec_cursor.iterator();
while (sec = i.nextDup() !'= null) {
if (sec.getSKey() == "sone value") {
i.delete();
}

/1 Al'ways make sure the cursor is closed when we are done with it.
} finally {
sec_cursor.close(); }
Finally, if you are indexing by foreign key, then the results of deleting the key is determined

by the foreign key constraint that you have set for the index. See Foreign Key
Constraints (page 33) for more information.

Replacing Entity Objects

To modify a stored entity object, retrieve it, update it, then put it back to the entity store:

6/4/2008 Getting Started with JE Page 47

Sinpl eEntityC ass sec = sda. pl dx. get ("keyone");
sec. set SKey("skeyoneupdat ed") ;
sda. pl dx. put (sec);

Note that because we updated a field on the object that is a secondary key, this object will
now be accessible by the secondary key of skeyoneupdat ed instead of the previous value, which
was skeyone

Be aware that if you modify the object's primary key, the behavior is somewhat different. In
this case, you cause a new instance of the object to be created in the store, instead of replacing
an existing instance:

Il Results in two objects in the store. One with a

[l primary index of "keyfive" and the other with primary index of
/1" keyfivenew .

Sinpl eEntityC ass sec = sda. pl dx. get ("keyfive");

sec. set PKey("keyfivenew');

sda. pl dx. put (sec);

Finally, if you are iterating over a collection of objects using an Enti t yCur sor, you can update
each object in turn using Enti t yCur sor. updat e() . Note, however, that you must be iterating
using a Pri maryl ndex; this operation is not allowed if you are using a Secondar yl ndex.

For example, the following iterates over every Si npl eEnti t yC ass object in the entity store,
and it changes them all so that they have a secondary index of updat edskey:

EntityCursor<Sinpl eEntityC ass> sec_pcursor = sda.pldx.entities();
for (SinpleEntityCass sec : sec_pcursor) {

sec. set SKey(" updat edskey");

sec_pcursor. update(iten;

}

sec_pcursor.close();

6/4/2008

Getting Started with JE Page 48

Chapter 6. A DPL Example

In order to illustrate DPL usage, we provide a complete working example in this chapter. This
example reads and writes inventory and vendor information for a mythical business. The
application consists of the following classes:

 Several classes used to encapsulate our application's data. See Vendor.java (page 49) and
Inventory.java (page 51).

» A convenience class used to open and close our environment and entity store. See
MyDbEnv (page 53).

A class that loads data into the store. See ExampleDatabasePut.java (page 56).

« Finally, a class that reads data from the store. See ExamplelnventoryRead.java (page 60).
Be aware that this example can be found in your JE distribution in the following location:
JE_HOME/examples/persist/gettingStarted

where JE_HOME is the location where you placed your JE distribution.

Vendor.java

The simplest class that our example wants to store contains vendor contact information. This
class contains no secondary indices so all we have to do is identify it as an entity class and
identify the field in the class used for the primary key.

In the following example, we identify the vendor data member as containing the primary key.
This data member is meant to contain a vendor's name. Because of the way we will use our
EntityStore, the value provided for this data member must be unique within the store or
runtime errors will result.

When used with the DPL, our Vendor class appears as follows. Notice that the @nt ity annotation
appears immediately before the class declaration, and the @ri mar yKey annotation appears
immediately before the vendor data member declaration.

package persist.gettingStarted;

i nport com sl eepycat . persist. model . Entity;
i nport com sl eepycat . persi st. nodel . Pri mar yKey;

@ntity
public class Vendor {

private String address;
private String bi zPhoneNunber;
private String city;

private String repNane;
private String repPhoneNunber;

6/4/2008

Getting Started with JE Page 49

private String state;

[/ Primary key is the vendor's name

[/ This assumes that the vendor's name is
[/ unique in the database.

@r i mar yKey

private String vendor;

private String zipcode;

public void setRepName(String data) {
repNane = dat a;

}

public void setAddress(String data) {
address = data;

}

public void setCity(String data) {
city = data;

}

public void setState(String data) {
state = data;

}

public void setZ pcode(String data) {
zi pcode = dat a;

}

public void setBusinessPhoneNunber (String data) {
bi zPhoneNunber = dat a;

}

public void setRepPhoneNunber (String data) {
repPhoneNunber = dat a;

}

public void setVendorNane(String data) {
vendor = data;

}

public String getRepNane() {
return repNane;

}

public String getAddress() {
return address;

}

6/4/2008 Getting Started with JE Page 50

public String getGity() {
return city;

}

public String getState() {
return state;

}

public String getZpcode() {
return zipcode;

}

public String getBusi nessPhoneNumber () {
return bi zPhoneNunber;

}

public String get RepPhoneNunber () {
return repPhoneNunber;
}
}

For this class, the vendor value is set for an individual Vendor class object by the set Vendor Narre()
method. If our example code fails to set this value before storing the object, the data member
used to store the primary key is set to a null value. This would result in a runtime error.

Inventory.java

Our example's | nvent ory class is much like our Vendor class in that it is simply used to
encapsulate data. However, in this case we want to be able to access objects two different
ways: by product SKU and by product name.

In our data set, the product SKU is required to be unique, so we use that as the primary key.
The product name, however, is not a unique value so we set this up as a secondary key.

The class appears as follows in our example:

package persist.gettingStarted;

i nport com sl eepycat . persist.nodel . Entity;

i nport com sl eepycat . persi st. nodel . Pri mar yKey;

inport static com sl eepycat. persist.nodel.Rel ationship.*;
i nport com sl eepycat . persi st. nodel . Secondar yKey;

@ntity
public class Inventory {

[l Primary key is sku
@ri mar yKey
private String sku;

6/4/2008

Getting Started with JE Page 51

/] Secondary key is the itenmNane
@econdar yKey(rel at e=MANY_TO_ONE)
private String itenNane;

private String category;
private String vendor;
private int vendorlnventory;
private float vendorPrice;

public void setSku(String data) {
sku = dat a;

}

public void setltemName(String data) {
itenName = data;
}

public void setCategory(String data) {
category = data;

}

public void setVendorlnventory(int data) {
vendor I nventory = dat a;

}

public void setVendor(String data) {
vendor = data;

}

public void setVendorPrice(float data) {
vendor Price = data;

}

public String getSku() {
return sku;

}

public String getltemNane() {
return itenName;

}

public String getCategory() {
return category;

}

public int getVendorlnventory() {
return vendor | nventory;

}

6/4/2008 Getting Started with JE Page 52

MyDbEnv

public String getVendor() {
return vendor;
}

public float getVendorPrice() {
return vendorPrice;
}

The applications that we are building for our example both must open and close environments
and entity stores. One of our applications is writing to the entity store, so this application
needs to open the store as read-write. It also wants to be able to create the store if it does
not exist.

Our second application only reads from the store. In this case, the store should be opened as
read-only.

We perform these activities by creating a single class that is responsible for opening and closing
our store and environment. This class is shared by both our applications. To use it, callers need
to only provide the path to the environment home directory, and to indicate whether the
object is meant to be read-only. The class implementation is as follows:

package persist.gettingStarted;
inport java.io.File;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. | e. Envi ronment ;
i nport com sl eepycat . j e. Envi ronnment Confi g;

i nport com sl eepycat. persist.EntityStore;
i nport com sl eepycat . persi st. StoreConfig;

public class MyDbEnv {

private Environnent nyEnv;
private EntityStore store;

/1 Qur constructor does nothing
public MyDbEnv() {}

/1 The setup() nethod opens the environment and store

/1 for us.

public void setup(File envHone, bool ean readOnly)
throws Dat abaseException {

6/4/2008

Getting Started with JE Page 53

Envi ronment Confi g nyEnvConfig = new Environnent Config();
StoreConfig storeConfig = new StoreConfig();

myEnvConfi g. set ReadOnl y(readOnl y);
storeConfig. set ReadOnl y(readOnl y);

[l 1f the environment is opened for wite, then we want to be
I/ able to create the environment and entity store if

Il they do not exist.

myEnvConfi g. set Al | owCr eat e(! readOnly);

storeConfig.setAll owCreate(!readOnly);

Il Open the environnent and entity store
myEnv = new Environment (envHonme, nyEnvConfig);
store = new EntityStore(nmyEnv, "EntityStore", storeConfig);

}

/] Return a handle to the entity store
public EntityStore getEntityStore() {
return store;

}

/] Return a handle to the environment
publ i ¢ Environnment getEnv() {
return myEnv;

}

[/ Close the store and environnent.
public void close() {
if (store !=null) {
try {
store.close();
} catch(DatabaseException dbe) {
Systemerr.printin("Error closing store: " +
dbe.toString());
Systemexit(-1);

}

if (myEnv = null) {

try {
/1 Finally, close the environnment.
myEnv. cl ose();

} catch(DatabaseException dbe) {
Systemerr.println("Error closing MDbEnv: " +

dbe.toString());

Systemexit(-1);

6/4/2008 Getting Started with JE Page 54

}

DataAccessor.java

Now that we have implemented our data classes, we can write a class that will provide
convenient access to our primary and secondary indexes. Note that like our data classes, this
class is shared by both our example programs.

If you compare this class against our Vendor and | nvent ory class implementations, you will see
that the primary and secondary indices declared there are referenced by this class.

See Vendor.java (page 49) and Inventory.java (page 51) for those implementations.

package persist.gettingStarted;
inport java.io.File;

i nport com sl eepycat . j e. Dat abaseExcepti on;

i nport com sl eepycat . persist.EntityStore;

i nport com sl eepycat . persist. Primaryl ndex;

i nport com sl eepycat . persi st. Secondar yl ndex;

public class DataAccessor {
/1 Qpen the indices
publ i ¢ DataAccessor(EntityStore store)
throws Dat abaseException {

Il Primary key for Inventory classes
i nvent oryBySku = store. get Pri maryl ndex(
String.class, Inventory.class);

Il Secondary key for Inventory classes
Il Last field in the getSecondarylndex() nethod nust be
/'l the nane of a class nenber; in this case, an Inventory.class
/1 data menber.
i nvent or yByName = store. get Secondar yl ndex(
i nventoryBySku, String.class, "itemNane");

Il Primary key for Vendor class
vendor ByNane = store. getPrimaryl ndex(
String.class, Vendor.class);

}

/'l I'nventory Accessors
Primaryl ndex<String, | nventory> invent or yBySku;
Secondaryl ndex<String, String, | nvent ory> invent or yByNane;

6/4/2008

Getting Started with JE Page 55

/1 Vendor Accessors
Pri maryl ndex<String, Vendor > vendor ByNane;

}
ExampleDatabasePut.java

Our example reads inventory and vendor information from flat text files, encapsulates this
data in objects of the appropriate type, and then writes each object to an EntityStore.

To begin, we import the Java classes that our example needs. Most of the imports are related
to reading the raw data from flat text files and breaking them apart for usage with our data
classes. We also import classes from the JE package, but we do not actually import any classes
from the DPL. The reason why is because we have placed almost all of our DPL work off into
other classes, so there is no need for direct usage of those APIs here.

package persist.gettingStarted;

i nport java.io.BufferedReader;

inmport java.io.File;

inmport java.io.FilelnputStream

i nport java.io.FileNot FoundExcepti on;
i nport java.io.lOException;

import java.io.lnputStreanReader;
inmport java.util.ArrayList;

import java.util.List;

i nport com sl eepycat . j e. Dat abaseExcepti on;

Now we can begin the class itself. Here we set default paths for the on-disk resources that we
require (the environment home, and the location of the text files containing our sample data).
We also declare Dat aAccessor and MyDbEnv members. We describe these classes and show their
implementation in DataAccessor.java (page 55) and MyDbEnv (page 53).

public class Exanpl eDat abasePut {
private static File nyDbEnvPath = new File("/tnp/JEDB");

private static File inventoryFile = new File("./inventory.txt");
private static File vendorsFile = new File("./vendors.txt");

private DataAccessor da;

/] Encapsul ates the environment and data store.
private static MyDbEnv nyDbEnv = new MyDbEnv();

Next, we provide our usage() method. The command line options provided there are necessary
only if the default values to the on-disk resources are not sufficient.

private static void usage() {
System out. print| n("Exanpl eDat abasePut [-h <env directory>]");
System out. println(" [-i <inventory file> [-v <vendors file>]");

6/4/2008 Getting Started with JE Page 56

Systemexit(-1);
}

Our mai n() method is also reasonably self-explanatory. We simply instantiate an
Exanpl eDat abasePut object there and then call its run() method. We also provide a top-level
try block there for any exceptions that might be thrown during runtime.

Notice that the fi nal | y statement in the top-level t ry block calls MyDbEnv. cl ose() . This method
closes our EntityStore and Environment objects. By placing it here in the final | y statement,
we can make sure that our store and environment are always cleanly closed.

public static void main(String args[]) {

Exanpl eDat abasePut edp = new Exanpl eDat abasePut () ;

try {
edp. run(args);

} catch (DatabaseException dbe) {
Systemerr. println("Exanpl eDat abasePut: " + dbe.toString());
dbe. print StackTrace();

} catch (Exception e) {
Systemout. println("Exception: " + e.toString());
e.printStackTrace();

} finally {
myDbEnv. cl ose();
}

Systemout. printin("Al done.");
}

Our run() method does four things. It calls MyDbEnv. set up() , which opens our Envi ronnent and
EntityStore. It then instantiates a Dat aAccessor object, which we will use to write data to
the store. It calls | oadVendor sDb() which loads all of the vendor information. And then it calls
| oadl nvent oryDb() which loads all of the inventory information.

Notice that the MyDbEnv object is being setup as read-write. This results in the EntityStore
being opened for transactional support. (See MyDbEnv (page 53) for implementation details.)

private void run(String args[])
throws Dat abaseException {
I/ Parse the argunents |ist
par seArgs(args);

myDbEnv. set up(nyDbEnvPath, // Path to the environment hone
fal se); [/ Environnent read-only?

Il Open the data accessor. This is used to store
Il persistent objects.
da = new Dat aAccessor (nyDbEnv. get EntityStore());

Systemout. println("loadi ng vendors db....");
| oadVendor sDb() ;

6/4/2008

Getting Started with JE Page 57

Systemout. println("loading inventory db....");
| oadl nvent oryDb();

}

We can now implement the | oadVendor sDb() method. This method is responsible for reading
the vendor contact information from the appropriate flat-text file, populating Vendor class
objects with the data and then writing it to the Enti t ySt or e. As explained above, each individual
object is written with transactional support. However, because a transaction handle is not
explicitly used, the write is performed using auto-commit. This happens because the EntityStore
was opened to support transactions.

To actually write each class to the Enti t ySt or e, we simply call the Pri maryl ndex. put () method
for the Vendor entity instance. We obtain this method from our Dat aAccessor class.

private void | oadVendorsDb()
throws Dat abaseException {

Il loadFile opens a flat-text file that contains our data
I/ and loads it into a list for us to work with. The integer
Il paranmeter represents the number of fields expected in the

I file.

Li st vendors = | oadFile(vendorsFile, 8);

/1 Now | oad the data into the store.

for (int i =0; i < vendors.size(); i++) {
String[] sArray = (String[])vendors. get(i);
Vendor theVendor = new Vendor ();

t heVendor .
.set Address(sArray[1]);
t heVendor .
t heVendor .

t heVendor

t heVendor

t heVendor

Il Put it

set Vendor Name(sArray[0]);

setCity(sArray[2]);
set State(sArray[3]);

.set Zi pcode(sArray[4]);
t heVendor .
t heVendor .
. set RepPhoneNunber (sArray[7]);

set Busi nessPhoneNumber (sArray[5]);
set RepNanme(sArray[6]);

in the store.

da. vendor ByNane. put (t heVendor) ;

}

Now we can implement our | oadl nvent oryDb() method. This does exactly the same thing as
the | oadVendor sDb() method.

private void | oadl nventoryDb()
t hrows Dat abaseException {

Il loadFile opens a flat-text file that contains our data
I/ and loads it into a list for us to work with. The integer
Il paranmeter represents the number of fields expected in the

6/4/2008

Getting Started with JE Page 58

}

Il file.
List inventoryArray = |oadFile(inventoryFile, 6);

/1 Now | oad the data into the store. The itenmis sku is the
Il key, and the data is an Inventory class object.

for (int i =0; i <inventoryArray.size(); i++) {
String[] sArray = (String[])inventoryArray.get(i);

String sku = sArray[1];

Inventory thelnventory = new Inventory();
thel nventory. set|temNane(sArray[0]);
t hel nvent ory. set Sku(sArray[1]);
t hel nvent ory. set Vendor Pri ce(

(new Fl oat (sArray[2])).fl oatVal ue());
t hel nvent ory. set Vendor I nvent or y(

(new Integer(sArray[3])).intValue());
t hel nvent ory. set Cat egory(sArray[4]);
t hel nvent ory. set Vendor (sArray[5]);

[/ Put it in the store. Note that this causes our secondary key

/1 to be automatically updated for us.
da. i nvent oryBySku. put (t hel nventory);

The remainder of this example simple parses the command line and loads data from a flat-text
file. There is nothing here that is of specific interest to the DPL, but we show this part of the

example anyway in the interest of completeness.

private static void parseArgs(String args[]) {

for(int i =0; i <args.length; ++) {

if (args[i].startsWth("-")) {
switch(args[i].charAt(1)) {
case 'h':
myDbEnvPath = new Fil e(args[++i]);
br eak;
case 'i
inventoryFile = new File(args[++i]);
br eak;
case 'V':
vendorsFile = new File(args[++i]);
br eak;
defaul t:
usage();

[

6/4/2008

Getting Started with JE

Page 59

private List loadFile(File theFile, int nunFields) {
List<String[]> records = new ArrayList<String[]>();
try {
String theLine = null;
FilelnputStreamfis = new FilelnputStrean(theFile);
Buf f eredReader br =
new Buf f er edReader (new | nput St r eanReader (fis));
whi | e((theLine=br.readLine()) !'=null) {
String[] theLineArray = theLine.split("#");
if (theLineArray.length I'= nunFields) {
Systemout. printin("Mlforrmed line found in " +
theFile.getPath());
Systemout. println("Line was: '" + theLine);
Systemout. printin("length found was: " +
t heLi neArray. | ength);
Systemexit(-1);

records. add(t heLi neArray);

}
/1 dose the input stream handl e
fis.close();

} catch (FileNot FoundException e) {
Systemerr.println(theFile.getPath() +
e.print StackTrace();
usage();

} catch (1OException e) {
Systemerr.printIn("l10 Exception: " + e.toString());
e.print StackTrace();

Systemexit(-1);

does not exist.");

}

return records;

}

protected Exanpl eDat abasePut () {}
}

ExampleInventoryRead.java

Exanpl el nvent or yRead retrieves inventory information from our entity store and displays it.
When it displays each inventory item, it also displays the related vendor contact information.

Exanpl el nvent or yRead can do one of two things. If you provide no search criteria, it displays
all of the inventory items in the store. If you provide an item name (using the -s command
line switch), then just those inventory items using that name are displayed.

The beginning of our example is almost identical to our Exanpl eDat abasePut example program.
We repeat that example code here for the sake of completeness. For a complete walk-through
of it, see the previous section (ExampleDatabasePut.java (page 56)).

6/4/2008 Getting Started with JE Page 60

package persist.gettingStarted;

inport java.io.File;
inport java.io.lOException;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . persist. EntityCursor;

public class Exanpl el nventoryRead {

private static File nyDobEnvPath =
new File("/tnp/JEDB");

private DataAccessor da;

/] Encapsul ates the database environnent.
private static MyDbEnv nyDbEnv = new MyDbEnv();

/] The itemto locate if the -s switch is used
private static String |ocateltem

private static void usage() {
System out. println("Exanpl el nventoryRead [-h <env directory>]" +
"[-s <itemto locate>]");
Systemexit(-1);
}

public static void main(String args[]) {
Exanpl el nvent oryRead eir = new Exanpl el nvent or yRead();
try {
eir.run(args);
} catch (DatabaseException dbe) {
Systemerr. println("Exanpl el nventoryRead: " + dbe.toString());
dbe. print StackTrace();

} finally {
myDbEnv. cl ose();
}

Systemout.printin("Al done.");
}

private void run(String args[])
throws Dat abaseException {
Il Parse the argunments |i st
par seArgs(args);

myDbEnv. set up(nyDbEnvPath, // path to the environnent home
true); [l is this environnment read-only?

Il Open the data accessor. This is used to retrieve

6/4/2008

Getting Started with JE

Page 61

Il persistent objects.
da = new Dat aAccessor (myDbEnv. get EntityStore());

Il 1f aitemto locate is provided on the command |ine,
Il show just the inventory items using the provided nane.
Il Qtherw se, show everything in the inventory.
if (locateltem!= null) {

showl ten();
} else {

showAl | I nvent ory();
}

}

The first method that we provide is used to show inventory items related to a given inventory
name. This method is called only if an inventory name is passed to Exanpl el nvent or yRead via
the - s option. Given the sample data that we provide with this example, each matching
inventory name will result in the display of three inventory objects.

To display these objects we use the | nvent ory class' i nvent or yByNane secondary index to
retrieve an Enti tyCursor, and then we iterate over the resulting objects using the cursor.

Notice that this method calls di spl ayl nvent oryRecor d() to display each individual object. We
show this method a little later in the example.

/] Shows all the inventory items that exist for a given
[/ inventory nane.
private void showl ten() throws DatabaseException {

I/ Use the inventory name secondary key to retrieve
Il these objects.
EntityCursor<inventory> itens =

da. i nvent or yByNane. subl ndex(| ocateltem.entities();
try {

for (Inventory item: itens) {

di spl ayl nvent oryRecord(itemn;

}
} finally {

itens.close();
}

}

Next we implement showAl | | nvent ory(), which shows all of the | nvent ory objects in the store.
To do this, we obtain an Enti t yCursor from the | nvent ory class' primary index and, again, we
iterate using that cursor.

/] Displays all the inventory itenms in the store
private void showAl | I nventory()
throws Dat abaseException {

[/ Get a cursor that will walk every

6/4/2008 Getting Started with JE Page 62

Il inventory object in the store.
EntityCursor<inventory> itens =
da. i nventoryBySku.entities();

try {
for (Inventory item: itens) {

di spl ayl nvent or yRecord(item;
}

} finally {
items.close();
}

}

Now we implement di spl ayl nvent or yRecor d() . This uses the getter methods on the I nvent ory
class to obtain the information that we want to display. The only thing interesting about this
method is that we obtain Vendor objects within. The vendor objects are retrieved Vendor
objects using their primary index. We get the key for the retrieval from the I nvent ory object
that we are displaying at the time.

private void displaylnventoryRecord(lnventory thelnventory)
throws Dat abaseException {

Systemout. println(thelnventory.getSku() + ":");
Systemout.printin("\t " + thelnventory.getltemame())
System out. println(" + thelnventory. get Cat egory())
System out . printl n(+ thelnventory. get Vendor ());
Systemout. println("\t\tNunber in stock: " +

t hel nvent ory. get Vendor I nventory());
Systemout.printIn("\t\tPrice per unit: " +

t hel nvent ory. get Vendor Price());
Systemout.println("\t\tContact: ");

n .

’
n .
’

\t
I|\t "

Vendor theVendor =
da. vendor ByNane. get (t hel nvent ory. get Vendor ()) ;
assert theVendor != null;

Systemout.printIn("\t\t " + theVendor. get Address());
Systemout.printIn("\t\t " + theVendor.getCity() + ", " +

theVendor. get State() + " " + theVendor. getZi pcode());
Systemout.println("\t\t Business Phone: " +

t heVendor . get Busi nessPhoneNunber ());
Systemout.printIn("\t\t Sales Rep: " +

t heVendor . get RepNanme()) ;

Systemout. printIn("\t\t "+

t heVendor . get RepPhoneNunber ()) ;

}

The last remaining parts of the example are used to parse the command line. This is not very
interesting for our purposes here, but we show it anyway for the sake of completeness.

6/4/2008 Getting Started with JE Page 63

protected Exanpl el nventoryRead() {}

private static void parseArgs(String args[]) {
for(int i =0; i <args.length; ++) {
if (args[i].startsWth("-")) {
switch(args[i].charAt(1)) {
case 'h':

myDbEnvPath = new File(args[++i]);

br eak;
case 's':
[ocateltem = args[++i];
br eak;
defaul t:
usage();

6/4/2008

Getting Started with JE

Page 64

Part II. Programming with the
Base API

This section discusses application that are built using the JE base API. Note that most JE applications can
probably be written using the DPL (see Programming with the Direct Persistence Layer (page 24) for more

information). However, if you are porting an application from the Berkeley DB API, then the base API is
right for you.

Chapter 7. Databases

In Berkeley DB Java Edition, a database is a collection of records. Records, in turn, consist of
key/data pairings.

Conceptually, you can think of a Dat abase as containing a two-column table where column 1

contains a key and column 2 contains data. Both the key and the data are managed using

Dat abaseEnt ry class instances (see Database Records (page 78) for details on this class). So,

fundamentally, using a JE Dat abase involves putting, getting, and deleting database records,
which in turns involves efficiently managing information encapsulated by Dat abaseEnt ry objects.
The next several chapters of this book are dedicated to those activities.

Note that on disk, databases are stored in sequentially numerically named log files in the
directory where the opening environment is located. JE log files are described Databases and
Log Files (page 147).

Also, note that in the previous section of this book, Programming with the Direct Persistence
Layer (page 24), we described the DPL The DPL handles all database management for you,
including creating all primary and secondary databases as is required by your application. That
said, if you are using the DPL you can access the underlying database for a given index if
necessary. See the Javadoc for the DPL for more information.

Opening Databases

You open a database by using the Envi ronnent . openDat abase() method (environments are
described in Database Environments (page 14)). This method creates and returns a Dat abase
object handle. You must provide Envi ronnent . openDat abase() with a database name.

You can optionally provide Envi ronnent . openDat abase() with a Dat abaseConfi g() object.

Dat abaseConfi g() allows you to set properties for the database, such as whether it can be
created if it does not currently exist, whether you are opening it read-only, and whether the
database is to support transactions.

Note that by default, JE does not create databases if they do not already exist. To override
this behavior, set the creation property to true.

Finally, if you configured your environment and database to support transactions, you can
optionally provide a transaction object to the Envi ronnent . openDat abase() . Transactions are
described in the Berkeley DB Java Edition Getting Started with Transaction Processing guide.

The following code fragment illustrates a database open:

6/4/2008 Getting Started with JE Page 66

package je.gettingStarted,

i nport com sl eepycat . | e. Dat abase;

i nport com sl eepycat . | e. Dat abaseConfi g;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. | e. Envi ronment ;

i nport com sl eepycat . j e. Envi ronnment Confi g;

inport java.io.File;

Envi ronment nyDbEnvironment = nul | ;
Dat abase nyDat abase = nul | ;

try {
/] Open the environnent. Create it if it does not already exist.

Envi ronment Confi g envConfig = new Environment Config();
envConfig. set Al l owCreate(true);
myDbEnvi ronment = new Environment (new Fil e("/export/dbEnv"), envConfig);

/] Open the database. Create it if it does not already exist.

Dat abaseConfi g dbConfig = new Dat abaseConfig();

dbConfi g. set Al l owCreat e(true);

myDat abase = myDbEnvi ronnent . openDat abase(nul |,
"sanpl eDat abase",
dbConfi g);

} catch (DatabaseException dbe) {
/] Exception handling goes here

}

Deferred Write Databases

By default, JE database operations that modify the database are written (logged) at the time
of the operation. For transactional databases, changes become durable when the transaction
is committed.

However, deferred write databases operations are not written at the time of the operation.
Writing is deferred for as long as possible. The changes are only guaranteed to be durable after
the Dat abase. sync() method is called or the database is properly closed.

Deferring writes in this manner has two performance advantages when performing database
modifications:

1. When multiple threads are performing writes, Concurrency is increased because the
bottleneck of writing to the log is avoided.

6/4/2008

Getting Started with JE Page 67

2. Less total writing takes place. If a single record is modified more than once, or modified
and deleted, then only the final result must be written. If a record is inserted and deleted
before a database sync or close occurs, nothing at all is written to disk. The same advantage
holds for writing internal index information.

Deferred write databases are useful for applications that perform a great deal of database
modifications, record additions, deletions, and so forth. By delaying the data write, you delay
the disk 1/0. Depending on your workload, this can improve your data throughput by quite a
lot.

While the durability of a deferred write database is only guaranteed when Dat abase. sync() is
called or the database is properly closed, writing may also occur at other times. For example,
a JE checkpoint will effectively perform a Dat abase. sync() on all deferred write databases
that are open at the time of the checkpoint. If you are using deferred write to load a large
data set, and you want to reduce writing as much as possible during the load, consider disabling
the JE checkpointer.

Also, if the JE cache overflows as database modifications occur, information discarded from
the cache is written to disk in order to avoid losing the changes. If you wish to reduce this
writing to a minimum, configure your cache to be large enough to hold the entire data set
being modified, or as large as possible.

|:| Despite the examples noted in the previous paragraphs, there is no guarantee that changes
to a deferred write database are durable unless Dat abase. sync() is called or the database
is closed. If you need guaranteed durability for an operation, consider using transactions

instead of deferred write.

You should also be aware that Dat abase. sync() is a relatively expensive operation because all
outstanding changes to the database are written, including internal index information. If you
find that you are calling Dat abase. sync() frequently, consider using transactions.

All other rules of behavior pertain to deferred write databases as they do to normal databases.
Deferred write databases must be named and created just as you would a normal database. If
you want to delete the deferred write database, you must remove it just as you would a normal
database. This is true even if the deferred write database is empty because its name persists
in the environment's namespace until such a time as the database is removed.

Note that determining whether a database is deferred write is a configuration option. It is
therefore possible to switch a database between "normal” mode and deferred write database.
You might want to do this if, for example, you want to load a lot of data to the database. In
this case, loading data to the database while it is in deferred write state is faster than in
"normal” state, because you can avoid a lot of the normal disk 1/0 overhead during the load
process. Once the load is complete, sync the database, close it, and and then reopen it as a
normal database. You can then continue operations as if the database had been created as a
"normal” database.

To configure a database as deferred write, set Dat abaseConfi g. set DeferredWite() totrue
and then open the database with that Dat abaseConfi g option.

6/4/2008

Getting Started with JE Page 68

[]

If you are using the DPL, then you configure your entire store to be deferred write using
StoreConfig.setDeferredWite(). You can also sync every database in your store using
EntityStore.sync().

For example, the following code fragment opens and closes a deferred write database:

package je.gettingStarted;

i nport
i nport
i nport
i nport
i nport

i nport

com sl eepycat . j e. Dat abase;

com sl eepycat . j e. Dat abaseConfi g;
com sl eepycat . j e. Dat abaseExcepti on;
com sl eepycat . j e. Envi ronnent ;

com sl eepycat . j e. Envi ronnment Confi g;

java.io.File;

Envi ronment nmyDbEnvi ronment = nul | ;
Dat abase myDat abase = nul | ;

try {
/1l

Qpen the environment. Create it if it does not already exist.

Envi ronment Confi g envConfig = new Envi ronnent Config();
envConfig. set Al l owCreate(true);
myDbEnvi ronment = new Envi ronnent (new Fil e("/export/dbEnv"), envConfig);

I

Open the database. Create it if it does not already exist.

Dat abaseConfi g dbConfig = new DatabaseConfig();
dbConfig.set Al l owCreate(true);

I

Make it deferred wite

dbConfi g.set DeferredWite(true);
myDat abase = nyDbEnvi r onnent . openDat abase(nul |,

I
I
I

"sanpl eDat abase",
dbConfig);

do work

Do this when you want the work to be persistent at a

specific point, prior to closing the database.

myDat abase. sync();

I
I

then cl ose the database and environnment here
(described later in this chapter).

} catch (DatabaseException dbe) {

6/4/2008

Getting Started with JE Page 69

/] Exception handling goes here
}

Temporary Databases

By default, all JE databases are durable; that is, the data that you put in them will remain in
them across program runs, unless you explicitly delete the data. However, it is possible to
configure a temporary database that is not durable. A temporary database is automatically
deleted when it is closed or after a crash occurs.

Temporary databases are essentially in-memory only databases. Therefore, they are particularly
useful for applications that want databases which are truly temporary.

Note that temporary databases do not always avoid disk 1/0. It is particularly important to
realize that temporary databases can page to disk if the cache is not large enough to hold the
database's entire contents. Therefore, temporary database performance is best when your
in-memory cache is large enough to hold the database’s entire data-set.

A temporary database operates internally in deferred write mode and has the same performance
advantages as described above for deferred write databases (see Deferred Write

Databases (page 67)). However, unlike deferred write databases, a temporary database is not
written during checkpoints and this provides an additional performance advantage.

Temporary databases must be named and created just as you would a normal database. To
configure a database as temporary, set Dat abaseConfi g. set Tenporary to true and then open
the database with that Dat abaseConfi g instance.

For example:

package je.gettingStarted,

i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat. | e. Dat abaseConfi g;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. | e. Envi ronment ;

i nport com sl eepycat . j e. Envi ronnment Confi g;

inport java.io.File;

Envi ronment nyDbEnvironment = nul | ;
Dat abase nyDat abase = nul | ;

try {
/] Open the environnent. Create it if it does not already exist.

Envi ronment Confi g envConfig = new Environment Config();
envConfig.set Al l owCreate(true);
myDbEnvi ronment = new Environment (new Fil e("/export/dbEnv"), envConfig);

6/4/2008

Getting Started with JE Page 70

/] Open the database. Create it if it does not already exist.

Dat abaseConfi g dbConfig = new Dat abaseConfig();

dbConfi g. set Al l owCreat e(true);

/] Make it a tenporary database

dbConfi g. set Tenporary(true);

myDat abase = nmyDbEnvi ronnent . openDat abase(nul |,
"sanpl eDat abase",
dbConfi g);

[/ do work

/1 then close the database and environment here
/1 (see the next section)

} catch (DatabaseException dbe) {
/] Exception handling goes here
}

Closing Databases

Once you are done using the database, you must close it. You use the Dat abase. ¢l ose() method
to do this.

Closing a database causes it to become unusable until it is opened again. If any cursors are
opened for the database, JE warns you about the open cursors, and then closes them for you.
Active cursors during a database close can cause unexpected results, especially if any of those
cursors are writing to the database in another thread. You should always make sure that all
your database accesses have completed before closing your database.

Remember that for the same reason, you should always close all your databases before closing
the environment to which they belong.

Cursors are described in Using Cursors (page 108) later in this manual.

The following illustrates database and environment close:

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . j e. Dat abase;
i mport com sl eepycat . j e. Envi ronnent;

try {
if (nyDatabase != null) {

nyDat abase. cl ose();
}

6/4/2008

Getting Started with JE Page 71

i f (myDbEnvironment !'= null) {
myDbEnvi ronnent . cl ose();
}
} catch (DatabaseException dbe) {
/] Exception handling goes here

}

Database Properties

You can set database properties using the Dat abaseConfi g class. For each of the properties
that you can set, there is a corresponding getter method. Also, you can always retrieve the
Dat abaseConfi g object used by your database using the Dat abase. get Confi g() method.

The database properties that you can set are:

Dat abaseConfi g. set Al | owCr eat e()

If true, the database is created when it is opened. If false, the database open fails if the
database does not exist. This property has no meaning if the database currently exists.
Default is f al se.

Dat abaseConfi g. set Bt r eeConpar at or ()

Sets the class that is used to compare the keys found on two database records. This class is
used to determine the sort order for two records in the database. By default, byte for byte
comparison is used. For more information, see Using Comparators (page 94).

Dat abaseConfi g. set Dupl i cat eConpar at or ()

Sets the class that is used to compare two duplicate records in the database. For more
information, see Using Comparators (page 94).

Dat abaseConfi g. set Sort edDupl i cat es()

If true, duplicate records are allowed in the database. If this value is f al se, then putting a
duplicate record into the database results in an error return from the put call. Note that
this property can be set only at database creation time. Default is f al se.

Note that your database must not support duplicates if it is to be associated with one or
more secondary indices. Secondaries are described in Secondary Databases (page 125).

Dat abaseConfi g. set Excl usi veCreat ()

If true, the database open fails if the database currently exists. That is, the open must result
in the creation of a new database. Default is f al se.

Dat abaseConfi g. set ReadOnl y()
If true, the database is opened for read activities only. Default is f al se.

Dat abaseConfi g. set Transacti onal ()

6/4/2008

Getting Started with JE Page 72

If true, the database supports transactions. Default is f al se. Note that a database cannot
support transactions if the environment is non-transactional.

For example:

package je.gettingStarted;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . j e. Dat abase;
i nport com sl eepycat . | e. Dat abaseConfi g;

[/ Environment open omtted for brevity

Dat abase nyDat abase = nul | ;
try {
Dat abaseConfi g dbConfig = new Dat abaseConfi g();
dbConfi g. set Al | owCr eat e(true);
dbConfi g. set Sort edDupl i cates(true);
nyDat abase =
myDbEnv. openDat abase(nul |,
"sanpl eDat abase",
dbConfi g);
} catch (DatabaseException dbe) {
/1 Exception handling goes here.

}

Administrative Methods

Both the Environnment and Dat abase classes provide methods that are useful for manipulating
databases. These methods are:

Dat abase. get Dat abaseNare()
Returns the database's name.

String dbName = nyDat abase. get Dat abaseNane();
Dat abase. get Envi r onment ()

Returns the Envi ronnment that contains this database.

Envi ronment theEnv = nyDat abase. get Envi ronnment () ;

Dat abase. prel oad()

Preloads the database into the in-memory cache. Optionally takes a | ong that identifies the
maximum number of bytes to load into the cache. If this parameter is not supplied, the
maximum memory usage allowed by the evictor thread is used.

6/4/2008

Getting Started with JE Page 73

myDat abase. prel oad(10485761); // 1024*1024

» Environnent. get Dat abaseNanes()

Returns a list of Strings of all the databases contained by the environment.
i mport java.util.List;
Li st nyDbNanes = nyDbEnv. get Dat abaseNanmes() ;

for(int i=0; i < myDoNanes.size(); i++) {
Systemout. println("Database Name: " + (String)mDbNanmes. get(i));
}

e Environnent. renoveDat abase()

Deletes the database. The database must be closed when you perform this action on it.

String dbName = nyDat abase. get Dat abaseNane();
myDat abase. cl ose() ;
myDbEnv. r emoveDat abase(nul |, dbNane) ;

o Environnent. renameDat abase()

Renames the database. The database must be closed when you perform this action on it.

String ol dName = nyDat abase. get Dat abaseNane() ;

String newName = new String(ol dName + ".new', "UTF-8");
myDat abase. cl ose() ;

myDbEnv. renaneDat abase(nul |, ol dName, newNane);

« Environnent. truncat eDat abase()

Deletes every record in the database and optionally returns the number of records that were
deleted. Note that it is much less expensive to truncate a database without counting the
number of records deleted than it is to truncate and count.

int nunDi scarded =

nmyEnv. truncate(nul |, Il txn handl e
nyDat abase. get Dat abaseNane(), // database nane
true); [l If true, then the

/'l nunmber of records
[l deleted are counted.
Systemout. println("Discarded " + nunDiscarded +
" records from database " +
nmyDat abase. get Dat abaseNange()) ;

6/4/2008

Getting Started with JE Page 74

Database Example

In Database Environment Management Example (page 21) we created a class that manages an
Envi ronment . We now extend that class to allow it to open and manage multiple databases.
Again, remember that you can find this class in:

JE HOVE/ j e/ gettingStarted/ MyDbEnv. j ava

where JE_HOME is the location where you placed your JE distribution.

Example 7.1. Database Management with MyDbEnv

First, we need to import a few additional classes, and setup some global variables to support
databases. The databases that we are configuring and creating here are used by applications
developed in examples later in this guide.

/1 File My/DbEnv.java
package je.gettingStarted;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . j e. Dat abaseConfi g;

i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat . j e. Envi ronnment Confi g;
i nport com sl eepycat . e. Envi ronment ;

import java.io.File;
public class MyDbEnv {

private Environment nyEnv;
private Database vendor Db;
private Database inventoryDb;

public MyDbEnv() {}

Next we need to update the MyDbEnv. set up() method to instantiate a Dat abaseConfi g object.
We also need to set some properties on that object. These property values are determined by
the value of the r eadOnl y parameter. We want our databases to be read-only if the environment
is also read-only. We also want to allow our databases to be created if the databases are not
read-only.

public void setup(File envHone, bool ean readOnly)
throws Dat abaseException {

Il Instantiate an environnent and database configuration object
Envi ronment Confi g myEnvConfig = new Environnent Config();

Dat abaseConfig myDbConfig = new DatabaseConfig();

/'l Configure the environment and databases for the read-only
Il state as identified by the readOnly parameter on this

6/4/2008

Getting Started with JE Page 75

/1 method call.

myEnvConfi g. set ReadOnl y(readOnl y);

myDbConfi g. set ReadOnl y(readOnly);

[l 1f the environment is opened for wite, then we want to be
I/ able to create the environnent and databases if

Il they do not exist.

myEnvConfi g. set Al | owCr eat e(! readOnly);

myDbConfig. set All owCreate(!readOnly);

Il Instantiate the Environnment. This opens it and al so possibly
Il creates it.
myEnv = new Environment (envHonme, nyEnvConfig);

Il Now create and open our databases.
vendor Db = nyEnv. openDat abase(nul |,
"Vendor DB",
myDbConfi g) ;

i nventoryDb = nyEnv. openDat abase(nul |,
"I'nventoryDB",
myDbConfi g);

}

Next we need some additional getter methods used to return our database handles.

[/ Getter methods
publ i ¢ Environnent getEnvironment () {
return nyEenv;

}

publ i ¢ Database get VendorDB() {
return vendor Db;

}

publ i ¢ Database getlnventoryDB() {
return inventoryDb;

}

Finally, we need to update the MyDbEnv. cl ose() method to close our databases.

/| C ose the environnent
public void close() {
if (nyEnv !=null) {
try {
vendor Db. cl ose();
i nvent oryDb. cl ose();
nyEnv. cl ose();
} catch(DatabaseException dbe) {
Systemerr.printIn("Error closing MDbEnv: " +
dbe.toString());

6/4/2008 Getting Started with JE Page 76

Systemexit(-1);

}

We can now use MyDbEnv to open and close both database environments and databases from
the appropriate place in our application. For example:

package je.gettingStarted;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. j e. Dat abase;

inport java.io.File;

MyDbEnv exanpl eDbEnv = new MyDbEnv();

try {
exanpl eDbEnv. set up(new File("/directory/currently/exists"), true);

Dat abase vendor Db = exanpl eDbEnv. get Vendor DB() ;
Dat abase invent oryDB = exanpl eDbEnv. get | nvent or yDB() ;

} catch(DatabaseException dbe) {
/1 Error code goes here

} finally {
exanpl eDbEnv. cl ose();
}

6/4/2008 Getting Started with JE Page 77

Chapter 8. Database Records

JE records contain two parts — a key and some data. Both the key and its corresponding data
are encapsulated in Dat abaseEnt ry class objects. Therefore, to access a JE record, you need
two such objects, one for the key and one for the data.

Dat abaseEnt ry can hold any kind of data from simple Java primitive types to complex Java
objects so long as that data can be represented as a Java byt e array. Note that due to
performance considerations, you should not use Java serialization to convert a Java object to
a byt e array. Instead, use the Bind APIs to perform this conversion (see Using the BIND

APIs (page 84) for more information).

This chapter describes how you can convert both Java primitives and Java class objects into
and out of byt e arrays. It also introduces storing and retrieving key/value pairs from a database.
In addition, this chapter describes how you can use comparators to influence how JE sorts its
database records.

Using Database Records

Each database record is comprised of two Dat abaseEnt ry objects — one for the key and another
for the data. The key and data information are passed to- and returned from JE using

Dat abaseEnt ry objects as byt e arrays. Using Dat abaseEnt rys allows JE to change the underlying
byte array as well as return multiple values (that is, key and data). Therefore, using

Dat abaseEnt ry instances is mostly an exercise in efficiently moving your keys and your data in
and out of byt e arrays.

For example, to store a database record where both the key and the data are Java String
objects, you instantiate a pair of Dat abaseEnt ry objects:

package je.gettingStarted;

i nport com sl eepycat . | e. Dat abaseEntry;

String akey = "key";
String aData = "data";

try {
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es("UTF-8"));
Dat abaseEntry theData = new Dat abaseEnt ry(aDat a. get Byt es(" UTF-8"));

} catch (Exception e) {
/'l Exception handling goes here
}
/] Storing the record is described later in this chapter

|:| Notice that we specify UTF- 8 when we retrieve the byt e array from our Stri ng object.
Without parameters, String. get Byt es() uses the Java system's default encoding. You

6/4/2008 Getting Started with JE Page 78

should never use a system's default encoding when storing data in a database because the
encoding can change.

When the record is retrieved from the database, the method that you use to perform this
operation populates two Dat abaseEnt ry instances for you, one for the key and another for the
data. Assuming Java Stri ng objects, you retrieve your data from the Dat abaseEnt ry as follows:

package je.gettingStarted,

i nport com sl eepycat . j e. Dat abaseEnt ry;

/] theKey and theData are DatabaseEntry objects. Database
[l retrieval is described later in this chapter. For now,
/1 we assume sonme database get nethod has popul ated these
/] objects for us.

/1 Use DatabaseEntry.getData() to retrieve the encapsul ated Java
/'l byte array.

byte[] nyKey = theKey.getData();
byte[] nyData = theData. getData();

String key = new String(nyKey, "UTF-8");
String data = new String(nyData, "UTF-8");

There are a large number of mechanisms that you can use to move data in and out of byte
arrays. To help you with this activity, JE provides the bind APIs. These APIs allow you to
efficiently store both primitive data types and complex objects in byt e arrays.

The next section describes basic database put and get operations. A basic understanding of
database access is useful when describing database storage of more complex data such as is
supported by the bind APIs. Basic bind API usage is then described in Using the BIND

APIs (page 84).

6/4/2008 Getting Started with JE Page 79

Reading and Writing Database Records

When reading and writing database records, be aware that there are some slight differences
in behavior depending on whether your database supports duplicate records. Two or more
database records are considered to be duplicates of one another if they share the same key.
The collection of records sharing the same key are called a duplicates set.

By default, JE databases do not support duplicate records. Where duplicate records are
supported, cursors (see below) are used to access all of the records in the duplicates set.

JE provides two basic mechanisms for the storage and retrieval of database key/data pairs:

» The Dat abase. put () and Dat abase. get () methods provide the easiest access for all
non-duplicate records in the database. These methods are described in this section.

« Cursors provide several methods for putting and getting database records. Cursors and their
database access methods are described in Using Cursors (page 108).

Writing Records to the Database

Database records are stored in the internal BTree based on whatever sorting routine is available
to the database. Records are sorted first by their key. If the database supports duplicate
records, then the records for a specific key are sorted by their data.

By default, JE sorts both keys and the data portion of duplicate records using unsigned
byte-by-byte lexicographic comparisons. This default comparison works well for the majority
of cases. However, in some case performance benefits can be realized by overriding the default
comparison routine. See Using Comparators (page 94) for more information.

You can use the following methods to put database records:
« Dat abase. put ()

Puts a database record into the database. If your database does not support duplicate records,
and if the provided key already exists in the database, then the currently existing record is
replaced with the new data.

« Dat abase. put NoOverwrite()

Disallows overwriting (replacing) an existing record in the database. If the provided key
already exists in the database, then this method returns Qper ati onSt at us. KEYEXI ST even if
the database supports duplicates.

6/4/2008 Getting Started with JE Page 80

« Dat abase. put NoDupDat a()

Puts a database record into the database. If the provided key and data already exists in the
database (that is, if you are attempting to put a record that compares equally to an existing
record), then this returns Qperati onSt at us. KEYEXI ST.

When you put database records, you provide both the key and the data as Dat abaseEntry
objects. This means you must convert your key and data into a Java byt e array. For example:

package je.gettingStarted,

i nport com sl eepycat . j e. Dat abase;
i nport com sl eepycat. | e. Dat abaseEnt ry;

[/ Environnment and dat abase opens omitted for clarity.
/1 Environment and dat abase nust NOT be opened read-only.

String aKey = "nyFirstKey";
String aData = "nyFirstData";

try {
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es(" UTF- 8"
Dat abaseEntry theData = new Dat abaseEnt ry(aDat a. get Byt es(" UTF-
myDat abase. put (nul |, theKey, theData);

} catch (Exception e) {
/] Exception handling goes here

}

Getting Records from the Database

):
"))

The Dat abase class provides several methods that you can use to retrieve database records.
Note that if your database supports duplicate records, then these methods will only ever return
the first record in a duplicate set. For this reason, if your database supports duplicates, you
should use a cursor to retrieve records from it. Cursors are described in Using Cursors (page 108).

You can use either of the following methods to retrieve records from the database:

 Dat abase. get ()

Retrieves the record whose key matches the key provided to the method. If no records exists
that uses the provided key, then Qper ati onSt at us. NOTFOUND is returned.

6/4/2008 Getting Started with JE Page 81

« Dat abase. get Sear chBot h()

Retrieve the record whose key matches both the key and the data provided to the method.
If no record exists that uses the provided key and data, then Operati onSt at us. NOTFOUND is
returned.

Both the key and data for a database record are returned as byte arrays in Dat abaseEntry
objects. These objects are passed as parameter values to the Dat abase. get () method.

In order to retrieve your data once Dat abase. get () has completed, you must retrieve the byt e
array stored in the Dat abaseEnt ry and then convert that byt e array back to the appropriate
datatype. For example:

package je.gettingStarted,

i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat . j e. Dat abaseEnt ry;

i nport com sl eepycat . j e. LockMode;

i nport com sl eepycat.je. OperationStat us;

[/ Environment and dat abase opens omitted for clarity.
/1 Environment and dat abase may be opened read-only.

String akKey = "nyFirstKey";

try {
/] Create a pair of DatabaseEntry objects. theKey

/] is used to performthe search. theData is used

/] to store the data returned by the get() operation.

Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Bytes("UTF-8"));
Dat abaseEntry theData = new Dat abaseEntry();

/] Performthe get.
i f (nmyDatabase.get(null, theKey, theData, LockMbde.DEFAULT) ==
Oper ati onSt at us. SUCCESS) {

Il Recreate the data String.
byte[] retData = theData.getData();
String foundData = new String(retData, "UTF-8");

Systemout.println("For key: '" + aKey + "' found data: '" +
foundData + "'.");
} else {
Systemout.printin("No record found for key '" + aKey + "".");

}
} catch (Exception e) {

/] Exception handling goes here
}

6/4/2008 Getting Started with JE Page 82

Deleting Records

You can use the Dat abase. del et e() method to delete a record from the database. If your
database supports duplicate records, then all records associated with the provided key are
deleted. To delete just one record from a list of duplicates, use a cursor. Cursors are described
in Using Cursors (page 108).

You can also delete every record in the database by using Envi ronnent . t runcat eDat abase() .

For example:

package je.gettingStarted,

i nport com sl eepycat. j e. Dat abase;
i nport com sl eepycat . | e. Dat abaseEntry;

[l Environment and dat abase opens onmitted for clarity.
/1 Environnment and database can NOT be opened read-only.

try {
String akKey = "nyFirstKey";
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es("UTF-8"));

/| Performthe deletion. All records that use this key are
/] del eted.
nyDat abase. del ete(nul |, theKey);
} catch (Exception e) {
/1 Exception handling goes here
}

Data Persistence

When you perform a database modification, your modification is made in the in-memory cache.
This means that your data modifications are not necessarily flushed to disk, and so your data
may not appear in the database after an application restart.

Therefore, if you care if your data is durable across system failures, and to guard against the
rare possibility of database corruption, you should use transactions to protect your database
modifications. Every time you commit a transaction, JE ensures that the data will not be lost
due to application or system failure. Transaction usage is described in the Berkeley DB Java
Edition Getting Started with Transaction Processing guide.

If you do not want to use transactions, then the assumption is that your data is of a nature
that it need not exist the next time your application starts. You may want this if, for example,
you are using JE to cache data relevant only to the current application runtime.

If, however, you are not using transactions for some reason and you still want some guarantee
that your database modifications are persistent, then you should periodically run environment

6/4/2008

Getting Started with JE Page 83

syncs. Syncs cause any dirty entries in the in-memory cache and the operating system'’s file
cache to be written to disk. As such, they are quite expensive and you should use them sparingly.

Note that by default, a sync is run every time you close an environment. You can also run a
sync by calling the Envi ronnent. sync() method.

For a brief description of how JE manages its data in the cache and in the log files, and how
sync works, see Databases and Log Files (page 147).

Using the BIND APIs

Except for Java String and boolean types, efficiently moving data in and out of Java byte arrays
for storage in a database can be a nontrivial operation. To help you with this problem, JE
provides the Bind APIs. While these APIs are described in detail in the Berkeley DB Java Edition
Collections Tutorial, this section provides a brief introduction to using the Bind APIs with:

« Single field numerical and string objects

Use this if you want to store a single numerical or string object, such as Long, Doubl e, or
String.

» Complex objects that implement Java serialization.

Use this if you are storing objects that implement Seri al i zabl e and if you do not need to
sort them.

» Non-serialized complex objects.

If you are storing objects that do not implement serialization, you can create your own
custom tuple bindings. Note that you should use custom tuple bindings even if your objects
are serializable if you want to sort on that data.

Numerical and String Objects

You can use the Bind APIs to store primitive data in a Dat abaseEnt ry object. That is, you can
store a single field containing one of the following types:

e String

Char act er

Bool ean

e Byte

Short

I nt eger

Long

6/4/2008

Getting Started with JE Page 84

 Fl oat

 Doubl e

To store primitive data using the Bind APIs:
1. Create an Ent ryBi ndi ng object.

When you do this, you use Tupl eBi ndi ng. get PrinitiveBi nding() to return an appropriate
binding for the conversion.

2. Use the Ent ryBi ndi ng object to place the numerical object on the Dat abaseEntry.

Once the data is stored in the DatabaseEntry, you can put it to the database in whatever manner
you wish. For example:

package je.gettingStarted,

i mport com sl eepycat . bi nd. EntryBi ndi ng;
i mport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;
i nport com sl eepycat . | e. Dat abaseEnt ry;

/1 Need a key for the put.
try {
String akey = "myLong";
Dat abaseEntry theKey = new Dat abaseEntry(aKey. get Byt es("UTF-8"));

// Now build the DatabaseEntry using a Tupl eBi ndi ng

Long nmyLong = new Long(123456789);

Dat abaseEntry theData = new Dat abaseEntry();

Ent ryBi ndi ng nyBi ndi ng = Tupl eBi ndi ng. get Pri mi tiveBi ndi ng(Long. cl ass);
nyBi ndi ng. obj ect ToEnt ry(nyLong, theData);

[/ Now store it

myDat abase. put (nul |, theKey, theData);
} catch (Exception e) {

/| Exception handling goes here
}

Retrieval from the Dat abaseEnt ry object is performed in much the same way:
package je.gettingStarted,

i nport com sl eepycat . bi nd. Ent r yBi ndi ng;
i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;

i nport com sl eepycat . j e. Dat abase;
i nport com sl eepycat . | e. Dat abaseEnt ry;
i nport com sl eepycat . j e. LockMode;

6/4/2008 Getting Started with JE Page 85

i nport com sl eepycat.je. OperationStat us;

Dat abase nyDat abase = nul | ;
/| Database open onmtted for clarity

try {
/] Need a key for the get

String akey = "nyLong";
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es("UTF-8"));

/] Need a DatabaseEntry to hold the associated data.
Dat abaseEntry theData = new Dat abaseEntry();

/1 Bindings need only be created once for a given scope
Ent ryBi ndi ng nyBi ndi ng = Tupl eBi ndi ng. get Pri mi tiveBi ndi ng(Long. cl ass);

Il Get it
OperationStatus retVal = nyDatabase. get(null, theKey, theData,
LockMbde. DEFAULT) ;
String retkKey = null;
if (retVal == QperationStatus. SUCCESS) {
Il Recreate the data.
Il Use the binding to convert the byte array contained in theData
Il to a Long type.
Long theLong = (Long) nyBinding.entryTohj ect (theData);
retKey = new String(theKey.getData(), "UTF-8");

System out. println("For key: + retKey + found Long: +
theLong + "'.");
} else {
Systemout.printin("No record found for key "" + retkKey + "'.");
}

} catch (Exception e) {
/] Exception handling goes here
}

Serializable Complex Objects

Frequently your application requires you to store and manage objects for your record data
and/or keys. You may need to do this if you are caching objects created by another process.
You may also want to do this if you want to store multiple data values on a record. When used
with just primitive data, or with objects containing a single data member, JE database records
effectively represent a single row in a two-column table. By storing a complex object in the
record, you can turn each record into a single row in an n-column table, where n is the number
of data members contained by the stored object(s).

In order to store objects in a JE database, you must convert them to and from a byt e array.
The first instinct for many Java programmers is to do this using Java serialization. While this

6/4/2008

Getting Started with JE Page 86

Usage Caveats

is functionally a correct solution, the result is poor space-performance because this causes the
class information to be stored on every such database record. This information can be quite
large and it is redundant — the class information does not vary for serialized objects of the
same type.

In other words, directly using serialization to place your objects into byte arrays means that
you will be storing a great deal of unnecessary information in your database, which ultimately
leads to larger databases and more expensive disk 1/0.

The easiest way for you to solve this problem is to use the Bind APIs to perform the serialization
for you. Doing so causes the extra object information to be saved off to a unique Dat abase
dedicated for that purpose. This means that you do not have to duplicate that information on
each record in the Dat abase that your application is using to store its information.

Note that when you use the Bind APIs to perform serialization, you still receive all the benefits
of serialization. You can still use arbitrarily complex object graphs, and you still receive built-in
class evolution through the serialVersionUID (SUID) scheme. All of the Java serialization rules
apply without modification. For example, you can implement Externalizable instead of
Serializable.

Before using the Bind APIs to perform serialization, you may want to consider writing your own
custom tuple bindings. Specifically, avoid serialization if:

« If you need to sort based on the objects your are storing. The sort order is meaningless for
the byte arrays that you obtain through serialization. Consequently, you should not use
serialization for keys if you care about their sort order. You should also not use serialization
for record data if your Dat abase supports duplicate records and you care about sort order.

« You want to minimize the size of your byte arrays. Even when using the Bind APIs to perform
the serialization the resulting byt e array may be larger than necessary. You can achieve
more compact results by building your own custom tuple binding.

« You want to optimize for speed. In general, custom tuple bindings are faster than serialization
at moving data in and out of byt e arrays.

« You are using custom comparators. In JE, comparators are instantiated and called internally
whenever databases are not accessible. Because serial bindings depend on the class catalog,
a serial binding binding cannot be used during these times. As a result, attempting to use a
serial binding with a custom comparator will result in a Nul | Poi nt er Except i on during
environment open or close.

For information on building your own custom tuple binding, see Custom Tuple Bindings (page 91).

Serializing Objects

To store a serializable complex object using the Bind APIs:

1. Implement java.io.Serializable in the class whose instances that you want to store.

6/4/2008

Getting Started with JE Page 87

2. Open (create) your databases. You need two. The first is the database that you use to store
your data. The second is used to store the class information.

3. Instantiate a class catalog. You do this with com sl eepycat . bi nd. seri al . St oredd assCat al og,
and at that time you must provide a handle to an open database that is used to store the
class information.

4. Create an entry binding that uses com sl eepycat . bi nd. seri al . Seri al Bi ndi ng.

5. Instantiate an instance of the object that you want to store, and place it in a Dat abaseEntry
using the entry binding that you created in the previous step.

For example, suppose you want to store a long, double, and a String as a record's data. Then
you might create a class that looks something like this:

package je.gettingStarted,
import java.io.Serializable;

public class MyData inplements Serializable {
private long | ongDat a;
private doubl e doubl eDat a;
private String description;

MData() {
[ongData = 0;
doubl eData = 0.0;
description = null;

}

public void setlLong(long data) {
| ongDat a = dat a;
}

publ i ¢ voi d setDoubl e(doubl e data) {
doubl eData = dat a;
}

public void setDescription(String data) {
description = data;
}

public long getLong() {
return | ongDat a;
}

publ i ¢ doubl e getDouble() {
return doubl eDat a;
}

6/4/2008 Getting Started with JE Page 88

public String getDescription() {
return description;

}
}

You can then store instances of this class as follows:

package je.gettingStarted;

i nport com sl eepycat . bi nd. Ent r yBi ndi ng;
i mport com sl eepycat . bi nd. serial . Storedd assCat al og;
i nport com sl eepycat. bi nd. seri al . Seri al Bi ndi ng;

i nport com sl eepycat. j e. Dat abase;
i nport com sl eepycat . j e. Dat abaseConfi g;
i nport com sl eepycat. | e. Dat abaseEntry;

/1 The key data.
String akey = "nyData";

[/ The data data

My/Dat a data2Store = new MyData();

dat a2St or e. set Long(1234567891) ;

dat a2St or e. set Doubl e(1234. 9876543) ;

dat a2St ore. set Description("A test instance of this class");

try {
/1 Environment open onitted for brevity

/1 Qpen the database that you will use to store your data

Dat abaseConfi g nyDbConfig = new Dat abaseConfig();

myDbConfig. set Al | owCreat e(true);

myDbConf i g. set Sort edDupl i cat es(true);

Dat abase nyDat abase = nyDbEnv. openDat abase(nul |, "myDb", myDbConfig);

/1 Open the database that you use to store your class infornmation.

/1 The db used to store class information does not require duplicates
/'l support.

myDbConfi g. set Sort edDupl i cat es(fal se);

Dat abase myd assDb = nyDbEnv. openDat abase(nul |, "classDb", nyDbConfig);

/] Instantiate the class catal og
St oredC assCat al og cl assCatal og = new St oredC assCat al og(myd assDb) ;

/I Create the binding
Ent ryBi ndi ng dat aBi nding = new Seri al Bi ndi ng(cl assCat al og,
MyDat a. cl ass) ;

6/4/2008

Getting Started with JE Page 89

/] Create the DatabaseEntry for the key
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es("UTF-8"));

/| Create the DatabaseEntry for the data. Use the EntryBinding object
/] that was just created to popul ate the DatabaseEntry

Dat abaseEntry theData = new Dat abaseEntry();

dat aBi ndi ng. obj ect ToEnt ry(dat a2St ore, theData);

{/ Put it as normal
nyDat abase. put (nul |, theKey, theData);

/| Database and environment close omtted for brevity
} catch (Exception e) {
/] Exception handling goes here

}

Deserializing Objects

Once an object is stored in the database, you can retrieve the M/Dat a objects from the retrieved
Dat abaseEnt ry using the Bind APIs in much the same way as is described above. For example:

package je.gettingStarted;

i nport com sl eepycat . bi nd. Ent ryBi ndi ng;
i nport com sl eepycat . bi nd. serial . Storedd assCat al og;
i nport com sl eepycat. bi nd. seri al . Seri al Bi ndi ng;

i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat . j e. Dat abaseConfi g;
i nport com sl eepycat. | e. Dat abaseEntry;
i nport com sl eepycat . j e. LockMbde;

/1 The key data.
String akey = "nyData";

try {
/1 Environment open onitted for brevity.

/1 Open the database that stores your data

Dat abaseConfi g nyDbConfig = new Dat abaseConfig();

nmyDbConfi g. set Al | owCr eat e(f al se) ;

Dat abase nyDat abase = nyDbEnv. openDat abase(nul |, "nmyDb", myDbConfig);

/1 Open the database that stores your class infornmation.
Dat abase myd assDb = nyDbEnv. openDat abase(nul |, "classDb", nyDbConfig);

6/4/2008

Getting Started with JE

Page 90

/] Instantiate the class catal og
St oredCl assCat al og cl assCatal og = new St oredC assCat al og(myd assDb) ;

/] Create the binding
Ent ryBi ndi ng dat aBi nding = new Seri al Bi ndi ng(cl assCat al og,
MyDat a. cl ass) ;

/I Create DatabaseEntry objects for the key and data
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es("UTF-8"));
Dat abaseEntry theData = new Dat abaseEntry();

/] Do the get as normal
nmyDat abase. get (nul |, theKey, theData, LockMbde. DEFAULT);

/] Recreate the MyData object fromthe retrieved DatabaseEntry using
[/ the EntryBinding created above
M/Data retrievedData = (M/Data) dataBinding.entryToQbj ect (theData);

/| Database and environment close omtted for brevity
} catch (Exception e) {

/] Exception handling goes here
}

Custom Tuple Bindings

If you want to store complex objects in your database, then you can use tuple bindings to do
this. While they are more work to write and maintain than if you were to use serialization, the
byt e array conversion is faster. In addition, custom tuple bindings should allow you to create
byt e arrays that are smaller than those created by serialization. Custom tuple bindings also
allow you to optimize your BTree comparisons, whereas serialization does not.

For information on using serialization to store complex objects, see Serializable Complex
Objects (page 86).

To store complex objects using a custom tuple binding:

1. Implement the class whose instances that you want to store. Note that you do not have to
implement the Serializable interface.

2. Write a tuple binding using the com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng class.
3. Open (create) your database. Unlike serialization, you only need one.
4. Create an entry binding that uses the tuple binding that you implemented in step 2.

5. Instantiate an instance of the object that you want to store, and place it in a Dat abaseEntry
using the entry binding that you created in the previous step.

For example, suppose you want to your keys to be instances of the following class:

6/4/2008

Getting Started with JE Page 91

package je.gettingStarted,

public class MData2 {
private |ong | ongDat a;
private Doubl e doubl eDat a;
private String description;

public MyData2() {
| ongData = 0;
doubl eData = new Doubl e(0. 0);

description = "";

}

public void setLong(long data) {
| ongDat a = dat a;

}

publ i ¢ voi d setDoubl e(Doubl e data) {
doubl eData = dat a;

}

public void setString(String data) {
description = data;

}

public long getLong() {
return | ongDat a;

}

publ i ¢ Doubl e get Double() {
return doubl eDat a;

}

public String getString() {
return description;
}
}

In this case, you need to write a tuple binding for the MyDat a2 class. When you do this, you
must implement the Tupl eBi ndi ng. obj ect ToEnt ry() and Tupl eBi ndi ng. ent ryToObj ect () abstract
methods. Remember the following as you implement these methods:

» You use Tupl eBi ndi ng. obj ect ToEntry() to convert objects to byt e arrays. You use
com sl eepycat . bi nd. t upl e. Tupl eQut put to write primitive data types to the byt e array. Note
that Tupl eQut put provides methods that allows you to work with numerical types (I ong,
doubl e, i nt, and so forth) and not the corresponding j ava. | ang numerical classes.

« The order that you write data to the byt e array in Tupl eBi ndi ng. obj ect ToEntry() is the
order that it appears in the array. So given the MyDat a2 class as an example, if you write

6/4/2008

Getting Started with JE Page 92

description, doubl eDat a, and then | ongDat a, then the resulting byte array will contain these
data elements in that order. This means that your records will sort based on the value of
the descri pti on data member and then the doubl eDat a member, and so forth. If you prefer
to sort based on, say, the | ongDat a data member, write it to the byte array first.

You use Tupl eBi ndi ng. entryToChj ect () to convert the byt e array back into an instance of
your original class. You use com sl eepycat . bi nd. t upl e. Tupl el nput to get data from the byte
array.

The order that you read data from the byt e array must be exactly the same as the order in
which it was written.

For example:

package je.gettingStarted;

i mport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;
i nport com sl eepycat . bi nd. t upl e. Tupl el nput ;
i nport com sl eepycat . bi nd. t upl e. Tupl eCut put ;

public class MyTupl eBindi ng extends Tupl eBinding {

/I Wite a MyData2 object to a Tupl eQut put
publi ¢ voi d object ToEntry(Chbj ect object, TupleQutput to) {

M/Dat a2 nyData = (MyDat a2) obj ect;

Il Wite the data to the Tupl eQutput (a DatabaseEntry).

[l Order is inportant. The first data witten will be

Il the first bytes used by the default conparison routines.
to.writeDoubl e(myDat a. get Doubl e() . doubl eVal ue());
to.witelLong(nyData.getLong());
to.witeString(nyData.getString());

}

/1 Convert a Tuplelnput to a MyData2 obj ect
public bject entryToChject (Tuplelnput ti) {

[/ Data must be read in the sane order that it was
[/ originally witten.

Doubl e theDoubl e = new Doubl e(ti.readDoubl e());
long theLong = ti.readLong();

String theString = ti.readString();

MyDat a2 nyData = new MyData2();
myDat a. set Doubl e(t heDoubl e) ;
myDat a. set Long(t heLong) ;

myDat a. set String(theString);

return nyDat a;

6/4/2008

Getting Started with JE Page 93

}

In order to use the tuple binding, instantiate the binding and then use:
o MyTupl eBi ndi ng. obj ect ToEntry() to convert a MyData2 object to a Dat abaseEntry.
o MyTupl eBi ndi ng. entryToQhj ect () to convert a Dat abaseEntry to a MyDat a2 object.

For example:

package je.gettingStarted,

i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;
i nport com sl eepycat . j e. Dat abaseEnt ry;

Tupl eBi ndi ng keyBi ndi ng = new MyTupl eBi ndi ng();

MyDat a2 t heKeyData = new MyDat a2();

t heKeyDat a. set Long(1234567891) ;

t heKeyDat a. set Doubl e(new Doubl e(12345. 6789)) ;
t heKeyDat a. set String("M/ key data");

Dat abaseEntry nyKey = new Dat abaseEntry();

try {
/] Store theKeyData in the DatabaseEntry

keyBi ndi ng. obj ect ToEnt ry(t heKeyData, nyKey);
/| Database put and get activity onitted for clarity

/] Retrieve the key data

t heKeyData = (MyDat a2) keyBi ndi ng. ent ryToQbj ect (myKey) ;
} catch (Exception e) {

/] Exception handling goes here

}

Using Comparators

Internally, JE databases are organized as BTrees. This means that most database operations
(inserts, deletes, reads, and so forth) involve BTree node comparisons. This comparison most
frequently occurs based on database keys, but if your database supports duplicate records then
comparisons can also occur based on the database data.

By default, JE performs all such comparisons using a byte-by-byte lexicographic comparison.
This mechanism works well for most data. However, in some cases you may need to specify

6/4/2008

Getting Started with JE Page 94

your own comparison routine. One frequent reason for this is to perform a language sensitive
lexical ordering of string keys.

Writing Comparators

You override the default comparison function by providing a Java Conpar at or class to the
database. The Java Conpar at or interface requires you to implement the Conpar at or. conpar e()
method (see http://java.sun.com/j2se/1.4.2/docs/api/java/util/Comparator.html for details).

JE passes your Conpar at or. conpar ¢() method the byt e arrays that you stored in the database.
If you know how your data is organized in the byt e array, then you can write a comparison
routine that directly examines the contents of the arrays. Otherwise, you have to reconstruct
your original objects, and then perform the comparison.

For example, suppose you want to perform unicode lexical comparisons instead of UTF-8
byte-by-byte comparisons. Then you could provide a comparator that uses St ri ng. conpareTo(),
which performs a Unicode comparison of two strings (note that for single-byte roman characters,
Unicode comparison and UTF-8 byte-by-byte comparisons are identical - this is something you
would only want to do if you were using multibyte unicode characters with JE). In this case,
your comparator would look like the following:

package je.gettingStarted;

inport java.util.Conparator;

public class MyDataConparator inplenents Conparator {
public MyDataConparator() {}
public int conpare(oject dl, Object d2) {

byte[] bl = (byte[])d1;

byte[] b2 = (byte[])d2;
String s1 = new String(bl, "UTF-8");
String s2 = new String(b2, "UTF-8");

return sl.conpareTo(s2);

}

Setting Comparators

You specify a Conpar at or using the following methods. Note that by default these methods can
only be used at database creation time, and they are ignored for normal database opens. Also,
note that JE uses the no-argument constructor for these comparators. Further, it is not allowable
for there to be a mutable state in these comparators or else unpredictable results will occur.

« Dat abaseConfi g. set Bt reeConpar at or ()

Sets the Java Conpar at or class used to compare two keys in the database.

6/4/2008

Getting Started with JE Page 95

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Comparator.html

« Dat abaseConfi g. set Dupl i cat eConpar at or ()

Sets the Java Conpar at or class used to compare the data on two duplicate records in the
database. This comparator is used only if the database supports duplicate records.

You can use the above methods to set a database's comparator after database creation time
if you explicitly indicate that the comparator is to be overridden. You do this by using the
following methods:

|:| If you override your comparator, the new comparator must preserve the sort order
implemented by your original comparator. That is, the new comparator and the old
comparator must return the same value for the comparison of any two valid objects. Failure
to observe this constraint will cause unpredictable results for your application.

If you want to change the fundamental sort order for your database, back up the contents
of the database, delete the database, recreate it, and then reload its data.

« Dat abaseConfig. set Overri deBtreeConparator ()

If set to true, causes the database's Btree comparator to be overridden with the Conpar at or
specified on Dat abaseConfi g. set Bt r eeConpar at or () . This method can be used to change the
comparator post-environment creation.

« Dat abaseConfig. set Overri deDupl i cat eConpar at or ()

If set to true, causes the database's duplicates comparator to be overridden with the
Conpar at or specified on Dat abaseConfi g. set Dupl i cat eConparator().

For example, to use the Conpar at or described in the previous section:
package je.gettingStarted,
i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat . j e. Dat abaseConfi g;
i nport com sl eepycat . j e. Dat abaseExcepti on;

i mport java.util. Conparator;

/1 Environnment open omitted for brevity

try {
/] Get the database configuration object

Dat abaseConfi g nyDbConfig = new Dat abaseConfig();
myDbConfig. set Al | owCreat e(true);

/1 Set the duplicate conparator class
myDbConf i g. set Dupl i cat eConpar at or (MyDat aConpar at or . ¢l ass) ;

6/4/2008

Getting Started with JE Page 96

/] Open the database that you will use to store your data

myDbConf i g. set Sort edDupl i cates(true);

Dat abase nyDat abase = nmyDbEnv. openDat abase(nul |, "myDb", myDbConfig);
} catch (DatabaseException dbe) {

/] Exception handling goes here

}

Database Record Example

In Database Example (page 75), we created MyDbEnv, a class that manages Dat abaseEnvi r onnent
and Dat abase opens and closes. We will now write an application that takes advantage of this
class to open databases, put a series of records in them, and then close the databases and
environment.

Remember that all of the classes and programs presented here can be found in the following
directory:

JE _HOVE/ exanpl es/j el gettingStarted
where JE_HOME is the location where you placed your JE distribution.

Note that in this example, we are going to save two types of information. First there are a

series of inventory records that identify information about some food items (fruits, vegetables,
and desserts). These records identify particulars about each item such as the vendor that the
item can be obtained from, how much the vendor has in stock, the price per unit, and so forth.

We also want to manage vendor contact information, such as the vendor's address and phone
number, the sales representative’'s name and his phone number, and so forth.

Example 8.1. Inventory.java

All Inventory data is encapsulated in an instance of the following class. Note that because this
class is not serializable, we need a custom tuple binding in order to place it on a Dat abaseEnt ry
object. Because the Tupl el nput and Tupl eCQut put classes used by custom tuple bindings support
Java numerical types and not Java numerical classes, we use i nt and fl oat here instead of
the corresponding | nt eger and Fl oat classes.

[l File Inventory.java
package je.gettingStarted,

public class Inventory {

private String sku;

private String itenName;
private String category;
private String vendor;
private int vendorlnventory;
private float vendorPrice;

public void setSku(String data) {

6/4/2008

Getting Started with JE Page 97

sku = dat a;

public void setltemNane(String data) {
itemName = data;

public void setCategory(String data) {
category = data;

publ i c voi d setVendorlnventory(int data) {
vendor | nventory = dat a;

public void setVendor(String data) {

vendor

= dat a;

public void setVendorPrice(float data) {
vendor Price = data;

public String getSku() { return sku; }

public String getltemName() { return itenNane; }

public String getCategory() { return category; }

public int getVendorlnventory() { return vendorlnventory; }
public String getVendor() { return vendor; }

public float getVendorPrice() { return vendorPrice; }

}

Example 8.2. Vendor.java

The data for vendor records are stored in instances of the following class. Notice that we are
using serialization with this class simply to demonstrate serializing a class instance.

/1 File Vendor.java

package je.gettingStarted;

inport java.io.Serializable;

public class Vendor inplements Serializable {

private String
private String
private String
private String
private String

r epNane;
address;
city;
state;
zi pcode;

6/4/2008

Getting Started with JE Page 98

private String bi zPhoneNunber;
private String repPhoneNunber;
private String vendor;

public void setRepName(String data) {
repNane = dat a;

}

public void setAddress(String data) {
address = data;

}

public void setCity(String data) {
city = data;

}

public void setState(String data) {
state = data;

}

public void setZ pcode(String data) {
zi pcode = dat a;

}

public void setBusinessPhoneNunber (String data) {
bi zPhoneNunber = dat a;

}

public void setRepPhoneNunber (String data) {
repPhoneNunber = dat a;

}

public void setVendorNane(String data) {
vendor = data;

}

/] Corresponding getter methods omtted for brevity.
/] See exanples/jelgettingStarted/ Vendor.java
/] for a conplete inplementation of this class.

}

Because we will not be using serialization to convert our | nvent ory objects to a Dat abaseEntry
object, we need a custom tuple binding:

6/4/2008 Getting Started with JE Page 99

Example 8.3. InventoryBinding.java

/1 File InventoryBinding.java
package je.gettingStarted,

i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;
i nport com sl eepycat . bi nd. t upl e. Tupl el nput ;
i nport com sl eepycat . bi nd. t upl e. Tupl eCut put ;

public class InventoryBinding extends TupleBinding {

/] Inplement this abstract method. Used to convert
/] a DatabaseEntry to an Inventory object.
publ ic Object entryToCbject(Tuplelnput ti) {

String sku = ti.readString();
String itemName = ti.readString();
String category = ti.readString();
String vendor = ti.readString();
int vendorlnventory = ti.readlnt();
float vendorPrice = ti.readFloat();

Inventory inventory = new Inventory();

i nventory. set Sku(sku);

i nventory.setltenmName(itenNane);

i nvent ory. set Cat egory(cat egory);

i nvent ory. set Vendor (vendor) ;

i nvent ory. set Vendor I nvent ory(vendor I nventory);
i nvent ory. set Vendor Pri ce(vendorPrice);

return inventory;

}

/1 Inplement this abstract method. Used to convert a
/] Inventory object to a DatabaseEntry object.
publ i c voi d object ToEntry(Cbj ect object, TupleQutput to) {

Inventory inventory = (Inventory)object;

to.witeString(inventory.getSku());
to.witeString(inventory.getltemane())
to.witeString(inventory.getCategory())
to.witeString(inventory.getVendor());
to.witelnt(inventory.getVendorlnventory());
to.witeFl oat (inventory.getVendorPrice());

6/4/2008 Getting Started with JE Page 100

In order to store the data identified above, we write the Exanpl eDat abasePut application. This
application loads the inventory and vendor databases for you.

Inventory information is stored in a Dat abase dedicated for that purpose. The key for each such
record is a product SKU. The inventory data stored in this database are objects of the | nventory
class (see Inventory.java (page 97) for more information). Exanpl eDat abasePut loads the
inventory database as follows:

1. Reads the inventory data from a flat text file prepared in advance for this purpose.
2. Uses java. | ang. String to create a key based on the item's SKU.

3. Uses an | nvent ory class instance for the record data. This object is stored on a Dat abaseEntry
object using | nvent or yBi ndi ng, a custom tuple binding that we implemented above.

4. Saves each record to the inventory database.

Vendor information is also stored in a Dat abase dedicated for that purpose. The vendor data
stored in this database are objects of the Vendor class (see Vendor.java (page 98) for more
information). To load this Dat abase, Exanpl eDat abasePut does the following:

1. Reads the vendor data from a flat text file prepared in advance for this purpose.
2. Uses the vendor's name as the record's key.

3. Uses a Vendor class instance for the record data. This object is stored on a Dat abaseEntry
object using com sl eepycat . bi nd. seri al . Seri al Bi ndi ng.

Example 8.4. Stored Class Catalog Management with MyDbEnv

Before we can write Exanpl eDat abasePut , we need to update MyDbEnv. j ava to support the class
catalogs that we need for this application.

To do this, we start by importing an additional class to support stored class catalogs:

[l File MyDbEnv.java
package je.gettingStarted;

i nport com sl eepycat. | e. Dat abase;

i nport com sl eepycat . j e. Dat abaseConfi g;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. j e. Envi ronnment Confi g;
i nport com sl eepycat . e. Envi ronment ;

inport java.io.File;
i nport com sl eepycat. bi nd. serial . Storedd assCat al og;
We also need to add two additional private data members to this class. One supports the

database used for the class catalog, and the other is used as a handle for the class catalog
itself.

6/4/2008 Getting Started with JE Page 101

public class MyDbEnv {

private Environnent nyEnv;
private Database vendor Db;
private Database inventoryDb;
private Database classCatal ogDb;

/] Needed for object serialization
private Storedd assCatal og cl assCat al og;

publ i ¢ MDbEnv() {}

Next we need to update the MyDbEnv. set up() method to open the class catalog database and
create the class catalog.

public void setup(File envHone, bool ean readOnly)
throws Dat abaseException {

/| Database and environnment configuration omtted for brevity

Il Instantiate the Environnent. This opens it and al so possibly
Il creates it.
nmyEnv = new Environment (envHonme, nyEnvConfig);

/1 Now create and open our databases.
vendor Db = nyEnv. openDat abase(nul |, "Vendor DB", nmyDbConfig);

i nventoryDb = nyEnv. openDat abase(nul |, "InventoryDB", myDbConfig);

/1 Open the class catalog db. This is used to
Il optimze class serialization.
cl assCat al ogDb =
myEnv. openDat abase(nul |,
" assCat al ogDB",
myDbConfi g) ;

Il Create our class catal og
classCatal og = new Storedd assCat al og(cl assCat al ogDh) ;
}

Next we need a getter method to return the class catalog. Note that we do not provide a getter
for the catalog database itself - our application has no need for that.

[l Getter methods
publ i ¢ Environnent getEnvironment () {
return nyEnv;
}

6/4/2008 Getting Started with JE Page 102

publ i ¢ Database get VendorDB() {
return vendor Db;

}

publ i ¢ Database getlnventoryDB() {
return inventoryDb;

}

publ i c StoredC assCatal og get Cl assCatal og() {
return classCatal og;

}

Finally, we need to update the MyDbEnv. cl ose() method to close the class catalog database.

[/ Cose the environnent
public void close() {
if (nyEnv !'= null) {
try {
vendor Db. cl ose();
i nvent oryDb. cl ose();
cl assCat al ogDb. cl ose()
myEnv. cl ose();
} catch(Dat abaseException dbe) {
Systemerr.println("Error closing MDbEnv: " +
dbe.toString());
Systemexit(-1);

}

So far we have identified the data that we want to store in our databases and how we will
convert that data in and out of Dat abaseEnt ry objects for database storage. We have also
updated MyDbEnv to manage our databases for us. Now we write Exanpl eDat abasePut to actually
put the inventory and vendor data into their respective databases. Because of the work that
we have done so far, this application is actually fairly simple to write.

Example 8.5. ExampleDatabasePut.java

First we need the usual series of import statements:

[IFile Exanpl eDat abasePut . ava
package je.gettingStarted;

/1 Bind classes used to nove class objects in an out of byte arrays.
i nport com sl eepycat . bi nd. Ent r yBi ndi ng;

i nport com sl eepycat. bi nd. seri al . Seri al Bi ndi ng;

i nport com sl eepycat. bi nd. t upl e. Tupl eBi ndi ng;

[/ Standard JE database inports

6/4/2008

Getting Started with JE Page 103

i nport com sl eepycat. | e. Dat abaseEntry;
i nport com sl eepycat . j e. Dat abaseExcepti on;

/1 Most of this is used for loading data froma text file for storage
[l in the databases.

inport java.io.File;

inport java.io.FilelnputStream

inport java.io.BufferedReader;

inport java.io.lnputStreanReader;

inport java.io.FileNot FoundExcepti on;

inport java.io.lOException;

inport java.util.ArraylList;

inport java.util.List;

Next comes the class declaration and the private data members that we need for this class.
Most of these are setting up default values for the program.

Note that two Dat abaseEnt ry objects are instantiated here. We will reuse these for every
database operation that this program performs. Also a M\yDbEnv object is instantiated here. We
can do this because its constructor never throws an exception. See Stored Class Catalog
Management with MyDbEnv (page 101) for its implementation details.

Finally, the i nventory. txt and vendors. txt file can be found in the GettingStarted examples
directory along with the classes described in this extended example.

public class Exanpl eDat abasePut {

private static File nyDbEnvPath = new File("/tnp/ JEDB");
private static File inventoryFile = new File("./inventory.txt");
private static File vendorsFile = new File("./vendors.txt");

/| DatabaseEntries used for |oading records
private static DatabaseEntry theKey = new DatabaseEntry();
private static DatabaseEntry theData = new DatabaseEntry();

/I Encapsul ates the environment and dat abases.
private static MyDbEnv nyDbEnv = new MyDbEnv();

Next comes the usage() and mai n() methods. Notice the exception handling in the nmai n()
method. This is the only place in the application where we catch exceptions. For this reason,
we must catch Dat abaseExcepti on which is thrown by the com sl eepycat . j e. * classes.

Also notice the call to MyDbEnv. cl ose() in the final |y block. This is the only place in the
application where MyDbEnv. cl ose() is called. MyDbEnv. cl ose() is responsible for closing the
Envi ronnment and all open Dat abase handles for you.

private static void usage() {
System out . printl n("Exanpl eDat abasePut [-h <env directory>]");
System out. println(" [-s <selections file>] [-v <vendors file>]");
Systemexit(-1);

6/4/2008 Getting Started with JE Page 104

}

public static void main(String args[]) {

}

Exanpl eDat abasePut edp = new Exanpl eDat abasePut () ;
try {
edp. run(args);
} catch (DatabaseException dbe) {
Systemerr. println("Exanpl eDat abasePut: " + dbe.toString());
dbe. print StackTrace();
} catch (Exception e) {
Systemerr.println("Exception: " + e.toString());
e.print StackTrace();

} finally {
myDbEnv. cl ose();
}

Systemout.printin("Al done.");

Next we write the Exanpl eDat abasePut . run() method. This method is responsible for initializing
all objects. Because our environment and databases are all opened using the MyDbEnv. set up()
method, Exanpl eDat abasePut . run() method is only responsible for calling MyDbEnv. set up()
and then calling the Exanpl eDat abasePut methods that actually load the databases.

private void run(String args[]) throws DatabaseException {

}

Il Parse the argunments |i st
par seArgs(args);

myDbEnv. set up(nyDbEnvPath, // path to the environnent home
fal se); /1 is this environnent read-only?

Systemout. println("loading vendors db.");

| oadVendor sDb() ;

Systemout. println("loading inventory db.");
| oadl nvent oryDb();

This next method loads the vendor database. This method uses serialization to convert the
Vendor object to a Dat abaseEnt ry object.

private void | oadVendorsDb()

throws Dat abaseException {

Il loadFile opens a flat-text file that contains our data

[/ and loads it into alist for us to work with. The integer
Il paranmeter represents the number of fields expected in the
Il file.

Li st<String[]> vendors = | oadFi | e(vendorsFile, 8);

/1l Now |oad the data into the database. The vendor's nanme is the
Il key, and the data is a Vendor class object.

6/4/2008

Getting Started with JE Page 105

}

Il Need a serial binding for the data
Ent ryBi ndi ng dat aBi nding =

new Seri al Bi ndi ng(myDbEnv. get Cl assCat al og(), Vendor.cl ass);

for (int i =0; i <vendors.size(); i+t {
String[] sArray = vendors.get(i);
Vendor theVendor = new Vendor ();
t heVendor . set Vendor Name(sArray[0]);
)

t heVendor . set Addr ess(sArray[1]
theVendor.setGity(sArray[2]);
t heVendor . set Stat e(sArray[3]);
t heVendor . set Zi pcode(sArray[4]);

t heVendor . set Busi nessPhoneNunber (sArray[5]);
t heVendor . set RepNane(sArray[6]) ;

t heVendor . set RepPhoneNunber (sArray[7]);

/1 The key is the vendor's nane.
/1 ASSUMES THE VENDOR S NAME | S UNI QUE!
String vendor Name = t heVendor. get Vendor Name() ;
try {
t heKey = new Dat abaseEntry(vendor Nane. get Byt es("UTF-8"));
} catch (1 OException willNeverCeccur) {}

/1 Convert the Vendor object to a DatabaseEntry object
/1 using our SerialBinding
dat aBi ndi ng. obj ect ToEnt ry(t heVendor, theData);

/1 Put it in the database. These puts are transactionally
Il protected (we're using autocommit).
myDbEnv. get Vendor DB() . put (nul |, theKey, theData);

Now load the inventory database. This method uses our custom tuple binding (see
InventoryBinding.java (page 100)) to convert the I nvent ory object to a Dat abaseEnt ry object.

private void | oadl nventoryDb()

throws Dat abaseException {

Il loadFile opens a flat-text file that contains our data

I/ and loads it into a list for us to work with. The integer
Il paranmeter represents the number of fields expected in the
Il file.

List<String[]> inventoryArray = | oadFile(inventoryFile, 6);

I/ Now | oad the data into the database. The itenmls sku is the
Il key, and the data is an Inventory class object.

6/4/2008

Getting Started with JE

Page 106

Il Need a tuple binding for the Inventory class.
Tupl eBi ndi ng i nvent or yBi ndi ng = new | nvent oryBi ndi ng();

for (int i =0; i <inventoryArray.size(); i++) {
String[] sArray = inventoryArray.get(i);
String sku = sArray[1];
try {
t heKey = new Dat abaseEntry(sku. get Byt es("UTF-8"));
} catch (1 OException willNeverQCeccur) {}

Inventory thelnventory = new Inventory();
thel nventory. set|temNane(sArray[0]);
t hel nvent ory. set Sku(sArray[1]);
t hel nvent ory. set Vendor Pri ce((new Fl oat (sArray[2])).fl oat Val ue());
t hel nvent ory. set Vendor I nvent or y(
(new Integer(sArray[3])).intValue());
t hel nvent ory. set Cat egory(sArray[4]);
t hel nvent ory. set Vendor (sArray[5]);

/'l Place the Vendor object on the DatabaseEntry object using our
/1 the tuple binding we inplenmented in InventoryBinding.java
i nvent oryBi ndi ng. obj ect ToEntry(thel nventory, theData);

[l Put it in the database.
myDbEnv. get | nvent or yDB() . put (nul I, theKey, theData);

}

The remainder of this application provides utility methods to read a flat text file into an array
of strings and parse the command line options. From the perspective of this document, these
things are relatively uninteresting. You can see how they are implemented by looking at:

JE _HOVE/ exanpl es/j e/ gettingStarted/ Exanpl eDat aPut . j ava

where JE_HOME is the location where you placed your JE distribution.

private static void parseArgs(String args[]) {
[/ Inplementation onitted for brevity.
}

private List loadFile(File theFile, int nunFields) {
List<String[]> records = new ArrayList<String[]>();
[/ Inplementation onitted for brevity.
return records;

}

protected Exanpl eDat abasePut () {}

6/4/2008 Getting Started with JE Page 107

Chapter 9. Using Cursors

Cursors provide a mechanism by which you can iterate over the records in a database. Using
cursors, you can get, put, and delete database records. If a database allows duplicate records,
then cursors are the only mechanism by which you can access anything other than the first
duplicate for a given key.

This chapter introduces cursors. It explains how to open and close them, how to use them to
modify databases, and how to use them with duplicate records.

Opening and Closing Cursors

To use a cursor, you must open it using the Dat abase. openCur sor () method. When you open a
cursor, you can optionally pass it a Cur sor Confi g object to set cursor properties. The cursor
properties that you can set allows you to determine whether the cursor will perform committed
or uncommitted reads. See the Berkeley DB Java Edition Getting Started with Transaction
Processing guide for more information.

For example:

package je.gettingStarted;

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . e. Envi ronment ;

inport java.io.File;

Envi ronment nyDbEnvironment = nul | ;
Dat abase nyDat abase = nul | ;
Cursor nyCursor = null;

try {
myDbEnvi ronnent = new Envi ronment (new Fil e("/export/dbEnv"), null);

nyDat abase = myDbEnvi ronnent . openDat abase(nul |, "nyDB", null);

myCur sor = nyDat abase. openCursor(null, null);
} catch (DatabaseException dbe) {

/'] Exception handling goes here ...
}

To close the cursor, call the Cursor. cl ose() method. Note that if you close a database that
has cursors open in it, then it will throw an exception and close any open cursors for you. For
best results, close your cursors from within a final | y block.

6/4/2008 Getting Started with JE Page 108

package je.gettingStarted,

i nport com sl eepycat. je. Cursor;
i nport com sl eepycat . | e. Dat abase;
i nport com sl eepycat. | e. Envi ronment ;

try {
} cai;:lh o]
} finally {

try {
if (myCursor !'=null) {

myCur sor . cl ose();
}

if (nyDatabase != null) {
nyDat abase. cl ose() ;

}

i f (nmyDbEnvironment !'= null) {
myDbEnvi ronnent . cl ose();
}
} catch(DatabaseException dbe) {
Systemerr.printin("Error in close: " + dbe.toString());

}
}

Getting Records Using the Cursor

To iterate over database records, from the first record to the last, simply open the cursor and
then use the Cursor. get Next () method. For example:

package je.gettingStarted;

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat . | e. Dat abaseEntry;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . j e. LockMode;

i nport com sl eepycat . je. QperationStat us;

Cursor cursor = null;
try {

/| Database and environment open onitted for brevity

6/4/2008 Getting Started with JE Page 109

/] Open the cursor.
cursor = nyDat abase. openCursor(null, null);

/] Cursors need a pair of DatabaseEntry objects to operate. These hold
/] the key and data found at any given position in the database.

Dat abaseEntry foundKey = new DatabaseEntry();

Dat abaseEntry foundData = new Dat abaseEntry();

/] To iterate, just call getNext() until the |ast database record has been
/] read. Al cursor operations return an OperationStatus, so just read
[/ until we no |onger see QperationStatus. SUCCESS
whil e (cursor.get Next (foundKey, foundData, LockMbde. DEFAULT) ==
Oper at i onSt at us. SUCCESS) {
Il getData() on the DatabaseEntry objects returns the byte array
Il held by that object. W use this to get a String value. If the
/| DatabaseEntry held a byte array representation of some other data
Il type (such as a conpl ex object) then this operation woul d | ook
Il considerably different.
String keyString = new String(foundKey.getData(), "UTF-
String dataString = new String(foundData.getData(), "UTl
Systemout.printin("Key | Data : " + keyString + " |
dataString + "");

8");
F-8");
+

}
} catch (DatabaseException de) {
Systemerr.printIn("Error accessing database." + de);
} finally {
/1 Cursors nust be closed.
cursor.close();

}

To iterate over the database from the last record to the first, instantiate the cursor, and then
use Cursor. get Prev() until you read the first record in the database. For example:

package je.gettingStarted;

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat. | e. Dat abaseEntry;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . j e. LockMbde;

i nport com sl eepycat . je. QperationStat us;

Cursor cursor = null;
try {

/| Database and environment open onitted for brevity

6/4/2008 Getting Started with JE Page 110

/] Open the cursor.
cursor = nyDat abase. openCursor(null, null);

/] Get the DatabaseEntry objects that the cursor will use.
Dat abaseEntry foundKey = new DatabaseEntry();
Dat abaseEntry foundData = new Dat abaseEntry();

Il lterate fromthe last record to the first in the database
whil e (cursor.getPrev(foundKey, foundData, LockMbde. DEFAULT) ==
Oper at i onSt at us. SUCCESS) {

String theKey = new String(foundKey.getData(), "UTF-8");
String theData = new String(foundData.getData(), "UTF-8");
Systemout.printin("Key | Data : " + theKey + " | " + theData + "");

}
} catch (DatabaseException de) {

Systemerr.printIn("Error accessing database." + de);
} finally {

/1 Cursors nust be closed.

cursor.close();

}

Searching for Records

You can use cursors to search for database records. You can search based on just a key, or you
can search based on both the key and the data. You can also perform partial matches if your
database supports sorted duplicate sets. In all cases, the key and data parameters of these
methods are filled with the key and data values of the database record to which the cursor is
positioned as a result of the search.

Also, if the search fails, then cursor's state is left unchanged and Oper at i onSt at us. NOTFOUND
is returned.

The following Cur sor methods allow you to perform database searches:
« Cursor. get Sear chKey()

Moves the cursor to the first record in the database with the specified key.
« Cursor. get Sear chKeyRange()

Moves the cursor to the first record in the database whose key is greater than or equal to
the specified key. This comparison is determined by the comparator that you provide for the
database. If no comparator is provided, then the default unsighed byte-by-byte lexicographical
sorting is used.

For example, suppose you have database records that use the following Strings as keys:

6/4/2008

Getting Started with JE Page 111

Al abama
Al aska
Arizona

Then providing a search key of Al aska moves the cursor to the second key noted above.
Providing a key of Al moves the cursor to the first key (Al abama), providing a search key of
Al as moves the cursor to the second key (Al aska), and providing a key of Ar moves the cursor
to the last key (Ari zona).

« Cursor. get Sear chBot h()

Moves the cursor to the first record in the database that uses the specified key and data.

« Cursor. get Sear chBot hRange()

Moves the cursor to the first record in the database whose key matches the specified key
and whose data is greater than or equal to the specified data. If the database supports
duplicate records, then on matching the key, the cursor is moved to the duplicate record
with the smallest data that is greater than or equal to the specified data.

For example, suppose you have database records that use the following key/data pairs:

Al abama/ At hens

Al abana/ Fl orence
Al askal/ Anchor age
Al aska/ Fai r banks
Ari zonal/ Avondal e
Ari zonal Fl orence

then providing:

a search key of ... and a search data of ... moves the cursor to ...
Alaska Fa Alaska/Fairbanks
Arizona Fl Arizona/Florence
Alaska An Alaska/Anchorage

For example, assuming a database containing sorted duplicate records of U.S. States/U.S Cities
key/data pairs (both as Strings), then the following code fragment can be used to position the
cursor to any record in the database and print its key/data values:

6/4/2008 Getting Started with JE Page 112

package je.gettingStarted,

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat . | e. Dat abase;

i nport com sl eepycat. | e. Dat abaseEntry;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . j e. LockMode;

i nport com sl eepycat.je. OperationStat us;

[l For this exanple, hard code the search key and data
String searchKey = "Al aska";
String searchData = "Fa";

Cursor cursor = null;
try {

/| Database and environnment open onmitted for brevity

/] Open the cursor.
cursor = nyDat abase. openCursor(null, null);

Dat abaseEntry theKey =

new Dat abaseEnt ry(sear chKey. get Byt es("UTF-8"));
Dat abaseEntry theData =

new Dat abaseEnt ry(searchDat a. get Byt es(" UTF-8"));

/] Open a cursor using a database handl e
cursor = nyDat abase. openCursor(null, null);

[/ Performthe search
OperationStatus retVal = cursor. get Sear chBot hRange(t heKey, theData,
LockMde. DEFAULT) ;
[/ NOTFOUND is returned if a record cannot be found whose key
/1 matches the search key AND whose data begins with the search data.
if (retVal == QperationStatus. NOTFOUND) {
Systemout. println(searchKey + "/" + searchData +
" not matched in database " +
myDat abase. get Dat abaseNange()) ;
} else {
Il Upon conpleting a search, the key and data DatabaseEntry
Il paranmeters for getSearchBot hRange() are populated with the
Il key/data val ues of the found record.
String foundKey = new String(theKey.getData(), "UTF-8");
String foundData = new String(theData.getData(), "UTF-8");
Systemout. println("Found record " + foundkey + "/" + foundData +
“for search key/data: " + searchKey +

6/4/2008 Getting Started with JE Page 113

"/" + searchData);

}

} catch (Exception e) {
/] Exception handling goes here
} finally {
/1 Make sure to close the cursor
cursor.close();

}

Working with Duplicate Records

If your database supports duplicate records, then it can potentially contain multiple records
that share the same key. Using normal database get operations, you can only ever obtain the
first such record in a set of duplicate records. To access subsequent duplicates, use a cursor.
The following Cur sor methods are interesting when working with databases that support
duplicate records:

e Cursor.getNext (), Cursor.getPrev()

Shows the next/previous record in the database, regardless of whether it is a duplicate of
the current record. For an example of using these methods, see Getting Records Using the
Cursor (page 109).

« Cursor. get Sear chBot hRange()

Useful for seeking the cursor to a specific record, regardless of whether it is a duplicate
record. See Searching for Records (page 111) for more information.

o Cursor. get Next NoDup(), Cursor. get PrevNoDup()

Gets the next/previous non-duplicate record in the database. This allows you to skip over
all the duplicates in a set of duplicate records. If you call Cursor. get PrevNoDup(), then the
cursor is positioned to the last record for the previous key in the database. For example, if
you have the following records in your database:

Al abama/ At hens

Al abana/ Fl orence
Al askal/ Anchor age
Al aska/ Fai r banks
Ari zonal/ Avondal e
Ari zonal Fl orence

and your cursor is positioned to Al aska/ Fai r banks, and you then call Cur sor. get PrevNoDup(),
then the cursor is positioned to Alabama/Florence. Similarly, if you call

Cur sor. get Next NoDup() , then the cursor is positioned to the first record corresponding to
the next key in the database.

If there is no next/previous key in the database, then Oper ati onSt at us. NOTFOUND is returned,
and the cursor is left unchanged.

6/4/2008

Getting Started with JE Page 114

» Cursor. get Next Dup(), Cursor. get PrevDup()

Gets the next/previous record that shares the current key. If the cursor is positioned at the
last record in the duplicate set and you call Cursor. get Next Dup(), then

Oper at i onSt at us. NOTFOUND is returned and the cursor is left unchanged. Likewise, if you call
get PrevDup() and the cursor is positioned at the first record in the duplicate set, then

Oper ati onSt at us. NOTFOUND is returned and the cursor is left unchanged.

« Cursor.count()
Returns the total number of records that share the current key.

For example, the following code fragment positions a cursor to a key and, if the key contains
duplicate records, displays all the duplicates. Note that the following code fragment assumes
that the database contains only String objects for the keys and data.

package je.gettingStarted,

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat . | e. Dat abaseEnt ry;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . j e. LockMode;

i nport com sl eepycat.je. OperationStat us;

Cursor cursor = null;
try {

/| Database and environnment open onitted for brevity

/| Create DatabaseEntry objects

/] searchKey is some String.

Dat abaseEntry theKey = new Dat abaseEntry(searchKey. get Byt es(" UTF-8"));
Dat abaseEntry theData = new Dat abaseEntry();

/] Open a cursor using a database handl e
cursor = nyDat abase. openCursor(null, null);

[/ Position the cursor

/] Ignoring the return value for clarity

OperationStatus retVal = cursor.get Sear chKey(theKey, theData,
LockMode. DEFAULT) ;

/] Count the nunber of duplicates. If the count is greater than 1,
[/ print the duplicates.
if (cursor.count() > 1) {

while (retVal == QperationStatus. SUCCESS) {

6/4/2008

Getting Started with JE Page 115

String keyString = new String(theKey.getData(), "UTF-8"

String dataString = new String(theData.getData(), "UT

Systemout.println("Key | Data : " + keyString + " |
dataString + "");

retVal = cursor.getNext Dup(theKey, theData, LockMde.DEFAULT);
}
}
} catch (Exception e) {

/] Exception handling goes here

} finally {
/1 NMake sure to close the cursor

cursor.close();

}

Putting Records Using Cursors

You can use cursors to put records into the database. JE's behavior when putting records into
the database differs depending on whether the database supports duplicate records. If duplicates
are allowed, its behavior also differs depending on whether a comparator is provided for the
database. (Comparators are described in Using Comparators (page 94)).

Note that when putting records to the database using a cursor, the cursor is positioned at the
record you inserted.

You can use the following methods to put records to the database:
e Cursor. put()

If the provided key does not exist in the database, then the order that the record is put into
the database is determined by the BTree (key) comparator in use by the database.

If the provided key already exists in the database, and the database does not support sorted
duplicates, then the existing record data is replaced with the data provided on this method.

If the provided key already exists in the database, and the database does support sorted
duplicates, then the order that the record is inserted into the database is determined by the
duplicate comparator in use by the database.

« Cursor. put NoDupDat a()

If the provided key and data already exists in the database, then this method returns
OperationSt at us. KEYEXI ST.

If the key does not exist, then the order that the record is put into the database is determined
by the BTree (key) comparator in use by the database.

6/4/2008

Getting Started with JE Page 116

e Cursor. put NoOQverwrite()

If the provided key already exists in the database, then this method returns
Oper ati onSt at us. KEYEXI ST.

If the key does not exist, then the order that the record is put into the database is determined
by the BTree (key) comparator in use by the database.

For example:

package je.gettingStarted,

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat . j e. Dat abaseEnt ry;

i nport com sl eepycat.je. OperationStat us;

/I Create the data to put into the database
String keylstr = "My first string";

String datalstr ="M first data";

String key2str = "My second string";

String data2str ="M second data";

String data3str = "M/ third data";

Cursor cursor = null;
try {

/| Database and environnment open onitted for brevity

Dat abaseEntry keyl = new Dat abaseEntry(keylstr. getBytes("UTF-8"));
Dat abaseEntry datal = new DatabaseEntry(datalstr.getBytes("UTF-8"));
Dat abaseEntry key2 = new Dat abaseEnt ry(key2str. getBytes("UTF-8"));
Dat abaseEntry data2 = new Dat abaseEntry(data2str. get Bytes("UTF-8"));
Dat abaseEntry data3 = new Dat abaseEntry(data3str. get Bytes("UTF-8"));

/] Open a cursor using a database handl e
cursor = nyDat abase. openCursor(null, null);

/] Assumi ng an enpty dat abase.

OperationStatus retVal = cursor.put(keyl, datal); // SUCCESS

retVal = cursor.put(key2, data2); // SUCCESS

retVal = cursor.put(key2, data3); // SUCCESS if dups allowed,
/1 KEYEXI ST if not.

} catch (Exception e) {

6/4/2008 Getting Started with JE Page 117

/] Exception handling goes here
} finally {

/1 Make sure to close the cursor

cursor.close();

}

Deleting Records Using Cursors

To delete a record using a cursor, simply position the cursor to the record that you want to
delete and then call Cursor. del et e() . Note that after deleting a record, the value of

Cursor. get Current () is unchanged until such a time as the cursor is moved again. Also, if you
call Cursor. del ete() two or more times in a row without repositioning the cursor, then all
subsequent deletes result in a return value of Qperati onSt at us. KEYEMPTY.

For example:

package je.gettingStarted,

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat . | e. Dat abase;

inport com sl eepycat. | e. Dat abaseEnt ry;

i nport com sl eepycat. | e. LockMode;

i nport com sl eepycat.je. OperationStat us;

Cursor cursor = null;
try {

/| Database and environnment open onmitted for brevity

/] Create DatabaseEntry objects

/] searchKey is some String.

Dat abaseEntry theKey = new Dat abaseEntry(searchKey. get Byt es(" UTF-8"));
Dat abaseEntry theData = new Dat abaseEntry();

/] Open a cursor using a database handl e
cursor = nyDat abase. openCursor(null, null);

[/ Position the cursor. Ignoring the return value for clarity
OperationStatus retVal = cursor. get SearchKey(theKey, theData,
LockMyde. DEFAULT) ;

[/ Count the nunber of records using the given key. If there is only
/1 one, delete that record.
if (cursor.count() == 1) {
Systemout.printIn("Deleting " +
new String(theKey.getData(), "UTF-8") +
s

6/4/2008

Getting Started with JE Page 118

new String(theData.getData(), "UTF-8"));
cursor.del ete();
}
} catch (Exception e) {
/] Exception handling goes here
} finally {
Il Make sure to close the cursor
cursor.close();

}
Replacing Records Using Cursors

You replace the data for a database record by using Cur sor. put Current (). This method takes
just one argument — the data that you want to write to the current location in the database.

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat. j e. Dat abase;

i nport com sl eepycat . | e. Dat abaseEntry;

i nport com sl eepycat. j e. LockMode;

i nport com sl eepycat . je. CperationStat us;

Cursor cursor = null;
try {

/| Database and environment open onitted for brevity

/I Create DatabaseEntry objects

/| searchKey is some String.

Dat abaseEntry theKey = new Dat abaseEnt ry(searchKey. get Byt es(" UTF-8"));
Dat abaseEntry theData = new Dat abaseEntry();

/1 Open a cursor using a database handl e
cursor = nyDat abase. openCursor (null, null);

/] Position the cursor. lgnoring the return value for clarity
OperationStatus retVal = cursor. get Sear chKey(theKey, theData,
LockMbde. DEFAULT);

/1 Repl acenent data
String replaceStr = "M repl acenent string";
Dat abaseEntry repl acenentData =
new Dat abaseEntry(repl aceStr. get Byt es("UTF-8"));
cursor. put Current (repl acement Dat a) ;
} catch (Exception e) {
/| Exception handling goes here

} finally {
[l Make sure to close the cursor

6/4/2008 Getting Started with JE Page 119

cursor.close();

}

Note that this method cannot be used if the record that you are trying to replace is a member
of a duplicate set. This is because records must be sorted by their data and replacement would
violate that sort order.

If you want to replace the data contained by a duplicate record, delete the record and create
a new record with the desired key and data.

Cursor Example

In Database Example (page 75) we wrote an application that loaded two Dat abase objects with
vendor and inventory information. In this example, we will use those databases to display all
of the items in the inventory database. As a part of showing any given inventory item, we will
look up the vendor who can provide the item and show the vendor’s contact information.

To do this, we create the Exanpl el nvent or yRead application. This application reads and displays
all inventory records by:

1. Opening the environment and then the inventory, vendor, and class catalog Dat abase objects.
We do this using the MyDbEnv class. See Stored Class Catalog Management with
MyDbEnv (page 101) for a description of this class.

2. Obtaining a cursor from the inventory Dat abase.
3. Steps through the Dat abase, displaying each record as it goes.

4. To display the Inventory record, the custom tuple binding that we created in
InventoryBinding.java (page 100) is used.

5. Dat abase. get () is used to obtain the vendor that corresponds to the inventory item.

6. A serial binding is used to convert the Dat abaseEntry returned by the get () to a Vendor
object.

7. The contents of the Vendor object are displayed.

We implemented the Vendor class in Vendor.java (page 98). We implemented the I nventory
class in Inventory.java (page 97).

The full implementation of Exanpl el nvent or yRead can be found in:

JE_HOVE/ exanpl es/j e/ gettingSt art ed/ Exanpl el nvent or yRead. j ava

where JE_HOME is the location where you placed your JE distribution.

Example 9.1. ExamplelnventoryRead.java

To begin, we import the necessary classes:

6/4/2008

Getting Started with JE Page 120

/1 file Exanpl el nvent oryRead. j ava
package je.gettingStarted,

i nport com sl eepycat . bi nd. Ent r yBi ndi ng;
i nport com sl eepycat. bi nd. seri al . Seri al Bi ndi ng;
i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat. | e. Dat abaseEntry;
inport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . j e. LockMode;

i nport com sl eepycat.je. OperationStat us;

inport java.io.File;
inport java.io.lOException;

Next we declare our class and set up some global variables. Note a M/DbEnv object is instantiated
here. We can do this because its constructor never throws an exception. See Database
Example (page 75) for its implementation details.

public class Exanpl el nvent oryRead {

private static File nyDobEnvPath =
new File("/tnp/JEDB");

/'l Encapsul ates the database environnent and dat abases.
private static MyDbEnv nyDbEnv = new MyDbEnv();

private static Tupl eBinding inventoryBinding;
private static EntryBinding vendorBi nding;

Next we create the Exanpl el nvent or yRead. usage() and Exanpl el nvent or yRead. mai n() methods.
We perform almost all of our exception handling from Exanpl el nvent or yRead. mai n() , and so
we must catch Dat abaseExcepti on because the com sl eepycat . je.* APIs throw them.

private static void usage() {
System out. println("Exanpl el nventoryRead [-h <env directory>]");
System exit (0);

}

public static void main(String args[]) {
Exanpl el nvent oryRead eir = new Exanpl el nvent oryRead();
try {
eir.run(args);
} catch (DatabaseException dbe) {
Systemerr. println("Exanpl el nventoryRead: " + dbe.toString());
dbe. print StackTrace();

} finally {
myDbEnv. cl ose();
}

6/4/2008

Getting Started with JE Page 121

Systemout.printin("Al done.");
}

In Exanpl el nvent or yRead. run() , we call MyDbEnv. set up() to open our environment and
databases. Then we create the bindings that we need for using our data objects with
Dat abaseEnt ry objects.

private void run(String args[]) throws DatabaseException {
Il Parse the argunments |i st
par seArgs(args);

myDbEnv. set up(nyDbEnvPath, // path to the environnent home
true); /1 is this environnent read-only?

Il Setup our bindings.
i nvent oryBi ndi ng = new | nventoryBindi ng();
vendor Bi ndi ng =
new Seri al Bi ndi ng(myDbEnv. get Cl assCat al og(),
Vendor . cl ass) ;
showAl | | nventory();

}

Now we write the loop that displays the | nvent ory records. We do this by opening a cursor on
the inventory database and iterating over all its contents, displaying each as we go.

private void showAl | I nventory()
t hrows Dat abaseException {
[/ Get a cursor
Cursor cursor = nyDbEnv. get|nventoryDB().openCursor(null, null);

/| DatabaseEntry objects used for reading records
Dat abaseEntry foundKey = new Dat abaseEntry();
Dat abaseEntry foundData = new Dat abaseEntry();

try { // always want to make sure the cursor gets closed.
whil e (cursor.getNext (foundKey, foundDat a,
LockMbde. DEFAULT) == Cperati onSt at us. SUCCESS) {
Inventory thelnventory =
(I'nventory)invent oryBi ndi ng. entryToQbj ect (f oundDat a) ;
di spl ayl nvent or yRecor d(f oundKey, thelnventory);
}
} catch (Exception e) {
Systemerr.printIn("Error on inventory cursor:");
Systemerr.printin(e.toString());
e.print StackTrace()

} finally {
cursor. close();
}

6/4/2008 Getting Started with JE Page 122

We use Exanpl el nvent or yRead. di spl ayl nvent oryRecord() to actually show the record. This
method first displays all the relevant information from the retrieved Inventory object. It then
uses the vendor database to retrieve and display the vendor. Because the vendor database is
keyed by vendor name, and because each inventory object contains this key, it is trivial to
retrieve the appropriate vendor record.

private void di splayl nventoryRecord(Dat abaseEntry theKey,
I nventory thel nventory)
t hrows Dat abaseException {

Dat abaseEntry searchKey = null;

try {
String theSKU = new String(theKey.getData(), "UTF-8");
Systemout. println(theSKU + ":");
Systemout.printin("\t " + thelnventory.getltenName());
Systemout.printin("\t " + thelnventory.getCategory());
Systemout.printin("\t " + thelnventory.getVendor());
Systemout. printIn("\t\tNunber in stock: " +
t hel nvent ory. get Vendor I nventory());
Systemout.printlin("\t\tPrice per unit: " +

t hel nvent ory. get Vendor Price());

Systemout.println("\t\tContact: ");

sear chKey =

new Dat abaseEntry(thel nventory. get Vendor (). get Byt es("UTF-8"));
} catch (1OException willNeverCccur) {}
Dat abaseEnt ry foundVendor = new Dat abaseEntry();

i f (myDbEnv. get Vendor DB() . get(null, searchKey, foundVendor,
LockMode. DEFAULT) !'= OperationStatus. SUCCESS) {
Systemout. println("Could not find vendor: " +
thel nventory. get Vendor () + ".");
Systemexit(-1);
} else {
Vendor theVendor =
(Vendor) vendor Bi ndi ng. ent ryToQj ect (f oundVendor) ;
Systemout. printin("\t\t " + theVendor.getAddress());
Systemout.printin("\t\t " + theVendor.getGty() + ", " +
theVendor. get State() + " " + theVendor. get Zi pcode());
Systemout. println("\t\t Business Phone: " +
t heVendor . get Busi nessPhoneNunber ());
Systemout.printin("\t\t Sales Rep: " +
t heVendor . get RepNane()) ;
Systemout. println("\t\t "+
t heVendor . get RepPhoneNunber ()) ;

6/4/2008 Getting Started with JE Page 123

The remainder of this application provides a utility method used to parse the command line

options. From the perspective of this document, this is relatively uninteresting. You can see
how this is implemented by looking at:

JE_HOVE/ exanpl es/ | e/ gettingSt art ed/ Exanpl el nvent or yRead. j ava

where JE_HOME is the location where you placed your JE distribution.

6/4/2008 Getting Started with JE Page 124

Chapter 10. Secondary Databases

Usually you find database records by means of the record's key. However, the key that you use
for your record will not always contain the information required to provide you with rapid
access to the data that you want to retrieve. For example, suppose your Dat abase contains
records related to users. The key might be a string that is some unique identifier for the person,
such as a user ID. Each record's data, however, would likely contain a complex object containing
details about people such as names, addresses, phone numbers, and so forth. While your
application may frequently want to query a person by user ID (that is, by the information stored
in the key), it may also on occasion want to locate people by, say, their name.

Rather than iterate through all of the records in your database, examining each in turn for a
given person's name, you create indexes based on names and then just search that index for
the name that you want. You can do this using secondary databases. In JE, the Dat abase that
contains your data is called a primary database. A database that provides an alternative set
of keys to access that data is called a secondary database, and these are managed using
Secondar yDat abase class objects. In a secondary database, the keys are your alternative (or
secondary) index, and the data corresponds to a primary record's key.

You create a secondary database by using a Secondar yConfi g class object to identify an
implementation of a Secondar yKeyCr eat or class object that is used to create keys based on
data found in the primary database. You then pass this Secondar yConfi g object to the
Secondar yDat abase constructor.

Once opened, JE manages secondary databases for you. Adding or deleting records in your
primary database causes JE to update the secondary as necessary. Further, changing a record's
data in the primary database may cause JE to modify a record in the secondary, depending on
whether the change forces a modification of a key in the secondary database.

Note that you can not write directly to a secondary database. While methods exist on
Secondar yDat abase and Secondar yCur sor that appear to allow this, they in fact always throw
Unsupport edQper at i onExcept i on. To change the data referenced by a Secondar yDat abase record,
modify the primary database instead. The exception to this rule is that delete operations are
allowed on the Secondar yDat abase object. See Deleting Secondary Database Records (page 132)
for more information.

|:| Secondary database records are updated/created by JE only if the
Secondar yKeyCr eat or . cr eat eSecondar yKey() method returns true. If fal se is returned,
then JE will not add the key to the secondary database, and in the event of a record update
it will remove any existing key.

See Implementing Key Creators (page 128) for more information on this interface and
method.

When you read a record from a secondary database, JE automatically returns the key and data
from the corresponding record in the primary database.

6/4/2008

Getting Started with JE Page 125

Opening and Closing Secondary Databases

You manage secondary database opens and closes using the

Envi ronment . openSecondar yDat abase() method. Just as is the case with primary databases,
you must provide Envi ronment . openSecondar yDat abase() with the database’'s name and,
optionally, other properties such as whether duplicate records are allowed, or whether the
secondary database can be created on open. In addition, you must also provide:

» A handle to the primary database that this secondary database is indexing. Note that this
means that secondary databases are maintained only for the specified Dat abase handle. If
you open the same Dat abase multiple times for write (such as might occur when opening a
database for read-only and read-write in the same application), then you should open the
Secondar yDat abase for each such Dat abase handle.

« A SecondaryConfi g object that provides properties specific to a secondary database. The
most important of these is used to identify the key creator for the database. The key creator
is responsible for generating keys for the secondary database. See Secondary Database
Properties (page 131) for details.

|:| Primary databases must not support duplicate records. Secondary records point to primary
records using the primary key, so that key must be unique.

So to open (create) a secondary database, you:

1. Open your primary database.

2. Instantiate your key creator.

3. Instantiate your Secondar yConfi g object.

4. Set your key creator object on your Secondar yConfi g object.

5. Open your secondary database, specifying your primary database and your Secondar yConfi g
at that time.

For example:

package je.gettingStarted;
i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;

i nport com sl eepycat. j e. Dat abase;

i nport com sl eepycat . e. Dat abaseConfi g;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. | e. Envi ronment ;

i nport com sl eepycat . j e. Secondar yDat abase;
i nport com sl eepycat . j e. Secondar yConfi g;

inport java.io.File;

6/4/2008 Getting Started with JE Page 126

Dat abaseConfi g nyDbConfig = new Dat abaseConfig();
SecondaryConfi g mySecConfig = new SecondaryConfig();

myDbConfi g. set All owCreate(true);

mySecConfi g. set Al l owCreate(true);

/1 Duplicates are frequently required for secondary databases.
mySecConfi g. set Sort edDupl i cates(true);

/1 Cpen the primry

Environment nyEnv = nul | ;

Dat abase nyDb = nul | ;

Secondar yDat abase mySecDb = nul | ;

try {
String dbNane = "nyPri maryDat abase";

nmyEnv = new Environment (new File("/tnp/ JEENV'), null);
myDb = nyEnv. openDat abase(nul |, dbNanme, nyDbConfig);

/I A fake tuple binding that is not actually inplenented anywhere

[/ in this manual . The tuple binding is dependent on the data in use.
/I Tupl e bindings are described earlier in this mnual.

Tupl eBi ndi ng nyTupl eBi ndi ng = new MyTupl eBi ndi ng() ;

/1 Open the secondary.
/] Key creators are described in the next section.
Ful | NameKeyCr eat or keyCreat or = new Ful | NameKeyCr eat or (nyTupl eBi ndi ng) ;

/] Get a secondary object and set the key creator on it.
mySecConfi g. set KeyCr eat or (keyCreator);

/] Performthe actual open
String secDbNane = "nySecondaryDat abase";
mySecDb = myEnv. openSecondar yDat abase(nul |, secDoNanme, nyDb,
mySecConfi g) ;
} catch (DatabaseException de) {
/] Exception handling goes here ...

}

To close a secondary database, call its close() method. Note that for best results, you should
close all the secondary databases associated with a primary database before closing the primary.

For example:

try {
if (nySecDb !'= null) {

mySecDb. cl ose();
}

if (myDb !=null) {

6/4/2008 Getting Started with JE Page 127

myDb. cl ose();
}

if (nyEnv 1= null) {
myEnv. cl ose();

} catch (DatabaseException dbe) {
/] Exception handling goes here

}

Implementing Key Creators

You must provide every secondary database with a class that creates keys from primary records.
You identify this class using the Secondar yConfi g. set KeyCreat or () method.

You can create keys using whatever data you want. Typically you will base your key on some
information found in a record's data, but you can also use information found in the primary
record's key. How you build your keys is entirely dependent upon the nature of the index that
you want to maintain.

You implement a key creator by writing a class that implements the Secondar yKeyCr eat or
interface. This interface requires you to implement the
Secondar yKeyCr eat or . cr eat eSecondar yKey() method.

One thing to remember when implementing this method is that you will need a way to extract
the necessary information from the data'’s Dat abaseEnt ry and/or the key's Dat abaseEntry that
are provided on calls to this method. If you are using complex objects, then you are probably
using the Bind APIs to perform this conversion. The easiest thing to do is to instantiate the

Ent ryBi ndi ng or Tupl eBi ndi ng that you need to perform the conversion, and then provide this
to your key creator's constructor. The Bind APIs are introduced in Using the BIND APIs (page 84).

Secondar yKeyCr eat or . cr eat eSecondar yKey() returns a boolean. A return value of f al se indicates
that no secondary key exists, and therefore no record should be added to the secondary database
for that primary record. If a record already exists in the secondary database, it is deleted.

For example, suppose your primary database uses the following class for its record data:

package je.gettingStarted,

public class PersonData {
private String userlD;
private String surnang;
private String faniliarNane;

public PersonData(String userlD, String surnane, String famliarName) {
this.userlD = userlD;
this. surnane = surnane;
this.famliarName = fami|iarNang;

6/4/2008

Getting Started with JE Page 128

public String getUserlD() {
return userlD;

}

public String getSurname() {
return surnane;

}

public String getFam |iarName() {
return famliarNang;
}
}

Also, suppose that you have created a custom tuple binding, Per sonDat aBi ndi ng, that you use
to convert Per sonDat a objects to and from Dat abaseEnt ry objects. (Custom tuple bindings are
described in Custom Tuple Bindings (page 91).)

Finally, suppose you want a secondary database that is keyed based on the person's full name.

Then in this case you might create a key creator as follows:

package je.gettingStarted;
i mport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;

i nport com sl eepycat . j e. Secondar yKeyCr eat or ;
i nport com sl eepycat . | e. Dat abaseEntry;

i nport com sl eepycat . j e. Dat abaseExcepti on;

i nport com sl eepycat . j e. Secondar yDat abase;

i mport java.io.lOException;
public class Full NanmeKeyCreator inplenents SecondaryKeyCreator {
private Tupl eBinding theBi nding;

public Ful | NameKeyCr eat or (Tupl eBi ndi ng t heBi ndi ngl) {
t heBi ndi ng = t heBi ndi ng1;
}

publ i ¢ bool ean creat eSecondar yKey(Secondar yDat abase secDb,
Dat abaseEntry keyEntry,
Dat abaseEntry dataEntry,
Dat abaseEntry resul tEntry) {

try {
PersonData pd =

(PersonData) theBinding.entryToChj ect (dataEntry);
String full Name = pd.getFaniliarName() +" " +
pd. get Surnane();

6/4/2008

Getting Started with JE Page 129

}

resul t Entry. set Data(ful | Nane. get Byt es("UTF-8"));
} catch (1OException willNeverCeccur) {}
return true;

Finally, you use this key creator as follows:

package je.gettingStarted;

i mport

i mport
i mport
i mport
i mport
i mport

com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;

com sl eepycat . j e. Dat abase;

com sl eepycat . j e. Dat abaseExcepti on;
com sl eepycat . j e. Envi ronment ;

com sl eepycat . j e. Secondar yDat abase;
com sl eepycat . j e. Secondar yConfi g;

Environment nyEnv = nul | ;
Dat abase nyDb = nul | ;
Secondar yDat abase mySecDb = nul | ;

try {
/1

Environment and primary database open omitted for brevity

Tupl eBi ndi ng nyDat aBi ndi ng = new MyTupl eBi ndi ng() ;
Ful | NameKeyCreat or fnkc = new Ful | NameKeyCr eat or (myDat aBi ndi ng) ;

Secondar yConfi g mySecConfig = new SecondaryConfig();
mySecConfi g. set KeyCr eat or (f nkc) ;

[/ Performthe actual open
String secDbNane = "nySecondaryDat abase";
mySecDb = myEnv. openSecondar yDat abase(nul |, secDoName, nyDb,

mySecConfi g) ;

} catch (DatabaseException de) {

/1 Exception handling goes here
} finally {
try {

if (nmySecDb != null) {
mySecDb. cl ose();
}

if (myDo !'=null) {
myDb. cl ose() ;
}

if (myEnv !'= null) {

6/4/2008

Getting Started with JE Page 130

myEnv. cl ose();
}
} catch (DatabaseException dbe) {
Il Exception handling goes here
}
}

Secondary Database Properties

Secondary databases accept Secondar yConfi g objects. Secondar yConfi g is a subclass of
Dat abaseConfi g, so it can manage all of the same properties as does Dat abaseConfi g. See
Database Properties (page 72) for more information.

In addition to the Dat abaseConfi g properties, Secondar yConfi g also allows you to manage the
following properties:

» SecondaryConfig.set Al | owPopul ate()

If true, the secondary database can be auto-populated. This means that on open, if the
secondary database is empty then the primary database is read in its entirety and
additions/modifications to the secondary's records occur automatically.

» SecondaryConfig. set KeyCreator ()

Identifies the key creator object to be used for secondary key creation. See Implementing
Key Creators (page 128) for more information.

Reading Secondary Databases

Like a primary database, you can read records from your secondary database either by using
the Secondar yDat abase. get () method, or by using a Secondar yCur sor . The main difference
between reading secondary and primary databases is that when you read a secondary database
record, the secondary record's data is not returned to you. Instead, the primary key and data
corresponding to the secondary key are returned to you.

For example, assuming your secondary database contains keys related to a person's full name:
package je.gettingStarted,
i nport com sl eepycat . j e. Dat abaseEnt ry;
i nport com sl eepycat . j e. LockMode;

i nport com sl eepycat.je. OperationStat us;
i nport com sl eepycat . j e. Secondar yDat abase;

try {
[/ Ormtting all database and environment opens

String searchName = "John Doe";

6/4/2008

Getting Started with JE Page 131

Dat abaseEntry searchKey =

new Dat abaseEnt ry(searchNane. get Byt es(" UTF-8"));
Dat abaseEntry primaryKey = new Dat abaseEntry();
Dat abaseEntry primaryData = new DatabaseEntry();

/] Get the primary key and data for the user 'John Doe'.
OperationStatus retVal = mySecondaryDat abase. get (nul |, searchKey,
pri maryKey,
pri maryDat a,
LockMbde. DEFAULT) ;
} catch (Exception e) {
/] Exception handling goes here

}

Note that, just like Dat abase. get (), if your secondary database supports duplicate records
then Secondar yDat abase. get () only return the first record found in a matching duplicates set.
If you want to see all the records related to a specific secondary key, then use a Secondar yCur sor
(described in Using Secondary Cursors (page 133)).

Deleting Secondary Database Records

In general, you can not modify a secondary database directly. In order to modify a secondary
database, you should modify the primary database and simply allow JE to manage the secondary
modifications for you.

However, as a convenience, you can delete Secondar yDat abase records directly. Doing so causes
the associated primary key/data pair to be deleted. This in turn causes JE to delete all
Secondar yDat abase records that reference the primary record.

You can use the Secondar yDat abase. del et e() method to delete a secondary database record.
Note that if your database supports duplicate records, then only the first record in the matching
duplicates set is deleted by this method. To delete all the duplicate records that use a given
key, use a Secondar yCur sor .

|:| Secondar yDat abase. del et e() causes the previously described delete operations to occur
only if the primary database is opened for write access.
For example:
package je.gettingStarted;
i nport com sl eepycat. | e. Dat abaseEntry;
i nport com sl eepycat . j e. Dat abaseExcepti on;

i nport com sl eepycat . je. QperationStat us;
i nport com sl eepycat . j e. Secondar yDat abase;

try {
/] Ormtting all database and environment opens

6/4/2008

Getting Started with JE Page 132

String searchNane = "John Doe";
Dat abaseEntry sear chKey =
new Dat abaseEntry(sear chName. get Byt es("UTF-8"));

/] Delete the first secondary record that uses "John Doe" as

/] a key. This causes the primary record referenced by this secondary

[/ record to be deleted.

OperationStatus retVal = nySecondaryDat abase. del ete(nul |, searchKey);
} catch (Exception e) {

/] Exception handling goes here

}

Using Secondary Cursors

Just like cursors on a primary database, you can use secondary cursors to iterate over the
records in a secondary database. Like normal cursors, you can also use secondary cursors to
search for specific records in a database, to seek to the first or last record in the database, to
get the next duplicate record, to get the next non-duplicate record, and so forth. For a complete
description on cursors and their capabilities, see Using Cursors (page 108).

However, when you use secondary cursors:

» Any data returned is the data contained on the primary database record referenced by the
secondary record.

« SecondaryCursor. get Sear chBot h() and related methods do not search based on a key/data
pair. Instead, you search based on a secondary key and a primary key. The data returned is
the primary data that most closely matches the two keys provided for the search.

For example, suppose you are using the databases, classes, and key creators described in
Implementing Key Creators (page 128). Then the following searches for a person’'s name in the
secondary database, and deletes all secondary and primary records that use that name.

package je.gettingStarted,

i nport com sl eepycat . | e. Dat abaseEnt ry;

i nport com sl eepycat . j e. LockMode;

i mport com sl eepycat . je. OperationSt at us;

i nport com sl eepycat . j e. Secondar yDat abase;
i nport com sl eepycat . j e. Secondar yCur sor;

try {
/| Database and environment opens omtted for brevity
String secondaryNane = "John Doe";

Dat abaseEntry secondaryKey =
new Dat abaseEnt ry(secondar yNane. get Byt es(" UTF-8"));

6/4/2008

Getting Started with JE Page 133

Dat abaseEntry foundData = new Dat abaseEntry();

Secondar yCursor nySecCursor =
my Secondar yDat abase. openSecondar yCur sor (nul |, null);

OperationStatus retVal = mySecCursor. get Sear chKey(secondar yKey,
f oundDat a,
LockMde. DEFAULT) ;
while (retVal == QperationStatus. SUCCESS) {
mySecCur sor. del ete();
retVal = mySecCursor. get Next Dup(secondar yKey,
f oundDat a,
LockMbde. DEFAULT) ;
}
} catch (Exception e) {
/| Exception handling goes here

}

Database Joins

If you have two or more secondary databases associated with a primary database, then you
can retrieve primary records based on the intersection of multiple secondary entries. You do
this using a Joi nCur sor .

Throughout this document we have presented a class that stores inventory information on
grocery items. That class is fairly simple with a limited number of data members, few of which
would be interesting from a query perspective. But suppose, instead, that we were storing
information on something with many more characteristics that can be queried, such as an
automobile. In that case, you may be storing information such as color, number of doors, fuel
mileage, automobile type, number of passengers, make, model, and year, to name just a few.

In this case, you would still likely be using some unique value to key your primary entries (in
the United States, the automobile’s VIN would be ideal for this purpose). You would then create
a class that identifies all the characteristics of the automobiles in your inventory. You would
also have to create some mechanism by which you would move instances of this class in and
out of Java byt e arrays. We described the concepts and mechanisms by which you can perform
these activities in Database Records (page 78).

To query this data, you might then create multiple secondary databases, one for each of the
characteristics that you want to query. For example, you might create a secondary for color,
another for number of doors, another for number of passengers, and so forth. Of course, you
will need a unique key creator for each such secondary database. You do all of this using the
concepts and techniques described throughout this chapter.

Once you have created this primary database and all interesting secondaries, what you have
is the ability to retrieve automobile records based on a single characteristic. You can, for
example, find all the automobiles that are red. Or you can find all the automobiles that have
four doors. Or all the automobiles that are minivans.

6/4/2008

Getting Started with JE Page 134

The next most natural step, then, is to form compound queries, or joins. For example, you
might want to find all the automobiles that are red, and that were built by Toyota, and that
are minivans. You can do this using a Joi nCur sor class instance.

Using Join Cursors

To use a join cursor:

Open two or more secondary cursors. These cursors must be obtained from secondary
databases that are associated with the same primary database.

Position each such cursor to the secondary key value in which you are interested. For example,
to build on the previous description, the cursor for the color database is positioned to the
red records while the cursor for the model database is positioned to the mi ni van records,
and the cursor for the make database is positioned to Toyot a.

Create an array of secondary cursors, and place in it each of the cursors that are participating
in your join query.

Obtain a join cursor. You do this using the Dat abase. j 0i n() method. You must pass this
method the array of secondary cursors that you opened and positioned in the previous steps.

Iterate over the set of matching records using Joi nCur sor. get Next () until Qper ati onSt at us
is not SUCCESS.

Close your join cursor.

If you are done with them, close all your secondary cursors.

For example:

package je.gettingStarted,

i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat . j e. Dat abaseEnt ry;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . j e. Joi nCursor;

i nport com sl eepycat . j e. LockMode;

i nport com sl eepycat.je. OperationStat us;

i nport com sl eepycat . j e. Secondar yCur sor;

i nport com sl eepycat . j e. Secondar yDat abase;

/| Database and secondary database opens onmitted for brevity.
[/ Assume a primary database handl e:

[/ autonotiveDB

/1 Assume 3 secondary database handl es:

/1l autompt i veCol orDB -- index based on autonobile col or
/I autonotiveTypeDB -- index based on autonobile type
/1l aut onot i veMakeDB -- index based on the manufacturer

6/4/2008

Getting Started with JE Page 135

[l Query strings:

String theColor = "red";
String theType = "mnivan";
String theMake = "Toyota";

/| Secondary cursors used for the query:
Secondar yCursor col or SecCursor = null;
Secondar yCursor typeSecCursor = null;
Secondar yCur sor makeSecCursor = null;

/I The join cursor
Joi nCursor joinCursor = null;

/| These are needed for our queries
Dat abaseEntry foundKey = new DatabaseEntry();
Dat abaseEntry foundData = new Dat abaseEntry();

/1 Al cursor operations are enclosed in a try block to ensure that they
/1 get closed in the event of an exception.

try {
/| Database entries used for the query:

Dat abaseEntry col or = new Dat abaseEntry(theCol or. get Byt es("UTF-8"));
F
F

1

Dat abaseEntry type = new Dat abaseEnt ry(theType. get Byt es("UT!)
)i

F-8
8")
Dat abaseEntry make = new Dat abaseEnt ry(t heMake. get Byt es(" 8")

col or SecCursor = aut onot i veCol or DB. openSecondar yCursor (nul |, null);

t ypeSecCur sor = aut onot i veTypeDB. openSecondar yCursor (null, null);
makeSecCur sor = aut onot i veMakeDB. openSecondar yCur sor (null, null);

/] Position all our secondary cursors to our query val ues.
OperationStatus col orRet =

col or SecCur sor . get Sear chKey(col or, foundData, LockMbde. DEFAULT);
OperationStatus typeRet =

t ypeSecCur sor . get Sear chKey(type, foundData, LockMbde. DEFAULT);
OperationStatus makeRet =

makeSecCur sor . get Sear chKey(nmake, foundData, LockMde. DEFAULT);

[/ If all our searches returned successfully, we can proceed
if (colorRet == QOperationStatus. SUCCESS &&

typeRet == QperationStatus. SUCCESS &&

mekeRet == OperationStatus. SUCCESS) {

Il Get a secondary cursor array and popul ate it with our
Il positioned cursors
SecondaryCursor[] cursorArray = {col or SecCursor,
t ypeSecCursor,
makeSecCur sor};

6/4/2008

Getting Started with JE Page 136

Il Create the join cursor
joinCursor = autonotiveDB.join(cursorArray, null);

Il Now iterate over the results, handling each in turn
whil e (joinCursor.get Next (foundKey, foundData, LockMbde. DEFAULT) ==
Oper at i onSt at us. SUCCESS) {

/1 Do something with the key and data retrieved in
/1 foundKey and foundDat a

}

}
} catch (DatabaseException dbe) {
[/ Error reporting goes here
} catch (Exception e) {
[/ Error reporting goes here

} finally {

try {
/1 Make sure to close out all our cursors

if (colorSecCursor !'=null) {
col or SecCursor. cl ose();

}

if (typeSecCursor != null) {
typeSecCursor. cl ose();

}
if (makeSecCursor != null) {

makeSecCur sor. cl ose();

}

if (joinCursor !'=null) {
joinCursor.close();

}
} catch (DatabaseException dbe) {

Il Error reporting goes here

}
}

JoinCursor Properties

You can set Joi nCur sor properties using the Joi nConfi g class. Currently there is just one
property that you can set:

« JoinConfig. set NoSort ()

Specifies whether automatic sorting of input cursors is disabled. The cursors are sorted from
the one that refers to the least number of data items to the one that refers to the most.

If the data is structured so that cursors with many data items also share many common
elements, higher performance will result from listing those cursors before cursors with fewer

6/4/2008 Getting Started with JE Page 137

data items. Turning off sorting permits applications to specify cursors in the proper order
given this scenario.

The default value is f al se (automatic cursor sorting is performed).

For example:

[/ Al database and environments onitted

JoinConfig config = new Joi nConfig();

config.setNoSort (true);

Joi nCursor joinCursor = nyDb.join(cursorArray, config);

Secondary Database Example

In previous chapters in this book, we built applications that load and display several JE
databases. In this example, we will extend those examples to use secondary databases.
Specifically:

« In Stored Class Catalog Management with MyDbEnv (page 101) we built a class that we can
use to open and manage a JE Envi ronnent and one or more Dat abase objects. In Opening
Secondary Databases with MyDbEnv (page 139) we will extend that class to also open and
manage a Secondar yDat abase.

« In Cursor Example (page 120) we built an application to display our inventory database (and
related vendor information). In Using Secondary Databases with
ExamplelnventoryRead (page 142) we will extend that application to show inventory records
based on the index we cause to be loaded using Exanpl eDat abasePut .

Before we can use a secondary database, we must implement a class to extract secondary keys
for us. We use | t emNaneKeyCr eat or for this purpose.

Example 10.1. [temNameKeyCreator.java

This class assumes the primary database uses | nvent ory objects for the record data. The
I nventory class is described in Inventory.java (page 97).

In our key creator class, we make use of a custom tuple binding called | nvent or yBi ndi ng. This
class is described in InventoryBinding.java (page 100).

You can find the following class in:

JE _HOVE/ exanpl es/j el gettingStarted/|temNaneKeyCreator.java

where JE_HOME is the location where you placed your JE distribution.

package je.gettingStarted;

i nport com sl eepycat. | e. Dat abaseEntry;

i nport com sl eepycat . j e. Dat abaseExcepti on;

i nport com sl eepycat . j e. Secondar yDat abase;

i nport com sl eepycat . j e. Secondar yKeyCr eat or ;

6/4/2008

Getting Started with JE Page 138

i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;

inport java.io.lOException;

public class ItenNameKeyCreator inplenments SecondaryKeyCreator {
private TupleBindi ng theBi nding;

/] Use the constructor to set the tuple binding
I't emNanmeKey Cr eat or (Tupl eBi ndi ng bi ndi ng) {

t heBi ndi ng = bi ndi ng;
}

/] Abstract nethod that we nust inplenent

publ i ¢ bool ean creat eSecondar yKey(Secondar yDat abase secDb,
Dat abaseEntry keyEntry, [l Fromthe primry
Dat abaseEntry dataEntry, // Fromthe primary
Dat abaseEntry resultEntry) // set the key data on this.
throws Dat abaseException {

try {
/1 Convert dataEntry to an Inventory object

Inventory inventoryltem =
(I'nventory) theBinding.entryToChject(dataEntry);
Il Get the itemname and use that as the key
String theltem= inventoryltem getltenmName();
resul t Entry. set Data(thel tem get Byt es(" UTF-8"));
} catch (1OException willNeverCeccur) {}
return true;

}

Now that we have a key creator, we can use it to generate keys for a secondary database. We
will now extend MyDbEnv to manage a secondary database, and to use | t emNaneKeyCr eat or to
generate keys for that secondary database.

Opening Secondary Databases with MyDbEnv

In Stored Class Catalog Management with MyDbEnv (page 101) we built My\DbEnv as an example
of a class that encapsulates Envi ronnent and Dat abase opens and closes. We will now extend
that class to manage a Secondar yDat abase.

Example 10.2. SecondaryDatabase Management with MyDbEnv

We start by importing two additional classes needed to support secondary databases. We also
add a global variable to use as a handle for our secondary database.

6/4/2008 Getting Started with JE Page 139

/1 File MyDbEnv.java
package je.gettingStarted,

i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;
i nport com sl eepycat . bind. serial . Storedd assCat al og;

i nport com sl eepycat . | e. Dat abase;

i nport com sl eepycat. | e. Dat abaseConfi g;
inport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. | e. Envi ronment ;

i nport com sl eepycat . j e. Envi ronnment Confi g;
i nport com sl eepycat. | e. Secondar yConfi g;

i nport com sl eepycat . j e. Secondar yDat abase;

inport java.io.File;
public class MyDbEnv {
private Environnent nyEnv;

/I The databases that our application uses
private Database vendor Db;

private Database inventoryDb;

private Database classCatal ogDb;

private SecondaryDat abase itenmNamel ndexDb;

/] Needed for object serialization
private Storedd assCatal og cl assCat al og;

[/ Qur constructor does nothing
public MyDbEnv() {}

Next we update the MyDbEnv. set up() method to open the secondary database. As a part of
this, we have to pass an | t emNaneKeyCr eat or object on the call to open the secondary database.
Also, in order to instantiate It enNameKeyCr eat or , we need an | nvent or yBi ndi ng object (we
described this class in InventoryBinding.java (page 100)). We do all this work together inside of
MyDbEnv. set up() .

public void setup(File envHone, bool ean readOnly)
throws Dat abaseException {

Envi ronment Confi g myEnvConfig = new Environnent Config();
Dat abaseConfig myDbConfi g = new DatabaseConfig();
Secondar yConfi g nySecConfig = new SecondaryConfig();

[/ 1f the environment is read-only, then
/'l make the databases read-only too.
myEnvConfi g. set ReadOnl y(readOnl y);

6/4/2008

Getting Started with JE Page 140

myDbConfi g. set ReadOnl y(readOnly);
mySecConfi g. set ReadOnl y(readOnl y);

[l 1f the environment is opened for wite, then we want to be
I/ able to create the environnent and databases if

Il they do not exist.

myEnvConfi g. set Al | owCr eat e(! readOnly);

myDbConfig. set All owCreate(!readOnly);

mySecConfi g. set Al | owCreat e(!readOnly);

Il Environnment and dat abase opens omtted for brevity

Il Open the secondary database. W use this to create a
Il secondary index for the inventory database

[/ W want to maintain an index for the inventory entries based
Il on the itemname. So, instantiate the appropriate key creator
/'l and open a secondary dat abase.
| t emNaneKeyCreat or keyCreator =

new |t emNameKeyCr eat or (new | nvent or yBi ndi ng());

/1 Set up the secondary properties

mySecConfi g. set Al | owPopul ate(true); // Al ow autopopul ate
mySecConfi g. set KeyCreat or (keyCreator);

Il Need to allow duplicates for our secondary database
mySecConfi g. set Sort edDupl i cates(true);

/1 Now open it
i tenNamel ndexDb =
myEnv. openSecondar yDat abase(
nul |,
"itemNanel ndex", // Index name
i nvent oryDb, [l Primary database handle. This is

Il the db that we're indexing.
mySecConfi @) ; Il The secondary config

}

Next we need an additional getter method for returning the secondary database.

publ i ¢ SecondaryDat abase get Nanel ndexDB() {
return itenmNanel ndexDb;

}

Finally, we need to update the MyDbEnv. cl ose() method to close the new secondary database.
We want to make sure that the secondary is closed before the primaries. While this is not
necessary for this example because our closes are single-threaded, it is still a good habit to
adopt.

6/4/2008 Getting Started with JE Page 141

public void close() {
if (myEnv = null) {
try {
[/ ose the secondary before closing the prinmaries
i t emNamel ndexDb. cl ose() ;
vendor Db. cl ose();
i nvent oryDb. cl ose();
cl assCat al ogDb. cl ose();

/1 Finally, close the environnment.
myEnv. cl ose();
} catch(DatabaseException dbe) {
Systemerr.println("Error closing MDbEnv: " +
dbe.toString());
Systemexit(-1);

}

That completes our update to MyDbEnv. You can find the complete class implementation in:

JE _HOVE/ exanpl es/j e/ gettingStarted/ MyDbEnv. j ava
where JE_HOME is the location where you placed your JE distribution.

Because we performed all our secondary database configuration management in MyDbEnv, we
do not need to modify Exanpl eDat abasePut at all in order to create our secondary indices.
When Exanpl eDat abasePut calls M/DbEnv. set up(), all of the necessary work is performed for
us.

However, we still need to take advantage of the new secondary indices. We do this by updating
Exanpl el nvent or yRead to allow us to query for an inventory record based on its name. Remember
that the primary key for an inventory record is the item's SKU. The item's name is contained
in the | nvent ory object that is stored as each record's data in the inventory database. But our
new secondary index now allows us to easily query based on the item's name.

Using Secondary Databases with ExampleInventoryRead

In the previous section we changed MyDbEnv to cause a secondary database to be built using
inventory item names as the secondary keys. In this section, we will update

Exanpl el nvent or yRead to allow us to query our inventory records based on the item name. To
do this, we will modify Exanpl el nvent or yRead to accept a new command line switch, - s, whose
argument is the name of an inventory item. If the switch is present on the command line call
to Exanpl el nvent or yRead, then the application will use the secondary database to look up and
display all the inventory records with that item name. Note that we use a Secondar yCur sor to
seek to the item name key and then display all matching records.

Remember that you can find the following class in:

6/4/2008

Getting Started with JE Page 142

JE_HOVE/ exanpl es/ | e/ gettingSt art ed/ Exanpl el nvent or yRead. j ava

where JE_HOME is the location where you placed your JE distribution.

Example 10.3. SecondaryDatabase usage with ExamplelnventoryRead

First we need to import a few additional classes in order to use secondary databases and cursors,
and then we add a single global variable:

package je.gettingStarted;

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat . | e. Dat abaseEntry;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. j e. LockMode;

i nport com sl eepycat . je. CperationStat us;

i nport com sl eepycat . j e. Secondar yCur sor;

i nport com sl eepycat . bi nd. Ent r yBi ndi ng;
i nport com sl eepycat . bi nd. seri al . Seri al Bi ndi ng;
i mport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;

inport java.io.File;
i nport java.io.lOException;

public class Exanpl el nventoryRead {

private static File nyDbEnvPath =
new File("/tnp/JEDB");

/| Encapsul ates the database environnment and dat abases.
private static MyDbEnv nyDbEnv = new MyDbEnv();

private static Tupl eBinding inventoryBinding;
private static EntryBinding vendorBi nding;

/I The itemto locate if the -s switch is used
private static String locateltem

Next we update Exanpl el nvent or yRead. run() to check to see if the | ocat el t emglobal variable
a value. If it does, then we show just those records related to the item name passed on the - s
switch.

private void run(String args[])
throws Dat abaseException {
/I Parse the argunments |i st

par seArgs(args);
myDbEnv. set up(nyDbEnvPath, // path to the environnent home
true); [l is this environnent read-only?

6/4/2008 Getting Started with JE Page 143

/1 Setup our bindings.
i nvent oryBi ndi ng = new I nventoryBi ndi ng();
vendor Bi nding =
new Seri al Bi ndi ng(myDbEnv. get Cl assCat al og(),
Vendor . cl ass) ;

if (locateltem!= null) {
showt ten();

} else {
showAl | I nvent ory();

}
}

Finally, we need to implement Exanpl el nvent or yRead. showl t en() . This is a fairly simple method
that opens a secondary cursor, and then displays every primary record that is related to the

secondary key identified by the | ocat el t emglobal variable.

private void show ten() throws DatabaseException {
SecondaryCursor secCursor = null;
try {
/] searchKey is the key that we want to find in the
/] secondary db.
Dat abaseEntry searchKey =
new Dat abaseEntry(l ocat el tem get Byt es(" UTF-8"));

/] foundKey and foundData are popul ated fromthe primry
/] entry that is associated with the secondary db key.
Dat abaseEntry foundKey = new DatabaseEntry();

Dat abaseEntry foundData = new Dat abaseEntry();

/] open a secondary cursor
secCQursor =
myDbEnv. get Namel ndexDB() . openSecondar yCur sor (nul |, null);

/] Search for the secondary database entry.
OperationStatus retVal =
secCur sor . get Sear chKey(sear chKey, foundKey,
foundData, LockMde. DEFAULT);

/| Display the entry, if one is found. Repeat until no more
/] secondary duplicate entries are found
whil e(retVal == OperationStatus. SUCCESS) {

I nventory thelnventory =

(I'nventory)invent oryBi ndi ng. ent ryToQbj ect (f oundDat a) ;
di spl ayl nvent or yRecor d(f oundKey, thelnventory);
retVal = secCursor. get Next Dup(sear chKey, foundKey,
foundData, LockMde. DEFAULT);

6/4/2008

Getting Started with JE

Page 144

} catch (Exception e) {
Systemerr.println("Error on inventory secondary cursor:");
Systemerr.println(e.toString());
e. printStackTrace()
} finally {
if (secCursor !'=null) {
secCursor. cl ose();

}
}

The only other thing left to do is to update Exanpl el nvent or yRead. par seAr gs() to support the
-s command line switch. To see how this is done, see:

JE_HOVE/ exanpl es/j e/ gettingSt art ed/ Exanpl el nvent or yRead. j ava

where JE_HOME is the location where you placed your JE distribution.

6/4/2008

Getting Started with JE Page 145

Part I1I1. Administering JE
Applications

This section discusses concepts and mechanisms useful for the administration of any JE application,
regardless of the API used to build that application.

Chapter 11. Backing up and Restoring Berkeley DB
Java Edition Applications

Fundamentally, you backup your databases by copying JE log files off to a safe storage location.
To restore your database from a backup, you copy those files to an appropriate directory on
disk and reopen your JE application

Beyond these simple activities, there are some differing backup strategies that you may want
to consider. These topics are described in this chapter.

Databases and Log Files

Before describing JE backup and restore, it is necessary to describe some of JE's internal
workings. In particular, a high-level understanding of JE log files and the in-memory cache is
required. You also need to understand a little about how JE is using its internal data structures
in order to understand why checkpoints and/or syncs are required.

You can skip this section so long as you understand that:
» JE databases are stored in log files contained in your environment directory.
» Every time a JE environment is opened, normal recovery is run.

« For transactional applications, checkpoints should be run in order to bound normal recovery
time. Checkpoints are normally run by the checkpointer thread. Transactional applications
and the checkpointer thread are described in the Berkeley DB Java Edition Getting Started
with Transaction Processing guide.

» For non-transactional applications, environment syncs must be performed if you want to
guarantee the persistence of your database modifications. Environment syncs are manually
performed by the application developer. See Data Persistence (page 83) for details.

Log File Overview

Your JE database is stored on-disk in a series of log files. JE uses no-overwrite log files, which
is to say that JE only ever appends data to the end of a log file. It will never delete or modify
an existing log file record.

JE log files are named NNNNNNNN. j db where NNNNNNAN is an 8-digit hexadecimal number that
increases by 1 (starting from 00000000) for each log file written to disk.

JE creates a new log file whenever the current log file has reached a pre-configured size
(10000000 bytes by default). This size is controlled by the j e. | og. f i | eMax properties parameter.
See The JE Properties File (page 154) for information on setting JE properties.

6/4/2008

Getting Started with JE Page 147

Cleaning the Log Files

The BTree

Because JE uses no-overwrite log files, the logs must be compacted or cleaned so as to conserve
disk space.

JE uses the cleaner background thread to perform this task. When it runs, the cleaner thread
picks the log file with the smallest number of active records and scans each log record in it.
If the record is no longer active in the database tree, the cleaner does nothing. If the record
is still active in the tree, then the cleaner copies the record forward to a newer log file.

Once a log file is no longer needed (that is, it no longer contains active records), then the
cleaner thread deletes the log file for you. Or, optionally, the cleaner thread can simply rename
the discarded log file with a del suffix.

JE uses a minimum log utilization property to determine how much cleaning to perform. The
log files contain both obsolete and utilized records. Obsolete records are records that are no
longer in use, either because they have been modified or because they have been deleted.
Utilized records are those records that are currently in use. The j e. cl eaner. minUtilization
property identifies the minimum percentage of log space that must be used by utilized records.
If this minimum percentage is not met, then log files are cleaned until the minimum percentage
is met.

For information on managing the cleaner thread, see The Cleaner Thread (page 155).

JE databases are internally organized as a BTree. In order to operate, JE requires the complete
BTree be available to it.

When database records are created, modified, or deleted, the modifications are represented
in the BTree's leaf nodes. Beyond leaf node changes, database record modifications can also
cause changes to other BTree nodes and structures.

Database Modifications and Syncs

When a write operation is performed in JE, the modified data is written to a leaf node contained
in the in-memory cache. If your JE writes are performed without transactions, then the
in-memory cache is the only location guaranteed to receive a database modification without
further intervention on the part of the application developer.

For some class of applications, this lack of a guaranteed write to disk is ideal. By not writing
these modifications to the on-disk logs, the application can avoid most of the overhead caused
by disk 1/0.

However, if the application requires its data to persist persist at a specific point in time, then
the developer must manually sync database modifications to the on-disk log files (again, this
is only necessary for non-transactional applications). This is done using Envi ronnent . sync().

Note that syncing the cache causes JE to write all modified objects in the cache to disk. This
is probably the most expensive operation that you can perform in JE.

6/4/2008

Getting Started with JE Page 148

Normal Recovery

Every time a JE environment is opened, normal recovery is run. Because of the way that JE
organizes and manages its BTrees, all it needs is leaf nodes in order to recreate the rest of the
BTree. Essentially, this is what normal recovery is doing - recreating any missing parts of the
internal BTree from leaf node information stored in the log files.

Unlike a traditional database system, JE performs recovery for both transactional and
non-transactional operations. The integrity of the Btree is guaranteed by JE in the face of both
application and OS crashes.

Performing Backups

This section describes how to backup your JE database(s) such that catastrophic recovery is
possible for non-transactional applications. Note that this same material is repeated in the
Berkeley DB Java Edition Getting Started with Transaction Processing guide, but for transactional
applications. If you are writing transactional applications, you may want to skip the rest of
this chapter and go straight to that book.

To backup your database, you can either take a hot backup or an offline backup. A hot backup
is performed while database write operations are in progress.

Do not confuse hot and offline backups with the concept of a full and incremental backup.
Both a hot and an offline backup are full backups - you back up the entire database. The only
difference between them is how much of the contents of the in-memory cache are contained
in them. On the other hand, an incremental backup is a backup of just those log files modified
or created since the time of the last backup. Most backup software is capable of performing
both full and incremental backups for you.

Performing a Hot Backup

To perform a hot backup of your JE databases, copy all log files (*. | db files) from your
environment directory to your archival location or backup media. The files must be copied in
alphabetical order (numerical in effect). You do not have to stop any database operations in
order to do this.

To make this process a bit easier, you may want to make use of the DbBackup helper class. See
Using the DbBackup Helper Class (page 150) for details.

Note that any modifications made to the database since the time of the last environment sync
are not guaranteed to be contained in these log files. In this case, you may want to consider
running an offline backup in order to guarantee the availability of all modifications made to
your database.

Performing an Offline Backup

An offline backup guarantees that you have captured the database in its entirety, including all
contents of your in-memory cache, at the moment that the backup was taken. To do this, you
must make sure that no write operations are in progress and all database modifications have
been written to your log files on disk. To obtain an offline backup:

6/4/2008

Getting Started with JE Page 149

1. Stop writing your databases.

2. Run Environnent . sync() so as to ensure that all database modifications are written to disk.
Note that cleanly closing your environment will also ensure that all database modifications
are written to disk.

3. Copy all log files (*. j db) from your environment directory to your archival location or backup
media. To make this process a bit easier, you may want to make use of the DbBackup helper
class. See the next section for details.

You can now resume normal database operations.

Using the DbBackup Helper Class

In order to simplify backup operations, JE provides the DoBackup helper class. This class stops
and restarts JE background activity in an open environment. It also lets the application create
a backup which can support restoring the environment to a specific point in time.

Because you do not have to stop JE write activity in order to take a backup, it is usually
necessary to examine your log files twice before you decide that your backup is complete. This
is because JE may create a new log file while you are running your backup. A second pass over
your log files allows you to ensure that no new files have been created and so you can declare
your backup complete.

For example:

time files in activity
envi r onment

t0 000000001. j db Backup starts copying file 1
000000003. j db
000000004. j db

tl 000000001. j db JE log cleaner mgrates portion of file 3 to newy
000000004. j db created file 5 and deletes file 3. Backup finishes
000000005. j db file 1, starts copying file 4. Backup MJST incl ude

file 5 for a consistent backup!

t2 000000001. j db Backup finishes copying file 4, starts and finishes
000000004. j db file 5 has caught up. Backup ends.
000000005. j db

DbBackup works around this problem by defining the set of files that must be copied for each
backup operation, and freezes all changes to those files. The application can copy that defined
set of files and finish operation without checking for the ongoing creation of new files. Also,

there will be no need to check for a newer version of the last file on the next backup.

In the example above, if DbBackup was used at t0, the application would only have to copy files
1, 3 and 4 to back up. On a subsequent backup, the application could start its copying at file
5. There would be no need to check for a newer version of file 4.

6/4/2008 Getting Started with JE Page 150

The following code fragment illustrates this class' usage:

package je.gettingStarted,
inport com sl eepycat.je.util.DbBackup;

Envi ronment env = new Environment (...);
DbBackup backupHel per = new DbBackup(env);

[/ Find the file nunber of the last file in the previous backup
[l persistently, by either checking the backup archive, or saving
/] state in a persistent file.

I ong | astFi | eCopi edl nPrevBackup =

/] Start backup, find out what needs to be copied.
backupHel per. start Backup();
try {
String[] filesForBackup =
backupHel per. get LogFi | esl nBackupSet (| ast Fi | eCopi edl nPrevBackup) ;

Il Copy the files to archival storage.

myAppl i cati onCopyMet hod(fi | esFor Backup)

Il Update our know ege of the last file saved in the backup set,

Il so we can copy |ess on the next backup

| ast Fi | eCopi edl nPrevBackup = backupHel per. get Last Fi | el nBackupSet () ;
myAppl i cati onSavelast Fi | e(| ast Fi | eCopi edl nBackupSet) ;

}
finally {
Il Remenber to exit backup node, or all log files won't be cleaned
/1 and disk usage will bloat.
backupHel per. endBackup();
}

Performing Catastrophic Recovery

Catastrophic recovery is necessary whenever your environment and/or database have been
lost or corrupted due to a media failure (disk failure, for example). Catastrophic recovery is
also required if normal recovery fails for any reason.

In order to perform catastrophic recovery, you must have a full back up of your databases. You
will use this backup to restore your database. See Performing Backups (page 149) for information
on running back ups.

To perform catastrophic recovery:

1. Shut down your application.

6/4/2008 Getting Started with JE Page 151

2. Delete the contents of your environment home directory (the one that experienced a
catastrophic failure), if there is anything there.

3. Copy your most recent full backup into your environment home directory.

4. If you are using a backup utility that runs incremental backups of your environment directory,
copy any log files generated since the time of your last full backup. Be sure to restore all
log files in the order that they were written. The order is important because it is possible
the same log file appears in multiple archives, and you want to run recovery using the most
recent version of each log file.

5. Open the environment as normal. JE's normal recovery will run, which will bring your database
to a consistent state relative to the changed data found in your log files.

You are now done restoring your database.

Hot Standby

As a final backup/recovery strategy, you can create a hot standby. Note that using hot standbys
requires your application to be able to specify its environment home directory at application
startup time. Most application developers allow the environment home directory to be identified
using a command line option or a configuration or properties file. If your application has its
environment home hard-coded into it, you cannot use hot standbys.

You create a hot standby by periodically backing up your database to an alternative location
on disk. Usually this alternative location is on a separate physical drive from where you normally
keep your database, but if multiple drives are not available then you should at least put the
hot standby on a separate disk partition.

You failover to your hot standby by causing your application to reopen its environment using
the hot standby location.

Note that a hot standby should not be used as a substitute for backing up and archiving your
data to a safe location away from your operating environment. Even if your data is spread
across multiple physical disks, a truly serious catastrophe (fires, malevolent software viruses,
faulty disk controllers, and so forth) can still cause you to lose your data.

To create and maintain a hot standby:

1. Copy all log files (*.] db) from your environment directory to the location where you want
to keep your standby. Either a hot or an offline backup can be used for this purpose, but
typically a hot standby is initially created by taking an offline backup of your database. This
ensures that you have captured the contents of your in-memory cache.

2. Periodically copy to your standby directory any log files that were changed or created since
the time of your last copy. Most backup software is capable of performing this kind of an
incremental backup for you.

Note that the frequency of your incremental copies determines the amount of data that is
at risk due to catastrophic failures. For example, if you perform the incremental copy once

6/4/2008

Getting Started with JE Page 152

an hour then at most your hot standby is an hour behind your production database, and so
you are risking at most an hours worth of database changes.

3. Remove any *. j db files from the hot standby directory that have been removed or renamed
to . del files in the primary directory. This is not necessary for consistency, but will help to
reduce disk space consumed by the hot standby.

6/4/2008 Getting Started with JE Page 153

Chapter 12. Administering Berkeley DB Java Edition
Applications

There are a series of tools and parameters of interest to the administrator of a Berkeley DB
Java Edition database. These tools and parameters are useful for tuning your JE database’s
behavior once it is in a production setting, and they are described here. This chapter, however,
does not describe backing up and restoring your JE databases. See Backing up and Restoring
Berkeley DB Java Edition Applications (page 147) for information on how to perform those
procedures.

The JE Properties File

Managing

JE applications can be controlled through a Java properties file. This file must be placed in
your environment home directory and it must be named j e. properti es.

The parameters set in this file take precedence over the configuration behavior coded into the
JE application by your application developers.

Usually you will use this file to control the behavior of JE's background threads, and to control
the size of your in-memory cache. These topics, and the properties parameters related to
them, are described in this chapter. Beyond the properties described here, there are other
properties identified throughout this manual that may be of interest to you. However, the
definitive identification of all the property parameters available to you is described in the
javadoc for the Envi ronment Confi g class. Each property has a Stri ng constant in

Envi ronnment Conf i g that describes its meaning, default value, and so forth.

the Background Threads

JE uses some background threads to keep your database resources within pre-configured limits.
If they are going to run, the background threads are started once per application per process.
That is, if your application opens the same environment multiple times, the background threads
will be started just once for that process. See the following list for the default conditions that
gate whether an individual thread is run. Note that you can prevent a background thread from
running by using the appropriate j e. properties parameter, but this is not recommended for
production use and those parameters are not described here.

The background threads are:
 Cleaner thread.

Responsible for cleaning and deleting unused log files. See The Cleaner Thread (page 155) for
more information.

This thread is run only if the environment is opened for write access.

6/4/2008

Getting Started with JE Page 154

The Cleaner

o Compressor thread.

Responsible for cleaning up the internal BTree as database records are deleted. The
compressor thread ensures that the BTree does not contain unused nodes. There is no need
for you to manage the compressor and so it is not described further in this manual.

This thread is run only if the environment is opened for write access.
o Checkpointer thread.

Responsible for running checkpoints on your environment. See The Checkpointer
Thread (page 155) for more information.

This thread always runs.
Thread

The cleaner thread is responsible for cleaning, or compacting, your log files for you. Log file
cleaning is described in Cleaning the Log Files (page 148).

The following two properties may be of interest to you when managing the cleaner thread:
e je.cleaner.mnltilization

Identifies the percentage of the log file space that must be used for utilized records. If the
percentage of log file space used by utilized records is too low, then the cleaner removes
obsolete records until this threshold is reached. Default is 50%.

 je.cleaner.expunge

Identifies the cleaner's behavior in the event that it is able to remove a log file. If true, the
log files that have been cleaned are deleted from the file system. If f al se, the log files that
have been cleaned are renamed from NNNNNNNN. j db to NNNNNNNN. del . You are then responsible
for deleting the renamed files.

Note that the cleaner thread runs only if the environment is opened for write access. Also, be
aware that the cleaner is not guaranteed to finish running before the environment is closed,
which can result in unexpectedly large log files. See Closing Database Environments (page 17)
for more information.

The Checkpointer Thread

Sizing the

Automatically runs checkpoints. Checkpoints and the administration of this thread are described
in the Berkeley DB Java Edition Getting Started with Transaction Processing guide.

Cache

By default, your cache is limited to a percentage of the JVM maximum memory as specified
by the - Xmx parameter. You can change this percentage by using the j e. maxMenor yPer cent

6/4/2008

Getting Started with JE Page 155

property or through Envi r onnent Mut abl eConfi g. set CachePer cent () . That is, the maximum
amount of memory available to your cache is normally calculated as:

j e. maxMenor yPer cent * JVM maxi mum nenory

You can find out what the value for this property is by using
Envi ronment Confi g. get CachePer cent () .

Note that you can cause JE to use a fixed maximum cache size by using j e. maxMenory or by
using Envi ronnent Confi g. set CacheSi ze() .

Also, not every JVM is capable of identifying the amount of memory requested via the - Xnx
parameter. For those JVMs you must use j e. maxMenory to change your maximum cache size.
The default maximum memory available to your cache in this case is 38M.

Of the amount of memory allowed for your cache, 93% is used for the internal BTree and the
other 7% is used for internal buffers. When your application first starts up, the 7% for buffers
is immediately allocated. The remainder of the cache grows lazily as your application reads
and writes data.

In order for your application to start up successfully, the Java virtual machine must have enough
memory available to it (as identified by the - Xmx command line switch) for both your application
and 7% of your maximum cache value. In order for your application to run continuously (all the
while loading data into the cache), you must make sure your JVM has enough memory for your
application plus the maximum cache size.

The best way to determine how large your cache needs to be is to put your application into a
production environment and watch to see how much disk 1/0 is occurring. If the application is
going to disk quite a lot to retrieve database records, then you should increase the size of your
cache (provided that you have enough memory to do so).

In order to determine how frequently your application is going to disk for database records not
found in the cache, you can examine the value returned by Envi r onnent St at s. get NCacheM ss() .

Envi ronnent St at s. get NCacheM ss() identifies the total number of requests for database objects
that were not serviceable from the cache. This value is cumulative since the application started.
The faster this number grows, the more your application is going to disk to service database
operations. Upon application startup you can expect this value to grow quite rapidly. However,
as time passes and your cache is seeded with your most frequently accessed database records,
what you want is for this number's growth to be zero or at least very small.

Note that this statistic can only be collected from within the application itself or using the JMX
extension (see JMX Support (page 11)).

For more information on collecting this statistic, see Environment Statistics (page 20).
The Command Line Tools

JE ships with several command line tools that you can use to help you manage your databases.
They are:

6/4/2008 Getting Started with JE Page 156

o DbDunp

Dumps a database to a user-readable format.

e DbLoad

Loads a database from the output produced by DbDunp

« DbVerify

Verifies the structure of a database.

Dumps a database to a flat-text representation. Options are:

Identifies the file to which the output from this command is written. The console
(standard out) is used by default.

Identifies the environment's directory. This parameter is required.

Lists the databases contained in the environment. If the - s is not provided, then this
argument is required.

Prints database records in human-readable format.

Salvage data from a possibly corrupt file. When used on a uncorrupted database, this
option should return data equivalent to a normal dump, but most likely in a different
order.

This option causes the ensuing output to go to a file named dbname. dunp where dbname
is the name of the database you are dumping. The file is placed in the current working
directory.

Aggressively salvage data from a possibly corrupt file. This option differs from the -r
option in that it will return all possible data from the file at the risk of also returning
already deleted or otherwise nonsensical items. Data dumped in this fashion will almost
certainly have to be edited by hand or other means before the data is ready for reload
into another database.

This option causes the ensuing output to go to a file named dbname. dunp where dbname
is the name of the database you are dumping. The file is placed in the current working
directory.

DbDump
-f
-h
-p
- T
-R
6/4/2008

Getting Started with JE Page 157

Identifies the database to be dumped. If this option is not specified, then the -| is
required.

Prints progress information to the console for -r or - R mode.

Prints the database version number and then quits. All other command line options are
ignored.

For example:

> java com sl eepycat.je.util.DoDunp -h . -p -s Vendor DB

VERSI ON=3

format =print

type=btree

dat abase=Vendor DB

dupsort =f al se

HEADER=END
Momi s Kitchen

sr\ 01\ 01xpt\ 00\ 0d53 Yernman Ct.t\00\0c763 554 9200t\ 00\ ObM ddl e Townt\ 00
\ OeMaggi e Kul t gent\ 00\ 10763 554 9200 x12t\ 00\ 02M\t\ 00\ 0dMbni s Kit chent\ 00
\ 0555432

Of the Vine

sr\ 01\ 01xpt\ 00\ 10133 Anerican Ct.t\00\0c563 121 3800t \ 00\ OaCent enni al t\ 00
\ 08Bob Ki ngt\ 00\ 10563 121 3800 x54t\ 00\ 021 At\ 00\ 0cCf f the Vinet\00\ 0552002
Sinply Fresh

sr\ 01\ 01xpt\ 00\ 1115612 Bogart Lanet\00\0c420 333 3912t\ 00\ O8Harri gant\ 00
\ Of Cheryl Swedbergt\ 00\ 0c420 333 3952t\ 00\ 02W t\ 00\ OcSi nply Fresht\ 00\ 0
553704

The Baking Pan

sr\ 01\ 01xpt\ 00\ 0e1415 53rd Ave.t\00\0c320 442 2277t\ 00\ 07Dut chi nt\ 00\ 09
M ke Roant\ 00\ 0c320 442 6879t\ 00\ 02M\t\ 00\ OeThe Baki ng Pant\ 00\ 0556304
The Pantry

sr\ 01\ 01xpt\ 00\ 111206 N. Creek \ayt\00\0c763 555 3391t\ 00\ ObM ddl e Town
t\ 00\ Of Sul Iy Beckstront\00\0c763 555 3391t\ 00\ 02M\t\ 00\ 0aThe Pantryt\ 00
\ 0555432
Tri County Produce
sr\ 01\ 01xpt\ 00\ 12309 S. Main Streett\00\0c763 555 5761t\ 00\ ObM ddl e Townt
\ 00\ 0dMort Dufresnet\00\0c763 555 5765t\ 00\ 02M\t\ 00\ 11Tri County Producet
\ 00\ 0555432

DATA=END

>

DbLoad

Loads a database from the output produced by DbDunp. Options are:

6/4/2008 Getting Started with JE Page 158

Specifies configuration options. The options supplied here override the corresponding
options that appear in the data that is being loaded. This option takes values of the
form name=value, where name is the configuration option that you are overriding and
value is the new value for the option.

The following options can be specified:
« dat abase

The name of the database to be loaded. This option duplicates the functionality of
this command's -s command line option.

 dupsort

Indicates whether duplicates are allowed in the database. A value of true allows
duplicates in the database.

Identifies the file from which the database is to be loaded.

Do not overwrite existing keys in the database when loading into an already existing
database. If a key/data pair cannot be loaded into the database for this reason, a
warning message is displayed on the standard error output, and the key/data pair are
skipped

Identifies the environment's directory. This parameter is required.

Allows loading databases that were dumped with the Berkeley DB C product, when the
dump file contains parameters not known to JE.

Overrides the database name, causing the data to be loaded into a database that uses
the name supplied to this parameter.

Causes a flat text file to be loaded into the database.

The input must be paired lines of text, where the first line of the pair is the key item,
and the second line of the pair is its corresponding data item.

A simple escape mechanism, where newline and backslash (\) characters are special,
is applied to the text input. Newline characters are interpreted as record separators.
Backslash characters in the text will be interpreted in one of two ways: If the backslash
character precedes another backslash character, the pair will be interpreted as a literal
backslash. If the backslash character precedes any other character, the two characters
following the backslash will be interpreted as a hexadecimal specification of a single
character; for example, \Oa is a newline character in the ASCII character set.

6/4/2008

Getting Started with JE Page 159

For this reason, any backslash or newline characters that naturally occur in the text
input must be escaped to avoid misinterpretation by db_load.

Report periodic load status to the console.
Prints the database version number and then quits. All other command line options are

ignored.

For example:

> java com sl eepycat.je.util.DoDunp -h . -s VendorDB -f vendordb. t xt
> java com sl eepycat.je.util.DbLoad -h . -f vendordb. txt

>
DbVerify

Examines the identified database for errors. Options are:

-h
Identifies the environment's directory. This parameter is required.

-q
Suppress the printing of any error descriptions. Instead, simply exit success or failure.

-S
Identifies the database to be verified. This parameter is required.

-V
Prints the database version number and then quits. All other command line options are
ignored.

-V

Report intermediate statistics every N leaf nodes, where N is the value that you provide
this parameter.

For example:

> java com sl eepycat.je.util.DbVerify -h . -s VendorDB

<BtreeStat s>

<Bot t om nt er nal NodesBylLevel total ="1">
<Itemlevel ="1" count="1"/>

</ Bot t onl nt er nal NodesByLevel >

<I nt ernal NodesByLevel total ="1">
<Itemlevel ="2" count="1"/>

</ I nt ernal NodesByLevel >

<Leaf Nodes count ="6"/>

<Del et edLeaf Nodes count="0"/>

<Dupl i cat eCount Leaf Nodes count="0"/>

<Mai nTr eeMaxDept h dept h="2"/>

6/4/2008 Getting Started with JE Page 160

<Dupl i cat eTr eeMaxDept h dept h="0"/>
</BtreeStats>

6/4/2008 Getting Started with JE Page 161

Appendix A. Concurrent Processing
in Berkeley DB Java Edition

An in-depth description of concurrent processing in JE is beyond the scope of this manual.
However, there are a few things that you should be aware of as you explore JE. Note that many
of these topics are described in greater detail in other parts of this book. This section is intended
only to summarize JE concurrent processing.

Also, this appendix touches on a topic not discussed in any detail in this manual: transactions.
Transactional usage is optional but nevertheless very commonly used for JE applications,
especially when writing multi-threaded or multi-process applications. However, transactions
also represent a topic that is too large for this book. To read a thorough description of JE and
transactional processing, see the Berkeley DB Java Edition Getting Started with Transaction
Processing guide.

This appendix first describes concurrency with multithreaded applications. It then goes on to
describe Multiprocess Applications (page 163).

Multithreaded Applications

Note the following if you are writing an application that will use multiple threads for reading
and writing JE databases:

» JE database and environment handles are free-threaded (that is, are thread safe), so from
a mechanical perspective you do not have to synchronize access to them when they are used
by multiple threads of control.

« It is dangerous to close environments and databases when other database operations are in
progress. So if you are going to share handles for these objects across threads, you should
architect your application such that there is no possibility of a thread closing a handle when
another thread is using that handle.

« If a transaction is shared across threads, it is safe to call transacti on. abort () from any
thread. However, be aware that any thread that attempts a database operation using an
aborted transaction will throw a Dat abaseExcepti on. You should architect your application
such that your threads are able to gracefully deal with some other thread aborting the current
transaction.

« If a transaction is shared across threads, make sure that transaction. commit () can never
be called until all threads participating in the transaction have completed their database
operations.

« JE always performs locking and deadlock detection. Locking is performed at the database
record level. In the event that a deadlock is detected, Deadl ockExcept i on is thrown.

« A non-transactional operation that reads a record locks it for the duration of the read. While
locked for read, a write lock can not be obtained on that record. However, another read

6/4/2008

Getting Started with JE Page 162

lock can be obtained for that record. This means that for threaded applications, multiple
threads can simultaneously read a record, but no thread can write to the record while a read
is in progress.

Note that if you are performing uncommitted reads, then no locking is performed for that
read. Instead, JE uses internal mechanisms to ensure that the data you are reading is
consistent (that is, it will not change mid-read).

Finally, it is possible to specify that you want a write lock for your read operation. You do
this using LockMbde. RMA Use RMAwhen you know that your read will subsequently be followed
up with a write operation. Doing so can help to avoid deadlocks.

« An operation that writes to a record obtains a write lock on that record. While the write
lock is in progress, no other locks can be obtained for that record (either read or write).

o All locks, read or write, obtained from within a transaction are held until the transaction is
either committed or aborted.

This means that the longer a transaction lives, the more likely other threads in your
application are to run into deadlocks. That is, write operations performed outside of the
scope of the transaction will not be able to obtain a lock on those records while the
transaction is in progress. Also, by default, reads performed outside the scope of the
transaction will not be able to lock records written by the transaction. However, this behavior
can be overridden by configuring your reader to perform uncommitted reads.

Multiprocess Applications

Note the following if you are writing an application that wants to access JE databases from
multiple processes:

« In JE, you must use environments. Further, a database can be opened for write access only
if the environment is opened for write access. Finally, only one process may have an
environment opened for write access at a time.

« If your process attempts to open an environment for write, and another process has already
opened that environment for write, then the open will fail. In this event, the process must
either exit or open the environment as read-only.

» A process that opens an environment for read-only receives a snapshot of the data in that
environment. If another process modifies the environment's databases in any way, the
read-only version of the data will not be updated until the read-only process closes and
reopens the environment (and by extension all databases in that environment).

6/4/2008 Getting Started with JE Page 163

	Getting Started with Berkeley DB Java Edition
	Table of Contents
	Preface
	Conventions Used in this Book
	For More Information

	Chapter 1. Introduction to Berkeley DB Java Edition
	Features
	DPL Features
	Base API Features
	Which API Should You Use?

	The JE Application
	Database Environments
	Key-Data Pairs
	Storing Data
	Storing Data in the DPL
	Storing Data using the Base API

	Duplicate Data
	Replacing and Deleting Entries
	Secondary Keys
	Using Secondaries with the DPL
	Using Secondaries with the Base API.

	Transactions
	JE Resources
	Application Considerations

	JE Backup and Restore
	JCA Support
	JMX Support
	Getting and Using JE
	JE Exceptions
	Six Things Everyone Should Know about JE Log Files

	Chapter 2. Database Environments
	Opening Database Environments
	
	Configuring a Shared Cache for Multiple Environments

	Closing Database Environments
	Environment Properties
	The EnvironmentConfig Class
	EnvironmentMutableConfig

	Environment Statistics
	Database Environment Management Example

	Part I. Programming with the Direct Persistence Layer
	Chapter 3. Direct Persistence Layer First Steps
	Entity Stores
	Opening and Closing Environments and Stores

	Persistent Objects
	Saving a Retrieving Data

	Chapter 4. Working with Indices
	Accessing Indexes
	Accessing Primary Indices
	Accessing Secondary Indices

	Creating Indexes
	Declaring a Primary Indexes
	Declaring Secondary Indexes
	Foreign Key Constraints

	Chapter 5. Saving and Retrieving Objects
	A Simple Entity Class
	SimpleDA.class
	Placing Objects in an Entity Store
	Retrieving Objects from an Entity Store
	Retrieving Multiple Objects
	Cursor Initialization
	Working with Duplicate Keys
	Key Ranges

	Join Cursors
	Deleting Entity Objects
	Replacing Entity Objects

	Chapter 6. A DPL Example
	Vendor.java
	Inventory.java
	MyDbEnv
	DataAccessor.java
	ExampleDatabasePut.java
	ExampleInventoryRead.java

	Part II. Programming with the Base API
	Chapter 7. Databases
	Opening Databases
	Deferred Write Databases
	Temporary Databases
	Closing Databases

	Database Properties
	Administrative Methods
	Database Example

	Chapter 8. Database Records
	Using Database Records
	Reading and Writing Database Records
	Writing Records to the Database
	Getting Records from the Database
	Deleting Records
	Data Persistence

	Using the BIND APIs
	Numerical and String Objects
	Serializable Complex Objects
	Usage Caveats
	Serializing Objects
	Deserializing Objects

	Custom Tuple Bindings

	Using Comparators
	Writing Comparators
	Setting Comparators

	Database Record Example

	Chapter 9. Using Cursors
	Opening and Closing Cursors
	Getting Records Using the Cursor
	Searching for Records
	Working with Duplicate Records

	Putting Records Using Cursors
	Deleting Records Using Cursors
	Replacing Records Using Cursors
	Cursor Example

	Chapter 10. Secondary Databases
	Opening and Closing Secondary Databases
	Implementing Key Creators
	Secondary Database Properties
	Reading Secondary Databases
	Deleting Secondary Database Records
	Using Secondary Cursors
	Database Joins
	Using Join Cursors
	JoinCursor Properties

	Secondary Database Example
	Opening Secondary Databases with MyDbEnv
	Using Secondary Databases with ExampleInventoryRead

	Part III. Administering JE Applications
	Chapter 11. Backing up and Restoring Berkeley DB Java Edition Applications
	Databases and Log Files
	Log File Overview
	Cleaning the Log Files
	The BTree
	Database Modifications and Syncs
	Normal Recovery

	Performing Backups
	Performing a Hot Backup
	Performing an Offline Backup
	Using the DbBackup Helper Class

	Performing Catastrophic Recovery
	Hot Standby

	Chapter 12. Administering Berkeley DB Java Edition Applications
	The JE Properties File
	Managing the Background Threads
	The Cleaner Thread
	The Checkpointer Thread

	Sizing the Cache
	The Command Line Tools
	DbDump
	DbLoad
	DbVerify

	Appendix A. Concurrent Processing in Berkeley DB Java Edition
	Multithreaded Applications
	Multiprocess Applications

