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This guide is intended as an introductory overview of NumPy and explains how to install and make use of the most
important features of NumPy. For detailed reference documentation of the functions and classes contained in the
package, see the reference.
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CHAPTER
ONE

SETTING UP

1.1 What is NumPy?

NumPy is the fundamental package for scientific computing in Python. It is a Python library that provides a multidi-
mensional array object, various derived objects (such as masked arrays and matrices), and an assortment of routines for
fast operations on arrays, including mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier
transforms, basic linear algebra, basic statistical operations, random simulation and much more.

At the core of the NumPy package, is the ndarray object. This encapsulates n-dimensional arrays of homogeneous
data types, with many operations being performed in compiled code for performance. There are several important
differences between NumPy arrays and the standard Python sequences:

* NumPy arrays have a fixed size at creation, unlike Python lists (which can grow dynamically). Changing the
size of an ndarray will create a new array and delete the original.

* The elements in a NumPy array are all required to be of the same data type, and thus will be the same size in
memory. The exception: one can have arrays of (Python, including NumPy) objects, thereby allowing for arrays
of different sized elements.

* NumPy arrays facilitate advanced mathematical and other types of operations on large numbers of data. Typi-
cally, such operations are executed more efficiently and with less code than is possible using Python’s built-in
sequences.

* A growing plethora of scientific and mathematical Python-based packages are using NumPy arrays; though
these typically support Python-sequence input, they convert such input to NumPy arrays prior to processing,
and they often output NumPy arrays. In other words, in order to efficiently use much (perhaps even most)
of today’s scientific/mathematical Python-based software, just knowing how to use Python’s built-in sequence
types is insufficient - one also needs to know how to use NumPy arrays.

The points about sequence size and speed are particularly important in scientific computing. As a simple example,
consider the case of multiplying each element in a 1-D sequence with the corresponding element in another sequence
of the same length. If the data are stored in two Python lists, a and b, we could iterate over each element:

c = 1[I
for i in range(len(a)):
c.append(alil*b[i])

This produces the correct answer, but if a and b each contain millions of numbers, we will pay the price for the
inefficiencies of looping in Python. We could accomplish the same task much more quickly in C by writing (for clarity
we neglect variable declarations and initializations, memory allocation, etc.)

for (i = 0; i < rows; 1i++): {
cli] ali]l«b[i];

}
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This saves all the overhead involved in interpreting the Python code and manipulating Python objects, but at the
expense of the benefits gained from coding in Python. Furthermore, the coding work required increases with the
dimensionality of our data. In the case of a 2-D array, for example, the C code (abridged as before) expands to

for (i = 0; 1 < rows; 1i++): {
for (§j = 0; j < columns; j++): {
clil (3] = alil[J1*bl[1i]1[J]1;

}

NumPy gives us the best of both worlds: element-by-element operations are the “default mode” when an ndarray is
involved, but the element-by-element operation is speedily executed by pre-compiled C code. In NumPy

c=a=x*b

does what the earlier examples do, at near-C speeds, but with the code simplicity we expect from something based on
Python. Indeed, the NumPy idiom is even simpler! This last example illustrates two of NumPy’s features which are
the basis of much of its power: vectorization and broadcasting.

Vectorization describes the absence of any explicit looping, indexing, etc., in the code - these things are taking place,
of course, just “behind the scenes” in optimized, pre-compiled C code. Vectorized code has many advantages, among
which are:

¢ vectorized code is more concise and easier to read
« fewer lines of code generally means fewer bugs

¢ the code more closely resembles standard mathematical notation (making it easier, typically, to correctly code
mathematical constructs)

* vectorization results in more “Pythonic” code. Without vectorization, our code would be littered with inefficient
and difficult to read for loops.

Broadcasting is the term used to describe the implicit element-by-element behavior of operations; generally speaking,
in NumPy all operations, not just arithmetic operations, but logical, bit-wise, functional, etc., behave in this implicit
element-by-element fashion, i.e., they broadcast. Moreover, in the example above, a and b could be multidimensional
arrays of the same shape, or a scalar and an array, or even two arrays of with different shapes, provided that the smaller
array is “expandable” to the shape of the larger in such a way that the resulting broadcast is unambiguous. For detailed
“rules” of broadcasting see numpy.doc.broadcasting.

NumPy fully supports an object-oriented approach, starting, once again, with ndarray. For example, ndarray is a
class, possessing numerous methods and attributes. Many of its methods mirror functions in the outer-most NumPy
namespace, giving the programmer complete freedom to code in whichever paradigm she prefers and/or which seems
most appropriate to the task at hand.

1.2 Installing NumPy

In most use cases the best way to install NumPy on your system is by using a pre-built package for your operating
system. Please see https://scipy.org/install.html for links to available options.

For instructions on building for source package, see Building from source. This information is useful mainly for
advanced users.
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CHAPTER
TWO

QUICKSTART TUTORIAL

2.1 Prerequisites
Before reading this tutorial you should know a bit of Python. If you would like to refresh your memory, take a look at
the Python tutorial.

If you wish to work the examples in this tutorial, you must also have some software installed on your computer. Please
see https://scipy.org/install.html for instructions.

2.2 The Basics

NumPy’s main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of
the same type, indexed by a tuple of positive integers. In NumPy dimensions are called axes.

For example, the coordinates of a point in 3D space [1, 2, 1] has one axis. That axis has 3 elements in it, so we
say it has a length of 3. In the example pictured below, the array has 2 axes. The first axis has a length of 2, the second
axis has a length of 3.

[t 1., 0., 0.7,
[ 0., 1., 2.1]

NumPy’s array class is called ndarray. It is also known by the alias array. Note that numpy .array is not the
same as the Standard Python Library class array.array, which only handles one-dimensional arrays and offers
less functionality. The more important attributes of an ndarray object are:

ndarray.ndim the number of axes (dimensions) of the array.

ndarray.shape the dimensions of the array. This is a tuple of integers indicating the size of the array in each di-
mension. For a matrix with n rows and m columns, shape will be (n, m). The length of the shape tuple is
therefore the number of axes, ndim.

ndarray.size the total number of elements of the array. This is equal to the product of the elements of shape.

ndarray.dtype an object describing the type of the elements in the array. One can create or specify dtype’s us-
ing standard Python types. Additionally NumPy provides types of its own. numpy.int32, numpy.int16, and
numpy.float64 are some examples.

ndarray.itemsize the size in bytes of each element of the array. For example, an array of elements of type float 64
has itemsize 8 (=64/8), while one of type complex32 has itemsize 4 (=32/8). It is equivalent to
ndarray.dtype.itemsize.

ndarray.data the buffer containing the actual elements of the array. Normally, we won’t need to use this attribute
because we will access the elements in an array using indexing facilities.
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2.2.1 An example

>>> import numpy as np

>>> a = np.arange (15) .reshape (3, 5)

>>> a

array ([[ O, 1, 2, 3, 47,
[ 5, 6, 7, 8, 91,
[10, 11, 12, 13, 1411)

>>> a.shape

(3, 5)

>>> a.ndim

2

>>> a.dtype.name

'inte64"

>>> a.itemsize

8

>>> a.size

15

>>> type(a)

<type 'numpy.ndarray'>

>>> b = np.array([6, 7, 81)

>>> Db

array([6, 7, 8])

>>> type(b)

<type 'numpy.ndarray'>

2.2.2 Array Creation
There are several ways to create arrays.

For example, you can create an array from a regular Python list or tuple using the array function. The type of the
resulting array is deduced from the type of the elements in the sequences.

>>> import numpy as np

>>> a = np.array([2,3,41])

>>> a

array ([2, 3, 4])

>>> a.dtype

dtype ('int64")

>>> b = np.array([1.2, 3.5, 5.17])
>>> b.dtype

dtype ('float64d")

A frequent error consists in calling array with multiple numeric arguments, rather than providing a single list of
numbers as an argument.

>>> a np.array(1,2,3,4) # WRONG
>>> a = np.array([1,2,3,4]) # RIGHT

array transforms sequences of sequences into two-dimensional arrays, sequences of sequences of sequences into
three-dimensional arrays, and so on.

>>> b = np.array ([(1.5,2,3), (4,5,6)1)
>>> b
array ([[ 1.5, 2., 3.1,

[ 4. , 5., 6. 11)

The type of the array can also be explicitly specified at creation time:

6 Chapter 2. Quickstart tutorial
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>>> c = np.array( [ [1,2], [3,4] ], dtype=complex )
>>> C
array ([[ 1.40.9, 2.40.9]

[ 3.40.5, 4.+0.311)

Often, the elements of an array are originally unknown, but its size is known. Hence, NumPy offers several functions to
create arrays with initial placeholder content. These minimize the necessity of growing arrays, an expensive operation.

The function zeros creates an array full of zeros, the function ones creates an array full of ones, and the function
empty creates an array whose initial content is random and depends on the state of the memory. By default, the dtype
of the created array is float 64.

>>> np.zeros( (3,4) )
array ([[ 0., 0., , 0.1,
[ 0., O., , 0.1,
[ 0., O. ., 0.11)
>>> np.ones( (2,3,4 dtype=np.intl6 ) # dtype can also be specified

\
R
<
PP R R R RPR—-0O0O0

( 4
array ([[[ 1, 1, 1, 1],
(1, 1 Iy
(1, 1, 1, 111,
(ri1, 1, 1, 17,
(1, 1, 1, 11,
i, 1, 1, 111, dtype=intl6)
>>> np.empty( (2,3) ) # uninitialized, output may vary
array ([[ 3.7360395%e-262, 6.02658058e-154, 6.55490914e-2607,

[ 5.30498948e-313, 3.14673309e-307, 1.00000000e+00011)

To create sequences of numbers, NumPy provides a function analogous to range that returns arrays instead of lists.

>>> np.arange( 10, 30, 5 )

array ([10, 15, 20, 25])

>>> np.arange( 0, 2, 0.3 ) # it accepts float arguments
array ([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.81)

When arange is used with floating point arguments, it is generally not possible to predict the number of elements
obtained, due to the finite floating point precision. For this reason, it is usually better to use the function 1inspace
that receives as an argument the number of elements that we want, instead of the step:

>>> from numpy import pi

>>> np.linspace( 0, 2, 9 ) # 9 numbers from 0 to 2

array ([ 0. , 0.25, 0.5, 0.75, 1. , 1.25, 1.5, 1.75, 2. 1)

>>> x = np.linspace( 0, 2*pi, 100 ) # useful to evaluate function at lots of_
—points

>>> f = np.sin(x)

See also:

array, zeros, zeros_like, ones, ones_like, empty, empty_like, arange, linspace, numpy.
random. rand, numpy .random. randn, fromfunction, fromfile

2.2.3 Printing Arrays

When you print an array, NumPy displays it in a similar way to nested lists, but with the following layout:
* the last axis is printed from left to right,
* the second-to-last is printed from top to bottom,

* the rest are also printed from top to bottom, with each slice separated from the next by an empty line.

2.2. The Basics 7
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One-dimensional arrays are then printed as rows, bidimensionals as matrices and tridimensionals as lists of matrices.

>>> a = np.arange (6) # 1d array

>>> print (a)

[01 2 3 4 5]

>>>

>>> b = np.arange (12) .reshape (4, 3) # 2d array

>>> print (b)

[L o 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]

>>>

]

>>> c = np.arange (24) .reshape(2,3,4) # 3d array
>>> print (c)
[f[f o 1 2 3
4 5 6 7
8 9 10 11
1 13 14 15
16 17 18 19
20 21 22 23

[

[
[
[
[12
[16
[

See below to get more details on reshape.

If an array is too large to be printed, NumPy automatically skips the central part of the array and only prints the
corners:

>>> print (np.arange (10000))

[ 0 1 2 ..., 9997 9998 9999]
>>>
>>> print (np.arange (10000) .reshape (100,100))
[[ 0 1 2 ...y 97 98 99]
[ 100 101 102 ..., 197 198 199]
[ 200 201 202 ..., 297 298 299]
[9700 9701 9702 ..., 9797 9798 9799]
[9800 9801 9802 ..., 9897 9898 9899]
[9900 9901 9902 ..., 9997 9998 9999]]

To disable this behaviour and force NumPy to print the entire array, you can change the printing options using
set_printoptions.

>>> np.set_printoptions (threshold=np.nan)

2.2.4 Basic Operations

Arithmetic operators on arrays apply elementwise. A new array is created and filled with the result.

>>> a = np.array( [20,30,40,50] )

>>> b = np.arange( 4 )
>>> b

array ([0, 1, 2, 31)
>>> ¢ = a-b

>>> ¢

array ([20, 29, 38, 47])
>>> bx*x2

array ([0, 1, 4, 91)

>>> 10#np.sin(a)

(continues on next page)
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(continued from previous page)

array ([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854])
>>> g<35
array ([ True, True, False, False])

Unlike in many matrix languages, the product operator + operates elementwise in NumPy arrays. The matrix product
can be performed using the @ operator (in python >=3.5) or the dot function or method:

>>> A = np.array( [[1,17,
(0,111 )

>>> B = np.array( [[2,0],
R [3,411 )
>>> A « B # elementwise product
array ([[2, O],

[0, 411])
>>> A @ B # matrix product
array ([[5, 4],

[3, 411])
>>> A.dot (B) # another matrix product
array ([[5, 41,

[3, 411])

Some operations, such as += and ==, act in place to modify an existing array rather than create a new one.

>>> = np.ones((2,3), dtype=int)

>>> = np.random.random( (2, 3))

>>>
array ([[3, 3, 31,
[3, 3, 311)
>>> b += a
>>> Db
array ([[ 3.417022 , 3.72032449, 3.00011437],
[ 3.30233257, 3.14675589, 3.09233859]1)
>>> a += Db # b 1is not automatically converted to integer type

Traceback (most recent call last):

TypeError: Cannot cast ufunc add output from dtype('float64') to dtype('int64') with,
—~casting rule 'same_kind'

When operating with arrays of different types, the type of the resulting array corresponds to the more general or precise
one (a behavior known as upcasting).

>>> a = np.ones (3, dtype=np.int32)
>>> b = np.linspace (0,pi, 3)
>>> b.dtype.name

'floatoed'

>>> ¢ = atb

>>> ¢

array ([ 1. , 2.57079633, 4.141592651])
>>> c.dtype.name

'floatoed'!

>>> d = np.exp(c*1l7j)

>>> d

array ([ 0.54030231+0.8414709873, -0.84147098+0.540302317,
-0.54030231-0.8414709871)

>>> d.dtype.name

'complex128'

2.2. The Basics 9
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Many unary operations, such as computing the sum of all the elements in the array, are implemented as methods of
the ndarray class.

>>> a = np.random.random( (2, 3))

>>> a

array ([[ 0.18626021, 0.34556073, 0.39676747],
[ 0.53881673, 0.41919451, 0.6852195 11)

>>> a.sum()

2.5718191614547998

>>> g.min ()

0.1862602113776709

>>> a.max ()

0.6852195003967595

By default, these operations apply to the array as though it were a list of numbers, regardless of its shape. However,
by specifying the axis parameter you can apply an operation along the specified axis of an array:

>>> b = np.arange(12) .reshape (3, 4)

>>> b
array ([[ O, 1, 2, 31,
[ 4, 5, 6, 71,
[ 8, 9, 10, 1111)
>>>
>>> b.sum(axis=0) # sum of each column
array([12, 15, 18, 21])
>>>
>>> b.min (axis=1) # min of each row
array ([0, 4, 8])
>>>
>>> b.cumsum(axis=1) # cumulative sum along each row
array([[ O, 1, 3, 61,

[ 4, 9, 15, 227,
[ 8, 17, 27, 3811)

2.2.5 Universal Functions

NumPy provides familiar mathematical functions such as sin, cos, and exp. In NumPy, these are called “universal
functions”(ufunc). Within NumPy, these functions operate elementwise on an array, producing an array as output.

>>> B = np.arange (3)
>>> B

array ([0, 1, 21)

>>> np.exp (B)

array ([ 1. , 2.71828183, 7.3890561 1)
>>> np.sqgrt (B)
array ([ O. , 1. , 1.41421356])

>>> C = np.array([2., -1., 4.])
>>> np.add (B, C)
array ([ 2., 0., 6.])

See also:

all, any, apply_along_axis, argmax, argmin, argsort, average, bincount, ceil, clip, conj,
corrcoef, cov, cross, cumprod, cumsum, diff, dot, floor, inner, inv, lexsort, max, maximum,
mean, median, min, minimum, nonzero, outer, prod, re, round, sort, std, sum, trace, transpose,
var, vdot, vectorize, where

10 Chapter 2. Quickstart tutorial



https://docs.python.org/dev/library/functions.html#max
https://docs.python.org/dev/library/functions.html#min
https://docs.python.org/dev/library/re.html#module-re
https://docs.python.org/dev/library/functions.html#round

NumPy User Guide, Release 1.16.1

2.2.6 Indexing, Slicing and Iterating

One-dimensional arrays can be indexed, sliced and iterated over, much like lists and other Python sequences.

>>> a = np.arange (10) »*3

>>> a

array ([ O, 1, 8, 27, 64, 125, 216, 343, 512, 729])
>>> a[2]

8

>>> al2:5]

array ([ 8, 27, 641)

>>> a[:6:2] = -1000 # equivalent to a[0:6:2] = -1000; from start to position 6,
—exclusive, set every 2nd element to —-1000

>>> a

array ([-1000, 1, -1000, 27, -1000, 125, 216, 343, 512, 72917)

>>> a[ : :-1] # reversed a

array ([ 729, 512, 343, 216, 125, -1000, 27, -1000, 1, -10007)

>>> for i in a:
print (ix+(1/3.))

nan
1.0

nan

nan

O 0 ~J o Ul
O O O O O

Multidimensional arrays can have one index per axis. These indices are given in a tuple separated by commas:

>>> def f(x,y):
return 10xx+ty

>>> b = np.fromfunction(f, (5,4),dtype=int)

>>> Db
array ([[ 0, 1, 2, 31,
(1o, 11, 12, 137,
[20, 21, 22, 231,
[30, 31, 32, 331,
[40, 41, 42, 4311])
>>> b[2,3]
23
>>> b[0:5, 1] # each row in the second column of b
array ([ 1, 11, 21, 31, 41])
>>> pb[ : ,1] # equivalent to the previous example
array ([ 1, 11, 21, 31, 411])
>>> pb[1:3, : ] # each column in the second and third row of b

array(([[10, 11, 12, 13],
[20, 21, 22, 2311)

When fewer indices are provided than the number of axes, the missing indices are considered complete slices :

>>> b[-1] # the last row. Equivalent to b[-1,:]
array ([40, 41, 42, 43])

The expression within brackets in b [1] is treated as an i followed by as many instances of : as needed to represent

2.2. The Basics 11
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the remaining axes. NumPy also allows you to write this using dotsas b [1, ...].

The dots (. . .) represent as many colons as needed to produce a complete indexing tuple. For example, if x is an
array with 5 axes, then

e x[1,2,...]isequivalenttox[1,2,:,:,:],
e x[...,3]tox[:,:,:,:,3] and

e x[(4,...,5,:]tox[4,:,:,5,:].

>>> ¢ = np.array( [[ 0, 1,

[ 271, # a 3D array (two stacked 2D arrays)
[ 10, 12, 1311,

[[100,101,102],

. [110,112,113111)

>>> c.shape
(2, 2, 3)
>>> c[1,...] # same as c[1,:,:] or c[1]
array ([[100, 101, 102]

[110, 112, 113]11)

>>> c[...,2] # same as c[:,:,2]
array ([[ 2, 1371,
[102, 113711)

Iterating over multidimensional arrays is done with respect to the first axis:

>>> for row in b:
print (row)

(01 2 3]

[10 11 12 13
[20 21 22 23
[30 31 32 33
[40 41 42 43

However, if one wants to perform an operation on each element in the array, one can use the £1at attribute which is
an iterator over all the elements of the array:

>>> for element in b.flat:
print (element)

N P O e

11
12
13
20
21
22
23
30
31
32
33
40
41

(continues on next page)
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(continued from previous page)

42
43

See also:

Indexing, arrays.indexing (reference), newaxis, ndenumerate, indices

2.3 Shape Manipulation

2.3.1 Changing the shape of an array

An array has a shape given by the number of elements along each axis:

>>> a = np.floor (10+np.random.random((3,4)))
>>> a
array ([[ 2., 8., 0., 6
[ 4., 5., 1., 1.1
[ 8., 9., 3., 6
>>> a.shape
(3, 4)

The shape of an array can be changed with various commands. Note that the following three commands all return a
modified array, but do not change the original array:

>>> a.ravel () # returns the array, flattened
array ([ 2., 8., 0., 6., 4., 5., 1., 1., 8., 9., 3., 6.1)

>>> a.reshape (6,2) # returns the array with a modified shape
array ([[ 2., 8.1,
[ 0., 6.1,
[ 4., 5.7,
[ 1., 1.1,
[ 8., 9.1,
[ 3., 6.11)
>>> a.T # returns the array, transposed
array ([[ 2., 4., 8.1,
[ 8., 5., 9.1,
[ 0., 1., 3.1,
[ 6., 1., 6.11)
>>> a.T.shape
(4, 3)
>>> a.shape
(3, 4)

The order of the elements in the array resulting from ravel() is normally “C-style”, that is, the rightmost index “changes
the fastest”, so the element after a[0,0] is a[0,1]. If the array is reshaped to some other shape, again the array is treated
as “C-style”. NumPy normally creates arrays stored in this order, so ravel() will usually not need to copy its argument,
but if the array was made by taking slices of another array or created with unusual options, it may need to be copied.
The functions ravel() and reshape() can also be instructed, using an optional argument, to use FORTRAN-style arrays,
in which the leftmost index changes the fastest.

The reshape function returns its argument with a modified shape, whereas the ndarray . resize method modifies
the array itself:

>>> a
array ([[ 2., 8., 0., 6.1,
[ 4., 5., 1., 1

(continues on next page)
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(continued from previous page)

[ 8., 9., 3., 6.11)
>>> a.resize((2,6))
>>> a
array ([[ 2., 8., 0., 6., 4., 5.1
[ ., 1., 8., 9., 3., 6

If a dimension is given as -1 in a reshaping operation, the other dimensions are automatically calculated:

>>> a.reshape(3,-1)
array ([[ 2., 8., 0., 6
[ 4., 5., 1., 1.]
[ 8., 9., 3., 6

See also:

ndarray.shape, reshape, resize, ravel

2.3.2 Stacking together different arrays

Several arrays can be stacked together along different axes:

>>> a = np.floor (10+np.random.random((2,2)))

>>> a
array ([[ 8., 8.1,
[ 0., 0.11)
>>> b = np.floor (10+np.random.random((2,2)))
>>> b
array ([[ 1., 8.1,
[ 0., 4.11)
>>> np.vstack((a,b))
array ([[ 8., 8.1,
[ 0., 0.1,
[ 1., 8.1,
[ 0., 4.1D)
>>> np.hstack ((a,b))
array([[ 8., 8., 1., 8.],
[ 0., 0., 0., 4.11)

The function column_stack stacks 1D arrays as columns into a 2D array. It is equivalent to hstack only for 2D
arrays:

>>> from numpy import newaxis
>>> np.column_stack ((a,b)) # with 2D arrays
array ([[ 8., 8., 1., 8.1,
[ 0., 0., 0., 4.101)
>>> a = np.array([4.,2.])
>>> b = np.array([3.,8.1)

>>> np.column_stack ((a,b)) # returns a 2D array
array ([[ 4., 3.1,

[ 2., 8.11)
>>> np.hstack ((a,b)) # the result 1is different

array ([ 4., 2., 3., 8.1])

>>> al:,newaxis] # this allows to have a 2D columns vector
array ([[ 4.],
[ 2.11)
>>> np.column_stack((a[:,newaxis],bl:,newaxis]))
array ([[ 4., 3.1,

(continues on next page)
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(continued from previous page)

[ 2., 8.11)
>>> np.hstack((al[:,newaxis],b[:,newaxis])) # the result is the same
array ([[ 4., 3.1,

[ 2., 8.11)

On the other hand, the function row_stack is equivalent to vstack for any input arrays. In general, for arrays of
with more than two dimensions, hstack stacks along their second axes, vstack stacks along their first axes, and
concatenate allows for an optional arguments giving the number of the axis along which the concatenation should
happen.

Note

In complex cases, r__and c__ are useful for creating arrays by stacking numbers along one axis. They allow the use of

€,

range literals (“:”)

>>> np.r_[1:4,0,4]
array ([1, 2, 3, 0, 41)

When used with arrays as arguments, r__ and c__ are similar to vstack and hstack in their default behavior, but
allow for an optional argument giving the number of the axis along which to concatenate.

See also:

hstack, vstack, column_stack, concatenate,c_,r__

2.3.3 Splitting one array into several smaller ones

Using hsplit, you can split an array along its horizontal axis, either by specifying the number of equally shaped
arrays to return, or by specifying the columns after which the division should occur:

>>> a = np.floor (10+«np.random.random( (2,12)))
>>> a
array ([[ 9., 5., 6., 3., 6., 8., 0., 7., 9., 7., 2., 7.1,
r1., 4., 9., 2., 2., 1., 0., 6., 2., 2., 4., 0.11)
>>> np.hsplit (a, 3) # Split a into 3
[array ([[ 9., 5., 6., 3.1,
1., 4., 9., 2.11), array([[ 6., 8., 0., 7.1,
2., 1., 0., 6.11), array(I[[ 9., 7., 2., 7.1,
[ 2., 2., 4., 0.11)1]
>>> np.hsplit(a, (3,4)) # Split a after the third and the fourth column
[array ([[ 9., 5., 6.1,
1., 4., 9.11), array([[ 3.1,
[ 2.11), array([[ 6., 8., 0., 7., 9., 7., 2., 1.1,
r2., 1., 0., 6., 2., 2., 4., 0.11)]

vsplit splits along the vertical axis, and array_split allows one to specify along which axis to split.

2.4 Copies and Views

When operating and manipulating arrays, their data is sometimes copied into a new array and sometimes not. This is
often a source of confusion for beginners. There are three cases:

2.4.1 No Copy at All

Simple assignments make no copy of array objects or of their data.

2.4. Copies and Views 15
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>>> a = np.arange (12)

>>> b = a # no new object is created

>>> b is a # a and b are two names for the same ndarray object
True

>>> pb.shape = 3,4 # changes the shape of a

>>> a.shape

(3, 4)

Python passes mutable objects as references, so function calls make no copy.

>>> def f(x):
print (id(x))

>>> id(a) # id is a unique identifier of an object
148293216

>>> f (a)

148293216

2.4.2 View or Shallow Copy

Different array objects can share the same data. The view method creates a new array object that looks at the same
data.

>>> ¢ = a.view()
>>> c is a
False
>>> c.base is a # ¢ i1s a view of the data owned by a
True
>>> c.flags.owndata
False
>>>
>>> c.shape = 2,6 # a's shape doesn't change
>>> a.shape
(3, 4)
>>> ¢c[0,4] = 1234 # a's data changes
>>> 3
array ([ [ 0, 1, 2, 31,
[1234, 5, 6, 71,
[ 8, 9, 10, 1111)

Slicing an array returns a view of it:

>>> s = al[ : , 1:3] # spaces added for clarity; could also be written "s = af:,
—1:3]"
>>> gs[:] = 10 # s[:] is a view of s. Note the difference between s=10 and,_
—s[:]=10
>>> a
array ([ [ 0, 10, 10, 31,

[1234, 10, 10, 71,

[ 8, 10, 10, 1111)

2.4.3 Deep Copy

The copy method makes a complete copy of the array and its data.
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>>> d = a.copy () # a new array object with new data 1is_
—created
>>> d is a
False
>>> d.base is a # d doesn't share anything with a
False
>>> d[0,0] = 9999
>>> 3
array ([ [ 0, 10, 10, 31,
[1234, 10, 10, 71,
[ 8, 10, 10, 1111)

2.4.4 Functions and Methods Overview
Here is a list of some useful NumPy functions and methods names ordered in categories. See routines for the full list.

Array Creation arange, array, copy, empty, empty_like, eye, fromfile, fromfunction,
identity, linspace, logspace, mgrid, ogrid, ones, ones_like,r, zeros, zeros_like

Conversions ndarray.astype, atleast_1d, atleast_2d, atleast_3d, mat

Manipulations array_split, column_stack, concatenate, diagonal, dsplit, dstack, hsplit,
hstack, ndarray.item, newaxis, ravel, repeat, reshape, resize, squeeze, swapaxes,
take, transpose, vsplit, vstack

Questions all, any, nonzero, where
Ordering argmax, argmin, argsort, max, min, ptp, searchsorted, sort

Operations choose, compress, cumprod, cumsum, inner,ndarray.fill, imag, prod, put, putmask,
real, sum

Basic Statistics cov, mean, std, var

Basic Linear Algebra cross, dot, outer, linalg.svd, vdot

2.5 Less Basic

2.5.1 Broadcasting rules

Broadcasting allows universal functions to deal in a meaningful way with inputs that do not have exactly the same
shape.

The first rule of broadcasting is that if all input arrays do not have the same number of dimensions, a “1” will be
repeatedly prepended to the shapes of the smaller arrays until all the arrays have the same number of dimensions.

The second rule of broadcasting ensures that arrays with a size of 1 along a particular dimension act as if they had the
size of the array with the largest shape along that dimension. The value of the array element is assumed to be the same
along that dimension for the “broadcast” array.

After application of the broadcasting rules, the sizes of all arrays must match. More details can be found in Broad-
casting.

2.6 Fancy indexing and index tricks

NumPy offers more indexing facilities than regular Python sequences. In addition to indexing by integers and slices,
as we saw before, arrays can be indexed by arrays of integers and arrays of booleans.

2.5. Less Basic 17
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Indexing with Arrays of Indices

2.6.1

>>> a = np.

>>> 1 = np.

>>> afi]

array ([ 1,

>>>

>>> j = np.

>>> alj]

array (L[ 9,
(81,

arange (12) »x2

array( [ 1,1,3,8,5 1)

1, 9, 64, 25])

array( [ [ 3, 41, [ 9, 71 1
16],

4911)

# the first 12 square numbers
an array of indices
# the elements of a at the positions i

S

# a bidimensional array of indices
# the same shape as j

When the indexed array a is multidimensional, a single array of indices refers to the first dimension of a. The following
example shows this behavior by converting an image of labels into a color image using a palette.

>>> palette

>>> image =
—in the pa
>>> palette
array ([[[

N
a1

N
&)

= np.array( [ [0,0,0],
[255,0,071,
[0,255,01,
[0,0,2557],
[255,255,255]
np.array( [ [ 0, 1, 2, 0 1,
lette

[image]

0, 0, 01,
5, 0, 071,
0, 255, 01,
0, 0, 011,
0, 0, 01,
0, 0, 2557,
5, 255, 2557,
0, 0, 0111)

]

)

# the

black
red
green
blue
white

HO%e W S S $

each value corresponds to a color,

(2,4,3) color image

We can also give indexes for more than one dimension. The arrays of indices for each dimension must have the same

shape.
>>> a = np.arange (12) .reshape (3, 4)
>>> a
array ([[ O, i, 2, 31,

[ 4, 5, 6, 171,

[ 8 9, 10, 1111)
>>> i = np.array( [ [0,1], # indices for the first dim of a

(1,21 1)
>>> 3 = np.array( [ [2,1], # indices for the second dim
. (3,31 1)

>>>
>>> ali, j] # 1 and j must have equal shape
array ([[ 2, 51,

L7, 1111)
>>>
>>> afi, 2]
array ([[ 2, 6],

[ 6, 1011)
>>>
>>> al:, 3] # i.e., al : , 7]
array ([[[ 2, 11,

[ 3, 311,

[r 6, 51,

(continues on next page)
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L7, 711,
trwo, 91,
11, 11111)

Naturally, we can put i and j in a sequence (say a list) and then do the indexing with the list.

>>> 1 = [i,7]
>>> afll] # equivalent to ali, j]
array ([ [ 2, 51,

[ 7, 1111)

However, we can not do this by putting i and j into an array, because this array will be interpreted as indexing the
first dimension of a.

>>> s = np.array( [i,3] )
>>> als] # not what we want
Traceback (most recent call last):
File "<stdin>", line 1, in ?
IndexError: index (3) out of range (0<=index<=2) in dimension 0

>>>
>>> al[tuple(s)] # same as al[i, j]
array ([[ 2, 5]

L7, 1111)

Another common use of indexing with arrays is the search of the maximum value of time-dependent series:

>>> time = np.linspace (20, 145, 5) # time scale

>>> data = np.sin(np.arange (20)) .reshape(5,4) # 4 time—dependent series
>>> time

array ([ 20. , 51.25, 82.5 , 113.75, 145. 1)

>>> data

array ([ , 0.84147098, 0.90929743, 0.141120017],

[ 0. ]
[-0.7568025 , -0.95892427, -0.2794155 , 0.6569866 ],

[ 0.98935825, 0.41211849, -0.54402111, -0.99999021],

[-0.53657292, 0.42016704, 0.99060736, 0.65028784],

[-0.28790332, -0.96139749, -0.75098725, 0.14987721]11])

>>>

>>> ind = data.argmax (axis=0) # index of the maxima for each series
>>> ind

array ([2, 0, 3, 11)

>>>

>>> time_max = time[ind] # times corresponding to the maxima
>>>

>>> data_max = datal[ind, range(data.shapel[l])] # => data[ind[0],0], data[ind[1],1]...
>>>

>>> time_max

array ([ 82.5 , 20. , 113.75, 51.25])

>>> data_max

array ([ 0.98935825, 0.84147098, 0.99060736, 0.6569866 1)

>>>

>>> np.all (data_max == data.max(axis=0))

True

You can also use indexing with arrays as a target to assign to:
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>>> a = np.arange(5)
>>> a

array ([0, 1, 2, 3, 41)
>>> af[l,3,4]] =0

>>> a
array ([0, 0, 2, 0, 01)

However, when the list of indices contains repetitions, the assignment is done several times, leaving behind the last
value:

>>> a = np.arange(5)
>>> al[[0,0,211=[1,2,3]
>>> a

array([2, 1, 3, 3, 41)

This is reasonable enough, but watch out if you want to use Python’s += construct, as it may not do what you expect:

>>> a = np.arange (5)
>>> al[0,0,2]]1+=1
>>> 3

array ([1, 1, 3, 3, 4])

Even though 0 occurs twice in the list of indices, the Oth element is only incremented once. This is because Python
requires “a+=1" to be equivalent to “a=a+ 1”.

2.6.2 Indexing with Boolean Arrays

When we index arrays with arrays of (integer) indices we are providing the list of indices to pick. With boolean indices
the approach is different; we explicitly choose which items in the array we want and which ones we don’t.

The most natural way one can think of for boolean indexing is to use boolean arrays that have the same shape as the
original array:

>>> a = np.arange (12) .reshape (3, 4)
>>> b = a > 4
>>> b # b is a boolean with a's shape
array ([ [False, False, False, False],

[False, True, True, True],

[ True, True, True, Truel])
>>> alb]
array ([ 5, 6, 7, 8, 9, 10, 111)

# 1d array with the selected elements

This property can be very useful in assignments:

>>> al[b] = 0 # All elements of 'a' higher than 4,
—become 0

>>> a

array ([[0, 1, 2, 31,

You can look at the following example to see how to use boolean indexing to generate an image of the Mandelbrot set:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> def mandelbrot ( h,w, maxit=20 ):
"""Returns an image of the Mandelbrot fractal of size (h,w)."""

(continues on next page)
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y,Xx = np.ogrid[ -1.4:1.4:h+17,

c = xtyx1l]

z = C

divtime = maxit + np.zeros(z.shape,

for i in range (maxit):
Z = zZxx2 + C

diverge = zxnp.conj(z) > 2%%2
diverge &
divtime [div_now]

z [diverge] = 2

div_now =

i

C return divtime
>>> plt.imshow (mandelbrot (400,400))
>>> plt.show/()

(divtime==maxit)

-2:0.8:wx1l7j ]

dtype=int)

# who is diverging
# who is diverging now
# note when
# avoid diverging too much

50
100
150
200
250
300
350

400
0 100

200

300 400

The second way of indexing with booleans is more similar to integer indexing; for each dimension of the array we

give a 1D boolean array selecting the slices we want:

>>> a = np.arange (12) .reshape (3, 4)
>>> bl = np.array([False,True, True])
>>> b2 = np.array ([True,False, True,False])
>>>
>>> albl, :]
array ([ [ 4, 5, 6, 71,
[ 8, 9, 10, 1111])
>>>
>>> albl]
array ([[ 4, 5, 6, 71,
[ 8, 9, 10, 1111)
>>>
>>> al:,b2]
array ([[ O, 21,
[ 4, 6],
[ 8, 1011)

# first dim selection
# second dim selection

# selecting rows

# same thing

# selecting columns

(continues on next page)

2.6. Fancy indexing and index tricks

21




NumPy User Guide, Release 1.16.1

(continued from previous page)

>>>
>>> al[bl,b2] # a weird thing to do
array ([ 4, 10])

Note that the length of the 1D boolean array must coincide with the length of the dimension (or axis) you want to slice.
In the previous example, b1 has length 3 (the number of rows in a), and b2 (of length 4) is suitable to index the 2nd
axis (columns) of a.

2.6.3 The ix_() function

The ix_ function can be used to combine different vectors so as to obtain the result for each n-uplet. For example, if
you want to compute all the a+b*c for all the triplets taken from each of the vectors a, b and c:

>>> a = np.array([2,3,4,5])
>>> b = np.array ([8,5,4])
>>> ¢ = np.array([5,4,6,8,3])
>>> ax,bx,cx = np.ix_(a,b,c)
>>> ax
array ([[[2]1,
[[311,
[[4]17,
[[5111)
>>> bx
array ([[[8],
[51,
(4111)
>>> cx
array ([[[5, 4, 6, 8, 3111)

>>> ax.shape, bx.shape, cx.shape
(4, 1, 1), (1, 3, 1), (1, 1, 5))

>>> result = axtbxxcx
>>> result
array ([[[42, 34, 50, 66, 26],

(27, 22, 32, 42, 17],
[22, 18, 26, 34, 1411,
[43, 35, 51, 67, 27
[28, 23, 33, 43, 18
[23, 19, 27, 35, 15
[44, 36, 52, 68, 28
[29, 24, 34, 44, 19],
[24, 20, 28, 36, 16]1,
[45, 37, 53, 69, 29
[30, 25, 35, 45, 207,
[25, 21, 29, 37, 17111)
>>> result[3,2,4]

17

>>> a[3]+b[2]xc[4]

17

You could also implement the reduce as follows:

>>> def ufunc_reduce (ufct, *vectors):
vs = np.ix_ (xvectors)
r = ufct.identity
for v in vs:
r = ufct(r,v)

(continues on next page)
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return r

and then use it as:

>>> ufunc_reduce (np.add, a,b, c)
array ([[[15, 14, 16, 18, 137,
(12, 11, 13, 15, 10],

(11, 10, 12, 14, 911,
[16, 15, 17, 19, 14]
[13, 12, 14, 16, 117,
(12, 11, 13, 15, 1011,
[f17, 1e, 18, 20, 1571,
(14, 13, 15, 17, 1237,
[13, 12, 14, 16, 1111,
(18, 17, 19, 21, 16]
[15, 14, 16, 18, 13],
(14, 13, 15, 17, 12111)

The advantage of this version of reduce compared to the normal ufunc.reduce is that it makes use of the Broadcasting
Rules in order to avoid creating an argument array the size of the output times the number of vectors.

2.6.4 Indexing with strings

See Structured arrays.

2.7 Linear Algebra

Work in progress. Basic linear algebra to be included here.

2.7.1 Simple Array Operations

See linalg.py in numpy folder for more.

>>> import numpy as np
>>> a = np.array([[1.0, 2.0], [3.0, 4.011)
>>> print (a)
[[ 1. 2.]
[ 3. 4.]]

>>> a.transpose ()
array ([[ 1., 3.1,
[ 2., 4.101)

>>> np.linalg.inv(a)
array ([[-2. , 1.1,
[ 1.5, -0.5]1)

>>> u = np.eye(2) # unit 2x2 matrix; "eye" represents "I"
>>> U
array ([[ 1., 0.7,
[ 0., 1.11)
>>> j = np.array([[0.0, -1.0], [1.0, 0.011)
>>> § @ 3 # matrix product
array ([[-1., 0.1,

(continues on next page)
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>>> np.trace(u) # trace
2.0

>>> y = np.array([[5.1, [7.11)
>>> np.linalg.solve(a, V)
array ([ [-3.],

[ 4.11)

>>> np.linalg.eig(3J)
(array ([ 0.+1.3, 0.-1.31), array([[ 0.70710678+0.] , 0.70710678-0.7 1,
[ 0.00000000-0.707106783, 0.00000000+0.70710678311))

Parameters:
square matrix

Returns
The eigenvalues, each repeated according to its multiplicity.
The normalized (unit "length") eigenvectors, such that the
column "~ "v[:,1] " 1is the eigenvector corresponding to the
eigenvalue "~ "w[i] "

2.8 Tricks and Tips

Here we give a list of short and useful tips.

2.8.1 “Automatic” Reshaping

To change the dimensions of an array, you can omit one of the sizes which will then be deduced automatically:

>>> a = np.arange (30)
3

>>> a.shape = 2,-1, # —1 means "whatever is needed"
>>> a.shape
(2, 5, 3)
>>> a
array ([[[ 0, 1, 21,
[ 3, 4, 51,
[ 6, 7, 81,
[ 9, 10, 117,
[12, 13, 141],
[[15, 16, 171,
[18, 19, 201,
[21, 22, 231,
[24, 25, 2617,
[27, 28, 29111)

2.8.2 Vector Stacking

How do we construct a 2D array from a list of equally-sized row vectors? In MATLAB this is quite easy: if x and y are
two vectors of the same length you only need do m=[x; y]. In NumPy this works via the functions column_stack,
dstack, hstack and vstack, depending on the dimension in which the stacking is to be done. For example:

x = np.arange (0,10,2) # x=([0,2,4,6,8])
y = np.arange (5) # y=([0,1,2,3,4])

(continues on next page)
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m = np.vstack ([x,vy]) # m=([[0,2,4,6,8],
# [0,1,2,3,4]])
xy = np.hstack([x,y]) # xy =([0,2,4,6,8,0,1,2,3,4])

The logic behind those functions in more than two dimensions can be strange.
See also:

NumPy for Matlab users

2.8.3 Histograms

The NumPy histogram function applied to an array returns a pair of vectors: the histogram of the array and the
vector of bins. Beware: matplotlib also has a function to build histograms (called hist, as in Matlab) that
differs from the one in NumPy. The main difference is that pylab.hist plots the histogram automatically, while
numpy . histogram only generates the data.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> # Build a vector of 10000 normal deviates with variance 0.5"2 and mean 2

>>> mu, sigma = 2, 0.5

>>> v = np.random.normal (mu, sigma, 10000)

>>> # Plot a normalized histogram with 50 bins

>>> plt.hist (v, bins=50, density=1) # matplotlib version (plot)

>>> plt.show()

0.8

0.6

0.4 +

0.2 4

0.0 -
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

>>> # Compute the histogram with numpy and then plot it

>>> (n, bins) = np.histogram(v, bins=50, density=True) # NumPy version (no plot)
>>> plt.plot (.5+ (bins[l:]+bins[:-1]), n)

>>> plt.show ()

2.9 Further reading

* The Python tutorial
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CHAPTER
THREE

NUMPY BASICS

3.1 Data types

See also:

Data type objects

3.1.1 Array types and conversions between types

NumPy supports a much greater variety of numerical types than Python does. This section shows which are available,
and how to modify an array’s data-type.

The primitive types supported are tied closely to those in C:

Numpy type | C type Description

np.bool bool Boolean (True or False) stored as a byte

np.byte signed char Platform-defined

np.ubyte unsigned char Platform-defined

np.short short Platform-defined

np.ushort unsigned short | Platform-defined

np.intc int Platform-defined

np.uintc unsigned int Platform-defined

np.int_ long Platform-defined

np.uint unsigned long Platform-defined

np.longlong long long Platform-defined

np.ulonglong unsigned long Platform-defined

long

np.half / Half precision float: sign bit, 5 bits exponent, 10 bits mantissa

np.float16

np.single float Platform-defined single precision float: typically sign bit, 8 bits expo-
nent, 23 bits mantissa

np.double double Platform-defined double precision float: typically sign bit, 11 bits expo-
nent, 52 bits mantissa.

np.longdouble | long double Platform-defined extended-precision float

np.csingle float complex Complex number, represented by two single-precision floats (real and
imaginary components)

np.cdouble double complex | Complex number, represented by two double-precision floats (real and
imaginary components).

np.clongdouble| long double Complex number, represented by two extended-precision floats (real and

complex imaginary components).

Since many of these have platform-dependent definitions, a set of fixed-size aliases are provided:
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Numpy type C type Description

np.int8 int8_t Byte (-128 to 127)

np.int16 intl6_t Integer (-32768 to 32767)

np.int32 int32_t Integer (-2147483648 to 2147483647)

np.int64 int64_t Integer (-9223372036854775808 to 9223372036854775807)

np.uint8 uint8_t Unsigned integer (0 to 255)

np.uint16 uintl6_t Unsigned integer (0 to 65535)

np.uint32 uint32_t Unsigned integer (0 to 4294967295)

np.uint64 uint64_t Unsigned integer (0 to 18446744073709551615)

np.intp intptr_t Integer used for indexing, typically the same as ssize_t

np.uintp uintptr_t Integer large enough to hold a pointer

np.float32 float

np.float64 | np.float_ double Note that this matches the precision of the builtin python float.

np.complex64 float Complex number, represented by two 32-bit floats (real and imagi-
complex nary components)

np.complex128 /| double Note that this matches the precision of the builtin python complex.

np.complex_ complex

NumPy numerical types are instances of dtype (data-type) objects, each having unique characteristics. Once you
have imported NumPy using

>>> import numpy as np

the dtypes are available as np.bool_, np.float32, etc.
Advanced types, not listed in the table above, are explored in section Structured arrays.

There are 5 basic numerical types representing booleans (bool), integers (int), unsigned integers (uint) floating point
(float) and complex. Those with numbers in their name indicate the bitsize of the type (i.e. how many bits are needed
to represent a single value in memory). Some types, such as int and intp, have differing bitsizes, dependent on the
platforms (e.g. 32-bit vs. 64-bit machines). This should be taken into account when interfacing with low-level code
(such as C or Fortran) where the raw memory is addressed.

Data-types can be used as functions to convert python numbers to array scalars (see the array scalar section for an
explanation), python sequences of numbers to arrays of that type, or as arguments to the dtype keyword that many
numpy functions or methods accept. Some examples:

>>> import numpy as np

>>> x = np.float32(1.0)

>>> x

1.0

>>> y = np.int_([1,2,4])

>>> y

array ([1, 2, 4])

>>> z = np.arange (3, dtype=np.uint8)
>>> z

array ([0, 1, 2], dtype=uint8)

Array types can also be referred to by character codes, mostly to retain backward compatibility with older packages
such as Numeric. Some documentation may still refer to these, for example:

>>> np.array([l, 2, 3], dtype='f")
array ([ 1., 2., 3.1, dtype=float32)

We recommend using dtype objects instead.
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To convert the type of an array, use the .astype() method (preferred) or the type itself as a function. For example:

>>> z.astype (float)

array ([ 0., 1., 2.1)

>>> np.int8(z)

array ([0, 1, 2], dtype=int8)

Note that, above, we use the Python float object as a dtype. NumPy knows that int refers to np.int_, bool means
np.bool_,that float isnp.float_and complexis np.complex_. The other data-types do not have Python
equivalents.

To determine the type of an array, look at the dtype attribute:

>>> z.dtype
dtype ('uint8")

dtype objects also contain information about the type, such as its bit-width and its byte-order. The data type can also
be used indirectly to query properties of the type, such as whether it is an integer:

>>> d = np.dtype (int)
>>> d
dtype ('int32")

>>> np.issubdtype (d, np.integer)
True

>>> np.issubdtype(d, np.floating)
False

3.1.2 Array Scalars

NumPy generally returns elements of arrays as array scalars (a scalar with an associated dtype). Array scalars differ
from Python scalars, but for the most part they can be used interchangeably (the primary exception is for versions
of Python older than v2.x, where integer array scalars cannot act as indices for lists and tuples). There are some
exceptions, such as when code requires very specific attributes of a scalar or when it checks specifically whether a
value is a Python scalar. Generally, problems are easily fixed by explicitly converting array scalars to Python scalars,
using the corresponding Python type function (e.g., int, float, complex, str, unicode).

The primary advantage of using array scalars is that they preserve the array type (Python may not have a matching
scalar type available, e.g. int16). Therefore, the use of array scalars ensures identical behaviour between arrays and
scalars, irrespective of whether the value is inside an array or not. NumPy scalars also have many of the same methods
arrays do.

3.1.3 Extended Precision

Python’s floating-point numbers are usually 64-bit floating-point numbers, nearly equivalent to np.float64. In
some unusual situations it may be useful to use floating-point numbers with more precision. Whether this is possible
in numpy depends on the hardware and on the development environment: specifically, x86 machines provide hardware
floating-point with 80-bit precision, and while most C compilers provide this as their Long double type, MSVC
(standard for Windows builds) makes 1ong double identical to double (64 bits). NumPy makes the compiler’s
long double available as np.longdouble (and np.clongdouble for the complex numbers). You can find
out what your numpy provides with np. finfo (np.longdouble).

NumPy does not provide a dtype with more precision than C long doubles; in particular, the 128-bit IEEE quad
precision data type (FORTRAN’s REAL+16) is not available.

For efficient memory alignment, np . longdouble is usually stored padded with zero bits, either to 96 or 128 bits.
Which is more efficient depends on hardware and development environment; typically on 32-bit systems they are
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padded to 96 bits, while on 64-bit systems they are typically padded to 128 bits. np. longdouble is padded to the
system default; np.float 96 and np.float128 are provided for users who want specific padding. In spite of the
names, np.float 96 and np.float128 provide only as much precision as np . longdouble, that is, 80 bits on
most x86 machines and 64 bits in standard Windows builds.

Be warned that even if np.longdouble offers more precision than python float, it is easy to lose that extra
precision, since python often forces values to pass through f1oat. For example, the $ formatting operator requires
its arguments to be converted to standard python types, and it is therefore impossible to preserve extended precision
even if many decimal places are requested. It can be useful to test your code with the value 1 + np.finfo (np.
longdouble) .eps.

3.2 Array creation

See also:

Array creation routines

3.2.1 Introduction

There are 5 general mechanisms for creating arrays:
1. Conversion from other Python structures (e.g., lists, tuples)
2. Intrinsic numpy array creation objects (e.g., arange, ones, zeros, etc.)
3. Reading arrays from disk, either from standard or custom formats
4. Creating arrays from raw bytes through the use of strings or buffers
5. Use of special library functions (e.g., random)

This section will not cover means of replicating, joining, or otherwise expanding or mutating existing arrays. Nor will
it cover creating object arrays or structured arrays. Both of those are covered in their own sections.

3.2.2 Converting Python array_like Objects to NumPy Arrays

In general, numerical data arranged in an array-like structure in Python can be converted to arrays through the use of
the array() function. The most obvious examples are lists and tuples. See the documentation for array() for details for
its use. Some objects may support the array-protocol and allow conversion to arrays this way. A simple way to find
out if the object can be converted to a numpy array using array() is simply to try it interactively and see if it works!
(The Python Way).

Examples:

>>> x = np.array([2,3,1,0])

>>> x = np.array([2, 3, 1, 01)

>>> x = np.array([[1,2.0],([0,01, (1+13,3.)]1) # note mix of tuple and lists,
and types

>>> x = np.array([[ 1.+0.3, 2.+0.31, [ 0.40.3, 0.+0.31, [ 1.+1.3, 3.40.311)

3.2.3 Intrinsic NumPy Array Creation
NumPy has built-in functions for creating arrays from scratch:

zeros(shape) will create an array filled with O values with the specified shape. The default dtype is float64.

>>> np.zeros ((2, 3))
array([[ 0., 0., 0.1, [ 0., 0., 0.11)
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ones(shape) will create an array filled with 1 values. It is identical to zeros in all other respects.

arange() will create arrays with regularly incrementing values. Check the docstring for complete information on the
various ways it can be used. A few examples will be given here:

>>> np.arange (10)

array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 91])
>>> np.arange (2, 10, dtype=float)
array ([ 2., 3., 4., 5., 6., 7., 8., 9.1)

>>> np.arange (2, 3, 0.1)

array ([ 2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9])

Note that there are some subtleties regarding the last usage that the user should be aware of that are described in the
arange docstring.

linspace() will create arrays with a specified number of elements, and spaced equally between the specified beginning
and end values. For example:

>>> np.linspace(l., 4., 6)
array ([ 1. , 1.6, 2.2, 2.8, 3.4, 4. 1)

The advantage of this creation function is that one can guarantee the number of elements and the starting and end
point, which arange() generally will not do for arbitrary start, stop, and step values.

indices() will create a set of arrays (stacked as a one-higher dimensioned array), one per dimension with each repre-
senting variation in that dimension. An example illustrates much better than a verbal description:

>>> np.indices ((3,3))
array((rro, o, oy, 1, 1, 11, (2, 2, 2313, 110, 1, 2], [0, 1, 2], [0, 1, 2]11)

This is particularly useful for evaluating functions of multiple dimensions on a regular grid.

3.2.4 Reading Arrays From Disk

This is presumably the most common case of large array creation. The details, of course, depend greatly on the format
of data on disk and so this section can only give general pointers on how to handle various formats.

Standard Binary Formats

Various fields have standard formats for array data. The following lists the ones with known python libraries to read
them and return numpy arrays (there may be others for which it is possible to read and convert to numpy arrays so
check the last section as well)

HDF5: hbpy
FITS: Astropy

Examples of formats that cannot be read directly but for which it is not hard to convert are those formats supported by
libraries like PIL (able to read and write many image formats such as jpg, png, etc).

Common ASCII Formats

Comma Separated Value files (CSV) are widely used (and an export and import option for programs like Excel). There
are a number of ways of reading these files in Python. There are CSV functions in Python and functions in pylab (part
of matplotlib).

More generic ascii files can be read using the io package in scipy.
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Custom Binary Formats

There are a variety of approaches one can use. If the file has a relatively simple format then one can write a simple
I/0 library and use the numpy fromfile() function and .tofile() method to read and write numpy arrays directly (mind
your byteorder though!) If a good C or C++ library exists that read the data, one can wrap that library with a variety of
techniques though that certainly is much more work and requires significantly more advanced knowledge to interface
with C or C++.

Use of Special Libraries

There are libraries that can be used to generate arrays for special purposes and it isn’t possible to enumerate all of
them. The most common uses are use of the many array generation functions in random that can generate arrays of
random values, and some utility functions to generate special matrices (e.g. diagonal).

3.3 1/0 with NumPy

3.3.1 Importing data with genfromtxt
NumPy provides several functions to create arrays from tabular data. We focus here on the genfromt xt function.

In a nutshell, genfromt xt runs two main loops. The first loop converts each line of the file in a sequence of strings.
The second loop converts each string to the appropriate data type. This mechanism is slower than a single loop, but
gives more flexibility. In particular, genfromt xt is able to take missing data into account, when other faster and
simpler functions like 1oadtxt cannot.

Note: When giving examples, we will use the following conventions:

>>> import numpy as np
>>> from io import StringIO

Defining the input

The only mandatory argument of genfromtxt is the source of the data. It can be a string, a list of strings, or a
generator. If a single string is provided, it is assumed to be the name of a local or remote file, or an open file-like
object with a read method, for example, a file or 10.StringIO object. If a list of strings or a generator returning
strings is provided, each string is treated as one line in a file. When the URL of a remote file is passed, the file is
automatically downloaded to the current directory and opened.

Recognized file types are text files and archives. Currently, the function recognizes gzip and bz2 (bzip2) archives.
The type of the archive is determined from the extension of the file: if the filename ends with ' . gz ', a gzip archive
is expected; if it ends with 'bz2 "', abzip2 archive is assumed.

Splitting the lines into columns

The delimiter argument

Once the file is defined and open for reading, genfromtxt splits each non-empty line into a sequence of strings.
Empty or commented lines are just skipped. The delimiter keyword is used to define how the splitting should take
place.

Quite often, a single character marks the separation between columns. For example, comma-separated files (CSV) use
a comma (, ) or a semicolon (; ) as delimiter:
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>>> data = u"l, 2, 3\n4, 5, 6"
>>> np.genfromtxt (StringIO (data), delimiter=",")
array ([[ 1., 2., 3.1,

[ 4., 5., 6.11)

Another common separator is "\t ", the tabulation character. However, we are not limited to a single character, any
string will do. By default, genfromtxt assumes delimiter=None, meaning that the line is split along white
spaces (including tabs) and that consecutive white spaces are considered as a single white space.

Alternatively, we may be dealing with a fixed-width file, where columns are defined as a given number of characters.
In that case, we need to set del imiter to a single integer (if all the columns have the same size) or to a sequence of
integers (if columns can have different sizes):

>>> data = u" 1 2 3\n 4 5 67\n890123 4"
>>> np.genfromtxt (StringIO (data), delimiter=3)

array ([ [ 1., 2., 3.1,
[ 4., 5., 67.1,
[ 890., 123., 4.11)

>>> data = u"123456789\n 4 7 9\n 4567 9"
>>> np.genfromtxt (StringIO (data), delimiter=(4, 3, 2))

array ([[ 1234., 567., 89.1,
[ 4., 7., 9.1,
[ 4., 567., 9.11)

The autostrip argument

By default, when a line is decomposed into a series of strings, the individual entries are not stripped of leading nor
trailing white spaces. This behavior can be overwritten by setting the optional argument autostrip to a value of
True:

>>> data = u"l, abc , 2\n 3, xxx, 4"
>>> # Without autostrip
>>> np.genfromtxt (StringIO(data), delimiter=",", dtype="|U5")

array(([(['1l', ' abc ', " 2'],
['3', ' xxx', ' 4'1],
dtype="'1]U5")

>>> # With autostrip
>>> np.genfromtxt (StringIO (data), delimiter=",", dtype="|U5", autostrip=True)

array ([['1l', 'abc', '2'],
[('3', 'xxx', "'4']7],
dtype="'1]U5")

The comments argument

The optional argument comments is used to define a character string that marks the beginning of a comment. By
default, genfromtxt assumes comments="'4#"'. The comment marker may occur anywhere on the line. Any
character present after the comment marker(s) is simply ignored:

>>> data = u"""#
# Skip me !
# Skip me too !
1, 2
3, 4
5, 6 #This is the third line of the data
7, 8

(continues on next page)
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# And here comes the last line
9, 0

wnnun

>>> np.genfromtxt (StringlIO (data), comments="#", delimiter=",")

[[ 1. 2.1
[ 3. ]
[ 5. 6.]
[ 7. 8.1
[ 9. 0.7]

New in version 1.7.0: When comment s is set to None, no lines are treated as comments.

Note: There is one notable exception to this behavior: if the optional argument names=True, the first commented
line will be examined for names.

Skipping lines and choosing columns

The skip_header and skip_footer arguments

The presence of a header in the file can hinder data processing. In that case, we need to use the skip_header
optional argument. The values of this argument must be an integer which corresponds to the number of lines to skip
at the beginning of the file, before any other action is performed. Similarly, we can skip the last n lines of the file by
using the skip_footer attribute and giving it a value of n:

>>> data = u"\n".join(str (i) for i in range (10))

>>> np.genfromtxt (StringIO (data),)

array ([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.1)
>>> np.genfromtxt (StringIO (data),

R skip_header=3, skip_footer=5)

array ([ 3., 4.7)

By default, skip_header=0 and skip_footer=0, meaning that no lines are skipped.

The usecols argument

In some cases, we are not interested in all the columns of the data but only a few of them. We can select which
columns to import with the usecols argument. This argument accepts a single integer or a sequence of integers
corresponding to the indices of the columns to import. Remember that by convention, the first column has an index of
0. Negative integers behave the same as regular Python negative indexes.

For example, if we want to import only the first and the last columns, we can use usecols= (0, -1):

>>> data = u"1l 2 3\n4 5 6"
>>> np.genfromtxt (StringlIO (data), usecols=(0, -1))
array ([[ 1., 3.1,

[ 4., 6.11)

If the columns have names, we can also select which columns to import by giving their name to the usecols
argument, either as a sequence of strings or a comma-separated string:

>>> data = u"l 2 3\n4 5 6"

>>> np.genfromtxt (StringIO (data),

. names="a, b, c¢", usecols=("a", "c"))
array ([ (1.0, 3.0), (4.0, 6.0)1,

(continues on next page)
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dtype=[('a', '<f8"), ('c', '<f8")1])
>>> np.genfromtxt (StringIO (data),
names="a, b, c", usecols=("a, c"))
array ([(1.0, 3.0), (4.0, 6.0)1,
dtype=[('a', '<f8'), ('c', '<f8")])

Choosing the data type

The main way to control how the sequences of strings we have read from the file are converted to other types is to set
the dt ype argument. Acceptable values for this argument are:

* a single type, such as dtype=float. The output will be 2D with the given dtype, unless a name has been
associated with each column with the use of the name s argument (see below). Note that dt ype=float is the
default for genfromtxt.

* asequence of types, such as dtype=(int, float, float).

* a comma-separated string, such as dtype="14, £8, |U3".

* adictionary with two keys 'names' and ' formats"'.

* asequence of tuples (name, type),suchasdtype=[('A', int), ('B', float)].

* an existing numpy . dtype object.

* the special value None. In that case, the type of the columns will be determined from the data itself (see below).

In all the cases but the first one, the output will be a 1D array with a structured dtype. This dtype has as many fields as
items in the sequence. The field names are defined with the name s keyword.

When dt ype=None, the type of each column is determined iteratively from its data. We start by checking whether a
string can be converted to a boolean (that is, if the string matches t rue or false in lower cases); then whether it can
be converted to an integer, then to a float, then to a complex and eventually to a string. This behavior may be changed
by modifying the default mapper of the St ringConverter class.

The option dtype=None is provided for convenience. However, it is significantly slower than setting the dtype
explicitly.
Setting the names

The names argument

A natural approach when dealing with tabular data is to allocate a name to each column. A first possibility is to use an
explicit structured dtype, as mentioned previously:

>>> data = StringIO("1 2 3\n 4 5 6")

>>> np.genfromtxt (data, dtype=[(_, int) for _ in "abc"])
array ([ (1, 2, 3), (4, 5, 6)]1,
dtype=[('a', '<i8"), ('b', '<i8'), ('c', '<i8")])

Another simpler possibility is to use the name s keyword with a sequence of strings or a comma-separated string:

>>> data = StringIO("1 2 3\n 4 5 6")
>>> np.genfromtxt (data, names="A, B, C")
array([(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)]1,
dtype=[('A', '<f8'), ('B', '<f8"), ('C', '<f8")])

In the example above, we used the fact that by default, dtype=float. By giving a sequence of names, we are
forcing the output to a structured dtype.
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We may sometimes need to define the column names from the data itself. In that case, we must use the names
keyword with a value of True. The names will then be read from the first line (after the skip_header ones), even
if the line is commented out:

>>> data = StringIO("So it goes\n#a b c\nl 2 3\n 4 5 6")
>>> np.genfromtxt (data, skip_header=1, names=True)
array([(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)1,

dtype=[('a', '<f8"'), ('b', '<f8"), ('c', '<£f8")1])

The default value of names is None. If we give any other value to the keyword, the new names will overwrite the
field names we may have defined with the dtype:

>>> data = StringIO("1 2 3\n 4 5 6")
>>> ndtype=[('a',int), ('b', float), ('c', int)]
>>> names = ["A", "B", "C"]
>>> np.genfromtxt (data, names=names, dtype=ndtype)
array ([ (1, 2.0, 3), (4, 5.0, 6)1,
dtype=[('A', '<i8'"), ('B', '<fg8'), ('C', '<i8")1)

The defaultfmt argument

If names=None but a structured dtype is expected, names are defined with the standard NumPy default of "£%i",
yielding names like £0, £1 and so forth:

>>> data = StringIO("1 2 3\n 4 5 6")
>>> np.genfromtxt (data, dtype=(int, float, int))
array ([ (1, 2.0, 3), (4, 5.0, 6)1,

dtype=[('f0', '<i8'), ('f1', '<f8"'), ('f2', '<i8")])

In the same way, if we don’t give enough names to match the length of the dtype, the missing names will be defined
with this default template:

>>> data = StringIO("1 2 3\n 4 5 6")
>>> np.genfromtxt (data, dtype=(int, float, int), names="a")
array ([ (1, 2.0, 3), (4, 5.0, 6)1,

dtype=[('a', '<i8'), ('f0', '<f8'), ('fl1', '<i8")])

We can overwrite this default with the default fmt argument, that takes any format string:

>>> data = StringIO("1 2 3\n 4 5 6")
>>> np.genfromtxt (data, dtype=(int, float, int), defaultfmt="var__ ")
array ([ (1, 2.0, 3), (4, 5.0, 6)1,

dtype=[('var_00', '<i8'), ('var_01', '<f8'), ('var_02', '<ig8"')])

Note: We need to keep in mind that default fmt is used only if some names are expected but not defined.

Validating names

NumPy arrays with a structured dtype can also be viewed as recarray, where a field can be accessed as if it were an
attribute. For that reason, we may need to make sure that the field name doesn’t contain any space or invalid character,
or that it does not correspond to the name of a standard attribute (like size or shape), which would confuse the
interpreter. genfromtxt accepts three optional arguments that provide a finer control on the names:

deletechars Gives a string combining all the characters that must be deleted from the name. By
default, invalid characters are ~ ! @#S$%$ & () —=+~\ |1} [{"';: /?2.>,<.
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excludelist Gives a list of the names to exclude, such as return, file, print... If one of the
input name is part of this list, an underscore character (' __") will be appended to it.

case_sensitive Whether the names should be case-sensitive (case_sensitive=True), con-
verted to upper case (case_sensitive=Falseor case_sensitive='upper"')ortolower
case (case_sensitive="'lower"').

Tweaking the conversion

The converters argument

Usually, defining a dtype is sufficient to define how the sequence of strings must be converted. However, some
additional control may sometimes be required. For example, we may want to make sure that a date in a format YYYY/
MM/DD is converted to a datet ime object, or that a string like xx% is properly converted to a float between 0 and 1.
In such cases, we should define conversion functions with the converters arguments.

The value of this argument is typically a dictionary with column indices or column names as keys and a conversion
functions as values. These conversion functions can either be actual functions or lambda functions. In any case, they
should accept only a string as input and output only a single element of the wanted type.

In the following example, the second column is converted from as string representing a percentage to a float between
0 and 1:

>>> convertfunc = lambda x: float (x.strip("%"))/100.
>>> data = u"l, 2.3%, 45.\n6, 78.9%, 0"
>>> names = ("i", "p", "n")

>>> # General case .....
>>> np.genfromtxt (StringIO(data), delimiter=",", names=names)
array([(1.0, nan, 45.0), (6.0, nan, 0.0)],

dtype=[('1', '<f8'"), ('p', '<f8"), ('n', '<f8')])

We need to keep in mind that by default, dtype=float. A float is therefore expected for the second column.
However, the strings ' 2.3%"' and ' 78.9%"' cannot be converted to float and we end up having np . nan instead.
Let’s now use a converter:

>>> # Converted case

>>> np.genfromtxt (StringIO(data), delimiter=",", names=names,

C. converters={1l: convertfunc})

array ([(1.0, 0.023, 45.0), (6.0, 0.78900000000000003, 0.0)1,
dtype=[('1"', '<f8'"), ('p', '<f8"), ('n', '<£f8')])

The same results can be obtained by using the name of the second column ("p") as key instead of its index (1):

>>> # Using a name for the converter
>>> np.genfromtxt (StringIO(data), delimiter=",", names=names,

C. converters={"p": convertfunc})
array ([ (1.0, 0.023, 45.0), (6.0, 0.78900000000000003, 0.0)1,
dtype=[('i', '<£8'), ('p', '<f8'), ('n', '<£f8")])

Converters can also be used to provide a default for missing entries. In the following example, the converter convert
transforms a stripped string into the corresponding float or into -999 if the string is empty. We need to explicitly strip
the string from white spaces as it is not done by default:

>>> data = u"1l, , 3\n 4, 5, 6"

>>> convert = lambda x: float (x.strip() or -999)

>>> np.genfromtxt (StringIO (data), delimiter=",",
converters={1l: convert})

(continues on next page)
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Using missing and filling values
Some entries may be missing in the dataset we are trying to import. In a previous example, we used a converter to
transform an empty string into a float. However, user-defined converters may rapidly become cumbersome to manage.

The genfromtxt function provides two other complementary mechanisms: the missing_values argument is
used to recognize missing data and a second argument, £i11ing_values, is used to process these missing data.

missing_values

By default, any empty string is marked as missing. We can also consider more complex strings, such as "N/A" or
"?2727?" to represent missing or invalid data. The mi ssing_values argument accepts three kind of values:

a string or a comma-separated string This string will be used as the marker for missing data for all the
columns

a sequence of strings In that case, each item is associated to a column, in order.

a dictionary Values of the dictionary are strings or sequence of strings. The corresponding keys can be
column indices (integers) or column names (strings). In addition, the special key None can be used
to define a default applicable to all columns.

filling values

‘We know how to recognize missing data, but we still need to provide a value for these missing entries. By default, this
value is determined from the expected dtype according to this table:

Expected type | Default
bool False

int -1

float np.nan
complex np.nan+0 7
string RRrarare

We can get a finer control on the conversion of missing values with the fi1ling_values optional argument. Like
missing_values, this argument accepts different kind of values:

a single value This will be the default for all columns
a sequence of values Each entry will be the default for the corresponding column

a dictionary Each key can be a column index or a column name, and the corresponding value should be
a single object. We can use the special key None to define a default for all columns.

In the following example, we suppose that the missing values are flagged with "N/A" in the first column and by " ??
?" in the third column. We wish to transform these missing values to O if they occur in the first and second column,
and to -999 if they occur in the last column:

>>> data = u"N/A, 2, 3\n4, ,??22"

>>> kwargs = dict (delimiter=",",
dtype=int,
names="a,b,c",

(continues on next page)
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missing_values={0:"N/A", 'b':" ", 2:"222"},
filling values={0:0, 'b':0, 2:-999})
>>> np.genfromtxt (StringIO (data), =**kwargs)
array ([ (0, 2, 3), (4, 0, -999)1,
dtype=[('a', '<i8'), ('b', '<i8"), ('c', '<i8")])

usemask

We may also want to keep track of the occurrence of missing data by constructing a boolean mask, with True entries
where data was missing and False otherwise. To do that, we just have to set the optional argument usemask to
True (the default is False). The output array will then be a MaskedArray.

Shortcut functions

In addition to genfromtxt, the numpy.1lib.io module provides several convenience functions derived from
genfromtxt. These functions work the same way as the original, but they have different default values.

ndfromtxt Always set usemask=False. The output is always a standard numpy . ndarray.
mafromtxt Always set usemask=True. The output is always a MaskedArray

recfromtxt Returns a standard numpy.recarray (if usemask=False) or a MaskedRecords array (if
usemaske=True). The default dtype is dt ype=None, meaning that the types of each column will be auto-
matically determined.

recfromesv Like recfromtxt, but with a default delimiter=",".

3.4 Indexing

See also:
Indexing routines

Array indexing refers to any use of the square brackets ([]) to index array values. There are many options to indexing,
which give numpy indexing great power, but with power comes some complexity and the potential for confusion. This
section is just an overview of the various options and issues related to indexing. Aside from single element indexing,
the details on most of these options are to be found in related sections.

3.4.1 Assignment vs referencing

Most of the following examples show the use of indexing when referencing data in an array. The examples work just as
well when assigning to an array. See the section at the end for specific examples and explanations on how assignments
work.

3.4.2 Single element indexing

Single element indexing for a 1-D array is what one expects. It work exactly like that for other standard Python
sequences. It is 0-based, and accepts negative indices for indexing from the end of the array.

>>> x = np.arange (10)
>>> x[2]

2

>>> x[-2]

8
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Unlike lists and tuples, numpy arrays support multidimensional indexing for multidimensional arrays. That means that
it is not necessary to separate each dimension’s index into its own set of square brackets.

>>> x.shape = (2,5) # now x is 2-dimensional
>>> x[1,3]

8

>>> x[1,-1]

9

Note that if one indexes a multidimensional array with fewer indices than dimensions, one gets a subdimensional array.
For example:

>>> x[0]
array ([0, 1, 2, 3, 41)

That is, each index specified selects the array corresponding to the rest of the dimensions selected. In the above
example, choosing 0 means that the remaining dimension of length 5 is being left unspecified, and that what is returned
is an array of that dimensionality and size. It must be noted that the returned array is not a copy of the original, but
points to the same values in memory as does the original array. In this case, the 1-D array at the first position (0) is
returned. So using a single index on the returned array, results in a single element being returned. That is:

>>> x[0][2]
2

So note that x[0,2] = x[0] [2] though the second case is more inefficient as a new temporary array is created
after the first index that is subsequently indexed by 2.

Note to those used to IDL or Fortran memory order as it relates to indexing. NumPy uses C-order indexing. That
means that the last index usually represents the most rapidly changing memory location, unlike Fortran or IDL, where
the first index represents the most rapidly changing location in memory. This difference represents a great potential
for confusion.

3.4.3 Other indexing options

It is possible to slice and stride arrays to extract arrays of the same number of dimensions, but of different sizes than
the original. The slicing and striding works exactly the same way it does for lists and tuples except that they can be
applied to multiple dimensions as well. A few examples illustrates best:

>>> x = np.arange (10)
>>> x[2:5]

array ([2, 3, 4])

>>> x[:-7]

array ([0, 1, 21)

>>> x[1:7:2]

array ([1, 3, 5])

>>> y = np.arange (35) .reshape (5, 7)
>>> y[1l:5:2,::3]
array ([[ 7, 10, 13]

[21, 24, 27]11)

Note that slices of arrays do not copy the internal array data but only produce new views of the original data.

It is possible to index arrays with other arrays for the purposes of selecting lists of values out of arrays into new arrays.
There are two different ways of accomplishing this. One uses one or more arrays of index values. The other involves
giving a boolean array of the proper shape to indicate the values to be selected. Index arrays are a very powerful tool
that allow one to avoid looping over individual elements in arrays and thus greatly improve performance.
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It is possible to use special features to effectively increase the number of dimensions in an array through indexing so
the resulting array aquires the shape needed for use in an expression or with a specific function.

3.4.4 Index arrays

NumPy arrays may be indexed with other arrays (or any other sequence- like object that can be converted to an array,
such as lists, with the exception of tuples; see the end of this document for why this is). The use of index arrays
ranges from simple, straightforward cases to complex, hard-to-understand cases. For all cases of index arrays, what is
returned is a copy of the original data, not a view as one gets for slices.

Index arrays must be of integer type. Each value in the array indicates which value in the array to use in place of the
index. To illustrate:

>>> x = np.arange(10,1,-1)

>>> x

array([10, 9, 8, 7, 6, 5, 4, 3, 21)
>>> x[np.array ([3, 3, 1, 81)1]

array ([7, 7, 9, 21)

The index array consisting of the values 3, 3, 1 and 8 correspondingly create an array of length 4 (same as the index
array) where each index is replaced by the value the index array has in the array being indexed.

Negative values are permitted and work as they do with single indices or slices:

>>> x[np.array([3,3,-3,81)1
array ([7, 7, 4, 21)

It is an error to have index values out of bounds:

>>> x[np.array ([3, 3, 20, 81)]
<type 'exceptions.IndexError'>: index 20 out of bounds 0<=index<9

Generally speaking, what is returned when index arrays are used is an array with the same shape as the index array,
but with the type and values of the array being indexed. As an example, we can use a multidimensional index array
instead:

>>> x[np.array ([[1,1],([2,31]1)]
array ([[9, 91,
(8, 711)

3.4.5 Indexing Multi-dimensional arrays

Things become more complex when multidimensional arrays are indexed, particularly with multidimensional index
arrays. These tend to be more unusual uses, but they are permitted, and they are useful for some problems. We’ll start
with the simplest multidimensional case (using the array y from the previous examples):

>>> y[np.array ([0,2,4]), np.array([0,1,2])]
array ([ 0, 15, 301)

In this case, if the index arrays have a matching shape, and there is an index array for each dimension of the array
being indexed, the resultant array has the same shape as the index arrays, and the values correspond to the index set
for each position in the index arrays. In this example, the first index value is 0 for both index arrays, and thus the first
value of the resultant array is y[0,0]. The next value is y[2,1], and the last is y[4,2].

If the index arrays do not have the same shape, there is an attempt to broadcast them to the same shape. If they cannot
be broadcast to the same shape, an exception is raised:
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>>> y[np.array ([0,2,4]), np.array([0,1])]
<type 'exceptions.ValueError'>: shape mismatch: objects cannot be
broadcast to a single shape

The broadcasting mechanism permits index arrays to be combined with scalars for other indices. The effect is that the
scalar value is used for all the corresponding values of the index arrays:

>>> y[np.array([0,2,4]), 1]
array ([ 1, 15, 291)

Jumping to the next level of complexity, it is possible to only partially index an array with index arrays. It takes a bit
of thought to understand what happens in such cases. For example if we just use one index array with y:

>>> y[np.array([0,2,4])]

array([[ 0, 1, 2, 3, 4, 5, 6],
[14, 15, 16, 17, 18, 19, 201,
(28, 29, 30, 31, 32, 33, 3411)

What results is the construction of a new array where each value of the index array selects one row from the array
being indexed and the resultant array has the resulting shape (number of index elements, size of row).

An example of where this may be useful is for a color lookup table where we want to map the values of an image into
RGB triples for display. The lookup table could have a shape (nlookup, 3). Indexing such an array with an image with
shape (ny, nx) with dtype=np.uint8 (or any integer type so long as values are with the bounds of the lookup table) will
result in an array of shape (ny, nx, 3) where a triple of RGB values is associated with each pixel location.

In general, the shape of the resultant array will be the concatenation of the shape of the index array (or the shape that
all the index arrays were broadcast to) with the shape of any unused dimensions (those not indexed) in the array being
indexed.

3.4.6 Boolean or “mask” index arrays

Boolean arrays used as indices are treated in a different manner entirely than index arrays. Boolean arrays must be
of the same shape as the initial dimensions of the array being indexed. In the most straightforward case, the boolean
array has the same shape:

>>> b = y>20
>>> y[b]
array ([21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34])

Unlike in the case of integer index arrays, in the boolean case, the result is a 1-D array containing all the elements in
the indexed array corresponding to all the true elements in the boolean array. The elements in the indexed array are
always iterated and returned in row-major (C-style) order. The result is also identical to y [np.nonzero (b) ]. As
with index arrays, what is returned is a copy of the data, not a view as one gets with slices.

The result will be multidimensional if y has more dimensions than b. For example:

>>> b[:,5] # use a 1-D boolean whose first dim agrees with the first dim of y
array ([False, False, False, True, Truel])
>>> y[b[:,5]]
array ([[21, 22, 23, 24, 25, 26, 271,
[28, 29, 30, 31, 32, 33, 34]1])

Here the 4th and 5th rows are selected from the indexed array and combined to make a 2-D array.

In general, when the boolean array has fewer dimensions than the array being indexed, this is equivalent to y[b, ...],
which means y is indexed by b followed by as many : as are needed to fill out the rank of y. Thus the shape of the result
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is one dimension containing the number of True elements of the boolean array, followed by the remaining dimensions
of the array being indexed.

For example, using a 2-D boolean array of shape (2,3) with four True elements to select rows from a 3-D array of
shape (2,3,5) results in a 2-D result of shape (4,5):

>>> x = np.arange (30) .reshape (2, 3,5)

>>> x
array ([[[ O, 1, 2, 3, 47,

[ 5 6, 7, 8, 91,

(1o, 11, 12, 13, 1411,

[fi1s5, 1e, 17, 18, 197,

[20, 21, 22, 23, 247,

[25, 26, 27, 28, 29111)
>>> b = np.array ([ [True, True, False], [False, True, True]])
>>> x[b
array ([ , 1, 2, 3, ,

0 4
5, 6, 7, 8, 9
20, 21, 22, 23, 24
25, 26, 27, 28, 29

For further details, consult the numpy reference documentation on array indexing.

3.4.7 Combining index arrays with slices

Index arrays may be combined with slices. For example:

>>> y[np.array ([0,2,4]),1:3]
array ([[ 1, 21,

[15, 167,

[29, 3011)

In effect, the slice is converted to an index array np.array([[1,2]]) (shape (1,2)) that is broadcast with the index array
to produce a resultant array of shape (3,2).

Likewise, slicing can be combined with broadcasted boolean indices:

>>> y[b[:,5],1:3]
array ([[22, 23],
[29, 3011)

3.4.8 Structural indexing tools

To facilitate easy matching of array shapes with expressions and in assignments, the np.newaxis object can be used
within array indices to add new dimensions with a size of 1. For example:

>>> y.shape

(5, 1)

>>> y[:,np.newaxis, :].shape
(5, 1, 7)

Note that there are no new elements in the array, just that the dimensionality is increased. This can be handy to
combine two arrays in a way that otherwise would require explicitly reshaping operations. For example:

>>> x = np.arange(5)
>>> x[:,np.newaxis] + x[np.newaxis, :]
array ([[0, 1, 2, 3, 471,

(continues on next page)
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The ellipsis syntax maybe used to indicate selecting in full any remaining unspecified dimensions. For example:

>>> z = np.arange(81) .reshape(3,3,3,3)
>>> z[1,...,2]
array ([[29, 32, 35],

[38, 41, 447,

[47, 50, 5311)

This is equivalent to:

>>> z[1,:,:,2]

array ([[29, 32, 351,
[38, 41, 4471,
[47, 50, 5311)

3.4.9 Assigning values to indexed arrays

As mentioned, one can select a subset of an array to assign to using a single index, slices, and index and mask arrays.
The value being assigned to the indexed array must be shape consistent (the same shape or broadcastable to the shape
the index produces). For example, it is permitted to assign a constant to a slice:

>>> x = np.arange (10)
>>> x[2:7] =1

or an array of the right size:

>>> x[2:7] = np.arange (5)

Note that assignments may result in changes if assigning higher types to lower types (like floats to ints) or even
exceptions (assigning complex to floats or ints):

>>> x[1] = 1.2
>>> x[1]
1

>>> x[1]

1.25
<type 'exceptions.TypeError'>: can't convert complex to long; use
long (abs(z))

Unlike some of the references (such as array and mask indices) assignments are always made to the original data in
the array (indeed, nothing else would make sense!). Note though, that some actions may not work as one may naively
expect. This particular example is often surprising to people:

>>> x = np.arange (0, 50, 10)

>>> x

array ([ 0, 10, 20, 30, 40])

>>> x[np.array([1, 1, 3, 11)] +=
>>> x

array ([ 0, 11, 20, 31, 40])

Where people expect that the 1st location will be incremented by 3. In fact, it will only be incremented by 1. The
reason is because a new array is extracted from the original (as a temporary) containing the values at 1, 1, 3, 1, then
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the value 1 is added to the temporary, and then the temporary is assigned back to the original array. Thus the value of
the array at x[1]+1 is assigned to x[1] three times, rather than being incremented 3 times.

3.4.10 Dealing with variable numbers of indices within programs

The index syntax is very powerful but limiting when dealing with a variable number of indices. For example, if you
want to write a function that can handle arguments with various numbers of dimensions without having to write special
case code for each number of possible dimensions, how can that be done? If one supplies to the index a tuple, the tuple
will be interpreted as a list of indices. For example (using the previous definition for the array z):

>>> indices = (1,1,1,1)
>>> z[indices]
40

So one can use code to construct tuples of any number of indices and then use these within an index.

Slices can be specified within programs by using the slice() function in Python. For example:

>>> indices = (1,1,1,slice(0,2)) # same as [1,1,1,0:2]
>>> z[indices]
array ([39, 40])

Likewise, ellipsis can be specified by code by using the Ellipsis object:

>>> indices = (1, Ellipsis, 1) # same as [1,...,1]
>>> z[indices]
array ([[28, 31, 34],

[37, 40, 4371,

[46, 49, 52]11)

For this reason it is possible to use the output from the np.nonzero() function directly as an index since it always
returns a tuple of index arrays.

Because the special treatment of tuples, they are not automatically converted to an array as a list would be. As an
example:

>>> z[[1,1,1,1]] # produces a large array
array ([[[[27, 28, 29],

[30, 31, 321,
>>> z[(1,1,1,1)] # returns a single value
40

3.5 Broadcasting

See also:
numpy .broadcast

array-broadcasting-in-numpy An introduction to the concepts discussed here

Note: See this article for illustrations of broadcasting concepts.

The term broadcasting describes how numpy treats arrays with different shapes during arithmetic operations. Subject
to certain constraints, the smaller array is “broadcast” across the larger array so that they have compatible shapes.
Broadcasting provides a means of vectorizing array operations so that looping occurs in C instead of Python. It does
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this without making needless copies of data and usually leads to efficient algorithm implementations. There are,
however, cases where broadcasting is a bad idea because it leads to inefficient use of memory that slows computation.

NumPy operations are usually done on pairs of arrays on an element-by-element basis. In the simplest case, the two
arrays must have exactly the same shape, as in the following example:

>>> a = np.array([1.0, 2.0, 3.0])
>>> b = np.array([2.0, 2.0, 2.0])
>>> a *« b

array ([ 2., 4., 6.])

NumPy’s broadcasting rule relaxes this constraint when the arrays’ shapes meet certain constraints. The simplest
broadcasting example occurs when an array and a scalar value are combined in an operation:

>>> a = np.array([1.0, 2.0, 3.0])
>>> b = 2.0

>>> a * b

array ([ 2., 4., 6.1)

The result is equivalent to the previous example where b was an array. We can think of the scalar b being stretched
during the arithmetic operation into an array with the same shape as a. The new elements in b are simply copies
of the original scalar. The stretching analogy is only conceptual. NumPy is smart enough to use the original scalar
value without actually making copies, so that broadcasting operations are as memory and computationally efficient as
possible.

The code in the second example is more efficient than that in the first because broadcasting moves less memory around
during the multiplication (b is a scalar rather than an array).

3.5.1 General Broadcasting Rules

When operating on two arrays, NumPy compares their shapes element-wise. It starts with the trailing dimensions, and
works its way forward. Two dimensions are compatible when

1. they are equal, or
2. one of them is 1

If these conditions are not met, a ValueError: operands could not be broadcast together ex-
ception is thrown, indicating that the arrays have incompatible shapes. The size of the resulting array is the maximum
size along each dimension of the input arrays.

Arrays do not need to have the same number of dimensions. For example, if you have a 256x256x3 array of RGB
values, and you want to scale each color in the image by a different value, you can multiply the image by a one-
dimensional array with 3 values. Lining up the sizes of the trailing axes of these arrays according to the broadcast
rules, shows that they are compatible:

Image (3d array): 256 x 256 x 3
Scale (1d array) : 3
Result (3d array): 256 x 256 x 3

When either of the dimensions compared is one, the other is used. In other words, dimensions with size 1 are stretched
or “copied” to match the other.

In the following example, both the A and B arrays have axes with length one that are expanded to a larger size during
the broadcast operation:

A (4d array) : 8 x 1 x 6 x 1
B (3d array) : 7 x 1 x5
Result (4d array): 8 x 7 x 6 x5
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Here are some more examples:

A (2d array) : 5 x 4
B (1d array) : 1
Result (2d array): 5 x 4
A (2d array) : 5 x 4
B (1d array) : 4
Result (2d array): 5 x 4
A (3d array) : 15 x 3 x 5
B (3d array) : 15 x 1 x 5
Result (3d array): 15 x 3 x 5
A (3d array) : 15 x 3 x 5
B (2d array) : 3 x 5
Result (3d array): 15 x 3 x 5
A (3d array) : 15 x 3 x 5
B (2d array) : 3 x 1
Result (3d array): 15 x 3 x 5

Here are examples of shapes that do not broadcast:

A (1d array) : 3

B (1d array): 4 # trailing dimensions do not match

A (2d array) : 2 x 1

B (3d array) : 8 x 4 x 3 # second from last dimensions mismatched

An example of broadcasting in practice:

>>> x = np.arange (4)
>>> xx = x.reshape(4,1)
>>> y = np.ones (5)

>>> z = np.ones((3,4))

>>> x.shape
(4,)

>>> y.shape
(5,)

>>> x + vy
ValueError: operands could not be broadcast together with shapes (4,) (5,)

>>> xx.shape
(4, 1)

>>> y.shape
(5,)

>>> (xx + y).shape
(4, 5)

(continues on next page)
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(continued from previous page)

>>> x.shape
(4,)

>>> z.shape
(3, 4)

>>> (x + z).shape
(3, 4)

array ([[ 1., 2., 3., 4.7,
r1., 2., 3., 4.1,
[ 1., 2., 3., 4.11)

Broadcasting provides a convenient way of taking the outer product (or any other outer operation) of two arrays. The
following example shows an outer addition operation of two 1-d arrays:

>>> a = np.array([0.0, 10.0, 20.0, 30.01)
>>> b = np.array([1.0, 2.0, 3.0])
>>> a[:, np.newaxis] + b

array ([[ 1., 2., 3.1,
[ 11., 12., 13.],
[ 21., 22., 23.1,
[ 31., 32., 33.11)

Here the newaxis index operator inserts a new axis into a, making it a two-dimensional 4x1 array. Combining the
4x1 array with b, which has shape (3, ), yields a 4x3 array.

3.6 Byte-swapping

3.6.1 Introduction to byte ordering and ndarrays
The ndarray is an object that provide a python array interface to data in memory.

It often happens that the memory that you want to view with an array is not of the same byte ordering as the computer
on which you are running Python.

For example, I might be working on a computer with a little-endian CPU - such as an Intel Pentium, but I have loaded
some data from a file written by a computer that is big-endian. Let’s say I have loaded 4 bytes from a file written
by a Sun (big-endian) computer. I know that these 4 bytes represent two 16-bit integers. On a big-endian machine, a
two-byte integer is stored with the Most Significant Byte (MSB) first, and then the Least Significant Byte (LSB). Thus
the bytes are, in memory order:

1. MSB integer 1
2. LSB integer 1
3. MSB integer 2
4. LSB integer 2

Let’s say the two integers were in fact 1 and 770. Because 770 = 256 * 3 + 2, the 4 bytes in memory would contain
respectively: 0, 1, 3, 2. The bytes I have loaded from the file would have these contents:
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>>> big_end_str = chr(0) + chr(l) + chr(3) + chr(2)
>>> big_end_str
"\x00\x01\x03\x02"

We might want to use an ndarray to access these integers. In that case, we can create an array around this memory,
and tell numpy that there are two integers, and that they are 16 bit and big-endian:

>>> import numpy as np

>>> big_end_arr = np.ndarray (shape=(2,),dtype="'>i2"', buffer=big_end_str)
>>> pbig_end_arr[0]

1

>>> big_end_arr[1]

770

Note the array dtype above of >12. The > means ‘big-endian’ (< is little-endian) and 12 means ‘signed 2-byte
integer’. For example, if our data represented a single unsigned 4-byte little-endian integer, the dtype string would be
<ud4.

In fact, why don’t we try that?

>>> little_end_u4 = np.ndarray (shape=(1,),dtype="'<ud', buffer=big_end_str)
>>> little_end_ud[0] == 1 * 256x+1 + 3 * 256%%2 + 2 x 256%%3
True

Returning to our big_end_arr - in this case our underlying data is big-endian (data endianness) and we’ve set the
dtype to match (the dtype is also big-endian). However, sometimes you need to flip these around.

Warning: Scalars currently do not include byte order information, so extracting a scalar from an array will return
an integer in native byte order. Hence:

>>> big_end_arr[0] .dtype.byteorder == little_end_u4[0].dtype.byteorder
True

3.6.2 Changing byte ordering

As you can imagine from the introduction, there are two ways you can affect the relationship between the byte ordering
of the array and the underlying memory it is looking at:

* Change the byte-ordering information in the array dtype so that it interprets the underlying data as being in a
different byte order. This is the role of arr.newbyteorder ()

» Change the byte-ordering of the underlying data, leaving the dtype interpretation as it was. This is what arr.
byteswap () does.

The common situations in which you need to change byte ordering are:
1. Your data and dtype endianness don’t match, and you want to change the dtype so that it matches the data.
2. Your data and dtype endianness don’t match, and you want to swap the data so that they match the dtype

3. Your data and dtype endianness match, but you want the data swapped and the dtype to reflect this

Data and dtype endianness don’t match, change dtype to match data

We make something where they don’t match:
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>>> wrong_end_dtype_arr = np.ndarray (shape=(2,),dtype="'<i2', buffer=big_end_str)
>>> wrong_end_dtype_arr[0]
256

The obvious fix for this situation is to change the dtype so it gives the correct endianness:

>>> fixed_end_dtype_arr = wrong_end_dtype_arr.newbyteorder ()
>>> fixed_end_dtype_arr[0]
1

Note the array has not changed in memory:

>>> fixed_end_dtype_arr.tobytes () == big_end_str
True

Data and type endianness don’t match, change data to match dtype

You might want to do this if you need the data in memory to be a certain ordering. For example you might be writing
the memory out to a file that needs a certain byte ordering.

>>> fixed_end_mem_arr = wrong_end_dtype_arr.byteswap ()
>>> fixed_end_mem_arr([0]
1

Now the array has changed in memory:

>>> fixed_end_mem_arr.tobytes () == big_end_str
False

Data and dtype endianness match, swap data and dtype

You may have a correctly specified array dtype, but you need the array to have the opposite byte order in memory, and
you want the dtype to match so the array values make sense. In this case you just do both of the previous operations:

>>> swapped_end_arr = big_end_arr.byteswap () .newbyteorder ()
>>> swapped_end_arr[0]

1

>>> swapped_end_arr.tobytes () == big_end_str

False

An easier way of casting the data to a specific dtype and byte ordering can be achieved with the ndarray astype method:

>>> swapped_end_arr = big_end_arr.astype('<i2")
>>> swapped_end_arr[0]

1

>>> swapped_end_arr.tobytes () == big_end_str
False

3.7 Structured arrays

3.7.1 Introduction

Structured arrays are ndarrays whose datatype is a composition of simpler datatypes organized as a sequence of named
fields. For example,
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>>> x = np.array ([ ('Rex', 9, 81.0), ('Fido', 3, 27.0)1,

dtype=[('name', 'U10'), ('age', 'id'), ('weight', 'f4")])
>>> x
array ([ ('Rex', 9, 81.0), ('Fido', 3, 27.0)1,
dtype=[('name', 'S10'), ('age', '<id'), ('weight', '<£f4")])

Here x is a one-dimensional array of length two whose datatype is a structure with three fields: 1. A string of length
10 or less named ‘name’, 2. a 32-bit integer named ‘age’, and 3. a 32-bit float named ‘weight’.

If you index x at position 1 you get a structure:

>>> x[1]
('"Fido', 3, 27.0)

You can access and modify individual fields of a structured array by indexing with the field name:

>>> x['age']
array ([9, 3], dtype=int32)

>>> x['age'] = 5
>>> x
array ([ ('Rex', 5, 81.0), ('Fido', 5, 27.0)1,
dtype=[('name', 'S10'), ('age', '<id4'), ('weight', '<£f4'")])

Structured datatypes are designed to be able to mimic ‘structs’ in the C language, and share a similar memory layout.
They are meant for interfacing with C code and for low-level manipulation of structured buffers, for example for
interpreting binary blobs. For these purposes they support specialized features such as subarrays, nested datatypes,
and unions, and allow control over the memory layout of the structure.

Users looking to manipulate tabular data, such as stored in csv files, may find other pydata projects more suitable,
such as xarray, pandas, or DataArray. These provide a high-level interface for tabular data analysis and are better
optimized for that use. For instance, the C-struct-like memory layout of structured arrays in numpy can lead to poor
cache behavior in comparison.

3.7.2 Structured Datatypes

A structured datatype can be thought of as a sequence of bytes of a certain length (the structure’s itemsize) which is
interpreted as a collection of fields. Each field has a name, a datatype, and a byte offset within the structure. The
datatype of a field may be any numpy datatype including other structured datatypes, and it may also be a sub-array
which behaves like an ndarray of a specified shape. The offsets of the fields are arbitrary, and fields may even overlap.
These offsets are usually determined automatically by numpy, but can also be specified.

Structured Datatype Creation

Structured datatypes may be created using the function numpy . dtype. There are 4 alternative forms of specification
which vary in flexibility and conciseness. These are further documented in the Data Type Objects reference page, and
in summary they are:

1. A list of tuples, one tuple per field

Each tuple has the form (fieldname, datatype, shape) where shape is optional. fieldname is a
string (or tuple if titles are used, see Field Titles below), dat at ype may be any object convertible to a datatype,
and shape is a tuple of integers specifying subarray shape.

>>> np.dtype([('x"', 'f4"'"), ('y', np.float32), ('z', 'f4', (2,2))1])
dtype=[('x", '<fd'), ('y', '<f4'), ('z', '<£4', (2, 2))]1)

If fieldname is the empty string ' ', the field will be given a default name of the form £#, where # is the
integer index of the field, counting from O from the left:
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>>> np.dtype ([ ('x"', "£4"), ("', 'i4"), ('z', "18")])
dtype ([ ('x', '<f4'), ('fl', '<id4"), ('z', '<i8")])

The byte offsets of the fields within the structure and the total structure itemsize are determined automatically.

. A string of comma-separated dtype specifications

In this shorthand notation any of the string dtype specifications may be used in a string and separated by commas.
The itemsize and byte offsets of the fields are determined automatically, and the field names are given the default
names £0, £1, etc.

>>> np.dtype('i8,f4,S53")

dtype ([ ("£f0', '<i8'"), ('f1', '<f4'"), ('f2', 'S3")1)
>>> np.dtype('3int8, float32, (2,3)float6d")
dtype([('fO', 'il', 3), ('f1', '<f4'), ('f2', '<£8', (2, 3))1)

. A dictionary of field parameter arrays

This is the most flexible form of specification since it allows control over the byte-offsets of the fields and the
itemsize of the structure.

The dictionary has two required keys, ‘names’ and ‘formats’, and four optional keys, ‘offsets’, ‘itemsize’,
‘aligned’ and ‘titles’. The values for ‘names’ and ‘formats’ should respectively be a list of field names and
a list of dtype specifications, of the same length. The optional ‘offsets’ value should be a list of integer byte-
offsets, one for each field within the structure. If ‘offsets’ is not given the offsets are determined automatically.
The optional ‘itemsize’ value should be an integer describing the total size in bytes of the dtype, which must be
large enough to contain all the fields.

>>> np.dtype({'names': ['coll', 'col2'], 'formats': ['i4','f4']1})
dtype ([ ('coll', '<id'), ('col2', '<f4")])
>>> np.dtype ({'names': ['coll', 'col2'],
'formats': ['i4','f4'],
'offsets': [0, 4],
C. 'itemsize': 12})
dtype ({'names':['coll', 'col2'], 'formats':['<id',6K'<f4'], 'offsets':[0,4],

—'itemsize':12})

Offsets may be chosen such that the fields overlap, though this will mean that assigning to one field may clobber
any overlapping field’s data. As an exception, fields of numpy . object type cannot overlap with other fields,
because of the risk of clobbering the internal object pointer and then dereferencing it.

The optional ‘aligned’ value can be set to True to make the automatic offset computation use aligned offsets
(see Automatic Byte Offsets and Alignment), as if the ‘align’ keyword argument of numpy . dt ype had been
set to True.

The optional ‘titles’ value should be a list of titles of the same length as ‘names’, see Field Titles below.

. A dictionary of field names

The use of this form of specification is discouraged, but documented here because older numpy code may use
it. The keys of the dictionary are the field names and the values are tuples specifying type and offset:

>>> np.dtype=({'coll': ('il',0), 'col2': ('f4',1)1})
dtype ([ (('coll'), 'il'), (('col2'), '>f4')])

This form is discouraged because Python dictionaries do not preserve order in Python versions before Python
3.6, and the order of the fields in a structured dtype has meaning. Field Titles may be specified by using a
3-tuple, see below.
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Manipulating and Displaying Structured Datatypes

The list of field names of a structured datatype can be found in the names attribute of the dtype object:

>>> d = np.dtype([('x', 'i8"), ('y', 'f4')])
>>> d.names
('X', lyl)

The field names may be modified by assigning to the names attribute using a sequence of strings of the same length.

The dtype object also has a dictionary-like attribute, £ields, whose keys are the field names (and Field Titles, see
below) and whose values are tuples containing the dtype and byte offset of each field.

>>> d.fields
mappingproxy ({'x': (dtype('int64'), 0), 'yv': (dtype('float32'), 8)})

Both the names and fields attributes will equal None for unstructured arrays. The recommended way to test if a
dtype is structured is with if dt.names is not None rather than if dt.names, to account for dtypes with O fields.

The string representation of a structured datatype is shown in the “list of tuples” form if possible, otherwise numpy
falls back to using the more general dictionary form.

Automatic Byte Offsets and Alignment

Numpy uses one of two methods to automatically determine the field byte offsets and the overall itemsize of a struc-
tured datatype, depending on whether align=True was specified as a keyword argument to numpy . dtype.

By default (align=False), numpy will pack the fields together such that each field starts at the byte offset the
previous field ended, and the fields are contiguous in memory.

>>> def print_offsets(d):
print ("offsets:", [d.fields[name][l] for name in d.names])
print ("itemsize:", d.itemsize)

>>> print_offsets (np.dtype('ul,ul,id4,ul,i8,u2"'))

offsets: [0, 1, 2, 6, 7, 15]

itemsize: 17

If align=True is set, numpy will pad the structure in the same way many C compilers would pad a C-struct. Aligned
structures can give a performance improvement in some cases, at the cost of increased datatype size. Padding bytes are
inserted between fields such that each field’s byte offset will be a multiple of that field’s alignment, which is usually
equal to the field’s size in bytes for simple datatypes, see PyArray_Descr.alignment. The structure will also
have trailing padding added so that its itemsize is a multiple of the largest field’s alignment.

>>> print_offsets (np.dtype('ul,ul,i4,ul,i8,u2', align=True))
offsets: [0, 1, 4, 8, 16, 24]
itemsize: 32

Note that although almost all modern C compilers pad in this way by default, padding in C structs is C-implementation-
dependent so this memory layout is not guaranteed to exactly match that of a corresponding struct in a C program.
Some work may be needed, either on the numpy side or the C side, to obtain exact correspondence.

If offsets were specified using the optional offsets key in the dictionary-based dtype specification, setting
align=True will check that each field’s offset is a multiple of its size and that the itemsize is a multiple of the
largest field size, and raise an exception if not.

If the offsets of the fields and itemsize of a structured array satisfy the alignment conditions, the array will have the
ALIGNED flag set.
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A convenience function numpy . lib.recfunctions.repack_fields converts an aligned dtype or array to a
packed one and vice versa. It takes either a dtype or structured ndarray as an argument, and returns a copy with fields
re-packed, with or without padding bytes.

Field Titles

In addition to field names, fields may also have an associated title, an alternate name, which is sometimes used as an
additional description or alias for the field. The title may be used to index an array, just like a field name.

To add titles when using the list-of-tuples form of dtype specification, the field name may be specified as a tuple of
two strings instead of a single string, which will be the field’s title and field name respectively. For example:

>>> np.dtype ([ (('my title', 'name'), '£f4")1])

When using the first form of dictionary-based specification, the titles may be supplied as an extra 'titles' key
as described above. When using the second (discouraged) dictionary-based specification, the title can be supplied by
providing a 3-element tuple (datatype, offset, title) instead of the usual 2-element tuple:

>>> np.dtype({'name': ('i4', 0, 'my title'")})

The dtype . fields dictionary will contain titles as keys, if any titles are used. This means effectively that a field
with a title will be represented twice in the fields dictionary. The tuple values for these fields will also have a third
element, the field title. Because of this, and because the name s attribute preserves the field order while the fields
attribute may not, it is recommended to iterate through the fields of a dtype using the names attribute of the dtype,
which will not list titles, as in:

>>> for name in d.names:
print (d.fields[name] [:2])

Union types

Structured datatypes are implemented in numpy to have base type numpy .void by default, but it is possible to
interpret other numpy types as structured types using the (base_dtype, dtype) form of dtype specification
described in Data Type Objects. Here, base_dtype is the desired underlying dtype, and fields and flags will be
copied from dtype. This dtype is similar to a ‘union’ in C.

3.7.3 Indexing and Assignment to Structured arrays

Assigning data to a Structured Array
There are a number of ways to assign values to a structured array: Using python tuples, using scalar values, or using

other structured arrays.

Assignment from Python Native Types (Tuples)

The simplest way to assign values to a structured array is using python tuples. Each assigned value should be a tuple
of length equal to the number of fields in the array, and not a list or array as these will trigger numpy’s broadcasting
rules. The tuple’s elements are assigned to the successive fields of the array, from left to right:

>>> x = np.array([(1,2,3),(4,5,6)], dtype='18,£f4,£8")

>>> x[1] = (7,8,9)
>>> x
array ([ (1, 2., 3.), (7, 8., 9.)1,
dtype=[ ('£0', '<i8'), ('f1', '<f4'), ('f2', '<f8')])
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Assignment from Scalars

A scalar assigned to a structured element will be assigned to all fields. This happens when a scalar is assigned to a
structured array, or when an unstructured array is assigned to a structured array:

>>> x = np.zeros (2, dtype='i8,f4,7?,51")
>>> x[:] = 3
>>> x
array ([ (3, 3.0, True, b'3"), (3, 3.0, True, b'3")],
dtype=[('f0', '<i8'), ('fl1', '<f4'), ('f2', '?'), ('f3', 's1")])
>>> x[:] = np.arange(2)
>>> x
array ([ (0, 0.0, False, b'0'"), (1, 1.0, True, b'1")],
dtype=[('f0', '<i8'), ('f1', '<f4'), ('f2', '?"'), ('f£3', 'S1")])

Structured arrays can also be assigned to unstructured arrays, but only if the structured datatype has just a single field:

>>> twofield = np.zeros (2, dtype=[('A', "i4"), ('B', "i4")])
>>> onefield = np.zeros (2, dtype=[('A', 'i4")])

>>> nostruct = np.zeros (2, dtype='i4")

>>> nostruct[:] = twofield

ValueError: Can't cast from structure to non-structure, except if the structure only
—has a single field.

>>> nostruct[:] = onefield

>>> nostruct

array ([0, 0], dtype=int32)

Assignment from other Structured Arrays

Assignment between two structured arrays occurs as if the source elements had been converted to tuples and then
assigned to the destination elements. That is, the first field of the source array is assigned to the first field of the
destination array, and the second field likewise, and so on, regardless of field names. Structured arrays with a different
number of fields cannot be assigned to each other. Bytes of the destination structure which are not included in any of
the fields are unaffected.

>>> a = np.zeros (3, dtype=[('a', 'i8"), ('b', '"f£4"), ('c', 'S3")1)

>>> b = np.ones (3, dtype=[('x", "f4'), ('y', 'S3"), ('z', 'O")1])

>>> pb[:] = a

>>> b

array ([ (0.0, b'0.0', b'""), (0.0, b'0.0', '"), (0.0, b'0.0', D"")1,
dtype=[('x"', '<f4'), ('y', 's3"), ('z', '0")])

Assignment involving subarrays

When assigning to fields which are subarrays, the assigned value will first be broadcast to the shape of the subarray.

Indexing Structured Arrays

Accessing Individual Fields

Individual fields of a structured array may be accessed and modified by indexing the array with the field name.

>>> x = np.array([(1,2), (3,4)], dtype=[('foo', 'i8'), ('bar', 'f4")1)
>>> x['foo']

array ([1, 3])

>>> x['foo'] = 10

(continues on next page)
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>>> x
array ([ (10, 2.), (10, 4.)1,
dtype=[('foo', '<i8'"), ('bar', '<f4')])

The resulting array is a view into the original array. It shares the same memory locations and writing to the view will
modify the original array.

>>> y = x['bar']
>>> y[:] = 10
>>> x
array ([ (10, 5.), (10, 5.)1,
dtype=[('foo', '<i8'"'), ('bar', '<f4')])

This view has the same dtype and itemsize as the indexed field, so it is typically a non-structured array, except in the
case of nested structures.

>>> y.dtype, y.shape, y.strides
(dtype ('float32"), (2,), (12,))

If the accessed field is a subarray, the dimensions of the subarray are appended to the shape of the result:

>>> x = np.zeros((2,2), dtype=[('a', np.int32), ('b', np.float64d, (3,3))])
>>> x['a'].shape

(2, 2)

>>> x['b'].shape

(2, 2, 3, 3)

Accessing Multiple Fields

One can index and assign to a structured array with a multi-field index, where the index is a list of field names.

Warning: The behavior of multi-field indexes changed from Numpy 1.15 to Numpy 1.16.

The result of indexing with a multi-field index is a view into the original array, as follows:

>>> a = np.zeros (3, dtype=[('a', 'i4"), ('b', 'id"), ('c', '£4'")1)
>>> af['a', 'c']]
array ([ (0, 0.), (0, 0.), (0, 0.)1,
dtype={'names':['a','c'], 'formats':['<id',6K '<f4'], 'offsets':[0,8], 'itemsize
—"':12})

Assignment to the view modifies the original array. The view’s fields will be in the order they were indexed. Note that
unlike for single-field indexing, the view’s dtype has the same itemsize as the original array, and has fields at the same
offsets as in the original array, and unindexed fields are merely missing.

Warning: In Numpy 1.15, indexing an array with a multi-field index returned a copy of the result above, but with
fields packed together in memory as if passed through numpy.lib.recfunctions.repack_fields.

The new behavior as of Numpy 1.16 leads to extra “padding” bytes at the location of unindexed fields compared
to 1.15. You will need to update any code which depends on the data having a “packed” layout. For instance code
such as:

56 Chapter 3. NumPy basics




NumPy User Guide, Release 1.16.1

>>> a = np.zeros (3, dtype=[('a', 'i4"), ('b', '"id"), ('c', '£4")1)

>>> af[['a','c']].view('18") # Fails in Numpy 1.16

ValueError: When changing to a smaller dtype, its size must be a divisor of the
—~size of original dtype

will need to be changed. This code has raised a FutureWarning since Numpy 1.12, and similar code has raised
FutureWarning since 1.7.

In 1.16 a number of functions have been introduced in the :module:‘numpy.lib.recfunctions® module
to help users account for this change. These are numpy.lib.recfunctions.repack_fields.

numpy.lib.recfunctions.structured_to_unstructured, numpy.lib.recfunctions.
unstructured_to_structured, numpy.lib.recfunctions.apply_along_fields,
numpy.lib.recfunctions.assign_fields_by_name, and numpy.lib.recfunctions.

require_fields.

The function numpy.lib.recfunctions.repack_fields can always be used to reproduce the old be-
havior, as it will return a packed copy of the structured array. The code above, for example, can be replaced
with:

>>> repack_fields(a[['a','c']]) . .view('i8") # supported in 1.16
array ([0, 0, 01])

Furthermore, numpy now provides a new function numpy.lib.recfunctions.
structured_to_unstructured which is a safer and more efficient alternative for users who wish to
convert structured arrays to unstructured arrays, as the view above is often indeded to do. This function allows safe
conversion to an unstructured type taking into account padding, often avoids a copy, and also casts the datatypes
as needed, unlike the view. Code such as:

>>> a = np.zeros (3, dtype=[('x", "£f4'"), ('y', "f4'), ('z"', '"£4')1)
>>> a[['x"'", 'z']l].view('f4d")

can be made safer by replacing with:

>>> structured_to_unstructured(al['x', 'z'1])
array ([0, 0, 01])

Assignment to an array with a multi-field index modifies the original array:

>>> af[['a', 'c']l] = (2, 3)

>>> a

array ([ (2, 0, 3.0), (2, 0, 3.0), (2, 0, 3.0)1,
dtype=[('a', '<i8"), ('b', '<id"), ('c', '<£f8")])

This obeys the structured array assignment rules described above. For example, this means that one can swap the
values of two fields using appropriate multi-field indexes:

>>> afll'a', 'c']l] = all'c', 'a'l]

Indexing with an Integer to get a Structured Scalar

Indexing a single element of a structured array (with an integer index) returns a structured scalar:

>>> x = np.array([(1, 2., 3.)], dtype='i,f,f")
>>> gcalar = x[0]

>>> scalar

(1, 2., 3.)

(continues on next page)
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>>> type (scalar)
numpy.void

Unlike other numpy scalars, structured scalars are mutable and act like views into the original array, such that modi-
fying the scalar will modify the original array. Structured scalars also support access and assignment by field name:

>>> x = np.array([(1,2),(3,4)], dtype=[('"foo', 'i8"), ('bar', 'f4")])
>>> g = x[0]
>>> s['bar'] = 100
>>> x
array ([ (1, 100.), (3, 4.)1,
dtype=[('foo', '<i8'"'), ('bar', '<f4')])

Similarly to tuples, structured scalars can also be indexed with an integer:

>>> scalar = np.array([(1, 2., 3.)], dtype="1i,£f,£")[0]
>>> gcalar[0]

1

>>> scalar[1l] = 4

Thus, tuples might be thought of as the native Python equivalent to numpy’s structured types, much like native
python integers are the equivalent to numpy’s integer types. Structured scalars may be converted to a tuple by calling
ndarray.item:

>>> scalar.item(), type(scalar.item())
((L1, 2.0, 3.0), tuple)

Viewing Structured Arrays Containing Objects

In order to prevent clobbering object pointers in fields of numpy .object type, numpy currently does not allow
views of structured arrays containing objects.

Structure Comparison

If the dtypes of two void structured arrays are equal, testing the equality of the arrays will result in a boolean array
with the dimensions of the original arrays, with elements set to True where all fields of the corresponding structures
are equal. Structured dtypes are equal if the field names, dtypes and titles are the same, ignoring endianness, and the
fields are in the same order:

>>> a = np.zeros (2, dtype=[('a', 'i4"), ('b', 'i4")1)
>>> b = np.ones (2, dtype=[('a', 'i4'), ('b', 'i4"')1)
>>> g == b

array ([False, False])

Currently, if the dtypes of two void structured arrays are not equivalent the comparison fails, returning the scalar value
False. This behavior is deprecated as of numpy 1.10 and will raise an error or perform elementwise comparison in
the future.

The < and > operators always return False when comparing void structured arrays, and arithmetic and bitwise
operations are not supported.

3.7.4 Record Arrays

As an optional convenience numpy provides an ndarray subclass, numpy . recarray, and associated helper functions
in the numpy . rec submodule, that allows access to fields of structured arrays by attribute instead of only by index.
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Record arrays also use a special datatype, numpy . record, that allows field access by attribute on the structured
scalars obtained from the array.

The simplest way to create a record array is with numpy . rec.array:

>>> recordarr = np.rec.array([(l,2.,'Hello"), (2,3.,"World")],
Ce dtype=[('foo', '"i4"), ('bar', 'f4'), ('baz', 'S10")1)
>>> recordarr.bar
array ([ 2., 3.], dtype=float32)
>>> recordarr[l:2]
rec.array([(2, 3.0, '"World')],
dtype=[('foo', '<i4d'), ('bar', '<f4'), ('baz', 'S10'")1)
>>> recordarr[l:2].foo
array ([2], dtype=int32)
>>> recordarr.foo[l:2]
array ([2], dtype=int32)
>>> recordarr[l] .baz
'World'

numpy .rec.array can convert a wide variety of arguments into record arrays, including structured arrays:

>>> arr = array([(l,2.,'Hello"), (2,3.,"World")1],
.. dtype=[('foo', '"i4'), ('bar', 'f4'), ('baz', 'S10')])
>>> recordarr = np.rec.array(arr)

The numpy . rec module provides a number of other convenience functions for creating record arrays, see record
array creation routines.

A record array representation of a structured array can be obtained using the appropriate view:

>>> arr = np.array([(l1,2.,"'Hello"), (2,3.,"World")],

R dtype=[('foo', '"i4"), ('bar', 'f4'), ('baz', 'al0d")1])

>>> recordarr = arr.view (dtype=dtype ((np.record, arr.dtype)),
type=np.recarray)

For convenience, viewing an ndarray as type np . recarray will automatically convert to np . record datatype, so
the dtype can be left out of the view:

>>> recordarr = arr.view(np.recarray)
>>> recordarr.dtype
dtype ( (numpy.record, [('foo', '<i4d'), ('bar', '<f4'), ('baz', 'S10")1))

To get back to a plain ndarray both the dtype and type must be reset. The following view does so, taking into account
the unusual case that the recordarr was not a structured type:

>>> arr2 = recordarr.view(recordarr.dtype.fields or recordarr.dtype, np.ndarray)

Record array fields accessed by index or by attribute are returned as a record array if the field has a structured type but
as a plain ndarray otherwise.

>>> recordarr = np.rec.array ([ ('Hello', (1,2)), ("World", (3,4))1,

C dtype=[('foo', 'S6"), ('bar', [('A', int), ('B', int)1)1)
>>> type (recordarr.foo)
<type 'numpy.ndarray'>

>>> type (recordarr.bar)

<class 'numpy.core.records.recarray'>

Note that if a field has the same name as an ndarray attribute, the ndarray attribute takes precedence. Such fields will
be inaccessible by attribute but will still be accessible by index.
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3.7.5 Recarray Helper Functions

Collection of utilities to manipulate structured arrays.

Most of these functions were initially implemented by John Hunter for matplotlib. They have been rewritten and

extended for convenience.

numpy.lib.recfunctions.append_fields (base, names, data, dtypes=None, fill_value=-1, use-

mask=True, asrecarray=False)
Add new fields to an existing array.

The names of the fields are given with the names arguments, the corresponding values with the data arguments.

If a single field is appended, names, data and dtypes do not have to be lists but just values.
Parameters

base [array] Input array to extend.

names [string, sequence] String or sequence of strings corresponding to the names of the new

fields.

data [array or sequence of arrays] Array or sequence of arrays storing the fields to add to the

base.

dtypes [sequence of datatypes, optional] Datatype or sequence of datatypes. If None, the

datatypes are estimated from the data.
fill_value [{float}, optional] Filling value used to pad missing data on the shorter arrays.
usemask [{False, True}, optional] Whether to return a masked array or not.

asrecarray [{False, True}, optional] Whether to return a recarray (MaskedRecords) or not.

numpy.lib.recfunctions.drop_£fields (base, drop_names, usemask=True, asrecarray=~False)

Return a new array with fields in drop_names dropped.
Nested fields are supported.
Parameters

base [array] Input array

drop_names [string or sequence] String or sequence of strings corresponding to the names of

the fields to drop.

usemask [{False, True}, optional] Whether to return a masked array or not.

asrecarray [string or sequence, optional] Whether to return a recarray or a mrecarray (asrecar-

ray=True) or a plain ndarray or masked array with flexible dtype. The default is False.

Examples

>>> from numpy.lib import recfunctions as rfn
>>> a = np.array ([(1, (2, 3.0)), (4, (5, 6.0))1,

dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])
>>> rfn.drop_fields(a, 'a')
array ([ ((2.0, 3),), ((5.0, 6),)]1,

dtype=[('b', [('ba', '<f8"), ('bb', '<id4")1)1)

>>> rfn.drop_fields(a, 'ba')
array ([ (1, (3,)), (4, (6,))]1,

dtype=[('a', '<id'), ('b', [('bb', '<id')])1])
>>> rfn.drop_fields(a, ['ba', 'bb'l])
array ([ (1,), (4,)1,

dtype=[('a', '<id")])
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numpy.lib.recfunctions.find_duplicates (q, key=None, ignoremask=True, re-

turn_index="Fualse)
Find the duplicates in a structured array along a given key

Parameters
a [array-like] Input array

key [{string, None}, optional] Name of the fields along which to check the duplicates. If None,
the search is performed by records

ignoremask [{True, False}, optional] Whether masked data should be discarded or considered
as duplicates.

return_index [{False, True}, optional] Whether to return the indices of the duplicated values.

Examples

>>> from numpy.lib import recfunctions as rfn
>>> ndtype = [('a', int)]
>>> a = np.ma.array([(1, 1, 1, 2, 2, 3, 31,
c mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype)
>>> rfn.find_duplicates(a, ignoremask=True, return_index=True)
# XXX: judging by the output, the ignoremask flag has no effect

numpy.lib.recfunctions.get_fieldstructure (adtype, lastname=None, parents=None)
Returns a dictionary with fields indexing lists of their parent fields.

This function is used to simplify access to fields nested in other fields.
Parameters
adtype [np.dtype] Input datatype
lastname [optional] Last processed field name (used internally during recursion).

parents [dictionary] Dictionary of parent fields (used interbally during recursion).

Examples

>>> from numpy.lib import recfunctions as rfn

>>> ndtype = np.dtype([('A', int),
('B', [('BA", int),
('"BB', [('BBA', int), ('BBB', int)])1)1)

>>> rfn.get_fieldstructure (ndtype)
# XXX: possible regression, order of BBA and BBB 1is swapped

{‘a': ], 'B': [], 'BA': ['B'], 'BB': ['B'], 'BBA': ['B', 'BB'], 'BBB': ['B', 'BB

="'}

numpy.lib.recfunctions. join_by (key, rl, r2, jointype='inner’, ripostfix="1", r2postfix="2", de-
faults=None, usemask="True, asrecarray=~False)
Join arrays r/ and r2 on key key.

The key should be either a string or a sequence of string corresponding to the fields used to join the array. An
exception is raised if the key field cannot be found in the two input arrays. Neither r/ nor 72 should have any
duplicates along key: the presence of duplicates will make the output quite unreliable. Note that duplicates are
not looked for by the algorithm.

Parameters

key [{string, sequence}] A string or a sequence of strings corresponding to the fields used for
comparison.
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rl, r2 [arrays] Structured arrays.

jointype [{‘inner’, ‘outer’, ‘leftouter’}, optional] If ‘inner’, returns the elements common to
both rl1 and r2. If ‘outer’, returns the common elements as well as the elements of r1 not
in r2 and the elements of not in r2. If ‘leftouter’, returns the common elements and the
elements of r1 not in r2.

rlpostfix [string, optional] String appended to the names of the fields of rl that are present in
2 but absent of the key.

r2postfix [string, optional] String appended to the names of the fields of r2 that are present in
rl but absent of the key.

defaults [{dictionary}, optional] Dictionary mapping field names to the corresponding default
values.

usemask [{True, False}, optional] Whether to return a MaskedArray (or MaskedRecords is
asrecarray==True) or a ndarray.

asrecarray [{False, True}, optional] Whether to return a recarray (or MaskedRecords if use-
mask==True) or just a flexible-type ndarray.

Notes

* The output is sorted along the key.

* A temporary array is formed by dropping the fields not in the key for the two arrays and concatenating the
result. This array is then sorted, and the common entries selected. The output is constructed by filling the
fields with the selected entries. Matching is not preserved if there are some duplicates. . .

numpy.lib.recfunctions.merge_arrays (seqarrays, fill_value=-1, flatten=False, usemask=False,

asrecarray="False)
Merge arrays field by field.

Parameters
seqarrays [sequence of ndarrays] Sequence of arrays
fill_value [{float}, optional] Filling value used to pad missing data on the shorter arrays.
flatten [{False, True}, optional] Whether to collapse nested fields.
usemask [{False, True}, optional] Whether to return a masked array or not.

asrecarray [{False, True}, optional] Whether to return a recarray (MaskedRecords) or not.

Notes

* Without a mask, the missing value will be filled with something, depending on what its corresponding
type:

-1 for integers

—1. 0 for floating point numbers

' —' for characters
— '-1" for strings

True for boolean values

e XXX: Ijust obtained these values empirically
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Examples

>>> from numpy.lib import recfunctions as rfn
>>> rfn.merge_arrays ((np.array([1l, 2]), np.array([10., 20., 30.1)))

masked_array(data = [(1, 10.0) (2, 20.0) (-——, 30.0)1,
mask = [(False, False) (False, False) (True, False)],
fill_value = (999999, 1le+20),
dtype = [('f0', '<id'), ('fl1', '<£f8")1])
>>> rfn.merge_arrays ((np.array([1l, 2]), np.array([10., 20., 30.1)),

C. usemask=False)
array ([ (1, 10.0), (2, 20.0), (=1, 30.0)1,

dtype=[('f0', '<i4'), ('f1', '<f8"')1])
>>> rfn.merge_arrays((np.array([l, 2]).view([('a', int)]),
np.array([10., 20., 30.1)),

C usemask=False, asrecarray=True)
rec.array ([ (1, 10.0), (2, 20.0), (-1, 30.0)1,
dtype=[('a', '<id4'"), ('f1', '<f8")])

numpy.lib.recfunctions.rec_append_fields (base, names, data, dtypes=None)
Add new fields to an existing array.

The names of the fields are given with the names arguments, the corresponding values with the data arguments.
If a single field is appended, names, data and dtypes do not have to be lists but just values.

Parameters
base [array] Input array to extend.

names [string, sequence] String or sequence of strings corresponding to the names of the new
fields.

data [array or sequence of arrays] Array or sequence of arrays storing the fields to add to the
base.

dtypes [sequence of datatypes, optional] Datatype or sequence of datatypes. If None, the
datatypes are estimated from the data.

Returns
appended_array [np.recarray]
See also:
append_fields

numpy.lib.recfunctions.rec_drop_fields (base, drop_names)
Returns a new numpy.recarray with fields in drop_names dropped.

numpy.lib.recfunctions.rec_join (key, rl, r2, jointype="inner’, ripostfix="1", r2postfix="2", de-
faults=None)
Join arrays rI and r2 on keys. Alternative to join_by, that always returns a np.recarray.

See also:
join_ by equivalent function

numpy.lib.recfunctions.recursive_£ill_ fields (input, output)
Fills fields from output with fields from input, with support for nested structures.

Parameters
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input [ndarray] Input array.

output [ndarray] Output array.

Notes

* output should be at least the same size as input

Examples

>>> from numpy.lib import recfunctions as rfn
>>> a = np.array ([ (1, 10.), (2, 20.)]1, dtype=[('A', int), ('B', float)])
>>> b = np.zeros((3,), dtype=a.dtype)
>>> rfn.recursive_fill_ fields(a, b)
array ([ (1, 10.0), (2, 20.0), (0, 0.0)1,
dtype=[('A', '<id'"), ('B', '<f8")1])

numpy.lib.recfunctions.rename_f£fields (base, namemapper)
Rename the fields from a flexible-datatype ndarray or recarray.

Nested fields are supported.
Parameters
base [ndarray] Input array whose fields must be modified.

namemapper [dictionary] Dictionary mapping old field names to their new version.

Examples

>>> from numpy.lib import recfunctions as rfn

>>> a = np.array([(1, (2, [3.0, 30.1)), (4, (5, [6.0, 60.1))1,
dtype=[('a', int), ('b', [('ba', float), ('bb', (float, 2))1)1)

>>> rfn.rename_fields(a, {'a':'A', 'bb':'BB'})

array ([ (1, (2.0, [3.0, 30.01)), (4, (5.0, [6.0, 60.01))1,
dtype=[('A', '<id4'), ('b', [('ba', '<£f8'), ('BB', '<f8', 2)1)1)

numpy.lib.recfunctions.stack_arrays (arrays, defaults=None, usemask=True, asrecar-

ray=False, autoconvert=False)
Superposes arrays fields by fields

Parameters
arrays [array or sequence] Sequence of input arrays.

defaults [dictionary, optional] Dictionary mapping field names to the corresponding default
values.

usemask [{True, False}, optional] Whether to return a MaskedArray (or MaskedRecords is
asrecarray==True) or a ndarray.

asrecarray [{False, True}, optional] Whether to return a recarray (or MaskedRecords if use-
mask==True) or just a flexible-type ndarray.

autoconvert [{False, True}, optional] Whether automatically cast the type of the field to the
maximum.
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Examples
>>> from numpy.lib import recfunctions as rfn
>>> x = np.array([1l, 2,1)
>>> rfn.stack_arrays(x) is x
True
>>> z = np.array ([ ('A', 1), ('B', 2)], dtype=[('A', "|S3"), ('B', float)])
>>> zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)1,
dtype=[('A', "|S3"), ('B', float), ('C', float)l])
>>> test = rfn.stack_arrays((z,zz))
>>> test
masked_array (data = [('A', 1.0, --) ('B', 2.0, --) ('a', 10.0, 100.0) ('b', 20.0,.
—200.0)
('c', 30.0, 300.0)71,
mask = [(False, False, True) (False, False, True) (False, False,
—False)
(False, False, False) (False, False, False)],
fill_value = ('N/A', 1le+20, le+20),
dtype = [('A', '|S3'), ('B', '<f8"), ('C', '<f8")])

3.8 Subclassing ndarray

3.8.1 Introduction

Subclassing ndarray is relatively simple, but it has some complications compared to other Python objects. On this
page we explain the machinery that allows you to subclass ndarray, and the implications for implementing a subclass.

ndarrays and object creation

Subclassing ndarray is complicated by the fact that new instances of ndarray classes can come about in three different
ways. These are:

1. Explicit constructor call - as in MySubClass (params) . This is the usual route to Python instance creation.
2. View casting - casting an existing ndarray as a given subclass

3. New from template - creating a new instance from a template instance. Examples include returning slices from
a subclassed array, creating return types from ufuncs, and copying arrays. See Creating new from template for
more details

The last two are characteristics of ndarrays - in order to support things like array slicing. The complications of
subclassing ndarray are due to the mechanisms numpy has to support these latter two routes of instance creation.

3.8.2 View casting

View casting is the standard ndarray mechanism by which you take an ndarray of any subclass, and return a view of
the array as another (specified) subclass:

>>> import numpy as np

>>> # create a completely useless ndarray subclass
>>> class C(np.ndarray): pass

>>> # create a standard ndarray

>>> arr = np.zeros((3,))
>>> # take a view of it, as our useless subclass
>>> c_arr = arr.view(C)

>>> type (c_arr)
<class 'C'>
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3.8.3 Creating new from template

New instances of an ndarray subclass can also come about by a very similar mechanism to View casting, when numpy
finds it needs to create a new instance from a template instance. The most obvious place this has to happen is when
you are taking slices of subclassed arrays. For example:

>>> v = c_arr[l:]

>>> type(v) # the view is of type 'C'
<class 'C'>

>>> v is c_arr # but it's a new instance
False

The slice is a view onto the original c_arr data. So, when we take a view from the ndarray, we return a new ndarray,
of the same class, that points to the data in the original.

There are other points in the use of ndarrays where we need such views, such as copying arrays (c_arr.copy ()),
creating ufunc output arrays (see also __array_wrap__ for ufuncs and other functions), and reducing methods (like
c_arr.mean().

3.8.4 Relationship of view casting and new-from-template

These paths both use the same machinery. We make the distinction here, because they result in different input to your
methods. Specifically, View casting means you have created a new instance of your array type from any potential
subclass of ndarray. Creating new from template means you have created a new instance of your class from a pre-
existing instance, allowing you - for example - to copy across attributes that are particular to your subclass.

3.8.5 Implications for subclassing

If we subclass ndarray, we need to deal not only with explicit construction of our array type, but also View casting or
Creating new from template. NumPy has the machinery to do this, and this machinery that makes subclassing slightly
non-standard.

There are two aspects to the machinery that ndarray uses to support views and new-from-template in subclasses.

The first is the use of the ndarray._ _new__ method for the main work of object initialization, rather then the
more usual __init__ method. The second is the use of the __array_finalize_  method to allow subclasses
to clean up after the creation of views and new instances from templates.

A brief Python primeron _ new__and __init_

__new___is a standard Python method, and, if present, is called before __init___ when we create a class instance.
See the python __new___ documentation for more detail.

For example, consider the following Python code:

class C(object):
def _ new__ (cls, =*args):

print ('Cls in _ new__:', cls)
print ('Args in __new__:', args)
return object._ _new__ (cls, =xargs)
def _ _init__ (self, =args):
print ('type(self) in _ init_ :', type(self))
print ('Args in _ _init__:', args)

meaning that we get:
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>>> ¢ = C('hello")

Cls in _ new__: <class 'C'>

Args in __new__: ('hello',)
type(self) in __init__: <class 'C'>
Args in __init__: ('hello',)

When we call C ('hello'), the _ new___ method gets its own class as first argument, and the passed argument,
which is the string 'hello'. After python calls __new__, itusually (see below) callsour __init___ method, with
the output of ___new___ as the first argument (now a class instance), and the passed arguments following.

As you can see, the object can be initialized in the __new__ method or the __init__ method, or both, and in fact
ndarray does not have an __init__ method, because all the initialization is done in the __new___ method.

Why use ___new___rather than just the usual __init__? Because in some cases, as for ndarray, we want to be able
to return an object of some other class. Consider the following:

class D(C):

def _ new__ (cls, =*args):
print ('D cls is:', cls)
print ('D args in _ _new__:', args)

return C.__new__ (C, =*args)

def _ _init__ (self, =xargs):
# we never get here
print ('In D __init__ ")

meaning that:

>>> obj = D('hello")
D cls is: <class 'D'>

D args in __new__: ('hello',)
Cls in _ new__: <class 'C'>
Args in __new__: ('hello',)

>>> type (ob7j)
<class 'C'>

The definition of C is the same as before, but for D, the  _new__ method returns an instance of class C rather than D.
Note that the __init__ method of D does not get called. In general, when the __new___ method returns an object
of class other than the class in which it is defined, the ___init___ method of that class is not called.

This is how subclasses of the ndarray class are able to return views that preserve the class type. When taking a view,
the standard ndarray machinery creates the new ndarray object with something like:

obj = ndarray.__new__ (subtype, shape,

where subdtype is the subclass. Thus the returned view is of the same class as the subclass, rather than being of
class ndarray.

That solves the problem of returning views of the same type, but now we have a new problem. The machinery of
ndarray can set the class this way, in its standard methods for taking views, but the ndarray ___new___ method knows
nothing of what we have done in our own ___new___ method in order to set attributes, and so on. (Aside - why not
call obj = subdtype._ _new__ (... then? Because we may not have a __new__ method with the same call
signature).

The role of __array finalize_

__array_finalize__isthe mechanism that numpy provides to allow subclasses to handle the various ways that
new instances get created.
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Remember that subclass instances can come about in these three ways:

1. explicit constructor call (obj = MySubClass (params)). This will call the usual sequence of
MySubClass.__new__ then (if it exists) MySubClass._ _init_ .
2. View casting
3. Creating new from template
Our MySubClass.__new__ method only gets called in the case of the explicit constructor call, so we can’t rely
on MySubClass.__new__ or MySubClass.__init__ to deal with the view casting and new-from-template.

It turns out that MySubClass.__array_finalize_  does get called for all three methods of object creation, so
this is where our object creation housekeeping usually goes.

e For the explicit constructor call, our subclass will need to create a new ndarray instance of its
own class. In practice this means that we, the authors of the code, will need to make a call to

ndarray.__new__ (MySubClass, ...), a class-hierarchy prepared call to super (MySubClass,
cls).__new__(cls, ...),ordoview casting of an existing array (see below)
» For view casting and new-from-template, the equivalent of ndarray.__new__ (MySubClass, ... is

called, at the C level.
The arguments that __array_finalize__ receives differ for the three methods of instance creation above.

The following code allows us to look at the call sequences and arguments:

import numpy as np

class C(np.ndarray) :
def _ _new__ (cls, =*args, =x*kwargs):

print ('In _ new__ with class ' % cls)
return super(C, cls).__new__ (cls, =xargs, =**kwargs)
def __ _init__ (self, =args, **kwargs):
# in practice you probably will not need or want an __init___
# method for your subclass
print ('In _ _init_ with class ' % self._ class_ )
def _ _array_finalize__ (self, obj):
print ('In array_finalize:")
print (' self type is ' % type(self))
print (' obj type is "% type(obij))

Now:

>>> # Explicit constructor
>>> ¢ = C((10,))
In _ new__ with class <class 'C'>
In array_finalize:
self type is <class 'C'>
obj type is <type 'NoneType'>
In _ init_ with class <class 'C'>
>>> # View casting
>>> a = np.arange (10)
>>> cast_a = a.view(C)
In array_finalize:
self type is <class 'C'>
ob]j type is <type 'numpy.ndarray'>
>>> # Slicing (example of new-from-template)
>>> cv = c[:1]

(continues on next page)
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(continued from previous page)

In array_finalize:
self type is <class 'C'>
obj type is <class 'C'>

The signature of __array_finalize__ is:

def _ _array_finalize__ (self, obj):

One sees that the super call, which goesto ndarray.__new__,passes__array_~finalize___the new object,
of our own class (self) as well as the object from which the view has been taken (obj). As you can see from the
output above, the self is always a newly created instance of our subclass, and the type of obj differs for the three
instance creation methods:

* When called from the explicit constructor, ob j is None
* When called from view casting, ob j can be an instance of any subclass of ndarray, including our own.

* When called in new-from-template, ob Jj is another instance of our own subclass, that we might use to update
the new self instance.

Because __array_finalize__ isthe only method that always sees new instances being created, it is the sensible
place to fill in instance defaults for new object attributes, among other tasks.

This may be clearer with an example.

3.8.6 Simple example - adding an extra attribute to ndarray

import numpy as np
class InfoArray (np.ndarray) :

def _ _new__ (subtype, shape, dtype=float, buffer=None, offset=0,
strides=None, order=None, info=None) :
# Create the ndarray instance of our type, given the usual
# ndarray input arguments. This will call the standard
# ndarray constructor, but return an object of our type.
# It also triggers a call to InfoArray.__array_finalize
obj = super (InfoArray, subtype).__ _new__ (subtype, shape, dtype,
buffer, offset, strides,
order)
# set the new 'info' attribute to the value passed
obj.info = info
# Finally, we must return the newly created object:
return obj

def _ _array_finalize__ (self, obj):
‘'self’’ 1is a new object resulting from
ndarray.__new__ (InfoArray, ...), therefore it only has
attributes that the ndarray.__new__ constructor gave it -

i.e. those of a standard ndarray.

From an explicit constructor - e.g. InfoArray():
obj is None
(we're in the middle of the InfoArray.__new__
constructor, and self.info will be set when we return to

#
#
#
#
#
# We could have got to the ndarray.__new__ call in 3 ways:
#
#
#
#
# InfoArray.__new__)

(continues on next page)
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(continued from previous page)

if obj is None: return

From view casting - e.g arr.view(InfoArray):
obj is arr
(type (obj) can be InfoArray)

From new-from-template - e.g infoarr[:3]
type (obj) is InfoArray

Note that it is here, rather than in the _ _new__ method,
that we set the default value for 'info', because this
method sees all creation of default objects - with the
InfoArray.__new__ constructor, but also with
arr.view(InfoArray) .

self.info = getattr(obj, 'info', None)

# We do not need to return anything

#
#
#
#
#
#
#
#
#
#
#

Using the object looks like this:

>>> obj = InfoArray(shape=(3,)) # explicit constructor
>>> type (ob7j)

<class 'InfoArray'>

>>> obj.info is None

True

>>> obj = InfoArray(shape=(3,), info='information')
>>> obj.info

'information'

>>> v = obj[l:] # new-from-template - here - slicing

>>> type (v)

<class 'InfoArray'>

>>> v.info

'information'

>>> arr = np.arange (10)

>>> cast_arr = arr.view(InfoArray) # view casting
>>> type (cast_arr)

<class 'InfoArray'>

>>> cast_arr.info is None

True

This class isn’t very useful, because it has the same constructor as the bare ndarray object, including passing in buffers
and shapes and so on. We would probably prefer the constructor to be able to take an already formed ndarray from the
usual numpy calls to np . array and return an object.

3.8.7 Slightly more realistic example - attribute added to existing array

Here is a class that takes a standard ndarray that already exists, casts as our type, and adds an extra attribute.

import numpy as np
class RealisticInfoArray (np.ndarray) :
def _ new__ (cls, input_array, info=None):

# Input array is an already formed ndarray instance
# We first cast to be our class type

obj = np.asarray (input_array) .view(cls)
# add the new attribute to the created instance
obj.info = info

# Finally, we must return the newly created object:

(continues on next page)
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return obj

def _ _array_finalize__ (self, obj):
# see InfoArray.__array_finalize _ for comments
if obj is None: return
self.info = getattr(obj, 'info', None)
So:
>>> arr = np.arange(5)
>>> obj = RealisticInfoArray(arr, info='information')

>>> type (obj)

<class 'RealisticInfoArray'>
>>> obj.info

'information'

>>> v = obj[l:]

>>> type (v)

<class 'RealisticInfoArray'>
>>> v.info

'information'

3.8.8 _ array ufunc__ for ufuncs
New in version 1.13.

A subclass can override what happens when executing numpy ufuncs on it by overriding the default ndarray.
_ array_ufunc__ method. This method is executed instead of the ufunc and should return either the result of the
operation, or Not Implemented if the operation requested is not implemented.

The signature of __array_ufunc__is:

def __array_ufunc__ (ufunc, method, =*inputs, #**kwargs):

— xufunc* is the ufunc object that was called.
- *method* is a string indicating how the Ufunc was called, either

""_ _call_ "™ to indicate it was called directly, or one of its
:ref: methods<ufuncs.methods>": " "reduce" ', "~ "accumulate" ',
“"reduceat" ", " "outer" ", or " M"at" .

- xinputsx is a tuple of the input arguments to the "~ “ufunc’

- xkwargsx contains any optional or keyword arguments passed to the
function. This includes any "~ “out’ = arguments, which are always
contained in a tuple.

A typical implementation would convert any inputs or outputs that are instances of one’s own class, pass everything on
to a superclass using super (), and finally return the results after possible back-conversion. An example, taken from
the test case test_ufunc_override_with_super in core/tests/test_umath.py, is the following.

input numpy as np

class A(np.ndarray) :

def _ array_ufunc__ (self, ufunc, method, =inputs, =*xkwargs):
args = []
in_no = []

for i, input_ in enumerate (inputs) :
if isinstance (input_, A):
in_no.append (i)

(continues on next page)
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args.append (input_.view (np.ndarray))
else:
args.append (input_)

outputs = kwargs.pop ('out', None)
out_no = []
if outputs:
out_args = []
for j, output in enumerate (outputs) :
if isinstance (output, A):
out_no.append(7)

else:
out_args.append (output)
kwargs['out'] = tuple(out_args)
else:

outputs

(None, ) = ufunc.nout

info

= {}
if in_no:
info['inputs'] = in_no
if out_no:
info['outputs'] = out_no

if results is NotImplemented:
return NotImplemented

if method == 'at':
if isinstance (inputs[0], A):
inputs[0] .info = info
return

if ufunc.nout ==
results = (results,)

results = tuple((np.asarray(result) .view(A)

out_args.append (output.view (np.ndarray))

results = super (A, self).__array_ufunc__ (ufunc,
*args,

if output is None else output)

for result, output in zip(results,
if results and isinstance(results[0], A):
results[0].info info
return results[0] if len(results) == 1 else results

*xkwargs)

outputs))

So, this class does not actually do anything interesting: it just converts any instances of its own to regular ndarray
(otherwise, we’d get infinite recursion!), and adds an info dictionary that tells which inputs and outputs it converted.

Hence, e.g.,

>>> a = np.arange(5.) .view (A)

>>> b = np.sin(a)

>>> b.info

{"inputs': [0]}

>>> b = np.sin(np.arange(5.), out=(a,))
>>> b.info

{'outputs': [0]}

(continues on next page)
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(continued from previous page)

>>> a = np.arange (5.) .view (4)
>>> b = np.ones (1) .view(A)
>>> c =a + b

>>> c.info

{"inputs': [0, 1]}

>>> a += b
>>> a.info
{"inputs': [0, 1], 'outputs': [0]}

Note that another approach would be to to use getattr (ufunc, methods) (xinputs, x+kwargs) instead
of the super call. For this example, the result would be identical, but there is a difference if another operand also
defines __array_ufunc__. E.g., lets assume that we evalulate np.add (a, b), where b is an instance of another
class B that has an override. If you use super as in the example, ndarray.__array_ufunc___ will notice that
b has an override, which means it cannot evaluate the result itself. Thus, it will return NotImplemented and so will our
class A. Then, control will be passed over to b, which either knows how to deal with us and produces a result, or does
not and returns NotImplemented, raising a TypeError.

If instead, we replace our super call with getattr (ufunc, method), we effectively do np.add (a.
view (np.ndarray), b). Again, B.__array_ufunc__ will be called, but now it sees an ndarray as the
other argument. Likely, it will know how to handle this, and return a new instance of the B class to us. Our ex-
ample class is not set up to handle this, but it might well be the best approach if, e.g., one were to re-implement
MaskedArray using __array_ufunc__.

As a final note: if the super route is suited to a given class, an advantage of using it is that it helps in constructing
class hierarchies. E.g., suppose that our other class B also used the super inits __array_ufunc___ implemen-
tation, and we created a class C that depended on both, i.e., class C (A, B) (with, for simplicity, not another
__array_ufunc__ override). Then any ufunc on an instance of C would pass on to A.__array_ufunc__,
the super call in A would go to B.__array_ufunc__, and the super call in B would go to ndarray.
__array_ufunc__, thus allowing A and B to collaborate.

3.8.9 _ _array wrap__ for ufuncs and other functions

Prior to numpy 1.13, the behaviour of ufuncs could only be tuned using __ array wrap__ and
__array_prepare_ . These two allowed one to change the output type of a ufunc, but, in contrast to
__array_ufunc__, did not allow one to make any changes to the inputs. It is hoped to eventually deprecate
these, but __array_wrap__ is also used by other numpy functions and methods, such as squeeze, so at the
present time is still needed for full functionality.

Conceptually, __array_wrap___ “wraps up the action” in the sense of allowing a subclass to set the type of the
return value and update attributes and metadata. Let’s show how this works with an example. First we return to the
simpler example subclass, but with a different name and some print statements:

import numpy as np

class MySubClass (np.ndarray) :

def _ new__ (cls, input_array, info=None):
obj = np.asarray (input_array) .view(cls)
obj.info = info

return obj

def _ _array_finalize__ (self, obj):
print ('In _ array_ finalize_ :"')
print (' self is ' % repr(self))
print (' obj is ' % repr(obj))

if obj is None: return

(continues on next page)
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self.info = getattr(obj, 'info', None)
def _ _array_wrap__ (self, out_arr, context=None):
print ('In _ array wrap_ :'")
print (' self is ' % repr(self))
print (' arr is ' % repr(out_arr))
# then just call the parent
return super (MySubClass, self).__array_wrap__ (self, out_arr, context)

We run a ufunc on an instance of our new array:

>>> obj = MySubClass (np.arange(5), info='spam')
In __array_finalize__ :

self is MySubClass ([0, 1, 2, 3, 41)

obj is array ([0, 1, 2, 3, 41])

>>> arr2 = np.arange (5)+1
>>> ret = np.add(arr2, obj)
In _ _array_wrap_ :

self is MySubClass ([0, 1, 2, 3, 41)
arr is array([1l, 3, 5, 7, 91])
In __array_finalize__ :
self is MySubClass([1, 3, 5, 7, 91)
obj is MySubClass ([0, 1, 2, 3, 4]
>>> ret
MySubClass ([1, 3, 5, 7, 91)
>>> ret.info
'spam'

Note that the ufunc (np.add) has called the _ array_wrap__ method with arguments self as obj,
and out_arr as the (ndarray) result of the addition. In turn, the default _ _array_wrap__ (ndarray.
__array_wrap__ ) has cast the result to class MySubClass, and called _ _array_finalize_ - hence the
copying of the info attribute. This has all happened at the C level.

But, we could do anything we wanted:

class SillySubClass (np.ndarray) :

def _ array_wrap__ (self, arr, context=None):
return 'TI lost your data'

>>> arrl = np.arange (D)

>>> obj = arrl.view(SillySubClass)
>>> arr2 = np.arange(5)

>>> ret = np.multiply(obj, arr2)
>>> ret

'T lost your data'

So, by defining a specific __array_wrap___ method for our subclass, we can tweak the output from ufuncs. The
__array_wrap___ method requires self, then an argument - which is the result of the ufunc - and an optional
parameter context. This parameter is returned by ufuncs as a 3-element tuple: (name of the ufunc, arguments of the
ufunc, domain of the ufunc), but is not set by other numpy functions. Though, as seen above, it is possible to do
otherwise, __array_wrap___ should return an instance of its containing class. See the masked array subclass for an
implementation.

In addition to __array_wrap__, which is called on the way out of the ufunc, there is also an
__array_prepare__ method which is called on the way into the ufunc, after the output arrays are created but
before any computation has been performed. The default implementation does nothing but pass through the array.
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__array_prepare__ should not attempt to access the array data or resize the array, it is intended for setting the
output array type, updating attributes and metadata, and performing any checks based on the input that may be desired
before computation begins. Like __array_wrap__, ___array_prepare__ must return an ndarray or subclass
thereof or raise an error.

3.8.10 Extra gotchas - custom __del__ methods and ndarray.base

One of the problems that ndarray solves is keeping track of memory ownership of ndarrays and their views. Consider
the case where we have created an ndarray, arr and have taken a slice with v. = arr[1:]. The two objects are
looking at the same memory. NumPy keeps track of where the data came from for a particular array or view, with the
base attribute:

>>> # A normal ndarray, that owns its own data
>>> arr = np.zeros((4,))

>>> # In this case, base 1s None

>>> arr.base is None

True
>>> # We take a view
>>> vl = arr[l:]

>>> # base now points to the array that it derived from
>>> vl.base 1is arr

True

>>> # Take a view of a view

>>> v2 = v1[l:]

>>> # base points to the view it derived from

>>> v2.base is vl

True

In general, if the array owns its own memory, as for arr in this case, then arr .base will be None - there are some
exceptions to this - see the numpy book for more details.

The base attribute is useful in being able to tell whether we have a view or the original array. This in turn can
be useful if we need to know whether or not to do some specific cleanup when the subclassed array is deleted. For
example, we may only want to do the cleanup if the original array is deleted, but not the views. For an example of how
this can work, have a look at the memmap class in numpy . core.

3.8.11 Subclassing and Downstream Compatibility

When sub-classing ndarray or creating duck-types that mimic the ndarray interface, it is your responsibility to
decide how aligned your APIs will be with those of numpy. For convenience, many numpy functions that have a
corresponding ndarray method (e.g., sum, mean, take, reshape) work by checking if the first argument to a
function has a method of the same name. If it exists, the method is called instead of coercing the arguments to a numpy
array.

For example, if you want your sub-class or duck-type to be compatible with numpy’s sum function, the method
signature for this object’s sum method should be the following:

def sum(self, axis=None, dtype=None, out=None, keepdims=False):

This is the exact same method signature for np . sum, so now if a user calls np . sum on this object, numpy will call
the object’s own sum method and pass in these arguments enumerated above in the signature, and no errors will be
raised because the signatures are completely compatible with each other.

If, however, you decide to deviate from this signature and do something like this:

def sum(self, axis=None, dtype=None):
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This object is no longer compatible with np . sum because if you call np . sum, it will pass in unexpected arguments
out and keepdims, causing a TypeError to be raised.

If you wish to maintain compatibility with numpy and its subsequent versions (which might add new keyword argu-
ments) but do not want to surface all of numpy’s arguments, your function’s signature should accept «*kwargs. For
example:

def sum(self, axis=None, dtype=None, =xxunused_kwargs) :

This object is now compatible with np. sum again because any extraneous arguments (i.e. keywords that are not
axis or dtype) will be hidden away in the * xunused_kwargs parameter.

76 Chapter 3. NumPy basics




CHAPTER
FOUR

MISCELLANEOUS

4.1 IEEE 754 Floating Point Special Values

Special values defined in numpy: nan, inf,
NaNs can be used as a poor-man’s mask (if you don’t care what the original value was)

Note: cannot use equality to test NaNs. E.g.:

>>> myarr = np.array([l., 0., np.nan, 3.])
>>> np.nonzero (myarr == np.nan)
(array ([], dtype=inté4),)

>>> np.nan == np.nan # is always False! Use special numpy functions instead.
False

>>> myarr[myarr == np.nan] = 0. # doesn't work

>>> myarr

array ([ 1., 0., NaN, 3.1)

>>> myarr[np.isnan(myarr)] = 0. # use this instead find

>>> myarr
array ([ 1., 0., 0., 3.1)

Other related special value functions:

isinf () : True if value is inf
isfinite(): True if not nan or inf
nan_to_num(): Map nan to 0, inf to max float, —-inf to min float

The following corresponds to the usual functions except that nans are excluded from the results:

nansum ()
nanmax ()
nanmin ()
nanargmax ()
nanargmin ()

>>> x = np.arange (10.)

>>> x[3] = np.nan
>>> x.sum()

nan

>>> np.nansum(x)
42.0
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4.2 How numpy handles numerical exceptions
The default is to 'warn' for invalid, divide, and overflow and 'ignore' for underflow. But this can
be changed, and it can be set individually for different kinds of exceptions. The different behaviors are:
* ‘ignore’ : Take no action when the exception occurs.
e ‘warn’ : Print a RuntimeWarning (via the Python warnings module).
* ‘raise’ : Raise a FloatingPointError.
e ‘call’ : Call a function specified using the seterrcall function.
* ‘print’ : Print a warning directly to stdout.
* ‘log’ : Record error in a Log object specified by seterrcall.
These behaviors can be set for all kinds of errors or specific ones:
* all : apply to all numeric exceptions
* invalid : when NaNs are generated
* divide : divide by zero (for integers as well!)
* overflow : floating point overflows
* underflow : floating point underflows

Note that integer divide-by-zero is handled by the same machinery. These behaviors are set on a per-thread basis.

4.3 Examples

>>> oldsettings = np.seterr(all="'warn')
>>> np.zeros (5,dtype=np.float32) /0.
invalid value encountered in divide
>>> j = np.seterr (under="ignore')
>>> np.array([1.e-100]) %10
>>> j = np.seterr(invalid='raise')
>>> np.sqgrt (np.array([-1.1]1))
FloatingPointError: invalid value encountered in sqgrt
>>> def errorhandler (errstr, errflag):
. print ("saw stupid error!")
>>> np.seterrcall (errorhandler)
<function err_handler at Ox...>
>>> j = np.seterr(all='call')
>>> np.zeros (5, dtype=np.int32)/0
FloatingPointError: invalid value encountered in divide
saw stupid error!
>>> j = np.seterr (xxoldsettings) # restore previous
# error—handling settings

4.4 Interfacingto C

Only a survey of the choices. Little detail on how each works.
1. Bare metal, wrap your own C-code manually.
* Plusses:

— Efficient
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— No dependencies on other tools

e Minuses:

— Lots of learning overhead:

# need to learn basics of Python C API

# need to learn basics of numpy C API

+ need to learn how to handle reference counting and love it.

— Reference counting often difficult to get right.

# getting it wrong leads to memory leaks, and worse, segfaults
— API will change for Python 3.0!
2. Cython

¢ Plusses:

avoid learning C API’s

no dealing with reference counting
can code in pseudo python and generate C code
can also interface to existing C code

should shield you from changes to Python C api

has become the de-facto standard within the scientific Python community

fast indexing support for arrays

¢ Minuses:

— Can write code in non-standard form which may become obsolete

— Not as flexible as manual wrapping

3. ctypes

¢ Plusses:

part of Python standard library

good for interfacing to existing sharable libraries, particularly Windows DLLs

avoids API/reference counting issues

good numpy support: arrays have all these in their ctypes attribute:

a.ctypes.data a.ctypes.get_strides

a.ctypes.data_as a.ctypes.shape

a.ctypes.get_as_parameter a.ctypes.shape_as

a.ctypes.get_data a.ctypes.strides

a.ctypes.get_shape a.ctypes.strides_as
* Minuses:

— can’t use for writing code to be turned into C extensions, only a wrapper tool.

4. SWIG (automatic wrapper generator)

¢ Plusses:

— around a long time

4.4. Interfacingto C
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— multiple scripting language support
— C++ support
— Good for wrapping large (many functions) existing C libraries

e Minuses:

generates lots of code between Python and the C code

can cause performance problems that are nearly impossible to optimize out

interface files can be hard to write

doesn’t necessarily avoid reference counting issues or needing to know API’s
5. scipy.weave
* Plusses:
— can turn many numpy expressions into C code
— dynamic compiling and loading of generated C code
— can embed pure C code in Python module and have weave extract, generate interfaces and compile, etc.
* Minuses:

— Future very uncertain: it’s the only part of Scipy not ported to Python 3 and is effectively deprecated in
favor of Cython.

6. Psyco
* Plusses:
— Turns pure python into efficient machine code through jit-like optimizations
— very fast when it optimizes well
* Minuses:
— Only on intel (windows?)

— Doesn’t do much for numpy?

4.5 Interfacing to Fortran:

The clear choice to wrap Fortran code is f2py.

Pyfort is an older alternative, but not supported any longer. Fwrap is a newer project that looked promising but isn’t
being developed any longer.

4.6 Interfacing to C++:

1. Cython

CXX

Boost.python

SWIG

SIP (used mainly in PyQT)

A I
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CHAPTER
FIVE

NUMPY FOR MATLAB USERS

5.1 Introduction

MATLAB® and NumPy/SciPy have a lot in common. But there are many differences. NumPy and SciPy were created
to do numerical and scientific computing in the most natural way with Python, not to be MATLAB® clones. This
page is intended to be a place to collect wisdom about the differences, mostly for the purpose of helping proficient
MATLAB® users become proficient NumPy and SciPy users.

5.2 Some Key Differences

In MATLAB®, the basic data type is a multidi-
mensional array of double precision floating point
numbers. Most expressions take such arrays and
return such arrays. Operations on the 2-D in-
stances of these arrays are designed to act more
or less like matrix operations in linear algebra.

In NumPy the basic type is a multidimensional array. Oper-
ations on these arrays in all dimensionalities including 2D are
element-wise operations. One needs to use specific functions
for linear algebra (though for matrix multiplication, one can
use the @ operator in python 3.5 and above).

MATLAB® uses 1 (one) based indexing. The ini-
tial element of a sequence is found using a(1). See
note INDEXING

Python uses 0 (zero) based indexing. The initial element of a
sequence is found using a[0].

MATLAB®’s scripting language was created for
doing linear algebra. The syntax for basic ma-
trix operations is nice and clean, but the API
for adding GUIs and making full-fledged appli-
cations is more or less an afterthought.

NumPy is based on Python, which was designed from the out-
set to be an excellent general-purpose programming language.
While Matlab’s syntax for some array manipulations is more
compact than NumPy’s, NumPy (by virtue of being an add-
on to Python) can do many things that Matlab just cannot, for
instance dealing properly with stacks of matrices.

In MATLAB®, arrays have pass-by-value seman-
tics, with a lazy copy-on-write scheme to pre-
vent actually creating copies until they are actu-
ally needed. Slice operations copy parts of the
array.

In NumPy arrays have pass-by-reference semantics. Slice op-
erations are views into an array.

5.3 ‘array’ or ‘matrix’? Which should | use?

Historically, NumPy has provided a special matrix type, np.matrix, which is a subclass of ndarray which makes binary
operations linear algebra operations. You may see it used in some existing code instead of np.array. So, which one to
use?
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5.3.1 Short answer

Use arrays.
¢ They are the standard vector/matrix/tensor type of numpy. Many numpy functions return arrays, not matrices.
 There is a clear distinction between element-wise operations and linear algebra operations.
* You can have standard vectors or row/column vectors if you like.

Until Python 3.5 the only disadvantage of using the array type was that you had to use dot instead of » to multiply
(reduce) two tensors (scalar product, matrix vector multiplication etc.). Since Python 3.5 you can use the matrix
multiplication @ operator.

Given the above, we intend to deprecate mat rix eventually.

5.3.2 Long answer

NumPy contains both an array class and a matrix class. The array class is intended to be a general-purpose
n-dimensional array for many kinds of numerical computing, while matrix is intended to facilitate linear algebra
computations specifically. In practice there are only a handful of key differences between the two.

* Operators * and @, functions dot (), and multiply ():

— For array, ¢“*¢ means element-wise multiplication, while ‘‘@*‘‘ means matrix multiplication; they
have associated functions multiply () and dot (). (Before python 3.5, @ did not exist and one had to
use dot () for matrix multiplication).

— For matrix, “*¢ means matrix multiplication, and for element-wise multiplication one has to use the
multiply () function.

* Handling of vectors (one-dimensional arrays)

— For array, the vector shapes 1xN, Nx1, and N are all different things. Operations like A[:, 1]
return a one-dimensional array of shape N, not a two-dimensional array of shape Nx1. Transpose on a
one-dimensional array does nothing.

— For matrix, one-dimensional arrays are always upconverted to 1xXN or Nx1 matrices (row or column
vectors). A[:, 1] returns a two-dimensional matrix of shape Nx1.

* Handling of higher-dimensional arrays (ndim > 2)
— array objects can have number of dimensions > 2;
- matrix objects always have exactly two dimensions.
» Convenience attributes
— array has a.T attribute, which returns the transpose of the data.

- matrix also has .H, .I, and .A attributes, which return the conjugate transpose, inverse, and
asarray () of the matrix, respectively.

¢ Convenience constructor

— The array constructor takes (nested) Python sequences as initializers. As in, array ([ [1,2, 3],
[4,5,6]11]).

— The matrix constructor additionally takes a convenient string initializer. Asinmatrix ("[1 2 3;
4 5 61").

There are pros and cons to using both:
* array

— :) Element-wise multiplication is easy: AxB.

82 Chapter 5. NumPy for Matlab users



NumPy User Guide, Release 1.16.1

: ( You have to remember that matrix multiplication has its own operator, @.

:) You can treat one-dimensional arrays as either row or column vectors. A @ v treats v as a column
vector, while v @ A treats v as a row vector. This can save you having to type a lot of transposes.

— :) array is the “default” NumPy type, so it gets the most testing, and is the type most likely to be
returned by 3rd party code that uses NumPy.

:) Is quite at home handling data of any number of dimensions.

— :) Closer in semantics to tensor algebra, if you are familiar with that.

) All operations (x, /, +, — etc.) are element-wise.
— : ( Sparse matrices from scipy . sparse do not interact as well with arrays.
* matrix

— :\\ Behavior is more like that of MATLAB® matrices.

<: ( Maximum of two-dimensional. To hold three-dimensional data you need array or perhaps a Python
list of matrix.

— <: ( Minimum of two-dimensional. You cannot have vectors. They must be cast as single-column or
single-row matrices.

— <: ( Since array is the default in NumPy, some functions may return an array even if you give them a
matrix as an argument. This shouldn’t happen with NumPy functions (if it does it’s a bug), but 3rd party
code based on NumPy may not honor type preservation like NumPy does.

— :) AxBis matrix multiplication, so it looks just like you write it in linear algebra (For Python >= 3.5 plain
arrays have the same convenience with the @ operator).

— <: ( Element-wise multiplication requires calling a function, multiply (A, B).
— <: ( The use of operator overloading is a bit illogical: * does not work element-wise but / does.
— Interaction with scipy. sparse is a bit cleaner.

The array is thus much more advisable to use. Indeed, we intend to deprecate mat rix eventually.

5.4 Table of Rough MATLAB-NumPy Equivalents

The table below gives rough equivalents for some common MATLAB® expressions. These are not exact equiva-
lents, but rather should be taken as hints to get you going in the right direction. For more detail read the built-in
documentation on the NumPy functions.

In the table below, it is assumed that you have executed the following commands in Python:

from numpy import =«
import scipy.linalg

Also assume below that if the Notes talk about “matrix” that the arguments are two-dimensional entities.
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5.4.1 General Purpose Equivalents

MATLAB numpy

Notes

help info(func) or help(func) or | gethelp on the function func

func func? (in Ipython)

which see note HELP find out where func is defined

func

type source (func) or func?? (in | print source for func (if not a native function)

func Ipython)

a && b a and b short-circuiting logical AND operator (Python native
operator); scalar arguments only

a ll b a or b short-circuiting logical OR operator (Python native op-

erator); scalar arguments only

1xi, 1x3, | 17

complex numbers

solve_ivp (f, method='BDF')

11,17
eps np.spacing (1) Distance between 1 and the nearest floating point num-
ber.
oded5 scipy.integrate. integrate an ODE with Runge-Kutta 4,5
solve_ivp (f)
odel5s scipy.integrate. integrate an ODE with BDF method

5.4.2 Linear Algebra Equivalents

MATLAB NumPy

ndims (a) ndim(a) ora.ndim
numel (a) size(a) ora.size
size(a) shape (a) or a.shape

size (a,n)

a.shape[n-1]

[ 12 3; 45 6]

[ a b; ¢ d]

array([[1.,2.,3.], [4.,5.,6.]1])
block([[a,b], [c,d]])

a (end) al-1]

a(2,5) all,4]

a(2,:) alllorall, :]

a(l:5,:) al[0O:5]ora[:5]o0ora[0:5,:]
a(end-4:end, :) al[-5:]

a(l:3,5:9) al0:3]1[:,4:9]
a(l2,4,5],1[1,31]) alix_([1,3,41,10,2]1)]1
a(3:2:21,:) al 2:21:2, :]

a(l:2:end, :) al 2, 1]

a(end:-1:1,:) orflipud(a) al :=1,:]

a([l:end 1], :) alr_[:1len(a),0]]

a.' a.transpose() ora.T

a' a.conj().transpose () ora.conj().T
a « b a @b

a . b a * b

a./b a/b

a.”3 ax*3

(a>0.5) (a>0.5)

find(a>0.5)

nonzero (a>0.5)

a(:,find(v>0.5))

al:,nonzero(v>0.5) [0]]
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MATLAB NumPy

a(:,find(v>0.5)) al:,v.T>0.5]

a(a<0.5)=0 ala<0.5]=0

a .+ (a>0.5) a * (a>0.5)

a(:) =3 al:] =3

y=x y = x.copy ()

y=x(2,1:) y = x[1,:].copy()

y=x(:) y = x.flatten()

1:10 arange(l.,11.)orr_[1.:11.]Jorr_[1:10:107]

0:9 arange (1 )orr [:10.]orr_[:9:107]

[1:10]" arange(l .)[:, newaxis]

zeros (3,4) zeros((3, ))

zeros (3,4,5) zeros ((3,4,5))

ones (3,4) ones ((3,4))

eye (3) eye (3)

diag(a) diag(a)

diag(a,0) diag(a,0)

rand (3, 4) random.rand (3, 4)

linspace(1,3,4) linspace (1, 3 4)

[x,yv]=meshgrid(0:8,0:5) mgrid[0:9., .] ormeshgrid(r_[0:9.],r_[0:6.]
ogrid[0:9., .Jorix_ (r_[0:9.],r_[0:6.]

[x,y]=meshgrid([1,2,4]1,[2,4,5]) meshgrid([l 2 4] [2,4,5])
ix_([1,2,4]1,[2,4,5])

repmat (a, m, n) tile(a, (m, n))

[a b] concatenate((a,b), 1) orhstack((a,b)) orcolumn_stack((a,b))

[a; Db] concatenate((a,b)) orvstack((a,b)) orr_[a,b]

max (max (a)) a.max ()

max (a) a.max (0)

max(a, [1,2) a.max (1)

max (a,b) maximum(a, b)

norm(v) sgrt (v @ v) ornp.linalg.norm(v)

a &b logical_and(a,b)

a | b logical_or(a,b)

bitand(a,b) a & b

bitor (a,b) a | b

inv (a) linalg.inv (a)

pinv(a) linalg.pinv(a)

rank (a) linalg.matrix_rank (a)

a\b linalg.solve(a,b) ifaissquare; 1inalg.lstsqg(a,b) otherwise

b/a Solve a.T x.T = b.T instead

[U,S,V]=svd(a) U, S, Vh = linalg.svd(a), V = Vh.T

chol (a ) linalg.cholesky(a).T

[V,D]=eig(a) D,V = linalg.eig(a)

[V,D]=eig(a,b) V,D = np.linalg.eig(a,b)

[V,D]=eigs (a, k)

[Q,R,P]l=gr(a,0) Q,R = scipy.linalg.qgr(a)

[L,U,Pl=1lu(a) L,U = scipy.linalg.lu(a) or LU,P=scipy.linalg.lu_factor (a)

conjgrad scipy.sparse.linalg.cg

fft (a) fft (a)

ifft (a) ifft (a)
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MATLAB NumPy

sort (a) sort (a) ora.sort ()

[b,I] = sortrows(a, i) I = argsort(al:,1i]), b=alIl, :]
regress (y, X) linalg.lstsqg(X,y)

decimate (x, q) scipy.signal.resample (x, len(x)/q)
unique (a) unique (a)

squeeze (a) a.squeeze ()

5.5 Notes

Submatrix: Assignment to a submatrix can be done with lists of indexes using the i x_ command. E.g., for 2d array
a, one mightdo: ind=[1,3]; alnp.ix_(ind, ind) ]+=100.

HELP: There is no direct equivalent of MATLAB’s which command, but the commands help and source will
usually list the filename where the function is located. Python also has an inspect module (do import inspect)
which provides a get £1ile that often works.

INDEXING: MATLAB® uses one based indexing, so the initial element of a sequence has index 1. Python uses
zero based indexing, so the initial element of a sequence has index 0. Confusion and flamewars arise because each
has advantages and disadvantages. One based indexing is consistent with common human language usage, where the
“first” element of a sequence has index 1. Zero based indexing simplifies indexing. See also a text by prof.dr. Edsger
W. Dijkstra.

RANGES: In MATLAB®, 0:5 can be used as both a range literal and a ‘slice’ index (inside parentheses); however,
in Python, constructs like O : 5 can only be used as a slice index (inside square brackets). Thus the somewhat quirky
r__ object was created to allow numpy to have a similarly terse range construction mechanism. Note that r__ is not
called like a function or a constructor, but rather indexed using square brackets, which allows the use of Python’s slice
syntax in the arguments.

LOGICOPS: & or | in NumPy is bitwise AND/OR, while in Matlab & and | are logical AND/OR. The difference
should be clear to anyone with significant programming experience. The two can appear to work the same, but there
are important differences. If you would have used Matlab’s & or | operators, you should use the NumPy ufuncs
logical_and/logical_or. The notable differences between Matlab’s and NumPy’s & and | operators are:

* Non-logical {0,1} inputs: NumPy’s output is the bitwise AND of the inputs. Matlab treats any non-zero value as
1 and returns the logical AND. For example (3 & 4) in NumPy is 0, while in Matlab both 3 and 4 are considered
logical true and (3 & 4) returns 1.

* Precedence: NumPy’s & operator is higher precedence than logical operators like < and >; Matlab’s is the
reverse.

If you know you have boolean arguments, you can get away with using NumPy’s bitwise operators, but be careful with
parentheses, like this: z = (x > 1) & (x < 2). The absence of NumPy operator forms of logical_and and logical_or is
an unfortunate consequence of Python’s design.

RESHAPE and LINEAR INDEXING: Matlab always allows multi-dimensional arrays to be accessed using scalar
or linear indices, NumPy does not. Linear indices are common in Matlab programs, e.g. find() on a matrix returns
them, whereas NumPy’s find behaves differently. When converting Matlab code it might be necessary to first reshape
a matrix to a linear sequence, perform some indexing operations and then reshape back. As reshape (usually) produces
views onto the same storage, it should be possible to do this fairly efficiently. Note that the scan order used by reshape
in NumPy defaults to the ‘C’ order, whereas Matlab uses the Fortran order. If you are simply converting to a linear
sequence and back this doesn’t matter. But if you are converting reshapes from Matlab code which relies on the scan
order, then this Matlab code: z = reshape(x,3,4); should become z = x.reshape(3,4,order="F’).copy() in NumPy.
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5.6 Customizing Your Environment

In MATLAB® the main tool available to you for customizing the environment is to modify the search path with the
locations of your favorite functions. You can put such customizations into a startup script that MATLAB will run on
startup.

NumPy, or rather Python, has similar facilities.

* To modify your Python search path to include the locations of your own modules, define the PYTHONPATH
environment variable.

e To have a particular script file executed when the interactive Python interpreter is started, define the
PYTHONSTARTUP environment variable to contain the name of your startup script.

Unlike MATLAB®, where anything on your path can be called immediately, with Python you need to first do an
‘import’ statement to make functions in a particular file accessible.

For example you might make a startup script that looks like this (Note: this is just an example, not a statement of “best
practices”):

# Make all numpy available via shorter 'num' prefix
import numpy as num
# Make all matlib functions accessible at the top level via M.func()
import numpy.matlib as M
# Make some matlib functions accessible directly at the top level via, e.g. rand(3,3)
from numpy.matlib import rand, zeros,ones,empty,eye
# Define a Hermitian function
def hermitian (A, **kwargs):
return num.transpose (A, xxkwargs) .conj()
# Make some shortcuts for transpose,hermitian:
# num.transpose (A) ——> T(A)
# hermitian (A) —--> H(A)
T = num.transpose
H hermitian

5.7 Links

See http://mathesaurus.sf.net/ for another MATLAB®/NumPy cross-reference.
An extensive list of tools for scientific work with python can be found in the topical software page.

MATLAB® and SimuLink® are registered trademarks of The MathWorks.
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CHAPTER
SIX

BUILDING FROM SOURCE

A general overview of building NumPy from source is given here, with detailed instructions for specific platforms
given separately.

6.1 Prerequisites

Building NumPy requires the following software installed:
1. Python 2.7.x, 3.4.x or newer
On Debian and derivatives (Ubuntu): python, python-dev (or python3-dev)
On Windows: the official python installer at www.python.org is enough

Make sure that the Python package distutils is installed before continuing. For example, in Debian GNU/Linux,
installing python-dev also installs distutils.

Python must also be compiled with the zlib module enabled. This is practically always the case with pre-
packaged Pythons.

2. Compilers

To build any extension modules for Python, you’ll need a C compiler. Various NumPy modules use FORTRAN
77 libraries, so you’ll also need a FORTRAN 77 compiler installed.

Note that NumPy is developed mainly using GNU compilers. Compilers from other vendors such as Intel,
Absoft, Sun, NAG, Compaq, Vast, Portland, Lahey, HP, IBM, Microsoft are only supported in the form of
community feedback, and may not work out of the box. GCC 4.x (and later) compilers are recommended.

3. Linear Algebra libraries

NumPy does not require any external linear algebra libraries to be installed. However, if these are available,
NumPy’s setup script can detect them and use them for building. A number of different LAPACK library setups
can be used, including optimized LAPACK libraries such as ATLAS, MKL or the Accelerate/vecLib framework
on OS X.

4. Cython

To build development versions of NumPy, you’ll need a recent version of Cython. Released NumPy sources
on PyPi include the C files generated from Cython code, so for released versions having Cython installed isn’t
needed.

6.2 Basic Installation

To install NumPy run:
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’python setup.py install

To perform an in-place build that can be run from the source folder run:

’python setup.py build_ext --inplace

The NumPy build system uses setuptools (from numpy 1.11.0, before that it wa