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Introduction 
 

Hi! Welcome to the Maude primer. If you’re looking for an in-depth exploration of the 
capabilities and mathematical foundation of Maude 2.0, this is not it. You’re looking for the 
Maude manual, a wonderful comprehensive tome that weighs about as much as a newborn child. 
This primer is meant as a more casual, more cursory introduction to Maude; the main goal is to 
get the beginning user, whether he/she have an extensive or just a basic background in 
mathematics and modeling, programming in Maude as quickly and painlessly as possible.   

So, what is Maude?  

Maude is a programming language that models systems and the actions within those systems. 
The rest of the primer will be spent clarifying and illustrating this statement.  

Maude is powerful. It can model almost anything, from the set of rational numbers to a biological 
system to the programming language Maude itself. Anything you can write about, talk about, or 
describe with human language, you can express in Maude code.  

Maude is simple. Its semantics is based on the fundamentals of category theory, which is pretty 
intuitive and straightforward until a mathematician tries to describe it formally with symbols and 
Greek letters. While such notation is essential to the detailed understanding of Maude, the 
beginning user does not need to know it to start programming; therefore, this tutorial will keep it 
simple. Compared to most languages, Maude does not have much syntax to memorize, only a 
small set of key words and symbols, and some general guidelines and conventions to keep track 
of.  

Maude is concrete. Or, depending on how you look at it, it is extremely abstract. Its design 
allows such flexibility that the syntax may seem rather abstract, and alone, it is. However, this 
means that, as the user programs, he/she is very close to the problem itself. To put it another 
way, the majority of programming languages distance the programmer from the model with a 
gaggle of special keywords and syntax whose design and protocol is more or less hidden from 
the user. In a Maude model, pretty much every object and artifact is open to the programmer’s 
scrutiny and whim, and the majority of the model has probably been actually written by the user. 
So you need not worry about how to declare an int or a float correctly – just look in the 
modules INT and FLOAT for the code of the model.  

Maude is challenging. This is not to say it is difficult, or complex, but rather, that the ingenuity 
and mindset required for a certain algorithm are often strikingly original. It challenges the 
programmer to be clever; instead of solving a problem by bashing it with enough global 
variables and functions, one is asked to write streamlined, efficient code, which, often enough, is 
a thrill in itself.  

This primer is designed as an overview of the most important and powerful features that make 
Maude unique, and most importantly, how to use them. Short quizzes follow each chapter to 
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drive home the lessons; they are not especially tricky, and I urge the reader to try his or her hand 
at them. Finally, I cannot repeat enough (this will certainly not be the last time) that the primer 
was never intended to be completely comprehensive, and if you don’t find what you’re looking 
for here, there’s a host of documentation and theory in the Maude manual or the plethora of 
papers written by the Maude team.  

To download Maude 2.0, go to http://maude.cs.uiuc.edu and you can find versions of Maude for 
several platforms, the Maude sources, papers on Maude, the Manual, and contact information. 
Good luck, and enjoy! 
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1.  FOUNDATION 
 
 
1.1  Modules 
 

The module is the key concept of Maude.  It is essentially a set of definitions.  These define a 
collection of operations and how they interact, or, mathematically speaking, they define an 
algebra.  An algebra is a set of sets and the operations on them.  In Maude, a module will 
provide a collection of sorts and a collection of operations on these sorts, as well as the 
information necessary to reduce and rewrite expressions that the user inputs into the Maude 
environment. 

 

There are three types of modules in Maude: the functional module (fmod), the system module 
(mod), and the object-oriented module (omod).  The differences between these will appear as we 
look at the capabilities and specifics of each one.  Each module is declared with the key terms: 

fmod NAME is … endfm 
mod NAME is … endm 
omod NAME is … endom 

 
where the ellipses denote all the declarations and statements in between the beginning of the 
module and the end of it.  Whitespace does not make a difference in Maude.   
 
There are actually two separate levels of Maude: Core Maude and Full Maude.  Anything in 
Core Maude is in Full Maude, but not vice versa.  System modules and functional modules are 
both in Core Maude, but not object-oriented modules.  To use Full Maude, all commands and 
modules must be entered in enclosed in parentheses, so, in effect, the declaration for any object-
oriented module will look like: 

 
(omod NAME is … endom) 

 
As in most programming languages, one can import a module from another.  This means that we 
can include all the declarations and definitions that another module made in a new one without 
being redundant.  One uses the key words protecting, extending, or including, 
depending on how we use the imported module.  “protecting” essentially means that the 
declarations in the imported module are not modified in any way, that all the defined operations 
and sorts are used strictly as they are in the imported module.  “including” means that one can 
change the sense in which the declarations were used.  For example, if you wanted import the 
module INT (the provided module for integers) but wanted to define its addition operator to 
multiply instead of add, you would use including.  The syntax is simply: 
 

protecting MODULENAME . 
or 

including MODULENAME .  
 or  

extending MODULENAME . 
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The extending importation falls somewhere between these two extremes, but a deeper 
knowledge of modules is needed to explain – we will return to it in the next chapter. 
 
Don’t forget the period after the importation.  All statements like these, including all 
declarations, need the period.  Only module definitions don’t need the period. 
 
 
1.2  Sorts and Variables 
 
***Before continuing, it would be beneficial to point out that Maude supports comments. 

---Three asterisks or three dashes in a row set apart the rest of the line as a comment. 

 

A sort is a category for values.  For example, the number one could be a value of sort 
“integer,” or perhaps just “number,” or even “PlaceInLine.”  A sort can pretty much 
describe any type of value, including lists and stacks of other values.  Sort names should be 
specific, increasing readability and the tightness of the code.  Sort names, like all other identifiers 
in Maude, may not contain whitespace, a comma, or any of the three bracket types: ‘(’, ‘[’, and 
‘{’ unless immediately preceded by an apostrophe, that is, backquote: ‘`’.  Additionally, sort 
names in particular may not contain periods or colons – as we will see later, the reason is that 
these special symbols are heavily involved in the syntax of Maude, and using them incorrectly 
will set off all kinds of fireworks. 

 
A sort is declared within the module, with the key word sort and a period at the end. 

 
sort integer . 
sorts integer decimal . 

 
There are also subsorts, which are further specific groups all belonging to the same sort.  For 
example, the sort of real numbers real could have irrational and rational as subsorts, 
and rational could have integer and fraction, integer could have positive and 
negative, etc. etc.  One declares a subsort by first declaring the sorts, and then situating one 
sort within another with the key word subsort (or subsorts) and the less-than sign (<). 
 

sorts Real Irrational Rational Integer Fraction Positive Negative . 
subsorts Irrational Rational < Real . 
subsort Fraction < Rational . 
subsorts Positive Negative < Integer < Rational . 
 

All this means is that both irrational and rational are subsorts of real, that fraction is 
a subsort of real, and that positive and negative are subsorts of integer which is a 
subsort of rational.  
 
A variable is an indefinite value for a sort.  Just as x is a common variable for a number, one can 
declare a variable x as being of sort number.  Or, one could declare c1, c2, and c3 as variables 
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of sort color.  Variables are never used as constants; one should not declare red as a variable 
of sort color.  Unlike variables in C++ and Java and other common programming languages, 
Maude variables never have a definite value assigned to them.  They cannot carry from one 
operation to another.  The only important use of variables is as placeholders, when defining 
operations through equations and rewrite laws, which will come later.  
 
Variables are declared with the key words var or vars, followed by the name(s) of the 
variables, then a colon, and then the sort to which each variable belongs, and finally a period.  
Note that if one declares multiple variables using vars, all the variables must belong to the same 
sort. 
 

var x : number . 
vars c1 c2 c3 : color .  

 
The expression var x : [number] . declares a variable for the kind of number as opposed 
to the sort.  We will discuss kinds later on in the chapter, but suffice to point out that variables 
can be declared as such. 
 
 
1.3  Operations 
 

As mentioned earlier, describing an algebra (one of the key mathematical uses of Maude) 
consists of declaring sorts and declaring the operations that act on these sorts.  An operation can 
be thought of as a pathway between sorts.  For example, if one had a sorts x-coordinate, y-
coordinate, and point, one could create an operator “( _ , _ )” to combine an x-
coordinate and a y-coordinate into a point on a Cartesian plane.  Or, one could create an operator 
“bake” to connect sorts “batter” and “cake.”  Surprisingly, the activities of operators will 
become clearer as we look at the syntax behind them. 

 

Maude understands both prefix and mixfix notation for operations.  Prefix notation is used most 
widely, in major programming languages like C++ and Java, and indeed the notation “f (x)” is 
prefix.  Prefix notation consists of the name of the operator, followed by its arguments in 
parentheses and separated by commas.  To call the + operator on variables x and y using prefix 
notation, one would write “ +(x, y) .”  As one can see, this notation makes more sense for 
operations like “bounce(ball3) .”   

 

The alternative is mixfix notation, which, unlike prefix in Maude, is declared with specific places 
for the variables.  While one would declare the addition operator in prefix notation as “op +,” in 
mixfix it would be “op _+_ .”  Or, if for some reason you wanted an operation to add the sum 
of two numbers to a list, prefix notation would declare it “op AddSumToList” and call it with 
“AddSumToList(x, y, List1)” ;  mixfix would declare the operation “op 
AddSum_+_to_” and call it as “AddSum x + y to List1.” 
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One declares an operation in either prefix or mixfix using the key word op, followed by the 
name of the operation, then a colon, then the name(s) of the sort(s) fed into the operation, then an 
arrow (->), the name of the sort of the result of the operation, and finally a period.  Both the 
prefix and mixfix declarations are shown for the declaration of an addition operator adding two 
natural numbers (sort Nat). 

 
op + : Nat Nat -> Nat . 
op _+_ : Nat Nat -> Nat . 

 
Similarly, one can declare two operations with the same sort arguments and sort results by using 
the key word ops. 

 
ops +  * : Nat Nat -> Nat . 
ops _+_ _*_ : Nat Nat -> Nat . 

 
Both the addition and multiplication operations connect two variables of sort Nat, and return a 
variable of sort Nat.   
 
Operation names may contain the special characters, such as the parentheses and brackets, 
commas, and periods.  Maude parses them with backquotes, but you don’t have to worry about 
that.  But if you do use parentheses in an operator name, you have to declare it with parentheses 
around that name.  You may declare two operators with the same name – this is called operator 
overloading – but it is a powerful tool that should be handled carefully.  We will further discuss 
operator overloading in Chapter 2. 
 
 
1.4  Constructors and Operator Attributes 
 

There is a special type of operation supported in Maude called a constructor.  To designate a 
function as a constructor, one adds “[ctor]” after the result sort name and before the period.  A 
constructor is a fundamental operation that defines the basics of the algebra.  We won’t be able 
to fully appreciate this definition until the next chapter, but let’s give it a go anyways. 

 

One approach to understanding the role of constructors is via the constant operation, which acts 
as the equivalent of a constant in other programming languages.  But instead of a variable 
(remember that Maude variables do not carry or store values), Maude constants are functions 
with no independent variable, in the sense that “2” can be represented by the constant 
mathematical function f (x) = 2.  Constants leave the place for the argument sorts blank. 

 

op pi : -> Irrational . 

ops red blue yellow : -> Color . 
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Of course, one still needs to designate the result sort to which the constant belongs.  What does 
this have to do with a constructor?  Constants will often be constructors, because they often 
define a basic aspect of the algebra.  For example, if we were to try and model the trigonometric 
functions in a module, we’d certainly need the constant pi, which we use to express angles in 
radians.  Without pi, we’re helpless.  In this case, we therefore set pi as a constructor: 

 

op pi : -> Irrational [ctor] . 

 

On the other hand, if we simply want to define the set of irrational numbers, the constant pi is 
superfluous, not exactly a waste of space, but simply an extra feature that isn’t necessary to 
understand irrational numbers.  In this case, we do not make pi a constructor. 

 

It’s kind of tricky to decide what operations should be constructors, but only experience 
remedies this.  One excellent example can be found in the Peano notation for natural numbers.  
Peano proved that the set of natural numbers could all be described with a constant 0 and a 
successor operator s( ) that took a natural number and returned the natural number after it.  For 
example, two could be expressed as the s( s( 0 ) ).  Every other closed operation on the natural 
numbers can be defined with the combination of these fundamental operators, and so we set 
these as constructors.  On the other hand, an addition operator isn’t fundamental to the Peano 
notation; it could support one, but does not necessitate it.  Therefore, the addition operator is not 
a constructor. 

 
The Peano notation of natural numbers is given below: 

 
fmod PEANO-NAT is 

sort Nat . 
op 0 : -> Nat [ctor] . 
op s : Nat -> Nat [ctor] . 

endfm 
 

One will note that that the operator s is not declared as s_, so it must be in prefix notation.  And, 
it should be obvious that one need not worry about prefix vs. mixfix for constant functions, 
because they take no arguments! 
 
Another common and good-to-know example is the basic List algebra.  A bare-minimum list 
needs a sort List and an element sort, or as commonly represented, Elt, a constant for empty 
lists, and a concatenation operator.  It can support, but does not need, operations to return the 
head or tail of list the size of the list, etc.  The module below represents the bare minimum.  Note 
that, because the concatenation operator is necessary to define the bare-minimum, it is a 
constructor. 
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fmod BASIC-LIST is 
sorts List Elt . 
subsort Elt < List . 
op nil : -> List [ctor] . 
op __ : List List -> List [ctor] . 
vars E1 E2 : Elt . vars L1 L2 : List . 

endfm 
 

There are a few important things to note in this example.  The concatenation operator is the 
double underscore.  This operation is in mixfix notation, and would be called with variables L1 
and L2 as “L1 L2.”  Elt is declared as a subsort of List, because an element of a list is really 
just a special case of a list: a list of size one (called a singleton).  This also means we can form a 
list by concatenating two elements, because an operator that takes List will also take a subsort of 
List.  Otherwise, we would have to create an operator that transforms an element into a list, and 
this is much easier.  This way, the Maude compiler understands not only “L1 L2” but also “E1 
E2” and “E1 L1.”  And finally, the constant constructor nil is a common way to name a list of 
size zero. 
 
A list is a perfect example for illustrating the use of the three key flags assoc, comm, and id, 
which impose the equational attributes of associativity, commutativity, and identity on any 
binary operator (whether it is a constructor or not).  Associativity just means that the list formed 
by “(L1 L2) L3” is the same as the list formed by “L1 (L2 L3)” is the same as the list 
formed by “L1 L2 L3.”  Associativity is declared by adding the key word assoc after ctor in 
the brackets. 
 

op __ : List List -> List [ctor assoc] . 
 
Identity is an extremely important attribute for lists.  The identity property of addition is “n + 0 = 
n.”  Similarly, the identity property of lists is that “L1 nil” is the same as just “L1.”  In other 
words, concatenating a list with an empty list reduces to the original list.  Identity is declared 
with the key word id: followed by the null constant that fulfills the identity property, in this 
case nil.  One may also define identities for the left and right arguments (remember, all these 
flags only apply to binary operators: that is, operators with two arguments), using the flags left 
id: and right id:.  This doesn’t make much sense for a concatenation operator, but consider 
the difference between the identity declarations jack kills nobody and nobody kills 
jack.  Illustrated below is the general identity flag: 

 
op __ : List List -> List [ctor assoc id: nil] . 

 
Commutativity is a property that technically does not belong to lists, but rather to sets (or rather, 
to ‘multi-sets,’ but that’s not really the issue here).  Commutativity means that order does not 
matter, that “S1 S2 S3” is the same as “S1 S3 S2” is the same as “S2 S1 S3” etc.  The order 
of the equational attribute flags within the brackets does not matter.  

 
op __ : Set Set -> Set [ctor assoc comm id: none] . 
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There is still another flag to mention, idem, which denotes the equational attribute idempotency, 
the property that repeated elements are discarded.  Though an important property of sets, we will 
suffice with the mention of idempotency, since as of yet the assoc and idem flags may not be 
used together in Maude. 
 
A useful flag for unary operators (operators only taking one argument) that must be iterated over 
and over again – say, for example, the s_ operator, where ‘five’ takes the monstrous form of s s 
s s s 0 – is the iter flag, which allows such chains of iteration to be expressed as a single 
instance of the operator, raised to the number of iterations.  To whit, we may write s s s s s 
0 as s_^5(0).  This notation may be used for both input and output.  The flag iter, like the 
other flags, falls between the brackets following the operator declaration. 

 
 

1.5  Kinds 
 
It may have occurred to you already that an improperly used operator can make a sort go... 
wrong.  For an example, let’s consider a canine pedigree chart that maps the genealogy of a 
particular puppy: 

 
sort Dog . 
ops bloodhound collie dalmatian pitbull schnauzer : -> Dog . 
op breed : Dog Dog -> Dog [ctor] . 

 
So a mutt with a little Dalmatian, Pitbull, and Schnauzer might have the pedigree chart breed( 
breed(pitbull, breed(pitbull, dalmatian)), schnauzer).  But what poor 
creature results from the expression breed(schnauzer, penguin)?   

 
sort Animal . 
subsort Dog < Animal . 
op penguin : -> Animal . 

 
The expression breed(schnauzer, penguin) is an error term, and while it is certainly not 
of the sort Dog or even Animal, it is of the kind [Animal].  Whenever we define a sort, Maude 
automatically defines a corresponding kind, a ‘supersort’ that groups together all other sorts 
connected to that sort (I will explain this soon) and all ‘interfamilial’ errors.   
 
When we declare a sort hierarchy using subsort, we define a connected component for Maude.  
If, say, we write 
 

sorts Terrier Hound Toy Sporting . 
subsorts Terrier Hound Toy Sporting < Dog . 

 
we create a graph of connected sorts.  Our current graph looks something like: 
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     Animal 
           | 
        Dog 
      ________|_________ 
      | | | | 
   Terrier Hound Toy Sporting    
 
This whole entire graph is connected component.  If we were to declare another sort Vegetable 
and not declare any subsort relations with any sort on the above graph, Vegetable would not be 
part of the connected component.  Vegetable would be its own, separate, singleton connected 
component.   
 
A kind may be defined by any sort in the connected component.  Thus, a breed between a Jack-
Russel-terrier (a member of Terrier) and a frog will be a member of [Animal], or [Dog] or 
[Terrier], though Maude will always refer to it as [Animal].  If there be more than one 
topmost sort, as in the example below: 
 

sorts Human Horse Centaur . 
       Horse    Human 
subsort Centaur < Human.       \    / 
          Centaur 
subsort Centaur < Horse . 

 
then the kind may also be written as [Horse,Human], which is how Maude understands the 
kind. 
 
Moreover, the only error terms included in a kind are those that involve members of the 
connected component.  Breeding a collie and a bromeliad will not be a member of [Animal] or 
[Vegetable]; the term breed(collie, bromeliad) will simply not parse, i.e., Maude will 
return a warning and do nothing with the collie-flower.   
 
But are kinds just kindnesses towards malformed hybrids, or do they actually have some real use 
to them?  Well, error-handling is extremely important to a computer language, so consider it a 
kindness towards Maude and the Maude user.  In the next chapter, we’ll also see that kinds can 
be handled by operations and equations in the same way that sorts can, with the result that certain 
error expressions can be simplified into non-errors – in other words, we can breed out the 
penguins in our dogs. 
 
 
1.6  Common Supplied Modules: NAT, QID, and STRING 
 
Maude thankfully has a library (albeit small) of common modules to import if needed.  Nats are 
an alternative to defining your own Nat or Integer or Num sort: the module NAT includes sort 
Nat, addition _+_, symmetric difference sd, multiplication _*_, quotient _quo_, modulo 
_rem_, and a host of other useful operations, and all the natural numbers written in normal, 
numeric notation.  One can simply say “2 + 16” rather than “s s 0 + s s s  … well, you 
get the point.  However, the NAT module supports the Peano notation as well.  The provided 
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modules INT, FLOAT, and RAT support integer, floating point, and rational numbers, 
respectively.  
 
Another extremely useful standard module is QID, or Quoted IDentifier.  An apostrophe just 
before any word creates a quoted identifier, which can be used as a name.  For example, if we 
wanted to create a sort Name and didn’t want to define a whole slew of constants we could write: 
 

fmod NAME is 
 protecting QID . 
 sort Name . 
 subsort Qid < Name . 
endfm 

 
Then,  'Ted would be a term of sort Name, without having to define constant constructor. 
 
The standard library also provides a STRING module, while handles strings of characters and 
provides useful functions for searching and determining length.  A String is any group of 
characters enclosed in quote marks, for example, "hello world!"  Strings can be 
concatenated with the _+_ operator, so "hello" + "world" is equal to "helloworld".  The 
characters of a string are indexed by natural numbers, starting at the beginning with zero.  The 
substr function returns a part of the string with a certain starting index and length; 
substr("hello world!", 2, 3) would return "llo", for example.  The find function 
searches for a substring, starting at a certain index and going forward; the rfind function 
searches backwards from the given index.  
  

find("hello world!", "orl", 0) = find("hello world!", "orl", 4) = 7  
rfind("hello world!", "orl", 0) = notFound 
rfind("hello world!", "orl", 10) = 7 

 
This summary does not pretend to be exhaustive in any way.  To truly appreciate the power of 
the standard library, please refer to the Maude 2.0 manual (available at the website), Part I, 
Chapter 7. 

 
Sorts and operations are the core foundation of Maude.  In the next few chapters, we’ll look at 
how each type of module creates algebras out of this foundation.  
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EXERCISES FOR CHAPTER 1 
 

1.  The three types of modules in Maude are declared as ______________, _____________, and 

____________.  They syntactically stand for _______________ module, ______________ 

module, and _______________________ module, respectively.  The only type of module 

that is not in Core Maude, but is in Full Maude, is the _____________________. 

 

2. Identify the following operations as prefix, mixfix, or constant: 

  op _^_ : Nat Nat -> Nat .   ___________________ 

  op smile : -> Expression .   ___________________ 

  op to_from_ : Name Name -> Valentine . ___________________ 

  op grab : Thing -> Action .   ___________________ 

 

3.  When defining the division operator for the natural numbers, one must address the problem of 

dividing by zero.  Do the following on the lines below.  a) Define two sorts, Nat and 

NzNat, which stands for a non-zero natural number.  b) Declare NzNat a subsort of Nat.  

c) Define a division operation that takes a Nat and an NzNat, and returns a Nat. 

 a) __________________________________ 

 b) __________________________________ 

 c) __________________________________ 

 

4. Say I want to make an operation that takes a person’s name and age, and returns a statement 

such as “Johnny is 3 years-old”.   

 a)  Choose two standard modules you think I should import for this operation: 

  __________________________ and _________________________ 

 b)  Fill in the blanks for the operation declaration with the correct standard sorts: 

  op _is_years-old : ___________ ___________  

-> AgeStatement [ctor] . 

c)  Assume that this is the only operation that uses the two imported modules.  How should I 

import them: using including or protecting?  ________________________ 

 

 12



5. Let us define two sorts, Queue and Grab-bag.  In a Queue, the order of the elements 

matter, and so we want to exclude commutativity from the list of its properties.  In a Grab-

bag, order doesn’t matter, so we want commutativity as a property.  Furthermore, we want 

an identity property defined for both, with respect to the nothing constant.  Associativity 

we definitely want for both. 

 Below are two constructors, one for Queue and another for Grab-bag.  Fill in the blanks 

between the brackets, putting in all the syntax necessary to fulfill the above requirements. 

  op __ : Queue Queue -> Queue  [_________________________] . 

  op __ : Grab-bag Grab-bag -> Grab-bag  

[_________________________] . 

 

6. The combined use of subsorts with operation declarations can be very powerful, and 

consequently rather tricky.  By defining an operation for a sort, one defines it for all of its 

subsorts.  One can think of the < symbol as short for “qualifies as a,” e.g., integer 

qualifies as a rational.  With this in mind, and given the following sort and operation 

declarations,  

 

sorts Plea Inquiry Assertion Question Speech . 

sort LogEntry . 

subsorts Inquiry < Question < Plea . 

subsorts Assertion Question < Speech . 

 

op respond : Question -> Speech .  

op record : Speech Speech -> LogEntry . 

 

ops p1 p2 : -> Plea .    ops i1 i2 : -> Inquiry . 

ops a1 a2 : -> Assertion .  ops q1 q2 : -> Question . 

ops s1 s2 : -> Speech . 
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mark which expressions will parse correctly, i.e., which will follow the rules of the 

declarations above. 

 

_____ respond(q1)   ______________________ 

 

_____ record(q1, i1)   ______________________ 

 

_____ respond(record(q1, i1)) ______________________ 

 

_____ record(q1, respond(q1)) ______________________ 

 

_____ respond(p1)   ______________________ 

 

_____ record(p1, p2)   ______________________ 

 

_____ record(respond(i1), s1) ______________________ 

 

_____ record(i1, respond(i1)) ______________________ 

 

_____ respond(s1)   ______________________ 

 

_____ respond(respond(q1)) ______________________ 

 

In the second blanks, mark which sort or kind will be the result of the expression, or no parse 

for those terms that will simply not parse at all. 
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2.  FUNCTIONAL MODULES 
 
 
2.1   Equations 
 
Equations are much easier to describe in form than in purpose.  They follow the same structure, 
rules of order of operation, etc. of any normal mathematical equation.  The syntax uses the key 
word eq, followed by two expressions separated by the key symbol =, and then a period.   
 
Remember the Peano notation of natural numbers example?  The module defined an algebra of 
the Peano notation, though not a very interesting one.  If we add the addition operator, it 
becomes slightly more complicated, and we use equations to define this operator. 
 

fmod PEANO-NAT-EXTRA is 
 sort Nat . 
 op 0 : -> Nat [ctor] . 
 op s : Nat -> Nat [ctor iter] . 
 op _+_ : Nat Nat -> Nat . 
 vars M N : Nat . 
 eq 0 + N = N . 
 eq s(M) + N = s(M + N) . 
endfm 

 
The whole idea of equations is to provide the Maude interpreter with certain rules to simplify an 
expression.  One rule of addition is that zero plus a number reduces to that same number.  
Without this equation, Maude would not be able to reduce 0 + s(s(s(0))) to s(s(s(0))).   
The second equation is a more general simplification rule for addition, which would help reduce 
s(s(0)) + s(0) to s(s(0) + s(0)) and then to s(s(0 + s(0))).  The first equation 
would then reduce the expression to its most simple form, s(s(s(0))).     
 
This brings up another unique quality of constructors: expressions with only constructors cannot 
be simplified.  There are no equations to define how to simplify constructors, and there shouldn’t 
be.  The ultimate goal of a set of equations in a module is to provide rules by which any 
expression involving the sorts and operations in the module can be simplified to the constructors 
of the algebra – this is called the canonical form of the expression. 
 
The use of variables in equations is really the only use of variables in a module at all.  As 
mentioned before, variables do not carry actual values.  Rather, they stand for any instance of a 
certain sort.  For example, when in the example above we used M and N as variables of type Nat, 
the expression s(M) + N really just means “take the successor of any Nat[ural number] and add 
it to another Nat.”  Variables are like the spaces in Mad-Libs: insert any instance of the sort in 
the blank, and the expression works.   
 
Maude also supports on-the-fly variable declaration, and yes, it really is as fun as the name 
sounds.  When, for example, our algebra forces us to write an equation with a variable we only 
use once, we have two options: waste space by declaring a variable in the usual manner, or 
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declare it on-the-fly, within the equation.  If we have, say, a card catalog constructor, and an 
operator that retrieves the author name: 
 

op n_t_pd_l_ : Name Title PublDate Location -> CatalogCard [ctor] . 
op author : CatalogCard -> Name . 

 
and we really don’t have any other equations that involve instances of these sorts, we can, 
instead of declaring the variables outside the function, simply write: 
 

eq author(n N:Name t T:Title pd P:PublDate l L:Location) = N:Name . 
 
Note that on-the-fly variables include no whitespace between the variable name, the colon, and 
the variable sort.  The scope of such variables is the equation it’s declared in; outside this 
equation it doesn’t exist.  
 
Now, there are several common strategies or guidelines for writing equations that simplify well.  
The first and most important strategy is recursion.  Nearly every set of equations is defined with 
some level of recursion in mind.  If you don’t like recursion, Maude is definitely not the 
programming language for you.  Take another look at the two equations for the addition 
operator.   
 

eq 0 + N = N . 
eq s(M) + N = s(M + N) . 

 
The second equation employs recursion by calling the operator _+_ again on the right hand side, 
and the first equation is the case that ends the recursion.  A more obvious example of recursive 
definition appears in multiplication: 
 

fmod PEANO-NAT-MULT is 
 protecting PEANO-NAT-EXTRA . 
 op _*_ : Nat Nat -> Nat . 
 vars M N : Nat . 
 eq N * 0 = 0 . 
 eq N * s(M) = N + (N * M) . 
endfm 

 
If one were to try 3 * 5 (I’ve dropped the successor notation for simplicity’s sake, but one can 
imagine all the successors of successors etc.), the recursion would look something like 

 
  3 * 5  = 3 + ( 3 * 4 ) 
      = 3 + ( 3 + ( 3 * 3 ) ) 
  = 3 + ( 3 + ( 3 + ( 3 * 2 ) ) ) 
  = 3 + ( 3 + ( 3 + ( 3 + ( 3 * 1 ) ) ) )  
  = 3 + ( 3 + ( 3 + ( 3 + ( 3 + ( 3 * 0 ) ) ) ) ) 
  = 3 + ( 3 + ( 3 + ( 3 + ( 3 + ( 0 ) ) ) ) ) 

 
where each line is a new level of recursion. 
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It would also be good to look at non-arithmetic operators as examples.  Below is a basic module 
for lists: 
 

fmod LIST is 
 sorts Elt List . 
 subsort Elt < List . 
 op nil : -> List [ctor] . 
 op __ : List List -> List [ctor assoc id: nil] . 
endfm 

 
Now say we wanted to add an operator size that would return a Nat value equal to the number of 
elements in a list. 
 

fmod LIST-SIZE is 
 protecting LIST . 
 protecting PEANO-NAT . 
     
 op size : List -> Nat . 
 var E : Elt . var L : List . 
    
 eq size(nil) = 0 . 
 eq size(E L) = s(size(L)) . 
endfm 

 
This is a common recursive strategy in modules involving lists: represent the list as its first 
element concatenated with the rest of the list, perform a single operation on the first element, 
then call itself recursively on the rest of the list.  In this case, we split the list into its first element 
E and the rest of the list L, then add one s( ) for E, then call size on L.   
 
Recursion is not necessary in every single operation: recall the author operation in our card 
catalog example.  There are equations like this that only access a piece of data in a containing 
structure.  In this case, the containing structure is the n_t_pd_l_ constructor, and the piece of 
data is the first argument.  If one were to represent a deck of playing cards, one might employ the 
definitions below: 
 

fmod CARD-DECK is 
 sorts Number Suit Card . 
 ops A 2 3 4 5 6 7 8 9 10 J Q K : -> Number [ctor] . 
 ops Clubs Diamonds Hearts Spades : -> Suit [ctor] . 
 op _of_ : Number Suit -> Card [ctor] . 
 op CardNum : Card -> Number . 
 op CardSuit : Card -> Suit . 
 var N : Number .  var S : Suit . 
 
 eq CardNum( N of S ) = N . 

eq CardSuit( N of S ) = S . 
endfm 
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Note that with the examples in lists and cards, it is hardly ever useful to represent a higher-order 
sort, such as a list or a card, as one variable, but rather as components combined by a constructor.  
This makes recursive strategies much easier also.  Also note that this really only works with 
constructors.  It would be superlatively stupid to represent a number M as a sum made by the 
addition operator, but not so to represent a number as the successor of M. 
 
Some of the equations are similar to common mathematical properties, in addition to being good 
simplification rules.  For example, the first equation in the Peano notation example, N + 0 = N, 
is the additional property of zero.  One will notice that other elementary, common mathematical 
properties, those of associativity, commutativity, and identity are not expressed as equations; 
rather, these have special flags.  Imagine how one might declare an equation for the commutative 
property: N + M + O = N + O + M .  Now, is the right side at all simpler than the left side?  
Or are they equally simple?  (Please answer ‘yes’ to the second question.)  Maude cannot use this 
equation to simplify, because one side is not simpler.  The same goes for commutativity.  The 
end result of these non-simplifying equations is non-termination, which means that the 
interpreter, trying to reduce the expression, would continually try to reduce to an equally simple 
expression.  Non-simplifying equations cause this, and so Maude designates special flags for the 
compiler to deal with this problem in an ingenious and, to this tutorial, irrelevant, way.   
 
Identity properties are often useful to define by equations, sometimes even with constructors.  N 
+ 0 = N and L nil = L are both identity attribute equations.  We can do this with non-
constructors (defined operations) because they rarely cause non-termination, so the first equation 
is valid, but as we will see soon, the second equation may cause non-termination in some cases 
and should be avoided in favor of the id: flag.   
 
Just because things aren’t complicated enough yet, I’ll add in idempotency.  Remember 
idempotency?  It was touched upon in the first chapter.  Idempotency is a property belonging to 
sets, which are multisets (remember that multisets are lists where order doesn’t matter, that is, 
the commutativity property reigns) that don’t have more than one of the same elements.  For 
example, a multiset could consist of { 1 , 2 , 2 , 2 , 7 , 7 } but an analogous set would only 
include { 1 , 2 , 7 }.  To express this property using the common list/multiset/set notation of the 
__ operator, one has an equation 
 

var E : Elt . 
eq E E = E . 

 
Note that in this case, the right hand side is definitely simpler than the left hand side.  Recall that 
the idem flag cannot be used alongside the assoc flag, so if you want both properties, you’ll 
need the above equation to declare idempotency.  It’s also good to note that both identity and 
idempotency (whether you use the attribute flags or not) can easily become pitfalls of non-
termination in operations that use recursion: a list-size operation length that is defined as 
length(L1 L2) = length(L1) + length(L2) will run into trouble when L2 is the nil: 
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length( L1 nil) = length( L1 ) + length( nil ) 
   = length( L1 nil ) + length( nil ) 
   = length( L1 ) + length( nil ) + length( nil ) 
   = … 
 

Because this algorithm splits the list into two arbitrary parts, as opposed to a single element and 
“the rest,” it does not terminate.  These pitfalls are easy to repair but hard to spot ahead of time.  
Generally, we want a recursion that goes in one progressive direction, as opposed to the above, 
which goes in many directions. 
 
 
2.2  Conditional Equations 
 
Congratulations!  You’ve read through the toughest part of this chapter.  The next topic, if 
you’ve understood equations, is a piece of cake: conditional equations.  Conditional equations 
are equations that depend on a Boolean statement.  They are written with the key word ceq and, 
after the equation, a condition starting with the key word if.  Maude comes with a sort Bool 
already provided, along with constants true and false, and ==, =/=, and, or, and not 
operations (all are mixfix).  A conditional equation will execute a reduction only if its condition 
reduces to true. 
 

ceq different?( N , M ) = true if N =/= M . 
 
If we want to include more than one condition in a conditional equation, we string them along 
using the _/\_ condition-concatenation operator: 

  
ceq bothzero?( N , M ) = true if N == M /\ M == 0 . 

 
These are a trivial examples, of course.  A side note: one thing to look out for when dealing with 
Bools is the lack of provided comparison operations ( <= , >=, <, >).  Because each sort has 
unique definitions for these comparisons, these operations must be defined in the module. 
 

fmod NAT-BOOL is 
 protecting PEANO-NAT . 
 op _<=_ : Nat Nat -> Bool . 
 op _>_ : Nat Nat -> Bool . 
 vars M N : Nat . 
 eq 0 <= N = true . 
 eq s(M) <= 0 = false . 
 eq s(M) <= s(N) = M <= N . 
 eq M > N = not( M <= N ) . 
endfm 

 
No, this example does not make use of conditional equations.  But one usually needs a module 
like this to use conditional equations in meaningful ways.  With the above definitions, I can write 
an equation for a subtraction operator within the natural numbers (remember that natural 
numbers are all non-negative).  
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ceq N – M = 0 if M > N . 

 
This is an important equation to have if the subtraction operator is to stay within the bounds of 
the natural numbers. 
 
One more side note: conditional equations are not to be confused with the operator 
if_then_else_fi, an operator provided by Maude (like Bool, no importation necessary), 
which takes a boolean condition as its first argument, then two expressions as the next 
arguments.  It is not necessary to declare equations with this operator as conditional, because 
they aren’t using the key word if. 

 
max( M , N ) = if N > M then N else M fi . 

 
One of the most powerful features of Maude 2.0 is the ability to use a pattern match as a 
condition, using the key symbol :=.  This symbol compares a pattern on the left-hand side with 
the right-hand side, and if they match, returns true.  For example, let’s consider an irritable 
professor who takes questions only after class and simply ignores any other sort of interruption.  
We’ll use the STRING module and the operators _? and _! to denote the difference between a 
question and an exclamation. 
 

fmod IRRITABLE-PROFESSOR is 
 protecting STRING . 
 
 sorts Question Exclamation Interruption . 
 subsorts Question Exclamation < Interruption . 
   
 op _? : String -> Question [ctor] . 
 op _! : String -> Exclamation [ctor] . 
 op reply : Interruption -> String . 
 
 var I : Interruption . 
 ceq reply(I) = "Questions after class, please"  

if (S:String) ? := I . 
endfm 

 
There are a few things to point out, besides the always fun use of on-the-fly variables: first, we 
put the pattern in the left-hand side, and the target in the right hand side.  Note also that the 
above could be written as a normal equation 
 

eq reply( (S:String) ? ) = "Questions after class, please" . 
 
with the same results.  The difference is in the ideology: in the pattern-matching example, we’re 
essentially assigning a certain pattern to I, then searching for all instances of this pattern in an 
expression, replacing them with ‘I’, and reducing it according to the equation whose left-hand 
side is reply(I).  We can also use the := as a sort of value assignment operator: 
 

var T : String . 

 20



ceq reply( (S:String) !) = T if T := "Please be quiet!" . 
 
in which case, T is the pattern, and wherever it is matched, "Please be quiet!" takes its 
place.  We’re basically saying “let T be equal to "Please be quiet!" and go from there.”  
It’s essentially, all the same sort of matching, but with a wildly different effect, and it is 
important not to confuse these two uses.  As we can see, the freedom to match patterns in 
conditions can lead to some exciting and powerful implementations. 
 
 
2.3  The Maude Environment 
 
Now, the Maude environment, for our present purposes, revolves around the provided command 
reduce (or red).  First, one must write the modules for the algebras to be used in the 
environment, either by typing them directly into the prompt (not recommended), or by storing 
them in a file directory that the Maude environment can access, and then typing load MODULE-
NAME into the prompt.  Then, one types in reduce, followed by the expression to be reduced.  
For example: 
 

Maude> reduce s(0) + s(s(0)) . 
result Nat: s(s(s(0)))  

 
Make sure the expression is followed by a period, and that the current module contains the 
equations necessary to reduce the expression.  To change the current module, type in select 
MODULE-NAME into the prompt.  Alternatively, one may specify which module contains the rules 
to be applied to the expression by including the optional key phrase in MODULE-NAME : .  To 
whit, 
 

Maude> red in PEANO-NAT-MULT : s(s(0)) * s(s(s(0))) . 
result Nat: s(s(s(s(s(s(0)))))) . 

 
Any expression which follows the syntax of a module can be reduced using this command, as 
long as the module is already loaded.  Of course, if an expression is already at its simplest form, 
the result will simply be the original expression. 
 
For those interested in seeing exactly how an expression is reduced, step by step, by the Maude 
interpreter, type: 

 
Maude> set trace on . 

 
Now, whenever you reduce an expression, Maude will take you through each reduction, giving 
you the equations used, how each variable in the equation was filled, etc.  This can be especially 
useful for debugging a tricky module.  For reasons that may become clearer in Chapter 4, this 
author does not recommend using trace while in Full Maude yet, unless you can read really 
really fast. 
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2.4  Membership Axioms 
 
Now, we’ve actually looked at some expressions in Maude that deal with membership logic.  
“Membership” simply refers to how certain terms are “members” of sorts.  When we declare a 
variable, we declare it as a member of a sort using the colon, which one can think of a symbol for 
“is a member of.”  Thus, the declaration var N : Nat is the same as saying “variable N is a 
member of the sort Nat.”  But in fact, membership logic is at the bottom of pretty much every 
declaration in Maude.  For example, the declaration of an operation 

  
op _+_ : Nat Nat -> Nat . 

 
can be expressed as a conditional membership axiom.  Conditional membership axioms are just 
like conditional equations, except that they deal with membership, not simplification, and use 
different key symbols like the colon and key words like cmb and mb (for conditional membership 
axiom and membership axioms, respectively).  The same idea at work in the above operation 
declaration can be expressed as 
 

cmb N + M : Nat if N : Nat and M : Nat . 
 
I don’t mean that the above conditional membership axiom replaces the operation declaration, 
but rather that the two express the same things.  Likewise, the declaration of NzNat (non-zero 
natural numbers) as a subsort of Nat can be written two different ways. 
   

subsort NzNat < Nat . 
 
or 
 

cmb N : Nat if N : NzNat . 
 

The above examples illustrates the idea commonly called “syntactic sugar:” of special key words 
as programming shortcuts, expressing in simpler terms what can be expressed in a more basic 
logic.  And since we do have this syntactic sugar, in my opinion, we should use it as much as 
possible.  So when are membership axioms and conditional membership axioms useful?  An 
excellent example can be seen if we declare a division operator.  To avoid division by zero, we 
have the second argument of the operator be a non-zero Nat, a NzNat. 
 

sorts Zero NzNat Nat . 
subsort Zero NzNat < Nat . 
op 0 : -> Zero [ctor] . 
op _/_ : Nat NzNat -> Nat . 

 
So far, so good, right?  But what happens if we enter in the expression s(s(s(0))) / 
(s(s(s(0))) / s(0)) into the Maude environment?  This expression, ignoring Peano 
notation, is 3 / ( 3 / 1 ), and should come out as 1.  But ( 3 / 1 ) returns, according to the 
declaration, a Nat, and therefore it cannot serve as the second argument of another division 
operation; it must be a NzNat.  “3 / ( 3 / 1 )” will come out as an error term of kind [Nat].  So 
what we can do is create a conditional membership axiom 
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var N : Nat .  var M : NzNat . 
cmb N / M : NzNat if ( N =/= 0 ) . 

 
or, alternatively, an equivalent membership axiom: 
   

vars N M : NzNat . 
mb N / M : NzNat . 

 
Either way, ( 3 / 1 ) will now be parsed as a NzNat, solving our argument problem. 
 
Other common uses of membership axioms appear when importing and building on other 
modules.  For example, if we were to define a module for the card game “crazy eights,” where 
any card with value eight is a wild card, we might write: 
 

fmod CRAZY-EIGHTS is 
 protecting CARD-DECK . 
 sort WildCard . 
 subsort WildCard < Card . 
 var C : Card . 
 cmb C : WildCard if CardNum(C) == 8 . 
endfm 

 
Or, if for some reason we wanted to define a certain sort SuicideKing (if you look at the King 
of Hearts in pretty much any card deck, he seems to be sticking his sword into his head, hence 
the name), we might write: 
 

fmod SUICIDE-KING is 
 protecting CARD-DECK . 
 sort SuicideKing . 
 subsort SuicideKing < Card . 
 mb K of Hearts : SuicideKing . 
endfm 

 
The matching condition can also be used in conditional membership axioms: consider the 
following module for poker pairs. 

 
fmod CARD-PAIR is 
 protecting CARD-DECK . 
 sorts Pair PokerPair . 
 subsort PokerPair < Pair . 
 op <_;_> : Card Card -> Pair [ctor comm] . 
 var N : Number .  var P : Pair . 
 cmb P : PokerPair if < N of S:Suit ; N of S’:Suit > := P . 
endfm 

 
In this example, the <_;_> makes a general pair of any two cards.  If the number values of these 
cards are the same, then they are a pair in the poker definition of the term, or, as above, a 
PokerPair. 
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2.5  Operator and Statement Attributes 
 
Aside from what we already know of constructors and flags, the user may employ several 
powerful techniques when declaring operators, which decide how the operator will behave 
within certain expressions, equations, and reductions.  Furthermore, equations themselves may 
carry flags, or attributes, within brackets following the declaration.  An examination of operator 
and statement attributes will prove practicably useful only in specific situations, but lend a more 
complete picture of the capabilities of Maude. 
 
One extremely powerful operator attribute is the memo flag.  When Maude comes across an 
operation with memo among its attributes, it “memorizes” the reduced form of any expression 
with that operator at the top (that is, if the expression were written in prefix mode, the outermost 
operator).  Whenever such an expression appears, Maude refers to its memorization table and 
produces the reduced form much quicker than if it had to continually apply reduction equations 
over and over again.  This is useful when we write programs where the same expression 
(important: the same expression, not just the same operator) pops up thousands and thousands of 
times, such as highly recursive number theory problems. 
 
When there is any fear of ambiguous expressions – for example, consider the expression 3 + 3 
* 3, which can be understood by Maude as either (3 + 3) * 3, that is, 24, or 3 + (3 * 3), 
that is, 12 – then the user may declare precedence for the operator using the flag prec and a 
natural number.  Precedence is kind of like the operator’s place in line: the lower the number, the 
higher the precedence, the sooner the operation will be executed.  If we declare 
 

op _+_ : Num Num -> Num [prec 35] . 
op _*_ : Num Num -> Num [prec 25] . 

 
then 3 + 3 * 3 will always be 12.  If the user chooses not to give precedence for an operation, 
Maude secretly and automatically assigns it a precedence value of 41.  Precedence can always be 
overridden with parentheses. 
 
Of course, the expression 3 + 3 + 3 would still be ambiguous.  True, we could declare the _+_ 
operator with the assoc tag, but what about non-associative operators?  What if we have, say, a 
“versus” operation, _vs_, which pits two tennis players against each other and returns the 
winner?  How does Maude parse sampras vs agassi vs roddick ?  Suppose we declare 
the following: 
   

op _vs_ : Player Player -> Player [comm] . 
ops sampras agassi roddick -> Player . 
   
eq roddick vs agassi = roddick . 
eq agassi vs sampras = agassi . 
eq sampras vs roddick = sampras . 
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Then sampras vs (agassi vs roddick) will result in Pete Sampras as the victor, while 
(sampras vs agassi) vs roddick will give Andy Roddick the cup.  In this case, we 
declare a gathering pattern using the flag gather and the key symbols e, E, and &. 
 
Still with us?  Good for you.  The flag we declare looks like gather (e E &), where the 
number of symbols in the parentheses is the number of arguments the operator takes.  If the 
symbol corresponding to an argument is e, this means that the top operator involved in the 
argument expression must have a precedence value strictly less than that of the operator; if the 
symbol is E, then the argument’s precedence may be less than or equal to that of the operator; if 
the symbol is &, Maude accepts an argument of any precedence. 
 
This probably makes no sense yet.  Well, for one, it only makes sense for expressions that string 
operators together.  X + Y makes no use of the gather flag because its arguments are just 
variables.  X + Y + Z, however, involves the addition of a variable to another addition: it is 
either _+_(X, _+_(Y, Z)) or _+_(_+_(X, Y), Z), depending on the gather flag.  If, say, 
we were to declare the _+_ operator with the flag gather (E e), then only the latter is 
possible.  Why?  Because the second underscore of _+_ can only be filled with an operator of a 
lower prec number, which excludes itself.  So, the nested operator goes in as the first argument, 
and the second argument takes the variable Z.  As one can imagine, the default of any declared 
operation is the & in every argument. 
 
Returning to tennis, let us declare the versus operation as 

 
op _vs_ : Player Player -> Player [prec 33 gather (e E)] . 

 
so that the matches are played starting with the last two players and proceed to the first.  Only an 
event of higher precedence (that is, lower prec value) disrupts this order.  If we, say, declare the 
two operators murders and teases with prec values 32 and 34, respectively, then sampras 
murders agassi vs roddick becomes sampras vs roddick, while sampras teases 
agassi vs roddick still pits Andre Agassi against Andy Roddick. 
 
Only one statement attribute stands out among the others in its helpfulness (the others, for the 
most part, become useful only at the meta-level; see Chapter 6), and this is the owise flag.  
Whenever we declare an equation or membership axiom, we set up the left-hand side as a pattern 
that must be matched in order to reduce to the right-hand side.  If we write a second equation, 
directly following the first, and add the otherwise or owise flag in brackets, this new 
statement acts like a conditional equation whose condition is the exact opposite of the first 
equation.  Returning to our irritable professor, if we wanted to make him even brusquer, we 
could write: 
 

eq reply(I) = if I :: Question 
 then "Questions after class, please"  
 else "Shut up!" fi . 

 
Or we could use a conditional equation and owise: 
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ceq reply(I) = "Questions after class, please"  
if (S:String) ? := I . 

eq reply(I) = "Shut up!" [owise] . 
 
Yes, the difference is trivial for easily-expressed conditions, but it’s rather useful in cases where 
one side of the condition is much easier to express than the other: 
 

eq suicideking?( K of Hearts ) = true . 
eq suicideking?( C:Card ) = false [owise] . 

 
There are hosts of other nifty little flags, but they escape the depth of this tutorial.  The complete 
list may be found in the Maude 2.0 Manual, Chapter 4, Section 4. 
 
As said before, the above techniques are useful only in specific cases, and do not affect the basic 
concepts of operations and equations.  On the other hand, these tools are powerful, and can make 
all the difference in more complicated problems. 
 
 
2.6  Expanding on Chapter One 
 
I always try to keep my promises: in the last chapter, we said we’d elaborate on importing 
modules, on the usefulness of kinds, and on operator overloading.  These fundamental concepts 
can only be completely understood with reference to equational reduction, and so we have 
postponed the full story until now. 
 
In Chapter One, we briefly touched upon the three types of module importation: protecting, 
extending, and including.  The basic idea of the protecting importation is the same: we 
don’t want to change the meaning of the imported module.  We can change this meaning in two 
key ways: by adding new ground terms (constructors and constants) to a module’s sort(s), and by 
redefining the already extant terms of the imported module.  The first is called “junk” and the 
second, “confusion.”  For example, if we were to import the module PEANO-NAT-EXTRA and 
declare a new constant 5, 

 
op 5 : -> Nat . 

 
this would be junk.  The equations in PEANO-NAT-EXTRA have nothing to do with 5, but there it 
is, stuffed in with the other ground terms 0 and s.  On the other hand, if we were to redefine the 
addition operator with the equation 
 

eq 5 + N = s( s^4(0) + N ) . 
 
 or even just 
 

eq s^5(0) + N = s( s^4(0) + N ) . 
 
that would be confusion, because we’re adding reduction rules that mess with the module’s 
original idea of how to reduce the addition operator.  Now, Maude will let you do this, but it’s 
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just not nice.  It’s a violation of the imported module’s original sense.  There will be times when 
we’ll want to change this sense, to be sure, but for the other times, we forbid the Maude compiler 
to accept junk and confusion by importing the module with the key word protecting. 
 
The extending importation allows junk, but no confusion.  Say we wanted to use PEANO-NAT-
EXTRA in a module that deals with multivariable algebra.  To allow for an expression like X + Y 
+ 8, we’d have to declare the following: 
   

sort Variable . 
subsort Variable < Nat . 
ops X Y : -> Variable [ctor] . 

 
This adds junk to the sort Nat, because X and Y are new ground terms that the equations of 
PEANO-NAT-EXTRA fail to deal with (note that, if Nat were declared a subsort of Variable, 
this would not be the case, and we could use protecting... but that’s another story).  Anyway, 
we’d import the module using extending, since we don’t add any confusion, and we don’t 
want Maude to let us if we make a mistake. 
 
The including importation allows junk and confusion.  Let’s say we import the module CARD-
DECK into a new POKER-DECK module, and add the following declarations: 

 
op anyNumber : -> Number .     op anySuit : -> Suit . 
op joker : -> Card . 
eq CardNum(joker) = anyNumber . 
eq CardSuit(joker) = anySuit . 

 
This is a perfectly reasonable thing to do, but it adds junk (anyNumber, anySuit, and joker) 
and confusion (the two new equations redefine CardNumber and CardSuit).  To allow this, we 
say 
 

including CARD-DECK . 
 
and we’ve given fair warning to Maude that we’ll be changing the sense of the module. 
 
So much for importations.  On to kinds. 
 
In the last chapter, we used a breed operation to illustrate the relationship between error terms 
and kinds, showing that a mismatch of sorts and operators within a connected component returns 
an error term included in the corresponding kind.  We also mentioned that, in certain cases, we 
may be able to reduce error terms into non-error terms.  Intuitively, this makes sense: if we were 
to create an operator sire that returns the first argument of the breed function, then 
sire(breed(collie, penguin)) should reduce to Dog : collie, even though the 
argument of sire is an error term.  Consider the following dog-racing module: 
 

fmod DOG-RACING is 
 protecting DOGS. protecting NAT . 
 op race : Dog Dog -> Dog . 
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 op speed : Dog -> Nat . 
 vars N M : Dog . 
 eq speed(bloodhound) = 20 . 

eq speed(collie) = 25 . 
 ... 
 eq speed(frog) = 5 . 
 eq speed(breed(N, M)) = (speed(N) + speed(M)) quo 2 . 

ceq race(N, M) = N if speed(N) > speed(M) . 
eq race(N, M) = M [owise] . 

endfm 
 
where I have omitted the other dogs’ speeds so to save space.  The algorithm is simple: the faster 
dog wins, speed being determined by the average of the speeds of the parents.  As the module 
stands now, the expression race(breed(collie, frog), bloodhound) would not reduce, 
but instead return itself as [Animal] : race(breed(collie, frog), bloodhound).  If 
we bring the equations to the kind level, however, simply by making N and M variables of the 
kind [Dog] instead of the sort Dog, the expression does indeed reduce (to Dog : 
bloodhound).  Should we race a collie-frog versus a bloodhound-frog, Maude will declare the 
[Animal] : breed(collie, frog) the winner, even though it is an error term.  The 
presence of kinds in Maude allows us to play around with error expressions in ways that will 
often prove constructive. 
 
Maude allows overloaded operators; that is, we can define two different operators with the same 
name.  For example, we can define two _+_ operators, for natural numbers and integers, or for 
musical notes and all sorts of wild things. 
 

op _+_ : Integer Integer -> Integer . 
op _+_ : Nat Nat -> Nat . 
op _+_ : Note Note -> Chord . 
op _+_ : Wrong Wrong -> Right . 

 
Note that, since Nat is just a subsort of Integer (er... you can assume that I’ve declared this 
earlier), the second line is just a specification of the first, telling Maude that if we add two 
natural numbers, the result will not be just an Integer, but a Nat.  This is called subsort 
overloading; the other examples are called ad-hoc overloading.  In general, it’s a bad idea to try 
ad-hoc overloading constants (guess why), but it can be done by enclosing the constant in 
parentheses and attaching a dot with the sort name to it within the expression.  So, to 
differentiate between the Letter A and the Note A, we write (A).Letter and (A).Note.  
Subsort overloading requires that both operators be declared with the same equational attributes 
(the same flags), save for the ctor flag. 

 
In the chapter on foundation, the hardest part of learning a term or idea was memorizing the 
syntax and maybe a bit of the ideology behind it.  For equations and membership axioms, the 
hardest part is the strategy involved in writing them, so that they define tight, complete algebras.  
I’ve tried to include some common strategies and examples of how these guidelines can be 
applied, but only experience, both personal and observational, will teach effectively. 
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EXERCISES FOR CHAPTER 2 
 

1.   There are four, actually five basic requirements for an equation.  It must begin with the 

keyword ______, it must have the key symbol ______ somewhere in it, it must have a 

__________ at the end, and it must have within it mathematical phrases consisting of 

variables and ______________.  Finally, for an equation to be worth its weight, the right-

hand side of the equation must be ________________ than the left-hand side. 

 

2. Decide what the following expressions are by writing in the necessary keyword: 

a) _______ N mod M = (N – M) mod M if M <= N . 

b) _______ N mod M : NzNat if N =/= M  

/\ (N – M) mod M :: NzNat .  

c) _______ N mod M = (N – M) mod M . 

d) _______ s(0) mod M : NzNat . 

e) _______ N mod M = if M <= N then (N – M) mod M else N fi . 

 

3. The modulus operator mod returns the remainder of an integer division: for example, 11 mod 

3 = 2, 4 mod 3 = 1, and 30 mod 8 = 6.  Given the following module (for the NAT-BOOL and 

PEANO-NAT modules, see 2.2 and 1.4, respectively), 

 

 1  fmod MODULUS is 

2   protecting NAT-BOOL . 

3   sorts NzNat Zero . 

4   subsorts NzNat Zero < Nat . 

5   op 0 : -> Zero [ctor] . 

 6  op _–_ : Nat Nat -> Nat [right id: 0]. 

 7  op _mod_ : Nat NzNat -> Nat [...........................] . 

 8  vars X Y : Nat . var M : NzNat . 

 9  cmb X : NzNat if X =/= 0 . 

 10  eq s X – s Y = if s X > s Y  

 11     then X – Y else 0 fi . 
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 12  ………………………………………….. 

 13  endfm 

 

 a) Which expression from question #2 would best fill in the dotted blank on line (12) if you 

want to reduce the following statement? 

 red in MODULUS 

( s s s s s 0 mod s s s 0 ) mod s s 0 . 

  _______________ 

 

 b) Write the equation that the identity flag on line (6) replaces.   

  __________________________________________________ 

  

 c) Lines (10) and (11), which, along with line (6), define the subtraction operator, could be 

replaced by the following two equations: 

   ceq s X – s Y = X – Y if s X > s Y . 

   eq ................... = 0 [............] . 

  Choose the expression-and-flag pair that best fills in the two dotted blanks. 

    a. s X – s Y  ...  memo  c. s X – s Y ...  owise 

    b. X – Y ... owise   d. X – Y ...  gather (& e) 

 

 d) The constant operator 0 in line (5) is an example of ________________ overloading. 

 

 e) What flag(s) should fill the dotted blank on line (7) so that 14 mod 5 mod 3 reduces to 0? 

    a. assoc   c. gather (E e) 

    b. gather (e E)  d. gather(& &) 

 

4.   The sort Deck is a list of cards (refer to the CARD-DECK module in 2.1) defined by the 

subsort declaration 

   subsort Card < Deck . 

 and the operator __, defined by 

   op __ : Deck Deck -> Deck [ctor assoc id: null] . 
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   op null : -> Card [ctor] . 

 a) Write an equation that defines the operation topcard, which takes a Deck and returns 

the top card (i.e., the first element.)  Assume that the variable C of sort Card has already 

been declared. 

  

  

 b) Let sort FemCard be defined with the subsort relation FemCard < Card.  Write one 

(or more) membership axiom(s), conditional if you wish, that makes a Card a FemCard 

if the suit is Hearts or the card is a Queen.  You might want to use the operations 

CardNum and CardSuit defined in CARD-DECK, but then again you might not.  Feel 

free to declare your variables any way you like. 

 

 

 

 

 c) Write one or more equation(s) that define(s) the operator FirstFemCard, which 

returns the first FemCard drawn from a deck.  You must use recursion.   

 

  i. Write it using the if_then_else_fi operator. 

 

 

 

  ii. Write it using a conditional equation and the _::_ operator. 

 

 

 

  iii. Write it using a conditional equation and pattern matching. 
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3.  SYSTEM MODULES 
 
 
3.1  Rewrite Laws 
 
Equations are extremely useful for creating and mapping out structures – structures like a set of 
operators on constants and sorts, structures like lists and decks of cards – but the real power of 
Maude is about transitions that occur within and between structures.  These transitions are 
mapped out in rewrite laws.  Rewriting logic, like most things in mathematics, is a pretty simple 
thing unless one tries to explain it in math language.  Rewriting logic consists of two key ideas: 
states and transitions.  States are situations that, alone, are static, and transitions are the 
transformations that map one state to another.  For example, if it’s a sunny day, but a big grey 
cloud comes along and it starts raining, the two states would be “It’s a sunny day” and “It’s a 
rainy day” and the transition would be the rain cloud.  A rewrite law declares the relationship 
between the states and the transitions between them. 
 
Rewrite laws are usually very precise, in the sense that an equation’s power lies in its breadth of 
applicability.  We could not, for example, have “sunny day” = “rainy day” as a rewrite law, 
because 1) by itself, it’s just not true: a sunny day is not the same thing as a rainy day, and 2) this 
includes nothing about the transition.  Therefore, in Maude, we find it very helpful to give a 
rewrite law a name in brackets, though this is optional.  We might say [rain cloud] : “sunny day” 
= “rainy day” then.  Note that we do not, actually.  I’ll get to syntax soon. 
 
But probably the most important characteristic of rewrite laws is their irreversibility.  It’s a one-
way street.  This is not to say that one state cannot transition to another state and transition back; 
after all, a rainy day can certainly turn sunny.  The difference is that any particular rewrite law 
cannot go backwards; a rainy day can’t turn sunny again because of a rain cloud.  To make this 
distinction, we give rewrite laws a special symbol “=>” to show their unidirectional property. 
 
Now for the syntax: we already know about the brackets with the name and the => symbol.  We 
declare a rewrite law with the key word rl. 

 
rl [raincloud] : sunnyday => rainyday . 

 
For an equation to make sense, both sides of the equation have to return the same sort.  This 
comes as intuitive for equations; after all, for something to equal another they should be of the 
same sorts.  Thus, the fact that both sides of s(M) + N = s(M + N) are of sort Nat comes, er, 
naturally.  Well, the same thing goes for rewrite laws.  Even though rewrite laws map transitions 
of states, these transitions are all within an all-encompassing sort.  For example, we could have 
declared the rewrite law in a system module such as: 
 

mod CLIMATE is 
 sort weathercondition . 
 op sunnyday : -> weathercondition . 
 op rainyday : -> weathercondition . 
 rl [raincloud] : sunnyday => rainyday . 
endm 
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Many times, we just call the all-encompassing sort “State” and make more specific subsorts.   
 
One thing that you might notice is that we didn’t use variables in this rewrite law.  Rewrite laws 
often map transitions between very specific states, which are therefore expressed as constructors, 
since the states cannot, and should not, be reduced further.  Note that a constructor, if it is not a 
constant, can take an argument, such as an op talking : Adverb -> State [ctor] .  An 
example of this state might be “talking(loudly) .”  Variables appear most often when the 
rewrite law describes a precise transition that may be applied to a certain phylum of states.  We’ll 
see some examples of this soon enough. 
 
So now that I’ve dumped all this information on you, let’s look at a concrete example.  There’s 
this mind puzzle that I heard when I was a little kid: a certain hobo can make one cigarette out of 
four cigarette butts (the butt of course, is what’s left after smoking a cigarette); if the hobo starts 
off with sixteen cigarettes, how many cigarettes can he smoke in total?  The answer is twenty 
one, because once he smokes 16 cigarettes, he can make the sixteen butts into 4 more cigarettes, 
and once he smokes those, he can make the four butts into 1 more cigarette.  So how do we 
implement this puzzle in rewriting laws?  Basically, there are two states involved: cigarette and 
butt (smoked cigarette), and two transformations: transforming a cigarette into a butt (smoking) 
and transforming four butts into a cigarette (making a new cigarette). 

 
mod CIGARETTES is 

sort State . 
op c : -> State [ctor] .    *** cigarette 

 op b : -> State [ctor] .    *** butt 
 op __ : State State -> State [ctor assoc comm] . 
 rl [smoke] : c => b . 
 rl [makenew] : b b b b => c . 
endm 

 
To actually do something with this module, we use the rewrite command in the Maude 
environment.  There are certain strategies in applying rewrite rules; it may have occurred to you 
that a module with a lot of rewrite rules might create some confusion between all these states and 
transitions with little hierarchy between them.  Strategies provide an “order of operation” for 
applying rewrite rules.  Creating strategies is much too complex to discuss here, but I will say 
that the rewrite command is a strategy, a default strategy which Maude provides.  One invokes it 
with the key word rewrite (or rew)  followed by a natural number in brackets representing the 
maximum number of rewrite laws that you want to be applied.  Of course, if you choose to leave 
out the number in brackets, this becomes an unbounded rewrite, and Maude will apply rewrite 
laws until they terminate.  Now, one can imagine a set of rewrite laws such as rl a => b and 
rl b => a, a pair of laws that doesn’t terminate, but is still a legitimate set of rewrite laws for 
all that Maude cares.  Therefore, we usually want to use the cutoff the rewrite command provides 
as a sort of “plan B” in case our module’s rewrite laws don’t terminate by themselves. 
 
So let’s plug in “rew [100] c c c c c c c c c c c c c c c c” into the Maude 
environment: this represents 16 cigarettes.  The sixteen cigarettes become sixteen butts because 
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of the smoking rewrite law, then four cigarettes because of makenew, then four butts because of 
smoking, then one cigarette because of makenew, and finally one butt because of smoking.  So 
we’ll end up with just a “b” displayed.  Of course, this doesn’t really illustrate the solution of the 
puzzle; it doesn’t count how many cigarettes have been smoked in total.  We can adjust the 
module pretty easily: 
 

mod COUNTING-CIGARETTES is 
 protecting NAT . 
 sort State . 
 op c : Nat -> State [ctor] .     
 op b : Nat -> State [ctor] .     
 op __ : State State -> State [ctor assoc comm] . 
 vars W X Y Z : Nat . 
 rl [smoke] : c(X) => b(X + 1) . 

rl [makenew] : b(W) b(X) b(Y) b(Z) => c(W + X + Y + Z) . 
endm 

 
So if we enter “rew c(0) c(0) c(0) c(0) c(0) c(0) c(0) c(0) c(0) c(0) c(0) 
c(0) c(0) c(0) c(0) c(0)” into the Maude environment, we will end up with “b(21)” as 
our answer. 
 
 
3.2  The Toy Crane Example 
 
The cigarettes module is a good example with which 
to break into rewriting logic, but doesn’t necessarily 
provide the best illustration of the powers of rewriting 
logic.  For one, in the cigarette example, we see 
rewriting laws drawing transitions from complex states 
to simpler states, and this does not have to be the case.  
While in equations our goal was simplify, simplify, 
simplify, rewriting laws most of the time deal with 
states neither simpler nor more complex than one 
another. 
 
A common and oft-used example in rewriting logic is 
the blocks world.  The basic idea is to create an 
algorithm for a bunch of wooden blocks stacked on 
each other or the table, and a robot arm that can carry 
them.  Since it’s such a great example, it’s also used to 
illustrate principles of object-oriented programming 
and artificial intelligence.  Here, I’m going to tweak 
the example to a more familiar situation: those arcade 
crane machines with stuffed animals in a big glass box 
and a controllable arm that moves and tries to grab 
them.  I think everyone has been ripped off by one of 
these at one point in their life, but just in case I’ll 
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provide a picture.  
 
So what states are there?  For stuffed animals, there are three state constructors needed: 1) the 
stuffed animal is on the floor of the machine, not on top of any other stuffed animal; 2) the 
stuffed animal is on top of another stuffed animal; 3) the stuffed animal is clear, that is, there are 
no other stuffed animals on top of it.  For the robot arm/claw/crane, there are two: 1) the claw is 
holding a stuffed animal, or 2) it is empty.  Any pile of stuffed animals in an arcade crane may be 
represented as a combination of these states.  And we have four main transitions: the claw picks 
up, puts down, unstacks, or stacks.  These last two may seem the same as the first two, but the 
difference is that a picked up or put down stuffed animal must be on the table, while stacked or 
unstacked stuffed animals must be on top of another stuffed animal.  If this is confusing, perhaps 
the Maude implementation will make things a bit clearer.  And to counteract this possible clarity, 
we’re going to add some Qids in there. 
 

mod ARCADE-CRANE is 
 protecting QID . 
 sorts ToyID State . 
 subsort Qid < ToyID . 
   
 op floor : ToyID -> State [ctor] . 
 op on : ToyID ToyID -> State [ctor] . 
 op clear : ToyID -> State [ctor] . 
 op hold : ToyID -> State [ctor] . 
 op empty : -> State [ctor] . 
 op 1 : -> State [ctor] .      

*** this is the identity State; it’s just good to have one. 
 op _&_ : State State -> State [ctor assoc comm id: 1] . 
 vars X Y : ToyID . 
   
 rl [pickup] : empty & clear(X) & floor(X) => hold(X) . 
 rl [putdown] : hold(X) => empty & clear(X) & floor(X) . 
 rl [unstack] : empty & clear(X) & on(X,Y) => hold(X) & clear(Y) . 
 rl [stack] : hold(X) & clear(Y) => empty & clear(X) & on(X,Y) . 
endm  

 
To look at an example, take a look at the figures below.  
In box A, the entire state can be expressed as “empty & 
floor('mothergoose) & 
on('teddybear,'mothergoose) & 
on('soccerball,'teddybear) & 
clear('soccerball) & floor('dragondude) & 
clear('dragondude).”   
 

In box B, the state is described as “empty & 
floor('mothergoose) & clear('mothergoose) 
& floor('dragondude) & 
on('soccerball, 'dragondude) & 
on('teddybear, 'soccerball) & 
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clear('teddybear).”  And the set of transitions between these two states would be rewrite 
law unstack called on 'soccerball, stack called 
on 'soccerball and 'dragondude, unstack called 
on 'teddybear, and stack called on 'teddybear 
and 'soccerball.  And if we wanted to put the 
Mother Goose on top of them all, we would have to call 
pickup on her and stack on her and 'teddybear.  
 
Notice that neither State A nor State B is any simpler or 
more complex than the other.  This means that any 
execution of these laws is potentially non-terminating, 
that is, there is no specific direction which rewriting will 
take the states, and might randomly transition ad 
infinitum.  This is when it’s important to use the built in 
limit on the rew command.   
 
Also note that in our module, the transitions represented by the rewrite laws are between very 
precise states.  The more realistic the situation, the more factors will be involved in each state, 
and the more information will be involved in the rewrite laws.  For example, we could build 
upon this example and account for the horribly weak grip of the claw, the fact that some animals 
would be easier to pick up than others, etc.  This would create even more states and therefore 
even more precise transitions. 
 
 
3.3  Rewriting in the Maude Environment 
 
We have already seen the rewrite operation at work, but the Maude environment provides 
several other useful tricks to more fully explore the powers of rewrite logic.  Now, if we were to 
enter our ARCADE-CRANE module into the Maude environment and call rew [2] on the state 
represented by Box A, we’d find that the default strategy has stacked Dragon Dude on top of the 
soccer ball.  So far, so good.  If we call rew [4] on the same state, we end up with... Dragon 
Dude stacked on the soccer ball.  In fact, upon further investigation, we’ll find that, after the 
initial pickup of Dragon Dude, all that’s happening is a continual stacking and unstacking of 
Dragon Dude!  Any even number of rewrites, even as high as thirty or a hundred, will result in 
the same state as two rewrites. 
 
Obviously, the default strategy has very little imagination.  It’s really only applying two out of 
the four rewriting laws.  Because such inane loops may often appear in rewriting systems, Maude 
provides another rewrite command, frewrite, or “fair rewrite,” which picks which rewrite laws 
to apply such that no law goes ignored.  As it turns out, if we plug in frew [30] with our Box 
A state, this fair strategy ends up scattering the whole stack across the floor.  This is certainly 
much more interesting than the stack-unstack loop, though perhaps not as interesting as it 
could be.  But hey, frewrite is still a default strategy, meant to be applied to any and every 
rewriting system it comes across.  So don’t expect it to build the Tower of Hanoi any time soon. 
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Let’s say we wanted to know how quickly frewrite scatters the stack on to the floor.  We’d 
start off with  

 
Maude> frew [1] empty & floor('mothergoose) & 
on('teddybear,'mothergoose) & on('soccerball,'teddybear) & 
clear('soccerball) & floor('dragondude) & clear('dragondude) . 
... 
rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second) 
result State: floor('mothergoose) & clear('soccerball) & 
hold('dragondude) & on('teddybear, 'mothergoose) & on('soccerball, 
'teddybear) 

 
The Maude environment always repeats to the user the command it receives, which I have 
omitted with ellipses.  Anyway, the first rewrite shows us that the crane has picked up Dragon 
Dude.  Instead of following with frew [2] of the same state, we use the provided continue 
command, which continues the current rewrite strategy for X more rewrites, X being a bound 
supplied by the user. 

 
Maude> continue 1 . 
rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second) 
result (sort not calculated): floor('mothergoose) & 
clear('soccerball) & (empty & floor('dragondude) & 
clear('dragondude)) & on('teddybear, 'mothergoose) & on('soccerball, 
'teddybear) 

 
You don’t need to worry about that sort not calculated line; as one can see from the extra 
parentheses, Maude hasn’t exactly finished processing the result, but it won’t interfere with our 
rewriting.  In any case, we see that the crane just set down Dragon Dude.  If we keep entering in 
continue 1, we find that it takes eight rewrites to get all the stuffed animals on the floor.  
Then, for fun, we enter in continue 100 and see that they’re... still all on the floor.  Oh well – 
it’s a default strategy, after all. 
 
One extremely powerful tool provided by Maude is the search command.  Just like it sounds, it 
searches for paths of rewrite laws between a beginning and end state supplied by the user.  For 
example, I wanted to find out how, beginning with our Box A state, we could switch Teddy Bear 
and Mother Goose so that instead of on('teddybear, 'mothergoose) we have 
on('mothergoose, 'teddybear).  So, I entered into Maude the following and got: 
 

Maude> search in ARCADE-CRANE : empty & floor('mothergoose) & 
on('teddybear, 'mothergoose) & on('soccerball, 'teddybear) & 
clear('soccerball) & floor('dragondude) & clear('dragondude) =>+ 
empty & floor('teddybear) & on ('mothergoose,'teddybear) & 
on('soccerball,'mothergoose) & clear('soccerball) & 
floor('dragondude) & clear('dragondude) . 
... 
 
Solution 1 (state 69) 
states: 70  rewrites: 125 in 0ms cpu (0ms real) (~rewrites/second) 
empty substitution 
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No more solutions.   
states: 125  rewrites: 272 in 10ms cpu (10ms real) (27200 rew/s) 

 
First, some syntax: the search key word is obviously necessary, but one doesn’t need to 
explicitly name the search module, as long as the currently selected module is the correct one,  
but if you leave out the module name, drop in and the colon as well; the =>+ symbol means that 
you are looking for a search solution involving at least one rewrite law.  The other commonly 
used symbol is =>!, which means you’re looking for a terminal state, that is, something that 
can’t be rewritten any more.  But since the crane system is non-terminating, we use the first 
option. 
 
The empty substitutions means that we haven’t involved any variables in our search.  If we 
wanted to search for a path from our Box-A-state to anything with the crane empty and Mother 
Goose and Teddy Bear on the floor and clear, we’d enter: 

 
Maude> search in ARCADE-CRANE : empty & floor('mothergoose) & 
on('teddybear,'mothergoose) & on('soccerball,'teddybear) & 
clear('soccerball) & floor('dragondude) & clear('dragondude) =>+ 
empty & floor('teddybear) & floor('mothergoose) & M:State . 

 
Don’t forget to declare the variable M on-the-fly, or the command won’t parse.  The result of this 
is three different solutions: 

 
Solution 1 (state 10) 
states: 11  rewrites: 16 in 0ms cpu (0ms real) (~rewrites/second) 
M:State --> floor('dragondude) & clear('soccerball) & 

on('soccerball, 'dragondude) 
 
Solution 2 (state 15) 
states: 16  rewrites 23 in 0ms cpu (0ms real) (~rewrites/second) 
M:State --> floor('soccerball) & floor('dragondude) & 

clear('soccerball) & clear('dragondude) 
 
Solution 3 (state 34) 
states: 25  rewrites: 65 in 0ms cpu (0ms real) (~rewrites/second) 
M:State --> floor('soccerball) & clear('dragondude) & 

on('dragondude, 'soccerball) 
 

These three solutions represent the three possibilities that involve Mother Goose and Teddy Bear 
clear and on the floor, where the third line tells the user what state it has plugged in for the 
variable M:State. 
 
Thus, depending on the search, you may or may not get more than one solution.  The important 
thing to look for is the number next to state in the parentheses.  This number will allow you to 
see the rewrite path, which is after all what we want.  In our first search example, a few pages 
back, we see that Solution 1 is connected to a certain state 69.  We type into Maude show path 
69 . and it displays the path it used to reach the end state: 
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Maude> show path 69 . 
state 0, State: empty & ... 
===[ rl empty & clear(X) & on(X, Y) => clear(Y) & hold(X) [label 

unstack] . ]===> 
state 2, State: floor(‘mothergoose) & ... 
===[... [label stack] ... 
state 4, State: ... 
===[... [label unstack] ... 
state 6, State: ... 
===[... 
state 10, State: ... 
===[... 
state 17, State: ... 
... 
state 69, State: empty & floor('teddybear) & floor('dragondude) & 

clear('soccerball) & clear('dragondude) & on('mothergoose, 
'teddybear) & on('soccerball, 'mothergoose) 

 
I’ve cut out a lot from the transcription, to highlight the important points.  One, you can see how 
Maude lists the rewrite rule within the ===[ ]===>, as well as its label, when transitioning to 
the next state.  Also, you might notice that the state numbers skip.  The omitted states are the 
dead-end searches, the rewrites that went nowhere.  The idea is that Maude performed one 
hundred twenty five rewrites and ended up with seventy states, some of which form a solution 
path.  In case you’re wondering, the solution to our question was, in my own abridged notation, 
 

[unstack] : on('sb, 'tb) => hold('sb) (0)=>(2)  
 [stack] : hold('sb) => on('sb, 'dd) (2)=>(4) 
 [unstack] : on('tb, 'mg) => hold('tb) (4)=>(6) 
 [putdown] : hold('tb) => floor('tb) (6)=>(10) 
 [pickup] : floor('mg) => hold('mg) (10)=>(17) 
 [stack] : hold('mg) => on('mg, 'tb) (17)=>(28) 
 [unstack] : on('sb, 'dd) => hold('sb) (28)=>(48) 
 [stack] : hold('sb) => on('sb, 'mg) (48)=>(69) 
 
Where the numbers in parens are the states through which the law transitions. 
 
 
3.4  Conditional Rewrite Laws 
 
Conditional rewrite laws should not be too difficult to explain now that we have both rewrite 
laws and conditional equations under our belt.  Conditional rewrite laws use the keyword crl, 
and the rest is a rewrite law with an if statement at the end.  Conditional rewrite laws are not 
extremely common, because usually the pattern of states in the left-hand side of a rewrite law 
supplies all the “ifs” of the transition.  However, sometimes they are undeniably useful.  If we 
wanted to mention the weight of stuffed animal, we might write the following rewrite rule: 

 
crl [pickup] : empty & clear(X) & floor(X) => hold(X)  

if weight(X) < 10 . 
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This, obviously, assumes there is a weight operation which returns the heaviness of the stuffed 
animals in some unit or another.  In general, conditional rewrite laws are used when there’s a 
condition that can’t be easily expressed as a state.  Like conditional equations, the if statement 
can take the form of a Boolean statement or a pattern match, but in addition to these, the 
condition of a rewrite rule may also be another rewrite rule.  The following conditional rewrite 
rules are all equivalent: 
 

crl [equation1] : a(X) => b(X – 1) if X > 0 . 
crl [equation2] : a(X) => b(X – 1) if X > 0 == true . 
crl [equation3] : a(X) => b(X – 1) if X > 0 = true . 
crl [membership1] : a(X) => b(X – 1) if X :: NzNat . 
crl [membership2] : a(X) => b(X – 1) if X : NzNat . 
crl [pattern] : a(X) => b(X – 1) if s(N:Nat) := X . 

 
If we select one of these rewrite rules and get rid of the others (take your pick), we can write: 
 

crl [rewrite] : b(X) => c(X * 2) if a(X) => b(Y) . 
 
What in the world does this mean?  It means that the rewrite law may be executed on b(X) only 
if a(X) could transition to a some state of b.  Think of the => not so much as the rewrite symbol 
but as the search symbol: the idea is, the condition is fulfilled if it’s possible to rewrite the left-
hand side into the right-hand side.  So, in the above example, while a(3) can rewrite to c(4):  

 
a(3) => b(2) => c(4) 

 
the state a(1) could never reach c(0): 
 
  a(1) => b(0) =/=> c(0) 
 
because a(0) cannot transition into any b state according to any one of the rewrite laws above.   
 
 
3.5  Rewrite Laws and Equations 
 
At first glance, the difference between using equations and rewrite laws may seem trivial, but 
they solve very different problems.  Equations are much better than rewrite laws at 
simplification; however, rewrite laws are better at expressing problems with just one level of 
simplicity.  Rewriting laws also can illustrate constitutional changes that equations can’t; though 
an equation may simplify an expression, the expression is still mathematically equal to its 
predecessor.  A functional module would have a hard time creating the cigarette example, 
because a cigarette butt is definitely not equal to a newly made cigarette. 
 
In general, equational logic creates a framework through which rewriting laws trace transitions.  
System modules often include equations; when they do, they set up and define all the operations 
that become states, and then the rewrite laws deal with these states.  For example, in the slightly 
expanded arcade crane example, we would have to define the operation weight using an 
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equation.  We also use equations to define numbers (creating our own notation, such as the 
Peano notation, or using the library module INT, which is also defined with equations) that can 
later be used in rewrite laws. 
 
Equations are the nuts and bolts and gears and girders; rewrite laws create the machine. 
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EXERCISES FOR CHAPTER 3 
 

1. While _________________ describe rules of simplification (writing the same thing a 

different way), a _______________ maps a ________________ between two states (a 

change in constitution).  And while the right-hand side of a(n) _________________ should 

be simpler than the left-hand side, this is not necessarily true for the other.  This latter uses 

the key symbol => to emphasize its ____________________, that is, the fact that it only 

works in one direction.   

 Both equations and rewrite laws may be found in a ____________ module, initiated with the 

keyword _______. 

 

2. The following module sets down the rules for a rewrite game, called “Zip-Zap-Zop.”  

Whenever the constants zip, zap, and zop appear in that order, they become a win.  And 

wins can change into all sorts of combinations of the three.  In addition, four zops in a row 

ends the game.  The goal is, then, to apply the correct rewrite rules so that we end with one 

win.  Look over the module and answer the questions that follow: 

 1  mod ZIP-ZAP-ZOP is 

 2   sort GameState . 

 3   op _>_ : GameState GameState -> 

 4     GameState [ctor assoc id: 1] . 

 5   op 1 : -> GameState [ctor] . 

 6   ops zip zap zop : -> GameState [ctor] . 

 7   ops win gameover : -> GameState [ctor] . 

 8    

 9   rl [winner!] : zip > zap > zop => win . 

 10   rl [scatter1] : win => zop > zip . 

 11   rl [scatter2] : win => zip > zap . 

  12   rl [scatter3] : win => zop > zop . 

 13   rl [gameend] : ...................................................... . 

 14  endm 
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a) What’s missing from line (4) that would allow Maude to rewrite zop > zap > zip ?        

_____________________ 

 

b) Fill in the dotted blank on line (13):  

__________________________________________________ 

 

c) Consider the expression win > zop > win : 

i. Does an unbounded rewrite of this expression always terminate?  __________ 

ii. What are the five rewrites, in order of application, that must occur in order for the 

above expression to reach a gameover?  In the first blank, put the label of the 

rewrite law you apply, and in the second, the state that results. 

     win > zop > win 

 1. ________________   => ____________________________________ 

 2. ________________ => ____________________________________ 

 3. ________________ => ____________________________________ 

 4. ________________ => ____________________________________ 

 5. ________________ => ____________________________________ 

 

d) Let’s say we want to add a rule that will change zap into zip as long as this 

immediately produces a win in the expression.  Write a conditional rewrite law change 

that transforms zap > S into zip > S, and the condition is another rewrite law.  

Assume variables S and P of GameState have already been declared. 

 

 

 

3. Two separate searches were performed with the complete ZIP-ZAP-ZOP module (that is, 

including the conditional rewrite law change), and the transcription appears below.  The 

ellipses appear in the place of unimportant information, so don’t worry about those, but some 

important parts have been substituted by dotted blanks.  Study the searches carefully and 

answer the questions below. 

First search: 
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Maude> search zap > zap > zip > zap > zop ....(a).... win . 

... 

 

No solution. 

states: 22  rewrites: 106 ... 

 

Second search: 

Maude> search zap > zap > zip > zap > zop ....(a).... win . 

... 

 

Solution 1 (state 18) 

states: 19  rewrites: 103 ...  

empty substitution 

 

No more solutions. 

states: 22  rewrites: 106 ... 

Maude> show .............(b)..................... . 

state 0, GameState: zap > zap > zip > zap > zop 

==[ rl zip > zap > zop => win [label winner!] . ]===> 

state 1, GameState: zap > zap > win 

==[ rl win => zop > zop [label scatter3] . ]===> 

state 3, GameState: zap > zap > zop > zop 

==[ crl ... [label change] . ]===> 

state 9, GameState: ............................(c)............................................ 

==[ rl zip > zap > zop => win [label winner!] . ]===> 

state 11, GameState: win > zop 

==[ rl ....................(d)...................... [label .......(d).............] . ]===> 

state 16, GameState: zip > zap > zop 

==[ rl zip > zap > zop => win [label winner!] . ]===> 

state 19, GameState: win 
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a) As you can see, the first and the second searches are almost identical, except for the 

symbol that goes in the two dotted blanks labeled (a).   

 i. What symbol must have been used for the first search?   ________________ 

 ii. What symbol must have been used for the second search? _______________ 

iii. If we had written zop > zop > zop instead of win in the first search, would 

Maude have found a solution? __________ 

iv. If we had written zop > zop > zop instead of win in the second search, would 

Maude have found a solution? __________ 

 

b) Fill in the dotted blank labeled (b): ___________________________________ 

 If you had entered in show path 11 . instead, what would the last line of your result 

be? ___________________________________________________ 

 

c) Refer to question 2.d) and the rest of the search transcript.  How should you fill the dotted 

blank labeled (c)? ________________________________________ 

 

d) Based on the evidence of states 11 and 16, what must go in the two dotted blanks labeled 

(d)?  ___________________________________   

       and 

        _______________________ 
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4.  FULL MAUDE & OBJECT-ORIENTED MODULES 
 
 
4.1  Full Maude 
 
What is Full Maude? 
 
Full Maude is an adventure – more difficult, to be sure, and often even frustrating, but ultimately 
rewarding.  Full Maude extends the capabilities of Core Maude, adding powerful new features 
that can make all the difference in a project, though at the same time, it complicates or even does 
away with some of the ‘safety nets’ that keep a greenhorn Maude programmer from crashing the 
environment.  Therefore, Full Maude requires some finesse and expertise to use effectively, and 
also some patience, for Full Maude is above all a Great Experiment in progress, an important 
tour-de-force of Maude programming and its flexibility.  Even if you choose not to use Full 
Maude very often, it is essential to learn it. 
 
To understand what Full Maude actually is, one must start at the beginning, which is the standard 
library module LOOP-MODE.  This module provides the programmer with the tools to create a 
user interface, so that, in addition to the provided commands of the Maude environment, we can 
fashion commands of our own for a module-defined “sub-environment” within Maude.  The 
magic of LOOP-MODE lies in a single, simple constructor: 
 

op [_,_,_] : QidList State QidList -> System [ctor special (....)] . 
 
The procedure is this: the user enters in some word or words into the Maude environment, 
enclosed in parentheses.  Because of the parentheses, Maude recognizes the phrase as a loop 
command, and converts each word into a quoted identifier.  This becomes the first QidList 
argument.  Some sort of rewriting, defined by the program modules, occurs, usually with the aid 
of the second argument, a sort State declared within LOOP-MODE.  More on this later.  At the 
end of the rewriting, whatever QidList ends up as the third argument is printed to the screen, 
without the quotes.   
 
Let’s look at an example.  When I was a kid I used to spend ludicrous amounts of time coming 
up with ASCII smiley faces, such as: : – ) (standard), 8 – 0 (gawping), !: - ) (well-groomed),  
[: - | (Frankenstein’s monster), etc.  The program below takes in a command from the user – 
which smiley face to print out – and outputs that particular face. 
 

 mod SMILE-LOOP is 
 inc LOOP-MODE . 
 op none : -> State . 
 op startsmiling : -> System . 
 eq startsmiling = [nil, none, nil] . 
 var S : State . vars I O : QidList . 
 rl [smile] : ['smile I, S, O] => [I, S, O ' ': '- '`)] . 
 rl [wink] : ['wink I, S, O] => [I, S, O ' '; '- '`)] . 
 rl [gawp] : ['gawp I, S, O] => [I, S, O ' '8 '- '`)] . 
 rl [elvis] : ['elvis I, S, O] => [I, S, O ' '? 'B '- '`)] . 
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endm 
 
To run the smiley “sub-environment,” we first load the above module and then initialize the loop 
to some starting point with the keyword loop.  The convention is to define this starting point 
within the module, as we did above with startsmiling.  But the following two commands are 
equivalent and equally valid: 
 

Maude> loop startsmiling . 
Maude> loop [nil, none, nil] . 

 
Now, we simply enter in the commands we want, being sure to enclose them in parentheses: 
 

Maude> (smile) 
 : -) 
Maude> (elvis) 
 ? B –) 
Maude> (smile elvis gawp) 
 : -)  ? B –)  8 – 0 

 
A few things to point out: one, we need to backquote the parentheses before making it into a 
Qid, because otherwise Maude thinks it’s a real paren and we get a parse error.  Also look at the 
quote standing by itself between the O variable and the smiley-face: that’s the blank-space Qid.  
Finally, notice that we must import LOOP-MODE using including, not protecting, because 
we mess around with the definitions of State and System.  Speaking of which, you might 
notice we made no use of the State argument.  This second argument can often be very useful 
for more complicated environments that require a bit more rewriting before it can output an 
answer: 
 

mod MOOD-LOOP is 
 inc LOOP-MODE . 
 sort Mood . 
 op <_;_> : Mood Mood -> State [ctor] . 
 op init : -> System . 
 ops happy shocked playful : -> Mood . 
 op # : -> Mood .   ***blank placeholder 

eq init = [nil, < # ; # >, nil] . 
 

vars I O : QidList . var S : State . 
 

rl [in-smile] : ['smile I, S, O] => [I, < happy ; # >, O] . 
 rl [in-gape] : ['gape I, S, O] => [I, < shocked ; # >, O] . 
 rl [in-wink] : ['wink I, S, O] => [I, < playful ; # >, O] . 
  

rl [out-smile] : [I, < # ; happy >, O] =>   
[I, < # ; # >, O ' ': '- '`)] . 

 rl [out-gape] : [I, < # ; shocked >, O] => 
       [I, < # ; # >, O ' '8 '- '0] . 
 rl [out-wink] : [I, < # ; playful >, O] => 
       [I, < # ; # >, O ' '; '- '`)] . 
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 rl [wow!] : < happy ; # > => < # ; shocked > . 
 rl [hehe] : < happy ; # > => < # ; playful > . 
 rl [hey!] : < playful ; # > => < # ; shocked > . 
endm 

 
Here, the process is slightly more complicated.  First, the user inputs the command, and we 
convert it into a mood using the in- laws.  Then, the three last rules describe the mood changes, 
and lastly, the out- laws output the corresponding smiley.   
 
As you can imagine, we can create some amazingly complex and powerful rewriting systems 
that fit into the LOOP-MODE constructor, thereby adding the power of user interaction.  In fact, 
we could even write an entire programming language using loop mode, by defining our own 
commands and making them programming language keywords, then setting down rewrite 
modules to interpret these keywords into Maude terms and expressions.  In fact, we could even 
write this loopy programming language with the same keywords as Maude, plus a few extra 
ones, so that essentially, all we’re doing is giving extended capabilities to the Maude language 
we already know. 
 
And we did.  We called it ‘Full Maude.’ 
 
Maude is a modeling tool so powerful it can model almost anything, including itself.  Here’s how 
it works.  Full Maude is an extension of Core Maude written in Core Maude using loop-mode.  
So when we load a Full Maude module or command, or enter it into the environment directly, the 
LOOP-MODE constructor receives it as input, processes it according to the reduction and rewrite 
rules set down in the Full Maude signature (a series of modules that mimic and extend the syntax 
of Core Maude), and then output it in a style similar to the output of Core Maude.  The only real 
visible differences are: 1) the extended features, and 2) we have to put everything in parentheses.  
Modules, commands, everything we want Full Maude to pay attention to – has to be in 
parentheses.  Other than that, we use the exact same syntax for Core Maude, plus a new set of 
syntax for the extended features. 
 
What are these extended features?  Aside from a few helpful functions here and there, the two 
main tools of Full Maude are object-oriented modules and parameterization.  The rest of this 
chapter will explore the syntax and uses of object-oriented programming, and Chapter 5 will 
tackle parameterized systems.  So, to begin. 
 
 
4.2  Introduction to Object Oriented Ideology 
 
The ancient Greeks introduced the Western world to the concept of the mnemonic, which is any 
device used to remember a set of data better.  One such device involved touring some temple or 
mansion or public building, and assigning pieces of data to specific things or places within the 
building.  For example, an orator might walk through an old statue garden and assign to each 
statue a certain point or item to be brought up in his speech.  Then, when giving the speech for 
real, he would walk through the garden in his mind, and discourse on each subject as he 
encountered its symbolic statue during the mental tour.  These “temples of memory” were 
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commonly used by teachers and politicians and any body who had a lot to memorize.  Ironically, 
these “temples of memory” give the orator more information to memorize instead of less.  But it 
still makes remembering easier, because the properties of spatial location lend otherwise abstract 
concepts a solidity, a realness, and bring out certain traits in these concepts such as hierarchy, 
order, and inclusive/exclusive qualities. 
 
In programming, one can think of an object as a computer’s “temple of memory.”  An object is 
simply a structure that groups together data of all types.  For example, one could make an object 
CAT which includes a variable for the color of its fur, a variable for its weight, and an operation 
“purr.”  Now, it is perfectly feasible to work with each operation and each variable separately, 
but an object establishes implicit connections between each piece of data just by existing and 
including them.  An object also gives the group exclusivity; now purr is utterly separate from, 
say, the addition operator.  The structure of objects merely explicitly states for the computer 
what the programmer already knows.  This strengthens, condenses, and simplifies code 
remarkably.   
 
The big vocabulary word to learn this chapter, which you will encounter in every discourse on 
object oriented programming, is “encapsulation.”  An object encapsulates data into one easily 
manageable structure.  Encapsulation also carries the connotations of exclusivity and 
inclusiveness, which are essential to objects.  In the next section we’ll look at how we actually 
implement all this ideology in Full Maude. 
 
 
4.3  Objects in Maude 
 
Objects all belong to a class, which is a general category of which objects are specific instances.  
For example, the object CAT could belong to class Animal.  Or, class TABLE might have 
instances Table1, Table2, Table3, representing certain tables in a restaurant.  The relationship 
between classes and objects is somewhat analogous to the relationship between sorts and 
variables of those sorts.   
 
Classes are declared in Maude with a class name and however many attributes you want linked 
to objects of that class.  Attributes are declared with an attribute name and the attribute’s sort.  
Multiple attributes are separated by commas (the set of a class’s attributes is commutative, so 
order does not matter).  We also declare classes with the keyword class and the | symbol, as 
follows: 

 
class TABLE | occupied : Bool , chairs : Nat . 

 
TABLE has attributes occupied, which is a Boolean value (whether or not the table is occupied), 
and chairs, a Nat denoting the number of chairs at the table.  Objects are a bit more 
complicated to declare, because one must declare each individual piece (name and attribute(s)) 
using variables.  For example, an object of TABLE needs a name, a Boolean value, and a Nat. 
 

var A : Oid .  var O : Bool .  var N : Nat . 
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“Oid” stands for “object identifier,” which is a fancy name for “object name.”  Object identifiers 
are just variable specifically for objects.  It comes as a built-in sort in omods.  So we’ve declared 
variables for all the pieces of a TABLE object; if we want to use this object, say, in a rewrite law, 
we call it with the symbols < >, | , and the colon. 
 

< A : TABLE | occupied : O , chairs : N > 
 
This syntax can look pretty baffling at first.  If it helps, think of the above structure not as a piece 
of syntax, but as a constructor defined by Full Maude in its signature: 

  
op < _:_ | _ > : Oid Cid AttrSet -> Object [ctor] . 

 
Just remember that the | symbol always separates the class/object name from its attributes, and 
that colons separate attribute names and their associated sorts/values.  Objects are above all data 
structures, like computational file cabinets, and the look of the object constructor emphasizes the 
ideology of encapsulation, that several pieces of information (“occupied : O , chairs : 
N”) are gathered under the same name (“A : TABLE”) and separated from the rest of the 
environment (“< >”). 
 
Just as sorts can have subsorts, classes can have subclasses.  In C++, certain classes are 
constructed from other classes, inheriting their attributes.  In Maude, the concept of “inheritance” 
is implemented through classes and subclasses.  Suppose our restaurant puts some tables outside, 
and during the winter we want to know if a certain table is next to a propane heater-lamp.  We 
declare a class OutDoorTABLE, with this additional attribute. 

  
class OutDoorTABLE | next2heater : Bool . 

 
We then declare OutDoorTABLE a subclass of TABLE.  OutDoorTABLE will inherit the 
attributes of TABLE, in addition to this new attribute next2heater.  Since subclasses parallel 
subsorts, the declaration syntax will not come as a surprise: 

 
subclass OutDoorTABLE < TABLE . 

 
Note that OutDoorTABLE is as much a class as TABLE; the key word subclass just establishes an 
inheritance hierarchy.  An object of OutDoorTABLE, once all variables are declared, might look 
like: 

 
< A : OutDoorTABLE | occupied : O , chairs : N , next2heater : H > 

 
 

4.4  Messages 
 
If classes are something like bigger versions of sorts, and objects are something like bigger 
versions of variables, then messages are something like the bigger versions of operations.  They 
are declared with the key word msg, and are otherwise declared pretty much like operations: 
after msg comes the name (in either prefix or mixfix), followed by a colon, then the sorts fed into 
the message, then the -> symbol.  The two special requirements are that, for messages, the -> 
symbol is always followed by the key sort Msg, and the first argument is always an Oid, assumed 
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to be the name of the object upon which the message acts or to which the message is “sent.”  Msg 
(with a capital M, differentiating it from the key word msg) is a built-in sort specified by Full 
Maude for omods and object-oriented programming.  So, if we want a message sit@, which 
changes a table from unoccupied to occupied, we write: 
 

msg sit@ : Oid -> Msg . 
 
Note that one feeds sorts, not classes, into a message.  We identify all objects by their Oids, so 
feeding in an entire class is unnecessary and extraneous.  And the reason for the built-in sort 
Msg?  This gets complicated.  Messages are like bigger version of operations, but we don’t plug 
an entire object into a message like we plug a variable into an operation.  So instead of writing 
sit@(< A : TABLE | occupied : O , chairs : N >), we write sit@(A) next to < A 
: TABLE | occupied : O , chairs : N >.  Imagine the Maude interpreter is Alice in 
Wonderland, and she comes across 1) a vial of liquid, and 2) a note that says “Drink Me.”  So, of 
course, she drinks the vial.  Messages work the exact same way: they are a note sitting next to 
the object they affect, telling the interpreter to perform some action.  We’ll later use rewrite laws 
to define exactly how to perform that action.  In a sense, messages are just the first “half” of the 
process.  Is this confusing?  Absolutely.  We’ll clear this all up soon enough.  Is the difference 
between msg and Msg especially confusing?  Maddeningly.  The only solace I can offer is that 
key words are always lower case in Maude, so msg must be the key word and Msg the built-in 
sort.   
 
 
4.5  Rewrite Laws in Object-Oriented Modules 
 
When we last left rewrite laws in Chapter 3, in system modules, we had resolved that they took 
some state and mapped a transition to another state.  In our toy crane example, several of our 
rewrite laws mapped a concatenation of States, which is a State itself, and mapped a 
transition to another concatenation of States.  In other words, 
 

rl [unstack] : empty & clear(X) & on(X,Y) => hold(X) & clear(Y) . 
 
in terms of the sort State, looks like 
 

State State State => State State 
 
which is really just a specific example of 
 
  State => State  
 
or something like that.  
 
Now, a similar arrangement occurs in object-oriented modules, it just looks different.  Messages 
and objects are both specific types of states.  So what a rewrite law looks like in omods is: 
 

 Message Object Object => Object Object  
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Not to say, of course, that a rewrite law in an omod is always 1 message + 2 objects = 2 objects; 
the following are also common patterns: 

 
 Message Message Object => Object  
 Message Object => Object Message  

 
My point is that objects and messages are just specific states, and any concatenation of messages 
and objects can be mapped to any other concatenation of messages and objects with a rewrite 
law, just as concatenations of states were mapped to each other in system modules.  How does 
this specification work?  Reflect over the following: 
 

 subsorts Message Object < State . 
 
Of course, the actual Full Maude signature uses different names and words etc., but this explains 
why we need the built-in sort Msg.  The message declaration gathers all the required sorts into 
one state, Msg.  Then the rewrite law provides the actual transition, using all the information 
contained in the Msg in conjunction with the provided objects.   
 
So all the components of object-oriented rewrite laws, including messages and the new Msg sort 
and the bizarre new syntax of objects, are really just specific examples of everyday rewriting 
logic; they just imitate Core Maude syntax, and a bit more.  In Chapter 3, we created a toy crane 
environment using rewriting logic.  Well, Full Maude simply creates an object-oriented 
programming environment using rewriting logic.  How thoughtful, no? 
 
All right, that was an enormous amount of theory there.  Let’s look at some examples.  First, let’s 
expand our TABLE example into a full-fleshed module.  We already have a class and a subclass, 
attributes for both, and a message sit@.  Let’s add a message borrowchairfrom, which takes 
a chair from one table and adds it to another, a message changetables, which changes one 
occupied table to unoccupied and one unoccupied table to occupied, and a message 
heaterswitch that toggles the next2heater attribute of OutDoorTABLEs.   

  
(omod RESTAURANT is 
 protecting NAT . 
 class TABLE | occupied : Bool , chairs : Nat . 
 class OutDoorTABLE | next2heater : Bool . 
 subclass OutDoorTABLE < TABLE . 
 msgs sit@ heaterswitch : Oid -> Msg . 
 msgs _borrowchairfrom_ changetables : Oid Oid -> Msg . 
   
 vars A B : Oid . 
 vars M N : Nat . 
 
 rl [sit] : sit@(A) < A : TABLE | occupied : false > 
    => < A : TABLE | occupied : true > 
 rl [switchon] : heaterswitch(A)  

< A : TABLE | Next2heater : false > 
   => < A : TABLE | Next2heater : true > . 
 rl [switchoff] : heaterswitch(A)   
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 < A : TABLE | next2heater : true > 
      => < A : TABLE | next2heater : false > . 

rl [move] : changetables(A, B)  
< A : TABLE | occupied : true >  

    < B : TABLE | occupied : false > 
   =>  < A : TABLE | occupied : false > 
    < B : TABLE | occupied : true > . 

rl [takechair] : (A borrowchairfrom B)  
      < A : TABLE | chairs : M >  

< B : TABLE | chairs : s N >   
=> < A : TABLE | chairs : s M > 

          < B : TABLE | chairs : N > . 
endom) 

 
Note that, because object-oriented modules are part of Full Maude and not Core Maude, we have 
to enclose the omod definition in parentheses.  Also remember that, even when using mixfix 
notation, we feed in only Oids, not full obejcts.  That is, we wrote  
 

(A borrowchairfrom B) 
 
instead of  
 

< A : TABLE > borrowchairfrom < B : TABLE > 
 
Please keep in mind that you are not writing in Core Maude, so parsing tricks you might have 
gotten away with in Core Maude will very easily crash your program in Full Maude.  For 
example, if I did not put parentheses around A borrowchairfrom B, Full Maude would 
understand me to mean A borrowchairfrom (B < A : TABLE | chairs ... >), which of 
course makes no sense.  So, be sure to practice “safe parsing” when programming in Full Maude: 
use whitespace and parentheses always.  Finally, when calling an object with multiple attributes 
in a rewrite law, it is only necessary to state explicitly the attribute that matters for the law.  For 
example, we didn’t have to provide any information about the attribute occupied in the rewrite 
law takechair. 
 
My favorite omod implementation example is the sliding tile 
puzzle.  Imagine (or, just look at the adjacent figure) a three 
by three grid, with eight numbered tiles free to slide up, 
down, left, or right into the empty space.  So, in our module, 
we’ll have a class Tile with an attribute val.  As for 
coordinates, we’ll create a constructor operation to turn 
coordinates into an Oid. 
 

(omod TILE-PUZZLE is 
 sorts Value Coord . 
 ops One Two Three Four Five Six Seven Eight : -> Value . 
 op empty : -> Value . 
 ops 0 1 2 : -> Coord . 
 op s_ p_ : Coord -> Coord . 
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 op `(_`,_`) : Coord Coord -> Oid [ctor] . 
 eq s 0 = 1 . 
 eq s 1 = 2 . 
 eq p 1 = 0 . 
 eq p 2 = 1 . 
 

class Tile | val : Value . 
msg move : Oid Oid -> Msg . 
vars R1 R2 C1 C2 : Coord .  var V : Value . 

 
crl [l] : move((R1, C1), (R1, C2))  

< (R1, C1) | val : V > < (R1 , C2) | val : empty > 
  =>  < (R1 , C2) | val : V > < (R1 , C1) | val : empty > 
         if C2 == p C1 . 
 

crl [r] : move((R1, C1), (R1, C2))  
< (R1, C1) | val : V > < (R1, C2) | val : empty > 

  => < (R1, C2) | val : V > < (R1, C1) | val : empty > 
         if C2 == s C1 . 
 

crl [u] : move((R1, C1), (R2, C1))  
< (R1, C1) | val : V > < (R2, C1) | val : empty > 

  =>  < (R2, C1) | val : V > < (R1, C1) | val : empty > 
         if R2 == p R1 . 
 

crl [d] : move((R1, C1), (R2, C1))  
< (R1, C1) | val : V > < (R2, C1) | val : empty > 

  => < (R2, C1) | val : V > < (R1, C1) | val : empty > 
         if R2 == s R1 . 
endom) 

 
Note that the Oid, in this case, was not a typical variable name or word, but rather the result of a 
constructor.  Also note that, for that constructor, we had to use backquotes in front of the 
parentheses and commas.  Since omods are part of Full Maude, in which parentheses and 
commas are key symbols, we have to put the backquote to use them as normal characters. 

 
So we’ve wrapped up our exploration of the three types of modules: functional, system, and 
object-oriented.  More importantly, we’ve seen how Full Maude extends the tools and language 
of Core Maude, and experienced a bit of the madness inherent in Full Maude programming.  In 
the next two chapters, we’ll learn about how to coordinate and manipulate multiple modules in 
two complex and useful ways, through parameterization and through metaprogramming. 
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EXERCISES FOR CHAPTER 4 
 

1. Full Maude is an ___________________________ of Core Maude, mimicking the Maude 

syntax within its own modules but defining a few extra capabilities, most notably 

_______________________ modules, declared with the keyword _________ at the 

beginning and ___________ at the end, and ___________________________, the subject of 

Chapter 5.  All modules and commands to be loaded into Full Maude must be enclosed in 

____________________________, because Full Maude is written using the input-output 

capabilities of the provided module ____________________. 

 

2. The following lines are from different object-oriented modules, and none of them parse 

correctly.  Write the appropriate revision to each statement or declaration that will fix the 

error(s). 

 a)  Msgs debit credit : Oid Nat -> msg . 

 

 

 

 b)  rl [switchnums] : A switch B  

       < A : NUMOBJ | n : N >  

       < B : NUMOBJ | n : M > 

     =>  < A : NUMOBJ | n : M >  

      < B : NUMOBJ | n : M > . 

 

 

 

 

 

 

 

 c)  object PERSON | age : Nat  sign : Zodiac . 
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 d)  rl [older] : ++age(A) < A | age : N , sign : Z > 

       => < A | age : s N , sign : Z > . 

 

 

 

 

 

3. The following object-oriented module defines a basketball scoresheet model, where each 

player, identified by their jersey number, has a line with their name, scoring record (how 

many three-pointers, two-pointers, and free throws they’ve attempted and made) and the 

number of fouls they’ve accrued.  Examine the module below and answer the questions that 

follow.  You can assume that throw is defined somewhere else such that true and false 

are equally probable results. 

1 (omod BASKETBALL-SCORESHEET is 

2  pr NAT .  pr STRING . 

3  sorts History JerseyNumber . 

4  ........................................................................................................ . 

5 

6  op _for_ : Nat Nat -> History [ctor] . 

7  op throw : Oid -> Bool . 

8 

9  class LINE | name : String , threes : History , 

10   twos : History , fts : History ,  

11   fouls : Nat . 

12 

13  msgs ................................................. : Oid Bool -> Msg . 

14  msg foul : Oid -> Msg . 

15  msg _fouled_ : Oid Oid -> Msg . 

16 
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17  vars J K : JerseyNumber . vars X Y N : Nat . 

18  var B : Bool .    var S : String . 

19  

20  rl [f] :  foul(J)  

21    < J : LINE | name : S , fouls : N > 

22   =>   < J : LINE | name : S , fouls : s N > . 

23  rl [3] : 3A(J, B) < J : LINE | threes : X for Y > 

24     => < J : LINE | threes : if B 

25       then (s X) for (s Y)  

26       else X for (s Y) fi > . 

27  rl [2] : 2A(J, B) < J : LINE | twos : X for Y > 

28     => < J : LINE | twos : if B 

29       then (s X) for (s Y)  

30       else X for (s Y) fi > . 

31  rl [ft] : ftA(J, B) < J : LINE | fts : X for Y > 

32     => < J : LINE | fts : if B 

33       then (s X) for (s Y)  

34       else X for (s Y) fi > . 

35  rl [foulcalled] : (J fouled K) 

36     < J : LINE | > < K : LINE | > 

37    =>  foul(J) < J : LINE | > 

38     ftA(K, throw(K)) fta(K, throw(K)) 

39     < K : LINE | > . 

40  endom) 

 

a) What declaration has to go on line 4 so that JerseyNumber, which is really just a Nat, 

counts as an object identifier? 

 

 

 

b) Fill in the dotted blank on line 13: ____________________________________ 
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c) On lines 20-22, the message foul is defined using a rewrite rule.   

 i. Is the attribute name necessary to include in the rule? __________________ 

 ii. Is the attribute fouls necessary to include in the rule? __________________ 

 

d) The following was entered into the Maude environment after having loaded the above 

module, except the messages have been deleted from the input.  What three messages 

must have occupied the dotted blank to produce the following result? 

Maude> (rew < 8 : LINE | name : "Kobe" , fouls : 1,  

  threes : 0 for 0, twos : 6 for 8, fts : 4 for 4 > 

     < 34 : LINE | name : "Shaq" , fouls : 3, 

  threes : 0 for 0, twos : 9 for 9, fts : 0 for 8 > 

     < 3 : LINE | name : "Iverson" , fouls : 2, 

  threes : 2 for 3, twos : 3 for 4, fts : 2 for 4 > 

 .................................................................................................................. .) 

 

rewrites: 1503 in 20ms cpu (20ms real) (75650 rewr/s) 

result Configuration : 

< 3 : LINE | fouls : 3,fts : 2 for 4,twos : 3 for 

5,threes : 2 for 3,name : "Iverson" > < 8 : LINE | 

fouls : 1,fts 4 for 4,twos : 6 for 8,threes : 1 for 

1,name : "Kobe" > < 34 : LINE | fouls : 3,fts : 1 for 

10,twos : 9 for 9,threes : 0 for 0,name : "Shaq" >  
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5.  PARAMETERIZATION 
 
 
5.1   Ideology 
 
In Alvin Toffler’s 1970 psycho-social analysis tome Future Shock, the author describes an 
apartment building made up of a permanent building frame, while steel, modular apartments are 
hoisted by crane and “plugged into” the frame.  This design reflects the general architecture of 
parameterization, consisting of a frame sort, and a “plugged in” sort.  Or, consider a normal 
electrical outlet.  The outlet is only a single structure, by itself not very powerful.  But thousands 
of different appliances (which are not very powerful without an outlet) can be plugged in, 
creating a combination that is useful.  This is the ideology of parameterization.  One creates a 
parameterized sort, the outlet, and a parameter sort, which plugs into the parameterized sort and 
creates a useful combination. 
 
For example, say you wanted to make a roster of all the people in a particular school.  This 
would mean a list of teachers, a list of administrators, and a list of students.  You could just make 
a sort NameList, to include all three types of names: 

 
sorts NameList Name . 
subsort Name < NameList . 
op __ : NameList NameList -> NameList . 

 
But this means that there is no difference in how the module treats teachers, students, and 
administrators.  We could create separate lists for all of them – but this becomes wasteful after a 
while, when we have the alternative of creating a general sort Roster, and parameterizing it.  
Then we can create three different types of Rosters: Roster(teacher), Roster(student), 
Roster(administrator).  As you might expect, parameterization is a very powerful but also 
rather complex tool, and requires a fair amount of special syntax to learn before we can use it to 
its fullest extent. 
 
 
5.2  Syntax of Parameterization 
 
5.2.1 : The Theory 
 
The first requirement for a parameterized anything is a theory.  A theory sets down the rules for a 
parameter, a sort of schematic, which the parameter must fulfill in order to be accepted by a 
parameterized sort.  The most common theory, TRIV, is, well, trivial: 
 

(fth TRIV is 
 sort Elt . 
endfth) 

 
This theory is automatically included in Full Maude, and is the basic example of a theory whose 
sole requirement is that some sort be present in the parameter.  This theory would work well for 
general parameterized lists.  A general list only requires that its elements exist, which is 
essentially the requirement of TRIV.  Note that the sort Elt is the common abbreviation for 

 59



“element” (as in an element of a list or set).  Also note that this theory is a functional theory: this 
theory is for the benefit of functional modules.  This doesn’t mean that a system module or an 
object-oriented module can’t make use of this theory, but rather that there is nothing in the 
theory which limits it to these modules, such as, say, any requirement about rewrite laws or 
classes.  Finally, note that the theory is in parentheses, because parameterization is a part of Full 
Maude (see Chapter 4.2).   
 
There are certainly times when a more specific theory is useful.  Let’s say that you were asked to 
model (1) a highway map of California, (2) an electrical power grid, and (3) a cross-referenced 
encyclopedia.  What these three examples have in common is that they are a network, and can be 
modeled using a graph of nodes and edges.  The nodes are the (1) cities, (2) houses and power 
plants, or (3) encyclopedia entries, while the edges are the (1) highways, (2) power lines, or (3) 
cross-references.  So let us create a functional theory GRAPH that specifies the requirements of a 
network: 
 

(fth GRAPH is 
 sorts Node Edge . 
 ops node1 node2 : Edge -> Node . 
endfth) 

 
Note that we don’t specify what the operations node1 and node2 actually mean for the sorts.  
Depending on whether our edges are one-way only, node1 and node2 could mean “source” and 
“target,” or they could just be two nodes connected by the edge.  All that the theory requires is 
that there be two operators that return the nodes associated with an edge. 
 
 
5.2.2 : The Parameterized Module 
 
The next step of parameterization is the actual parameterized module.  We declare this module 
with a special, clunky notation: 
 

(fmod EXAMPLE(X :: TRIV) is … endfm) 
 
The syntax may look strange, but every bit of it is important.  The (X :: TRIV) phrase declares 
that there will be one or more parameterized sorts in the module (all of which will in some way 
carry around the label X) whose parameter must fulfill the theory TRIV.  Why X?  Why not.  You 
can use any letter or identifier you wish, as long as you’re consistent.  But the convention is a 
single capital letter, usually X. 
 
Then, you make sure that anything within the module that relies on a parameter carries that label 
(we’ll use X throughout the rest of the chapter).  The parameterized sort or sorts carries a 
parenthesized X whenever it appears, while the sorts defined in the theory carry an “X@” 
wherever they go.  Thankfully, the operations defined in the theory do not carry the X with them.  
Returning to our network example, we write the following module: 
 

(fmod NETWORK(X :: GRAPH) is 
 sorts NodeSet(X) EdgeSet(X) Network . 
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 subsort X@Node < NodeSet(X) . 
 subsort X@Edge < EdgeSet(X) . 
 op _net_ : NodeSet(X) EdgeSet(X) -> Network [ctor] . 
 op __ : NodeSet(X) NodeSet(X) -> NodeSet(X)  

[ctor assoc comm id: nnil] . 
 op __ : EdgeSet(X) EdgeSet(X) -> EdgeSet(X)  

[ctor assoc comm id: nil] . 
 op nnil : -> NodeSet(X) [ctor] . 
 op nil : -> EdgeSet(X) [ctor] . 
 
 op _in_ : X@Node NodeSet(X) -> Bool . 
 op _in_ : X@Edge EdgeSet(X) -> Bool . 
 
 var N : X@Node . var NS : NodeSet(X) .   

var E : X@Edge . var ES : EdgeSet(X) . 
 

eq N in N NS = true . 
eq N in NS = false [owise] . 
eq E in E ES = true . 
eq E in ES = false [owise] . 

endfm) 
 
So there’s a lot to look at in this module.  First, one may notice that X@Node and X@Edge don’t 
appear to have been initiated as sorts, but in fact they come from the Node and Edge defined in 
GRAPH.  Also note that our two parameterized sorts need to carry that (X) with them at all times.  
Finally, I’ve included the _in_ operator, which checks if a Node or Edge is part of a given 
corresponding set, just so we have something to do with this example (a common exercise with 
networks is a search function, which searches for a path between two nodes... the implementation 
of this, however, is too tangential, and too complex, for the chapter, but is provided in the 
Examples Appendix).   
 
 
5.2.3 : The Parameter(s) 
 
Overall, parameterization is really pretty simple: it’s just a matter of getting used to and 
memorizing the syntax involved.  And on that note, let’s look at some more syntax.  We’ve got 
the theory, we’ve got the parameterized module, now let’s look at the next requirement: a 
module that defines the parameter.  With respect to our network example, we’ll create a rather 
arbitrary parameter, a graph where the nodes are Greek letters and the edges are natural numbers: 
 

(fmod GREEK-GRAPH is 
 pr NAT .   

sort Letter . 
ops alpha beta gamma delta epsilon lambda theta phi : -> Letter . 
ops source target : Nat -> Letter . 
 
eq source(1) = epsilon . eq target(1) = lambda . 
eq source(2) = beta .    eq target(2) = alpha . 
eq source(3) = alpha .   eq target(3) = gamma . 
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eq source(4) = alpha .   eq target(4) = delta . 
eq source(5) = delta .   eq target(5) = epsilon . 
eq source(6) = theta .   eq target(6) = phi . 
eq source(7) = phi .     eq target(7) = theta .  

endfm) 
 
Of course this is a bit simplistic, but it suffices.  The module 
basically describes the graph to the left.  Note that we must 
initiate the above sorts and operations in a module separate from 
the parameterized module, because we will “plug it into” the 
NETWORK module in a moment, with the help of a view. 
 
 
5.2.4 : Views 
 

So far, in our continuing mission to create an example of parameterization, we’ve 1) defined the 
rules for the parameter, 2) declared and defined the parameterized sort, and 3) declared and 
defined the parameter.  As it stands, however, there is no link between the parameter and its 
rules.  After all, how is the Maude compiler supposed to realize that the sorts Letter and Nat 
are meant to be the “X@Node” and “X@Edge,” respectively?  Why not the other way around?  
And what about those node1 and node2 operators?  It probably comes as no surprise that the 
answer lies in views, the subject of this section. 
 
A view maps the sorts and operations defined in the theory to those in a given parameter.  This 
establishes a link between the two, which allows the compiler to understand the parameter sorts 
as parameters.  We create a view using the special syntax “view ViewName from THEORY 
to MODULE is ... endv.”  The name doesn’t have to be anything special, but it’s a good 
idea to give the view a name related to the problem at hand, and a bad idea to give it the same 
name as the module or theory.  The theory and module names, obviously, are the names of the 
theory and module to be linked within the view.  Remember to enclose the view in parentheses.  
The actual mapping occurs within the view, using the unexciting but essential key word to.  This 
key word allows us to map both sorts and operations in a theory to the corresponding sorts and 
operations in a module.  Returning to our network example: 
 

(view Graph-GreekGraph from GRAPH to GREEK-GRAPH is 
 sort Node to Letter . 

sort Edge to Nat . 
op node1 to source . 
op node2 to target . 

endv) 
 
Notice that we still must include the sort and op key words to denote exactly what we are 
mapping.  Also note that the theory’s element always comes before the module’s element.  
Views may also map operators to expressions, though this might prove a tad more complicated.  
We use the construct op .......... to term ..........  For example, if we had a theory PEANO with 
sort Num that requires some starting point (like zero) and some sort of successor operator,  
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(fth PEANO is 
 sort Num . 
 op 0 : -> Num . op s_ : Num -> Num . 
endfth) 

 
and a parameter THREE-NAT where all the elements are natural multiples of three,  
 

(fmod THREE-NAT is 
 pr NAT . 
 sort 3Nat . subsort 3Nat < Nat . 

var N : Nat . 
 cmb N : 3Nat if N rem 3 == 0 . 
endfm) 

 
we could write as our view: 

 
(view Peano-3Nat from PEANO to THREE-NAT is 
 sort Num to 3Nat . 
 var X : Num . 
 op 0 to 0 . op s X to term X + 3 . 
endv) 

 
So, the final step is the one where we actually connect everything: the theory, the parameterized 
module, the parameter, and the view.  We do this in either of two ways: in the Maude 
environment or within another module.  In the Maude environment, all we have to do is attach 
the view we want in parentheses to the parameterized module.  Thus, the two commands below 
will work: 
 

Maude> ( select NETWORK(Graph-GreekGraph) .) 
Maude> ( red in NETWORK(Graph-GreekGraph) : lambda in (alpha beta 

lambda phi) .) 
 
Recall that all commands in Full Maude must be enclosed by parentheses.  If we choose to take 
the module route, all we need to do is import the parameterized module with the selected view, 
in the same way as above: 
 

(fmod GREEK-NETWORK is 
 protecting NETWORK(Graph-GreekGraph) . 
 op alltargets : EdgeSet(Graph-GreekGraph) ->  

NodeSet(Graph-GreekGraph) . 
 op findedge : Letter EdgeSet(Graph-GreekGraph) -> Nat . 
 ... 
endfm) 

 
Anywhere there was an(X) in the parameterized module, there’s a (View-Name) in the 
instantiation module.  The X@Sorts have all been replaced by the parameter’s sorts that 
appeared in the view.  I have omitted the rest of the operation definitions, because really all you 
need to see here is an example of how to write the syntax of an instantiation module, but feel free 
to embellish. 
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So there you have it, the bare minimum of a complete parameterization example: one theory, one 
parameterized module, one parameter, one view, and some sort of instantiation that makes use of 
them all.  In the next sections, we’ll see that we can expand to a much greater extent on this basic 
design. 
 
 
5.3  Multiple Parameters 
 
The title says it all: we can parameterize sorts and modules so that they take not just one 
parameter, but many.  The syntax is similar, and only slightly more complicated.  When we 
parameterize a module, we separate those X :: THEORY declarations with a vertical bar | .  
Take a look at the following example: 

 
(fth OELT is  

sort Elt .  
op _>=_ : Elt Elt -> Bool .  

endfth) 
  
(fmod PAIRS(X :: OELT | Y :: TRIV) is 
 sorts Pair(X | Y) PairList . 
 subsort Pair(X | Y) < PairList . 
 
 op _~_ : X@Elt Y@Elt -> Pair(X | Y) [ctor] . 
 op _;_ : PairList PairList -> PairList [ctor assoc id: pnil] . 
 op pnil : -> PairList [ctor] . 
 op add : Pair(X | Y) PairList -> PairList . 
 
 vars O1 O2 : X@Elt . vars A1 A2 : Y@Elt .  var P : PairList . 
 
 eq add((O1 ~ A1), (O2 ~ A2) ; P) =  if O1 >= O2 
     then (O2 ~ A2) ; add((O1 ~ A1), P) 
     else (O1 ~ A1) ; (O2 ~ A2) ; P fi . 
 eq add((O1 ~ A1), nil) = O1 ~ A1 . 
endfm) 

 
The goal in this case is to create a pair of elements where the first element of the pair can be 
arranged in some order, whatever that may be.  Then, we can create a list of the pairs according 
to the order of their first elements.  We use two theories: the first, OELT, which describes a sort 
where order can be determined by the _>=_ operator.  The second, TRIV, comes included in Full 
Maude, and describes any thing.  When we parameterize the module PAIRS according to both of 
them, we use two different labels that follow their sorts around.  Note that since TRIV and OELT 
each have a sort Elt, the distinction of X@Elt, the Elt from OELT, and Y@Elt, the Elt from 
TRIV, is rather important.  Also note the syntax of Pair(X | Y) – again, the vertical bar.  If we 
were to model some sort of triplet, we’d declare the module like 
 

(fmod TRIPLE(X :: TRIV | Y :: TRIV | Z :: TRIV) is ... 
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and the parameterized sorts like 
 

sort Triple(X | Y | Z) . 
 
We can extend the method for as many parameters as we want.  When instantiating the 
parameters, we list the views separated by vertical bars.  Say we had the following two views for 
our parameters: 
 

(view OElt-Nat from OELT to NAT is 
  sort Elt to Nat . op _>=_ to _>=_ .  endv) 
(view Triv-String from TRIV to STRING is 
  sort Elt to String .    endv) 

 
Then we’d connect them all like so: 
 

Maude> ( select PAIRS(OElt-Nat | Triv-String) . ) 
 
 
5.4  Parameterized Views and Theories 
 
Parameterization in Full Maude is extremely powerful partly because it is extremely flexible.  If 
you can come up with some combination of modules, theories, and views that makes sense, then 
Maude will allow it.  In fact, it will also allow a whole number of combinations that make no 
sense at all, but these won’t run.  So we can throw that bare minimum model to the dogs, and, if 
we want, take a look at some spectacularly weird examples of parameterization. 
 
The game Spider Solitaire requires two decks of cards to play with; let’s say that we have one 
red-backed deck and one blue-backed deck.  If we have the module DECK-COLOR 

 
(fmod DECK-COLOR is 
 sort Color . ops red blue : -> Color . 
 op _>=_ : Color Color -> Bool . 
 eq red >= blue = true . 
endfm) 

 
and if we define a deck of cards as a Stack of Cards (the functional module for a stack is given 
below): 
 

(fmod STACK(X :: TRIV) is 
 sort Stack(X) . 
 subsort X@Elt < Stack(X) . 
 op _;_ : Stack(X) Stack(X) -> Stack(X) [ctor assoc id: end] . 
 op end : -> Stack(X) [ctor] . 
 op top : Stack(X) -> X@Elt . 
 op pop : Stack(X) -> Stack(X) . 
 op push : X@Elt Stack(X) -> Stack(X) . 
 var E : X@Elt . var S : Stack(X) . 
 eq top(E ; S) = E . 
 eq pop(E ; S) = S . 
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 eq push(E, S) = E ; S . 
endfm) 

 
then we can represent our red and blue decks as Pairs with color being the orderable element 
and a Stack of Cards as the second element.  Obviously, we need the following two views: 
 

(view Triv-Card from TRIV to CARD-DECK is 
  sort Elt to Card .     endv) 
(view OElt-Color from OELT to DECK-COLOR is 
  sort Elt to Color . op _>=_ to _>=_ . endv) 

 
However, to match the Stack to the second parameter of Pair, we need a parameterized view: 
 

(view Triv-Stack(X :: TRIV) from TRIV to STACK(X) is 
  sort Elt to Stack(X) .    endv) 
 
And lastly, our SPIDER-SOLITAIRE module, which instantiates the whole mish-mash, would 
start off something like this: 
 

(fmod SPIDER-SOLITAIRE is 
 pr PAIRS(OElt-Color | Triv-Stack(Triv-Card)) . 
 ... 

 
In the above declaration, we see exactly why the view needs to be parameterized, because 
otherwise we would not be able to include the theory Triv-Card in the instantiation.  One of 
the most crucial traps of large parameterization systems can be avoided by making sure “all you 
bases are covered,” i.e., that you’ve connected everything together with views, and all your 
views are included in the instantiation. 
 
We can also parameterize theories, which makes the syntax even more complex but still doable: 
 

(fth FUNCTION(X :: TRIV | Y :: TRIV) is 
 op f : X@Elt -> Y@Elt . 
endfth) 

 
So far, so good, right?  The parameterized module, however, is frankly hideous: 
 

(fmod FMAP(F :: FUNCTION(X :: TRIV | Y :: TRIV)) is 
 sorts IndSet(X) DepSet(Y) . 
 subsort X@Elt < IndSet(X) . 
 subsort Y@Elt < DepSet(Y) . 
 op __ : IndSet(X) IndSet(X) -> IndSet(X)  

[ctor assoc comm id: ind-null] . 
 op _;_ : DepSet(Y) DepSet(Y) -> DepSet(Y) 

[ctor assoc comm id: dep-null] . 
op ind-null : -> IndSet(X) [ctor] . 
op dep-null : -> DepSet(X) [ctor] . 

 op fmap : IndSet(X) -> DepSet(Y) . 
 var N : X@Elt . var NS : IndSet(X) . 
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 eq fmap(N NS) = f(N) ; fmap(NS) . 
 eq fmap(ind-null) = dep-null . 
endfm) 

 
In the above module, we take our theory of a mapping function and extend it to map one set of 
elements (the independent variable set) to another (the dependent variable set).  The point, 
though, is to highlight the syntax used: note all the labels and theories included in the declaration 
of FMAP.  Try tracing where each operator and sort hail from: whether within the parameterized 
module itself, or from its various theories. 
 
To illustrate how one might implement a parameterized theory, we use the following parameter: 
 

(fmod NEGATIVE is 
 pr NAT . pr INT . 
 op _timesneg1 : Nat -> Int . 
 var N : Nat . 
 eq N timesneg1 = - N . 
endfm) 

 
This will fit nicely into the FUNCTION theory, but we still have to be careful when writing our 
views.  We need to connect TRIV to NAT and INT, first and foremost: 
 

(view Triv-Nat from TRIV to NAT is  sort Elt to Nat . endv) 
(view Triv-Int from TRIV to INT is   sort Elt to Int . endv) 

 
and then to connect FUNCTION to NEGATIVE, we use a parameterized view: 
 

(view Fun-Neg(X :: TRIV | Y :: TRIV)  
from FUNCTION(X | Y) to NEGATIVE is 

 op f to _timesneg1 . endv) 
 
Notice how we map the parameterized theory: we declare the labels in the view name, and then 
use them to describe the theory’s parameters.  Also notice that we don’t say anything about sorts 
X@Elt or Y@Elt, which we did in the original theory, because the views Triv-Nat and 
Triv-Int will take care of those particular connections.  We can write something like: 

 
Maude> (red in FPAIR(Fun-Neg(Triv-Nat | Triv-Int) :  

fmap( 5 9 11 2 0 ) .) 
rewrites: 4716 in 100ms cpu (100 ms real) ... 
result DepSet`(Triv-Int`) : 0 ; -2 ; -5 ; –9 ; -11  

 
Now, at this point, your head might be screaming out dozens of questions like, “Why not use a 
half-instantiated view like (view Fun-Neg from FUNCTION(Triv-Nat | Triv-Int) to 
NEGATIVE)?” or “can a parameter be parameterized as well?” – and if you’ve actually tried 
programming a large parameterization system, then you’ve probably been frustrated by 
something that looks like it should work but just doesn’t run.  The thing to remember is that all 
parameterization, and all Full Maude, is ruled by a set of modules written in Core Maude.  This 
means that what we think of “syntax” is really treated like an expression of terms, and as such, 
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things like error-handling, parsing, and running are all going to be a lot looser, flimsier even, 
than Core Maude syntax.  To make an analogy, 5 * 3 + 2 will appear to the user, almost 
automatically, as 17, but if the Maude modules that define the reduction of the expression 
happen to have given _+_ a lower prec number than _*_, the expression will in fact reduce to 
25.  Just so, some wild and convoluted declaration of, say, a parameterized view of 
parameterized theories with multiple parameterized parameters, may look like it’s correct to the 
user, but then Maude will come along and interpret it completely differently.  If you want a sure-
fire way to get the syntax correct, read the signature of Full Maude.  Good luck.  Though I 
cannot give you a full description of the syntax of every combination of parameters and theories 
and views, I have demonstrated some of the most common combinations above and will list 
below a few common rules I have learned: 
 

1. When declaring a parameterized module, view, or theory, you list all the theories 
involved and give them labels right away. 

 
√  (view V(F :: FUNCTION(X :: TRIV | Y :: TRIV) is ... 
X  (view V(F :: FUNCTION) is ...  
X  (view V(F :: FUNCTION(Triv-Nat | Triv-Int) is ...  
 
2. Once you declare a label for a theory, that label has to follow around consistently every 

sort or module (not operations, luckily) that you’ve associated with that theory.  Anything 
you want to depend on a theory, you label. 

 
3. Keep track of your instantiations: make sure the right views go in the right places, 

separate multiple parameters/views with the vertical bar, make sure you remember which 
views are parameterized, etc. 

 
Above all, keep trying.  If your parameterized system of modules simply crashes, it doesn’t mean 
you don’t understand Full Maude, it just means that Full Maude isn’t understanding you.  
Experiment.  Be flexible.  Let’s be honest, parameterization is, at this stage, a few colons and 
parentheses away from chaotic.  Full Maude will allow you to do almost anything, but this 
doesn’t mean that it will work. 

 
Connecting and coordinating several modules is no trivial accomplishment.  Pretty much every 
large project will involve many modules that must work together to achieve something 
meaningful.  Parameterization is the most powerful method of connecting these modules from 
within, from the “inside.”  In the next chapter, we’ll look at how to connect modules from “the 
outside,” some higher level: the meta-level.  
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EXERCISES FOR CHAPTER 5 
 

1. The bare minimum for a parameterization system is as follows: one ______________, to set 

down the requirements of the parameters, one _____________, which connects the 

_______________ to the parameter module, at least two modules (one being the parameter 

module and the other the _________________ module) and some sort of 

____________________ to collect everything together, whether that be within the Maude 

environment or within another module. 

 

2. Fill in the missing symbols and/or keywords: 

  a) (_________ OElt-Queue(_______ OELT)  

    from LIST(P) to QUEUE is ... 

  b) (______ CLASSTHEORY is  class ELT .   ________) 

  c) op X < Y ______________ X <= Y and X =/= Y . 

  d) subsort ____________Elt < List(LABEL) .   

     ***Hint: Elt comes from the theory TRIV 

 

3. In this question, we’ll go step-by-step through your basic, no-tricks parameterization system.  

The example is very simple: based on a theory that contains a function to double something, 

we’ll write a parameterized module that raises something to the 2nth power. 

 a) Write below the functional theory DOUBLE, which declares a sort Something and an 

operator double. 

 

 

 

 

 

 b) Write below a parameterized module called *POWER2, which, based on the theory 

DOUBLE, declares and defines an operator *power2.  The *power2 operator takes in 

two arguments: the first, a Something, and second, a Nat.   
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  i. Write the first half of the module, including the module name, the importations, and 

the operator declaration: 

 

 

 

 

 

 

 

 

  ii. Write the second half of the module, which includes the variable declarations and the 

equations.  We’ll define *power2 recursively so that, for every iteration, it calls 

double on its Something argument and decrements its Nat argument by 1.  

Don’t forget to include an equation that ends the recursion. 

 

 

 

 

 

 

 c) Write a view to connect the following module to DOUBLE.   

    (fmod INT*2 is 

     pr INT . 

     op _times2 : Int -> Int .  

     eq  N:Int times2 = N:Int * 2 . 

    endfm) 
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 d) Instantiate the above system, with INT as your parameter, in two ways: 

  i. In the Maude environment, using the keyword select 

 

    Maude> ____________________________________ 

 

 

  ii. In a module EIGHT, which declares and defines an operator *eight, which 

multiples an integer by eight (using *power2, of course). 
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6.  META-PROGRAMMING 
 
 
6.1  Ideology 
 
Meta-programming is perhaps one of the most complex and powerful facets of Maude; even 
though it’s not even a part of Core or Full Maude, but rather a standard library module.  This 
separation makes the learning of meta-programming much easier, for we can express and 
understand the concepts of the meta-level in a language with which we have become quite 
familiar over the past five chapters.  Prepare yourself; this final chapter is twice as long as the 
others, and with good reason.  An appreciation of meta-programming is essential for an 
appreciation of Maude. 
 
When the prefix “meta” appears in computer programming, it denotes a sense of transcendence 
or “beyond,” and thus metaprogramming extends beyond the ordinary programs with which all 
previous chapters have concerned themselves.  Simply put, a meta-module looks at modules like 
a programmer, like us – not as a set of executable reduction and rewrite rules, but rather, as a 
program that can be toyed around with by manipulating its contents.  Instead of writing equations 
and messages on Peano notations and tile-puzzles, we’ll be writing equations about the modules 
PEANO-NAT and TILE-PUZZLE.  In Maude, a meta-level module will govern iconic 
representations of other Maude modules.  Think of a meta-represented module as a sort of 
voodoo doll, where corresponding parts on doll and human can be maneuvered and affected by a 
higher, meta-level party.  As the chapter develops and actual examples appear, this voodoo 
mathematics will clarify itself. 
 
In fact, Maude literally clarifies itself through the power of the meta-level, for the language may 
actually be defined by itself.  That is, we can write, in Maude, the module that interprets Maude 
code.  For example, consider the following declaration: 
 

 op op_:_->_[_] : Qid QidList Qid AttrSet -> OpDecl [ctor] . 
 
This is the perfect example of Maude defining itself: the very declaration itself can be 
understood via the declaration.  It is perfect circular logic, which is all right as long as we stay 
within the circle.  The above may be found in the signature of Maude, a module that expresses 
the syntax of Maude... in the syntax of Maude.  It’s just like a high-school English textbook, 
which sets down the rules of English, in English.  And just like the English language, in Maude 
we can write about (model) pretty much anything we want, including other Maude modules. 
 
It’s a neat trick, but it’s also a very powerful tool, as we will see once we understand the syntax 
necessary to program at the meta-level. 
 
 
6.2  The Syntax of the Meta-level 
 
As mentioned before, there is a standard library of modules such as QID, STRING, NAT, etc. that 
accompanies Maude.  This library includes the module META-LEVEL, a module which defines 
the meta-representation of functional and system modules (note: object-oriented modules, 
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because they a component of Full Maude, are not meta-represented in the standard library).  
META-LEVEL imports two other standard modules, META-TERM and META-MODULE, which, 
respectively, provide the special syntax specifically for the representation of terms as meta-
terms, and modules as meta-modules. 
 
The most important sort defined in META-TERM is Term.  A term is a mathematical concept in set 
theory (on which Maude heavily relies), but for the purposes of this tutorial one can define a 
term as an expression formed from the constants and operations of an algebra.  Thus, 0 and 
s(s(0)) + N:Nat are examples of terms in PEANO-NAT-EXTRA, while 9 of Hearts and 
CardSuit(K of Spades) are both terms in CARD-DECK (see Chapter 2).  The META-LEVEL 
module reifies, that is, coalesces, this mathematical concept in the sort Term, and its 
corresponding list sort, TermList.  Thus, the meta-representation of any term in an algebra will 
be expressed with respect to Term and/or TermList.  The specifications for these sorts follow 
any typical list; note particularly the concatenation operation. 
 

sorts Term TermList . 
subsort Term < TermList . 
op _,_ : TermList TermList -> TermList [assoc] . 

 
The above is a cut-and-paste excerpt from the META-LEVEL module; only the relevant 
information has been quoted.  To meta-represent a term, we need to meta-represented the three 
possible components of term: constants, variables, and operations.  We represent a constant as a 
quoted identifier with its name and sort separated by a period, e.g.: '0.Nat or 'K.Number.  
Variables are just represented just like constants, except with colons where the period is:  
'N:Nat etc.  Finally, stringing all the variables and constants together are the operators, which 
we express using the operator: 
 

op _[_] : Qid TermList -> Term . 
 
where the first argument is the name of the operator in quotes, and the second argument is the 
TermList that meta-represents the operator’s arguments.  So, we meta-represent K of Spades 
as '_of_[ 'K.Number , 'Spades.Suit ], while s(s(0)) + N:Nat is '_+_['s['s 
['0.Nat]] , 'N:Nat ].  I have color-coded corresponding elements of the original 
expression and the meta-representation, since all these quoted identifiers and TermLists can get 
very ugly very fast.  I seriously recommend colored pencils and scratch paper when meta-
programming.  
  
So that’s how we do terms at the meta-level; let’s move on now to meta-representing entire 
modules.  A complete functional module necessitates a name, a list of imported modules, a set of 
sort declarations, a set of subsort declarations, a set of operator declarations, a set of variable 
declarations (more on this later), a set of membership axioms, and a set of equations.  Returning 
to our very first functional module example, the Peano notation of the natural numbers, we 
notice that the name is PEANO-NAT-EXTRA, there is no import list, there is one sort declaration, 
there are no subsort declarations, three operator declarations, one variable declaration, and a set 
of two equations: 
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fmod PEANO-NAT-EXTRA is 
 sort Nat . 
 op 0 : -> Nat [ctor] . 
 op s : Nat -> Nat [ctor] . 
 op _+_ : Nat Nat -> Nat . 
 vars M N : Nat . 
 eq 0 + N = N . 
 eq s(M) + N = s(M + N) . 
endfm 

 
The META-MODULE module defines two very important constructors, which define the meta-
representations of functional modules and system modules: 
 

op fmod_is_sorts_.____endfm : Qid ImportList SortSet SubsortDeclSet 
OpDeclSet MembAxSet EquationSet -> FModule [ctor] . 

op mod_is_sorts_._____endfm : Qid ImportList SortSet SubsortDeclSet 
OpDeclSet MembAxSet EquationSet RuleSet -> Module [ctor] . 

 
The first thing that stands out is the special place for sort declarations.  Unlike most of the other 
arguments, which are all sets of declarations made with specially defined keywords, the third 
arguments takes in a set (constructed with the concatenator _;_) of meta-represented sorts, 
which are just the names of the sorts as quoted identifiers: 'Nat, 'Bool, 'State, etc.  So, the 
sort declaration sorts Number Suit Card . would appear as 'Number ; 'Suit ; 
'Card in the third argument of the meta-module constructor. 
 
The second thing that stands out is the lack of a variable declaration set.  In fact, there’s no 
syntax to meta-represent a variable declaration.  We simply include the variables in the meta-
equations with their declared sort as demonstrated earlier, and META-MODULE will parse them 
correctly as declared variables. 
 
As for the rest, I’ll write it all down really quickly: the meta-representations of a declaration for 
equations, importations, operations, rules, etc. all use the same key symbols as in normal 
modules, save that module names and sorts are all quoted identifiers, and all expressions are 
meta-represented Terms.  Subsort declarations must be written one at a time.  Rewrite rules do 
not carry their label in front in brackets, but at the end as an attribute label('qid) in brackets.  
The null constant for the sets is none and that for the lists, nil.  Two examples of modules and 
their meta-representations are written below:
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fmod PEANO-NAT-EXTRA is 
sort Nat . 
op 0 : -> Nat [ctor] . 
op s : Nat -> Nat [ctor] . 
op _+_ : Nat Nat -> Nat . 
vars M N : Nat .  
eq N + 0 = N .  
eq s( M ) + N = s( M + N ) . 

endfm 
 
 
 
 
 
 
 
 
 
 
 
mod STRING-NAT is 
protecting NAT . 
protecting STRING . 

 
 op n : String -> Nat [ctor] . 
 op c : Nat -> String [ctor] . 
var N : Nat . 
var S : String . 
rl [convert] : n(S) =>  

length(S) . 
crl [back] : c(N) => char(N)  
 if N := X:Nat * 2 . 

endm 
 

fmod 'PEANO-NAT-EXTRA is 
nil 
sorts 'Nat . 
none 
op '0 : nil -> 'Nat [ctor] . 
op 's : nil -> 'Nat [ctor] . 
op '_+_ : 'Nat 'Nat -> 'Nat  

  [none] . 
none 
eq '_+_['N:Nat, '0.Nat] = 
   'N:Nat [none] . 
eq '_+_['s['M:Nat], 'N:Nat] = 
 's['_+_['M:Nat, 'N:Nat]]  

  [none] . 
endfm 
 
 
 
 
mod 'STRING-NAT is 
protecting 'NAT . 
protecting 'STRING . 
sorts none . 
none 
op 'n : 'String -> 'Nat [ctor] 

. 
op 'c : 'Nat -> 'String [ctor] 

. 
none 
none 
rl 'n['S:String] =>  

'length['S:String]  
[label('convert)] . 

crl 'c['N:Nat] => 'char['N:Nat]  
 if 'N:Nat :=  

'_*_['X:Nat,  
's_['s_['0.Nat]]

] 
[label('back)] . 

endm
 
 
You might notice that all equations and operations have brackets for a set of attributes, even if 
that set is none.  This is required.  Also take a look at how the constants are declared in PEANO-
NAT-EXTRA, with the nil where a blank usually would be.  This nil is an empty QidList, 
which would otherwise list the argument sorts of the operator.  Take a look at the conditional 
rewrite law.  Not every condition will involve matching, of course, but I used this example to 
show that any type of condition: matching, rewrite law, Boolean, etc., will be represented just as 
it is in a normal module, except with meta-terms instead of expressions.  If you’re still confused 
or just curious about how to meta-representations of all the possible variations on modules, either 
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sit back and study the examples that follow in the chapter, or look up the actual code of META-
MODULE in your standard library (prelude.maude). 
 
 
6.3  The Descent Functions of the META-LEVEL Module 
 
The META-LEVEL module defines three very important and very useful descent functions: 
metaReduce, metaRewrite, and metaApply.  As may be apparent from their names, they 
simply perform reduction and rewriting of a meta-term, according to the equations and rules in 
the corresponding meta-module, at the meta-level.   
 
The operation metaReduce takes a Module and Term and returns a ResultPair, which 
consists of a meta-representation of the answer (as a Term) and the meta-representation of the 
answer’s sort.  That is, one enters a certain meta-represented module and a meta-represented 
term taken from the algebra set down in the module, and metaReduce returns the simplification 
of the first Term using the rules set down in the (meta-) module.  If the module itself (as opposed 
to its meta-representation) has already been loaded into the Maude environment, the name of the 
module, quoted and in brackets, may be entered as the Module argument instead of the full-
blown meta-representation.  So the following two examples are equally valid. 
 

Maude> red metaReduce( ['PEANO-NAT-EXTRA],  
'_+_['s['s['0.Nat]], '0.Nat] ) . 

result ResultPair: {'s['s['0.Nat]], 'Nat} 
 

and 
   

Maude> red metaReduce( fmod 'PEANO-NAT-MULT is 
    including 'PEANO-NAT-EXTRA . 
    sorts none . 
    none 

op '_*_ : 'Nat 'Nat -> 'Nat [none]. 
none 

    eq '_*_['N:Nat, '0.Nat] = '0.Nat [none] . 
  eq '_*_['N.Nat, 's['M.Nat] ] 
   = '_+_['N.Nat, '_*_['N.Nat,'M.Nat]] [none] . 
    endfm, 

'_*_['s['0.Nat],'s['s['0.Nat]]] ) . 
result  ResultPair: {'s['s['0.Nat]], 'Nat} 

 
In the first example, we assumed that we had already loaded the PEANO-NAT-EXTRA module, 
and indeed we have written it down in full in this chapter.  In the second example, we assume 
that the PEANO-NAT-MULT module has not been loaded.  Instead of creating a module in the file 
directory and proceeding as in the first example, we simply included the meta-representation of 
PEANO-NAT-MULT as the Module argument.   
 
The operation metaRewrite is the counterpart of metaReduce and the meta analog of 
rewrite.  That is, as metaReduce simplifies expressions using equations on the meta-level, 
metaRewrite transitions states using rewrite laws on the meta-level.  The arguments for 
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metaRewrite are a Module, a Term, and a Bound given either as a Nat or the constant 
unbounded.  The Module and Term arguments follow the same rules as those in metaReduce, 
and the bound, as in rewrite, limits the number of rewrite laws that can be applied, in case of 
non-terminating rewrite laws.  If one plugs in unbounded for the third argument, the default 
strategy is applied until termination, when no more rewrite laws can be applied.  Needless to say, 
this is not a good idea for non-terminating rewriting systems.  Let’s return to the cigarette butts 
example in Chapter 3.  I have changed the number of butts needed to make a cigarette from four 
butts to two butts. 
 

mod CIGARETTES-2 is 
sort State . 

 op c : -> State [ctor] .    *** cigarette 
 op b : -> State [ctor] .    *** butt 
 op __ : State State -> State [ctor] . 
 rl [smoke] : c => b . 
 rl [makenew] : b b => c . 
endm 

 
Assuming that I’ve already loaded CIGARETTES-2 into the Maude environment, the following 
two examples hold true: 
 

Maude>  red metaRewrite( ['CIGARETTES-2], 
 '__['b.State, '__['b.State, '__['b.State, 'b.State] ] ], 10 ) . 
result  ResultPair: {'b.State, 'State}  

 
and 

   
Maude>  red meta-rewrite( ['CIGARETTES-2], 

'__['b.State, '__['b.State, '__['b.State, 'b.State] ] ], 3) . 
result  ResultPair: {'__['c.State, 'b.State], 'State} 

 
In the first example, six uses of the rewrite laws occur: first, two of makenew, then two of 
smoke, then one more makenew, and one more smoke.  The Bound argument, in the first 
example, allows for ten applications of rewrite laws, so all is well.  However, the second 
example, almost identical to the first, allows for only three uses of rewrite laws to occur.  Thus, 
the transitions terminate at the state shown.  
 
There exists a third, very important descent function, metaApply, provided by the META-LEVEL 
module.  However, as its uses are too advanced for this section, we will leave the discussion of 
this function until the end of the chapter.  There are more descent functions, most notably 
metaFrewrite (which meta-rewrites using the frewrite strategy) and metaSearch, which 
searches at the meta-level (unfortunately, it only confirms whether or not one state can reach 
another; it does not list the path).  These descent functions are powerful but too complicated in 
their application to explore in this basic tutorial.  We will, however, return to metaApply. 
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6.4  The Cosmetic Functions of Metaprogramming 
 
As one might notice, the meta-representation of terms and modules become increasingly tedious 
and complicated as the terms and modules become more complex.  Thankfully, Full Maude has 
provided two functions that make meta-representation and its opposite much simpler.  That is, 
the functions change reflection levels very easily.  When we express a module at the meta-level, 
or translate a meta-expression back down to normality, we change the level of reflection, that is, 
the level of meta.  Similarly, changing between the meta-level and the meta-meta-level is a 
matter of reflection levels, and so on.  To return to the point at hand, these two functions, up and 
down, make the task of metaprogramming much smoother. 
 
The up function takes a module and a term as its arguments and returns the meta-representation 
of the term.  Note the difference between Module and module, and between Term and term.  The 
up arguments are not Qids, nor Terms formed with the constructors.  They are module names 
and expressions.  To demonstrate, 
 

Maude>  (red up(PEANO-NAT-EXTRA, s(s(0))) .) 
result  Term: 's['s['0.Nat]] 

 
This certainly smoothes out the descent functions.  Compare the tedious 

 
Maude> red metaReduce(['PEANO-NAT-EXTRA],  

 '_+_['s['s['0.Nat]], '0.Nat] ) . 
result ResultPair: {'s['s['0.Nat]], 'Nat} 

 
with the much simpler 

   
Maude>  (red metaReduce(['PEANO-NAT-EXTRA], up(PEANO-NAT-EXTRA,  

s(s(0)) + 0 )) .) 
result  ResultPair: {'s['s['0.Nat]], 'Nat} 

 
We can also use up on a module, to return its meta-representation: 
 

Maude> (red in META-LEVEL : up(FM-CARD-DECK) .) 
 

result Fmodule : 
 fmod 'CARD-DECK is 
  protecting 'BOOL . 
  sorts 'Number ; 'Suit ; 'Card . 
  none 
  op 'A : nil -> 'Number [ctor] . 
  op '2 : nil -> 'Number [ctor] . 
   etc. etc. etc. ... 
  op 'CardSuit : 'Card -> 'Suit [none] . 
  none 
  eq 'CardNum['_of_['N:Number,'S:Suit]] = 'N:Number [none] . 
  eq 'CardSuit['_of_['N:Number,'S:Suit]] = 'S:Suit [none] . 
 endfm 
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I decided to skip most of the seventeen constant declarations, each of which must be written one 
by one, in FM-CARD-DECK, which is just CARD-DECK from Chapter 2 with parentheses around it 
so Full Maude can load it.  Note that BOOL is imported automatically into every module – but 
you don’t need to worry about that when meta-representing modules by hand. 
 
The up function is complemented by the down_:_. function, which takes a module name and a 
meta-represented expression, and returns the expression, written one reflective level lower.  This 
makes the our meta-reduce example even more intelligible, if we couple the two cosmetic 
functions as follows: 
 

Maude>  (down PEANO-NAT-EXTRA : getTerm(metaReduce( 
['PEANO-NAT-EXTRA],  

up( PEANO-NAT-EXTRA, s(s(0)) + 0 ) )) .) 
result  Nat: s(s(0)) 

 
The convenient power of up and down may be used as a potent method of checking one’s work.  
For example, if I were to double-check my meta-expression of PEANO-NAT-MULT in Section 6.3, 
I might load PEANO-NAT-MULT into Full Maude (with parentheses), and write 
 

Maude>  ( red up(PEANO-NAT-MULT) . ) 
 
and check the result against my work.  Or, I might copy and paste my work into the down 
function, and check the result against PEANO-NAT-MULT. 
 
 
6.5  The metaApply/metaXapply Descent Function 
 
The third descent function, metaApply, is an extremely complex and extremely powerful 
operation that deserves its own section, if not chapter.  The metaApply basically takes a term 
and a rewrite law in a given module, and then rewrites the term once by applying the specified 
law.  The Maude declaration of the function looks something like: 

  
op metaApply : Module Term Qid Substitution Nat -> ResultTriple . 

 
The first three arguments are easily understandable.  The Module is the meta-representation of 
the module that defines the terms and laws in question, the Term is the given term to be 
rewritten, and the Qid is the name of the rewrite law to be applied.  The remaining arguments 
require a bit of a digression to make sense. 
 
Even before we start the digression, let me point out that, for the most part, we’ll be using 
metaXapply, which is almost the same as metaApply save for one crucial difference: the Term 
argument of metaApply must match the left-hand side of the rewrite rule applied, and match it 
exactly (modulo associativity, commutativity, etc.).  When we rewrite using rew or 
metaRewrite, we need not worry about this, because the default strategy always rewrites with 
extension; that is, if any pieces of the expression match any rewrite law, it will apply that law.  
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Not so with metaApply.  To apply with extension, we use metaXapply, which takes – are you 
ready – seven arguments and returns a quadruple: 
 

op metaXapply : Module Term Qid Substitution Nat Bound Nat  
-> Result4Tuple . 

 
So let’s figure out that Substitution argument.  When a rewrite law is applied, the variables 
in the law are replaced with certain constants depending on its pre-rewrite state and the 
inscrutable whims of the Maude environment.  Recall the toy crane example back in Chapter 3; 
for the forgetful, I have reproduced the ARCADE-CRANE system module below.  For present 
purposes, however, I have eliminated the crane itself, thereby reducing the number of rewrite 
rules we need. 
 

mod ARCADE-SANS-CRANE is 
 protecting QID . 
 sorts ToyID State . 
 subsort Qid < ToyID . 
   
 op floor : ToyID -> State [ctor] . 
 op on : ToyID ToyID -> State [ctor] . 
 op clear : ToyID -> State [ctor] . 
 op 1 : -> State [ctor] .      
 op _&_ : State State -> State [ctor assoc comm id: 1] . 
 vars X Y Z : ToyID . 
   
 rl[unstack] : clear(X) & on(X,Y) =>  

floor(X) &  clear(X) & clear(Y) . 
 rl[stack] : floor(X) & clear(X) & clear(Y) =>  
       clear(X) & on(X,Y) . 
 rl[move] : clear(X) & clear(Y) & on(X,Z) => 
       clear(X) & on(X,Y) & clear(Z) . 
endm 

 
Consider the state represented in Box C below.  Given this state, and the rewrite law stack (for 
example), there are several options for the application of the law.  One may stack 'dragondude 
on 'soccerball, or on 'mothergoose; or one may stack 'mothergoose on 'dragondude 
or 'soccerball.  Thus, given simply the command 

 
Maude>  (red metaXapply( 

['ARCADE-SANS-CRANE],  
 up(ARCADE-SANS-CRANE, 
clear('mothergoose) & 
clear('soccerball) & 
clear('dragondude) & 
floor('mothergoose) & 
floor('teddybear) & 
floor('dragondude) &  
on('soccerball, 'teddybear)), 
'stack, none, 0, unbounded, 0) .) 
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– that is, given the meta-representation of Box C, the rewrite law stack, and nothing else, there 
are four different possible ways of applying stack.  One may substitute either 'mothergoose 
or 'dragondude for the variable X in the stack definition, and either 'soccerball or a 
choice between 'mothergoose and 'dragondude (depending on X) for the variable Y.  To 
allay this ambiguity, META-LEVEL provides a sort Substitution, defined by the constructors 
 

subsort Assignment < Substitution . 
op _<-_ : Qid Term -> Assignment [ctor prec 63] . 
op none : -> Substitution . 
op _;_ : Substitution Substitution -> Substitution  

[assoc comm id: none prec 65] . 
 
The Substitution arguments of metaApply and metaXapply allows us to specify (if we want 
to) any number of substitutions in order to narrow down the options for applying the rule.  If we 
write 
 

Maude>  (red metaXapply(['ARCADE-SANS-CRANE],  
     up(ARCADE-SANS-CRANE, 

clear('mothergoose) & 
clear('soccerball) & 
clear('dragondude) & 
floor('mothergoose) & 
floor('teddybear) &  
floor('dragondude) &  
on('soccerball, 'teddybear)),  

'stack, ('X:ToyID <- ''dragondude.Qid), 0, unbounded, 0) .) 
 

then this limits the application of stack to two different results, substituting either 
'mothergoose or 'soccerball for Y.   It would also be perfectly valid to enter 
 

('X:ToyID <- ''dragondude.Qid) ; ('Y:ToyID <- ''mothergoose.Qid) 
 
as the Substitution argument, which would narrow down the number of application options 
of stack to one. 
 
After all this, the explanation of the last Nat argument (for both metaApply and metaXapply) 
is rather simple.  The apply functions consider the outcomes of each and every substitution; that 
is, it evaluates all application options.  It evaluates each application in some order, and returns 
the result of the first application.  However, given a Nat N as the fifth/seventh argument, the 
operation will return the (N+1)th application’s result.  Thus, plugging into metaXapply the 
module ARCADE-SANS-CRANE, the meta-representation of the state in Box C, the rewrite law 
stack, with no substitutions, 0 and unbounded (more on these soon), and then, say, two, the 
operation will return the result of the third of the four application options listed previously.  Note 
that if one enters the default, zero, as the seventh argument, the result is simply the first of the 
applications, as the default should be.  This optional argument is commonly used in recursive 
loops, as shall be seen later. 
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So that takes care of the metaApply arguments, but what about the fifth and sixth arguments of 
metaXapply?  These natural numbers are the lower and upper bounds on how “deep” we look 
for matches for the left-hand side of our rewrite rule.  Since we’re rewriting with extension, a 
match can in all possibility occur nested within several other operators.  For example, if we have 
a module such as the one below: 
 

mod ABCDEFG is 
 pr NAT . 
 sort State .  

subsort Nat < State . 
 ops a b c d e f g : State -> State . 
 var X : Nat . 
 rl [plus1] : f(X) => X + 1 . 
endm 

 
we can write an expression of states such that the rewrite law applies only to a phrase nested five 
times over, i.e., a(b(c(d(e(f(37)))))).  This, using metaXapply, will usually rewrite to 
a(b(c(d(e(38))))).  But if we put an upper limit on how deep we can extend to rewrite, 
 

Maude> red metaXapply(['ABCDEFG], 
'a['b['c['d['e['f['s_^37['0.Nat]]]]]]], 'plus1, none, 0, 3, 0) . 

result Result4Tuple?: (failure).Result4Tuple? 
 
Here, we can only search at most three levels of nesting deep for a match, and since the f 
operator is five levels deep, the function returns a failure, and will do so, for all values of the 
sixth argument less than five.  We usually give unbounded for this argument, so that 
metaXapply may find matches for the left-hand side no matter how deeply nested they are.  
Similarly, we can limit how “shallow” we start our search with the first argument.  Usually, we 
want to start at the top of a phrase and enter in 0, but sometimes we only want to rewrite the 
inside.  In the above example, if we gave a lower bound greater than five, we’d bypass the f 
state-operator completely and get another failure: 
 

Maude> red metaXapply(['ABCDEFG], 
'a['b['c['d['e['f['s_^37['0.Nat]]]]]]], 'plus1, none, 6, 
unbounded, 0) . 

result Result4Tuple?: (failure).Result4Tuple? 
 
You might have noticed that our arcade-sans-crane example involves a lot of nested '_&_ 
operators.  metaXapply counts a string of associative concatenation operators, such as the 
ampersand in our example, as one level of nesting, so even though our arcade example looks 
nested up the wazoo, each ToyID is nested only twice: first, inside the operators floor, clear, 
and on, and second, inside the concatenation operators '_&_. 
 
Finally, one must ask, what exactly the result of these functions is.  For metaApply, it is a 
ResultTriple, a META-LEVEL sort defined by 
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op {_,_,_} : Term Type Substitution -> ResultTriple . 
 
The Term element of the ResultTriple is simple enough: it is the meta-representation of the 
(N+1)th term resulting from applying the given rewrite law to the given term in the given module 
with the given substitutions.  In other words, it’s the resulting term.  The Type is the meta-
representation of the result’s sort, just like in the other descent functions.  The Substitution 
element is the concatenation of all the substitutions used in the application of the rewrite rule.  
Thus, if the metaApply function applied stack by stacking 'dragondude on 'soccerball, 
the Substitution element of the resulting ResultTriple would be 
 

'X:ToyID <- 'dragondude.ToyID ; 'Y:ToyID <- 'soccerball.ToyID 
 
The result of metaXapply is a Result4Tuple, which contains all the above and one more 
argument, the Context.  When we apply a rewrite law with extension, we’re working with just a 
piece of the expression, and the Context returned in our Result4Tuple is ‘THE REST,’ the 
pieces of the expression that we didn’t work with. 
 

Maude>  (red metaXapply(['ARCADE-SANS-CRANE], up(ARCADE-SANS-CRANE, 
clear('mothergoose) & 
clear('soccerball) & 
clear('dragondude) & 
floor('mothergoose) & 
floor('teddybear) & 
floor('dragondude)& 
on('soccerball, 'teddybear)),  

'stack,  
('X:ToyID <- ''dragondude.Qid) ;  
('Y:ToyID <- ''mothergoose.Qid), 0, unbounded, 0) .) 

 
result Result4Tuple: {'_&_['floor[''mothergoose.Qid],  

'floor[''teddybear.Qid], 
'on[''dragondude.Qid, 
''mothergoose.Qid], 
'on[''soccerball.Qid, ''teddybear.Qid], 
'clear[''dragondude.Qid],   
'clear[''soccerball.Qid]],  

'State,  
'X:ToyID <- ''dragondude.Qid ;  
'Y:ToyID <- ''mothergoose.Qid,  

'_&_['clear[''soccerball.Qid],  
'floor[''mothergoose.Qid], 
'floor[''teddybear.Qid],  
'on[''soccerball.Qid, ''teddybear.Qid], []]} 

 
Those last double brackets, which contain nothing, signify the piece of the expression that you 
used in metaXapply.  And, of course, Maude won’t print it out as nicely as I have.  As you can 
see, and as I have pointed out many times earlier, the metaApply and metaXapply functions 
are extremely complex.  However, this complexity lends versatility and flexibility, and allows for 
the development of internal strategies, the subject of this next and last section. 
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6.6  Internal Strategies 
 
In Chapter 3, I mentioned that the Maude command rewrite is the default rewrite strategy 
provided by the environment.  This strategy, which dictates the order in which rewrite laws of a 
module are to be applied, matters little in its specifics; suffice to say that it is the default, and is 
often wholly insufficient for the purposes of a given application.  frewrite is a step up, but still 
often insufficient as well.  For this reason, Maude enables the user to create his/her own strategy 
from within a module, using meta-level reflection and the descent functions.  For example, 
consider the following set of rewrite laws: 
 

rl [A] : a => b . 
rl [B] : b => a . 
. . .  

 
Needless to say, the default strategy would most likely handle this set poorly, and the current 
state would alternate between a and b in a non-terminating fashion, until the natural number limit 
set down by the user expires.  However, we can make use of the META-LEVEL functions to create 
our own strategy.  For example, we can create an operation to remove an offensive rewrite law 
and rewrite according to the default strategy, minus the one rewrite law. 
 

fmod REWRITE-EXCEPT is 
 protecting META-LEVEL . 
 
 op name : Rule -> Qid . 
 op rmv : RuleSet Qid -> RuleSet .    
 op rewriteExcept : Module Term Qid Nat -> ResultPair . 
 

vars L Q : Qid .  var I : ImportList . 
 var S : SortSet . var SS : SubsortDeclList . 
 var O : OpDeclSet . var M : MembAxSet . var E : EquationSet . 

var RS : RuleSet . var R : Rule .  vars T1 T2 : Term . 
 var N : Nat . 
  
 eq name(rl T1 => T2 [label(Q) A:AttrSet] .) = Q . 
 eq name(crl T1 => T2 if C:Condition [label(Q) A:AttrSet] .) = Q . 
  

eq rmv(R RS, L) = if name(R) == L then RS else R rmv(RS, L) fi . 
 eq rmv(none , L) = none . 
  

eq rewriteExcept(mod Q is I sorts S . SS O M E RS endm,  
T1, L, N ) =  

metaRewrite(mod Q is I sorts S . SS O M E rmv(RS, L) endm,  
T1, N ) . 

endfm 
 
The strategy represented in rewriteExcept simply creates a module without the given rewrite 
law, and calls upon the default strategy (in metaRewrite) to rewrite the given term according to 
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the rules of this new module.  Going back to the hypothetical rewrite laws A and B postulated 
earlier, one may avoid non-terminating rubbish by calling rewriteExcept with either 'A or 'B 
plugged in as the label of the rule to be excluded. 
 
We can play around with more than just rewrite rules.  There exist in Maude a host of statement 
attributes, which I left out of Chapter 2 because it’s only at the meta-level that they serve any 
purpose.  For example, equations and membership axioms can have names too.  Now, why 
anybody would want to name an equation seems absolutely baffling, except at the meta-level.  
Consider the following improvement on the rewriteExcept, “sans,” which extracts a list of 
rules, equations, or membership axioms from a module: 
 

fmod SANS is 
 protecting META-LEVEL . 
   
 op sans : Module QidList -> Module . 
 op rmvM : MembAxSet Qid -> MembAxSet . 
 op rmvE : EquationSet Qid -> EquationSet . 
 op rmvR : RuleSet Qid -> RuleSet .  
 
 vars N Q : Qid .  var QL : QidList . var I : ImportList . 
 var S : SortSet . var SS : SubsortDeclSet . 

var O : OpDeclSet . vars T1 T2 : Term .  var A : AttrSet . 
var M : MembAx .  var MS: MembAxSet . var X : Sort .  
var E : Equation . var ES : EquationSet .  
var R : Rule .  var RS : RuleSet . var C : Condition . 

 
 eq sans(mod N is I sorts S . SS O MS ES RS endm, Q QL) =   

sans(mod N is I sorts S . SS O  
rmvM(MS, Q) rmvE(ES, Q) rmvR(RS, Q) endm, QL) . 

eq sans(Z:Module, nil) = Z:Module . 
 

eq rmvM(mb T1 : X [label(Q) A] . MS, Q) = MS . 
eq rmvM(cmb T1 : X if C [label(Q) A] . MS, Q) = MS . 

 eq rmvM(M MS, Q) = M rmvM(MS, Q) [owise] . 
 eq rmvM(none, Q) = none . 
 

eq rmvE(eq T1 = T2 [label(Q) A] . ES, Q) = ES . 
eq rmvE(ceq T1 = T2 if C [label(Q) A] . ES, Q) = ES . 

 eq rmvE(E ES, Q) = E rmvE(ES, Q) [owise] . 
 eq rmvE(none, Q) = none .   
 

eq rmvR(rl T1 => T2 [label(Q) A] . RS, Q) = RS . 
eq rmvR(crl T1 => T2 if C [label(Q) A] . RS, Q) = RS . 

 eq rmvR(R RS, Q) = R rmvR(RS, Q) [owise] . 
 eq rmvR(none, Q) = none .   
endfm 

 
Now, we can reduce or rewrite sans (without) any particular rule or equation or membership 
axiom we choose.  This can be especially useful for proving certain things about our modules.  If 
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we wanted to prove that, out of the following equations, only the first two are necessary to define 
addition: 
 

eq [huey] : N + 0 = N . 
eq [duey] : N + s(M) = s(N + M) . 
eq [louie] : s(N) + s(M) = s(s(N + M)) . 

 
we could run the following tests in SANS: 
 

Maude> red metaReduce(sans(Z, 'huey), '_+_['s_^7['0.Nat], 
's_^11['0.Nat]]) . 

Maude> red metaReduce(sans(Z, 'duey), '_+_['s_^7['0.Nat], 
's_^11['0.Nat]]) . 

Maude> red metaReduce(sans(Z, 'louie), '_+_['s_^7['0.Nat], 
's_^11['0.Nat]]) . 

 
– the only stipulation being, of course, that we replace Z with the Module containing huey, 
duey, and louie (note that, in this case, it must be the actual module, not ['Z]).  In any case, 
the utility of the equation names is visible.  But there’s another statement attribute, even more 
useful, called metadata, which allows us to attach a sort of comment (as a String) to any 
statement we choose: 
 

eq [juliet] : smell(rose(N:Name)) = sweet . 
    [metadata "A rose by any other name..."] . 
 
Sure, it’s good for a laugh, but can be incredibly powerful at the meta-level.  Let’s say we 
wanted to whip up our arcade-crane into shape, so that, at last, we can build towers instead of 
just throwing everything on the floor.  We could use metadata to label certain rewrite rules as 
‘constructive’ and ‘destructive,’ and then define some operator to look for the ‘constructive’ tag 
and execute those rewrite laws (using metaXapply) with priority.   
 
One can create internal strategies for extremely complex problems, including theorem proving, 
searches, and optimization problems.  Let us consider an optimization problem.  Returning one 
last time to our cigarette-smoking hobo, we add a new qualification: a more expensive brand of 
cigarette will contain more tobacco.  Thus, the hobo will need fewer cigarette butts to make a 
new cigarette if he buys the expensive brand, and a greater number of cigarette butts to make a 
new cigarette if he buys the cheap brand.  The question therefore posed is: out of the given 
brands, out of which brand will the hobo get the most tobacco for his money?  First, let us set up 
our new cigarette module. 
 

mod CIGARETTES-3 is 
 protecting NAT . 
 sorts Brand State . 
  
 ops  DROMEDARY OLDPORT SCARBOROUGH-MAN MISSOURI-FATS  

fail : -> Brand [ctor] . 
 op c : Brand Nat -> State [ctor] .     

op b : Brand Nat -> State [ctor] . 
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 op __ : State State -> State [ctor assoc comm id: 1] . 
 op 1 : -> State [ctor] . op price : Brand -> Nat .      

 
vars V W X Y Z : Nat . 
var B : Brand . 

 
eq price(DROMEDARY) = 312 .  eq price(OLDPORT) = 312 . 
eq price(SCARBOROUGH-MAN) = 364 . eq price(MISSOURI-FATS) = 418 . 
eq price(fail) = 0 . 

 
 rl [smoke] : c(B, X) => b(B, X + 1) . 
 

rl [makenew] :  b(DROMEDARY, V) b(DROMEDARY, W) b(DROMEDARY, X) 
b(DROMEDARY, Y) b(DROMEDARY, Z) =>  

c(DROMEDARY, V + W + X + Y + Z) . 
  

rl [makenew] :  b(OLDPORT, W) b(OLDPORT, X) b(OLDPORT, Y) 
    b(OLDPORT, Z) =>  

c(OLDPORT, W + X + Y + Z) . 
  

rl [makenew] :  b(SCARBOROUGH-MAN, X) b(SCARBOROUGH-MAN, Y) 
    b(SCARBOROUGH-MAN, Z) =>  

c(SCARBOROUGH-MAN, X + Y + Z) . 
   

rl [makenew] :  b(MISSOURI-FATS, Y) b(MISSOURI-FATS, Z) =>  
c(MISSOURI-FATS, Y + Z) . 

endm 
 
This modification of the COUNTING-CIGARETTES module in Chapter 3 is pretty straightforward.  
The only new concept here is the presence of four rewrite rules with the same label.  Such an 
arrangement is perfectly valid, and certainly a convenience in this example.  The above rewrite 
laws state that a new Dromedary cigarette can be made from five Dromedary butts, a new 
Oldport from four Oldport butts, a new Scarborough Man from three butts, and a new Missouri 
Fats from two butts.  Also, the price equations give the price of the pack in cents.  Next, we 
create a module to describe the exact scenario with which the hobo is faced: whether to buy a 
pack of Dromedaries, Oldports, Scarboroughs, or Missouri Fats.  Hence the module below: 
 

mod CIGARETTE-VENDING-MACHINE is 
 protecting CIGARETTES-3 . 
   
 sort BrandSet . 
 subsort Brand < BrandSet . 
 
 op vendor : BrandSet -> State . 
 op null : -> BrandSet [ctor] . 
 op _&_ : BrandSet BrandSet -> BrandSet  

[ctor assoc comm id: null] . 
 
 var B : Brand .  var BS : BrandSet . 
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 rl [buypack] : vendor(B & BS) => 
    c(B, 0) c(B, 0) c(B, 0) c(B, 0) c(B, 0)  

c(B, 0) c(B, 0) c(B, 0) c(B, 0) c(B, 0)  
c(B, 0) c(B, 0) c(B, 0) c(B, 0) c(B, 0)  
c(B, 0) c(B, 0) c(B, 0) c(B, 0) c(B, 0) . 

endm 
 
Note that the above rewrite law specifies no particular brand; the idea is to repeat metaApply 
while incrementing the solution number, so that we select a different brand to substitute as B for 
each iteration.  We may rewrite each one of these different applications of buypack in 
succession and then figure out the total cent per cigarette value. 
 

fmod CIGARETTE-TEST is 
 protecting META-LEVEL . 

protecting CIGARETTE-VENDING-MACHINE . 
 
 sorts CigTotal CigTotalSet . 
 subsort CigTotal < CigTotalSet .  
 
 op ct : Term Term -> CigTotal [ctor] . 
 op __ : CigTotalSet CigTotalSet -> CigTotalSet 
       [ctor assoc comm id: none] . 
 op none : -> CigTotalSet [ctor] . 
 
 op goTest! : -> CigTotalSet . 
 op cigApply : Nat -> ResultTriple . 
 op cigTest : Nat -> CigTotalSet . 
 
*** auxiliary operations 
 op total : ResultTriple -> CigTotal . 
 op getbrand : Substitution -> Term . 
 op getnum : ResultPair -> Term . 
 
 var T : Term .  var Y : Type . var SB : Substitution . 
 vars Q1 Q2 : Term . var TL : TermList . 

var M : Module .  var N : Nat . 
 
 eq goTest! = cigTest(0) . 
 eq cigApply(N) = metaApply(['CIGARETTE-VENDING-MACHINE], 
     'vendor['_&_['DROMEDARY.Brand, 

'_&_['OLDPORT.Brand, 
'_&_['SCARBOROUGH-MAN.Brand, 
'MISSOURI-FATS.Brand]]]], 

'buypack, none, N) . 
 

***key function: CigTest.  Note especially the recursive loop. 
 eq cigTest(N) = if cigApply(N) == (failure).ResultTriple? 
    then none 

    else total(cigApply(N)) cigTest(N + 1)  
     fi . 
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eq total({ T , Y , SB }) = ct(getbrand(SB), getTerm( 

       metaReduce(['CIGARETTES-3],  
'_/_[ 'price[getbrand(SB)],  

getnum(metaRewrite(['CIGARETTES-3], T, 1000))])  
            ) 

            ) . 
    

eq getbrand( (Q1 <- Q2) ; SB ) = if Q1 == 'B:Brand 
       then Q2 else getbrand(SB) fi . 
 eq getbrand( none ) = 'fail.Brand .  
 

eq getnum({'__['b[ Q1 , Q2 ] , TL ] , Y }) =  
'_+_[ Q2 , getnum({ TL , Y }) ] . 

 eq getnum({'__['b[ Q1 , Q2 ] , T ] , Y }) =  
'_+_[ Q2 , getnum({ T , Y }) ] . 

 eq getnum({('b[ Q1 , Q2 ] , TL ) , Y }) =  
'_+_[ Q2 , getnum({ TL , Y }) ] . 

eq getnum({'b[ Q1 , Q2 ] , Y }) = Q2 . 
   
 eq ct( 'fail.Brand , T ) = none . 
endfm 

 
Consider this the “grand finale” of Maude examples.  This particular example has a unique 
intrinsic stipulation: because the auxiliary functions all use descent functions, the equations 
defining these auxiliaries must all operate at the meta-level.  Because getnum is fed a 
ResultTriple from metaRewrite, it must deal not with _quo_ and Nats but rather with the 
meta-representations of these terms.   
 
The use of metaApply in this example takes center stage because it creates the internal strategy, 
but metaRewrite and metaReduce actually calculate the answers.  Our strategy is this: the 
operation cigTest creates a recursive loop which applies 'buypack by substituting a given 
brand for the variable B of 'buypack, returns the corresponding ResultTriple, then moves on 
to the next brand and concatenates the results.  This sequential substitution of brands is 
accomplished by incrementing the fourth argument, the Nat, with every recursive iteration.  
Thus, if we write 

 
Maude>  red goTest! . 

 
then the end result will list the first CigTotal (using the first brand chosen by the Maude 
default strategy), then the second CigTotal (using the second brand), and so forth, until the 
recursive loop terminates as metaApply exhausts the possible substitutions. 
 
So now that we’ve analyzed this example thoroughly, what is the solution to the hobo’s 
dilemma?  My guess would be to buy Oldports, for they tie Dromedaries as the cheapest, yet 
have more tobacco than Dromedaries.  However, when we run the cigarette test, it turns out that 
the Missouri Fats are the best value in terms of cents per cigarette smoked.  True, a pack of Fats 
costs $1.06 more than Oldports, but from twenty Fats one can smoke a total of thirty-nine 
cigarettes, while Oldports produce twenty-six smokes out of one pack.  The totals are 
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 Dromedaries: 13¢ per smoke  Oldports: 12¢ per smoke 

Scarboroughs: 12¢ per smoke  Missouri Fats: 10¢ per smoke 

 
Realize, of course, that the _quo_ (or rather, meta-_quo_) from NAT will round down to the 
nearest integer, but still, the test will show us which is the cheapest.  And as you can see above, 
the hobo would be better off spending the extra dollar for the Missouri Fats.   
 
I’m not keen on extending this gargantuan chapter any more, but I do hate to end the tutorial 
with a discussion of addictive carcinogens.  Recall the warning at the beginning of the chapter, 
that meta-programming, though very powerful, is also extremely complex.  One should do as 
much as possible to increase the intelligibility of a meta-program module, making use of 
techniques such as color-coded Terms, plenty of auxiliary operations, and so on, so as to avoid 
the pitfalls that appear so readily in a complex programming scenario.  On a more positive note, 
meta-programming provides solutions to intricate problems and can create extraordinary 
programs, and is an essential subject for any Maude adept. 
 
It is my hope that this paper has proved an effective introduction to the syntax and design 
strategies of Maude.  This tutorial focuses on getting people to program in Maude effectively, as 
opposed to other papers that focus on the math behind it.  Both facets are equally important: 
Maude is both a programming language and a mathematical tour de force.  Now that you have 
successfully battled through the swamps of source code and syntax, I would urge you curl up in 
the easy chair with some classic Alonzo Church, or simply turn to the papers of the Maude team 
(see References) and dive into the math that makes all the above happen. 
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EXERCISES FOR CHAPTER 6 
 

1.   There standard library module ________________________ sets down the sorts, operators, 

and rules for metaprogramming.  The basic sort ______________ can be constructed in three 

ways using special key symbols: for constants, as 'name__Sort, variables, as 

'Name__Sort, and operators, 'opname__TermList__ .  We also have as a resource 

the ___________________ functions, which reduce, rewrite, search, and apply rules, all at 

the meta-level.   

 

2. Fill in the appropriate sorts in the following meta-programming operator declarations: 

op fmod_is_sorts_.____endfm :  

a) _______  b) ___________________   c) _____________________ 

d) _____________________________    e) __________________________ 

f) ______________________________    g) ______________________________ 

-> FModule [ctor] . 

 op crl_=>_if_[_] : 

h) _______________    i) _________________   j) ___________________________ 

 k) _________________________ -> Rule [ctor] . 

 op metaXapply :  

  l) ___________________   m) ___________________  n) ____________ 

  o) ______________________  p) __________  q) _______________ r) ____________ 

   -> r) ___________________________ 

 

 Given the context of these operator declarations, write the corresponding null constant or 

default constant for each sort requested below (note: this will not include all the sorts above):

  b) __________ 

  c) __________ 

  d) __________ 

  e) __________ 

  f) __________ 

  g) __________ 

k) __________ 

o) __________ 

p) _______ 

q) _____________________ 

r) ________ 

s) ______________________
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3. The module CELLS below creates an algebra for classifying cells.  The operators do not 

actually change the cell, but rather describe its characteristics: a cell can be eukaryotic or 

prokaryotic (animal cell or single-celled organism), and it can be a muscle cell, a neuron, a 

blood cell, a bacteria, or a phagocyte (defense cells which destroy other cells).   

  mod CELLS is 

   sort Cell . 

   ops eukaryote prokaryote bacteria bloodcell neuron 

    phagocyte muscle : Cell -> Cell [ctor] . 

   op C : -> Cell . 

   op 1 : -> Cell [ctor] . 

   op _&_ : Cell Cell -> Cell [ctor assoc comm id: 1] . 

   var X : Cell . 

   rl [mitosis] : X => X & X [metadata "two’s company"] . 

  endm 

 Study the transcript of a series of metaXapply trials given below, and answer the questions 

that follow.  The first few lines defines a constant function Z as the meta-module 'CELLS (a 

technique which often proves very helpful). 

 Maude> fmod CELL-TEST is 

 > inc META-LEVEL . 

 > op Z : -> Module [memo] . 

> eq Z = (mod 'CELLS is 

>   nil 

>   sorts 'Cell . 

>   none 

>   op 'eukaryote : 'Cell -> 'Cell [ctor] . 

>   op 'prokaryote : 'Cell -> 'Cell [ctor] . 

 etc. etc. etc ... 
>   op 'C : nil -> 'Cell [none] . 

>   op '1 : nil -> 'Cell [ctor] . 

>   op '_&_ : 'Cell 'Cell -> 'Cell 
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>     [ctor assoc comm id('1.Cell)] . 

>   none 

>   none 

>   .........................................(a).................................................... 

>  endm) . 

> endfm 

 

Maude>  

> red metaXapply(Z, 'phagocyte['bloodcell['eukaryote['C. 

Cell]]], 'mitosis, none, 0, unbounded, 0) . 

 

rewrites: 3 in 0ms cpu (0ms real) (~rewrites/second) 

result Result4Tuple: {'_&_['phagocyte['bloodcell['eukaryote 

['C.Cell]]], 'phagocyte['bloodcell['eukaryote['C.Cell]]]], 

'Cell,  

 'X:Cell <- .....................................(b).............................................., []} 

 

Maude> 

> red metaXapply(Z, 'phagocyte['bloodcell['eukaryote['C. 

Cell]]], 'mitosis, none, ......................(c).........................) . 

 

rewrites: 3 in 0ms cpu (0ms real) (~rewrites/second) 

result Result4Tuple: {'phagocyte['bloodcell['_&_['eukaryote 

['C.Cell], 'eukaryote['C.Cell]]]], 'Cell,  

 'X:Cell <- 'eukaryote['C.Cell], .....................(d)..............................} 

 

a) I’ve left out the declarations of most of the descriptive operators, because they are almost 

identical to the two shown.  But the dotted blank marked (a) holds the meta-

representation of the rewrite rule mitosis, which is crucial.  Given the original rewrite rule 

in the module CELLS, write the meta-representation of this rule below, leaving nothing 

out. 
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b) Remember, the Result4Tuple returned by metaXapply includes, in order, the 

result term, the meta-sort of the result term, the substitution used in the rewrite, and the 

context.  Based on the Result4Tuple returned in the first trial, fill in the dotted blank 

marked (b) below: 

 

 

 

 

c) The second trial of metaXapply is missing its fifth, sixth, and seventh arguments.  

Based on the result of this trial, which of the following triplets of numbers could possibly 

have filled the dotted blank marked (c)? 

  a. 0 , unbounded , 0  c. 2 , unbounded , 1 

  b. 1 , 2 , 1    d. 1 , 2 , 2 

 

d) Which of the following replaces the dotted blank marked (d)? 

  a. 'phagocyte[[]]    

b. 'bloodcell[] 

  c. 'phagocyte[bloodcell[]]   

d. 'phagocyte[bloodcell[[]]] 

 

e) What’s the result of:  

metaXapply(Z, 'neuron['C.Cell], 'mitosis, 'X:Cell <- 

'C.Cell, 0, unbounded, 1)?_______________________________________ 

 

4.   On Opposite Day, black is white, ‘yes’ means ‘no,’ and everything is the exact reverse of 

what it is.  In the module OPPOSITE-DAY, we define an operation opp-day that takes a 

system Module and reverses all its rewrite laws, so that a => b becomes b => a.   

 a)  Assume the following variable declarations: 

   var R : Rule .  var RS : RuleSet .  
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   vars T1 T2 : Term . var C : Condition .  

   var A : AttrSet . 

 Write a set of equations that define the operator reverse, which takes a RuleSet and 

returns that RuleSet with all the rewrite laws reversed (as seen above).  Don’t forget to 

reverse conditional equations as well. 

 

 

 

 

 

b) Write the equation that defines opp-day.  Just for practice, declare all your variables 

on-the-fly. 

 

 

 

 

c) Declare and define an operation oppRewrite, which takes a Module, Term, and 

Bound, and rewrites the Term according to the default Maude strategy, except with all 

the rewrite rules in the Module reversed.  Declare your variables however you like.  

Your operator should return a ResultPair. 
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ANSWERS TO CHAPTER EXERCISES 
 

 
 
 
ANSWERS TO CHAPTER 1 EXERCISES 

 
1.  The three types of modules in Maude are declared as _fmod_________, ___mod_______, and ___omod_____.  

They syntactically stand for _functional____ module, _system_______ module, and _object-oriented_______ 

module, respectively.  The only type of module that is not in Core Maude, but is in Full Maude, is the 

_omod_______________. 

 

2. Identify the following operations as prefix, mixfix, or constant: 

  op _^_ : Nat Nat -> Nat .   __mixfix___________ 

  op smile : -> Expression .   __constant_________ 

  op to_from_ : Name Name -> Valentine . __mixfix___________ 

  op grab : Thing -> Action .   __prefix___________ 

 

3.  When defining the division operator for the natural numbers, one must address the problem of dividing by zero.  

Do the following on the lines below.  a) Define two sorts, Nat and NzNat, which stands for a non-zero natural 

number.  b) Declare NzNat a subsort of Nat.  c) Define a division operation that takes a Nat and an NzNat, 

and returns a Nat. 

 a) __sorts Nat NzNat ._______________ 

 b) __subsort NzNat < Nat .________ 

 c) __op _/_ : Nat NzNat -> Nat ._____ 

 

4. Say I want to make an operation that takes a person’s name and age, and returns a statement such as “Johnny is 

3 years-old”.   

 a)  Choose two standard modules you think I should import for this operation: 

  ___NAT______ and ___QID__(STRING is also a right answer)___ 

 b)  Fill in the blanks for the operation declaration with the correct standard sorts: 

  op _is_years-old : _Qid (or String)_ ___NAT_____  

-> AgeStatement [ctor] . 

c)  Assume that this is the only operation that uses the two imported modules.  How should I import them: using 

including or protecting?  _protecting_____________ 

 

5. Let us define two sorts, Queue and Grab-bag.  In a Queue, the order of the elements matter, and so we want 

to exclude commutativity from the list of its properties.  In a Grab-bag, order doesn’t matter, so we want 
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commutativity as a property.  Furthermore, we want an identity property defined for both, with respect to the 

nothing constant.  Associativity we definitely want for both. 

 Below are two constructors, one for Queue and another for Grab-bag.  Fill in the blanks between the 

brackets, putting in all the syntax necessary to fulfill the above requirements. 

  op __ : Queue Queue -> Queue  [_assoc id: nothing_______] . 

  op __ : Grab-bag Grab-bag -> Grab-bag  

[_assoc comm id: nothing__] . 

 

6. The combined use of subsorts with operation declarations can be very powerful, and consequently rather tricky.  

By defining an operation for a sort, one defines it for all of its subsorts.  One can think of the < symbol as short 

for “qualifies as a,” e.g., integer qualifies as a rational.  With this in mind, and given the following sort 

and operation declarations,  

 

sorts Plea Inquiry Assertion Question Speech . 

sort LogEntry . 

subsorts Inquiry < Question < Plea . 

subsorts Assertion Question < Speech . 

 

op respond : Question -> Speech .  

op record : Speech Speech -> LogEntry . 

 

ops p1 p2 : -> Plea .    ops i1 i2 : -> Inquiry . 

ops a1 a2 : -> Assertion .  ops q1 q2 : -> Question . 

ops s1 s2 : -> Speech .  

 

 

 

 

mark which expressions will parse correctly, i.e., which will follow the rules of the declarations above. 

 

__x__ respond(q1)   ___Speech_____________ 

 

__x__ record(q1, i1)   ___LogEntry___________ 

 

_____ respond(record(q1, i1)) ___no parse __________ 

 

__x__ record(q1, respond(q1)) ___LogEntry___________ 
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_____ respond(p1)   ___[Speech, Plea]_____ 

 

_____ record(p1, p2)   ___[LogEntry]_________ 

 

__x__ record(respond(i1), s1) ___LogEntry___________ 

 

__x__ record(i1, respond(i1)) ___LogEntry___________ 

 

_____ respond(s1)   ___[Speech, Plea]_____ 

 

_____ respond(respond(q1)) ___[Speech, Plea]_____ 

 

In the second blanks, mark which sort or kind will be the result of the expression, or no parse for those terms that 

will simply not parse at all. 

 
 

ANSWERS TO CHAPTER 2 EXERCISES 
 

1.   There are four, actually five basic requirements for an equation.  It must begin with the keyword _eq___, it 

must have the key symbol __=___ somewhere in it, it must have a __period__ at the end, and it must have 

within it mathematical phrases consisting of variables and __operators___.  Finally, for an equation to be worth 

its weight, the right-hand side of the equation must be ___simpler______ than the left-hand side. 

 

2. Decide what the following expressions are by writing in the necessary keyword: 

a) __ceq__ N mod M = (N – M) mod M if M <= N. 

b) __cmb__ N mod M : NzNat if N =/= M  

/\ (N – M) mod M :: NzNat .  

c) __eq___ N mod M = (N – M) mod M . 

d) __mb___ s(0) mod M : NzNat . 

e) __eq___ N mod M = if M <= N then (N – M) mod M else N fi . 

 

3. The modulus operator mod returns the remainder of an integer division: for example, 11 mod 3 = 2, 4 mod 3 = 

1, and 30 mod 8 = 6.  Given the following module (for the NAT-BOOL and PEANO-NAT modules, see 2.2 and 

1.4, respectively), 

 

 1  fmod MODULUS is 

2   protecting NAT-BOOL . 
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3   sorts NzNat Zero . 

4   subsorts NzNat Zero < Nat . 

5   op 0 : -> Zero [ctor] . 

 6  op _–_ : Nat Nat -> Nat [right id: 0]. 

 7  op _mod_ : Nat NzNat -> Nat [...........................] . 

 8  vars X Y : Nat . var M : NzNat . 

 9  cmb X : NzNat if X =/= 0 . 

 10  eq s X – s Y = if s X > s Y  

 11     then X – Y else 0 fi . 

 12  ………………………………………….. 

 13  endfm 

 

 a) Which expression from question #2 would best fill in the dotted blank on line (12) if you want to reduce the 

following statement? 

 red in MODULUS 

( s s s s s 0 mod s s s 0 ) mod s s 0 . 

  ______(e)______ 

 

 b) Write the equation that the identity flag on line (6) replaces.   

  ___eq X – 0 = X .____________________________________ 

  

 c) Lines (10) and (11), which, along with line (6), define the subtraction operator, could be replaced by the 

following two equations: 

   ceq s X – s Y = X – Y if s X > s Y . 

   eq ................... = 0 [............] . 

  Choose the expression-and-flag pair that best fills in the two dotted blanks. 

    a. s X – s Y  ...  memo  C. s X – s Y ...  owise 

    b. X – Y ... owise   d. X – Y ...  gather (& e) 

 

 d) The constant operator 0 in line (5) is an example of __subsort_______ overloading. 

 

 e) What flag(s) should fill the dotted blank on line (7) so that 14 mod 5 mod 3 reduces to 0? 

    a. assoc   c. gather (E e) 

    B. gather (e E)  d. gather(& &) 

 

4.   The sort Deck is a list of cards (refer to the CARD-DECK module in 2.1) defined by the subsort declaration 
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   subsort Card < Deck . 

 and the operator _;_, defined by 

   op _;_ : Deck Deck -> Deck [ctor assoc id: null] . 

   op null : -> Card [ctor] . 

 a) Write an equation that defines the operation topcard, which takes a Deck and returns the top card (i.e., 

the first element.)  Assume that the variable C of sort Card has already been declared. 

    eq topcard(C ; D:Deck) = C . 

  

 b) Let sort FemCard be defined with the subsort relation FemCard < Card.  Write one (or more) 

membership axiom(s), conditional if you wish, that makes a Card a FemCard if the suit is Hearts or the 

card is a Queen.  You might want to use the operations CardNum and CardSuit defined in CARD-

DECK, but then again you might not.  Feel free to declare your variables any way you like. 

 

    mb N:Number of Hearts : FemCard . 

    mb Q of S:Suit : FemCard . 

 

 c) Write one or more equation(s) that define(s) the operator firstFemCard, which returns the first 

FemCard drawn from a deck.  You must use recursion.   

 

  i. Write it using the if_then_else_fi operator. 

    var C : Card .  var D : Deck . 

    eq firstFemCard(C ; D) = if CardNum(C) == Q or  

          CardSuit(C) == Hearts 

           then C  

           else firstFemCard(D) fi . 

    eq firstFemCard(null) = null . 

 

  ii. Write it using a conditional equation and the _::_ operator. 

    ceq firstFemCard(C ; D) = C if C :: FemCard . 

    eq firstFemCard(C ; D) = firstFemCard(D) [owise] . 

    eq firstFemCard(null) = null . 

 

  iii. Write it using a conditional equation and pattern matching. 

   ceq firstFemCard(C ; D) = C if Q of S:Suit := C . 

   ceq firstFemCard(C ; D) = C if N:Number of Hearts := C . 

   eq firstFemCard(C ; D) = firstFemCard(D) [owise] . 

   eq firstFemCard(null) = null . 
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ANSWERS TO CHAPTER 3 EXERCISES 
 

1. While __equations______ describe rules of simplification (writing the same thing a different way), a _rewrite 

law__ maps a ___transition___ between two states (a change in constitution).  And while the right-hand side of 

a(n) ___equation______ should be simpler than the left-hand side, this is not necessarily true for the other.  This 

latter uses the key symbol => to emphasize its _irreversibility____, that is, the fact that it only works in one 

direction.   

 Both equations and rewrite laws may be found in a _system_____ module, initiated with the keyword _mod___. 

 

2. The following module sets down the rules for a rewrite game, called “Zip-Zap-Zop.”  Whenever the constants 

zip, zap, and zop appear in that order, they become a win.  And wins can change into all sorts of 

combinations of the three.  In addition, four zops in a row ends the game.  The goal is, then, to apply the 

correct rewrite rules so that we end with one win.  Look over the module and answer the questions that follow: 

 1  mod ZIP-ZAP-ZOP is 

 2   sort GameState . 

 3   op _>_ : GameState GameState -> 

 4     GameState [ctor assoc id: 1] . 

 5   op 1 : -> GameState [ctor] . 

 6   ops zip zap zop : -> GameState [ctor] . 

 7   ops win gameover : -> GameState [ctor] . 

 8    

 9   rl [winner!] : zip > zap > zop => win . 

 10   rl [scatter1] : win => zop > zip . 

 11   rl [scatter2] : win => zip > zap . 

  12   rl [scatter3] : win => zop > zop . 

 13   rl [gameend] : ...................................................... . 

 14  endm 

 

a) What’s missing from line (4) that would allow Maude to rewrite zop > zap > zip ?        

____comm_____________ 

 

b) Fill in the dotted blank on line (13):  

__zop > zop > zop > zop => gameover___________ 

 

c) Consider the expression win zop win : 

i. Does an unbounded rewrite of this expression always terminate?  __yes_____ 
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ii. What are the five rewrites, in order of application, that must occur in order for the above expression to 

reach a gameover?  In the first blank, put the label of the rewrite law you apply, and in the second, 

the state that results. 

     win > zop > win 

 1. __scatter3____   => _win > zop > zop > zop________ 

 2. __scatter2____ => _zip > zap > zop > zop > zop__ 

 3. __winner!_____ => _win > zop > zop_______________ 

 4. __scatter3____ => _zop > zop > zop > zop__________ 

 5. __gameend______ => __gameover________________________ 

 

d) Let’s say we want to add a rule that will change zap into zip as long as this immediately produces a win 

in the expression.  Write a conditional rewrite law change that transforms zap > S into zip > S, and 

the condition is another rewrite law.  Assume variables S and P of GameState have already been 

declared. 

   crl [change] : zap > S => zip > S  

        if zip > S => win > P . 

 

3. Two separate searches were performed with the complete ZIP-ZAP-ZOP module (that is, including the 

conditional rewrite law change), and the transcription appears below.  The ellipses appear in the place of 

unimportant information, so don’t worry about those, but some important parts have been substituted by dotted 

blanks.  Study the searches carefully and answer the questions below. 

 

First search: 

Maude> search zap > zap > zip > zap > zop ....(a).... win . 

... 

 

No solution. 

states: 22  rewrites: 106 ... 

 

Second search: 

Maude> search zap > zap > zip > zap > zop ....(a).... win . 

... 

 

Solution 1 (state 18) 

states: 19  rewrites: 103 ...  

empty substitution 
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No more solutions. 

states: 22  rewrites: 106 ... 

Maude> show .............(b)..................... . 

state 0, GameState: zap > zap > zip > zap > zop 

==[ rl zip > zap > zop => win [label winner!] . ]===> 

state 1, GameState: zap > zap > win 

==[ rl win => zop > zop [label scatter3] . ]===> 

state 3, GameState: zap > zap > zop > zop 

==[ crl ... [label change] . ]===> 

state 9, GameState: ............................(c)............................................ 

==[ rl zip > zap > zop => win [label winner!] . ]===> 

state 11, GameState: win > zop 

==[ rl ....................(d)...................... [label .......(d).............] . ]===> 

state 16, GameState: zip > zap > zop 

==[ rl zip > zap > zop => win [label winner!] . ]===> 

state 19, GameState: win 

 

a) As you can see, the first and the second searches are almost identical, except for the symbol that goes in the 

two dotted blanks labeled (a).   

 i. What symbol must have been used for the first search?   ____=>!________ 

 ii. What symbol must have been used for the second search? ___=>+_______ 

iii. If we had written zop > zop > zop instead of win in the first search, would Maude have found a 

solution? __yes_____ 

iv. If we had written zop > zop > zop instead of win in the second search, would Maude have 

found a solution? __yes_____ 

 

b) Fill in the dotted blank labeled (b): ____path 18______________________ 

 If you had entered in show path 11 . instead, what would the last line of your result be? ___state 

11, GameState: win > zop_________ 

 

c) Refer to question 2.d) and the rest of the search transcript.  How should you fill the dotted blank labeled 

(c)? ____zip > zap > zop > zop ________ 

 

d) Based on the evidence of states 11 and 16, what must go in the two dotted blanks labeled (d)? 

 ____win => zip > zap_______________   

       and 

        ____scatter2___________ 
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ANSWERS TO CHAPTER 4 EXERCISES 
 

1. Full Maude is an ____extension______________ of Core Maude, mimicking the Maude syntax within its own 

modules but defining a few extra capabilities, most notably _object-oriented_______ modules, declared with 

the keyword _omod____ at the beginning and __endom____ at the end, and __parameterization_________, 

the subject of Chapter 5.  All modules and commands to be loaded into Full Maude must be enclosed in 

____parentheses_____________, because Full Maude is written using the input-output capabilities of the 

provided module _LOOP-MODE__________. 

 

2. The following lines are from different object-oriented modules, and none of them parse correctly.  Write the 

appropriate revision to each statement or declaration that will fix the error(s). 

 a)  Msgs debit credit : Oid Nat -> msg . 

 

   msgs debit credit : Oid Nat -> Msg . 

 

 b)  rl [switchnums] : A switch B  

       < A : NUMOBJ | n : N >  

       < B : NUMOBJ | n : M > 

     =>  < A : NUMOBJ | n : M >  

      < B : NUMOBJ | n : M > . 

 

   rl [switchnums] : (A switch B) 

       < A : NUMOBJ | n : N >  

       < B : NUMOBJ | n : M > 

     =>  < A : NUMOBJ | n : M >  

      < B : NUMOBJ | n : M > . 

 

 

 c)  object PERSON | age : Nat  sign : Zodiac . 

 

    class PERSON | age : Nat , sign : Zodiac . 

 

 

 d)  rl [older] : ++age(A) < A | age : N , sign : Z > 

       => < A | age : s N , sign : Z > . 
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   rl [older] : ++age(A) < A : PERSON | age N > 

      => < A : PERSON | age s N > . 

 

3. The following object-oriented module defines a basketball scoresheet model, where each player, identified by 

their jersey number, has a line with their name, scoring record (how many three-pointers, two-pointers, and free 

throws they’ve attempted and made) and the number of fouls they’ve accrued.  Examine the module below and 

answer the questions that follow.  You can assume that throw is defined somewhere else such that true and 

false are equally probable results. 

1 (omod BASKETBALL-SCORESHEET is 

2  pr NAT .  pr STRING . 

3  sorts History JerseyNumber . 

4  ........................................................................................................ . 

5 

6  op _for_ : Nat Nat -> History [ctor] . 

7  op throw : Oid -> Bool . 

8 

9  class LINE | name : String , threes : History , 

10   twos : History , fts : History ,  

11   fouls : Nat . 

12 

13  msgs ................................................. : Oid Bool -> Msg . 

14  msg foul : Oid -> Msg . 

15  msg _fouled_ : Oid Oid -> Msg . 

16 

17  vars J K : JerseyNumber . vars X Y N : Nat . 

18  var B : Bool .    var S : String . 

19  

20  rl [f] :  foul(J)  

21    < J : LINE | name : S , fouls : N > 

22   =>   < J : LINE | name : S , fouls : s N > . 

23  rl [3] : 3A(J, B) < J : LINE | threes : X for Y > 

24     => < J : LINE | threes : if B 

25       then (s X) for (s Y)  

26       else X for (s Y) fi > . 

27  rl [2] : 2A(J, B) < J : LINE | twos : X for Y > 

28     => < J : LINE | twos : if B 

29       then (s X) for (s Y)  

30       else X for (s Y) fi > . 
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31  rl [ft] : ftA(J, B) < J : LINE | fts : X for Y > 

32     => < J : LINE | fts : if B 

33       then (s X) for (s Y)  

34       else X for (s Y) fi > . 

35  rl [foulcalled] : (J fouled K) 

36     < J : LINE | > < K : LINE | > 

37    =>  foul(J) < J : LINE | > 

38     ftA(K, throw(K)) fta(K, throw(K)) 

39     < K : LINE | > . 

40  endom) 

 

a) What declaration has to go on line 4 so that JerseyNumber, which is really just a Nat, counts as an 

object identifier? 

 

  subsorts Nat < JerseyNumber < Oid . 

 

b) Fill in the dotted blank on line 13: ___ 3A 2A ftA ___________________ 

 

c) On lines 20-22, the message foul is defined using a rewrite rule.   

 i. Is the attribute name necessary to include in the rule? ______yes_________ 

 ii. Is the attribute fouls necessary to include in the rule? _____no___________ 

 

d) The following was entered into the Maude environment after having loaded the above module, except the 

messages have been deleted from the input.  What three messages must have occupied the dotted blank to 

produce the following result? 

Maude> (rew < 8 : LINE | name : "Kobe" , fouls : 1,  

  threes : 0 for 0, twos : 6 for 8, fts : 4 for 4 > 

     < 34 : LINE | name : "Shaq" , fouls : 3, 

  threes : 0 for 0, twos : 9 for 9, fts : 0 for 8 > 

     < 3 : LINE | name : "Iverson" , fouls : 2, 

  threes : 2 for 3, twos : 3 for 4, fts : 2 for 4 > 

 .................................................................................................................. .) 

 

rewrites: 1503 in 20ms cpu (20ms real) (75650 rewr/s) 

result Configuration : 

< 3 : LINE | fouls : 3,fts : 2 for 4,twos : 3 for 5,threes : 2 

for 3,name : "Iverson" > < 8 : LINE | fouls : 1,fts 4 for 4,twos 
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: 6 for 8,threes : 1 for 1,name : "Kobe" > < 34 : LINE | fouls : 

3,fts : 1 for 10,twos : 9 for 9,threes : 0 for 0,name : "Shaq" >  

          

   (3 fouled 34) 3A(8, true) 2A(3, false) 

 
 
 

ANSWERS TO CHAPTER 5 EXERCISES 
 

1. The bare minimum for a parameterization system is as follows: one _theory_______, to set down the 

requirements of the parameters, one __view_______, which connects the __theory_______ to the parameter 

module, at least two modules (one being the parameter module and the other the __parameterized__ module) 

and some sort of __instantiation____ to collect everything together, whether that be within the Maude 

environment or within another module. 

 

2. Fill in the missing symbols and/or keywords: 

  a) (__view___ OElt-Queue(_P ::__ OELT)  

    from LIST(P) to QUEUE is ... 

  b) (_oth__ CLASSTHEORY is  class ELT .   _endoth_) 

  c) op X < Y __to term_____ X <= Y and X =/= Y . 

  d) subsort __LABEL@Elt < List(LABEL) .   

     ***Hint: Elt comes from the theory TRIV 

 

3. In this question, we’ll go step-by-step through your basic, no-tricks parameterization system.  The example is 

very simple: based on a theory that contains a function to double something, we’ll write a parameterized module 

that raises something to the 2nth power. 

 a) Write below the functional theory DOUBLE, which declares a sort Something and an operator double. 

 

   (fth DOUBLE is 

    sort Something . 

    op double . 

   endfth) 

 

 b) Write below a parameterized module called *POWER2, which, based on the theory DOUBLE, declares and 

defines an operator *power2.  The *power2 operator takes in two arguments: the first, a Something, 

and second, a Nat.   

  i. Write the first half of the module, including the module name, the importations, and the operator 

declaration: 
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    (fmod *POWER2(X :: DOUBLE) is 

     protecting NAT . 

     op _*power2_ : X@Something Nat  

         -> X@Something . 

 

  ii. Write the second half of the module, which includes the variable declarations and the equations.  We’ll 

define *power2 recursively so that, for every iteration, it calls double on its Something argument 

and decrements its Nat argument by 1.  Don’t forget to include an equation that ends the recursion. 

 

     var N : Nat . var S : X@Something . 

     eq S *power2 (s N) = double(S) *power2 N . 

     eq S *power2 0 = S . 

    endfm) 

 

 c) Write a view to connect the following module to DOUBLE.   

    (fmod INT*2 is 

     pr INT . 

     op _times2 : Int -> Int .  

     eq  N:Int times2 = N:Int * 2 . 

    endfm) 

 

 

   (view Double-Int from DOUBLE to INT*2 is 

    sort Something to Int . 

    op double to _times2 . 

   endv) 

 

 d) Instantiate the above system, with INT as your parameter, in two ways: 

  i. In the Maude environment, using the keyword select 

 

    Maude> (select *POWER2(Double-Int) .)_______ 

 

 

  ii. In a module EIGHT, which declares and defines an operator *eight, which multiples an integer by 

eight (using *power2, of course). 

 

    (fmod EIGHT is 
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     protecting *POWER2(Double-Int) . 

     op *eight : Int -> Int . 

     eq X:Int *eight = X:Int *power2 3 . 

    endfm) 

 
 

ANSWERS TO CHAPTER 6 EXERCISES 
 

1.   There standard library module ___META-LEVEL________ sets down the sorts, operators, and rules for 

metaprogramming.  The basic sort ____Term______ can be constructed in three ways using special key 

symbols: for constants, as 'name.Sort, variables, as 'Name:Sort, and operators, 'opname[TermList] 

.  We also have as a resource the ____descent________ functions, which reduce, rewrite, search, and apply 

rules, all at the meta-level.   

 

2. Fill in the appropriate sorts in the following meta-programming operator declarations: 

op fmod_is_sorts_.____endfm :  

a) __Qid__  b) _ImportList________   c) _SortSet_____________ 

d) __SubsortDeclSet_____________    e) __OpDeclSet_______________ 

f) ___MembAxSet__________________    g) ____EquationSet_____________ 

-> FModule [ctor] . 

 op crl_=>_if_[_] : 

h) __Term_________    i) ____Term_________   j) ____Condtion_____________ 

 k) __AttrSet________________ -> Rule [ctor] . 

 op metaXapply :  

  l) ___Module__________   m) ___Term____________  n) __Qid_______ 

  o) __Substitution____ p) __Nat____  q) __Bound____ r) ___Nat____ 

   -> s) ___Result4Tuple______ 

 

 Given the context of these operator declarations, write the corresponding null constant or default constant for 

each sort requested below (note: this will not include all the sorts above):

  b) __nil_____ 

  c) __none____ 

  d) __none____ 

  e) __none____ 

  f) __none____ 

  g) __none____ 

k) __none____ 

o) __none____ 

p) __0__ 

q) __unbounded__________ 

r) __0__ 

s) (failure).Result4Tuple? 
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3. The module CELLS below creates an algebra for classifying cells.  The operators do not actually change the 

cell, but rather describe its characteristics: a cell can be eukaryotic or prokaryotic (animal cell or single-celled 

organism), and it can be a muscle cell, a neuron, a blood cell, a bacteria, or a phagocyte (defense cells which 

destroy other cells).   

  mod CELLS is 

   sort Cell . 

   ops eukaryote prokaryote bacteria bloodcell neuron 

    phagocyte muscle : Cell -> Cell [ctor] . 

   op C : -> Cell . 

   op 1 : -> Cell [ctor] . 

   op _&_ : Cell Cell -> Cell [ctor assoc comm id: 1] . 

   var X : Cell . 

   rl [mitosis] : X => X & X [metadata "two’s company"] . 

  endm 

 Study the transcript of a series of metaXapply trials given below, and answer the questions that follow.  The 

first few lines defines a constant function Z as the meta-module 'CELLS (a technique which often proves very 

helpful). 

 Maude> fmod CELL-TEST is 

 > inc META-LEVEL . 

 > op Z : -> Module [memo] . 

> eq Z = (mod 'CELLS is 

>   nil 

>   sorts 'Cell . 

>   none 

>   op 'eukaryote : 'Cell -> 'Cell [ctor] . 

>   op 'prokaryote : 'Cell -> 'Cell [ctor] . 

 etc. etc. etc ... 
>   op 'C : nil -> 'Cell [none] . 

>   op '1 : nil -> 'Cell [ctor] . 

>   op '_&_ : 'Cell 'Cell -> 'Cell 

>     [ctor assoc comm id('1.Cell)] . 

>   none 

>   none 

>   .........................................(a).................................................... 

>  endm) . 

> endfm 
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Maude>  

> red metaXapply(Z, 'phagocyte['bloodcell['eukaryote['C. 

Cell]]], 'mitosis, none, 0, unbounded, 0) . 

 

rewrites: 3 in 0ms cpu (0ms real) (~rewrites/second) 

result Result4Tuple: {'_&_['phagocyte['bloodcell['eukaryote 

['C.Cell]]], 'phagocyte['bloodcell['eukaryote['C.Cell]]]], 'Cell,  

 'X:Cell <- .....................................(b).............................................., []} 

 

Maude> 

> red metaXapply(Z, 'phagocyte['bloodcell['eukaryote['C. 

Cell]]], 'mitosis, none, ......................(c).........................) . 

 

rewrites: 3 in 0ms cpu (0ms real) (~rewrites/second) 

result Result4Tuple: {'phagocyte['bloodcell['_&_['eukaryote 

['C.Cell], 'eukaryote['C.Cell]]]], 'Cell,  

 'X:Cell <- 'eukaryote['C.Cell], .....................(d)..............................} 

 

a) I’ve left out the declarations of most of the descriptive operators, because they are almost identical to the 

two shown.  But the dotted blank marked (a) holds the meta-representation of the rewrite rule mitosis, 

which is crucial.  Given the original rewrite rule in the module CELLS, write the meta-representation of 

this rule below, leaving nothing out. 

  rl 'X:Cell => '_&_['X:Cell, 'X:Cell] [label('mitosis) 

       metadata("two’s company")] . 

 

b) Remember, the Result4Tuple returned by metaXapply includes, in order, the result term, the meta-

sort of the result term, the substitution used in the rewrite, and the context.  Based on the Result4Tuple 

returned in the first trial, fill in the dotted blank marked (b) below: 

 

  'phagocyte['bloodcell['eukaryote['C.Cell]]] 

 

 

c) The second trial of metaXapply is missing its fifth, sixth, and seventh arguments.  Based on the result of 

this trial, which of the following triplets of numbers could possibly have filled the dotted blank marked (c)? 

  a. 0 , unbounded , 0  c. 2 , unbounded , 1 

  B. 1 , 2 , 1    d. 1 , 2 , 2 
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d) Which of the following replaces the dotted blank marked (d)? 

  a. 'phagocyte[[]]    

b. 'bloodcell[] 

  c. 'phagocyte[bloodcell[]]   

D. 'phagocyte[bloodcell[[]]] 

 

e) What’s the result of:  

metaXapply(Z, 'neuron['C.Cell], 'mitosis, 'X:Cell <- 'C.Cell, 0, 

unbounded, 1)?___(failure).Result4Tuple?_______ 

 

4.   On Opposite Day, black is white, ‘yes’ means ‘no,’ and everything is the exact reverse of what it is.  In the 

module OPPOSITE-DAY, we define an operation opp-day that takes a system Module and reverses all its 

rewrite laws, so that a => b becomes b => a.   

 a)  Assume the following variable declarations: 

   var R : Rule .  var RS : RuleSet .  

   vars T1 T2 : Term . var C : Condition .  

   var A : AttrSet . 

 Write a set of equations that define the operator reverse, which takes a RuleSet and returns that 

RuleSet with all the rewrite laws reversed (as seen above).  Don’t forget to reverse conditional equations 

as well. 

   

  eq reverse(rl T1 => T2 [A] . RS) =  

       rl T2 => T1 [A] . reverse(RS) . 

  eq reverse(crl T1 => T2 if C [A] . RS) = 

      crl T2 => T1 if C [A] . reverse(RS) . 

  eq reverse(none) = none . 

 

b) Write the equation that defines opp-day.  Just for practice, declare all your variables on-the-fly. 

 

  eq opp-day(mod Q:Qid is I:ImportList sorts S:SortSet . 

   SS:SubsortDeclSet O:OpDeclSet M:MembAxSet 

   E:EquationSet RS:RuleSet endm) =  mod Q:Qid is 

          I:ImportList 

          sorts SortSet . 

          SS:SubsortDeclSet 

          O:OpDeclSet  

          M:MembAxSet 
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          E:EquationSet 

          reverse(RS:RuleSet) 

             endm . 

 

c) Declare and define an operation oppRewrite, which takes a Module, Term, and Bound, and rewrites 

the Term according to the default Maude strategy, except with all the rewrite rules in the Module 

reversed.  Declare your variables however you like.  Your operator should return a ResultPair. 

 

  op oppRewrite : Module Term Bound -> ResultPair . 

  var M : Module . var T : Term .  var B : Bound . 

 

  eq oppRewrite(M, T, B) =  

     metaRewrite(opp-day(M), T, B) . 
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Appendix : Examples 
 
 
 
*********************************************************************** 
***  Chapter 1 - Foundation 
***    Section 4:  Constructors and Operator Attributes 
*** 
***  PEANO-NAT : sets down the algebra for the Peano notation of the 
***  natural numbers, using two constructors - the successor s and 0. 
*** 
*********************************************************************** 
 
fmod PEANO-NAT is 
 
  sort Nat . 
  
  op 0 : -> Nat [ctor] . 
  op s : Nat -> Nat [ctor] . 
 
endfm 
 
 
 
********************************************************************* 
***  Chapter 1 - Foundation 
***    Section 4: Constructors and Operator Attributes 
*** 
***  SETS-AND-LISTS: sets down the fundamentals for the Set and List 
***  sorts, including the main binary operator attributes "assoc," 
***  "comm," and "id: " 
*** 
********************************************************************* 
 
fmod SETS-AND-LISTS is 
 
  sorts Set List Elt . 
  subsort Elt < Set . 
  subsort Elt < List . 
 
  op nil : -> List [ctor] . 
  op none : -> Set [ctor] . 
 
  op _;_ : List List -> List [ctor assoc id: nil] . 
  op __ : Set Set -> Set [ctor assoc comm id: none] . 
 
endfm 
 
 
 
******************************************************************** 
***  Chapter 1 - Foundation 
***    Section 5: Kinds 
*** 
***  ANIMALS : illustrates the use of kinds within connected  
***  components using a dog-breeding model. 
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*** 
******************************************************************** 
 
fmod ANIMALS is 
 
  sorts Animal Vegetable Dog . 
  sorts Terrier Hound Toy Sporting . 
 
  subsort Dog < Animal . 
  subsorts Terrier Hound Toy Sporting < Dog . 
 
  ops  bloodhound 
 collie 
 dalmatian 
 pitbull 
 schnauzer : -> Dog . 
 
  ops penguin 
 frog : -> Animal . 
 
  op bromeliad : -> Vegetable . 
 
  op breed : Dog Dog -> Dog [ctor] . 
 
endfm 
 
   
 
*********************************************************************** 
***  Chapter 2 - Functional Modules 
***    Section 1 : Equations 
*** 
***  PEANO-NAT-EXTRA : illustrates the fundamentals of equation 
***  writing with the addition operator defined with Peano notation. 
*** 
*********************************************************************** 
 
fmod PEANO-NAT-EXTRA is 
 
  sort Nat . 
 
  op 0 : -> Nat [ctor] . 
  op s : Nat -> Nat [ctor iter] . 
  op _+_ : Nat Nat -> Nat . 
 
  vars M N : Nat . 
 
  eq 0 + N = N . 
  eq s(M) + N = s(M + N) . 
 
endfm 
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*************************************************************** 
***  Chapter 2 - Functional Modules 
***    Section 1 : Equations 
*** 
***  PEANO-NAT-MULT : multiplication operator for the Peano 
***  natural numbers, a good illustration of recursive 
***  algorithms in Maude. 
*** 
*************************************************************** 
 
fmod PEANO-NAT-MULT is 
 
  protecting PEANO-NAT-EXTRA . 
 
  op _*_ : Nat Nat -> Nat . 
 
  vars M N : Nat . 
 
  eq N * 0 = 0 . 
  eq N * s(M) = N + (N * M) . 
 
endfm 
 
 
set trace select on . 
 
trace select (_*_) . 
 
set trace on . 
 
red s^3(0) * s^5(0) . 
 
set trace off . 
 
 
 
***************************************************************** 
***  Chap 2 - Functional Modules 
***    Section 1 : Equations 
*** 
***  LIST-SIZE : another example of recursive equation-writing 
***  for lists. 
*** 
***************************************************************** 
 
fmod LIST is 
 
  sorts Elt List . 
  subsort Elt < List . 
 
  op nil : -> List [ctor] . 
  op __ : List List -> List [ctor assoc id: nil] . 
 
endfm 
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fmod LIST-SIZE is 
 
  protecting LIST . 
  protecting PEANO-NAT . 
 
  op size : List -> Nat . 
   
  var E : Elt .  var L : List . 
 
  eq size(nil) = 0 . 
  eq size(E L) = s(size(L)) . 
 
endfm 
 
 
 
*********************************************************************** 
***  Chapter 2 - Functional Modules 
***    Section 1 : Equations 
*** 
***  CARD-DECK : your basic deck-o'-cards module, illustrating the  
***   sort of "access" function that picks apart a constructor, with 
***   CardNum and CardSuit. 
*** 
*********************************************************************** 
 
 
 
fmod CARD-DECK is 
 
   sorts Number Suit Card . 
    
   ops A 2 3 4 5 6 7 8 9 10 J Q K : -> Number [ctor] . 
   ops Clubs Diamonds Hearts Spades : -> Suit [ctor] . 
   op _of_ : Number Suit -> Card [ctor] . 
 
   op CardNum : Card -> Number . 
   op CardSuit : Card -> Suit . 
 
   var N : Number .   var S : Suit . 
 
   eq CardNum( N of S ) = N .  
   eq CardSuit( N of S ) = S . 
 
endfm 
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*********************************************************************** 
***  Chapter 2 - Functional Modules 
***  Section 2 : Conditional Equations 
*** 
***  IRRITABLE-PROFESSOR : illustrates the two uses of pattern 
***   matching - as a search method or as a value assignment. 
*** 
*********************************************************************** 
 
 
fmod IRRITABLE-PROFESSOR is 
 
   protecting STRING . 
 
   sorts Question Exclamation Interruption . 
   subsorts Question Exclamation < Interruption . 
 
   op _? : String -> Question [ctor] . 
   op _! : String -> Exclamation [ctor] . 
 
   op reply : Interruption -> String . 
 
   var I : Interruption . 
 
   ceq reply(I) = "Questions after class, please" if (S:String) ? := I . 
***eq reply( S:String ?) = "Questions after class, please" . 
   ceq reply( S:String !) = T:String if T:String := "Please be quiet!" . 
 
endfm 
 
 
 
******************************************************************* 
***  Chapter 2 - Functional Modules 
*** Section 4 : Membership Axioms 
*** 
***  CRAZY-EIGHTS : illustrates the use of conditional membership 
***   axioms using our card-deck example. 
*** 
***  SUICIDE-KING : illustrates the use of membership axioms using 
***   our card-deck example. 
*** 
******************************************************************* 
 
 
fmod CRAZY-EIGHTS is 
 
  protecting CARD-DECK . 
 
  sort WildCard . 
  subsort WildCard < Card . 
 
  var C : Card . 
   
  cmb C : WildCard if CardNum(C) == 8 . 
 
endfm 
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fmod SUICIDE-KING is 
 
  protecting CARD-DECK . 
 
  sort SuicideKing . 
  subsort SuicideKing < Card . 
 
  mb K of Hearts : SuicideKing . 
 
endfm 
 
 
 
********************************************************************** 
***  Chapter 2 - Functional Modules 
***  Section 4 : Membership Axioms 
*** 
***  CARD-PAIR : uses the matching condition in a conditional  
*** membership axiom. 
*** 
********************************************************************** 
 
 
fmod CARD-PAIR is 
  
   protecting CARD-DECK . 
 
   sorts Pair PokerPair . 
   subsort PokerPair < Pair . 
 
   op <_;_> : Card Card -> Pair [comm] . 
 
   var N : Number .   var P : Pair . 
 
   cmb P : PokerPair if < N of S:Suit ; N of S':Suit > := P . 
 
endfm 
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************************************************************************* 
***  Chapter 2 - Functional Modules 
*** Section 5 : Operator and Statement Attributes 
*** 
***  TENNIS : illustrates the use of prec and gather flags with the 
*** non-associative versus operator. 
*** 
************************************************************************* 
 
 
fmod TENNIS is  
 
   sort Player . 
 
   op _vs_ : Player Player -> Player [comm prec 33 gather (e E)] . 
   op _murders_ : Player Player -> Player [prec 31] . 
   op _teases_ : Player Player -> Player [prec 34] . 
 
   ops sampras agassi roddick : -> Player [ctor] . 
 
   vars P1 P2 : Player . 
 
   eq sampras vs agassi = sampras . 
   eq sampras vs roddick = roddick . 
   eq agassi vs roddick = agassi . 
 
   eq P1 murders P2 = P1 . 
   eq P1 teases P2 = P2 murders P1 . 
 
endfm 
 
 
 
*************************************************************************** 
***  Chapter 2 - Functional Modules 
*** Section 6 : Expanding on Chapter 1 
*** 
***  DOG-RACING : expands on the ANIMALS example from Chapter 1 to 
*** illustrate some of the usefulness of kinds. 
*** 
*************************************************************************** 
 
 
fmod DOG-RACING is 
 
   protecting ANIMALS . 
   protecting NAT . 
 
   op race : Dog Dog -> Dog . 
   op speed : Dog -> Nat . 
 
   op jackRusselTerrier : -> Terrier . 
 
   vars N M : [Dog] . 
 
   eq speed(bloodhound) = 20 . 
   eq speed(collie) = 25 . 
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   eq speed(dalmatian) = 30 . 
   eq speed(pitbull) = 15 . 
   eq speed(schnauzer) = 30 . 
   eq speed(jackRusselTerrier) = 10 . 
 
   eq speed(frog) = 5 . 
   eq speed(penguin) = 5 . 
 
   eq speed(breed(N, M)) = (speed(N) + speed(M)) quo 2 . 
 
   ceq race(N, M) = N if speed(N) > speed(M) . 
   eq race(N, M) = M [owise] . 
 
endfm 
 
 
 
***************************************************************** 
***  Chapter 3 - System Modules 
*** Section 1 : Rewrite Laws 
*** 
***  CLIMATE : illustrates the fundamentals of a rewrite law. 
*** 
***************************************************************** 
 
 
mod CLIMATE is 
 
  sort weathercondition . 
 
  op sunnyday : -> weathercondition . 
  op rainyday : -> weathercondition . 
 
  rl [raincloud] : sunnyday => rainyday . 
 
endm 
 
 
 
*********************************************************************** 
***  Chapter 3 - System Modules 
*** Section 1 : Rewrite Laws 
*** 
***  CIGARETTES - this example of rewrite laws will be a running 
***    example throughout the rest of the chapter and tutorial. 
*** 
*********************************************************************** 
 
 
mod CIGARETTES is 
 
   sort State . 
 
   ops c b : -> State [ctor] .   *** cigarettes and butts 
   op __ : State State -> State [ctor assoc comm] . 
 
   rl [smoke] : c => b . 
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   rl [makenew] : b b b b => c . 
 
endm 
 
 
 
***************************************************************** 
***  Chapter 3 - System Modules 
*** Section 1 : Rewrite Laws 
*** 
***  COUNTING-CIGARETTES : an expansion on the cigarettes example 
*** 
***************************************************************** 
 
 
mod COUNTING-CIGARETTES is 
 
   protecting NAT . 
 
   sort State . 
 
   ops c b : Nat -> State [ctor] .   ***cigarettes and butts 
   op __ : State State -> State [ctor assoc comm] . 
 
   vars W X Y Z : Nat . 
 
   rl [smoke] : c(X) => b(X + 1) . 
   rl [makenew] : b(W) b(X) b(Y) b(Z) => c(W + X + Y + Z) . 
 
endm 
 
 
 
*****************************************************************************
** 
***  Chapter 3 - System Modules 
*** Section 1 : Rewrite Laws 
*** 
***  ARCADE-CRANE : our other running example of a rewrite system, but this 
one 
*** doesn't terminate. 
*** 
*****************************************************************************
** 
 
 
mod ARCADE-CRANE is 
 
   protecting QID . 
 
   sorts ToyID State . 
   subsort Qid < ToyID . 
 
   op floor : ToyID -> State [ctor] . 
   op on : ToyID ToyID -> State [ctor] . 
   op clear : ToyID -> State [ctor] . 
   op hold : ToyID -> State [ctor] . 
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   op empty : -> State [ctor] . 
  
   op 1 : -> State [ctor] . 
 
   op _&_ : State State -> State [ctor assoc comm id: 1] . 
 
   vars X Y : ToyID . 
 
   rl [pickup] : empty & clear(X) & floor(X) => hold(X) . 
   rl [putdown] : hold(X) => empty & clear(X) & floor(X) . 
   rl [unstack] : empty & clear(X) & on(X, Y) => hold(X) & clear(Y) .  
   rl [stack] : hold(X) & clear(Y) => empty & clear(X) & on(X, Y) . 
 
endm 
 
 
 
************************************************************************ 
***  Chapter 3 - System Modules 
*** Section 2 : Conditional Rewrite Laws 
*** 
***  CONDITIONAL-RULES : illustrates the several different types of  
*** conditions that work for a rewrite rule. 
*** 
************************************************************************ 
 
 
mod CONDITIONAL-RULES is 
 
   protecting NAT . 
 
   sort State . 
 
   ops a b c : Nat -> State [ctor] . 
   op __ : State State -> State [ctor] . 
 
   op _-_ : Nat Nat -> Nat . 
 
   vars X Y : Nat . 
 
   eq X - Y = if X > Y then sd(X, Y) else 0 fi . 
 
***   crl [equation1] : a(X) => b(X - 1) if X > 0 . 
***   crl [equation2] : a(X) => b(X - 1) if X > 0 == true . 
***   crl [equation3] : a(X) => b(X - 1) if X > 0 = true . 
***   crl [membership1] : a(X) => b(X - 1) if X :: NzNat . 
***   crl [membership2] : a(X) => b(X - 1) if X : NzNat . 
   crl [patternmatch] : a(X) => b(X - 1) if s(N:Nat) := X . 
   crl [rewrite] : b(X) => c(X * 2) if a(X) => b(Y) . 
  
endm 
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******************************************************************** 
***  Chapter 4 - Full Maude & Object-Oriented Modules 
*** Section 1 : Full Maude 
*** 
***  SMILE-LOOP : illustrates the use of LOOP-MODE in a simple  
*** input/output example 
*** 
******************************************************************** 
 
 
mod SMILE-LOOP is 
 
   inc LOOP-MODE . 
 
   subsort QidList < State . 
 
   op startsmiling : -> System . 
   op none : -> State . 
 
   eq startsmiling = [nil, none, nil] . 
 
   var S : State . vars I O : QidList . 
 
   rl [smile] : ['smile I, S, O] => [I, S, O ' ': '- '`)] . 
   rl [wink] : ['wink I, S, O] => [I, S, O ' '; '- '`)] . 
   rl [gawp] : ['gawp I, S, O] => [I, S, O ' '8 '- '0] . 
   rl [elvis] : ['elvis I, S, O] => [I, S, O ' '? 'B '- '`)] . 
    
endm 
 
 
 
******************************************************************** 
***  Chapter 4 - Full Maude & Object-Oriented Modules 
***  Section 1 : Full Maude 
*** 
***  MOOD-LOOP : a more complex version of the smile loop, which  
*** makes use of the State argument of the i/o constructor. 
*** 
******************************************************************** 
 
 
mod MOOD-LOOP is 
 
   inc LOOP-MODE . 
 
   sort Mood . 
 
   op <_;_> : Mood Mood -> State [ctor] . 
   op init : -> System . 
 
   ops happy shocked playful : -> Mood . 
   op # : -> Mood . 
 
   eq init = [nil, < # ; # >, nil] . 
 
   vars I O : QidList .  var S : State . 
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   rl [in-smile] : ['smile I, S, O] => [I, < happy ; # >, O] . 
   rl [in-gape] : ['gape I, S, O] => [I, < shocked ; # >, O] . 
   rl [in-wink] : ['wink I, S, O] => [I, < playful ; # >, O] . 
 
   rl [out-smile] : [I, < # ; happy >, O] => [I, < # ; # >, O ' ': '- '`)] . 
   rl [out-gape] : [I, < # ; shocked >, O] => [I, < # ; # >, O ' '8 '- '0] . 
   rl [out-wink] : [I, < # ; playful >, O] => [I, < # ; # >, O ' '; '- '`)] . 
 
   rl [wow!] : < happy ; # > => < # ; shocked > . 
   rl [hehe] : < happy ; # > => < # ; playful > . 
   rl [hey!] : < playful ; # > => < # ; shocked > . 
 
endm 
 
 
 
**************************************************************************** 
***  Chapter 4 - Full Maude & Object-Oriented Modules 
*** Section 5 : Rewrite Laws in Object-Oriented Modules 
*** 
***  RESTAURANT : illustrates the basics of messages and rewriting 
*** 
**************************************************************************** 
 
 
(omod RESTAURANT is 
 
   protecting NAT . 
 
   class TABLE | occupied : Bool , chairs : Nat . 
   class OutDoorTABLE | next2heater : Bool . 
   subclass OutDoorTABLE < TABLE . 
 
   ops One Two Three : -> Oid . 
 
   msgs sit@ heaterswitch : Oid -> Msg . 
   msgs _borrowchairfrom_ changetables : Oid Oid -> Msg . 
 
   vars A B : Oid .  vars M N : Nat . 
 
   rl [sit] : sit@(A) < A : TABLE | occupied : false > 
  => < A : TABLE | occupied : true > . 
 
   rl [switchoff] : heaterswitch(A) < A : OutDoorTABLE | next2heater : true > 
  => < A : OutDoorTABLE | next2heater : false > . 
 
   rl [switchon] : heaterswitch(A) < A : OutDoorTABLE | next2heater : false > 
  => < A : OutDoorTABLE | next2heater : true > . 
 
   rl [move] : changetables(A, B) < A : TABLE | occupied : true > 
       < B : TABLE | occupied : false > 
  => < A : TABLE | occupied : false > 
   < B : TABLE | occupied : true > . 
 
   rl [takechair] : (A borrowchairfrom B) < A : TABLE | chairs : M > 
        < B : TABLE | chairs : s N > 
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  => < A : TABLE | chairs : s M >  
   < B : TABLE | chairs : N > . 
 
endom) 
 
 
 
********************************************************************* 
***  Chapter 4 - Full-Maude & Object-Oriented Modules 
*** Section 5 - Rewrite Laws in Object-Oriented Modules 
*** 
***  TILE-PUZZLE : illustrates some of the power of object-oriented 
*** programming 
*** 
********************************************************************* 
 
 
(omod TILE-PUZZLE is 
 
   sorts Num Value Coord . 
   subsort Num < Value .  
 
   ops One Two Three Four Five Six Seven Eight : -> Num . 
   op empty : -> Value . 
 
   ops 0 1 2 : -> Coord . 
  
   ops s_ p_ : Coord -> Coord . 
 
   op `(_`,_`) : Coord Coord -> Oid [ctor] . 
 
   eq s 0 = 1 . 
   eq s 1 = 2 . 
   eq p 1 = 0 . 
   eq p 2 = 1 . 
 
   class TILE | val : Value . 
 
   msg move : Oid Oid -> Msg . 
 
   vars R1 R2 C1 C2 : Coord . var V : Num .   
 
   crl [goleft] : move((R1, C1), (R1, C2))    
    < (R1, C1) : TILE | val : V >  
    < (R1, C2) : TILE | val : empty > 
   =>  < (R1, C2) : TILE | val : V >  
    < (R1, C1) : TILE | val : empty >  
    if C2 == p C1 . 
 
   crl [goright] : move((R1, C1), (R1, C2))  
     < (R1, C1) : TILE | val : V >  
     < (R1, C2) : TILE | val : empty > 
   =>   < (R1, C1) : TILE | val : empty >  
     < (R1, C2) : TILE | val : V > 
   if C2 == s C1 . 
 
   crl [goup] : move((R1, C1), (R2, C1))   
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    < (R1, C1) : TILE | val : V >  
    < (R2, C1) : TILE | val : empty > 
   =>  < (R2, C1) : TILE | val : V >  
    < (R1, C1) : TILE | val : empty > 
   if R2 == p R1 . 
 
   crl [godown] : move((R1, C1), (R2, C1))   
    < (R1, C1) : TILE | val : V >  
    < (R2, C1) : TILE | val : empty > 
   =>  < (R2, C1) : TILE | val : V >  
    < (R1, C1) : TILE | val : empty >   
   if R2 == s C1 . 
 
endom) 
 
 
 
************************************************************ 
***  Chapter 5 - Parameterization 
*** 
***  GRAPH etc. : the complete parameterization system 
*** for the Graph example.  This is the example in the  
*** tutorial, and also a more complex example involving 
*** a search function. 
*** 
************************************************************ 
 
(fth GRAPH is  
 
    sorts Node Edge . 
 
    ops node1 node2 : Edge -> Node . 
 
endfth) 
 
(fmod NETWORK-SIMPLE(X :: GRAPH) is 
 
   sorts NodeSet(X) EdgeSet(X) Network . 
   subsort X@Node < NodeSet(X) . 
   subsort X@Edge < EdgeSet(X) . 
 
   op _net_ : NodeSet(X) EdgeSet(X) -> Network [ctor] . 
   op __ : NodeSet(X) NodeSet(X) -> NodeSet(X) [ctor comm assoc id: nnil] . 
   op __ : EdgeSet(X) EdgeSet(X) -> EdgeSet(X) [ctor comm assoc id: nil] . 
   op nnil : -> NodeSet(X) [ctor] . 
   op nil : -> EdgeSet(X) [ctor] . 
 
   op _in_ : X@Node NodeSet(X) -> Bool . 
   op _in_ : X@Edge EdgeSet(X) -> Bool . 
 
   op search : Network X@Node X@Node -> X@Edge . 
 
   vars N N' : X@Node .  var NS : NodeSet(X) . 
   vars E E' : X@Edge .  var ES : EdgeSet(X) . 
 
   eq N in (N' NS) = N == N' or N in NS . 
   eq N in nnil = false . 
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   eq E in (E' ES) = E == E' or E in ES . 
   eq E in nil = false . 
 
endfm) 
 
 
(fmod NETWORK-SEARCH(X :: GRAPH) is 
 
   sorts NodeSet(X) EdgeSet(X) Pathway(X) PathSet Network . 
   subsort X@Node < NodeSet(X) . 
   subsort X@Edge < EdgeSet(X) . 
   subsorts X@Edge < Pathway(X) < PathSet . 
 
   op _net_ : NodeSet(X) EdgeSet(X) -> Network [ctor] . 
   op __ : NodeSet(X) NodeSet(X) -> NodeSet(X) [ctor assoc comm id: nnil] . 
   op __ : EdgeSet(X) EdgeSet(X) -> EdgeSet(X) [ctor assoc comm id: nil] . 
   op _:::_ : PathSet PathSet -> PathSet [ctor assoc comm id: null prec 21] . 
   op _;_ : Pathway(X) Pathway(X) -> Pathway(X) [ctor assoc id: none prec 41] 
. 
   op nnil : -> NodeSet(X) [ctor] . 
   op nil : -> EdgeSet(X) [ctor] . 
   op none : -> Pathway(X) [ctor] . 
   op null : -> X@Edge [ctor] . 
 
   op _in_ : X@Node NodeSet(X) -> Bool . 
 
   op search : Network X@Node X@Node -> Pathway(X) . 
 
   var NS : NodeSet(X) . vars A B : X@Node . 
   var ES : EdgeSet(X) . var E : X@Edge . var P : Pathway(X) . 
  
   eq P ::: none = P . 
 
   eq P ; E ; null = P ; null . 
   eq null ; E ; P = null ; P . 
 
   eq A in B NS = A == B or A in NS . 
   eq A in nnil = false . 
 
   eq search(NS net E ES, A, B) = if A in NS and B in NS then 
 if node2(E) == B then   if node1(E) == A then E else 
    search(NS net ES, A, node1(E)) ; E  
    fi 
    else 
     search(NS net ES, A, B) ::: 
  if node1(E) == A  
  then E ; search(NS net ES, node2(E), B)  
  else none 
  fi 
 fi 
        else none fi . 
 
   ceq search(NS net nil, A, B) = null if A =/= B . 
 
endfm) 
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(fmod GREEK-GRAPH is 
 
   protecting NAT . 
 
   sort Letter . 
 
   ops alpha beta gamma delta epsilon lambda theta phi : -> Letter . 
 
   op source : Nat -> Letter . 
   op target : Nat -> Letter . 
 
   eq source(1) = epsilon . eq target(1) = lambda . 
   eq source(2) = beta . eq target(2) = alpha . 
   eq source(3) = alpha . eq target(3) = gamma . 
   eq source(4) = alpha . eq target(4) = delta . 
   eq source(5) = delta . eq target(5) = epsilon . 
   eq source(6) = theta . eq target(6) = phi . 
   eq source(7) = phi .  eq target(7) = theta . 
 
endfm) 
 
 
(view Graph-Greek from GRAPH to GREEK-GRAPH is 
 
   sort Node to Letter . 
   sort Edge to Nat . 
 
   op node1 to source . 
   op node2 to target . 
 
endv) 
 
 
 
************************************************************************** 
***  Chapter 5 - Parameterization 
*** 
***  PAIRS and STACK : an example of multiple parameters, parameterized 
*** views, and parameterized theories, using our Pair sort and our 
*** Deck of Cards examples. 
*** 
************************************************************************** 
 
(fth OELT is 
 
   sort Elt . 
 
   op _>=_ : Elt Elt -> Bool . 
 
endfth) 
 
 
 
(fmod OPAIRLIST(X :: OELT | Y :: TRIV) is 
 
   sorts Pair(X | Y) OPairList . 
   subsort Pair(X | Y) < OPairList . 
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   op _~_ : X@Elt Y@Elt -> Pair(X | Y) [ctor] . 
   op _;_ : OPairList OPairList -> OPairList [ctor assoc id: nil] . 
   op nil : -> OPairList [ctor] . 
 
   op top : OPairList -> Pair(X | Y) . 
   op add : Pair(X | Y) OPairList -> OPairList . 
 
   vars A1 A2 : Y@Elt .  vars E1 E2 : X@Elt .  var O : OPairList . 
 
   eq top((E1 ~ A1) ; O) = E1 ~ A1 . 
 
   eq add((E1 ~ A1), (E2 ~ A2) ; O) =  if E1 >= E2  
     then (E2 ~ A2) ; add((E1 ~ A1) , O)  
     else (E1 ~ A1) ; (E2 ~ A2) ; O  
     fi . 
   eq add((E1 ~ A1), nil) = E1 ~ A1 . 
 
endfm) 
 
 
(view Triv-String from TRIV to STRING is 
 
   sort Elt to String . 
 
endv) 
 
(view OElt-Nat from OELT to NAT is 
 
   sort Elt to Nat . 
   op _>=_ to _>=_ . 
 
endv) 
 
 
 
(fmod DECK-COLOR is 
 
   sort Color .  ops red blue : -> Color . 
   op _>=_ : Color Color -> Bool . 
 
   eq red >= blue = true . 
   eq blue >= red = false . 
   eq red >= red = true . 
   eq blue >= blue = true . 
 
endfm) 
 
 
(view OElt-Color from OELT to DECK-COLOR is 
 
   sort Elt to Color . 
   op _>=_ to _>=_ . 
 
endv) 
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(fmod STACK(X :: TRIV) is 
 
   sort Stack(X) . 
   subsort X@Elt < Stack(X) . 
 
   op _;_ : Stack(X) Stack(X) -> Stack(X) [ctor assoc id: end] . 
   op end : -> Stack(X) [ctor] . 
 
   op top : Stack(X) -> X@Elt . 
   op pop : Stack(X) -> Stack(X) . 
   op push : X@Elt Stack(X) -> Stack(X) . 
 
   var E : X@Elt . var S : Stack(X) . 
 
   eq top(E ; S) = E . 
   eq pop(E ; S) = S . 
   eq push(E, S) = E ; S . 
 
endfm) 
 
 
(view Triv-Stack(X :: TRIV) from TRIV to STACK(X) is 
 
    sort Elt to Stack(X) . endv) 
 
 
 
*************************************************************************** 
***  Chapter 5 - Parameterization 
*** Section 5 : Parameterized Views and Theories 
*** 
***  FMAP : another example of parameterized views and theories 
*** 
************************************************************************** 
 
 
 
(fth FUNCTION(X :: TRIV | Y :: TRIV) is 
 
   op f : X@Elt -> Y@Elt . 
 
endfth) 
 
(fmod FMAP(F :: FUNCTION(X :: TRIV | Y :: TRIV)) is 
 
   sorts IndSet(X) DepSet(Y) . 
   subsort X@Elt < IndSet(X) . 
   subsort Y@Elt < DepSet(Y) . 
    
   op __ : IndSet(X) IndSet(X) -> IndSet(X) [ctor assoc comm id: ind-null] . 
   op _;_ : DepSet(Y) DepSet(Y) -> DepSet(Y) [ctor assoc comm id: dep-null] . 
   op ind-null : -> IndSet(X) [ctor] . 
   op dep-null : -> DepSet(Y) [ctor] . 
 
   op fmap : IndSet(X) -> DepSet(Y) . 
 
   var N : X@Elt . var NS : IndSet(X) . 
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   eq fmap(N NS) = f(N) ; fmap(NS) . 
   eq fmap(ind-null) = dep-null . 
 
endfm) 
 
(fmod NEGATIVE is 
 
   pr NAT . pr INT . 
 
   op _timesneg1 : Nat -> Int . 
 
   var N : Nat . 
 
   eq N timesneg1 = - N . 
 
endfm) 
 
 
(view Triv-Nat from TRIV to NAT is sort Elt to Nat .  endv) 
 
(view Triv-Int from TRIV to INT is sort Elt to Int .  endv) 
 
(view Fun-Neg(X :: TRIV | Y :: TRIV) from FUNCTION(X | Y) to NEGATIVE is 
 
   op f to _timesneg1 . 
 
endv) 
 
 
(red in FMAP(Fun-Neg(Triv-Nat | Triv-Int)) : fmap(5 9 11 2 0) .) 
 
 
 
************************************************************************* 
***  Chapter 6 - Metaprogramming 
*** Section 6 : Internal Strategies 
*** 
***  REWRITE-EXCEPT : a quick and easy internal strategy which makes use 
***   of the META-LEVEL descent functions. 
*** 
************************************************************************* 
 
 
fmod REWRITE-EXCEPT is 
 
  pr META-LEVEL . 
 
  op name : Rule -> Qid . 
  op rmv : RuleSet Qid -> RuleSet . 
  op rewriteExcept : Module Term Qid Nat -> ResultPair . 
 
  vars L Q : Qid . var I : ImportList . 
  var S : SortSet . var SS : SubsortDeclSet . 
  var O : OpDeclSet . var M : MembAxSet . var E : EquationSet . 
  var RS : RuleSet . var R : Rule .  vars T1 T2 : Term . 
  var N : Nat . 
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  eq name(rl T1 => T2 [label(Q) A:AttrSet] .) = Q . 
  eq name(crl T1 => T2 if C:Condition [label(Q) A:AttrSet] .) = Q . 
 
  eq rmv(R RS, L) = if name(R) == L then RS else R rmv(RS, L) fi . 
  eq rmv(none, L) = none . 
 
  eq rewriteExcept(mod Q is I sorts S . SS O M E RS endm, T1, L, N) = 
 metaRewrite(mod Q is I sorts S . SS O M E rmv(RS, L) endm, T1, N) . 
 
endfm 
 
 
 
********************************************************************* 
***  Chapter 6 - Metaprogramming 
***  Section 6 - Internal Strategies 
*** 
***  SANS : an elaboration of the rewriteExcept strategy 
*** 
********************************************************************* 
 
 
fmod SANS is 
 
   pr META-LEVEL . 
 
   op sans : Module QidList -> Module . 
   op rmvM : MembAxSet Qid -> MembAxSet . 
   op rmvE : EquationSet Qid -> EquationSet . 
   op rmvR : RuleSet Qid -> RuleSet . 
 
   vars N Q : Qid . var QL : QidList .  
   var I : ImportList . 
   var S : SortSet . var SS : SubsortDeclSet . 
   var O : OpDeclSet . var T1 T2 : Term .  
   var M : MembAx . var MS : MembAxSet . var X : Sort . 
   var E : Equation . var ES : EquationSet .  var A : AttrSet . 
   var R : Rule .  var RS : RuleSet . var C : Condition . 
 
   eq sans(mod N is I sorts S .  SS O MS ES RS endm, Q QL) = 
 sans(mod N is I sorts S . SS O rmvM(MS, Q)  

 rmvE(ES, Q)  
 rmvR(RS, Q) endm, QL) . 

 
   eq rmvM(mb T1 : X [label(Q) A] . MS, Q) = MS . 
   eq rmvM(cmb T1 : X if C [label(Q) A] . MS, Q) = MS . 
   eq rmvM(M MS, Q) = M rmvM(MS, Q) [owise] . 
   eq rmvM(none, Q) = none . 
 
   eq rmvE(eq T1 = T2 [label(Q) A] . ES, Q) = ES . 
   eq rmvE(ceq T1 = T2 if C [label(Q) A] . ES, Q) = ES . 
   eq rmvE(E ES, Q) = E rmvE(ES, Q) [owise] . 
   eq rmvE(none, Q) = none . 
 
   eq rmvR(rl T1 => T2 [label(Q) A] . RS, Q) = RS . 
   eq rmvR(crl T1 => T2 if C [label(Q) A] . RS, Q) = RS . 
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   eq rmvR(R RS, Q) = R rmvR(RS, Q) [owise] . 
   eq rmvR(none, Q) = none . 
 
endfm 
 
 
 
************************************************************************** 
***  Chapter 6 - Metaprogramming 
*** Section 6 : Internal Strategies 
*** 
***  CIGARETTE-TEST : the Grand Finale of Maude examples, implementing 
***  an internal strategy in an optimization problem based on our 
*** Chapter 3 cigarettes example. 
*** 
************************************************************************** 
 
 
mod CIGARETTES-3 is 
 
   pr NAT . 
  
   sorts Brand State . 
    
 
   ops DROMEDARY OLDPORT SCARBOROUGH-MAN MISSOURI-FATS : -> Brand . 
   ops c b : Brand Nat -> State [ctor] . 
   op 1 : -> State [ctor] . 
   op fail : -> Brand . 
   op __ : State State -> State [ctor assoc comm id: 1] . 
 
   op price : Brand -> Nat . 
 
   vars V X W Y Z : Nat . 
   var B : Brand . 
 
   eq price(DROMEDARY) = 312 . 
   eq price(OLDPORT) = 312 . 
   eq price(SCARBOROUGH-MAN) = 364 . 
   eq price(MISSOURI-FATS) = 418 . 
 
   eq price(fail) = 0 . 
 
   rl [smoke] : c(B, X) => b(B, X + 1) . 
 
   rl [makenew] : b(DROMEDARY, V) 
    b(DROMEDARY, W) 
    b(DROMEDARY, X) 
    b(DROMEDARY, Y) 
    b(DROMEDARY, Z) => c(DROMEDARY, V + W + X + Y + Z) . 
   rl [makenew] : b(OLDPORT, W) 
    b(OLDPORT, X) 
    b(OLDPORT, Y) 
    b(OLDPORT, Z) => c(OLDPORT, W + X + Y + Z) . 
   rl [makenew] : b(SCARBOROUGH-MAN, X) 
    b(SCARBOROUGH-MAN, Y) 
    b(SCARBOROUGH-MAN, Z) => c(SCARBOROUGH-MAN, X + Y + Z) . 
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   rl [makenew] : b(MISSOURI-FATS, Y)  
    b(MISSOURI-FATS, Z) => c(MISSOURI-FATS, Y + Z) . 
 
endm 
 
 
mod CIGARETTE-VENDING-MACHINE is 
 
   protecting CIGARETTES-3 . 
 
   sort BrandSet . 
   subsort Brand < BrandSet . 
 
   op vendor : BrandSet -> State . 
   op _&_ : BrandSet BrandSet -> BrandSet [ctor assoc comm id: null] . 
   op null : -> BrandSet [ctor] . 
 
   var B : Brand . 
   var BS : BrandSet . 
 
   rl [buypack] : vendor(B & BS) => 
 c(B, 0) c(B, 0) c(B, 0) c(B, 0) c(B, 0) 
 c(B, 0) c(B, 0) c(B, 0) c(B, 0) c(B, 0) 
 c(B, 0) c(B, 0) c(B, 0) c(B, 0) c(B, 0) 
 c(B, 0) c(B, 0) c(B, 0) c(B, 0) c(B, 0) . 
 
endm 
    
 
fmod CIGARETTE-TEST is 
 
   pr META-LEVEL . 
   pr CIGARETTE-VENDING-MACHINE . 
 
   sorts CigTotal CigTotalSet . 
   subsort CigTotal < CigTotalSet . 
 
   op ct : Term Term -> CigTotal [ctor] . 
   op __ : CigTotalSet CigTotalSet -> CigTotalSet [ctor assoc comm id: none] 
. 
   op none : -> CigTotalSet [ctor] . 
 
   op goTest! : -> CigTotalSet . 
   op cigApply : Nat -> ResultTriple . 
   op cigTest : Nat -> CigTotalSet . 
 
   op total : ResultTriple -> CigTotal . 
   op getbrand : Substitution -> Term . 
   op getnum : ResultPair -> Term . 
   op extract : ResultPair -> Term . 
 
   var TL : TermList . 
   var T : Term . var Y : Type .  var SB : Substitution . 
   vars Q1 Q2 : Term . var M : Module . var N : Nat . 
 
   eq goTest! = cigTest(0) . 
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   eq cigApply(N) = metaApply(['CIGARETTE-VENDING-MACHINE], 
 'vendor['_&_['DROMEDARY.Brand, '_&_['OLDPORT.Brand,  
  '_&_['SCARBOROUGH-MAN.Brand, 'MISSOURI-FATS.Brand]]]], 
   'buypack, none, N) . 
    
   eq cigTest(N) = if cigApply(N) == (failure).ResultTriple? 
     then none 
     else total(cigApply(N)) cigTest(N + 1)  
     fi . 
 
   eq total({T, Y, SB}) = ct( getbrand(SB),  
         extract( metaReduce( ['CIGARETTES-3],  
  '_quo_['price[getbrand(SB)], getnum( 
    metaRewrite(['CIGARETTES-3], T, 1000) 
         )  
        ]     ) 
         )     
        ) .   
 
   eq getbrand( Q1 <- Q2 ; SB ) = if Q1 == 'B:Brand then Q2 
      else getbrand(SB) fi . 
   eq getbrand( none ) = 'fail.Brand . 
 
   eq getnum( { '__['b[Q1, Q2] , TL ] , Y } ) = '_+_[Q2, getnum({TL, Y})] . 
   eq getnum( { '__['b[Q1, Q2] , T] , Y } ) = '_+_[Q2, getnum({T, Y})] . 
   eq getnum( { ('b[Q1, Q2] , TL) , Y } ) = '_+_[Q2, getnum({TL, Y})] . 
   eq getnum( { 'b[Q1, Q2] , Y } ) = Q2 . 
 
   eq extract( { T , Y } ) = T . 
 
   eq ct( 'fail.Brand, T ) = none . 
 
endfm 
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