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Abstract. Extensive and expensive testing is the meth-
od most widely used for gaining confidence in safety-
critical software. With a few exceptions, such as SPARK,
formal verification is rarely used in industry due to its
high cost and level of skill required. The grand challenge
of building a verifying compiler for static formal verifi-
cation of programs aims at bringing formal verification
to non-expert users of powerful programming languages.
This challenge has nurtured competition and collabo-
ration among verification tool builders; an example is
the VerifyThis competition [HKM13]. In this paper we
describe our approach to popularising formal verifica-
tion in the design of the SPARK 2014 language and the
associated formal verification tool GNATprove. In par-
ticular, we present our solution to combining tests and
proofs, which provides a cost-competitive way to develop
software to standards such as DO-178. At the heart of
our technique are executable contracts, and the ability
to both test and prove those. We use running examples
from the VerifyThis 2012 competition and discuss the
results of using our tools on those problems.

1 Introduction

High quality software, or low defect software, is often
costly to develop. This is a common experience in safety-
critical systems development, whether the development
is driven by standards such as DO-178, or by any other
need to create highly reliable and long-lived software.
Today, extensive and expensive testing is the primary
method used to gain confidence in such software.

The computing research community has been occu-
pied for decades with the grand challenge of (building)
the verifying compiler [Hoa03]:

A verifying compiler uses mathematical and logi-
cal reasoning to check the correctness of the pro-
grams that it compiles. The criterion of correct-
ness is specified by types, assertions, and other re-
dundant annotations associated with the code of
the program. The compiler will work in combina-
tion with other program development and testing
tools, to achieve any desired degree of confidence
in the structural soundness of the system and the
total correctness of its more critical components.

As predicted in [Hoa03|, this grand challenge has
called for co-operation among research teams and it has
encouraged and benefited from competition. An example
of such beneficial competition is the VerifyThis compe-
tition, which is the context of this report.

Great strides have been made in proof automation.
At present, so-called “push-button” static program verifi-
cation is achievable for some substantial classes of indus-
trial programs. New programming language features for
program verification have been explored and theoretical
models of complex existing language features have been
devised to increase the reasoning capabilities for main-
stream programming languages. See [HLL™ 12| for many
insights in the programming language approach to pro-
gram verification. However, there are still many remain-
ing challenges before we can expect verifying compilers
to be as widely used as testing.

Formal software verification has been successfully ap-
plied and demonstrated to scale to industrial projects
[WLBF09, CDH*09]|. While many case studies have been
successful, few formal methods have reached the take-up
and maturity level where industrial non-experts continue
to use the method for project after project, and where
this formal method is a permanent part of the business
of industrial software development. There are some no-
table exceptions: for example, the SPARK language and
toolset for static verification has been applied for many
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years in on-board aircraft systems, control systems, cryp-
tographic systems, and rail systems [Bar12b, O’N12].

We identify two main hurdles that currently hinder
the take-up of verifying compiler technology:

1. difficulty in reaching non-expert users, and
2. lack of convincing cost-benefit argument.

In this paper we will describe our approach to solving
these two problems in the design of the SPARK 2014
language, a subset of Ada 2012 designed for formal veri-
fication, and the associated verification tool GNATprove.
We will use running examples from the VerifyThis 2012
competition and discuss the results of using our tools on
those problems.

This paper is organised as follows: first we describe
the key language features of SPARK 2014, which is a
complete update of the SPARK 2005 language and tools.
SPARK 2014 has been designed with many lessons learn-
ed from the programming language and verification com-
munity, and naturally from experiences in industrial use
of SPARK 2005. Then in Section 3 we describe our unique
integration of testing and proving, which was developed
in the collaborative research project Hi-Lite [CKM12]
between Altran (formerly Praxis), AdaCore, and Inria.
In the resulting new tool architecture the compiler and
the verifier are based on the same front-end [KSD12].
In Section 4 we describe specific language features that
enables specifications to be written more naturally. In
Section 5, we present GNATprove, our formal verifica-
tion tool, and in Section 6 its results in the VerifyThis
2012 competition. Finally we discuss ongoing work in
Section 7 and conclusions in Section 8.

2 Key Language Features for Verification

All the functional specification features in SPARK 2014
are executable. This means that their verification can be
performed either dynamically, by running the program,
or statically with a dedicated formal verification tool.

2.1 Ada 2012

Ada 2012 introduced new language features for facili-
tating the specification of programs [Barl2a|, many of
which were inspired from the corresponding features in
SPARK 2005. In the following, we describe some of these
which we used in the solutions for the VerifyThis 2012
competition challenges.

The most useful of these new features is without
doubt the preconditions and postconditions popularised
by the Design-by-Contract approach [Mey88|. In chal-
lenge 1 (the longest common prefix problem) we can for
example specify that function LCP expects arguments
within bounds, and that it returns a bounded result.
Note the use of the new aspect syntax in Ada 2012, in

which the declaration of LCP is followed by keyword with
and a list of aspects, each of which specifies a property
of the declared entity, such as pre- and post-condition.

function LCP (A : Text; X, Y : Integer) return Natural with
Pre => X in A’Range and then Y in A’Range,
Post => LCP’Result in O .. Index’Last;

In the postcondition of a function, the new attribute
Result is used to refer to the result of the function. The
attribute Last represents the last value (upper bound)
in the range of type Index. Another new attribute 01d is
used to refer to the value of some variables on entry to
a subprogram. These were used in solving challenge 2
(the prefix sum) of the VerifyThis competition. Note
that we use the short-circuit Boolean operator and then
for which the second argument is only executed or eval-
uated if the first argument is not enough to determine
the value of the expression. This is helpful for example
in producing valid specifications involving partial func-
tions, like Y /= 0 and then X / Y.

Writing specifications is made easier by new expres-
sion forms in Ada 2012. If- and case-expressions corre-
spond to the usual if-statements and case-statements.
An if-expression without else-part (if A then B) ex-
presses a logical implication of B by A. Quantified ex-
pressions (for all X in A) and (for some X in A)
correspond to the mathematical universal and existen-
tial quantifications (see Section 4 for more information
about the domain of bound variables). Expression func-
tions define a function with a single expression, like in
functional programming languages. As expression func-
tions can be part of the specification of programs (con-
trary to regular function bodies), they provide a powerful
way to abstract complex parts of specifications.

2.2 SPARK 201/

The new version of SPARK is based on the features of
Ada 2012. There are also new features added, some of
which are inspired from SPARK 2005. An example is the
loop invariant.

Like preconditions and postconditions are essential
new features of Ada 2012 for specification, the loop in-
variant pragma is essential in SPARK 2014. A loop in-
variant can be inserted anywhere in the main list of
statements in a loop, and it expresses the cumulated
effect of the loop up to that point. For example, here is
the loop invariant used in challenge 1:

pragma Loop_Invariant

(for all Kin 0 .. L -1 =>A (X +K) =A (Y +K));

Note that a loop invariant in SPARK has a slightly dif-
ferent semantics to the classic loop invariant introduced
by Hoare [Hoa69]. A classic loop invariant has to hold
when reaching the loop, at the start of each iteration
of the loop, and when exiting the loop. A SPARK loop
invariant only has to hold when execution reaches the
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corresponding program point. Essentially the loop in-
variant is like an assert except it also acts as a cut point
in formal verification. A cut point means that the prover
is free to forget all information about modified variables
that has been established within the loop. Only the given
Boolean expression is carried forward. For formal verifi-
cation in SPARK, checks are generated for initialisation
and preservation of the loop invariant, similarly to the
classic approach.

In formal verification, it is very common that loop
invariants compare the value of a variable at loop en-
try and at the n*” iteration of the loop. To enable such
specifications, SPARK 2014 introduces the Loop_Entry
attribute, which can be applied to such a variable. We
have used that feature in our solution to the prefix sum
challenge, see Section 6.

A loop variant pragma has been defined in SPARK
2014, to express a quantity varying monotonically at
each iteration of the loop. As loop invariants, a loop
variant can appear anywhere in the main list of state-
ments in a loop. For example, here is the loop variant
used in the longest common prefix challenge:

pragma Loop_Variant (Increases => L);

Note that this variant does not take the usual decreasing
non-negative argument. Instead, it takes a list of increas-
ing or decreasing integer values, bounded by their type
in Ada, and the overall order over this list is the lexi-
cographic order combined with individual directions. In
the example above, there is only one element in the list,
so it should increase at each run through the loop. Like
for loop invariants, the point where this increase matters
is the program point where the loop variant appears in
the code. As in the classic case, the value of the vari-
ant is compared against the value at the corresponding
program point in the previous iteration of the loop.

Subprogram contracts can become quite large, even
with the use of (expression) functions to abstract com-
mon parts of contracts. Therefore, SPARK 2014 allows
the definition of contracts by cases, similar to behaviours
in JML [BCC*05]. For example, the contract of LCP can
state separately sub-contracts for the cases where the
elements at X and Y are different, or X and Y are equal.
This contract may be used instead of or in addition to a
precondition and a postcondition.

function LCP (A : Text; X, Y :
Contract_Cases =>
(A (X) /= A (Y) => LCP’Result = 0,
X=Y => LCP’Result = A’Last - X + 1,
others => LCP’Result > 0);

Integer) return Natural with

Note that the cases above are disjoint and complete, as
expected given the SPARK design goals: one and only
one case should be applicable at every call. The pres-
ence of the others case ensures the completeness here.
The SPARK tools ensure disjointness and completeness
of the contract cases by augmenting the precondition
with a check that exactly one of the conditions of the

contract case list is satisfied, and conjoining the post-
condition with conditional expressions representing each
of the contract cases.

3 Integrated Testing and Proving

As we have mentioned, in the development of the new
generation language and toolset SPARK 2014, we have
a particular focus on providing a good cost-benefit ar-
gument and on reaching non-expert users.

We will describe a few observations of what drives
current practices in the industry, in order to help us
with the cost-benefit argument. We will also see how
progress in the research of behavioural interface specifi-
cation languages [HLL'12] enables an approach where
test and proof can be elegantly integrated.

3.1 Motivation: Industry Safety Standards and Testing

Industry standards and certification documents highly
influence the state-of-the-practice of safety-critical soft-
ware development. DO-178B [RTC92] is a document that
is used as a basis for certification of airborne software
by institutions such as Federal Aviation Administration
(FAA) and European Aviation Safety Agency (EASA).
Though DO-178B is for avionics, it is often used in other
safety-critical sectors as well. It is regarded as very suc-
cessful within the avionics industry itself; since its in-
troduction in 1992 no commercial aircraft fatality has
been attributed to DO-178B-certified software. The ma-
jority of objectives in DO-178B consider verification. DO-
178B is non-prescriptive with regards to programming
languages, software tools, particular development pro-
cesses etc. The development of requirements-based tests
is mandatory, including normal range tests cases and
robustness (abnormal range) test cases. The standard
requires verification of both high-level requirements and
low-level requirements. Three levels of testing are defined
in DO-178B: hardware/software integration testing, soft-
ware integration testing, and low-level testing — all based
on requirements. The test cases must fully cover the code
and all exercised code should be traceable to require-
ments. This requires coverage analysis against specified
criteria, such as MC/DC. Such structural low-level test-
ing, together with robustness testing is expensive. For
example, a large cost is associated just for collecting and
verifying output of these tests. Our goal is to reduce this
cost, while still meeting the objectives prescribed by the
standard.

Formal methods can help to verify that no anoma-
lous behaviour will occur, for example they can be used
to prove the absence of run-time errors. Formal meth-
ods can also be used to show compliance between a pro-
gram’s actual and specified behaviour. Furthermore, a
proof of program correctness is comparable to exhaus-
tive analysis achieving 100% coverage. Though formal
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methods and other kinds of verification are recognised
as beneficial, they do not contribute to DO-178B certi-
fication credit, and their use has had to be justified by
other means. However, D0-178C [RTC11], the recently
released successor and replacement of DO-178B, allows
some of the prescribed testing activities to be replaced
by formal methods. From po-178¢ [RTC11]:

The use of formal methods is motivated by the ex-
pectation that, as in other engineering disciplines,
performing appropriate mathematical analyses can
contribute to establishing the correctness and ro-
bustness of a design.

Formal methods are complementary to testing, and may
find faults that are not detected by testing, but they can-
not establish verification evidence for the target hard-
ware. Therefore testing on the target is still required.
However, formal analysis of source code can be used to
show compliance with the low-level requirements. DO-
178C requires an argument for property preservation
between the source code and the object code for those
properties that have been verified formally at the source
level. Since formal program verification and testing are
complementary, we would like to use each method where
it is most eflicient. For this we need to make sure that
the combination is at least as strong as testing alone.

3.2 Executable Contracts

Programming using contracts is a way to organise your
code. By stating a precondition and a postcondition of
a subprogram as for example in Section 2, we assign
responsibilities. The subprogram is responsible for the
postcondition to be met, as long as it is called under
the assumptions of its precondition, which it relies upon.
Similarly, a caller of this subprogram is responsible for
ensuring that the precondition of the subprogram holds,
before calling it. It can then rely on the postcondition
of the called program upon return. This programming
discipline encourages a modular design of the software.
Furthermore when verification is concerned, this can be
done in a modular fashion as well. Modularity gives the
flexibility to perform verification during development,
rather than waiting until after integration.

In addition to user-defined contracts we also have im-
plicit contracts given for example by a strong type sys-
tem such as Ada’s and the signatures of subprograms.
For example there is an implicit precondition that sub-
program parameters have values within their types and
likewise an implicit postcondition that guarantees that
output parameters and function results have values al-
lowed by their type. As an example, consider what differ-
ence it makes to the user-supplied contract, if you would
use the type Natural instead of Integer for the Input
parameter of procedure Sqrt:

procedure Sqrt (Input : Integer; Res: out Natural) with

Pre => Input >= 0,

Post => (Res * Res) <= Input and then
(Res + 1) * (Res + 1) > Input;

In this case the implicit precondition would be sufficient
and a user-supplied precondition would not be neces-
sary. Since there is a cost associated with users writing
contracts, there is a benefit in designing the language so
that the basic language features already provide a rich
default contract.

The notion of preconditions and postconditions was
first introduced by Hoare [Hoa69], and later reinvented
as Design-by-Contract by Meyer [Mey88]. Traditionally,
contracts have been interpreted quite differently depend-
ing on whether used for formal program verification or
for run-time assertion checking. For formal program ver-
ification, assertions have typically been interpreted as
formulae in classical first-order logic. This is not consis-
tent with the run-time assertion checking semantics.

Much effort has been spent the last decades to pop-
ularise formal program verification. [Chal0] did some-
thing as unusual as surveying practitioners, to find that
they prefer run-time assertion checking semantics. Fur-
thermore he developed a semantics to allow formal ex-
ecutable contracts i.e., compatible with run-time asser-
tion checking, in the hope that those users who are al-
ready annotating their code with assert statements, could
more easily be convinced to start writing contracts. Ada
2012 and thus SPARK 2014 have such semantics.

Ada 2012 assertions have an executable semantics
prescribed by the standard, in which an assertion may
fail due to a run-time error during its evaluation, and
types are the machine ones (bounded integers, floating-
point or fixed-point). This is in contrast to SPARK 2005
assertions, that have a logical semantics in which run-
time errors are ignored, and types are the mathematical
ones (infinite precision integers and reals). We have rec-
onciled these views in SPARK 2014 so that assertions
have both an executable and a logical interpretation.
Furthermore, these interpretations are consistent in the
sense that if a run-time error could occur during execu-
tion, there will be a corresponding verification condition
during formal verification with the SPARK tools.

As users can execute contracts, they can also debug
them like code, and test them when formal verification
is too difficult to achieve. Furthermore, there is an ad-
vantage in keeping the annotation language the same,
or almost the same, as the programming language: users
don’t have to learn one more language. If the contract
is also formal, the entry barrier to formal program ver-
ification can be lowered by making it available to those
who would write executable contracts.

3.8 Mixing Test and Proof

Low-level requirements, in DO-178 terms, are typically
expressed in natural language at subprogram or unit
level. Formal executable contracts can be used to express
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those requirements at the subprogram level. Thanks to
the same semantics for test and proof as we have just dis-
cussed, we can use either (or both) of test and proof to
verify a subprogram. Thanks to modular verification, it
is then possible to mix test and proof to use the verifica-
tion method that is most cost effective for each module.
If the chosen method is testing the benefits of formal
executable contracts are:

— Low-level requirements expressed as contracts

— Successful execution of postcondition — test success-
ful

— No need to collect and verify output

If the chosen verification method for a subprogram is
proof, the benefits of formal executable contracts are:

— Low-level requirements expressed as contracts

— Successful proof of postcondition — low-level require-
ment verified for all input

— Approach allowed by DO-178¢ formal methods sup-
plement

— Proving process faster when annotations can be exe-
cuted (debugging failed proof attempts is very time-
consuming)

But what about soundness of the mixed approach? When
some low-level requirements are tested and some are
proved, in DO-178C-terms the combination needs to be
as good as if all low-level requirements were tested.

Central to modular verification is the statement of
assumptions and guarantees. For global correctness, all
subprograms must establish their postconditions (under
the assumption of their preconditions), and for all calls
to a subprogram, its precondition must be verified by
the caller before the call.

In our mixed approach of test and proof, we have
these same global correctness requirements as usual for
modular verification. The difference is that some subpro-
grams may be tested and some be proved, and we must
still make sure that all assumptions are verified. Let us
consider the two cases: 1) a tested subprogram T calls
a proved subprogram P, and 2) a proved subprogram P
calls a tested subprogram T. In the first case, when ver-
ifying T we must make sure that the precondition of P
is established. When testing T, this can be done by ex-
ecuting the precondition of P. In the second case, the
correctness of P relies on that after having verified the
precondition of and then called T, then T should return
in a state where the postcondition holds. This assump-
tion on T should be verified when testing T by executing
the assertion that its postcondition holds. Both of these
verification cases are only possible because we have exe-
cutable contracts.

Although we don’t describe it here, the same veri-
fication by testing of assumptions made during formal
verification needs to be done for implicit contracts, re-
lated to initialization of in-type values and non-aliasing.
We have implemented these additional verifications in

the GNAT compiler through dedicated switches that the
user can set [CKM12].

3.4 Compiler Implementation

For SPARK 2014 we are building the verification tools
based on the front-end of the GNAT compiler. [KSD12]
describes and discusses this architecture. One advantage
here is that the compiler inserts these additional checks
needed to verify at run time assumptions made during
proof. Another advantage is that formal verification has
access to the precise configuration of the target platform
used for compilation (size of integers, endianness, etc.),
which facilitates performing proofs that depend on the
target.

3.5 Related Work on Combined Test and Proof

The combination of dynamic and static analysis has re-
ceived a fair amount of attention during the last decade.
Some examples include combinations of symbolic and
concrete execution: DART [GKS05], CUTE [SMAO05]| and
EXE [CGPT06], contract and invariant inference tools
that use testing such as Daikon [EPG*07] and Quick-
Spec [CSH10], and finally HipSpec [CJRS13], which uses
a combination of automatic inductive theorem proving
and testing to generate lemmas. Other related systems
included |[BFL'11] whose compiler also emits run-time
checks for contracts, as well as the KeY Unit Test Gener-
ator [BGTY11]. It would be interesting to explore some
of these approaches in SPARK in the future.

The work perhaps most similar to our combination
of test and proof is the verification environment Eve
[TFNM11]| for Eiffel. It also uses a modular contract-
based approach where postconditions serve as test ora-
cles and some modules can be verified by test and some
by proof. One notable difference is that in Eve the se-
mantics for integers is different during test and proof.
We will discuss this topic further in the next section.
Our solution is unique in that it has a practical focus on
replacing testing by a mix of testing and proving that is
sound in DO-178C terms.

4 Choosing the Right Semantics for Integers

As already mentioned, there has traditionally been a
difference in interpretation of contracts depending on
whether used for formal verification, or for run-time as-
sertion checking. One area where this difference is of
practical significance is in the semantics for integers. An
effect of having the same semantics in assertions as in the
program code is that run-time exceptions must be con-
sidered, and avoided, in the assertions as well as in the
program. As an example, consider a programmer who
wants to state a precondition that the addition of two
numbers fits in a desired integer type:
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Pre => X + Y in Some_Integer_Type

The problem is that X + Y itself can cause an arithmetic
overflow, and worse this is not relevant to the correct-
ness of either the program or the specification. When
executable semantics are used for integer operations in
assertions, there will therefore in practical formal verifi-
cation tools be a large number of extra proof obligations
that do not point to real issues either in the program
code or the assertions. In traditional assertion languages
aimed for formal verification, mathematical universal in-
tegers are used for such operations and proof can safely
proceed without involving the user. Furthermore, user
studies [Cha04] show that users who are otherwise happy
with run-time assertion checking semantics, still prefer
mathematical semantics for intermediate integer opera-
tions in assertions.

From a user perspective, mathematical semantics for
integer operations in assertions is a good solution. How-
ever, for our hybrid verification argument described in
the previous section to work, it is mandatory to have the
same semantics for test and proof. This means that the
compiler needs to implement the ability to execute math-
ematical integer operations. Fortunately, it has been pos-
sible to implement a solution for this in the GNAT com-
piler, which we are building our verification tools on.
Also, the Ada standard permits this approach by not re-
quiring that the program issues an overflow error when
an intermediate value does not fit into the base type,
providing the correct result is computed.

Existing users of SPARK 2005 and potential new
users of SPARK 2014 together cover a wide spectrum
of strong preferences regarding this issue. Existing users
of SPARK 2005 who perform formal verification of ab-
sence of run-time errors for their programs want the
traditional mathematical integers in assertions and the
standard Ada semantics for the program. Another user
wants the same executable semantics in assertions and
program code, and wants to leave the assertions in the
shipped code. Many users could not have executed code
that uses a library for unbounded integers because of
certification and performance reasons, etc. Because of
these strong needs, we provide three alternative overflow
checking modes in GNAT and GNATprove:

1. Strict mode: normal overflow checks

2. Minimized mode: larger base type (64bits) used when
needed

3. Eliminated mode: use bignum library in the remain-
ing cases

In the second and third cases the compiler performs a
simple static analysis and decides if a larger machine in-
teger, or even an unbounded one, is needed to fit the
intermediate value of an arithmetic operation. In mini-
mized mode, if the compiler static analysis decides that
the value will fit in the 64 bit type, it will use a variable
of the 64 bit type for the intermediate result. If it finds
that the value may overflow the 64 bit type, a check will

be emitted. These three modes for the user to choose
from, gives a flexible solution. The choice is independent
for assertions and code. However, the same choice for ex-
ecution and formal verification is required for our hybrid
verification with test and proof to be sound.

There is a potential source of confusion in provid-
ing several overflow checking modes but this is managed
with SPARK language profiles. SPARK users can chose
pre-defined profiles and customise their own profile to
prohibit particular language features, and enforce tool
settings such as overflow semantics, according to project-
specific constraints and regulations.

5 Making Automatic Verification Work

GNATprove uses the Why3 platform [BFPM11] to gen-
erate verification conditions (VC's) and call provers. It
can target as many output formats and automatic or
manual provers as the Why3 platform allows (many!),
but we focus on the automatic proof of VCs through the
use of the SMT prover Alt-Ergo [BCCLO08], which is dis-
tributed with GNATprove. There are two steps to make
automatic verification work: first make it possible, then
make it efficient.

The choice of source programming language is es-
sential to make automatic verification possible. On the
one hand, it should proscribe those features which make
automatic verification impossible or hinder scalability,
completeness and efficiency on industrial code-bases. On
the other hand, it should contain enough features which
facilitate the expression of specifications. The former
is obtained by restricting SPARK 2014 to a subset of
Ada 2012 without pointers, exceptions, aliasing, and side-
effects in expressions. The latter is obtained by the fea-
tures introduced in Ada 2012 and SPARK 2014. Ada 2012
was specifically designed to include preconditions, post-
conditions, type invariants, etc. so that users can specify
arbitrarily complex invariant properties on the data and
control of their programs, and test these properties at
run time. As mentioned, SPARK 2014 further adds loop
invariants, loop variants, etc. so that a user can formally
prove these properties.

Efficient formal verification relies on a subtle coor-
dination between the VC generator and the prover, so
that the VCs produced can be efficiently proved. GNAT-
prove relies heavily on the features of the Why3 lan-
guage [GKM11] to produce provable VCs. For example,
the VCs are kept small by translating the semantic de-
pendencies between entities at the Ada source code level
into syntactic inclusions between modules at the Why3
intermediate code level, and by using the abstraction fea-
ture in Why3 for the intermediate code that checks for
absence of run-time errors. This ensures that the gener-
ated VCs only contain relevant definitions and axioms.
As another example, one can choose to produce fewer
but more complex VCs: the default in GNATprove is
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that a VC accounts for all paths leading to an asser-
tion, using an efficient computation [Lei05|, instead of
generating one VC for each path leading to an assertion
(also available in GNATprove as an option). The choice
of axiomatisation of Ada data types (integer types, enu-
meration types, record types, array types, etc.) in Why3
also has a significant effect on the provability of VCs.
We have tuned these axiomatisations to better suit the
mechanisms inside SMT provers like Alt-Ergo. Similarly,
we have tailored the axiomatisation for a generic library
of containers [DFM11] to SMT provers.

Finally, modular verification based on pre- and post-
conditions can very easily exploit multi-core architec-
tures, as the generation of VCs for different units, or
the proof of different VCs, can both be run in parallel.
Typically, projects contain hundreds of units, and lead
to the generation of thousands of VCs, which can be run
by GNATprove on as many cores as are available. Note
also that GNATprove uses file timestamps to avoid re-
generating VCs for units which have not been updated,
and file hashes to avoid re-proving VCs that have already
been proved. This is crucial when developing either the
code or the associated annotations, to avoid unnecessary
rework.

6 VerifyThis Competition

In this section, we will describe our solutions to two
of the challenges from the 2012 VerifyThis competition.
The organizers report of the competition [HKM13], in-
cludes the full descriptions of the challenges. In this sec-
tion we will restate the descriptions of the verification
tasks briefly. The first challenge is the longest common
prefix problem, LCP. The second challenge, PrefixSum,
is a binary tree summation algorithm implemented in-
place on an array. For the latter we have one complete
fixed-size solution suitable for automatic verification us-
ing the current version of SPARK 2014 and GNATprove.
Furthermore, we have specified a general version of the
Upsweep procedure of the second challenge initially using
SPARK 2005 as a reference.

6.1 How the Solutions Were Produced

A solution to challenge 1 and an initial solution to chal-
lenge 2 was submitted during the VerifyThis conference.
In the aftermath, two parallel activities were carried out.
One activity was to tune and develop settings to make
automatic verification work better in GNATprove. This
is described in sections 5 and 6.5. The other activity
was to generalise the solution to challenge 2 to provide
a more elegant specification, described in Sect. 6.6. The
general specification was produced both in SPARK 2005
and SPARK 2014, partly serving as a useful mini case
study to compare the new and old versions of the tools

during development of the new tools. Unfortunately we
did not find the time to explore a full general version of
challenge 2 or challenge 3.

6.2 Challenge 1: Longest Common Prefix

Longest Common Prefix (LCP) is a text query problem
that can be informally specified as follows:

— Input: an integer array a, and two indices x and y
into this array

— Output: length of the longest common prefix of the
subarrays of a starting at x and y respectively.

Prove that your implementation complies with a formal-
ized version of the above specification.

6.3 Solution to Challenge 1: Longest Common Prefix

The longest common prefix solution can be readily coded
in SPARK 2014 as follows:

subtype Index is Positive range 1 .. 1_000_000;
type Text is array (Index range <>) of Integer;

function LCP (A : Text; X, Y : Integer) return Natural with
Pre => X in A’Range and then Y in A’Range,
Post =>
(for all K in O .. LCP’Result - 1 =>
A X+K =A+K)
and then
(X + LCP’Result = A’Last + 1
or else Y + LCP’Result = A’Last + 1
or else A (X + LCP’Result) /= A (Y + LCP’Result));

function LCP (A :
L : Natural;
begin
L :=0;
wvhile X + L <= A’Last
and then Y + L <= A’Last
and then A (X + L) = A (Y + L)
loop
pragma Loop_Invariant
(for al1 K in 0 .. L - 1 =>
AX+K =4 +K);
pragma Loop_Variant (Increases => L);
L :=L+ 1;
end loop;
return L;
end LCP;

Text; X, Y : Integer) return Natural is

The input specification that parameters X and Y are in-
dices in the array parameter A can be expressed as a pre-
condition involving the Ada attribute ’Range, and mem-
bership tests X in ... The output specification that the
result is the length of the longest common prefix starting
at X and Y can be expressed as a postcondition in two
parts, using the Ada 2012 attribute ’Result to express
the function result:

— A quantification stating that the subarrays of A of
length LCP’Result starting at X and Y are equal.
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— A disjunction of cases stating that either one of the
two subarrays reaches the end of array A, or the
elements following the two subarrays in A are dif-
ferent. Note here that the use of the lazy Boolean
connective or else is compulsory to make sure that
X + LCP’Result andY + LCP’Result are within the
bounds of A when accessing A in the last line of the
postcondition.

Running GNATprove on this code without loop in-
variant or loop variant results in the generation of 13
VCs: 1 VC for the postcondition, and 12 VCs for all
run-time checks (6 array index checks, 5 numeric over-
flow checks, 1 subtype range check). All VCs related to
run-time checks are proved. These VCs represent both
checks in the code and checks in assertions for the array
accesses in the postcondition. The VC for the postcon-
dition is not proved, due to the presence of a loop in the
body of LCP.

Proving the postcondition requires the insertion of a
loop invariant in the body of LCP, which expresses that
the subarrays of A of length L starting at X and Y are
equal. Since L is the value returned by LCP, this loop in-
variant matches the first part of the postcondition when
the loop terminates. As expected, the postcondition is
proved with this additional loop invariant. GNATprove
generates 4 additional VCs to prove that the loop invari-
ant initially holds at the first iteration through the loop,
that it is maintained by subsequent iterations, and that
the two array accesses in the loop invariant expression
are within bounds. All 4 additional VCs are also proved.

Finally, proving termination of LCP requires the in-
sertion of a loop variant in the body of LCP, which ex-
presses that the value of L always increases between two
consecutive iterations through the loop. Since L is of a
bounded type (the scalar type Natural of natural num-
bers), it cannot be infinitely incremented without failing
a run-time check. Since we have already proved that no
run-time check fails in LCP, proving the variant proves
the termination of LCP. The corresponding VC is proved
by GNATprove.

The final version of LCP is proved in 6s on a laptop
with 4G RAM and a 3GHz processor.

6.4 Challenge 2: Prefix Sum

This is an abbreviated description of the challenge from
the organizers report of the competition [HKM13|, ex-
cluding the provided reference implementations and fig-
ures.

Background: The concept of a prefix sum is very simple.
Given an integer array a, store in each cell a[i] the value
al0] + ... 4+ a[i — 1]. For example, the prefix sum of the
array (3, 1, 7, 0, 4, 1, 6, 3] is [0, 3, 4, 11, 11, 15, 16,
22|. Prefix sums have important applications in parallel
vector programming, where the workload of calculating

the sum is distributed over several processes. We will
verify a sequentialized version of a prefix sum calculation
algorithm.

Algorithm: We assume that the length of the array is a
power of two. This allows us to identify the array initially
with the leaves of a complete binary tree. The computa-
tion proceeds along this tree in two phases: upsweep and
downsweep. During the upsweep, which itself proceeds
in phases, the sum of the children nodes is propagated
to the parent nodes along the tree. A part of the array
is overwritten with values stored in the inner nodes of
the tree in this process. After the upsweep, the right-
most array cell is identified with the root of the tree.
As preparation for the downsweep, a zero is inserted in
the rightmost cell. Then, in each step, each node at the
current level passes to its left child its own value, and it
passes to its right child, the sum of the left child from
the upsweep phase and its own value.

Verification Task: We provide an iterative and a recur-
sive implementation of the algorithm. You may choose
one of these to your liking.

1. Specify and verify the upsweep method. You can be-
gin with a slightly simpler requirement that the last
array cell contains the sum of the whole array in the
post-state.

2. Verify both upsweep and downsweep — prove that
the array cells contain appropriate prefix sums in the
post-state.

If a general specification is not possible with your tool,
assume the length of array is 8.

6.5 Solution to Challenge 2: Prefix Sum

We have chosen to implement an iterative version of pre-
fix sum instead of a recursive one, which better matches
the constraints commonly found in critical embedded
software where recursion is usually not allowed. In order
to make automatic proof easier, we fix the length of the
array to 8. The complete solution is quite long (186 lines
of code, not counting empty lines), so we only show here
selected parts. The initial solution without annotations
is straightforward and only 50 lines long. As an example,
here is the implementation of procedure Upsweep:

procedure Upsweep (A : in out Input;
Output_Space : out Positive) is

Space : Positive := 1;
Left : Natural;
Right : Natural;

begin

wvhile Space < A’Length loop
Left := Space - 1;
while Left < A’Length loop

Right = Left + Space;
A (Right) := A (Left) + A (Right);
Left = Left + Space * 2;

end loop;
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Space
end loop;
Output_Space

end Upsweep;

:= Space * 2;

:= Space;

The postcondition of procedure Upsweep states that the
array parameter A is put in an intermediate form w.r.t.
its initial value (denoted A’01d). The contract of pro-
cedure Downsweep states that it takes as input an ar-
ray parameter A in an intermediate form w.r.t. a Ghost
array parameter, and that it outputs via the same pa-
rameter A the desired prefix sums of array Ghost. By
calling in sequence Upsweep and Downsweep on an array
A, with the initial value of A passed as Ghost parameter,
a caller performs the desired in-place modification of A.
Although SPARK 2014 does not yet support ghost pa-
rameters, which are only used for proofs, this is the role
of parameter Ghost here, hence its name.

procedure Upsweep (A : in out Input;
Output_Space : out Positive) with
Pre => All_Elements_In (A, Maximum),
Post => All_Elements_In (A, 8 * Maximum)
and then Output_Space = 8
and then Intermediate_Form (A, A’01d);

procedure Downsweep

(Ghost : Input; A : in out Input;
Input_Space : in Positive)
with

Pre => All_Elements_In (Ghost, Maximum)
and then All_Elements_In (A, 8 * Maximum)
and then Input_Space = 8
and then Intermediate_Form (A, Ghost),
Post =>
A (0) =0
and then
A (1) = Ghost (0)
and then
A (2) = Ghost (0) + Ghost (1)
and then
A (3) = Ghost (0) + Ghost (1) + Ghost (2)
and then
A (4) = Ghost (0) + Ghost (1) + Ghost (2) + Ghost (3)
and then
A (5) = Ghost (0) + Ghost (1) + Ghost (2) + Ghost (3)
+ Ghost (4)
and then
A (6) = Ghost (0) + Ghost (1) + Ghost (2) + Ghost (3)
+ Ghost (4) + Ghost (5)
and then
A (7) = Ghost (0) + Ghost (1) + Ghost (2) + Ghost (3)
+ Ghost (4) + Ghost (5) + Ghost (6);

The function Intermediate_Form gives the exact re-
lationship between the initial value of the array (parame-
ter B below) and its intermediate value between the calls
to Upsweep and Downsweep (parameter A below). We de-
fine it as an expression function in Ada 2012, which has
the benefit that GNATprove automatically generates a
postcondition for Intermediate_Form equivalent to its
body. We also give a precondition to Intermediate_Form
to prove that its evaluation cannot fail run-time checks
(overflow checks and index checks here).

function Intermediate_Form (A, B : Input) return Boolean
with Pre => All_Elements_In (A, Maximum * 8)

and then All_Elements_In (B, Maximum);

function Intermediate_Form (A, B :
(for all K in A’Range =>
(if (K + 1) mod 8 = 0 then

Input) return Boolean is

A (K) =B (0) +B (1) +B (2) + B (3) +
B (4) +B (5) + B (8) + B (7)

elsif (K + 1) mod 4 = O then

A (K) =B (K) + B (K-1) + B (K-2) + B (K-3)
elsif (K + 1) mod 2 = O then

A (K) =B (K) + B (K-1)
else

A (K) =B (X)));

Note that the contracts of all previous procedures
and functions contain calls to function A11_Elements_In,
which returns True if all elements of an array are bounded
in absolute value, which we also define as an expression
function:

function All_Elements_In (A : Input; Max : Positive)
return Boolean is
(for all K in A’Range => A (K) in -Max .. Max);

These specifications add 62 lines to the initial 50 lines
for the solution. To prove them with GNATprove, we add
84 more lines for loop invariants and loop variants. As
an example, here are the loop invariant and loop variant
for the inner loop of procedure Upsweep. Inside the loop
invariant, A’Loop_Entry denotes the value of A on entry
to the loop.

pragma Loop_Invariant (
(Left + 1) mod Space = 0
and then
All_Left_Elements_In (A, Left, Space * 2 * Maximum)
and then
A1l _Right_Elements_In (A, Left - 1, Space * Maximum)
and then
(Left + 1) mod (Space * 2) = Space
and then
(if Left >= A’Length then Left = 8 or Left = 9)
and then
(for all X in A’Range =>
(if K in A’First .. Left - Space
and then (K + 1) mod (2 * Space) = 0
then
A (K) = A’Loop_Entry (K) + A’Loop_Entry (K - Space)
else
A (K) = A’Loop_Entry (X))));
pragma Loop_Variant (Increases => Left);

The final version of prefix sum is partially proved (78
VCs proved, 8 VCs unproved) in 138s on a multi-core
laptop with 24G RAM at 2.4GHz (to be able to prove
VCs in parallel). These 8 unproved VCs are either loop
invariants or postconditions, which are not proved auto-
matically due to the use of the mod operator, currently
not well handled in the underlying automatic prover. We
have checked all of them manually, and written an ex-
panded version of loop invariants and intermediate func-
tion where all occurrences of the mod operator are re-
placed by an explicit enumeration of the possible cases
for all indexes, which GNATprove is able to fully prove
automatically.
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6.6 General Prefiz Sum

As mentioned, we chose to implement an iterative ver-
sion of PrefixSum as a better fit for critical embedded
software. Though the presented complete solution makes
automatic proof possible with the prototype version of
our tools, the specification could be improved. Here we
present a general specification for the simpler property
of the Upsweep procedure. This solution avoids explicit
listing of intermediate state in the contract, because it is
too detailed and hard to judge whether it is correct, and
it would be impossible to use that specification scheme
for a larger array.

The Upsweep precondition consists of two parts: 1)
the starting values in the array are within a certain
Maximum, which is specified here to be as large as it can
be without causing overflows, and 2) the length of the
array is a power of two. The postcondition state two ob-
servations about the algorithm: 1) the even positions are
left unchanged during the upsweep, and 2) upon com-
pletion of Upsweep, the last element holds the sum of all
the elements in the array.

We have added a constant Tree_Depth for the size
of the tree that fits in the input array. This is to be able
to neatly specify an important precondition on Upsweep
that the size of the array is a power of 2. Otherwise the
binary tree algorithm is not guaranteed to work, so we
want to be explicit about this precondition. By adding
this constant and precondition we ask the user to effec-
tively fix the size, but it is done in a general fashion. It
is worth noting that this precondition could have been
stated without asking the user to fix the size, and per-
haps more naturally as 3n : Integer. A'Length = 2",
but it is our experience that existential quantification is
difficult for the automatic provers that we have avail-
able. In this example the problem would show for callers
of Upsweep trying to establish its precondition, and our
typical automatic prover would essentially stay busy try-
ing to find a model for Vn : Integer. A’ Length # 2™.

We have added a couple of functions to make the
specification intuitive: Is_Even, and more importantly
Summation, the mathematical operation for adding a se-
quence of numbers.

Tree_Depth : constant :
Maximum : constant :

= 3;

= Integer’Last / 2 *x Tree_Depth;

function Is_Even (K :
(K mod 2 = 0);

Integer) return Boolean is

function Summation (A : Input; Start_Pos, End_Pos : Index)
return Integer with

Pre => Start_Pos <= End_Pos;
function Summation (A : Input; Start_Pos, End_Pos : Index)

return Integer is
(if Start_Pos = End_Pos then
A (Start_Pos)
else
A (End_Pos) + Summation (A, Start_Pos, End_Pos - 1));

procedure Upsweep (A :
Output_Space :

in out Input;
out Positive) with

Pre =>
(for all K in A’Range => A (K) in -Maximum .. Maximum)
and then
A’Length = 2 ** Tree_Depth,
Post =>

(for all K in A’Range =>

(if Is_Even (K) them A (K) = A’01d (K)))
and then
A (A’Last) = Summation (A’01d, O, A’Last);

The downside is that this improved specification does
not yet verify with the current version of GNATprove,
since the proof requires the addition of an axiom for the
summation function. We plan to add support for such
axioms within GNATprove in the future.

6.7 Useful Tool Features

The format of the competition exercised useful features
of GNATprove, which helped to find errors early in the
code and in the annotations. The most useful of these
features is certainly the ability to execute annotations,
which allows annotations to be tested and debugged as
if they were code. It was used during the competition to
quickly locate the reason for an unprovable VC on chal-
lenge 1: the loop exit test was using a strict comparison
operator instead of the correct non-strict one. To locate
the problem, the participating author simply wrote a
test exercising LCP on an input, compiled it with run-
time checks, and executed it. The raised run-time error
precisely located the failing loop invariant. Although this
example was simple enough to immediately understand
the underlying problem, it would have been possible to
use the debugger to further investigate the issue, which
can be extremely useful on real industrial code. The abil-
ity to execute annotations was also useful for challenge 2,
which requires the development of complex loop invari-
ants, to quickly correct erroneous ones. This feature won
the prize of user-assistance tool feature awarded by the
jury of the VerifyThis competition.

Another very useful feature for these challenges was
the ability to eliminate completely all possibilities of
numeric overflow in annotations, as described in Sec-
tion 4. This reduced the number of false alarms. It was
done by setting the overflow checking mode of GNAT
and GNATprove to “eliminated”. While using the “strict”
overflow mode results in only 10 more overflow VCs in
challenge 1, which are all proved with the current anno-
tations, it adds 60 overflow VCs in challenge 2, most of
which require modifications of annotations, or addition
of new annotations, to be proved. Note that this feature
is compatible with the execution of annotations, as com-
pilation also takes into account the overflow mode when
compiling arithmetic expressions.

Various features of GNATprove make it very conve-
nient to use inside an Integrated Development Environ-
ment (currently GPS, the GNAT Programming Studio,



Duc Hoang et al.: SPARK 2014 and GNATprove

11

800

[\] GPS - (Test project) - lcp.adb

File Edit N&Mgma VCS Project Buld Debug Tools CodePeer Prove Window Help

The project contains no scenaric

- [ Test
v‘Ei.
b [ lop.adb
b | lep.ads
b [ main.adb
b | types.ads

@ -

[f‘*‘ﬁ"“ [*lBEI o a8 |>

1 with Types; use Types;

2
3= function LCP

4 Fre => X in A'Range and then Y in A"Range,

=) Fost =>

6 (for all K in 0 .. LCP'Result - 1 => A (X + K} = A (Y + K))

7 and then (¥ + LCP'Result = A'Last + 1

8 or else Y + LCP'Result = A'Last + 1

9 or else A (X + LCP'Result) /= A (Y + LCP'Result));

(R :

Text; X, ¥ : Integer) return Natural with

Insert | Writable | Unmodified |

11

Msersimoy/i-litetestsuite/gnatprovetestsfongest_common_prefixicp.adb

with Types; use Types;

function |LCP (A : Text; X, Y : Integer) return Natural is
L : Natural;

begin
L := 0;

while ¥ + L <= A'Last
and then Y + I. <= A'Last
and then A (X + L) = A (¥ + L)

loop

pragma Loop Invariant (fer all K in 0

L :=L + 1;

end loop;

return L;
end LCP;

1
2
3
4
5
[
T
8
9
10
11
12 pragma Loop_Variant (Increases => L);
13
14
15
16
17
18

.L-1=>hA(X+K) =51 (Y +K));

LCP

TReert | Witable | Unmodiied |

310

ocations | %)
< | lep.adb (13 items) -

3:10
T7:12
8:17
9:20
9:20
9:32
9:32
11:7
11:7
11:62
11:74
12:7
14:14

= | ] lep.ads (5 items)

6:6
6:47

Project [ Outline -

Messages  Locations

info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:

info:

info:

info:

range check proved

overflow check proved

overflow check proved

index check proved

overflow check proved

index check proved

overflow check proved

loop invariant initialization prowved
loop invariant preservation proved
index check proved

index check proved

loop variant proved

overflow check proved

postcondition proved

index check proved
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see Fig. 1). The user can choose to call GNATprove on
a selected file, an individual subprogram, or even a sin-
gle line of code. This was key to speeding up the mod-
ify /verify loop during the competition. When a VC is
not proved, the IDE can also display the correspond-
ing statements in the code, to help figure out why some
assertions do not hold on some paths.

More generally, these challenges make use of numer-
ous language features in Ada 2012 and SPARK 2014 that
facilitate the expression of specifications: preconditions
and postconditions, loop invariants and loop variants,
special attributes ’Result, ’01d and ’Loop_Entry, ex-
pression functions, quantified expressions and if expres-
sions.

7 Ongoing Work

GNATprove is the result of a complete redesign of the
SPARK language and associated tools, which started in
2010 with project Hi-Lite [Hi|. Altran and AdaCore are
collaborating to complete this new version of SPARK by
the start of 2014. On the tool side, current work focuses
on flow analysis, support for investigating unproved VCs,
and improvements of the SMT prover.

Flow analysis is the verification of the data depen-
dences of subprograms. This analysis, which has always
been a component of SPARK verification, is being re-
developed for SPARK 2014 based on program depen-
dence graphs [HRB8S|. An important novelty is that,
while SPARK 2005 requires that the user annotates pro-
grams with data dependence contracts, they are optional
in SPARK 2014, and GNATprove generates them when
not present. A minimal flow analysis is always required
for the soundness of proofs, while a more complete flow
analysis is optional. The minimal flow analysis ensures
that all variables are initialized prior to being read. For
some types, their representation allow bit patterns that
are outside of the values of the type. Examples of such
types are Boolean represented by a Byte, floating point
types, or integer types that do not span their entire base
type. The implicit in-type assumption, required to de-
duce conclusions like X = True V X = False where X
is a Boolean program variable, is therefore not a sound
assumption if X is uninitialized.

Good support in the investigation of unproved VCs is
key to making formal program verification cost-effective
in industry. GNATprove currently provides various solu-
tions to that problem: the ability to execute annotations
to detect errors in code and/or annotations; the display
of program paths to detect errors or locate missing an-
notations; the possibility to call alternative provers to
identify prover shortcomings. In the future, we would like
to add the display of counter-examples generated by the
prover, as already provided by some SMT provers [BT07,
dMBO08|, and in Riposte [SB12], a counter-example finder
for SPARK 2005.

We have been exploring two promising ways to im-
prove the results of the Alt-Ergo SMT prover on the VCs
generated in GNATprove: handling selected axiomatisa-
tions as decision procedures [DCKP13], and incremen-
tally selecting axioms [CGS09, KvLT*12]. More work is
needed to make these modes the default in GNATprove.

8 Conclusions

In this paper we have described the key elements of the
design of SPARK 2014 and GNATprove. This design is
based on experience over many years working with both
expert and non-expert SPARK 2005 developers in in-
dustry. The design focuses particularly on improving the
usability for non-expert users and providing a convinc-
ing cost-benefit argument for using formal verification in
regulated industries. SPARK 2014 has now been released
both commercially and for GPL users. Early evaluations
are very encouraging, some of which are documented in
public industrial case studies [DEL'14].
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