tuProlog Guide

tuProlog version: 2.1

tuProlog IDE version: 2.0

Last Changes date: 2007-04-19

ALMA MATER STUDIORUM, Universita di Bologna a Cesena, Italy

Contents

(1

What is tuProlog|

2

Installing tuProlog|

B

Getting Started|

|3.1 Prolog Programmer Quick Start|
13.2 Developer Quick Start|,

2}

tuProlog Basics|

4.1 Structure of a tuProlog Engine|
4.2 Prologsyntax|
4.3 Configuration of a tuProlog Engine|
4.4 Built-in predicates| L L.
4.4.1 Control management|.
4.4.2 Term Unification and Management|
4.4.3 Knowledge-base management|
4.4.4 Operators and Flags Management|
|4.4.5 Libraries Management|

]

tuProlog Libraries|

|b.1 BasicLibraryl] 0.
b.1.1 Predicates oo L

[5.1.3 Operators|
[p.2 ISOLibrary|o
I;i.z.l l lg:!ii!:l‘!ls:}l

11
11
12
15
16
16
17
17
18
19
19

b.3 DCGLibraryl

0.3.2 Operators|o
5.4 IOLibrary|
Isli. 1.1 l lg:!ii!:i!ls:}l

6

Accessing Java from tuProlog|

6.1 Mapping data structures|. L.
6.2 General predicates description|.
6.3 Predicates] o
16.3.1 Method Invocation, Object and Class Creation|
16.3.2 Java Array Management|.
16.3.3 Helper Predicates|.
6.4 Functors
6.5 Operators|
6.6 ags| . . L. e
6.7 Java Library Examples|.o
[6.7.1 RMI Connection to a Remote Object|
6.7.2 Java Swing GUI from tuProlog
16.7.3 Database access via JDBC from tuProlog|

[6.7.4 Dynamic compilation|

[f_The IDEl

7.1 Editing the theory|
(7.2 Solving goals|
7.3 Debug Informations|
7.4 Dynamic library management|

Using tuProlog from Java|

8.1 Getting started| Lo
8.2 Basic Data Structures)
[8.3 Engine, Theories and Libraries|
[8.4 Some more examples of tuProlog usage|.

How to Develop New Libraries|

9.1 Implementation details|.
9.2 Library Name|.

42
42
42
48
48
50
51
51
52
52
52
52
53
53
95

58
60
60
67
69

71
71
72
75
78

Chapter 1

What is tuProlog

tuProlog is a Java-based light-weight Prolog for Internet applications and
infrastructures. For this purpose, tuProlog is designed to be easily deploy-
able, light-weight, dynamically configurable, straightforwardly integrated
with Java, and easily interoperable.

Deployability of tuProlog owes a lot to Java. Requirements for tuProlog
installation simply amount to the presence of a standard Java VM, and
a Java invocation upon a single JAR file is everything needed to start a
tuProlog activity.

tuProlog is also designed with minimality in mind. So, the tuProlog core
is a tiny Java object that contains only the most essential properties of a
Prolog engine. Only the required Prolog features (like, say, ISO compliance,
I/0O predicates, DCG operators) are then to be added to or removed from a
tuProlog engine according to the contingent application needs.

The obvious counterpart of minimality is then tuProlog configurability.
In fact, a simple yet powerful mechanism is required to load and unload
useful predicates, functors and operators in a tuProlog engine, both statically
and dynamically: this is provided by the notion of tuProlog library. Libraries
can be either defined in the standard tuProlog distribution, or defined ad
hoc by the tuProlog user or developer. A tuProlog library can be built using
either Prolog, or Java, or both languages, and can be either used to configure
a tuProlog engine when this is started up, or loaded (and then unloaded)
dynamically at any time during the engine execution.

Integration with Java is as wide, deep, and clean as possible, so that the
components of a tuProlog application can be developed by choosing at any
step the most suitable paradigm — either declarative/logic or imperative/object-
oriented. From the Prolog side, thanks to the JavaLibrary library, any

Java entity (object, class, package) can be represented as a Prolog term,
and exploited from Prolog. So, for instance, Java packages like Swing and
JDBC can be directly used from within Prolog, straightforwardly enhancing
tuProlog with graphics and database access capabilities. From the Java side,
a tuProlog engine can be invoked and used as a simple Java object, possibly
embedded in beans, or exploited in a multi-threaded context, according to
the application needs. Also, a multiplicity of different tuProlog engines can
be used from a Java program at the same time, each one configured with its
own libraries and knowledge base.

Finally, interoperability is developed along two main lines: Internet stan-
dard patterns, and coordination models. So, tuProlog supports interaction
via TCP/IP and RMI, and can be also provided as a CORBA service. In
addition, tuProlog supports tuple-based coordination under many forms.
First, components of a tuProlog application can be organised around Java-
based tuple spaces, logic tuple spaces, and ReSpecT tuple centres [?]. Then,
tuProlog applications can exploit Internet infrastructures providing tuple-
based coordination services, like LuCe [?] and TuCSoN [?].

tuProlog is developed and maintained by the aliCEE] research group at
the ALMA MATER STUDIORUM—Universita di Bologna, site of Cesena: it
is built as Open Source software, and released under the LGPL license, thus
allowing also for commercial derivative work.

'See the aliCE home page for further details, at http://www.alice.unibo.it

Chapter 2

Installing tuProlog

First, you need to have the tuProlog distribution. You can download it from
the tuProlog web site:

http://tuprolog.alice.unibo.it/

You can find the latest version in the Download section. The distribution file
has the form 2p-X.Y.Z.zip, where X.Y.Z identifies the version of tuProlog:
for instance, the distribution file 2p-2.0.zip contains version 2.0 of the
engine. After the download, unzip the distribution file in a folder of your
choice in the file system; you should obtain the following directory tree:

2p-2.0
|---1ib

| -—-doc

| | -—-api
|-—-test

| -—-src

The 1ib directory contains the tuProlog Java binaries packaged in the JAR
format:

e 2p.jar contains everything you need to use tuProlog, such as the core
API, the Agent application, libraries, IDE tools and other extensions.

e In addition, you find three other JAR files, provided as helper packages
for users who would like to exploit some specific parts only from the
tuProlog distribution:

— tuprolog. jar contains the core API, the Agent application and
default libraries.

— tuprolog-ide. jar contains the IDE tools only.

— tuprolog-extensions.jar contains add-on libraries and other
tuProlog extensions.

The doc directory contains this Guide and the Java documentation about
tuProlog API, collected in the subdirectory api. The test directory contains
the source code of unit and acceptance testsE] for the software, as well as some
demos to illustrate usage of libraries. Finally, the src directory contains the
Java source for the tuProlog engine.

After downloading and unpacking the distribution on your system, you
can install tuProlog in different ways, depending on how you want to use it.

e You may want to use tuProlog from a directory playing the role of
a central repository where you usually install other programs and
third-party librariesE] In this case, you have to move under the cho-
sen filesystem tree the tuProlog directory you have already extracted.
Then, you need to remember to add the -cp <jar file> option when
invoking the Java interpreter, specifying the path to the 2p.jar file
contained in the 1ib subdirectory of the distribution. For instance,
suppose that you unzipped the 2p-2.0.zip distribution file in the
/java/tools folder and you need to run your ApplicationClass appli-
cation with tuProlog; then you should invoke the Java interpreter as
follows:

java -cp /java/tools/2p-2.0/1ib/2p.jar ApplicationClass

Alternatively, you can add the required tuProlog JAR file to your
CLASSPATH environment VariableE] thus avoiding to specify the -cp
option every time you invoke the interpreter. In this way you can ex-
ploit tuProlog applications simply by invoking the Java intepreter as
follows:

'tuProlog exploits JUnit (see http://www.junit.org/) for its unit testing needs and
FIT (see http://fit.c2.com/) as its acceptance testing framework.

2Predefined examples of such a directory include C:\Program Files in Windows,
/Library/Applications under Mac OS X, /usr/share under most *nix environments.

3Consult your operating system’s manual for details regarding how to set and create
environment variables.

java ApplicationClass

You can use the distribution content also by means of the scripts pro-
vided in the bin directory of the distribution; such scripts use the JAR
located in the 1ib directory.

You may want to use tuProlog from your current working directory.
In this case, you have to copy the 2p.jar file from the 1ib subdirec-
tory in the extracted distribution to your working directory. Then,
after you move directly in that directory, by means of a terminal or
command line prompt, you can execute:

java -cp 2p.jar ApplicationClass

which invokes the Java interpreter and let it use the classes from
tuProlog. As previously explained, you can also use the CLASSPATH
environment variable to obtain the same effect.

You may want to directly use the class files contained in the 2p. jar
archive from the tuProlog distribution. In this case, first copy the
JAR file to your directory of choice; then, unfold it by means of the
jar command provided by the Java distribution. For instance, open
a terminal or a command line prompt from within that directory, and
execute:

jar -xvf 2p.jar
After this operation, you can use tuProlog applications directly from

that directory, with no need to specify any interpreter’s option nor to
exploit the operating system’s environment variables.

Chapter 3

Getting Started

The tuProlog distribution offers some tools either to consult and execute
already existing Prolog programs, or to help developing new Prolog theories
and interact with a Prolog engine. Depending on the use you would like
to make of tuProlog, you may want to start exploring the distribution tools
along different directions.

3.1 Prolog Programmer Quick Start

As a Prolog programmer, you would like to start trying tuProlog by running
your already existing Prolog programs. You can execute your programs in
the form of source text files using the tuProlog Agent tool. This tool accepts
as arguments the name of a text file containing a Prolog theory and, option-
ally, the goal to be solved; then it starts the demonstration. Once you have
properly installed tuProlog in the dir directory, you can use the following
template to invoke the Agent tool from the command line:

java -cp dir/2p.jar
alice.tuprolog.Agent PrologTeztFile {Goal}

For instance, suppose a text file named hello.pl in your current direc-
tory contains the following line:

go :- write(’hello, world!’), nl.

In order to execute this Prolog program, you can type at the command
prompt:

java -cp dir/2p.jar alice.tuprolog.Agent hello.pl go.

Then, the Agent tool tries to prove the goal go with respect to the the-
ory contained in hello.pl. As a result, the string hello, world! should
appear on your standard output.

Also, the goal to be proven can be embedded within the Prolog source
by means of the solve directive. For instance, suppose that the text file
hellogo.pl in your current directory contains the following lines:

:— solve(go).
go :- write(’hello, world!’), nl.

Then, type:
java -cp dir/2p.jar alice.tuprolog.Agent hellogo.pl

Again, this will make hello, world! appear on your standard output.

3.2 Developer Quick Start

The first thing you may want to do as a developer would probably be to take
advantage of the tools embedded in the Graphical User Interface included in
the tuProlog distribution. The GUI can be obtained by issuing the following
command:

java -cp dir/2p.jar alice.tuprologx.ide.GUILauncher

The development environment provided by the GUI makes standard Prolog
features easily accessible, such as asking queries, viewing the current solution
along with the related variable substitution, backtracking, and so on. Also,
it enables you to view and edit the current Prolog theory contained in the
engine, and to spy tuProlog at work during goal demonstrations. Finally,
it also offers a facility to dynamically load and unload predicate libraries
within the tuProlog engine.

It is worth remembering that the file 2p.jar is an executable Java
Archive, so by invoking the command:

java -jar 2p.jar

in the dir directory, or by double-clicking it under most operating systems,
the graphic user interface console is automatically spawned.

You may also want to experience a pure interactive environment on a
tuProlog engine. In this case, you need to get the tuProlog prompt using the
command line shell provided within the distribution. To obtain it, just type:

java -cp dir/2p.jar alice.tuprologx.ide.CUIConsole
which starts a tuProlog interpreter to be used via console, in a sort of Com-

mand Line User Interface mode. To exit the tuProlog console, you have to
issue the standard halt. command.

10

Chapter 4

tuProlog Basics

This chapter provides a brief introduction to the basic elements and struc-
ture of the tuProlog engine, covering syntax, programming support, and
built-in predicates directly provided by the engine.

4.1 Structure of a tuProlog Engine

A tuProlog engine has a layered structure, where provided and recognised
predicates are organised into three different categories:

built-in predicates — Predicates embedded in any tuProlog engine are
called built-in predicates. Whatever modification is made to the engine
either before or during execution time, it does not affect the number
and properties of the built-in predicates.

library predicates — Predicates loaded in a tuProlog engine by means of
a tuProlog library are called library predicates. Since libraries can be
loaded and unloaded in tuProlog engines freely at the system start-up,
or dynamically at execution time, the set of the library predicates of
a tuProlog engine is not fixed, and can change from engine to engine,
and in the same engine at different times. tuProlog libraries can be
built by mixing Java and Prolog code. Prolog library predicates can be
overridden by Prolog theory predicates. Both Java and Prolog library
predicates cannot be individually retracted: if you want to remove a
single library predicate from the engine, you need to unload the whole
library containing that predicate.

theory predicates — Predicates loaded in a tuProlog engine by means of
a tuProlog theory are called theory predicates. Since theories can be

11

loaded and unloaded in tuProlog engines freely at the system start-up,
or dynamically at execution time, the set of the theory predicates of
a tuProlog engine is not fixed, and can change from engine to engine,
and in the same engine at different times. tuProlog theories are simple
collections of Prolog clauses.

Even though they may seem similar, library and theory predicates are han-
dled differently in a tuProlog engine.

First of all, they are conceptually different. In fact, while theory pred-
icates should be used to axiomatically represent domain knowledge at the
time the proof is performed, library predicates should more or less be used to
represent what is required (procedural knowledge, utility predicates) in or-
der to actually and effectively perform a (number of) proof(s) in the domain
of interest: therefore, library predicates represent more “stable” knowledge,
which is encapsulated once and for all (at least approximately) within a
library container.

Since library and theory predicates are also structurally different, they
are handled differently by the engine, and represented differently in the
run-time: correspondingly, they have different level of observation when
monitoring or debugging a working tuProlog engine. As a consequence,
developer tools provided by tuProlog IDE typically show in a separate way
the theory axioms or predicates and the loaded libraries or predicates. In
addition, the debugging phase typically neglects library predicates (which,
as mentioned above, are also conceived as more stable and well-tested),
while the effect of the theory predicates is dutifully put in evidence during
controlled execution.

4.2 Prolog syntax

The term syntax supported by tuProlog engine is basically ISO complian‘cE]
and accounts for several elements:

Comments and Whitespaces — Whitespaces consist of blanks (including
tabs and formfeeds), end-of-line marks, and comments. A whitespace
can be put before and after any term, operator, bracket, or argu-
ment separator, as long as it does not break up an atom or number
or separate a functor from the opening parenthesis that introduces
its argument lists. For instance, atom p(a,b,c) can be written as

!Currently ISO exceptions, ISO I/O predicates and some ISO directives are not sup-
ported.

12

pCa, b, c),butnotasp (a,b,c)). Two types of comments are
supported: one type begins with /* and ends with */, the other be-
gins with % and ends at the end of the line. Nested comments are not
allowed.

Variables — A variable name begins with a capital letter or the underscore
mark (-), and consists of letters, digits, and/or underscores. A single
underscore mark denotes an anonymous variable.

Atoms — There are four types of atoms: (i) a series of letters, digit, and/or
underscores, beginning with a lower-case letter; (i) a series of one or
more characters from the set {#, $, &, *, +, -, ., /, :, <, =, >, 7,0, ",
~}, provided it does not begin with /*; (iit) The special atoms [] and
{}; (iv) a single-quoted string.

Numbers — Integers and float are supported. The formats supported for
integer numbers are decimal, binary (with Ob prefix), octal (with 0o
prefix), and hexadecimal (with 0x prefix). The character code format
for integer numbers (prefixed by 0?) is supported only for alphanu-
meric characters, the white space, and characters in the set {#, $, &, *,
+ = ., /, 1, <, = > 7,0, ", “}. The range of integers is -2147483648
to 2147483647; the range of floats is -2E+63 to 2E463-1. Floating
point numbers can be expressed also in the exponential format (e.g.
-3.03E-05, 0.303E+13). A minus can be written before any number
to make it negative (e.g. -3.03). Notice that the minus is the sign-
part of the number itself; hence -3.4 is a number, not an expression
(by contrast, - 3.4 is an expression).

Strings — A series of ASCII characters, embedded in quotes * or ". Within
single quotes, a single quote is written double (e.g, ’don’’t forget’).
A backslash at the very end of the line denotes continuation to the next
line, so that:

’this is \

an single line’

is equivalent to *this is a single line’ (the line break is ignored).
Within a string, the backslash can be used to denote special characters,
such as \n for a newline, \r for a return without newline, \t for a tab
character, \\ for a backslash, \’ for a single quote, \" for a double
quote.

Compounds — The ordinary way to write a compound is to write the
functor (as an atom), an opening parenthesis, without spaces between

13

them, and then a series of terms separated by commas, and a closing
parenthesis: f(a,b,c). This notation can be used also for functors
that are normally written as operators, e.g. 2+2 = ’+’(2,2). Lists
are defined as rightward-nested structures using the operator ’.’; so,
for example:

la] = 7.7 (a,[])

[a,b] = *.7(a,’.” (b, [1))

[a,blc] = ’.7,(a,’.’(b,c))

There can be only one | in a list, and no commas after it. Also curly
brackets are supported: any term enclosed with { and } is treated as
the argument of the special functor ’{}’: {hotel} = ’{}’ (hotel),
{1,2,3}="{}’(1,2,3). Curly brackets can be used in the Definite

Clause Grammars theory.

Operators — Operators are characterised by a name, a specifier, and a
priority. An operator name is an atom, which is not univocal: the
same atom can be an operator in more than one class, as in the case
of the infix and prefix minus signs. An operator specifier is a string
like xfy, which gives both its class (infix, postfix and prefix) and its
associativity: xfy specifies that the grouping on the right should be
formed first, yfx on the left, xfx no priority. An operator priority is
a non-negative integer ranging from 0 (max priority) and 1200 (min
priority).

Operators can be defined by means of either the op(Priority, Specifier,
Name) predicate or the :- op(Priority, Specifier, Name). direc-
tive. No predefined operators are directly given by the raw tuProlog
engine, whereas a number of them is provided through libraries.

Commas — The comma has three functions: it separates arguments of
functors, it separates elements of lists, and it is an infix operator of
priority 1000. Thus (a,b) (without a functor in front) is a compound,
equivalent to ’,’ (a,b).

Parenthesis — Parenthesis are allowed around any term. The effect of
parenthesis is to override any grouping that may otherwise be im-
posed by operator priorieties. Operators enclosed in parenthesis do
not function as operators; thus 2(+) 3 is a syntax error.

14

4.3 Configuration of a tuProlog Engine

Prolog developers have four different means to configure a tuProlog engine
in order to fit their application needs. In fact, a tuProlog can be suitably
configured by means of:

Theories — A tuProlog theory is represented by a text, consisting of a
sequence of clauses and/or directives. Clauses and directives are ter-
minated by a dot, and are separated by a whitespace character. Theo-
ries can be loaded or unloaded by means of suitable library predicates,
which are described in Chapter

Directives — A directive can be given by means of the :-/1 predicate,
which is natively supported by the engine, and can be used to config-
ure and use a tuProlog engine (set_prolog_flag/1, load_library/1,
consult/1, solve/1), format and syntax of read-termg? (op/3). Di-
rectives are described in detail in the following sections.

Flags — A tuProlog engine allows the dynamic definition of flags (or prop-
erties) describing some aspects of libraries and their predicates and
evaluable functors. A flag is identified by a name (an alphanumeric
atom), a list of possible values, a default value, and a boolean value
specifying if the flag value can be modified. Dynamically, a flag value
can be changed (if modifiable) with a new value included in the list of
possible values.

Libraries — A tuProlog engine can be dynamically extended by loading
or unloading libraries. Each library can provide a specific set of pred-
icates, functors, and a related theory, which also allows new flags and
operators to be defined. Libraries can be either pre-defined (see Chap-
ter or user-defined (see Chapter @ A library can be loaded by
means of the predicate load library (Prolog side), or by means of
the method loadLibrary of the tuProlog engine (Java side).

Currently tuProlog does not support exception management: actually, an
exception causes the predicate/functor in which it occurred to fail and be
false.

2 As specified by the ISO standard, a read-term is a Prolog term followed by an end
token, composed by an optional layout text sequence and a dot.

15

4.4

Built-in predicates

This section contains a comprehensive list of the built-in predicates provided
by the tuProlog engine, that is, those predicates defined directly in its core.

Following an established convention in built-in argument template de-
scription, which takes root into an imperative interpretation, the symbol +
in front of an argument means an input argument, — means output argu-
ment, ? means input/output argument, @ means input argument that must
be bound.

4.4.1 Control management

true/0
true is true.

fail/0
fail is false.

) s)/2
>’ (First,Second) is true if and only if both First and Second are
true.

1/0

! is true. All choice points between the cut and the parent goal are
removed. The effect is a commitment to use both the current clause
and the substitutions found at the point of the cut.

’$call’ /1

’$call’ (Goal) is true if and only if Goal represents a goal which is
true. It is not opaque to cut.

Template: call(+callable_term)

halt/0
halt terminates a Prolog demonstration, exiting the Prolog processor
and returning to the system that invoked the processor.

halt/1

halt(X) terminates a Prolog demonstration, exiting the Prolog pro-
cessor and returning to the systems that invoked the processor passing
the value of X as a message.

Template: halt(+int)

16

4.4.2 Term Unification and Management

is/2
is(X, Y) is true iff X is unifiable with the value of the expression Y.
Template: is(?term, Qevaluable)

)=7/2

’=2 (X, Y) is true iff X and Y are unifiable.
Template: =’ (?term, 7term)

;\=)/2

’\=" (X, Y) is true iff X and Y are not unifiable.
Template: *\="(?term, 7term)

*$tolist’ /2

’$tolist’ (Compound, List) is true if Compound is a compound term,
and in this case List is list representation of the compound, with the
name as first element and all the arguments as other elements.
Template: ’>$tolist’ (@struct, -list)

’$fromlist’/2

>$fromlist’ (Compound, List) is true if Compound unifies with the
list representation of List.

Template: ’>$fromlist’ (-struct, @list)

copy-term/2

copy-term(Terml, Term2) is true iff Term2 unifies with the a renamed
copy of Termil.

Template: copy_term(?term, ?term)

’$append’ /2

>$append’ (Element, List) is true if List is a list, with the side
effect that the Element is appended to the list.

Template: ’$append’ (+term, @list)

4.4.3 Knowledge-base management

’$find’ /2

’$find’ (Clause, Clauselist) is true if ClauseList is a list, and
Clause is a clause, with the side effect that all the clauses of the
database matching Clause are appended to the list.

Template: >$£find’ (@clause, @list)

17

e abolish/1
abolish(PI) completely wipes out the dynamic predicate matching
the predicate indicator PI.
Template: abolish(@term)

e asserta/1
asserta(Clause) is true, with the side effect that the clause Clause
is added to the beginning of database.
Template: asserta(@clause)

e assertz/1
assertz(Clause) is true, with the side effect that the clause Clause
is added to the end of the database.
Template: assertz(@clause)

e ’$retract’/1
’$retract’ (Clause) is true if the database contains at least one
clause unifying with Clause. As a side effect, the clause is removed
from the database. It is not re-executable.
Template: ’$retract’ (@clause)

4.4.4 Operators and Flags Management

e op/3

op(Priority, Specifier, Operator) is true. It always succeeds,
modifying the operator table as a side effect. If Priority is 0, then
Operator is removed from the operator table; else, Operator is added
to the operator table, with priority (lower binds tighter) Priority
and associativity determined by Specifier. If an operator with the
same Operator symbol and the same Specifier already exists in the
operator table, the predicate modifies its priority according to the
specified Priority argument.

Template: op(+integer, +specifier, Q@atom_or_atom_list)

e flag list/1
flag list(FlagList) is true and FlagList is the list of the flags
currently defined in the engine.
Template: flag list(-1ist)

e set_prolog flag/2
set_prolog flag(Flag, Value) istrue, and as a side effect associates
Value with the flag Flag, where Value is a value that is within the

18

implementation defined range of values for Flag.
Template: set_prolog flag(+flag, G@nonvar)

e get_prolog flag/2
get_prolog flag(Flag, Value) is true iff Flag is a flag supported by
the engine and Value is the value currently associated with it. Note
that get_prolog_flag/2 is not re-executable.
Template: get_prolog flag(+flag, 7term)

4.4.5 Libraries Management

e load library/1
load_library(LibraryName) is true if LibraryName is the name of
a tuProlog library available for loading. As side effect, the specified
library is loaded by the engine. Actually LibraryName is the full name
of the Java class providing the library.
Template: load_library(@string)

e unload library/1
unload_library(LibraryName) is true if LibraryName is the name of
a library currently loaded in the engine. As side effect, the library is
unloaded from the engine. Actually LibraryName is the full name of
the Java class providing the library.
Template: unload_-library(@string)

4.4.6 Directives

Directives are used in Prolog text only as queries to be immediately executed
when loading it. When a corresponding predicate with the same procedure
name as a directive exists, they perform the same actions. Their arguments
will satisfy the same constraints as those required for an errorless execution
of the corresponding predicate, otherwise their behaviour is undefined.

In tuProlog, directives are not composable: each query must contain one
and only one directive. When you need to use multiple directives, you must
employ multiple queries as well.

e :- op/3
op(Priority, Specifier, Operator) adds Operator to the opera-
tor table, with priority (lower binds tighter) Priority and associativ-
ity determined by Specifier.
Template: op(+integer, +specifier, @atom_or_atom list)

19

:- flag/4

flag(FlagName, ValidValuesList, DefaultValue, IsModifiable)
adds to the engine a new flag, identified by the FlagName name,
which can assume only the values listed in ValidValuesList with
DefaultValue as default value, and that can be modified if IsModifiable
is true.

Template: flag(@string, @list, Oterm, Q@true, false)

:- initialization/1

initialization(Goal) sets the starting goal to be executed just after
the theory has been consulted.

Template: initialization(@goal)

:- solve/1
Synonym for initialization/1.
Template: solve(@goal)

:- load library/1
load_library(LibraryName) is a valid directive if true if LibraryName
is the name of a tuProlog library available for loading. This directive
loads the specified library in the engine. Actually LibraryName is the
full name of the Java class providing the library.

Template: load library(@string)

:— consult/1

consult (Filename) loads immediately the theory contained in the file
specified by Filename.

Template: consult(@string)

20

Chapter 5

tuProlog Libraries

Libraries are the means by which tuProlog achieves its fundamental charac-
teristics of minimality and configurability. The engine is by design choice a
minimal, purely-inferential core: as such, it only includes a few built-in pred-
icates, intended as predicates statically defined inside the core, to establish
the foundation which the mechanisms of the engine are based on. Instead,
each and every other piece of functionality, in the form of predicates, func-
tors, flags and operators, is delivered by libraries, and can be added to or
subtracted from the engine at any time. Thus, a tuProlog engine can be
dynamically extended by loading (and unloading) any number of libraries.
Each library can provide a specific set of predicates, functors and a related
theory, which can be used to define new flags and operators. Besides built-in
and library predicates, new functionalities can also be added to an engine
by feeding it with a user-defined Prolog theory.

Libraries can be loaded at any time in the tuProlog engine, both from
the Java side, by means of the loadLibrary method of the Prolog ob-
ject representing a tuProlog engine, and from the Prolog side, using the
load library/1 predicate. For example, suppose you want to exploit some
features defined in a library whose name is ExampleLibrary. If, on the
Java side, you want to load the library immediately afterwards building a
tuProlog engine, you would write the following code, using the fully qualified
Java class name for the library:

Prolog engine = new Prolog(Q);

try {
engine.loadLibrary("com.example.ExampleLibrary");

} catch (InvalidLibraryException e) {

}

21

If, on the other hand, you just want to load the library on the Prolog side
for those clauses which actually make use of its predicates, you would write
the following code, using just the name of the library, which can be different
from its fully qualified class name:

% println/1 is defined in ExampleLibrary

run_test(Test, Result) :- run(Test, Result),
load_library("ExampleLibrary"),
println(Result).

Correspondingly, means for unloading libraries are provided, in the form
of the unloadLibrary method of the Prolog class on the Java side, and
the unload_library/1 predicate on the Prolog side. It must be noted that
predicates for loading or unloading libraries are also available in the form
of directives: they perform the same actions, but as directives they are
immediately executed when the Prolog text containing them is feeded to
the engine.

Since the core comes as a pure inferential engine, tuProlog includes in
its distribution some standard libraries which are loaded by default into
the engine at construction time. While it is possible to create an engine
with no default libraries preloaded, those standard libraries provide the fun-
damental bricks of a Prolog engine, in the form of basic functionalities,
ISO compliant predicates and evaluable functors, I/O predicates and pred-
icates for interoperability and integration between Java and Prolog. More
user-defined libraries can be then loaded or unloaded, thus exploiting the
dynamic configurability of tuProlog engines which can be reconfigured on
the fly enriching or reducing the set of available functionalities by need.

The standard libraries are:

BasicLibrary (class alice.tuprolog.lib.BasicLibrary) — provides com-
mon Prolog predicates and functors, and operators. No I/O predicates
are included.

DCGLibrary (class alice.tuprolog.lib.DCGLibrary) — provides sup-
port for Definite Clause Grammar, an extension of context free gram-
mars used for describing natural and formal languages.

IOLibrary (class alice.tuprolog.lib.I0OLibrary) — provides some ba-
sic and classic I/O predicates.

ISOLibrary (class alice.tuprolog.lib.ISOLibrary) — provides pred-
icates and functors that are part of the built-in section in the ISO
standard [?], and are not provided by previous libraries.

22

JavaLibrary (class alice.tuprolog.lib.JavaLibrary) — provides pred-
icates and functors to create, access and deploy (existent or new) Java
resources, like objects and classes.

The description of each library is provided by discussing in the order: pred-
icates, functors, operators and flags defined by the library. For each library
the dependencies with other libraries are specified: that is, which other li-
braries are required in order to provide the correct computational behaviour.

5.1 BasicLibrary

Library Dependencies: none.

This library provides common Prolog built-in predicates, functors, and
operators. No I/O predicates are included.

Please note that in the following string means a single or double quoted
string, as detailed in Chapter 4} expr means an evaluable expression, that
is a term that can be interpreted as a value by some library functors.

5.1.1 Predicates

Here follows a list of predicates implemented by this library, grouped by
category.

Type Testing

e constant/1
constant (X) is true iff X is a constant value.
Template: constant (@term)

e number/1
number (X) is true iff X is an integer or a float.
Template: number (@term)

e integer/1
integer(X) is true iff X is an integer.
Template: integer (@term)

e float/1
float (X) is true iff X is an float.
Template: float(@term)

23

e atom/1
atom(X) is true iff X is an atom.
Template: atom(@term)

e compound/1
compound (X) is true iff X is a compound term, that is neither atomic
nor a variable.
Template: compound (@term)

e var/1
var (X) is true iff X is a variable.
Template: var (@term)

e nonvar/1
nonvar (X) is true iff X is not a variable.
Template: nonvar (@term)

e atomic/1
atomic(X) is true iff X is atomic (that is is an atom, an integer or a
float).
Template: atomic(@term)

e ground/1
ground (X) is true iff X is a ground term.
Template: ground(@term)

e list/1
list (X) is true iff X is a list.
Template: list(Q@term)

Term Creation, Decomposition and Unification

e ’=../2: unw
’=,.’(Term, List) is true if List is a list consisting of the functor
and all arguments of Term, in order.
Template: >=..’ (?term, 7list)

e functor/3
functor(Term, Functor, Arity) is true if the term Term is a com-
pound term, Functor is its functor, and Arity (an integer) is its arity;
or if Term is an atom or number equal to Functor and Arity is 0.
Template: functor(?term, 7term, 7integer)

24

e arg/3
arg(N, Term, Arg) istrue if Arg is the Nth arguments of Term (count-
ing from 1).
Template: arg(@integer, @compound, -term)

e text_term/2
text_term(Text, Term) is true iff Text is the text representation of
the term Term.
Template: text_term(?text, 7term)

e text_concat/3

text_concat (TextSourcel, TextSource2, TextDest) istrue iff TextDest

is the text resulting by appending the text TestSource?2 to TextSourcel’
Template: text_concat(@string, @string, -string)

e num_atom/2
num_atom(Number, Atom) succeeds iff Atom is the atom representation
of the number Number
Template: number_codes (+number, 7atom)
Template: number_codes (?number, +atom)

Occurs Check

When the process of unification takes place between a variable S and a
term T, the first thing a Prolog engine should do before proceeding is to
check that T does not contain any occurences of S. This test is known as
occurs check [?] and is necessary to prevent the unification of terms such
as s(X) and X, for which no finite common instance exists. Most Prolog
implementations omit the occurs check from their unification algorithm for
reasons related to speed and efficiency: tuProlog is no exception. However,
they provide a predicate for occurs check augmented unification, to be used
when the programmer wants to never incur on an error or an undefined
result during the process.

e unify with_occurs_check/2
unify with occurs_check(X, Y) is true iff X and Y are unifiable.
Template: unify with occurs_check(7term, 7term)

Expression and Term Comparison

e expression comparison (generic template: pred(@expr, @Qexpr)):
P ;=\=), ;>7’)<;,)>=;’)=<);

. b

25

e term comparison (generic template: pred(Qterm, Qterm)):
Y==2 ;\==)’ 1@>7, @<, @>=’ Q=<

b

Finding Solutions

e findall/3
findall(Template, Goal, List) is true if and only if List unifies
with the list of values to which a variable X not occurring in Template
or Goal would be instantiated by successive re-executions of
call(Goal), X = Template
after systematic replacement of all variables in X by new variables.
Template: findall(?term, +callable_term, 7list)

e bagof/3
bagof (Template, Goal, Instances) is true if Instances is a non-
empty list of all terms such that each unifies with Template for a
fixed instance W of the variables of Goal that are free with respect to
Template. The ordering of the elements of Instances is the order in
which the solutions are found.
Template: bagof (?term, +callable term, 7list)

e setof/3
setof (Template, Goal, List) is true if List is a sorted non-empty
list of all terms that each unifies with Template for a fixed instance
W of the variables of Goal that are free with respect to Template.
Template: setof (?term, +callable term, ?7list)

Control Management

o (=>)/2: if-then
’=>’(If, Then) is true if and only if If is true and Then is true for
the first solution of If.

e (;)/2: if-then-else
>:2 (Either, Or) is true iff either Either or Or is true.

e call/1
call(Goal) is true if and only if Goal represents a goal which is true.
It is opaque to cut.
Template: call(+callable_term)

26

e once/1
once(Goal) finds exactly one solution to Goal. It is equivalent to
call((Goal, !')) and is opaque to cuts.
Template: once(@goal)

e repeat/0
Whenever backtracking reaches repeat, execution proceeds forward
again through the same clauses as if another alternative has been
found.
Template: repeat

e ’\+’/1: not provable
’\+’ (Goal) is the negation predicate and is opaque to cuts. That is,
’\+’ (Goal) is like call(Goal) except that its success or failure is the
opposite.
Template: *\+’ (@goal)

e not/1
The predicate not/1 has the same semantics and implementation as
the predicate \+/1.
Template: not (Ggoal)

Clause Retrival, Creation and Destruction

Every Prolog engine lets programmers modify its logic database during ex-
ecution by adding or deleting specific clauses. The ISO standard [?] dis-
tinguishes between static and dynamic predicates: only the latter can be
modified by asserting or retracting clauses. While typically the dynamic/1
directive is used to indicate whenever a user-defined predicate is dynami-
cally modifiable, tuProlog engines work differently, establishing two default
behaviors: library predicates are always of a static kind; every other user-
defined predicate is dynamic and modifiable at runtime. The following
list contains library predicates used to manipulate the knowledge base of
a tuProlog engine during execution.

e clause/2
clause(Head, Body) is true iff Head matches the head of a dynamic
predicate, and Body matches its body. The body of a fact is considered
to be true. Head must be at least partly instantiated.
Template: clause(@term, -term)

27

e assert/1
assert(Clause) is true and adds Clause to the end of the database.
Template: assert(@term)

e retract/1
retract(Clause) removes from the knowledge base a dynamic clause
that matches Clause (which must be at least partially instantiated).
Gives multiple solutions upon backtracking.
Template: retract(@term)

e retractall/1
retractall(Clause) removes from the knowledge base all the dy-
namic clauses matching with Clause (which must be at least partially
instantiated).
Template: retractall (Qterm)

Operator Management

e current_op/3
current op(Priority, Type, Name) is true iff Priority is an inte-
ger in the range
0, 1200

, Type is one of the £x, xfy, yfx, xfx values and Name is an atom, and
as side effect it adds a new operator to the engine operator list.
Template: current_op(?integer, 7term, 7atom)

Flag Management

e current_prolog flag/3
current_prolog flag(Flag,Value) is true if the value of the flag
Flag is Value
Template: current_prolog flag(7atom,?term)

Actions on Theories and Engines

e set_theory/1
set_theory(TheoryText) is true iff TheoryText is the text represen-
tation of a valid tuProlog theory, with the side effect of setting it as
the new theory of the engine.
Template: set_theory(@string)

28

e add_theory/1
add_theory(TheoryText) is true iff TheoryText is the text represen-
tation of a valid tuProlog theory, with the side effect of appending it
to the current theory of the engine.
Template: add_theory(@string)

e get_theory/1
get_theory(TheoryText) is true, and TheoryText is the text repre-
sentation of the current theory of the engine.
Template: get_theory(-string)

e agent/1
agent (TheoryText) is true, and spawns a tuProlog agent with the
knowledge base provided as a Prolog textual form in TheoryText (the
goal is described in the knowledge base).
Template: agent(@string)

e agent/2
agent (TheoryText, Goal) is true, and spawn a tuProlog agent with
the knowledge base provided as a Prolog textual form in TheoryText,
and solving the query Goal as a goal.
Template: agent(@string, @term)

Spy Events

During each demonstration, the engine notifies to interested listeners so-
called spy events, containing informations on its internal state, such as the
current subgoal being evaluated, the configuration of the execution stack
and the available choice points. The different kinds of spy events currently
corresponds to the different states which the virtual machine realizing the
tuProlog’s inferential core can be found into. Init events are spawned when-
ever the machine initialize a subgoal for execution; Call events are generated
when a choice must be made for the next subgoal to be executed; Fval events
represent actual subgoal evaluation; finally, Back events are notified when
a backtracking occurs during the demonstration process.

e spy/0
spy is true and enables the notification of spy events occurring inside
the engine.
Template: spy

29

e nospy/0
nospy is true and disables the notification of the spy events inside the
engine.
Template: nospy

Auxiliary predicates
The following predicates are provided by the library’s theory.

e member/2
member (Element, List) is true iff Element is an element of the list
List
Template: member (?term, +list)

e length/2

length(List, NumberOfElements) is true in three different cases: (1)
if List is instantiated to a list of determinate length, then Length will
be unified with this length; (2) if List is of indeterminate length and
Length is instantiated to an integer, then List will be unified with a
list of length Length and in such a case the list elements are unique
variables; (3) if Length is unbound then Length will be unified with
all possible lengths of List.

Template: member (?list, ?integer)

e append/3
append (What, To, Target) is true iff Target list can be obtained by
appending the To list to the What list
Template: append(?list, 7list, 7list)

e reverse/2
reverse(List, ReversedList) is true iff ReversedList is the re-
verse list of List
Template: reverse(+list, -list)

e delete/3
delete(Element, ListSource, ListDest) is true iff ListDest list
can be obtained by removing the element Element from the list ListSource.
Template: delete(@term, +list, -list)

e element/3
element (Position, List, Element) istrue iff Element is the Positionth
element of the list List (starting the count from 1).
Template: element(Q@integer, +list, -term)

30

e quicksort/3
quicksort(List, ComparisonPredicate, SortedList) istrueiff SortedList
is the list List sorted by the comparison predicate ComparisonPredicate.
Template: element(@list, @pred, -list)

5.1.2 Functors

Functors for expression evaluation (with usual semantics):
® unary: +, -, 3 +

e binary: +, —, x, \, *x, <<, >>, /\, \/

5.1.3 Operators

31

Name Assoc. | Prio.
. fx 1200
1= xfx 1200
7= fx 1200
; xfy 1100
-> xfy 1050
, xfy 1000
not fy 900
\+ fy 900
= xfx 700
\= xfx 700
== xfx 700
== xfx 700
@> xfx 700
< xfx 700
@=< xfx 700
@>= xfx 700
=:= xfx 700
=\= xfx 700
> xfx 700
< xfx 700
>= xfx 700
=< xfx 700
is xfx 700
= xfx 700
+ yix 500
- yfx 500
/\ yix 500
\/ yix 500
* yix 400
/ yix 400
// yix 400
>> yfx 400
<< yix 400
>> yix 400
Kok xfx 200
- xfy 200
\\ fx 200
- fy 200

32

5.2 ISOLibrary

Library Dependencies: BasicLibrary.

This library contains almostE] all the built-in predicates and functors that
are part of the ISO standard and that are not part directly of the tuProlog
core engine or other core libraries. Moreover, some features are added, not
currently ISO, such as the support for definite clause grammars (DCGs).

5.2.1 Predicates

Here follows a list of predicates implemented by this library, grouped by
category.

Type Testing

e bound/1
bound (Term) is a synonym for the ground/1 predicate defined in Ba-
sicLibrary.
Template: bound (+term)

e unbound/1
unbound (Term) is true iff Term is not a ground term.
Template: unbound (+term)

Atoms Processing

e atom_length/2
atom_length(Atom, Length) is true iff the integer Length equals the
number of characters in the name of atom Atom.
Template: atom_length(+atom, 7integer)

e atom_concat/3
atom_concat(Start, End, Whole) is true iff the Whole is the atom
obtained by concatenating the characters of End to those of First.
If Whole is instantiated, then all decompositions of Whole can be ob-
tained by backtracking.
Template: atom_concat(?atom, 7atom, +atom)
Template: atom_concat(+atom, +atom, —atom)

!Currently ISO exceptions, ISO I/O predicates and some ISO directives are not sup-
ported.

33

e sub_atom/5
sub_atom(Atom, Before, Length, After, SubAtom) is true iff SubAtom
is the sub atom of Atom of length Length that appears with Before
characters preceding it and After characters following. It is re-executable.
Template: sub_atom(+atom, 7integer, 7integer, 7integer, 7atom)

e atom_chars/2
atom_chars(Atom,List) succeeds iff List is a list whose elements are
the one character atoms that in order make up Atom.
Template: atom_chars(+atom, 7character_list)
Template: atom_chars(-atom, 7character_list)

e atom_codes/2
atom_codes(Atom, List) succeeds iff List is a list whose elements
are the character codes that in order correspond to the characters
that make up Atom.
Template: atom_codes(+atom, ?character_code_list)
Template: atom_chars(-atom, 7character_code_list)

e char _code/2
char_code(Char, Code) succeeds iff Code is a the character code that
corresponds to the character Char.
Template: char_code(+character, ?character_code)
Template: char_code(-character, +character_code)

e number_chars/2
number_chars (Number, List) succeeds iff List is a list whose ele-
ments are the one character atoms that in order make up Number.
Template: number_chars (+number, 7character_list)
Template: number_chars(-number, ?character_list)

e number_codes/2
number_codes (Number, List) succeeds iff List is a list whose ele-
ments are the codes for the one character atoms that in order make
up Number.
Template: number_codes (+number, ?character_code_list)
Template: number_codes (-number, ?character_code_list)

5.2.2 Functors

e Trigonometric functions: sin(+expr), cos(+expr), atan(+expr).

34

e Logarithmic functions: exp(+expr), log(+expr), sqrt (+expr).
e Absolute value functions: abs(+expr), sign(+Expr).

e Rounding functions: floor (+expr), ceiling(+expr), round (+expr),
truncate (+expr), float (+expr), float_integer part (+expr), float_fractional part (+exp:

e Integer division functions: div(+expr, +expr), mod(+expr, +expr),
rem(+expr, +expr).

5.2.3 Operators

Name Assoc. | Prio.
mod yix 400
div yfx 300
rem yix 300
sin fx 200
cos fx 200
sqrt fx 200
atan fx 200
exp fx 200
log fx 200

35

5.2.4 Flags

Flag Name Possible Values Default Value
bounded true true
max_integer 2147483647 2147483647
min_integer -2147483648 -2147483648
integer _rounding function down down
char_conversion off off

debug off off

max_arity 2147483647 2147483647
undefined_predicates fail fail
double_quotes atom atom

5.3 DCGLibrary

Library Dependencies: BasicLibrary.

This library provides support for Definite Clause Grammar [?], also
known as DCGE] an extension of context free grammars that have proven
useful for describing natural and formal languages, and that may be con-
veniently expressed and executed in Prolog. Note that this library is not
loaded by default when a tuProlog engine is created.

A Definite Clause Grammar rule has the general form:

Head --> Body

with the declarative interpretation that a possible form for Head is Body. A
non-terminal symbol may be any term other than a variable or a number.
A terminal symbol may be any term. In order to distinguish terminals from
nonterminals, a sequence of one or more terminal symbols is written within
a grammar rule as a Prolog list, with the empty sequence written as the
empty list [1. The body can contain also executable blocks — interpreted
according to normal Prolog rule — enclosed by the { and } parenthesis. A
simple example of DCG follows:

2The DCG formalism is not defined as an ISO standard at the time of writing this
document.

36

sentence --> noun_phrase, verb_phrase.
verb_phrase --> verb, noun_phrase.
noun_phrase --> [charles].

noun_phrase --> [linda].

verb --> [loves].

So, you can verify that a phrase is correct according to the grammar simply
by the query:

?- phrase(sentence, [charles, loves, linda]).
But also:
?7- phrase(sentence, [Who, loves, linda]l).

which would give, according to the grammar, two solutions, Who bound to
charles, and Who bound to linda.

5.3.1 Predicates

The classic built-in predicates provided for parsing DCG sentences are:

e phrase/2

phrase(Category, List) is true iff the list List can be parsed as
a phrase (i.e. sequence of terminals) of type Category. Category
can be any term which would be accepted as a nonterminal of the
grammar (or in general, it can be any grammar rule body), and must
be instantiated to a non-variable term at the time of the call. This
predicate is the usual way to commence execution of grammar rules.
If List is bou