A Developer’s Guide to Programmable Graphics

Release 1.4
September 2005

Cg Language Toolkit

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS,
LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED
"AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH
RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes
no responsibility for the consequences of use of such information or for any infringement of patents or
other rights of third parties that may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and replaces all
information previously supplied. NVIDIA Corporation products are not authorized for use as critical
components in life support devices or systems without express written approval of NVIDIA
Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
United States and other countries.

Microsoft, Windows, the Windows logo, and DirectX are registered trademarks of Microsoft
Corporation.

OpenGL is a trademark of SGI.
Other company and product names may be trademarks of the respective companies with which they
are associated.

Updates
Any changes, additions, or corrections will be posted at the NVIDIA Cg Web site:

http://developer.nvidia.com/Cg
Refer to this site often to keep up on the latest changes and additions to the Cg language.

Copyright
© 2002—2005 NVIDIA Corporation. All rights reserved.

<
AVIDIA.

NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050
www.nvidia.com

http://www.nvidia.com
http://developer.nvidia.com/Cg

B e .“_\\—

//// \\\\\
- .

o Table of Contents
FOreWOrd. . . e Xiii
Preface XV

Release NOteS XVi
Online Updates.ot XVi

Introduction
tothe CgLanguageot e 1
The Cg Language oot e 2
Cg's Programming Model for GPUS 2
Cg Language Profiles 3
Declaring Programs in Cgottt e 5
Program Inputs and OULPULSo 5
Working with Data 11
BasiC Data TYPES . . o v ot it 11
TYPE CONVEISIONS . . o v ot e e e et e e e e e e e e e e e e e 12
Structures and Member Functions 13
AT Y S . . o e 14
Statements and OPerators.ottt 18
Control FIOoWo 19
Function Definitions and Function Overloading 19
Arithmetic Operators from C 20
Multiplication FUNCLIONS. 20
Vector CONSEIUCEON o e e e e e e e e e e e 21
Boolean and Comparison Operatorsottt e 21
Swizzle Operator 22
Write Mask Operator.ttt e e e e 22
Conditional Operator.ot e 22
Texture Lookups in Advanced Fragment Profiles 23
EffectS. . . o 24
Techniques 25
PaSSES. . . 26
State ASSIgNMENTS e 26
Parameters and Semantics 27
Vertex and Fragment Programsottt e 27
Textures and Samplers 29
Interfaces and Unsized Arrayso 29
Running Cg Programs onthe CPU e 30
808-00504-0000-006

NVIDIA

Cg Language Toolkit

ANNOLALIONS o e 32
More Details. e 32
Cg Standard Library Functions. e 33
Mathematical FUNCLIONS. e 33
Geometric FUNCLIONSo 38
Texture Map FUNCLIONS o e e e 38
Derivative FUNCLIONS e 41
Debugging FUNCLION e 41
Predefined Fragment Program Output Structures. 42
Introduction to the

CgRuntime Library 43
Introducing the Cg Runtime. e 43
Benefits of the Cg Runtime 44
Overview of the CQRuUNtimMe e e e 45
Core Cg RUNLIME e e 49
Core Cg CoNtext.ot e 50
Core Cg Program e 50
Core Cg Parameters 54
Core Cg Error Reporting oo ot 71
API-Specific Cg RUNLIMES. e e e e e 72
Parameter Shadowing 73
OpenGL Cg RUNtiMEo 73
Direct3D Cg RUNLIMEo e e 85
Introduction to COFX e 117
CORX OVBIVIBW . . . ot ot e e e e e e e 117
KeY CONCEPES . . . o o ot 117
Getting Started 118
Technique Validation. e 120
Passes and Pass State 120
Effect Parameters 121
Vertex and Fragment Programso u ittt e 121
Textures and Samplers e 123
Interfaces and UNnSized Arrays oot i e 125
Evaluating Cg Programs using the Virtual Machine 127
ANNOLAtIONS o e 128
OpPeNGL State e 129
OpenGL Sampler Stateo e 141
OpenGL State Not Specifiable with State Assignments 142
ABrief Tutorial 145
Loading the Workspace 145
Understanding Simple.Cgo 146
Program Listing for simple.cg. 147
Definitions for Structures with VaryingData 148
PasSiNg ArgUMENTS ot e 149

ii 808-00504-0000-006

NVIDIA

Basic Transformations. e e 149

Prepare for Lighting 150
Calculating the Vertex Color 151
Further Experimentation 152
Advanced Profile Sample Shaders. 153
Improved SKINNING oo 154
DesSCription 154
Vertex Shader Source Code for Improved Skinning 155
Improved Water e 157
DESCIPtION . . . 157
Vertex Shader Source Code for Improved Water 158
Pixel Shader Source Code for Improved Water 160
Melting Paint e 161
DesSCription 161
Vertex Shader Source Code for Melting Paint. 161
Pixel Shader Source Code for Melting Paint. 163
MUItiPaINt . . . 165
DeSCHIPtiON . . . o 165
Vertex Shader Source Code for MultiPaint. 166
Pixel Shader Source Code for MultiPaint 167
Ray-Traced Refraction e 170
DESCIIPtION . . . e 170
Vertex Shader Source Code for Ray-Traced Refraction 171
Pixel Shader Source Code for Ray-Traced Refraction 172
SKIN o 175
DesSCription e 175
Pixel Shader Source Code for SKin 175
Thin Film Effect 180
DESCIIPtION . . . o 180
Vertex Shader Source Code for Thin Film Effect. 180
Pixel Shader Source Code for Thin Film Effect. 182
Car Paint 9. 183
DesCription 183
Vertex Shader Source Code for CarPaint 9. 184
Pixel Shader Source Code for CarPaint 9 186
Basic Profile Sample Shaders 189
Anisotropic Lighting 190
DesSCription o 190
Vertex Shader Source Code for Anisotropic Lighting. 191
Bump Dot3x2 Diffuse and Specular e 192
DeSCriPtiON . . . o 192
Vertex Shader Source Code for Bump Dot3x2 193
Pixel Shader Source Code for Bump DOt3x2 i 194
Bump-Reflection Mapping oo e 196
DESCIIPtiON . . . 196
808-00504-0000-006

NVIDIA

Cg Language Toolkit

Vertex Shader Source Code for Bump-Reflection Mapping. 197
Pixel Shader Source Code for Bump and Reflection Mapping. 199
Fresnel e 200
DESCIIPtION . . . 200
Vertex Shader Source Code for Fresnel. 200
GlaSS. .« . e 202
DeSCriPtioN o 202
Vertex Shader Source Code for Grass ittt e e e 202
Refraction e 205
DESCIIPtION . . . 205
Vertex Shader Source Code for Refraction. 206
Pixel Shader Source Code for Refraction. 207
Shadow Mapping oo 208
DeSCriPtion o 208
Vertex Shader Source Code for Shadow Mapping. 209
Pixel Shader Source Code for Shadow Mapping 210
Shadow Volume EXtrusion 211
DESCIiPtiON . . . o e 211
Vertex Shader Source Code for Shadow Volume Extrusion 212
SineWave DEmMO e 214
DeSCription o 214
Vertex Shader Source Code for SineWave 215
Matrix Palette SKiNNiNg 217
DESCIiPtiON . . . o e 217
Vertex Shader Source Code for Matrix Palette Skinning. 218
Appendix A

Cg Language Specification i e 221
Language OVEIVIEWottt e e e e e 221
Silent Incompatibilities 221
Similar Operations That Must be Expressed Differently. 222
Differences from ANSI C 222
Detailed Language Specification. 224
DefiNitioNS 224
Profiles o e 225
The Uniform Modifier e 225
Function Declarations i e e 226
Overloading of Functions by Profile 226
Syntax for Parameters in Function Definitions 227
Function Calls e 228
Method Calls 228
INterfaces e 228

Ty S o e i 229
Partial Support of Types e 231
TYpe Categories oo ot e e 232
CONStANTS . . o e e 232

iv 808-00504-0000-006

NVIDIA

Type Qualifiers. 233

TYpe CONVEISIONS ot e e e e e e e e e e e e e 234
Type EqUIVAIENCY o 236
Type-Promotion RUIES. 236
NaMESPACES .« . . v ittt e e 237
Arrays and SUDSCHIPLING oot 238
UNSIZEA AITaYS . . . o ot e e e e e 239
Function Overloading 240
Global Variables 241
Use of Uninitialized Variables. 241
PrEPIOCESSOr .« o o o vt e e 241
Overview of Binding Semantics e 241
Binding SemantiCs 242
Aliasing of Semantics 243
Restrictions on Semantics Within a Structure 243
Additional Details for Binding Semantics. i 243
How Programs Receive and Return Data., 243
StatEMENTS 244
Minimum Requirements for if, while, and for Statements 244
New Vector Operators.ot e e 244
Arithmetic Precision and Range 246
Operator PreCedenceot 247
Operator Enhancements e 247
OPEIALOrS . . v it e e e 248
Reserved WOrds. 249
Cg Standard Library FUNCtions 250
Vertex Program Profiles. 250
Mandatory Computation of Position Qutput. 250
Position INvarianCe.o 250
Binding Semantics for QULPULS. oot e 251
Fragment Program Profiles 252
Binding Semantics for QUtpULS. 252
Appendix B
Language Profiles e 255
OpenGL ARB Vertex Program Profile (arbvpl) 256
OV IV W . . . ot e 256
Accessing OpenGL State 256
Position INvarianCe e 258
Data TYPES . . . o 258
Compatibility with the vp20 Vertex Program Profile. 259
Loading Constantsottt e 260
BINdiNgs o 260
OPIONS . . o e 262
OpenGL ARB Fragment Program Profile (arbfpl). 263
Accessing OpenGL State 263
808-00504-0000-006

NVIDIA

Cg Language Toolkit

MRT SUPPOIT . . . e 263
Resource LIMIts o 264
Language Constructs and SUpport 264
BiNdiNgS . . . o 265
OPtIONS . o et 266
OpenGL NV_vertex_program 3.0 Profile (vp40). i 267
Vertex TeXtUNNG o o ot e e e e e e 267
OpenGL NV_fragment_program 2.0 Profile (fp40). o .. 268
Branching 268
FACE SEmMantiC. oottt 269
OpenGL NV_vertex_program 2.0 Profile (vp30). oo 270
Position INvarianCe 270
Language CONSIIUCESo ittt e e e e 270
BiNdiNgS . . . o 271
OpenGL NV_fragment_program Profile (fp30) 274
Language Constructs and SUPpOrt e 274
BINdINgS 275
Pack and Unpack FUNCLIONSo 276
OpenGL NV_vertex_program 1.0 Profile (vp20). i 279
OVBIVIBW . . o . e 279
Position Invariance 279
Data TYPES . o vt e e e 279
BINdINgS 280
OpenGL NV_texture_shader and NV_register_combiners Profile (fp20). 283
OVBIVIBW . . o . e e e e 283
RESIICHIONS o 283
MOIfIErS . . o o 284
Language Constructs and SUPpOrto 285
Standard Library FUNCLIONS 286
BINdINgS 288
Auxiliary Texture FUNCLIONSo e 290
EXamples. 295
DirectX Vertex Shader 2.x Profiles (VS_2_*) i 296
OVEIVIBW . o o et et e e e e e e e e e e e e e 296
1YL= 0 T Y2 296
Statements and Operators.ttt 297
Data TYPES . . o e 297
USING AITAYS . . . o et it e e e e e e e e e 297
BiNdiNgS . . . o 298
OPIONS . . ot e 299
DirectX Pixel Shader 2.x Profiles (pS_2_*) i 300
MmOy . . o 300
Language Constructs and SUpport 301
BINdiNgS . . . o 302
OPLIONS . . o e e 303
vi 808-00504-0000-006

NVIDIA

Limitations in this Implementation. 303

DirectX Vertex Shader 1.1 Profile (vsS_1_1) e 304
Memory RestriCtioNS 304
Language Constructs and SUPPOrt ot 304
BINdiNgs o 306
OPtIONS . . o o 307

DirectX Pixel Shader 1.x Profiles (pS_1_*) o oo 308
OVBIVIBW . o e e 308
MOdIfiErS . . . 309
Language Constructs and SUPPOrt ot e 310
Standard Library FUNCLIONSo 311
BINdiNgs o 312
Auxiliary Texture FUNCLIONS e 315
EXamples 319

Appendix C

Nine Steps to High-Performance Cg. 321
Appendix D

Cg Compiler OpLioNS 329
INdeX. .o e 331
808-00504-0000-006

NVIDIA

Vi

Cg Language Toolkit

viii 808-00504-0000-006
NVIDIA

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

© 0N OAMODNRE

Fig.

=
o

Fig.

=
=

Fig.

=
N

Fig.

=
.

Fig.

=
»

Fig.

=
o

Fig.

=
o

Fig.

=
N

Fig.

=
o

Fig.

=
©

Fig.

N
o

Fig.

N
=

Fig.

N
N

Fig.

808-00504-0000-006

Cg’s Model of the GPU
The Parts of the Cg Runtime API
The Cg_Simple Workspace
The simple.cg Shader
Example of Improved Skinning
Example of Improved Water
Example of Melting Paint
Example of MultiPaint
Example of Ray-Traced Refraction
Example of Skin
Example of Thin Film Effect
Example of Car Paint 9
Example of Anisotropic Lighting

Example of Bump-Reflection Mapping
Example of Fresnel
Example of Grass

Example of Refraction
Example of Shadow Mapping
Example of Shadow Volume Extrusion
Example of Sine Wave
Example of Matrix Palette Skinning

Example of Bump Dot3x2 Diffuse and Specular

NVIDIA

Contents, Figures, and Tables

List of Figures

Cg Language Toolkit

List of Figures

X 808-00504-0000-006
NVIDIA

List of Tables

Table 1. Mathematical Functions. 34
Table 2. Geometric Functions oL 38
Table 3. Texture Map Functionso 39
Table 4. Derivative Functionso 41
Table 5. Debugging Functiono 42
Table 6. CgFX OpenGL State Manager States 130
Table 7. Enable/Disable States. 139
Table 8. sampler_state State Assignments 141
Table 9. Type Conversions. i it e e e e e 235
Table 10. Expanded Operators. o o e 247
Table 11. Vertex Output Binding Semantics. 251
Table 12. Fragment Output Binding Semantics 252
Table 16. arbvpl Uniform Input Binding Semantics 260
Table 17. arbvpl Varying Input Binding Semantics. 261
Table 18. arbvpl Varying Output Binding Semantics. 261
Table 19. arbfpl Uniform Input Binding Semantics 265
Table 20. arbfpl Varying Input Binding Semantics 265
Table 21. arbfpl Varying Output Binding Semantics. 265
Table 22. fp40 Compiler Branching Options 269
Table 23. vp30 Uniform Input Binding Semantics 271
Table 24. wvp30 Varying Input Binding Semantics 272
Table 25. vp30 Varying Output Binding Semantics 272
Table 26. fp30 Uniform Input Binding Semantics 275
Table 27. fp30 Varying Input Binding Semantics. 275
Table 28. fp30 Varying Output Binding Semantics 276
Table 29. vp20 Uniform Input Binding Semantics 280
Table 30. vp20 Varying Input Binding Semantics. 281
Table 31. vp20 Varying Output Binding Semantics 281
Table 32. NV_texture_shader and NV_register_combiners Instruction Set Modifiers . . . 285
Table 33. Supported Standard Library Functions 286
Table 34. Required Projective Texture Lookup Swizzles 288
808-00504-0000-006 xi

NVIDIA

Cg Language Toolkit

List of Tables

Table 35. fp20 Uniform Binding Semantics 289
Table 36. fp20 Varying Input Binding Semantics. 289
Table 37. fp20 Varying Output Binding Semantics 290
Table 38. fp20 Auxiliary Texture Functions 291
Table 39. vs_2_* Uniform Input Binding Semantics 298
Table 40. vs_2_* Varying Input Binding Semantics 298
Table 41. vs_2_* Varying Output Binding Semantics. 299
Table 42. ps_2_* Uniform Input Binding Semantics 302
Table 43. ps_2_* Varying Input Binding Semantics 302
Table 44. ps_2_* Varying Output Binding Semantics 302
Table 45. vs_1_1 Uniform Input Binding Semantics 306
Table 46. vs_1 1 Varying Input Binding Semantics. 306
Table 47. vs_1_1 Varying Output Binding Semantics. 307
Table 48. ps_1_x Instruction Set Modifiers 309
Table 49. Supported Standard Library Functions 311
Table 50. Required Projective Texture Lookup Swizzles 312
Table 51. ps_1_x Uniform Input Binding Semantics 313
Table 52. ps_1_x Varying Input Binding Semantics 314
Table 53. ps_1_x Varying Output Binding Semantics. 314
Table 54. ps_1_ x Auxiliary Texture Functions 315
Xii 808-00504-0000-006

NVIDIA

Foreword

We are in the midst of a great transition in computer graphics, both in terms
of graphics hardware and in terms of the visual quality and authoring
process for games, interactive applications, and animation. Graphics
hardware has evolved from “big iron” graphics workstations costing
hundreds of thousands of dollars to single-chip graphics processing units
(GPUs) whose performance and features have grown to match and now even
to exceed traditional workstations. The processing power provided by a
modern GPU in a single frame rivals the amount of computation that used to
be expended for an offline-rendered animation frame. Indeed, at the launch
of GeForce3 on the Apple Macintosh, a convincing version of Pixar’s Luxo, Jr.
was demonstrated running interactively in real-time. At the 2001 SIGGRAPH
conference, an interactive version of a more recent film, Square Studios’ Final
Fantasy, was shown running in real-time, again on a GeForce3.

Although these feats of computation are astounding, there is much more to
come. Today’s GPUs evolve very quickly. Typically, a product generation is
only six months long, and with each new product generation comes a two-
fold increase in performance. Graphics processor performance increases at
approximately three times the rate of microprocessors-Moore’s Law cubed!
In addition to the performance increases, each year brings new hardware
features, supported by new application programming interfaces (APIs). This
dizzying pace is difficult for developers to adapt to, but adapt they must.

Developers and users are demanding better rendering quality and more
realistic imagery and experiences. Users don’t care about the details; they
simply want games and other interactive applications to look more like
movies, special effects, and animation. Developers want more power (always
more), along with more flexibility in controlling the massively capable GPUs
of today and tomorrow. APIs do not, and cannot, keep up with the rapid
pace of innovation in GPUs. As APIs and underlying technologies change,
programmers, artists, and software publishers struggle to adapt to the
change and the churn of the hardware/software platform.

What's needed is to raise the level of abstraction for interaction with GPUs.
Continued updates and improvements to the hardware and APIs are too
painful if developers are too “close to the metal.” This problem was

808-00504-0000-006 Xiii
NVIDIA

Cg Language Toolkit

exacerbated by the advent of programmability in GPUs. Older GPUs had a
small number of controllable or configurable rendering paths, but the most
recent technology is highly programmable, and becoming ever more so. We
can now write short vertex and fragment programs to be executed by the
GPU. This requires great skill, and is only possible with short programs.

When GPU hardware grows to allow programs of hundreds, thousands, or
even more instructions, assembly coding will no longer be practical. Rather
than programming each rendering state, each bit, byte, and word of data and
control through a low-level assembly language, we want to express our ideas
in a more straightforward form, using a high-level language.

Thus Cg, “C for Graphics,” becomes necessary and inevitable. Just as C was
derived to expose the specific capabilities of processors while allowing
higher-level abstraction, Cg allows the same abstraction for GPUs. Cg
changes the way programmers can program: focusing on the ideas, the
concepts, and the effects they wish to create-not on the details of the
hardware implementation. Cg also decouples programs from specific
hardware because the language is functional, not hardware implementation-
specific. Also, since Cg can be compiled at run time on any platform,
operating system, and for any graphics hardware, Cg programs are truly
portable. Finally, and perhaps best of all, Cg programs are future-proof and
can adapt to run well on future products. The compiler can optimize directly
for a new target GPU that perhaps did not even exist when the original Cg
program was written.

This book is intended as an introduction to Cg, as well as a practical
handbook to get programmers started developing in Cg. It includes a
language description, a reference for the standard and run-time libraries, and
is full of helpful examples. The goal for this book is to be both an
introduction and a tool for the new user, as well as a reference and resource
for developers as they become more proficient.

Welcome to the world of Cg!

David Kirk
Chief Scientist

NVIDIA Corporation

Xiv 808-00504-0000-006
NVIDIA

The

Preface

goal of this book is to introduce to you Cg, a new high-level language for

graphics programming. To that end, we have organized this document into
the following sections:

a

808-00504-0000-006

“Introduction to the Cg Language” on page 1
A quick introduction to the current release of Cg, with everything you
need to know to start working it.

“Cg Standard Library Functions” on page 33
A list of the Standard Library functions, which can help to reduce your
program development time.

“Introduction to the Cg Runtime Library” on page 43
An introduction to the Cg runtime APIs, which allow you to easily
compile Cg programs and pass data to them from within applications.

“Introduction to CgFX” on page 117
The CgFX API, which supports this Cg extended file format, is described.

“A Brief Tutorial” on page 145

A description of a simple Cg program and Microsoft Visual Studio
workspace (both provided on the accompanying CD) that you can use to
start experimenting with Cg.

“Advanced Profile Sample Shaders” on page 153
A list of sample NV30 shaders, complete with source code.

“Basic Profile Sample Shaders” on page 189

A list of sample NV2X shaders, complete with source code.

Appendix A, “Cg Language Specification” on page 221

The formal Cg language specification.

Appendix B, “Language Profiles” on page 255

Describes features and restrictions of the currently supported language
profiles: DirectX 8 vertex, DirectX 8 pixel, OpenGL ARB vertex, NV2X
OpenGL vertex, NV30 OpenGL vertex, NV30 OpenGL fragment,

OpenGL ARB fragment, NV40 OpenGL vertex, and NV40 OpenGL
fragment.

XV
NVIDIA

Cg Language Toolkit

O Appendix C, “Nine Steps to High-Performance Cg” on page 321
Strategies for getting the most out of your Cg code.

O Appendix D, “Cg Compiler Options” on page 329
A list of the various command-line options that the Cg compiler accepts.

O Cg Developer’s CD
The CD provided with this book contains the entire Cg release, which
allows you get started immediately. The readme.txt file on the CD
describes the contents of the release in detail.

You can begin working with Cg immediately by reading the “Introduction to
the Cg Language” on page 1 and then going through “A Brief Tutorial” on
page 145. Once you have a basic understanding of the Cg language, use the
“Advanced Profile Sample Shaders” on page 153 and “Basic Profile Sample
Shaders” on page 189 as a basis to build your own effects.

Release Notes

Release notes for Cg are now contained in a separate document that is part of
the Cg distribution.

Please report any bugs, issues, and feedback to NVIDIA by e-mailing
cgsupport@nvidia.com. We will expeditiously address any reported
problems.

Online Updates

Any changes, additions, or corrections are posted at the NVIDIA Cg Web
site:

http://developer.nvidia.com/Cg

Refer to this site often to keep up on the latest changes and additions to the
Cg language. Information on how to report any bugs you may find in the
release is also available on this site.

XVi 808-00504-0000-006
NVIDIA

http://developer.nvidia.com/Cg

Introduction
to the Cg Language

Historically, graphics hardware has been programmed at a very low level.
Fixed-function pipelines were configured by setting states such as the
texture-combining modes. More recently, programmers configured
programmable pipelines by using programming interfaces at the assembly
language level. In theory, these low-level programming interfaces provided
great flexibility. In practice, they were painful to use and presented a serious
barrier to the effective use of hardware.

Using a high-level programming language, rather than the low-level
languages of the past, provides several advantages:

O A high-level language speeds up the tweak-and-run cycle when a shader
is developed. The ultimate test for a shader is “Does it look right?” To
that end, the ability to quickly prototype and modify a shader is crucial
to the rapid development of high-quality effects.

O The compiler optimizes code automatically and performs low-level
tasks, such as register allocation, that are tedious and prone to error.

O Shading code written in a high-level language is much easier to read and
understand. It also allows new shaders to be easily created by modifying
previously written shaders. What better way to learn than from a shader
written by the best artists and programmers?

Q Shaders written in a high-level language are portable to a wider range of
hardware platforms than shaders written in assembly code.

This chapter introduces Cg (C for Graphics), a high-level language tailored
for programming GPUs. Cg offers all the advantages just described, allowing
programmers to finally combine the inherent power of the GPU with a
language that makes GPU programming easy.

808-00504-0000-006 1
NVIDIA

Cg Language Toolkit

The Cg Language

Cg is based on C, but with enhancements and modifications that make it easy
to write programs that compile to highly optimized GPU code. Cg code looks
almost exactly like C code, with the same syntax for declarations, function
calls, and most data types.

Before describing the Cg language in detail, it is important to explain the
reason for some of the differences that exist between Cg and C.
Fundamentally, it comes down to the difference in the programming models
for GPUs and for CPUs.

Cg's Programming Model for GPUs

CPUs normally have only one programmable processor. In contrast, GPUs
have at least two programmable processors, the vertex processor and the
fragment processor, plus other non-programmable hardware units. The
processors, the non-programmable parts of the graphics hardware, and the
application are all linked through data flows. Cg’s model of the GPU is
illustrated by Fig. 1.

3D
Application
or Game
3D API

Commands

3D API:

OpenGL

or Direct3D
CPU - GPU Boundary
GPU
Command & .
Data Stream Assembled Pixel i
Vertex Index Polygons, Lines Location Pixel
Stream & Points Stream Updates
GPU) Primitive | o Rasterization & | mummmp Raster | ey Buffer

Front EndI Assembly Interpolation Operations Frame

Pretransformed Transformed Rasterized Transformed
Vertices Vertices Pretransformed Fragments
Fragments Pr bl
Programmable ‘;9"”“"“’ ey
Vertex Processol P::ﬂ;:i::

Fig. 1. Cg’s Model of the GPU

808-00504-0000-006
NVIDIA

Introduction to the Cg Language

The Cg language allows you to write programs for both the vertex processor
and the fragment processor. We refer to these programs as vertex programs and
[fragment programs, respectively. (Fragment programs are also known as pixe/
programs or pixel shaders, and we use these terms interchangeably in this
document.) Cg code can be compiled into GPU assembly code, either on
demand at run time or beforehand.

Cg makes it easy to combine a Cg fragment program with a handwritten
vertex program, or even with the non-programmable OpenGL or DirectX
vertex pipeline. Likewise, a Cg vertex program can be combined with a
handwritten fragment program, or with the non-programmable OpenGL or
DirectX fragment pipeline.

Cg Language Profiles

Because all CPUs support essentially the same set of basic capabilities, the C
language supports this set on all CPUs. However, GPU programmability has
not quite yet reached this same level of generality. For example, the current
generation of programmable vertex processors supports a greater range of
capabilities than do the programmable fragment processors. Cg addresses
this issue by introducing the concept of language profiles. A Cg profile defines
a subset of the full Cg language that is supported on a particular hardware
platform or APIL The current release of the Cg compiler supports the
following profiles:

0 OpenGL ARB vertex programs
Runtime profile: CG_PROFILE_ARBVP1
Compiler option: -profile arbvpl

O OpenGL ARB fragment programs
Runtime profile: CG_PROFILE_ARBFP1
Compiler option: -profile arbfpl

0 OpenGL NV40 vertex programs
Runtime profile: CG_PROFILE_VP40
Compiler option: ~ -profile vp40

O OpenGL NV40 fragment programs
Runtime profile: CG_PROFILE_FP40
Compiler option: -profile fp40

O OpenGL NV30 vertex programs
Runtime profile: CG_PROFILE_VP30
Compiler option: -profile vp30

808-00504-0000-006 3
NVIDIA

Cg Language Toolkit

O OpenGL NV30 fragment programs
Runtime profile: CG_PROFILE_FP30
Compiler option: -profile fp30

0O OpenGL NV2X vertex programs
Runtime profile: CG_PROFILE_VP20
Compiler option: -profile vp20

O OpenGL NV2X fragment programs
Runtime profile: CG_PROFILE_FP20
Compiler option: -profile fp20

O DirectX 9 vertex shaders
Runtime profiles: CG_PROFILE_VS_2_X
CG_PROFILE_VS 2 0
Compiler options: -profile vs_2_x
-profile vs_2 0

O DirectX 9 pixel shaders
Runtime profiles: CG_PROFILE_PS_2_X
CG_PROFILE_PS 2 0
Compiler options: -profile ps_2_x
-profile ps_ 2 0

Q DirectX 8 vertex shaders
Runtime profile: CG_PROFILE_VS 1 1
Compiler option: -profile vs_1_1

O DirectX 8 pixel shaders
Runtime profiles: CG_PROFILE_PS_1_3
CG_PROFILE_PS 1 2
CG_PROFILE_PS_1 1
Compiler options: -profile ps_1_3
-profile ps_1_2
-profile ps_1 1
The DirectX 9 profiles (vs_2_x and ps_2_x), OpenGL ARB profiles (arbfpl
and arbvpl), NV30 OpenGL profiles (fp30 and vp30), and NV40 OpenGL
profiles (fp40 and vp40) generally support longer, more complex programs
and offer more features and functionality to the developer. These are referred
to as adpanced profiles.

The DirectX 8 profiles (vs_1_1 and ps_1_3) and NV2X OpenGL profiles
(fp20 and vp20) have more restrictions on program length and available

4 808-00504-0000-006
NVIDIA

Introduction to the Cg Language

features, especially in fragment programs. These are referred to as basic
profiles.

See “Language Profiles” on page 255 for detailed descriptions of these
and related profiles.

Declaring Programs in Cg

Program

808-00504-0000-006

CPU code generally consists of one program specified by main() in C. In
contrast, a Cg program can have any name. A program is defined using the
following syntax:

<return-type> <program-name>(<parameters>)[: <semantic-name>]
{7 ...*}%

Inputs and Outputs

The programmable processors in GPUs operate on streams of data. The
vertex processor operates on a stream of vertices, and the fragment processor
operates on a stream of fragments.

A programmer can think of the main program as being executed just once on
a CPU. In contrast, a program is executed repeatedly on a GPU—once for each
element of data in a stream. The vertex program is executed once for each
vertex, and the fragment program is executed once for each fragment.

The Cg language adds several capabilities to C to support this stream-based
programming model. For new Cg programmers, these capabilities often take
some time to understand because they have no direct correspondence to C
capabilities. However, the sample programs later in this document
demonstrate that it really is easy to use these capabilities in Cg programs.

Two Kinds of Program Inputs
A Cg program can consume two different kinds of inputs:

Q Varying inputs are used for data that is specified with each element of the
stream of input data. For example, the varying inputs to a vertex
program are the per-vertex values that are specified in vertex arrays. For
a fragment program, the varying inputs are the interpolants, such as
texture coordinates.

Q Uniform inputs are used for values that are specified separately from the
main stream of input data, and don’t change with each stream element.
For example, a vertex program typically requires a transformation
matrix as a uniform input. Often, uniform inputs are thought of as
graphics state.

NVIDIA

Cg Language Toolkit

Varying Inputs to a Vertex Program

A vertex program typically consumes several different per-vertex (varying)
inputs. For example, the program might require that the application specify
the following varying inputs for each vertex, typically in a vertex array:

O Model space position
O Model space normal vector
O Texture coordinate

In a fixed-function graphics pipeline, the set of possible per-vertex inputs is
small and predefined. This predefined set of inputs is exposed to the
application through the graphics API. For example, OpenGL 1.4 provides the
ability to specify a vertex array of normal vectors.

In a programmable graphics pipeline, there is no longer a small set of
predefined inputs. It is perfectly reasonable for the developer to write a
vertex program that uses a per-vertex refractive index value as long as the
application provides this value with each vertex.

Cg provides a flexible mechanism for specifying these per-vertex inputs in
the form of a set of predefined names. Each program input must be bound to
a name from this set. In the following structure, the vertex program
definition binds its parameters to the predefined names POSITION, NORMAL,
TANGENT, and TEXCOORD3. The application must provide the vertex array data
associated with these predefined names.

struct myinputs {

float3 myPosition - POSITION;
float3 myNormal : NORMAL;
float3 myTangent = TANGENT;
float refractive_index : TEXCOORD3;

}:

outdata foo(myinputs indata) {
/* ../
// Within the program, the parameters are referred to as
// “indata.myPosition”, “indata.myNormal”, and so on.
/* ../

}

We refer to the predefined names as binding semantics. The following set of
binding semantics is supported in all Cg vertex program profiles. Some Cg
profiles support additional binding semantics.

POSITION BLENDWEIGHT
NORMAL TANGENT

6 808-00504-0000-006
NVIDIA

Introduction to the Cg Language

BINORMAL PSI1ZE
BLENDINDICES TEXCOORDO—-TEXCOORD7

The binding semantic POSITIONO is equivalent to the binding semantic
POSITION; likewise, the other binding semantics have similar equivalents.

In the OpenGL Cg profiles, binding semantics implicitly specify the mapping
of varying inputs to particular hardware registers. However, in DirectX-
based Cg profiles there is no such implied mapping.

Binding semantics may be specified directly on program parameters rather
than on struct elements. Thus, the following vertex program definition is

legal:

outdata foo(float3 myPosition > POSITION,
float3 myNormal : NORMAL,
float3 myTangent - TANGENT,

float refractive_index : TEXCOORD3) {
VA 4
// Within the program, the parameters are referred to by
// their variable names: “myPosition”, “myNormal”,
// “myTangent”, and “‘refractive_index”.
/> .../
}

Varying Outputs to and from Vertex Programs

The outputs of a vertex program pass through the rasterizer and are made
available to a fragment program as varying inputs. For a vertex program and
fragment program to interoperate, they must agree on the data being passed
between them.

As it does with the data flow between the application and vertex program,
Cg uses binding semantics to specify the data flow between the vertex
program and fragment program.

This example shows the use of binding semantics for vertex program output:

// Vertex program
struct myvf {
float4 pout
float4 diffusecolor
float4 uvO
float4 uvl
}:
myvf foo(/* ... */) {
myvf outstuff;
/* ../

POSITION; // Used for rasterization
COLORO;

TEXCOORDO;

TEXCOORD1 ;

808-00504-0000-006 7
NVIDIA

Cg Language Toolkit

return outstuff;

}

And, this example shows how to use this same data as the input to a
fragment program:

// Fragment program
struct myvf {

float4 diffusecolor : COLORO;

float4 uvO - TEXCOORDO;

float4 uvl - TEXCOORD1;
};

fragout bar(myvf indata) {
float4 x = indata.uvO;
/> ../

}

The following binding semantics are available in all Cg vertex profiles for
output from vertex programs: POSITION, PS1ZE, FOG, COLORO—COLOR1, and
TEXCOORDO-TEXCOORD?.

All vertex programs must declare and set a vector output that uses the
POSITION binding semantic. This value is required for rasterization.

To ensure interoperability between vertex programs and fragment programs,
both must use the same struct for their respective outputs and inputs. For
example

struct myvert2frag {
float4 pos : POSITION;
float4 uv0 : TEXCOORDO;
float4 uvl TEXCOORD1;

3

// Vertex program
myvert2frag vertmain(...) {
myvert2frag outdata;
/* ../
return outdata;

}

// Fragment program

void fragmain(myvert2frag indata) {
float4 tcoord = indata.uvO;
VA 4

}

8 808-00504-0000-006
NVIDIA

Introduction to the Cg Language

Note that values associated with some vertex output semantics are intended
for and are used by the rasterizer. These values cannot actually be used in the
fragment program, even though they appear in the input struct. For
example, the indata.pos value associated with the POSITION fragment
semantic may not be read in the fragmain shader.

Varying Outputs from Fragment Programs

Binding semantics are always required on the outputs of fragment programs.
Fragment programs are required to declare and set a vector output that uses
the COLOR semantic. This value is usually used by the hardware as the final
color of the fragment. Some fragment profiles also support the DEPTH output
semantic, which allows the depth value of the fragment to be modified, and
some support additional color outputs for hardware that supports multiple
render targets (MRTs).

As with vertex programs, fragment programs may return their outputs in the
body of a structure. However, it is usually more convenient to either declare
outputs as out parameters:

void main(/* ... */,
out float4 color : COLOR, out float depth : DEPTH) {
/* ...*/
color = diffuseColor * /* __..*/;
depth = /*_.._.*/;
}
or to associate a semantic with the return value of the shader:
float4 main(/* ... */) : COLOR {
/* ... */
return diffuseColor * /* ... */;
s

The following example shows a simple vertex program that calculates
diffuse and specular lighting. Two structures for varying data, appin and
vertout, are also declared. Don’t worry about understanding exactly what
the program is doing —the goal is simply to give you an idea of what Cg code
looks like. “A Brief Tutorial” on page 145 explains this shader in detail.

// Define inputs from application.
struct appin

{
float4 Position - POSITION;
float4 Normal - NORMAL;
};
808-00504-0000-006 9

NVIDIA

Cg Language Toolkit

// Define outputs from vertex shader.
struct vertout
{
float4 HPosition
float4 Color

}:

POSITION;
COLOR;

vertout main(appin IN,
uniform float4x4 ModelViewProj,
uniform float4x4 ModelViewlT,
uniform float4 LightVec)

vertout OUT;

// Transform vertex position into homogenous clip-space.
OUT.HPosition = mul(ModelViewProj, IN.Position);

// Transform normal from model-space to view-space.
float3 normalVec = normalize(mul(ModelViewlT,
IN_Normal) .xyz);

// Store normalized light vector.
float3 lightVec = normalize(LightVec.xyz);

// Calculate half angle vector.
float3 eyeVec = float3(0.0, 0.0, 1.0);
float3 halfVec = normalize(lightVec + eyeVec);

// Calculate diffuse component.
float diffuse = dot(normalVec, lightVec);

// Calculate specular component.
float specular = dot(normalVec, halfVec);

// Use the lit function to compute lighting vector from
// diffuse and specular values.
float4 lighting = lit(diffuse, specular, 32);

// Blue diffuse material
float3 diffuseMaterial = float3(0.0, 0.0, 1.0);

// White specular material
float3 specularMaterial = float3(1.0, 1.0, 1.0);

// Combine diffuse and specular contributions and

10 808-00504-0000-006
NVIDIA

Introduction to the Cg Language

// output final vertex color.
OUT.Color.rgb = lighting.y * diffuseMaterial +

lighting.z * specularMaterial;

OUT.Color.a = 1.0;

return OUT;

Working with Data

Like C, Cg supports features that create and manipulate data:

a

a
a
a

Basic types
Structures
Arrays

Type conversions

Basic Data Types
Cg supports seven basic data types:

a float
A 32-bit IEEE floating point (s23e8) number that has one sign bit, a 23-bit
mantissa, and an 8-bit exponent. This type is supported in all profiles,
although the DirectX 8 pixel profiles implement it with reduced
precision and range for some operations.

Q half
A 16-bit IEEE-like floating point (s10e5) number.

aQ int
A 32-bit integer. Profiles may omit support for this type or have the
option to treat int as Float.

a fixed
A 12-bit fixed-point number (s1.10) number. It is supported in all
fragment profiles.

Q bool
Boolean data is produced by comparisons and is used in if and
conditional operator (?:) constructs. This type is supported in all
profiles.

a sampler*

808-00504-0000-006 11

NVIDIA

Cg Language Toolkit

The handle to a texture object comes in six variants: sampler, sampleriD,
sampler2D, sampler3D, samplerCUBE, and samplerRECT. With one
exception, these types are supported in all pixel profiles, fragment
profiles, and the NV40 vertex program profile. The samplerRECT type is
not supported in the DirectX profiles.

a string
Although it is not possible to use strings in Cg program code for any
currently existing profile, they can be set and have their values queried
though the Cg runtime AP thus, they can be useful for storing
information about the contents of a Cg file.

Cg also includes built-in vector data types that are based on the basic data
types. A sample of these built-in vector data types includes (but is not limited
to) the following:

float4 float3 float2 floatl
bool4 bool3 bool2 booll

Additional support is provided for matrices of up to four-by-four elements.
Here are some examples of matrix declarations:

floatlxl matrixl; // One element matrix

float2x3 matrix2; // Two-by-three matrix (six elements)
float4x2 matrix3; // Four-by-two matrix (eight elements)
floatdx4 matrix4; // Four-by-four matrix (sixteen
elements)

Note that the multi-dimensional array float M[4][4] is not type-equivalent
to the matrix float4x4 M.

There are no unions or bit fields in Cg at present.

Type Conversions

12

Type conversions in Cg work largely as they do in C. Type conversions may
be explicitly specified using the C (newtype) cast operator.

Cg automatically performs type promotion in mixed-type expressions, just
as C does. For example, the expression floatvar * halfvar is compiled as
floatvar * (Float) halfvar.

Cg uses different type-promotion rules than C does in one case: A constant
without an explicit type suffix does not cause type promotion. CG compiles
the expression halfvar * 2.0 as halfvar * (half) 2.0.

In contrast, C would compile it as ((double) halfvar) * 2.0. Cg uses
different rules than C to minimize inadvertent type promotions that cause

808-00504-0000-006
NVIDIA

Introduction to the Cg Language

computations to be performed in slower, high-precision arithmetic. If the C
behavior is desired, the constant should be explicitly typed to force the type
promotion: halfvar * 2_0f is compiled as ((float) halfvar) * 2.0f.

Cg uses the following type suffixes for constants:
Q f for float
Q h for half

Q x for fixed

Structures and Member Functions

Cg supports structures the same way C does. Cg adopts the C++ convention
of implicitly performing a typedef based on the tag name when a struct is
declared:

struct mystruct {
/> ... */ };
mystruct s; // Define “s” as a “mystruct”.

Structures may define member functions in addition to member variables.
Member functions provide a convenient way of encapsulating helper
functions associated with the data in the structure, or as a means of
describing the behavior of a data object.

Structure member functions are declared and defined within the body of the
structure definition:

struct Foo {
float val;
float helper(float x) {
return val + x;

}
}:

Member functions may reference their arguments or the member variables of
the structure in which they are defined. The result of referring to a variable
outside the scope of the enclosing structure (such as, global variables) is
undefined; instead, passing such variables as arguments to member
functions that need them is recommended.

Member functions are invoked using the usual “.” notation:

float4 main(uniform Foo myfoo, uniform float myval) : COLOR {
return myfoo.helper(myval);
¥

808-00504-0000-006 13
NVIDIA

Cg Language Toolkit

Arrays

14

Note that in the current release, member variables must be declared before
member functions that reference them; additionally, member functions may
not be overloaded based on profile.

Arrays are supported in Cg and are declared just as in C. Because Cg does
not support pointers, arrays must always be defined using array syntax
rather than pointer syntax:

// Declare a function that accepts an array
// of five skinning matrices.
returnType foo(float4x4 mymatrix[5]) {/* -.. */};

Basic profiles place substantial restrictions on array declaration and usage.
General-purpose arrays can only be used as uniform parameters to a vertex
program. The intent is to allow an application to pass arrays of skinning
matrices and arrays of light parameters to a vertex program.

The most important difference from C is that arrays are first-class types. That
means array assignments actually copy the entire array, and arrays that are
passed as parameters are passed by value (the entire array is copied before
making any changes), rather than by reference.

Unsized Arrays

Cg supports unsized arrays—arrays with one or more dimensions having no
specified length. This makes it possible to write Cg functions that operate on
arrays of arbitrary size. For example:

float myfunc(float vals[]) {

}

Here, myfunc() is declared to be a function of a single parameter, vals,
which is a one-dimensional array of floats. However, the length of the vals
array is not specified.

The effect of this declaration is that any subsequent call to myfunc() that
passes a one-dimensional array of floats of any size resolves to the declared
function. For example:

float myfunc(float vals[]) {

}

float4 main(...) {

808-00504-0000-006
NVIDIA

Introduction to the Cg Language

float valsl[2];
float vals2[76];

float myvall
float myval2

myfunc(valsl); // match
myfunc(vals2); // match

) ‘e

The actual length of an array parameter (sized or unsized) may be queried
via the . length pseudo-member:

float myfunc(float vals[]) {
float sum = O;
for (int 1 = 0; 1 < vals.length; i++) {
sum += vals[i];

}

return sum;

}

The size of a particular dimension of a multidimensional array may be
queried by dereferencing the appropriate number of dimensions of the array.
For example, vals2d[0] - Iength gives the length of the second dimension of
the two-dimensional vals2d array:

float myfunc(float vals2d[]1[1]) {
float sum = 0;

for (int 1 = 0; i < vals2d.length; i++) {
for (int j = 0; i1 < vals2d[0].length; j++) {
sum += vals[i][i];
}
¥

return sum;

}

If the length of any dimension of an array parameter is specified, that
parameter only matches calls with variables whose corresponding
dimension is of the specified length. For example:

float func(float vals[6][]) {

)
float4 main(...) {
float vi[6][7]:

float v2[5][11];

float myvl = func(valsl); // match: 6 == 6

808-00504-0000-006 15
NVIDIA

Cg Language Toolkit

16

float myv2 = func(vals2); // no match: 5 I= 6
}

Unsized arrays may only be declared as function parameters—they may not
be declared as variables. Furthermore, in all current profiles, the actual array
length and address calculations implied by array indexing must be known at
compile time.

Unsized array parameters of top-level functions, such as, main(), may be
connected to sized arrays that are created in the runtime, or their size may be
set directly for convenience. See the cgSetArraySize() manual in the Cg
core runtime documentation for details.

Interfaces

Cg supports nterfaces, a language construct found in other languages,
including Java and C# (and in C++ as pure virtual classes). Interfaces provide
a means of abstractly describing the member functions a particular structure
provides, without specifying how those functions are implemented. When
used in conjunction with parameter instantiation by the Cg runtime, this
abstraction makes it possible to plug in any structure that implements a
given interface into a program —even if the structure was not known to the
author of the original program.

An interface declaration describes a set of member functions that a structure
must define in order to implement the named interface. Interfaces contain
only function prototype definitions. They do not contain actual function
implementations or data members. For example, the following example
defines an interface named Light consisting of two methods, illuminate()
and color():

interface Light {
float3 illuminate(float3 P, out float3 L);
float3 color(void);

L H
A Cg structure may optionally implement an interface. This is signified by
placing a “:” and the name of the interface after the name of the structure

being defined. The methods required by the interface must be defined within
the body of the structure. For example:

struct SpotLight : Light {
sampler2D shadow;
samplerCUBE distribution;
float3 Plight, Clight;
float3 illuminate(float3 P, out float3 L) {

808-00504-0000-006
NVIDIA

Introduction to the Cg Language

L = normalize(Plight - P);
return Clight * tex2D(shadow, P).xxx *
texCUBE(distribution, L).xyz;
}
float3 color(void) {
return Clight;
}
}:
Here, the SpotLight structure is defined, which implements the Light
interface. Note that the i lluminate() and color() methods are defined
within the body of the structure, and that their implementations are able to
reference data members of the SpotLight structure (for example, Plight,
Clight, shadow, and distribution).

Function parameters, local variables, and global variables all may have
interface types. Interface parameters to top-level functions—such as
main() —must be declared as uniform.

A structure that implements a particular interface may be used wherever its
interface type is expected. For example:

float3 myfunc(Light light) {
float3 result = light_illuminate(.-..);

}

float4 main(uniform SpotLight spot) {
float3 color = myfunc(spot);

}

Here, the SpotLight variable spot may be used as a generic Light in the call
to myfunc(), because SpotLight implements the Light interface.

It is possible to declare a local variable of an interface type. However, a
concrete structure must be assigned to that variable before any of the

interface"s methods may be called. For example:
Light mylight;
SpotLight spot;
float3 color;
- /* initialize spot */ ...

color = mylight.illuminate(...); // Error
mylight = spot;
color = mylight.illuminate(...); // OK

808-00504-0000-006 17
NVIDIA

Cg Language Toolkit

Under all current profiles, the concrete implementation of all interface
method calls must be resolvable at compile time. There is no dynamic run-
time determination of which implementation to call under any current
profile.

See the interfaces_ogl example, included in the Cg distribution, for an
example of the use of interfaces.

Notes and Caveats

The following limitations may be addressed in future releases:

Q There is no inheritance per se in Cg: a structure may not inherit from
another structure.

Q Structures may only implement a single interface.
O Interfaces cannot be extended or combined.

Although there is no structure inheritance, it is possible to define a default
implementation of a particular interface method. The default
implementation can be defined as a global function, and structures that
implement that interface may then call this default method via a wrapper.

Note, also, that interface and structure parameters of top-level functions,
such as main(), may be connected to structures that are created in the
runtime. See the Cg runtime documentation for more details.

Statements and Operators

Cg supports the following types of statements and operators:
Control flow

Function definitions and function overloads

Arithmetic operators from C

Multiplication function

Vector constructor

Boolean and comparison operators

Swizzle operator

Write mask operator

0 00O 000 o0 o0

Conditional operator

18 808-00504-0000-006
NVIDIA

Introduction to the Cg Language

Control Flow

Cg uses the following C control constructs:

Q Function calls and the return statement

a if/else
a while
a for

These control constructs require that their conditional expressions be of type
bool. Because Cg expressions like i <= 3 are of type bool, this change from
C is normally not apparent.

Profiles like vs_2_x, vp30, and vp40 support branch instructions, so for and
while loops are fully supported in these profiles. In other profiles, for and
while loops may only be used if the compiler can fully unroll them (that is, if
the compiler can determine the iteration count at compile time). Likewise,
return can only appear as the last statement in a function in these profiles.

Function recursion (and co-recursion) is forbidden in Cg.

The switch, case, and default keywords are reserved, but they are not
supported by any profiles in the current release of the Cg compiler.

Function Definitions and Function Overloading

To pass a modifiable function parameter in C, the programmer must
explicitly use pointers. C++ provides a built-in pass-by-reference mechanism
that avoids the need to explicitly use pointers, but this mechanism still
implicitly assumes that the hardware supports pointers. Cg must use a
different mechanism because the vertex and fragment hardware of the GPU
does not support the use of pointers. Cg passes modifiable function
parameters by value-result, instead of by reference. The difference between
these two methods is subtle; it is only apparent when two function
parameters are aliased by a function call. In Cg, the two parameters have
separate storage in the function, whereas in C++ they would share storage.

To reinforce this distinction, Cg uses a different syntax than C++ to declare
function parameters that are modified:

function blahl(out float x); // x is output-only
function blah2(inout float x); // x is input and output
function blah3(in float x); // x is input-only
function blah4(float x); // x is input-only (default, as in
©

808-00504-0000-006 19

NVIDIA

Cg Language Toolkit

Cg supports function overloading by the number of operands and by
operand type. The choice of a function is made by matching one operand at a
time, starting at the first operand. The formal language specification
provides more details on the matching rules, but it is not normally necessary
to study them because the overloading generally works in an intuitive
manner. For example, the following code declares two versions of a function,
one that takes two bool operands, and one that takes two float operands:

bool same(float a, float b) { return (a == b);}
bool same(bool a, bool b) { return (a == b);}

Arithmetic Operators from C

Cg includes all the standard C arithmetic operators (+, -, *, /) and allows the
operators to be used on vectors as well as on scalars. The vector operations
are always performed in elementwise fashion. For example,

float3(a, b, c) * float3(A, B, C) equals float3(a*A, b*B, c*C)

These operators can also be used in a form that mixes scalar and vector —the
scalar is “smeared” to create a vector of the necessary size to perform an
elementwise operation. Thus,

a * float3(A, B, C) isequal to float3(a*A, a*B, a*C)

The built-in arithmetic operators do #oz currently support matrix operands. It
is important to remember that matrices are not the same as vectors, even if
their dimensions are the same.

Multiplication Functions

20

Cg’s mul Q) functions are for multiplying matrices by vectors, and matrices
by matrices:

// Matrix by column-vector multiply
matrix-column vector: mul(M, v);

// Row-vector by matrix multiply
row vector-matrix: mul(v, M);

// Matrix by matrix multiply
matrix-matrix: mul(M, N);

It is important to use the correct version of mul (). Otherwise, you are likely
to get unexpected results. More detail on the mul () functions are provided
in “Cg Standard Library Functions” on page 33.

808-00504-0000-006
NVIDIA

Introduction to the Cg Language

Vector Constructor

Cg allows vectors (up to size 4) to be constructed using the following
notation:

y = x * float4(3.0, 2.0, 1.0, -1.0);

The vector constructor can appear anywhere in an expression. Furthermore,
vectors can be constructed from smaller vectors:

float2 a = ..._;
float4 b = float4(a, 0.0, 1.0);

Boolean and Comparison Operators

Cg includes three of the standard C boolean operators:

&& logical AND
Il logical OR
! logical negation

In C, these operators consume and produce values of type int, but in Cg
they consume and produce values of type bool. This difference is not
normally noticeable, except when declaring a variable that will hold the
value of a boolean expression. Cg also supports the C comparison operators,
which produce values of type bool:

< less than

<= less than or equal to

'= inequality

== equality

>= greater than or equal to
> greater than

Unlike C, Cg allows all boolean operators to be applied to vectors, in which
case boolean operations are performed in an elementwise fashion. The result
of such a boolean expression is a vector of bool elements with that number of
elements being the same as the two source vectors. Also unlike C, the logical
AND (&&) and logical OR (] |) operators cannot be used for short-circuiting
evaluation; side effects of both sides of these expressions always occur,
regardless of the value of the boolean expression.

808-00504-0000-006 21
NVIDIA

Cg Language Toolkit

Swizzle Operator

Cg has a swizgz/le operator (.) that allows the components of a vector to be
rearranged to form a new vector. The new vector need not be the same size as
the original vector —elements can be repeated or omitted. The characters x, y,
z, and w represent the first, second, third, and fourth components of the
original vector, respectively. The characters r, g, b, and a can be used for the
same purpose. Because the swizzle operator is implemented efficiently in the
GPU hardware, its use is usually free.

The following are some examples of swizzling:

float3(a, b, c).zyx yields float3(c, b, a)
float4(a, b, c, d).xxyy yields float4(a, a, b, b)
float2(a, b).yyxx vields float4(b, b, a, a)
float4(a, b, c, d).w yields d

The swizzle operator can also be used to create a vector from a scalar:
a.xxxx yields float4(a, a, a, a)

The precedence of the swizzle operator is the same as that of the array
subscripting operator ([]).

Write Mask Operator

The write mask operator (.) is placed on the left hand side of an assignment
statement. It can be used to selectively overwrite the components of a vector.
It is illegal to specify a particular component more than once in a write mask,
or to specify a write mask when initializing a variable as part of a
declaration.

The following is an example of a write mask:

float4(1.0, 1.0, 0.0, 0.0);
1.0; // Set alpha to 1.0, leaving RGB alone.

float4 color
color.a

The write mask operator can be a powerful tool for generating efficient code
because it maps well to the capabilities of GPU hardware. The precedence of
the write mask operator is the same as that of the swizzle operator.

Conditional Operator

22

Cgincludes C’s if/else conditional statement and conditional operator (?:).
With the conditional operator, the control variable may be a bool vector. If
so, the second and third operands must be similarly sized vectors, and
selection is performed on an elementwise basis. Unlike C, any side effects

808-00504-0000-006
NVIDIA

Introduction to the Cg Language

associated with the second and third operands always occur, regardless of
the conditional.

As an example, the following would be a very efficient way to implement a
vector clamp function, if the min() and max() functions did not exist:

float3 clamp(float3 x, float minval, float maxval) {
X = (X < minval.xxx) ? minval . xxx I X;
X = (X > maxval .xxx) ? maxval .xxx I X;
return Xx;

}

Texture Lookups in Advanced Fragment Profiles

Cg’s advanced fragment profiles and the vp40 profile provide a variety of
texture lookup functions. Please note that Cg uses a different set of texture
lookup functions for basic fragment profiles because of the restricted pixel
programmability of that hardware. Basic fragment profile lookup functions
aren’t discussed in this introductory chapter.

Advanced fragment profile texture lookup functions always require at least
two parameters:

O Texture sampler
A fexture sampler is a variable with the type sampler, sampleriD,
sampler2D, sampler3D, samplerCUBE, or samplerRECT and represents
the combination of a texture image with a filter, clamp, wrap, or similar
configuration. Texture sampler variables cannot be set directly within the
Cg language; instead, they must be provided by the application as
uniform parameters to a Cg program.

QO Texture coordinate

Depending on the type of texture lookup, the coordinate may be a scalar,
a two-vector, a three-vector, or a four-vector.

The following fragment program uses the tex2D() function to perform a 2D
texture lookup to determine the fragment’s RGBA color.

void applytex(uniform sampler2D mytexture,

float2 uv = TEXCOORDO,
out floatd outcolor : COLOR) {
outcolor = tex2D(mytexture, uv);

}

Cg provides a wide variety of texture-lookup functions, a sample of which is
given below. For a complete list see “Texture Map Functions” on page 38.

808-00504-0000-006 23
NVIDIA

Cg Language Toolkit

a

Standard nonprojective texture lookup:
tex2D (sampler2D tex, float2 s);
texRECT (samplerRECT tex, float2 s);
texCUBE (samplerCUBE tex, float3 s);

Standard projective texture lookup:
tex2Dproj (sampler2D tex, float3 sq);
texRECTproj (samplerRECT tex, float3 sq)
texCUBEproj (samplerCUBE tex, float4 sq);

Nonprojective texture lookup with user-specified filter kernel size:
tex2D (sampler2D tex, float2 s,
float2 dsdx, float2 dsdy);
texRECT (samplerRECT tex, float2 s,
float2 dsdx, float2 dsdy);
texCUBE (samplerCUBE tex, float3 s,
float3 dsdx, float3 dsdy);

The filter size is specified by providing the derivatives of the texture
coordinates with respect to pixel coordinates x (dsdx) and y (dsdy). For
more information see “Texture Map Functions” on page 38.

Shadowmap lookup:

tex2Dproj (sampler2D tex, float4 szq);
tex2DRECT (samplerRECT tex, float4 szq);

In these functions, the z component of the texture coordinate holds a
depth value to be compared against the shadowmap. Shadowmap
lookups require the associated texture unit to be configured by the
application for depth compare texturing; otherwise, no depth
comparison is actually performed.

Effects

24

Cg includes a powerful, versatile shader specification and interchange
format: CgFX. For artists and developers of real-time graphics, this format
provides several key benefits:

a

Encapsulation of multiple rendering techniques, enabling fallbacks for
level-of-detail, functionality, and performance.

Support for Cg, assembly language, and fixed-function shaders.
Editable parameters and GUI descriptions embedded in the file.
Multipass shaders.

808-00504-0000-006
NVIDIA

Introduction to the Cg Language

O Render state and texture state specification.

In practical terms, by wrapping both Cg vertex programs and Cg fragment
programs together with render state, texture state, and pass information,
developers can describe a complete rendering effect. Although individual Cg
programs may contain the core rendering algorithms necessary for an effect,
only when combined with this additional environmental information does
the shader become complete and self-contained. The addition of artist-
friendly GUI descriptions and fallbacks enables CgFX files to integrate well
with the production workflow used by artists and programmers.

CgFX encapsulates, in a single text file, everything needed to apply a
rendering effect. This feature lets a third-party tool or another 3D application
use a CgFX text file as is, with no external information other than the
necessary geometry and texture data. In this sense, CgFX acts as an
interchange format. CgFX allows shaders to be exchanged without the
associated C++ code that is normally necessary to make a Cg program work
with OpenGL or Direct3D. It addresses the following four issues:

O The Cglanguage lets you easily express how an object should be
rendered. Although current Cg profiles describe only a single rendering
pass, many shading techniques, such as shadow volumes or shadow
maps, require more than one rendering pass.

O Many applications need to target a wide range of graphics hardware
functionality and performance. Thus, versions of shaders that run on
older hardware, and versions that aid performance for distant objects are
important.

O Each Cg program typically targets a single profile, and doesn't specify
how to fall back to other profiles, to assembly-language shaders, or to
fixed-function vertex or fragment processing.

O To generate images with Cg programs, some information about their
environment is needed. For instance, some programs might require
alpha blending to be turned on and depth writes to be disabled. Others
may need a certain texture format to work correctly. This information is
not present in standard Cg source files.

Techniques

Each CgFX file usually presents a certain effect that the shader author is
trying to achieve—such as bump mapping, environment mapping, or
anisotropic lighting. The CgFX file contains one or more techniques, each of
which describes a way to achieve the effect. Each technique usually targets a

808-00504-0000-006 25
NVIDIA

Cg Language Toolkit

Passes

certain level of GPU functionality, so a CgFX file may contain one technique
for an advanced GPU with powerful fragment programmability, and another
technique for older graphics hardware supporting fixed-function texture
blending. CgFX techniques can also be used for functionality, level-of-detail,
or performance fallbacks. For example:

technique PixelShaderVersion

{.};

technique FixedFunctionVersion

{.}:

technique LowDetailVersion

{.};

An application can make queries about which techniques are present in an
effect and can choose an appropriate one at runtime, based on whatever
criteria are appropriate.

Each technique contains one or more passes. Each pass represents a set of
render states and shaders to apply for a single rendering pass within a
technique. For instance, the first pass might lay down depth only so that
subsequent passes can apply an additive alpha-blending technique without
requiring polygon sorting.

Each pass may contain a vertex program, a fragment program, or both, and
each pass may use fixed-function vertex, pixel processing, or both. For
example, a first pass might use fixed-function pixel processing to output the
ambient color. The next pass could use an fp30 fragment program, and pass
three might use an arbfp1l fragment program.

State Assignments

26

Each pass also contains render state assignments such as alpha blending,
depth writes, and texture filtering modes, to name a few. For example:

pass FfirstPass {
DepthTestEnable = true;
DepthFunc = Less;
AlphaTestEnable = true;
AlphaFunc = float2(Equal, 0);

808-00504-0000-006
NVIDIA

Introduction to the Cg Language

Parameters and Semantics

The CgFX file also contains global Cg parameters. These variables are usually
passed as uniform parameters to Cg functions, or as the values for render or
texture state settings. For instance, a bool variable might be used as a
uniform parameter to a Cg function, or as a value enabling or disabling the
alpha blend render state:

bool AlphaBlending
float bumpHeight

false;
0.5F;

These variables can contain a user-defined semantic, which helps
applications provide the correct data to the shader without having to
decipher the variable names:

float4x4 myViewMatrix : ViewMatrix;
texture2D someTexture : DiffuseMap;

A CgFX-enabled application can then query the CgFX file for its variables
and their semantics.

Vertex and Fragment Programs

With the OpenGL state manager, vertex and fragment programs are defined
via assignments to the VertexProgram and FragmentProgram states,

respectively. Three different types of expressions can be on the right-hand
side of these program types:

O Compile statements
O In-line assembly
0 NULL

These three possibilities are demonstrated in the effect file below:

float4 main(uniform float foo, float4 uv : TEXCOORDO) : COLOR{
return (foo > 0) ? uv : 2 * uv;
}

technique SimpleFrag {
pass {
VertexProgram = NULL;
FragmentProgram = compile arbfpl main(-2.T);
}
}

technique AsmFrag {
pass {

808-00504-0000-006 27

NVIDIA

Cg Language Toolkit

28

FragmentProgram = asm {

11FP1.0
TEX Oo[COLR], {0}.x, TEX6, 2D;

END
}:
}

Compile statements are generally the most commonly used of these three
options for specifying programs. They take the profile that the program is to
be compiled to (fp30, fp40, arbfpl, vp20, and so on), the name of the
function in the effect file to be compiled, and a list of expressions (-2. f in the
above example). These expressions have a one-to-one correspondence with
the uniform parameters of the program being compiled —there must be
exactly one for each uniform program parameter.

In the example above, the expression -2. f sets the value of the foo
parameter to main(). Because it is using a literal value, CgFX is able to
compile the shader into a particularly efficient version that just includes
returning the uv value.

Inline assembly is given with the asm keyword, with the assembly language
code between braces as in the example above. CgFX depends on having the
appropriate header at the start of the assembly — 1 1FP1.0" for fp30,
11ARBvp1.0 for arbvpl, and so on—to determine which assembly profile the
code is given in.

It is also possible to include effect parameters in the expression used in the
compile statement. For example:

float4 main(uniform float foo, float4 uv : TEXCOORDO) : COLOR{
return (foo > 0) ? uv : 2 * uv;

}

float bar;

technique NewSimpleFrag {
pass {
VertexProgram = NULL;
FragmentProgram = compile arbfpl main(2 * bar);

}
}

Here, the value 2*bar is associated with the foo parameter of main(). When
the value of bar is changed by the application, the value of foo in main() is
set appropriately.

808-00504-0000-006
NVIDIA

Introduction to the Cg Language

Finally, vertex or fragment programs may be assigned the value NULL in the
state assignment. This signifies that no program should be used in this pass.

Textures and Samplers

CgFX makes it possible to define state related to textures in the effect file. The
short effect file below shows an example.

sampler2D samp = sampler_state {
generateMipMap = true;
minFilter = LinearMipMapLinear;
magFilter = Linear;

};

float4 texsimple(uniform sampler2D sampler,
float2 uv : TEXCOORDO) : COLOR {
return tex2D(sampler, uv);

¥
technique TextureSimple {
pass {
FragmentProgram = compile arbfpl texsimple(samp);
}

}

Interfaces and Unsized Arrays

CgFX also supports Cg's interfaces and unsized arrays features. Given an
effect file with Cg programs that use these features, the compile statement
can be used in two different ways to resolve the interfaces and unsized arrays
so that the program can be compiled.

Consider the following example: a Light interface has been defined with
SpotLight implementing the interface. The main() program takes an
unsized array of Light interface objects, loops over them, and returns the
sum of the values returned by their respective value() methods.

interface Light {
float4d value();

}:

struct SpotLight : Light {
float4d value() { return float4(1,2,3,4); }
}:

float4 main(uniform Light I[]) : COLOR {

808-00504-0000-006 29
NVIDIA

Cg Language Toolkit

float4 v = float4(0,0,0,0);

for (int i = 0; 1 < l_length; ++1)
v += I[1]-value(Q;

return v;

}

Recall that all uniform parameters to the program must have expressions in
the parenthesized list in the compile statement and, therefore, one expression
is necessary here for the one parameter. The first way that main() can be
compiled is to give the name of an effect parameter that resolves both the
actual size of the array as well as the concrete type that implements the
Light interface:

SpotLight spots[4];

technique {
pass {
FragmentProgram = compile arbfpl main(spots);
s
s

Alternatively, the application can leave the resolution of the concrete types
and array size until later so that they can be set via Cg runtime calls from the
application. (This was the usual approach before CgFX 1.4.)

For this case, the expression passed to the compile statement should just be
an unsized array of the abstract interface type:

Light lights[];

technique {
pass {
FragmentProgram = compile arbfpl main(lights);
}
}

Running Cg Programs on the CPU

30

There are many situations, such as tabularizing complex functions into
texture maps, where it is useful to execute Cg programs on the CPU and not
on the GPU. While the CPU path doesn't offer the same performance, it can
be useful because it doesn't have the resource limits associated with GPUs.

Programs that run on a CPU in this manner are declared like the following.

float foo = 4.F;
float4 func(float2 p : POSITION, float2 delta : PSIZE) : COLOR

{

808-00504-0000-006
NVIDIA

Introduction to the Cg Language

return foo * p.xyxy;

}

The POSITION semantic denotes the parameter or parameters that should be
set with the coordinates of each point at which the function is evaluated —
there is a coordinate value from zero to one for each dimension over which
the function is being evaluated. The PS1ZE semantic denotes a parameter that
should be initialized with the value of the spacing between samples at which
the function is being evaluated, and the COLOR semantic denotes where the
result of the function should be returned. (Thus, the function above could
have been written as a void function with an out float4 ret : COLOR
parameter and an assignment to ret instead of the return statement.)

Given an effect file with such a program, a CGprogram handle to it can be
retrieved by creating a program with the following CG_PROFILE_GENERIC
profile:

CGprogram tp = cgCreateProgramFromEffect(effect,
CG_PROFILE_GENERIC, "func'™, NULL);

With this program handle, cgEvaluateProgram() evaluates the program
over the same one-, two-, or three-dimensional domain. Its parameters are as
follows:

QO aCGprogramhandle

Q a float * to an output buffer

Q the number of components in the output buffer (1, 2, 3, or 4)
a

the number of positions in the x dimension at which to evaluate the
function

QO the number of positions in the y dimension
QO the number of positions in the z dimension

The total size of the buffer should be equal to the product of the number of
positions in each of the dimensions and the number of components in the
buffer.

#define RES 256

#define NCOMPS 4

float *buf = new Float[NCOMPS*RES*RES];
cgEvaluateProgram(tp, buf, NCOMPS, RES, RES, 1);
// Do something with buf.

delete[] buf;

It is a runtime error to pass a CGprogram that doesn't have the
CG_PROFILE_GENERIC profile to cgEvaluateProgram().

808-00504-0000-006 31
NVIDIA

Cg Language Toolkit

Annotations

Additionally, each variable, technique, pass, and program in the file can have
an optional annotation. The annotation is a per-variable-instance str