Nuitka Changelog

In this document, we track the per version changes and comments. This becomes a document on the
website, as well as individual posts on the Nuitka blog.

Nuitka Release 0.6.18
Bug Fixes

» Python3.6+: Fixes to asyncgen, need to raise StopAsynclnteration rather than
St opl t er ati on in some situations to be fully compatible.

« Onefile: Fix, LTO mode was always enabled for onefile compilation, but not all compilers support it
yet, e.g. MinGW64 did not. Fixed in 0.6.17.1 already.

 Fix, t ype calls with 3 arguments didn't annotate their potential exception exit. Fixed in 0.6.17.2
already.

« Fix, trusted module constants were not working properly in all cases. Fixed in 0.6.17.2 already.

* Fix, pkg-resour ces exiting with error at compile time for unresolved requirements in compiled
code, but these can of course still be optional, i.e. that code would never run. Instead give only a
warning, and runtime fail on these. Fixed in 0.6.17.2 already.

« Standalone: Prevent the inclusion of dr mlibraries on Linux, they have to come from the target OS at
runtime. Fixed in 0.6.17.2 already.

« Standalone: Added missing implicit dependency for i pcqueue module. Fixed in 0.6.17.3 already.

* Fix, Qt webengine support for everything but PySi de2 wasn't working properly. Partially fixed in
0.6.17.3 already.

» Windows: Fix, bootstrap splash screen code for Windows was missing in release packages. Fixed in
0.6.17.3 already.

* Fix, could crash on known implicit data directories not present. Fixed in 0.6.17.3 already.

» macOS: Disable download of ccache hinary for M1 architecture and systems before macOS 10.14
as it doesn't work on these. Fixed in 0.6.17.3 already.

« Standalone: The pendul um | ocal s handling for Python 3.6 was regressed. Fixed in 0.6.17.4
already.

« Onefile: Make sure the child process is cleaned up even after its successful exit. Fixed in 0.6.17.4
already.

« Standalone: Added support for xm schemnma. Fixed in 0.6.17.4 already.
« Standalone: Added support for cur ses on Windows. Fixed in 0.6.17.4 already.
« Standalone: Added support for coi ncur ve module. Fixed in 0.6.17.5 already.

» Python3.4+: Up until Python3.7 inclusive, a workaround for stream encoding (was ASCII), causing
crashes on output of non-ASCII, other Python versions are not affected. Fixed in 0.6.17.5 already.

 Python2: Workaround for LTO error messages from older gcc versions. Fixed in 0.6.17.5 already.
« Standalone: Added support for wi n32pri nt . Fixed in 0.6.17.6 already.

* Fix, need to prevent usage of static | i bpyt hon in module mode or else on some Python versions,
linker errors can happen. Fixed in 0.6.17.6 already.

« Standalone: Do not load site module early anymore. This might have caused issues in some
configurations, but really only would be needed for loading i nspect which doesn’t depend on it in
standalone mode. Fixed in 0.6.17.6 already.

* Fix, could crash with generator expressions in finally blocks of tried blocks that return. Fixed in
0.6.17.7 already.

try:
return 9
finally:
"".join(x for x in b"some_iterable")

» Python3.5+: Compatibility of comparisons with types. Corouti neType and
types. AsyncCener at or Type types was not yet implemented. Fixed in 0.6.17.7 already.

These al ready worked:
assert isinstance(conpil edCoroutine(), types.CoroutineType) is True
assert isinstance(conpil edAsyncgen(), types.AsyncGeneratorType) is True

These now work too:

assert type(conpiledCoroutine()) == types. CoroutineType

assert type(conpiledAsyncgen()) == types. AsyncGener at or Type
* Standalone: Added support for r uanel . yani . Fixed in 0.6.17.7 already.

* Distutils: Fix, when building more than one package, things could go wrong. Fixed in 0.6.17.7
already.

* Fix, for module mode filenames are used, and for packages, you can specify a directory, however, a
trailing slash was not working. Fixed in 0.6.16.7 already.

» Compatibility: Fix, when locating modules, a package directory and an extension module of the same
name were not used according to priority. Fixed in 0.6.16.7 already.

» Standalone: Added workaround i nport | i b_resour ces insisting on Python source files to exist to
be able to load datafiles. Fixed in 0.6.16.7 already.

» Standalone: Properly detect usage of hard imports from standard library in --foll owstdlib
mode.

» Standalone: Added data files for opensapi _spec_val i dat or.

* MSYS2: Fix, need to normalize compiler paths before comparing.

» Anaconda: For accelerated binaries, the created . cnd file wasn't containing all needed environment.
« Standalone: Added support for bot t | e. ext loading extensions to resolve at compile time.

» macOS: Set minimum OS version derived from the Python executable used, this should make it work
on all supported platforms (of that Python).

* Standalone: Added support for automatic inclusion of xrm schenma package datafiles.
» Standalone: Added support for automatic inclusion of eel package datafiles.

» Standalone: Added support for h5py package.

« Standalone: Added support for phonenunber s package.

« Standalone: Added support for f eedpar ser package, this currently depends on the anti - bl oat
plugin to be enabled, which will become enabled by default in the future.

« Standalone: Added gi plugin for said package that copies t ypel i b files and sets the search path for
them in standalone mode.

« Standalone: Added necessary datafiles for eel package.

« Standalone: Added support for @ WebEngi ne to all Qt bindings and also make it work on Linux.
Before only PySide2 on Windows was supported.

» Python3: Fix, the al | built-in was wrongly assuming that bytes values could not be false, but in fact
they are if they contain \ O which is actually false. The same does not happen for string values, but
that's a difference to be considered.

» Windows: The LTO was supposed to be used automatically on with MSVC 14.2 or higher, but that
was regressed and has been repaired now.

« Standalone: Extension modules contained in packages, depending on their mode of loading had the
__package__ value set to a wrong value, which at least impacted new matplotlib detection of Qt
backend.

» Windows: The pyt hon set up. py i nstal |l was installing binaries for no good reason.

New Features

* Setuptools support. Documented bdi st _nui t ka and bdi st _wheel integration and added support
for Nuitka as a bui | d package backend in pyproject.ton files. Using Nuitka to build your
wheels is supposed to be easy now.

» Added experimental support for Python 3.10, there are however still important issues with
compatibility with the CPython 3.9 test suite with at least asyncgen and coroutines.

*macOS: For app bundles, version information can be provided with the new option
- -mRcos- app- ver si on.

» Added Python vendor detection of Anaconda, pyenv, Appl e Pyt hon, and pyenv and output the
result in version output, this should make it easiert to analyse reported issues.

* Plugins: Also handle the usage of __nanme__ for metadata version resolution of the pkg- r esour ces
standard plugin.

* Plugins: The data-files standard plugin now reads configuration from a Yaml file that
dat a-fil es. ynml making it more accessible for contributions.

» Windows: Allow enforcing usage of MSVC with --nsvc=l at est. This allows you to prevent
accidental usage of MinGW64 on Windows, when MSVC is intended, but achieves that without fixing
the version to use.

» Windows: Added support for LTO with MinGW64 on Windows, this was previously limited to the
MSVC compiler only.

» Windows: Added support for using - - debugger with the downloaded MinGW64 provided gdb. exe.

Note

It doesn’t work when executed from a Git bash prompt, but e.g. from a standard command
prompt.

» Added new experimental flag for compiled types to inherit from uncompiled types. This should allow
easier and more complete compatibility, making even code in extension modules that uses
Pybj ect _| sl nst ance work, providing support for packages like pydancti c.

 Plugins: The Qt binding plugins now resolve pyqt gr aph selection of binding by hard coding
Qr_LI B. This will allow to resolve its own dynamic imports depending on that variable at compile
time. At this time, the compile time analysis is not covering all cases yet, but we hope to get there.

» macOS: Provide m nGCsS for standalone builds, derived from the setting of the Python used to create
it.

» Ul: Added new option - - di sabl e- ccache to prevent Nuitka from injecting ccache (Clang, gcc)
and cl cache (MSVC) for caching the C results of the compilation.

* Plugins: Added experimental support for PyQ 6. While using PySi de2 or PySi de6 is very much
recommended with Nuitka, this allows its use.

» Ul: Added option - - | ow nenor y to allow the user to specify that the compilation should attempt to
use less memory where possible, this increases compile times, but might enable compilation on
some weaker machines.

Optimization

» Added dedicated attribute nodes for attribute values that match names of dictionary operations.
These are optimized into dedicate nodes for methods of dictionaries should their expression have an
exact dictionary shape. These in turn optimize calls on them statically into dictionary operations. This
is done for all methods of di ct for both Python2 and Python3, namely get, itens, iteritens,
i terval ues, iterkeys, vi ewal ues, vi ewkeys, pop, setdefaul t, has_key, cl ear, copy,
updat e.

The new operation nodes also add compile time optimization for being used on constant values
where possible.

» Also added dedicated attribute nodes for string operations. For operations, currently only part of the
methods are done. These are currently only join, strip, Istrip, rstrip, partition,
rpartition. Besides performance, this subset was enough to cover compile time evaluation of
module name computation for i nportli b. i nport_nodul e as done by SWIG bindings, allowing
these implicit dependencies to be discovered at compile time without any help, marking a significant
improvement for standalone usage.

» Annotate type shape for dictionary i n/not in nodes, this was missing unlike in the generic
i n/not i n nodes.

» Faster processing of "expression only" statement nodes. These are nodes, where a value is
computed, but then not used, it still needs to be accounted for though, representing the value
release.

somet hing() # ignores return val ue, nmeans statenment only node

» Windows: Enabled LTO by default with MinGW64, which makes it produce much faster results. It now
yield faster binaries than MSVC 2019 with pystone.

» Windows: Added support for C level PGO (Profile Guided Optimization) with MSVC and MinGW64,
allowing extra speed boosts from the C compilation on Windows as well.

» Standalone: Better handling of requests. packages and si x. noves. The old handling could
duplicate their code. Now uses a new mechanism to resolve metapath based importer effects at
compile time.

» Avoid useless exception checks in our dictionary helpers, as these could only occur when working
with dictionary overloads, which we know to not be the case.

* For nodes, have dedicated child mixin classes for nodes with a single child value and for nodes with a
tuple of children, so that these common kind of nodes operate faster and don't have to check at
runtime what type they are during access.

« Actually make use of the egg cache. Nuitka was unpacking eggs in every compilation, but in wheel
installs, these can be quite common and should be faster.

« Star arguments annotated their type shape, but the methods to check for dictionary exactly were not
affected by this preventing optimization in some cases.

» Added ant i - bl oat configuration for main programs present in the modules of the standard library,
these can be removed from the compilation and should lower dependencies detected.

« Using static libpython with pyenv automatically. This should give both smaller (standalone mode)
and faster results as is the case when using this feature..

* Plugins: Added improvements to the anti - bl oat plugin for gevent to avoid including its testing
framework.

» Python3.9+: Faster calls into uncompiled functions from compiled code using newly introduced API of
that version.

» Statically optimize i nportli b. i mport nodul e calls with constant args into fixed name imports.

» Added support for sys. ver si on_i nf o to be used as a compile time constant. This should enable
many checks to be done at compile time.

» Added hard import and static optimization for t ypi ng. TYPE_CHECKI NG

» Also compute named import lookup through variables, expanding their use to more cases, e.g. like
this:

i nport sys

i f sys.version_info.mjor >= 3:

« Also optimize compile time comparisons through variable names if possible, i.e. the value cannot
have changed.

« Faster calls of uncompiled code with Python3.9 or higher avoiding DLL call overhead.

Organisational

« Commercial: There are Buy Now buttons available now for the direct purchase of the Nuitka
Commercial offering. Finally Credit Card, Google Pay, and Apple Pay are all possible. This is using
Stripe. Get in touch with me if you want to use bank transfer, which is of course still best for me.

» Windows: Added support for Visual Studio 2022 by updating the inline copy of Scons used for
Windows to version 4.3.0, on non Windows, the other ones will keep being used.

» Windows: Requiring latest MinGW64 with version 11.2 as released by winlibs, because this is known
to allow LTO, where previous releases were missing needed binaries.

* Reject standalone mode usage with Apple Python, as it works only with the other supported Pythons,
avoiding pitfalls in attempting to distribute it.

* Move hosting of documentation to Sphinx, added Changelog and some early parts of API
documentation there too. This gives much more readable results than what we have done so far with
Nikola. More things will move there.

» User Manual: Added commands used to generate performance numbers for Python.
» User Manual: List other Python's for which static linking is supposed to work.
 Improved help for - - i ncl ude- package with a hint how to exclude some of the subpackages.

« Started using Jinja2 in code templates with a few types, adding basic infrastructure to do that. This
will be expanded in the future.

» Updated plugin documentation with more recent information.
» Added Python flavor as detected to the - - ver si on output for improved bug reports.
* Linux: Added distribution name to - - ver si on output for improved bug reports.

» Always enable the gevent plugin, we want to achieve this for all plugins, and this is only a step in
that direction.

file:///pages/commercial.html
file:///pages/commercial.html

» Added project URLs for PyPI, so people looking at it from there have some immediate places to
checkout.

 Debian: Use common code for included PDF files, which have page styles and automatic corrections
for r st 2pdf applied.

» Updated to latest bl ack, i sort, pyl i nt versions.

Cleanups

* In a change of mind - - enabl e- pl ugi n has become the only form to enable a plugin used in
documentation and tests.

» Massive cleanup of nunpy and Qt binding plugins, e.g. pysi de2. Data files and DLLs are now
provided through proper declarative objects rather than copied manually. The handling of PyQt5 from
the plugin should have improved as a side effect.

» Massive cleanups of all documentation in ReST format. Plenty of formatting errors were resolved.
Many typos were identified and globally fixed. Spellings e.g. of "Developer Manual" are now enforced
with automatic replacements. Also missing or wrong quotes were turned to proper methods. Also
enforce code language for shell scripts to be the same everywhere.

» Removed last usages of get Pyt honFl ags() and made the function private, replacing their use with
dedicated function to check for individual flags.

 Avoid string comparison with nui t ka. utils. get OS() and instead add accessors that are more
readable, e.g. nui tka. utils.i sMacOS() and put them to use where it makes sense.

» Replaced usages of string tests in list of python flags specified, with functions that check for a specific
name with a speaking function name.

» Added mixin for expressions that have no side effect outside of their value, providing common
method implementation more consistently.

» Remove code geared to using old PyLint and on Python2, we no longer use that. Also removed
annotations only used for overriding Python2 builtins from Nuitka code.

» The PDF specific annotations were moved into being applied only in the PDF building step, avoiding
errors for raw PDF directives.

 Apply Visual Code autoformat to our Yaml files. This is unfortunately not and automatic formatting
yet.

* Introduce dedicated nuitka. utils.Json module, as we intend to expand its usage, e.g. for
caching.

* Replacing remaining usages of pri nt functions with uses of nui t ka. Tr aci ng instead.

» Massive cleanup of the gevent plugin, user proper method to execute code after module load, rather
than source patching without need. The plugin no longer messes with inclusions that other code
already provides for standalone.

» Using own helper to update sys module attributes, to avoid errors from old C compilers, and also
cleaning up using code to not have to cast on string constants.

» More consistent naming of plugin classes, and enforce a relationship of detector class names to the
names of detected plugins. The new nhaming consistency is now enforced.

Tests

» Added CPython 3.10 test suite, it needs more work though.
» Added generated test that exercises dictionary methods in multiple variations.

* Test suite names were specified wrongly in a few of them.

Summary

This release is again a huge step forward. It refines on PGO and LTO for C level to work with all relevant
compilers. Internally Python level PGO is prepared, but only a future release will feature it. With that,
scalability improvements as well as even more performance improvements will be unlocked.

The amount of optimization added this time is even bigger, some of which unlocks static optimization of
module imports, that previously would have to be considered implicit. This work will need one extra step,
namely to also trace hard imports on the function level, then this will be an extremely powerful tool to solve
these kinds of issues in the future.

With the dictionary methods, and some string methods, also a whole new kind of optimization has been
started. These will make working with di ct containers faster, but obviously a lot of ground is to cover
there still, e.g. | i st values are a natural target not yet started. Future releases will progress here.

Type specialization for Python3 has not progressed though, and will have to be featured in a future
releases though.

For scalability, the ant i - bl oat work has continued, and this should be the last release, where this is not
on by default. Compiling without it is something that is immediately noticeable in exploding module
amounts. It is very urgently recommended to enable it for your compilations.

The support for macOS has been refined, with version information being possible to add, and adding
information to the binary about which OSes are supported, as well as rejecting Apple Python, which is only
a trap if you want to deploy to other OS versions. More work will be needed to support pyenv or even
Homebrew there too, for now CPython is still the recommended platform to use.

This release achieves major compatibility improvements. And of course, the experimental support for 3.10
is not the least. The next release will strive to complete the support for it fully, but this should be usable at
least.

Nuitka Release 0.6.17

This release has a focus on performance improvements, while also polishing plugins and adding many
new features.

Bug Fixes

* Fix, plugins were not catching being used on packages not installed. Fixed in 0.6.16.2 already.

*» macOS: Fix weaknesses in the ot ool parsing to determine DLL dependency parsing. Fixed in
0.6.16.2 already.

* Linux: Allow onefile program args with spaces contained to be properly passed. Fixed in 0.6.16.3
already.

» Windows: Avoid using less portable C function for %1 D%formatting, which restores compilation on
Windows 7 with old toolchains. Fixed in 0.6.16.3 already.

« Standalone: Added support for f st ri ngs package. Fixed in 0.6.16.3 already.

» Compatibility: Fix, need to import . pt h files after si t e module, not before. This was causing crashes
on CentOS7 with Python2. Fixed in 0.6.16.3 already.

» Compatibility: Fix, when extension modules failed to load, in some cases the | nport Er r or was lost
to a KeyEr r or . Fixed in 0.6.16.3 already.

* Fix, linker resource modes code and | i nker were not working anymore, but are needed with LTO
mode at least. Fixed in 0.6.16.3 already.

« Standalone: Bytecode modules with null bytes in standard library, typically from disk corruption, were
not handled properly. Fixed in 0.6.16.3 already.

* Fix, failed . t hr ow() into generators could cause corruption. Fixed in 0.6.16.4 already.

» Python2: Fix, the bytecode compilation didn't respect the - - pyt hon-fl ag=no_asserts mode.
Fixed in 0.6.16.4 already.

* Fix, calls were not annotating their arguments as escaped, causing corruption of mutable in static
optimization. Fixed in 0.6.16.5 already.

 Fix, some sequence objects, e.g. nunpy. array actually implement in-place add operations that
need to be called. Fixed in 0.6.16.5 already.

» Windows: Fix, onefile binaries were not working after being signed. This now works.
« Standalone: Added missing implicit dependency for skl ear n.

» Compatibility: Modules giving Synt axEr r or from source were not properly handled, giving runtime
| mport Err or . Now they are giving Synt axEr r or .

* Fix, the LTO mode has issues with i nchi n usage on older gcc, so use | i nker mode when it is
enabled.

» Python3: Fix, locals dict codes were not properly checking errors that the mapping might raise when
setting values.

* Fix, modules named ent r y were causing compile time errors in the C stage.
» macOS: Never include files from OS private frameworks in standalone mode.
* Fix, the python flag - - pyt hon- f | ag=no_war ni ng wasn't working on all platforms.

» Compatibility: Fix, the main code of the si t e module wasn't executing, so that its added builtins were
not there. Of course, you ought to use - - pyt hon- f | ag=no_si t e to not have it in the normal case.

» Python2: Added code path to handle edited standard library source code which then has no valid
bytecode file.

» Anaconda: In module mode, the CondaCC wasn't recognized as form of gcc.
* Fix, bytecode modules could shadow compiled modules of the same name.

* Onefile: Fix, expansion of %1 D%wasn't working properly on non-Windows, making temp paths less
unique. The time stamp is not necessarily enough.

 Fix, mul ti processi ng error exits from slave processes were not reporting tracebacks.

« Standalone: Added xcbgl i nt egrati ons to the list of sensible Qt plugins to include by default,
otherwise rendering will be inferior.

« Standalone: Added pl at f or nt henes to the list of sensible Qt plugins to include by default,
otherwise file dialogs on non-Windows would be inferior.

* Fix, created . pyi files were not ordered deterministically.

» Standalone: Added support for wi n32fi | e.

* Fix, namespace packages were not using runtime values for their __pat h__ value.
» Python3.7+: Fix, was leaking At t r i but eErr or exceptions during name imports.

* Fix, standard library detection could fail for relative paths.

New Features

» Added experimental support for C level PGO (Profile Guided Optimization), which runs your program
and then uses feedback from the execution. At this time only gcc is supported, and only C compiler is
collecting feedback. Check the User Manual for a table with current results.

» macOS: Added experimental support for creating application bundles. For these, icons can be
specified and console can be disabled. But at this time, onefile and accelerated mode are not yet
usable with it, only standalone mode works.

* Plugins: Add support for pkg_r esour ces. requi r e calls to be resolved at compile time. These are
not working at runtime, but this avoids the issue very nicely.

 Plugins: Massive improvements to the anti - bl oat plugin, it can now make nunpy, sci py,
ski mage, pywt , and mat pl ot | i b use much less packages and has better error handling.

* Plugins: Added ant i - bl oat ability ability to append code to a module, which might get used in the
future by other plugins that need some sort of post load changes to be applied.

* Plugins: Added ability to replace code of functions at parse time, and use this in ant i - bl oat plugin
to replace functions that do unnecessary stuff with variants that often just do nothing. This is
illustrated here.

gevent. util:
description: "renove gevent rel ease framework"
change_functi on:
"prerel easer _nmiddle": "' (lanbda data: None)'"
"postrel easer _before": "'(lanbda data: None)'"

This example is removing gevent code that loads dependencies used for their Cl release process,
that need not be part of normal programs.

» Added ability to persist source code changes done by plugins in the Python installation. This is
considered experimental and needs write access to the Python installation, so this is best done in a
virtualenv and it may confuse plugins.

» Added support for mul ti processi ng. tracker and spawn mode for all platforms. For non-default
modes outside of Windows, you need to - - enabl e- pl ugi n=nul ti pr ocessi ng to use these.

* Plugins: Allow multiple entry points to be provided by one or several plugins for the same modules.
These are now merged into one automatically.

» Standalone: Fix for numpy not working when compiling with - - pyt hon- f | ag=no_docst ri ngs.

 Fix, method calls were not respecting descriptors provided by types with non-generic attribute
lookups.

» Windows: Add support for using self-compiled Python3 from the build folder too.
» Added support for Nuitka-Python 2.7, which will be our faster Python fork.

* Colorized output for error outputs encountered in Scons, these are now yellow for better recognition.
Optimization

* Faster threading code was used for Python3.8 or higher, and this has been extended to 3.7 on
Windows, but we won't be able to have it other platforms and not on earlier Python3 versions.

* Faster calls esp. with keyword arguments. Call with keywords no longer create dictionaries if the call
target supports that, and with 3.8 or higher, non-compiled code that allows vectorcall is taken
advantage of.

* Faster class creation that avoids creation of argument tuples and dictionaries.
* Faster attribute check code in case of non-present attributes.
* Faster unbound method calls, unlike bound methods calls these were not optimized as well yet.
* Type shapes for star arguments are now known and used in optimization.
def f(*args, **kwargs):

type(args) # Statically known to be tuple
type(kwargs) # Statically known to be dict

» Python2: Faster old-style class creation. These are classes that do not explicitly inherit from obj ect .
» Python2: Faster string comparisons for Python by specializing for the st r type as well.

» Python3: Added specialization for byt es comparisons too. These are naturally very much the same
as st r comparisons in Python2.

» Added specialization for | i st comparisons too. We had them for t upl es only so far.
» Faster method calls when called from Python core, ourt p_cal | slot wasn't as good as it can be.

» Optimization: Faster deep copies of constants. This can speed up constant calls with mutable types.
Before it was checking the type too often to be fast.

« Allow using static linking with Debian Python giving much better performance with the system Python.
This is actually a huge improvement as it makes things much faster. So far it's only automatically
enabled for Python2, but it seems to work for Python3 on Debian too. Needs more tweaking in the
future.

» Optimization: Added funct ool s module to the list of hard imports in preparation of optimizing
funct ool s. parti al towork better with compiled functions.

» Python2: Demote to xr ange when iterating over r ange calls, even for small ranges, they are always
faster. Previously this was only done for values with at least 256 values.

» Enable LTO automatically for Debian Python, this also allows more optimization.
e Enable LTO automatically for Anaconda with CondaCC on non-Windows, also allowing more
optimization.

Organisational

» Added section in the User Manual on how to deal with memory issues and C compiler bugs. This is a
frequent topic and should serve as a pointer for this kind of issue.

» The - - | t 0 option was changed to require an argument, so that it can also be disabled. The default is
aut o which is the old behaviour where it's enabled if possible.

» Changed - - no- pr ogr ess to - - no- progr esshar in order to make it more clear what it's about.
Previously it was possible to relate it to - - show- pr ogr ess.

» No longer require specific versions of dependencies in our r equi r enent s. t xt and relegate those
to only being in r equi r enent s- devel . t xt such that by default Nuitka doesn't collide with user
requirements on those same packages which absolutely all the time don't really make a difference.

« Added abilty to check all unpushed changes with pylint with a new
./ bi n/fcheck-nui tka-w th-pylint --unpushed option. Before it was only possible to make
the check (quickly) with - - di f f, but that stopped working after commits are made.

» Revived support for vipr of based analysis of compiled programs, but it requires a fork of it now.

» Make Windows specific compiler options visible on all platforms. There is no point in them being
errors, instead warnings are given when they are specified on non-Windows.

» Added project variable Commer ci al for use in Nuitka project syntax.
» Consistent use of metavars for nicer help output should make it more readable.

» Avoid ast tree dumps in case of Keyboar dl nt er r upt exceptions, they are just very noisy. Also
not annotate where Nuitka was in optimization when a plugin is asking to sysexi t .

Cleanups

» Encoding names for UTF8 in calls to . encode() were used inconsistent with and without dashes in
the source code, added cleanup to autoformat that picks the one blessed.

* Cleanup taking of runtime traces of DLLs used in preparation for using it in main code eventually,
moving it to a dedicated module.

« Avoid special names for Nuitka options in test runner, this only adds a level of confusion. Needs more
work in future release.

 Unify implementation to create modules into single function. We had 3 forms, one in recursion, one
for main module, and one for plugin generated code. This makes it much easier to understand and
use in plugins.

* Further reduced code duplication between the two Scons files, but more work will be needed there.

» Escaped variables are still known to be assigned/unassigned rather than unknown, allowing for many
optimizations to still work on them., esp. for immutable value

» Enhanced autoformat for rest documents, bullet list spacing is now consistent and spelling of
organisational is unified automatically.

» Moved icon conversion functionality to separate module, so it can be reused for other platforms more
easily.

Tests

* Removed r ef | ect ed test, because of Nuitka special needs to restart with variable Python flags.
This could be reverted though, since Nuitka no longer needs anything outside inline copies, and
therefore no longer loads from site packages.

* Use anti - bl oat plugin in standalone tests of Numpy, Pandas and tests to reduce their compile
times, these have become much more manageable now.

» Enhanced checks for used files to use proper below path checks for their ignoring.
» Remove reflected test, compiling Nuitka with Nuitka has gotten too difficult.

« Verify constants integrity at program end in debug mode again, so we catch corruption of them in
tests.

Summary

This release is one of the most important ones in a long time. The PGO and LTO, and static libpython work
make a big different for performance of created binaries.

The amount of optimization added is also huge, calls are much faster now, and object creations too. These
avoiding to go through actual dictionaries and tuples in most cases when compiled code interacts gives
very significant gains. This can be seen in the increase of pystone performance.

The new type specializations allow many operations to be much faster. More work will follow in this area
and important types, str and i nt do not have specialized comparisons for Python3, holding it back
somewhat to where our Python2 performance is for these things.

For scalability, the anti - bl oat work is extremely valuable, and this plugin should become active by
default in the future, for now it must be strongly recommended. It needs more control over what parts you
want to deactivate from it, in case of it causing problems, then we can and should do it.

The support for macOS has been enhanced a lot, and will become perfect in the next release (currently
develop). The bundle mode is needed for all kinds of GUI programs to not need a console. This platform is
becoming as well supported as the others now.

Generally this release marks a huge step forward. We hope to add Python level PGO in the coming
releases, for type knowledge retrofitted without any annotations used. Benchmarks will become more fun
clearly.

Nuitka Release 0.6.16

This release is mostly polishing and new features. Optimization looked only at threading performance, and
LTO improvements on Windows.

Bug Fixes

* Fix, the pkg-r esour ces failed to resolve versions for i nportli b. met adat a from its standard
library at compile time. Fixed in 0.6.15.1 already.

« Standalone: Fix, - - i ncl ude- nodul e was not including the module if it was an extension modules,
but only for Python modules. Fixed in 0.6.15.1 already.

« Standalone: Added missing implicit dependencies for gi . over ri des. Fixed in 0.6.15.1 already.

» Python3.9: Fix, could crash when using generic aliases in certain configurations. Fixed in 0.6.15.2
already.

* Fix, the tensorflow plugin needed an update due to changed API. Fixed in 0.6.15.3 already.
* When error exiting Nuitka, it now closes any open progress bar for cleaner display.
« Standalone: Added missing dependency for ski nage.

« Standalone: The nunpy plugin now automatically includes Qt backend if any of the Qt binding plugins
is active.

New Features

» Pyton3.5+: Added support for onefile compression. This is using zst d which is known to give very
good compression with very high decompression, much better than e.g. zI i b.

» macOS: Added onefile support.
» FreeBSD: Added onefile support.

* Linux: Added method to use tempdir onefile support as used on other platforms as an alternative to
Appl mage based.

» Added support for recursive addition of files from directories with patterns.
* Attaching the payload to onefile now has a progress bar too.

» Windows: Prelimary support for the yet unfinished Nuitka-Python that allows static linking and higher
performance on Windows, esp. with Nuitka.

» Windows: In acceleration mode, for uninstalled Python, now a CMD file is created rather than copying
the DLL to the binary directory. That avoids conflicts with architectures and of course useless file
copies.

* New abilities for plugin ant i - bl oat allow to make it an error when certain modules are imported.
Added more specific options for usual trouble makes, esp. set upt ool s, pyt est are causing an
explosion for some programs, while being unused code. This makes it now easier to oversee this.

* It's now possible to override appdi rs decision for where cache files live with an environment
variable NUI TKA CACHE DI R.

» The - o option now also works with onefile mode, it previously rejected anything but acceleration
mode. Fixed in 0.6.15.3 already.

* Plugins: It's now possible for multiple plugins to provide pre or post load code for the same module.

» Added indications for compilation modes st andal one and onefile to the _ conpiled_ _
attribute.

* Plugins: Give nicer error message in case of colliding command line options.

Optimization

» Faster threading code is now using for Python3.8 or higher and not only 3.9, giving a performance
boost, esp. on Windows.

» Using - - | t 0 is now the default with MSVC 2019 or higher. This will given smaller and faster binaries.
It has been available for some time, but not been the default yet.

Cleanups

« Using different progress bar titles for C compilation of Python code and C compilation of onefile
bootstrap.

» Moved platform specific detections, for FreeBSD/OpenBSD/macOS out of the Scons file and to
common Nuitka code, sometimes eliminating duplications with one version being more correct than
the other.

» Massive cleanup of datafile plugin, using pattern descriptions, so more code duplication can be
removed.

» More cleanup of the scons files, sharing more common code.

Organisational

» Under the name Nuitka-Python we are now also developing a fork of CPython with enhancements,
you can follow and joint it at https://github.com/Nuitka/Nuitka-Python but at this time it is not yet ready
for prime time.

 Onefile under Windows now only is temporary file mode. Until we figure out how to solve the
problems with locking and caching, the mode where it installs to the AppData of the user is no longer
available.

» Renamed the plugin responsible for PyQt5 support to match the names of others. Note however, that
at this time, PySide2 or PySide6 are to be recommended.

» Make it clear that PySide 6.1.2 is actually going to be the supported version of PySide6.
* Use MSVC in Github actions.

Summary

This release had a massive focus on expanding existing features, esp. for onefile, and plugins API, such
that we can now configure ant i - bl oat with yaml, have really nice datafile handling options, and have
onefile on all OSes practically.

Nuitka Release 0.6.15

This release polished previous work with bug fixes, but there are also important new things that help make
Nuitka more usable, with one important performance improvement.

Bug Fixes

* Fix, hard imports were not automatically used in code generation leading to errors when used. Fixed
in 0.6.14.2 already.

» Windows: Fix, cl cache was disabled by mistake. Fixed in 0.6.14.2 already.

» Standalone: Added data files for j sonschema to be copied automatically.

https://github.com/Nuitka/Nuitka-Python

« Standalone: Support for pendul um wasn't working anymore with the last release due to plugin
interface issues.

» Retry downloads without SSL if that fails, as some Python do not have working SSL. Fixed in 0.6.14.5
already.

* Fix, the ccache path wasn't working if it contained spaces. Fixed in 0.6.14.5 already.

* Onefile: For Linux and ARM using proper download off appimage. Fixed in 0.6.14.5 already.
« Standalone: Added support for pyr eadst at . Fixed in 0.6.14.5 already.

« Standalone: Added missing dependencies for pandas. Fixed in 0.6.14.6 already.

« Standalone: Some preloaded packages from . pt h do not have a __pat h__, these can and must be
ignored.

* Onefile: On Linux, the sys. ar gv[0] was not the original file as advertised.

« Standalone: Do not consider . mesh and . f r ag files as DLIs in the Qt bindings when including the
gml support. This was causing errors on Linux, but was generally wasteful.

* Fix, project options could be injected twice, which could lead to errors with options that were only
allowed once, e.g. - - | i nux-onefil e-icon.

» Windows: When updating the resources in created binaries, treat all kinds of OSError with
information output.

 Onefile: Remove onefile target binary path at startup as well, so it cannot cause confusion after error
exit.

« Onefile: In case of error exit from Appl nage, preserve its outputs and attempt to detect if there was a
locking issue.

« Standalone: Scan package folders on Linux for DLLs too. This is necessary to properly handle PyQ 5
in case of Qtinstalled in the system as well.

 Standalone: On Linux, standard QML files were not found.

« Standalone: Enforce C locale when detecting DLLs on Linux, otherwise whitelisting messages didn't
work properly on newer Linux.

» Standalone: Added support for t zdat a package data files.
« Standalone: Added support for exchangel i b.
» Python3.9: Fix, type subscripts could cause optimization errors.

 Ul: Project options didn't properly handle quoting of arguments, these are normally removed by the
shell.

* Linux: The default icon for Python in the system is now found with more version specific names and
should work on more systems.

» Standalone: Do not include | i bst dc++ as it should come from the system rather.

New Features

» Added plugin anti - bl oat plugin, intended to fight bloat. For now it can make including certain

modules an error, a warning, or force | mport Error, e.g.
- - noi ncl ude- set upt ool s- node=nof ol | ow is very much recommended to limit compilation
size.

» The pkg-r esour ces builtin now covers net adat a and importlib_metadata packages for compile
time version resolution as well.

» Added support for PySi de2 on Python version before 3.6, because the patched code needs no
workarounds. Fixed in 0.6.14.3 already.

» Windows: Convert images to icon files on the fly. So now you can specify multiple PNG files, and
Nuitka will create an icon out of that automatically.

» macOS: Automatically download ccache binary if not present.
* Plugins: New interface to query the main script path. This allows plugins to look at its directory.
« Ul: Output the versions of Nuitka and Python during compilation.

» Ul: Added option to control static linking. So far this had been enabled only automatically for cases
where we are certain, but this allows to force enable or disable it. Now an info is given, if Nuitka
thinks it might be possible to enable it, but doesn't do it automatically.

» Ul: Added - - no- onefi | e to disable - - onef i | e from project options.
Optimization
* Much enhanced GIL interaction with Python3.9 giving a big speed boost and better threading
behaviour.

» Faster conversion of iterables to | i st , if size can be know, allocation ahead saves a lot of effort.

» Added support for Generi cAl i as objects as compile time constants.

Organisational

» Enhanced Github issue raising instructions.
» Apply r st f nt to all documentation and make it part of the commit hook.

» Make sure to check Scons files as well. This would have caught the code used to disable cl cache
temporarily.

» Do not mention Travis in PR template anymore, we have stopped using it.

» Updated requirements to latest versions.

» Bump requirements for development to 3.7 at least, toosl like black do not work with 3.6 anymore.

« Started work on Nuitka Python, a CPython fork intended for enhanced performance and standalone
support with Nuitka.

Cleanups

» Determine system prefix without virtualenv outside of Scons, such that plugins can share the code.
There was duplication with the nunpy plugin, and this will only be more complete using all
approaches. This also removes a lot of noise from the scons file moving it to shared code.

» The Qt plugins now collect QML files with cleaner code.

Tests

* Nicer error message if a wrong search mode is given.

» Windows: Added timeout for determining run time traces with dependency walker, sometimes this
hangs.

» Added test to cover the zip importer.

» Making use of project options in onefile tests, making it easier to execute them manually.

Summary

For Windows, it's now easier than ever to create an icon for your deployment, because you can use PNG
files, and need not produce ICO files anymore, with Nuitka doing that for you.

The onefile for Linux had some more or less severe problems that got addressed, esp. also when it came
to QML applications with PySide.

On the side, we are preparing to greatly improve the caching of Nuitka, starting with retaining modules that
were demoted to bytecode. There are changes in this release, to support that, but it's not yet complete. We
expect that scalability will then be possible to improve even further.

Generally this is mostly a maintenance release, which outside of the threading performance improvement
has very little to offer for faster execution, but that actually does a lot. Unfortunately right now it's limited to
3.9, but some of the newer Python's will also be supported in later releases.

Nuitka Release 0.6.14

This release has few, but important bug fixes. The main focus was on expanding standalone support, esp.
for PySide2, but also and in general with plugins added that workaround pkg resources usage for
version information.

Also an important new features was added, e.g. the project configuration in the main file should prove to
be very useful.

Bug Fixes

» Compatibility: Fix, modules that failed to import, should be retried on next import.

So far we only ever executed the module body once, but that is not how it's supposed to be. Instead,
only if it's in sys. nodul es that should happen, which is the case after successful import.

» Compatibility: Fix, constant Fal se values in right hand side of and/or conditions were generating
wrong code if the left side was of known bool shape too.

« Standalone: Fix, add st yl es Qt plugins to list of sensible plugins.
Otherwise no mouse hover events are generated on some platforms.

» Compatibility: Fix, relative f r omimports beyond level 1 were not loadingg modules from packages if
necessary. Fixed in 0.6.13.3 already.

« Standalone: The cr ypt o DLL check for Qt bindings was wrong. Fixed in 0.6.13.2 already.
« Standalone: Added experimental support for PySide6, but for good results, 6.1 will be needed.
« Standalone: Added support for newer matplotlib. Fixed in 0.6.12.1 already.

« Standalone: Reverted changes related to pkg_r esour ces that were causing regressions. Fixed in
0.6.13.1 already.

« Standalone: Adding missing implicit dependency for cyt ool z package. Fixed in 0.6.13.1 already.

« Standalone: Matching for package names to not suggest recompile for was broken and didn't match.
Fixed in 0.6.13.1 already.

New Features

» Added support for project options.

When found in the filename provided, Nuitka will inject options to the commandline, such that it
becomes possible to do a complex project with only using

pyt hon -m nui tka fil enane. py

Conpi |l ati on node, support OS specific.

nui tka-project-if: {OS} in ("Wndows", "Linux"):

nui t ka- project: --onefile

nui tka-project-if: {OS} not in ("Wndows", "Linux"):
nui t ka- proj ect: --standal one

The PySi de2 plugin covers qt-plugins

nui tka- project: --enable-plugi n=pysi de2

nui tka-project: --include-qt-plugins=sensible, qm

The pkg-resources plugin is not yet automatic
nui tka-proj ect: --enabl e-plugi n=pkg-resources

Nui tka Commercial only features follow

Protect the constants from bei ng readabl e.

nui tka- project: --enable-plugi n=dat a-hi di ng

Include datafiles for @ into the binary directory.
nui t ka-project: --enabl e-plugin=datafile-inclusion
nui tka-project: --qt-datadir={MA N D RECTORY}

nuitka-project: --qt-datafile-pattern=*.js

nuitka-project: --qgt-datafil e-pattern=*.qm

nuitka-project: --qgt-datafile-pattern=*.svg

nuitka-project: --qgt-datafile-pattern=*.png

Refer to the User Manual for a table of directives and the variables allowed to be used.
» Added option to include whole data directory structures in standalone.

The new option - -i ncl ude- dat a- di r was added and is mostly required for onefile mode, but
recommended for standalone too.

» Added pkg- r esour ces plugin.

This one can resolve code like this at compile time without any need for pip metadata to be present or
used.

pkg_resources. get _distribution("nodul e_nane"). version
pkg_resources. get _distribution("nodul e nane"). parsed_versi on
 Standalone: Also process early imports in optimization.

Otherwise plugins cannot work on standard library modules. This makes it possible to handle them as
well.

Optimization

« Faster binary operations.

Applying lessons learnt during the enhancements for in-place operations that initially gave worse
results than some manual code, we apply the same tricks for all binary operations, which speeds
them up by significant margins, e.g. 30% for float addition, 25% for Python int addition, and still 6%
for Python int addition.

» More direct optimization of unary operations on constant value.

Without this, - 1 was not directly a constant value, but had to go through the unary - operation, which
it still does, but now it's done at tree building time.

» More direct optimization for not in branches.

Invertible comparisons, i.e. i s/i s not andi n/not i n do not have do be done during optimization.
This mainly avoids noise during optimization from such unimportant steps.

» More direct optimization for constant slices.

These are used in Python3 for all subscripts, e.g. a[1: 2] will use slice(1, 2) effectively. For
Python2 they are used less often, but still. This also avoids a lot of noise during optimization, mostly
on Python3

 Scons: Avoid writing database to disk entirely.

This saves a bit of disk churn and makes it unnecessary to specify the location such that it doesn't
collide between Python versions.

 For optimization passes, use previous max total as minimum for next pass. That will usually be a
more accurate result, rather than starting from 1 again. Part of 0.6.13.1 already.

» Enhancements to the branch merging improve the scalability of Nuitka somewhat, although the
merging itself is still not very scalable, there are some modules that are very slow to optimize still.

» Use or der set if available over the inline copy for Or der edSet which is much faster and improves
Nuitka compile times.

» Make pkguti | a hard import too, this is in preparation of more optimization for its functions.

Organisational

» Upstream patches for PySi de6 have been contributed and merged into the development branch
dev. Full support should be available once this is released as part of 6.1 which is waiting for Qt 6.1
naturally.

» Patches for PySi de2 are available to commercial customers, see PySide2 support page.

» Formatted all documents with r st f nt and made that part of the commit hook for Nuitka. It now
works for all documents we have.

» Updated inline copy of t qdmto 4.59.0 which ought to address spurious errors given.

» User Manual: Remove --show- progress from the tutoral. The default progress bar is then
disabled, and is actually much nicer to use.

 Developer Manual: Added description of how context managers should be named.
» Cleanup language for some warnings and outputs.

It was still using obsolete "recursion" language rather than talking about "following imports", which is
the new one.

Cleanups

» Remove dead code related to constants marshal, the data composer has replaced this.

« Avoid internal API usage for loading extension modules on Linux, there is a function in sys module to
get the Id flags.

Tests

* Fix, the onl y mode wasn't working properly.

https://nuitka.net/pages/pyside2.html

» Use new project options feature for specific options in basic tests allowing to remove them from the
test runner.

Summary

For PySide2 things became more perfect, but it takes upstream patches unfortunately such that only
PySide6.1 will be working out of the box outside of the commercial offering. We will also attempt to provide
workarounds, but there are some things that cannot be done that way.

This release added some more scalability to the optimization process, however there will be more work
needed to make efficient branch merges.

For onefile, a feature to include whole directories had been missing, and could not easily be achieved with
the existing options. This further rounds this up, now what's considered missing is compression and
macOS support, both of which should be coming in a future release.

For the performance side of things, the binary operator work can actually yield pretty good gains, with
double digit improvements, but this covers only so much. Much more C types and better type tracing would
be needed, but there was no progress on this front. Future releases will have to revisit the type tracing to
make sure, we know more about loop variables, etc. so we can achieve the near C speed we are looking
for, at least in the field of i nt performance.

This release has largely been driven by the Nuitka Commercial offering and needs for compatibility with
more code, which is of course always a good thing.

Nuitka Release 0.6.13

This release follows up with yet again massive improvement in many ways with lots of bug fixes and new
features.

Bug Fixes

» Windows: Icon group entries were not still not working properly in some cases, leading to no icon or
too small icons being displayed. Fixed in 0.6.12.2 already.

» Windows: Icons and version information were copied from the standalone executable to the onefile
executable, but that failed due to race situations, sometimes reproducible. Instead we now apply
things to both independently. Fixed in 0.6.12.2 already.

« Standalone: Fixup scanning for DLLs with | dconfig on Linux and newer versions making
unexpected outputs. Fixed in 0.6.12.2 already.

* Ul: When there is no standard input provided, prompts were crashing with EOFEr r or when
--assune-yes-for - downl oads is not given, change that to defaulting to " no" instead. Fixed in
0.6.12.2 already.

» Windows: Detect empty strings for company name, product name, product and file versions rather
than crashing on them later. Them being empty rather than not there can cause a lot of issues in
other places. Fixed in 0.6.12.2 already.

» Scons: Pass on exceptions during execution in worker threads and abort compilation immediately.
Fixed in 0.6.12.2 already.

» Python3.9: Still not fully compatible with typing subclasses, the enhanced check is now closely
matching the CPython code. Fixed in 0.6.12.2 already.

* Linux: Nicer error message for missing | i bf use requirement.

» Compatibility: Lookups on dictionaries with None value giving a KeyEr r or exception, but with no
value, which is not what CPython does.

» Python3.9: Fix, future annotations were crashing in debug mode. Fixed in 0.6.12.3 already.

file:///pages/commercial.html

« Standalone: Corrections to the gl f wwere made. Fixed in 0.6.12.3 already.
« Standalone: Added missing implicit dependency for py. t est . Fixed in 0.6.12.3 already.
« Standalone: Adding missing implicit dependency for pyr eadst at .

» Windows: Added workaround for common clcache locking problems. Since we use it only inside a
single Scons process, we can avoiding using Windows mutexes, and use a process level lock
instead.

* Plugins: Fix plugin for support for event | et . Fixed in 0.6.12.3 already.
« Standalone: Added support for latest zng on Windows.
» Scons: the - - qui et flag was not fully honored yet, with Scons still making a few outputs.

« Standalone: Added support for alternative DLL name for newer PyGIK3 on Windows. Fixed in
0.6.12.4 already.

* Plugins: Fix plugin for support for gevent . Fixed in 0.6.12.4 already.
« Standalone: Added yet another missing implicit dependency for pandas.
* Plugins: Fix, the gt - pl ugi ns plugin could stumble over . nesh files.

» Windows: Fix, dependency walker wasn't properly working with unicode %°ATHY which could e.g.
happen with a virtualenv in a home directory that requires them.

» Python3: Fixed a few Python debug mode warnings about unclosed files that have sneaked into the
codebase.

New Features

» Added new options - - Wi ndows- f or ce- st dout - spec and - - wi nhdows- f or ce- st derr - spec to
force output to files. The paths provided at compile time can resolve symbolic paths, and are
intended to e.g. place these files near the executable. Check the User Manual for a table of the
currently supported values. At this time, the feature is limited to Windows, where the need arose first,
but it will be ported to other supported OSes eventually. These are most useful for programs run as
--wi ndows- di sabl e- consol e or with - - enabl e- pl ugi n=wi ndows- ser vi ce.

» Windows: Added option - - wi ndows- onefi |l e-tenpdi r- spec to provide the temporary directory
used with - - wi ndows- onefi | e-t enpdi r in onefile mode, you can now select your own pattern,
and e.g. hardcode a base directory of your choice rather than %aEMP.

» Added experimental support for PySi de2 with workarounds for compiled methods not being
accepted by its core. There are known issues with Py Si de?2 still, but it's working fine for some people
now. Upstream patches will have to be created to remove the need for workarounds and full support.

Optimization

» Use binary operation code for their in-place variants too, giving substantial performance
improvements in all cases that were not dealt with manually already, but were covered in standard
binary operations. Until now only some string, some float operations were caught sped up, most often
due to findings of Nuitka being terribly slower, e.g. not reusing string memory for inplace
concatenation, but now all operations have code that avoids a generic code path, that is also very
slow on Windows due calling to using the embedded Python via API being slow.

» For mixed type operations, there was only one direction provided, which caused fallbacks to slower
forms, e.g. with | ong and f | oat values leading to inconsistent results, suchthata - 1andl - a
being accelerated or not.

» Added C boolean optimization for a few operations that didn't have it, as these allow to avoid doing
full computation of what the object result would have to do. This is not exhausted fully yet.

» Python3: Faster +/- /+=/- = binary and in-place operations with i nt values providing specialized code
helpers that are much faster, esp. in cases where no new storage is allocated for in-place results and
where not a lot of digits are involved.

» Python2: The Python3 i nt code is the Python2 | ong type and benefits from the optimization of
+/- [+=/- = code as well, but of course its use is relatively rare.

e Improved __ future_
them.

imports to become hard imports, so more efficient code is generated for

» Counting of instances had a runtime impact by providing a __del __ that was still needed to be
executed and limits garbage collection on types with older Python versions.

» Ul: Avoid loading t gdm module before it's actually used if at all (it may get disabled by the user),
speeding up the start of Nuitka.

» Make sure to optimize internal helpers only once and immediately, avoiding extra global passes that
were slowing down Python level compilation by of large programs by a lot.

» Make sure to recognize the case where a module optimization can provide no immediate change, but
only after a next run, avoiding extra global passes originating from these, that were slowing down
compilation of large programs by a lot. Together with the other change, this can improve scalability by
a lot.

 Plugins: Remove implicit dependencies for pkg_r esources. extern and use aliases instead.
Using one of the packages, was causing all that might be used, to be considered as used, with some
being relatively large. This was kind of a mistake in how we supported this so far.

* Plugins: Revamped the event | et plugin, include needed DNS modules as bytecode rather than as
source code, scanning them with pkguti | rather than filesystem, with much cleaner code in the

plugin.

Organisational

» Removed support for pef i | e dependency walker choice and inline copy of the code. It was never as
good giving incomplete results, and after later improvements, slower, and therefore has lost the
original benefit over using Dependency Walker that is faster and more correct.

» Added example for onefile on Windows with the version information and with the temporary directory
mode.

» Describe difference in file access with onefile on Windows, where sys.argv[0] and
os. path.dirnanme(__file__) will be different things.

» Added inline copy of t gdmto make sure it's available for progress bar output for 2.7 or higher.
Recommend having it in the Debian package.

» Added inline copy of col or ana for use on Windows, where on some terminals it will give better
results with the progress bar.

« Stop using old PyLint for Python2, while it would be nice to catch errors, the burden of false alarms
seems to high now.

» Ul: Added even more checks on options that make no sense, made sure to do this only after a
possible restart in proper environment, so warnings are not duplicated.

* For Linux onefile, keep appimage outputs in case of an error, that should help debugging it in case of
issues.

« Ul: Added traces for plugin provided implicit dependencies leading to inclusions.

» Added inline copy of zst d C code for use in decompression for the Windows onefile bootstrap, not
yet used though.

» Added checks to options that accept package names for obvious mistakes, such that
--include-package-data --mi ngwb4 will not swallow an option, as that is clearly not a
package name, that would hide that option, while also not having any intended effect.

» Added ignore list for decision to recompile extension modules with available source too. For now,
Nuitka will not propose to recompile Cyt hon modules that are very likely not used by the program
anyway, and also not for | xm until it's clear if there's any benefit in that. More will be added in the
future, this is mostly for cases, where Cython causes incompatibilities.

» Added support for using abstract base classes in plugins. These are not considered for loading, and
allow nicer implementation of shared code, e.g. between PyQ 5 and Py Si de2 plugins, but allow e.g.
to enforce the provision of certain overloads.

» User Manual: Remove the instruction to install cl cache, since it's an inline copy, this makes no
sense anymore and that was obsolete.

» Updated PyLint to latest versions, and our requirements in general.

Cleanups

» Started removal of PyLint annotations used for old Python2 only. This will be a continuous action to
remove these.

« Jinja2 based static code generation for operations was cleaned up, to avoid code for static
mismatches in the result C, avoiding language constructs like i f (1 && 0) with sometimes larger
branches, replacing it with Jinja2 branches of the {% i f ... % form.

« Jinja2 based Python2 i nt code was pioniering the use of macros, but this was expanded to allow
kinds of types for binary operations, allow their reuse for in-place operation, with these macros
making returns via goto exits rather than return statements in a function. Landing pads for these exits
can then assign target values for in-place different from what those for binary operation result return
do.

» Changed the interfacing of plugins with DLL dependency detection, cleaning up the interactions
considerably with more unified code, and faster executing due to cached plugin decisons.

* Integrate manually provided slot function for uni code and str into the standard static code
generation. Previously parts were generated and parts could be generated, but also provided with
manual code. The later is now all gone.

» Use a less verbose progress bar format with less useless infos, making it less likely to overflow.

» Cleanup how payload data is accessed in Windows onefile bootstrap, preparing the addition of
decompression, doing the reading from the file in only one dedicated function.

» When Jinja2 generated exceptions in the static code, it is now done via proper Jinja2 macros rather
than Python code, and these now avoid useless Python version branches where possible, e.g.
because a type like bytes is already Python version specific, with the goal to get rid of
PyErr _For mat usage in our generated static code. That goal is future work though.

» Move safe strings helpers (cannot overflow) to a dedicated file, and remove the partial duplication on
the Windows onefile bootstrap code.

» The Jinja2 static code generation was enhanced to track the usage of labels used as goto targets, so
that error exits, and value typed exits from operations code no longer emitted when not used, and
therefore labels that are not used are not present.

« For implicit dependencies, the parsing of the . pyi file of a module no longer emits a dependency on
the module itself. Also from plugins, these are now filtered away.

Tests

« Detect if onefile mode has required downloads and if there is user consent, otherwise skip onefile
tests in the test runner.

* Need to also allow accesses to files via short paths on Windows if these are allowed long paths.
 The standalone tests on Windows didn't actually take run time traces and therefore were ineffective.
» Added standalone test for gl f wcoverage.

 Construct based tests for in-place operations are now using a value for the first time, and then a
couple more times, allowing for real in-place usage, so we are sure we measure correctly if that's
happening.

Summary

Where the big change of the last release were optimization changes to reduce the global passes, this
release addresses remaining causes for extra passes, that could cause these to still happen. That makes
sure, Nuitka scalability is very much enhanced in this field again.

The new features for forced outputs are at this time Windows only and make a huge difference when it
comes to providing a way to debug Windows Services or programs in general without a console, i.e. a GUI
program. These will need even more specifiers, e.g. to cover program directory, rather than exe filename
only, but it's a very good start.

On the tooling side, not a lot has happened, with the clcache fix, it seems that locking issues on Windows
are gone.

The plugin changes from previous releases had left a few of them in a state where they were not working,
but this should be restored. Interaction with the plugins is being refined constantly, and this releases
improved again on their interfaces. It will be a while until this becomes stable.

Adding support for PySide2 is a headline feature actually, but not as perfect as we are used to in other
fields. More work will be needed, also in part with upstream changes, to get this to be fully supported.

For the performance side of things, the in-place work and the binary operations work has taken proof of
concept stuff done for Python2 and applied it more universally to Python3. Until we cover all long
operations, esp. * seems extremely important and is lacking, this cannot be considered complete, but it
gives amazing speedups in some cases now.

Future releases will revisit the type tracing to make sure, we know more about loop variables, to apply
specific code helpers more often, so we can achieve the near C speed we are looking for in the field of
i nt performance.

Nuitka Release 0.6.12

This release is yet again a massive improvement in many ways with lots of bug fixes and new features.
Bug Fixes

» Windows: Icon group entries were not working properly in some cases, leading to no icon or too small
icons being displayed.

« Standalone: The PyQt implicit dependencies were broken. Fixed in 0.6.11.1 already.
« Standalone: The datafile collector plugin was broken. Fixed in 0.6.11.3 already.

» Standalone: Added support for newer forms of mat pl ot | i b which need a different file layout and
config file format. Fixed in 0.6.11.1 already.

* Plugins: If there was an error during loading of the module or plugin, it could still be attempted for
use. Fixed in 0.6.11.1 already.

» Disable notes given by gcc, these were treated as errors. Fixed in 0.6.11.1 already.

» Windows: Fix, spaces in gcc installation paths were not working. Partially fixed in 0.6.11.4 already.
* Linux: Fix, missing onefile icon error message was not complete. Fixed in 0.6.11.4 already.

« Standalone: Workaround zng problem on Windows by duplicating a DLL in both expected places.
Fixed in 0.6.11.4 already.

» Standalone: The di I | - conpat plugin wasn't working anymore. Fixed in 0.6.11.4 already.

» Windows: Fix mistaken usage of si zeof for wide character buffers. This caused Windows onefile
mode in temporary directory. Fixed in 0.6.11.4 already.

» Windows: Fix, checking subfolder natured crashed with different drives on Windows. Fixed in
0.6.11.4 already.

» Windows: Fix, usage from MSVC prompt was no longer working, detect used SDK properly. Fixed in
0.6.11.4 already.

» Windows: Fix, old clcache installation uses pth files that prevented our inline copy from working,
workaround was added.

» Windows: Also specify stack size to be used when compiling with gcc or clang.
* Fix, claim of Python 3.9 support also in PyPl metadata was missing. Fixed in 0.6.11.5 already.
» Python3.9: Subscripting t ype for annotations wasn't yet implemented.

» Python3.9: Better matching of types for metaclass selection, generic aliases were not yet working,
breaking some forms of type annotations in base classes.

» Windows: Allow selecting - - nsvc- ver si on when a MSVC prompt is currently activated.

» Windows: Do not fallback to using gcc when - - nsvc- ver si on has been specified. Instead it's an
error if that fails to work.

» Python3.6+: Added support for del () statements, these have no effect, but were crashing Nuitka.

del a # standard form

del a, b # sane as del a; del b

del (a, b) # braces are allowed

del () # allowed for consistency, but wasn't worKking.
 Standalone: Added support for gl f wthrough a dedicated plugin.

* macOS: Added support for Python3 from system and CPython official download for latest OS version.

New Features

« Ul: With t gqdminstalled alongside Nuitka, experimental progress bars are enabled. Do not use ™
--show-progress’™ or - - ver bose as these might have to disable it.

* Plugins: Added APIs for final processing of the result and onefile post processing.

* Onefile: On Windows, the Python process terminates with Keyboar dl nt er rupt when the user
sends CTRL-break, CTRL-C, shutdown or logoff signals.

» Onefile: On Windows, in case of the launching process terminating unexpectedly, e.g. due to
Taskmanager killing it, or a os. si gki | | resulting in that, the Python process still terminates with
Keyboar dl nt errupt .

» Windows: Now can select icons by index from files with multiple icons.

Optimization

» Avoid global passes caused by module specific optimization. The variable completeness os now
traced per module and function scope, allowing a sooner usage. Unused temporary variables and
closure variables are remove immediately. Recognizing possible auto releases of parameter
variables is also instantly.

This should bring down current passes from 5-6 global passes to only 2 global passes in the normal
case, reducing frontend compile times in some cases massively.

» Better unary node handling. Dedicated nodes per operation allow for more compact memory usage
and faster optimization.

» Detect flow control and value escape for the repr of node based on type shape.

» Enhanced optimization of caught exception references, these never raise or have escapes of control
flow.

» Exception matching operations are more accurately annotated, and may be recognized to not raise in
more cases.

» Added optimization for the i ssubcl ass built-in.

» Removed scons caching as used on Windows entirely. We should either be using cl cache or
ccache automatically now.

» Make sure to use __slots__ for all node classes. In some cases, mixins were preventing the
feature from being it. We now enforce their correct specification of slots, which makes sure we can't
miss it anymore. This should again gain more speed and save memory at frontend compile time.

» Scons: Enhanced gcc version detection with improved caching behavior, this avoids querying the
same gcc binary twice.

Organisational

» The description of Nuitka on PyPI was absent for a while. Added back by adding long description of
the project derived from the README file.

» Avoid terms bl acklist, whilelist and slave in the Nuitka code preferring bl ockl i st,
i gnorelist and chil d instead, which are actually more clear anyway. We follow a general trend
to do this.

» Configured the inline copy of Scons so pylance has an easier time to find it.

» The git commit hook had stopped applying diffs with newest git, improved that.
» Updated description for adding new CPython test suite.

* Using https URLs for downloading dependency walker, for it to be more secure.

» The commit hook can now be disabled, it's in the Developer Manual how to do it.

Cleanups

» Moved unary operations to their own module, the operators module was getting too crowded.

» The scons files for Python C backend and Windows onefile got cleaned up some more and moved
more common code to shared modules.

» When calling external tools, make sure to provide null input where possible.

« Unified calling i nstal | _nane_t ool into a single method for adding rpath and name changes both
at the same time.

« Unified how tools like r eadel f, | dconfi g etc. are called and error exits and outputs checked to
make sure we don't miss anything as easily.

Tests

» Adapted for some openSUSE specific path usages in standalone tests.

* Basic tests for onefile operation and with termination signal sent were added.

Summary

The big changes in this release are the optimization changes to reduce the global passes and the memory
savings from other optimization. These should again make Nuitka more scalable with large projects, but
there definitely is work remaining.

Adding nice stopping behaviour for the Onefile mode on Windows is seemingly a first, and it wasn't easy,
but it will make it more reliable to users.

Also tooling of gcc and MSVC on Windows got a lot more robust, covering more cases, and macOS
support has been renewed and should be a lot better now.

The progress bar is a nice touch and improves the overall feel of the compilation process, but obviously we
need to aim at getting faster overall still. For projects using large dependencies, e.g. Pandas the
compilation is still far too slow and that will need work on caching frontend results, and better optimization
and C code generation for the backend.

Nuitka Release 0.6.11

This release is a massive improvement in many ways with lots of bug fixes and new features.
Bug Fixes

* Fix, the . pyi file parser didn't handle relative imports. Fixed in 0.6.10.1 already.

» Windows: Fix, multiprocessing plugin was not working reliable following of imports from the additional
entry point. Fixed in 0.6.10.1 already.

* Pipenv: Workaround parsing issue with our set up. py to allow installation from Github. Fixed in
0.6.10.1 already.

» Merging of branches in optimization could give indetermistic results leading to more iterations than
necessary. Fixed in 0.6.10.1 already.

» Windows: Avoid profile powershell when attempting to resolve symlinks. Fixed in 0.6.10.1 already.

» Windows: Fix, always check for stdin, stdout, and stderr presence. This was so far restricted to gui
mode applications, but it seems to be necessary in other situations too. Fixed in 0.6.10.1 already.

» Python2: Fix, --trace- executi on was not working for standalone mode but can be useful for
debugging. Fixed in 0.6.10.1 already.

» Windows: Onefile could run into path length limits. Fixed in 0.6.10.3 already.
* Windows: The winlib gcc download link became broken and was updated. Fixed in 0.6.10.3 already.
* Plugins: The "__main__" module was not triggering all plugin hooks, but it needs to for completeness.

« Standalone: Fix, symlinked Python installations on Windows were not working, with dependency
walker being unable to look into these. Fixed in 0.6.10.4 already.

« Standalone: Fix support for numpy on Windows and macOS, the plugin failed to copy important
DLLs. Fixed in 0.6.10.4 already.

» Python3: For versions before 3.7, the symlink resolution also needs to be done, but wasn't handling
the bytes output yet. Fixed in 0.6.10.4 already.

* Fix, folder based inclusion would both pick up namespace folders and modules of the same name,
crashing the compilation due to conflicts. Fixed in 0.6.10.4 already.

* Fix, the - - | t 0 wasn't used for clang on non-Windows yet.

* Fix, the order of locals dict releases wasn't enforced, which could lead to differences that break
caching of C files potentially. Fixed in 0.6.10.5 already.

* Fix, hash nodes didn't consider if their argument was raising, even if the type of the argument was
st r and therefore the operation should not. Fixed in 0.6.10.5 already.

* Fix, need to copy type shape and escape description for the replacement inverted comparisons when
used with not , otherwise the compilation can crash as these are expected to be present at all times.
Fixed in 0.6.10.5 already.

* Fix, some complex constant values could be confused, e.g. - 0j and 0j . These corner cases were
not properly considered in the constant loading code, only for f | oat so far.

« Standalone: Fix, bytecode only standard library modules were not working. This is at least used with
Fedora 33.

* Linux: Fix, extension modules compiled with - - | t o were not working.
» Windows: Retry if updating resources fails due to Virus checkers keeping files locked.

* Plugins: Pre- and postload code of modules should not be allowed to cause | mport Err or, as these
will be invisible to the other parts of optimization, instead make them unraisable error traces.

« Standalone: Adding missing import for SciPy 1.6 support.

» Windows: Fix, only export required symbols when using MinGW64 in module mode.

New Features

» Python3.9: Added official support for this version.

 Onefile: Added command line options to include data files. These are - - i ncl ude- package- dat a
which will copy all non-DLLs and non-Python files of package names matching the pattern given. And
--include-data-fil e takes source and relative target file paths and copies them. For onefile this
is the only way to include files, for standalone mode they are mostly a convenience function.

* Onefile: Added mode where the file is unpacked to a temporary folder before running instead of doing
it to appdata.

* Onefile: Added linux specific options - - | i nux- onefi | e-i con to allow provision of an icon to use
in onefile mode on Linux, so far this was only available as the hard coded path to a Python icon,
which also didn't exist on all platforms.

» Ul: Major logging cleanup. Everything is now using our tracing classes and even error exits go
through there and are therefore colored if possible.

* Plugins: Make it easier to integrate commercial plugins, now only an environment variable needs to
point to them.

« Ul: Enhanced option parsing gives notes. This complains about options that conflict or that are
implied in others. Trying to catch more usage errors sooner.

* Plugins: Ignore exceptions in buggy plugin code, only warn about them unless in debug mode, where
they still crash Nuitka.

» Scons: More complete scons report files, includes list values as well and more modes used.
» Windows: The ¢l cache is now included and no longer used from the system.

* Qutput for cl cache and ccache results got improved.

» Enhanced support for cl ang, on Windows if present near a gcc. exe like it is the case for some
winlibs downloads, it will be used. To use it provide - - m ngwé4 - -cl ang both. Without the first
one, it will mean cl angcl . exe which uses the MSVC compiler as a host.

Optimization

» Some modules had very slow load times, e.qg. if they used many list objects due to linear searches for
memory deduplication of objects. We now have dictionaries of practically all constant objects loaded,
making these more instant.

» Use less memory at compile time due using __sl ot s__ for all node types, finally figured out, how to
achieve this with multiple inheritance.

» Use hedley for compiler macros like unl i kel y as they know best how to do these.
* Special case the merging of 2 branches avoiding generic code and being much faster.

» Hard imports have better code generated, and are being optimized into for the few standard library
modules and builtin modules we handle, they also how annotate the type shape to be module.

* No longer annotate hard module import attribute lookups as control flow escapes. Not present
attributes are changed into static raises. Trust for values is configured for a few values, and
experimental.

» Avoid preloaded packages for modules that have no side effects and are in the standard library,
typically . pt h files will use e.g. os but that's not needed to be preserved.

» Use i nchi n for including binary data through inline assembly of the C compiler. This covers many
more platforms than our previous linker option hacks, and the fallback to generated C code. In fact
everything but Windows uses this now.

Organisational

» Windows: For Scons we now require a Python 3.5 or higher to be installed to use it.

» Windows: Removed support for gcc older than version 8. This specifically affects CondaCC and older
MinGW64 installations. Since Nuitka can now download the MinGW64 10, there is no point in having
these and they cause issues.

» We took over the maintenance of clcache as Nuitka/clcache which is not yet ready for public
consumption, but should become the new source of clache in the future.

* Include an inline copy of clcache in Nuitka and use it on Windows for MSVC and ClangCL.

* Removed compatibility older aliases of follow option, - -recurse-* and require --foll ow*
options to be used instead.

« For pylint checking, the tool now supports a - - di f f mode where only the changed files get checked.
This is much faster and allows to do it more often before commit.

» Check the versions of isort and black when doing the autoformat to avoid using outdated versions.
» Handling missing pylint more gracefully when checking source code quality.

» Make sure to use the codespell tool with Python3 and make sure to error exit when spelling problems
were found, so we can use this in Github actions too.

* Removed Travis config, we now only use Github actions.
* Removed landscape config, it doesn't really exist anymore.
» Bumped all PyPI dependnecies to their latest versions.

« Recommend ccache on Debian, as we now consider the absence of ccache something to warn
about.

* Plugins: The DLLs asked for by plugins that are not found are no longer warned about.

» Allow our checker and format tools to run on outside of tree code. We are using that for
Nuitka/clcache.

» Added support for Fedora 33 and openSUSE 15.3, as well as Ubuntu Groovy.
» Windows: Check if Windows SDK is installed for MSVC and ClangCL.

» Windows: Enhanced wording in case no compiler was found. No longer tell people how to manually
install MinGW®64, that is no longer necessary and pyw n32 is not needed to detect MSVC, so it's not
installed if not found.

« Detect "embeddable Python" by missing include files, and reject it with proper error message.

» Added onefile and standalone as a use case to the manual and put also the DLL and data files
problems as typically issues.

Cleanups

 Avoid decimal and string comparisons for Python versions checks, these were lazy and are going to
break once 3.10 surfaces. In testing we now use tuples, in Nuitka core hexacimal values much like
CPython itself does.

« Stop using subnode child getters and setters, and instead only use subnode attributes. This was
gradually changed so far, but in this release all remaining uses have migrated. This should also make
the optimization stage go faster.

» Change node constructors to not use a decorator to resolve conflicts with builtin names, rather
handle these with manual call changes, the decorator only made it difficult to read and less
performant.

» Move safe string helpers to their own dedicated helper file, allowing for reuse in plugin code that
doesn't want to use all of Nuitka C helpers.

» Added utils code for inline copy imports, as we use that for quite a few things now.
* Further restructured the Scons files to use more common code.

* Plugins: The module name objects now reject many st r specific APIs that ought to not be used, and
the code got changed to use these instead, leading to cleaner and more correct usages.

» Using named tuples to specify included data files and entry points.

» Use pkguti | in plugins to scan for modules rather than listing directories.

Tests

* New option to display executed commands during comparisons.

» Added test suite for onefile testing.

Summary

This release has seen Python3.9 and Onefile both being completed. The later needs compression added
on Windows, but that can be added in a coming release, for now it's fully functional.

The focus clearly has been on massive cleanups, some of which will affect compile time performance.
There is relatively little new optimization otherwise.

The adoption of clcache enables a very fast caching, as it's now loaded directly into the Scons process,
avoiding a separate process fork.

Generally a lot of polishing has been applied with many cleanups lowering the technical debt. It will be
interesting to see where the hard module imports can lead us in terms of more optimization. Static

optimization of the Python version comparisons and checks is heeded to lower the amount of imports to be
processed.

Important fixes are also included, e.g. the constants loading performance was too slow in some cases. The
mul ti processi ng on Windows and nunpy plugins were regressed and finally everything ought to be
back to working fine.

Future work will have to aim at enhanced scalability. In some cases, Nuitka still takes too much time to
compile if projects like Pandas include virtually everything installed as an option for it to use.

Nuitka Release 0.6.10

This release comes with many new features, e.g. onefile support, as well as many new optimization and
bug fixes.

Bug Fixes

* Fix, was memory leaking arguments of all complex call helper functions. Fixed in 0.6.9.6 already.
* Plugins: Fix, the dill-compat code needs to follow APl change. Fixed in 0.6.9.7 already.

» Windows: Fixup for multiprocessing module and complex call helpers that could crash the program.
Fixed in 0.6.9.7 already.

* Fix, the frame caching could leak memory when using caching for functions and generators used in
multiple threads.

» Python3: Fix, importing an extension module below a compiled module was not possible in
accelerated mode.

» Python3: Fix, keyword arguments for open built-in were not fully compatible.

* Fix, the scons python check should also not accept directories, otherwise strange misleading error
will occur later.

* Windows: When Python is installed through a symbolic link, MinGW64 and Scons were having
issues, added a workaround to resolve it even on Python2.

» Compatibility: Added support for co_f r eevar s in code objects, e.g. newer matplotlib needs this.
« Standalone: Add needed data files for gooey. Fixed in 0.6.9.4 already.

 Scons: Fix, was not respecting - - qui et option when running Scons. Fixed in 0.6.9.3 already.

* Scons: Fix, wasn't automatically detecting Scons from promised paths. Fixed in 0.6.9.2 already.

* Scons: Fix, the clcache output parsing wasn't robust enough. Fixed in 0.6.9.1 already.

» Python3.8: Ignore all non-strings provided in doc-string fashion, they are not to be considered.

* Fix,getattr,setattr and hasattr could not be used in finally clauses anymore. Fixed in 0.6.9.1
already.

* Windows: For Python3 enhanced compatibility for Windows no console mode, they need a
sys. stdi norelse e.g. i nput will not be compatible and raise Runt i meErr or .

New Features

» Added experimental support for Python 3.9, in such a way that the CPython3.8 test suite passes now,
the 3.9 suite needs investigation still, so we might be missing new features.

» Added experimental support for Onefile mode with - - onefi | e that uses Appl nage on Linux and
our own bootstrap binary on Windows. Other platforms are not supported at this time. With this, the
standalone folder is packed into a single binary. The Windows variant currently doesn't yet do any
compression yet, but the Linux one does.

» Windows: Added downloading of ccache. exe, esp. as the other sources so far recommended were
not working properly after updates. This is taken from the official project and should be good.

» Windows: Added downloading of matching MinGW64 C compiler, if no other was found, or that was
has the wrong architecture, e.g. 32 bits where we need 64 bits.

* Windows: Added ability to copy icon resources from an existing binary with new option
--wi ndows-i con-from exe.

» Windows: Added ability to provide multiple icon files for use with different desktop resolutions with
new option - - Wi ndows-i con-fromi co that got renamed to disambiguate from other icon options.

» Windows: Added support for requesting UAC admin right with new option - - wi ndows- uac- adni n.

* Windows: Added support for requesting "uiaccess" rights with yet another new option
- - Wi ndows- uac- ui access.

 Windows: Added ability to specify version info to the binary. New options
- - W ndows- conpany- nane, - -w ndows- pr oduct - nane, --wi ndows-fil e-version,
--w ndows- product - ver si on, and - - wi ndows-fi | e-descri pti on have been added. Some
of these have defaults.

» Enhanced support for using the Win32 compiler of MinGW®64, but it's not perfect yet and not
recommended.

» Windows: Added support for LTO mode for MSVC as well, this seems to allow more optimization.

* Plugins: The numpy plugin now handles matplotlib3 config files correctly.
Optimization

» Use less C variables in dictionary created, not one per key/value pair. This improved scalability of C
compilation.

» Use common code for module variable access, leading to more compact code and enhanced
scalability of C compilation.

» Use error exit during dictionary creation to release the dictionary, list, tuple, and set in case of an
error occurring while they are still under construction. That avoids releases of it in error exists,
reducing the generated code size by a lot. This improves scalability of C compilation for generating
these.

» Annotate no exception raise for local variables of classes with know dict shape, to avoid useless error
exits.

» Annotate no exception exit for stati cmet hod and cl assnet hod as they do not check their
arguments at all. This makes code generated for classes with these methods much more compact,
mainly improving their scalability in C compilation.

* In code generation, prefer bool over nuit ka_bool which allows to annotate exception result,
leading to more compact code. Also cleanup so that code generation always go through the C type
objects, rather than doing cases locally, adding a C type for bool .

» Use common code for C code handling const None return only, to cases where there is any
immutable constant value returned, avoid code generation for this common case. Currently mutable
constants are not handled, this may be added in the future.

» Annotate no exception for exception type checks in handlers for Python2 and no exception if the
value has exception type shape for Python3. The exception type shape was newly added. This
avoids useless exception handlers in most cases, where the provided exception is just a built-in
exception name.

» Improve speed of often used compile time methods on nodes representing constant values, by
making their implementation type specific to improve frontend compile time speed, we check e.g.
mutable and hashable a lot.

* Provide truth value for variable references, enhancing loop optimization and merge value tracing, to
also decide this correctly for values only read, and then changed through attribute, e.g. append on
lists. This allows many more static optimization.

» Use st ati cnet hod for methods in Nuitka nodes to achieve faster frontend compile times where
possible.

» Use dedicated helper code for calls with single argument, avoiding the need have a call site local C
array of size one, just to pass a pointer to it.

» Added handling of hash slot, to predict hashable keys for dictionary and sets.

» Share more slot provision for built-in type shapes from mixin classes, to get them more universally
provided, even for special types, where their consideration is unusual.

* Trace "user provided" flag only for constants where it really matters, i.e. for containers and generally
potentially large values, but not for every number or boolean value.

» Added lowering of byt earray constant values to byt es value iteration, while handling constant
values for this optimization with dedicated code for improved frontend compilation speed.

* The dict built-in now annotates the dictionary type shape of its result.

» The wrapping side-effects hode now passes on the type shape of the wrapped value, allowing for
optimization of these too.

* Split sl i ce nodes into variants with 1, 2 or 3 arguments, to avoid the overhead of determining which
case we have, as well as to save a bit of memory, since these are more frequently used on Python3
for subscript operations. Also annotate their type shape, allowing more optimization.

« Faster dictionary lookups, esp. in cases where errors occur, because we were manually recreating a
KeyEr r or that is already provided by the dict implementation. This should also be faster, as it avoids
a CPython API call overhead on the DLL and they can provide a reference or not for the returned
value, simplifying using code.

« Faster dictionary containment checks, with our own dedicated helper, we can use code that won't
create an exception when an item is not present at all.

» Faster hash lookups with our own helper, separating cases where we want an exception for
non-hashable values or not. These should also be faster to call.

» Avoid acquiring thread state in exception handling that checks if a St opl t erati on occurred, to
improved speed on Python3, where is involves locking, but this needs to be applied way more often.

» Make sure checks to debug mode and full compatibility mode are done with the variables introduced,
to avoid losing performance due to calls for Nuitka compile time enhancements. This was so far only
done partially.

* Split constant references into two base classes, only one of them tracking if the value was provided
by the user. This saves compile time memory and avoids the overhead to check if sizes are
exceeded in cases they cannot possibly be so.

* The truth value of container creations is now statically known, because the empty container creation
is no longer a possibility for these nodes, allowing more optimization for them.

» Optimize the bool built-in with no arguments directory, allow to simplify the node for single argument
form to avoid checks if an argument was given.

» Added iteration handles for xr ange values, and make them faster to create by being tied to the node
type, avoiding shared types, instead using the mixin approach. This is in preparation to using them
for standard iterator tracing as well. So far they are only used for any and al | decision.

» Added detection if a iterator next can raise, using existing iterator checking which allows to remove
needless checks and exception traces. Adding a code variant for calls to next that cannot fail, while
tuning the code used for next and unpacking next, to use faster exception checking in the C code.
This will speed up unpacking performance for some forms of unpacking from known sizes.

» Make sure to use the fastest tuple API possible in all of Nuitka, many place e.g. used
PyTupl e_Si ze, and one was in a performance critical part, e.g. in code that used when compiled
functions as called as a method.

» Added optimized variant for _PyLi st _Ext end for slightly faster unpacking code.
» Added optimized variant for PyLi st _Append for faster list contractions code.

 Avoid using RenoveFi | eSpec and instead provide our own code for that task, slightly reducing file
size and avoiding to use the Shl api link library.

Tests

» Made reflected test use common cleanup of test folder, which is more robust against Windows
locking issues.

» Only output changed CPython output after the forced update of cached value was done, avoiding
duplicate or outdated outputs.

» Avoid complaining about exceptions for in-place operations in case they are lowered to non-inplace
operations and then raise unsupported, not worth the effort to retain original operator.

» Added generated test for subscript operations, also expanding coverage in generated tests by
making sure, conditional paths are both taken by varying the cond value.

» Use our own code helper to check if an object has an attribute, which is faster, because it avoids
creating exceptions in the first place, instead of removing them afterwards.

Cleanups

» Make sure that code generation always go through the C type objects rather than local el i f casing
of the type. This required cleaning up many of the methods and making code more abstract.

» Added base class for C types without reference counting, so they can share the code that ignores
their handling.

* Remove get Const ant for constant value nodes, use the more general
get Conpi | eTi neConst ant instead, and provide quick methods that test for empty tuple or dict, to
use for checking concrete values, e.g. with call operations.

« Unified container creation into always using a factory function, to be sure that existing container
creations are not empty.

 Stop using @al | edW t hBui | t i nAr gunent NanesDecor at or where possible, and instead make
explicit wrapping or use correct names. This was used to allow e.g. an argument named | i st to be
passed from built-in optimization, but that can be done in a cleaner fashion. Also aligned no attributes
and the argument names, there was inconsistency there.

» Name mangling was done differently for attribute names and normal names and with non-shared
code, and later than necessary, removing this as a step from variable closure taking after initial tree
build.

* As part of the icon changes, now handled in Python code, we stop using the r ¢ binary and handle all
resources ourselves, allowing to remove that code from the Scons side of things.

» Moved file comparison code of standalone mode into file utils function for use in plugins as well.

 Unified how path concatenation is done in Nuitka helper code, there were more or less complete
variants, this is making sure, the most capable form is used in all cases.

» Massive cleanup to our scons file, by moving out util code that only scons uses, hacks we apply to
speed up scons, and more to separate modules with dedicated interfaces.

* When using enuner at e we now provide start value of 1 where it is appropriate, e.g. when counting
source code lines, rather than adding count +1 on every usage, making code more readable.

Organisational

* Do not recommend Anaconda on Windows anymore, it seems barely possible to get anything
installed on it with a fresh download, due to the resolver literally working for days without finishing,
and then reporting conflicts, it would only we usable when starting with Miniconda, but that seems
less interesting to users, also gcc 5.2 is way too old these days.

» The commit hook should be reinstalled, since it got improved and adapted for newer git versions.
» Added link to donations to funding document, following a Github standard.
» Bumped requirements for development to the latest versions, esp. newer isort.

» Added a rough description of tests to do to add a new CPython test suite, to allow others to take this
task in the future.

» Updated the git hook so that Windows and newest git works.

» Make it more clear in the documentation that Microsoft Appstore Python is not supported.

Summary

This is the big release in terms of scalability. The optimization in this release mostly focused on getting
things that cause increased compile times sorted out. A very important fix avoids loop optimization to leak
into global passes of all modules unnecessarily, but just as important, generated code now is much better
for the C compiler to consume in observed problematic cases.

More optimization changes are geared towards reducing Nuitka frontend compile time, which could also
be a lot in some cases, ending up specializing more constant nodes and how they expose themselves to
optimization.

Other optimization came from supporting Python 3.9 and things come across during the implementation of
that feature, e.g. to be able to make differences with unpacking error messages, we provide more code to
handle it ourselves, and to manually optimize how to interact with e.g. | i st objects.

For Windows, the automatic download of ccache and a matching MinGW®64 if none was found, is a new
step, that should lower the barrier of entry for people who have no clue what a C compiler is. More
changes are bound to come in this field with future releases, e.g. making a minimum version requirement
for gcc on Windows that excludes unfit C compilers.

All in all, this release should be taken as a major cleanup, resolving many technical debts of Nuitka and
preparing more optimization to come.

Nuitka Release 0.6.9

This releases contains important bug fixes for regressions of the 0.6.8 series which had relatively many
problems. Not all of these could be addressed as hotfixes, and other issues were even very involved,
causing many changes to be necessary.

There are also many general improvements and performance work for tracing and loops, but the full
potential of this will not be unlocked with this release yet.

Bug Fixes

* Fix, loop optimization sometimes didn't determinate, effectively making Nuitka run forever, with no
indication why. This has been fixed and a mechanism to give up after too many attempts has been
added.

* Fix, closure taking object allowed a brief period where the garbage collector was exposed to
uninitialized objects. Fixed in 0.6.8.1 already.

» Python3.6+: Fix corruption for exceptions thrown into asyncgen. Fixed in 0.6.8.1 already.

* Fix, deleting variables detected as C type bool could raise an UnboundLocal Err or that was wrong.
Fixed in 0.6.8.1 already.

» Python3.8.3+: Fix, future annotations parsing was using hard coded values that were changed in
CPython, leading to errors.

» Windows: Avoid encoding issues for Python3 on more systems, by going from wide characters to
unicode strings more directly, avoiding an encoding as UTF8 in the middle. Fixed in 0.6.8.2 already.

» Windows: Do not crash when warning about uninstalled MSVC using Python3. This is a Scons bug
that we fixed. Fixed in 0.6.8.3 already.

« Standalone: The output of dependency walker should be considered as "latin1" rather than UTFS8.
Fixed in 0.6.8.3 already.

« Standalone: Added missing hidden dependencies for f | ask. Fixed in 0.6.8.1 already.
« Standalone: Fixed wi n32com cl i ent on Windows. Fixed in 0.6.8.1 already.

« Standalone: Use pkguti| to scan encoding modules, properly ignoring the same files as Python
does in case of garbage files being there. Fixed in 0.6.8.2 already.

* Plugins: Enabling a plugin after the filename to compile was given, didn't allow for arguments to the
passed, causing problems. Fixed in 0.6.8.3 already.

« Standalone: The certi fi data file is now supported for all modules using it and not only some.

« Standalone: The bytecode for the standard library had filenames pointing to the original installation
attached. While these were not used, but replaced at runtime, they increased the size of the binary,
and leaked information.

« Standalone: The path of sys. execut abl e was not None, but pointing to the original executable,
which could also point to some temporary virtualenv directory and therefore not exist, also it was
leaking information about the original install.

» Windows: With the MSVC compiler, elimination of duplicate strings was not active, causing even
unused strings to be present in the binary, some of which contained file paths of the Nuitka
installation.

» Standalone: Added support for pyglet.
* Plugins: The command line handling for Pmw plugin was using wrong defaults, making it include
more code than necessary, and to crash if it was not there.

New Features

» Windows: Added support for using Python 2.7 through a symlink too. This was already working for
Python3, but a scons problem prevented this from working.

» Caching of compiled C files is now checked with ccache and clcache, and added automatically where
possible, plus a report of the success is made. This can accelerate the re-compile very much, even if
you have to go through Nuitka compilation itself, which is not (yet) cached.

» Added new - - qui et option that will disable informational traces that are going to become more.

» The Clang from MSVC installation is now picked up for both 32 and 64 bits and follows the new
location in latest Visual Studio 2019.

» Windows: The ccache from Anaconda is now supported as well as the one from msys64.

Optimization

 The value tracing has become more correct with loops and in general less often inhibits optimization.
Escaping of value traces is how a separate trace state allowing for more appropriate handling of
actual unknowns.

» Memory used for value tracing has been lowered by removing unnecessary states for traces, that we
don't use anymore.

» Windows: Prevent scons from scanning for MSVC when asked to use MinGW64. This avoids a
performance loss doing something that will then end up being unused.

» Windows: Use function level linking with MSVC, this will allow for smaller binaries to be created, that
don't have to include unused helper functions.

Cleanups

 The scons file now uses Nuitka utils functions and is itself split up into several modules for enhanced
readability.

* Plugin interfaces for providing extra entry points have been cleaned up and now named tuples are
used. Backward compatibility is maintained though.

Organisational

» The use of the logging module was replaced with more of our custom tracing and we now have the
ability to write the optimization log to a separate file.

* Old style plugin options are now detected and reported as a usage error rather than unknown plugin.

» Changed submodules to use git over https, so as to not require ssh which requires a key registered
and causes problems with firewalls too.

» More correct Debian copyright file, made formatting of emails in source code consistent.

» Added repository for Ubuntu focal.

Summary

The main focus of this release has been bug fixes with only a little performance work due to the large
amount of regressions and other findings from the last release.

The new constants loading for removes a major scalability problem. The checked and now consistently
possible use of ccache and cl cache allows for much quicker recompilation. Nuitka itself can still be slow
in some cases, but should have seen some improvements too. Scalability will have to remain a focus for
the next releases too.

The other focus, was to make the binaries contain no original path location, which is interesting for
standalone mode. Nuitka should be very good in this area now.

For optimization, the new loop code is again better. But it was also very time consuming, to redo it, yet
again. This has prevented other optimization to be added.

And then for correctness, the locals scope work, while very invasive, was necessary, to handle the usage
of locals inside of contractions, but also will be instrumental for function inlining to become generally
available.

So, ultimately, this release is a necessary intermediate step. Upcoming releases will be able to focus more
clearly on run time performance again as well as on scalability for generated C code.

Nuitka Release 0.6.8

This releases contains important general improvements and performance improvements and enhanced
optimization as well as many bug fixes that enhance the Python 3.8 compatibility.

Bug Fixes

» Python3.5+: Fix, coroutines and asyncgen could continue iteration of awaited functions, even after
their return, leading to wrong behaviour.

» Python3.5+: Fix, absolute imports of names might also refer to modules and need to be handled for
module loading as well.

* Fix, the from i st of imports could loose references, potentially leading to corruption of contained
strings.

» Python3.8: Fix, positional only arguments were not enforced to actually be that way.

» Python3.8: Fix, complex calls with star arguments that yielded the same value twice, were not yet
caught.

 Python3.8: Fix, evaluation order for nested dictionary contractions was not followed yet.

» Windows: Use short paths, these work much better to load extension modules and TCL parts of
Tkinter cannot handle unicode paths at all. This makes Nuitka work in locations, where normal
Python cannot.

» Windows: Fixup dependency walker in unicode input directories.

« Standalone: Use frozen module loader only at |i bpython initialisation and switch to built-in
bytecode loader that is more compatible afterwards, increasing compatibility.

» Standalone: Fix for pydanctic support.
» Standalone: Added missing hidden dependency of uvicorn.
* Fix, the parser for . pyi files couldn't handle multiline imports.

» Windows: Derive linker arch of Python from running binary, since it can happen that the Python
binary is actually a script.

* Fixup static linking with | i bpyt hon. a that contains mai n. o by making our colliding symbols for
Py Get Ar gcAr gv weak.

» Python3.7: Fix misdetection as asyncgen for a normal generator, if the iterated value is async.
« Distutils: Fix bui | d_nui t ka for modules under nested hamespaces.

» OpenBSD: Follow usage of clang and other corrections to make accelerated mode work.

» macOS: Fixup for standalone mode library scan.

* Fix, the logging of - - show nodul es was broken.

» Windows: Enable / bi gobj mode for MSVC for large compilations to work.

» Windows: Fixup crash in warning with pefile dependency manager.

» Windows: Fixup wi n32com standalone detection of other Python version wi n32comis in system
PATH.

* Fix, the python flag for static hashes didn't have the intended effect.
* Fix, generators may be resurrected in the cause of their destruction, and then must not be released.

* Fix, method objects didn't implement the methods __reduce__ and __reduce_ex__ necessary for
pickling them.

» Windows: Fix, using a Python installation through a symlink was not working.
» Windows: Fix, icon paths that were relative were not working anymore.
» Python3.8: Detect duplicate keywords yielded from star arguments.

* Fix, methods could not be pickled.

* Fix, generators, coroutines and asyncgen might be resurrected during their release, allow for that.

* Fix, frames need to traverse their attached locals to be released in some cases.

New Features

* Plugin command line handling now allows for proper opt par se options to be used, doing away with
special parameter code for plugins. The arguments now also become automatically passed to the
instantiations of plugins.

Loading and creation of plugins are now two separate phases. They are loaded when they appear on
the command line and can add options in their own group, even required ones, but also with default
values.

» Started using logging with name-spaces. Applying logging per plugin to make it easier to recognize
which plugin said what. Warnings are now colored in red.

» Python3.5+: Added support for two step module loading, making Nuitka loading even more
compatible.

» Enhanced import tracing to work on standalone binaries in a useful manner, allow to compare with
normal binaries.

* Fix, the set at t r built-in was leaking a reference to the None value.
Optimization

* Proper loop SSA capable of detecting shapes with an incremental initial phase and a final result of
alternatives for variables written in the loop. This detects shapes of manual integer incrementing
loops correctly now, it doesn't see through iterators yet, but this will come too.

» Added type shapes for all operations and all important built-in types to allow more compile time
optimization and better target type selection.

 Target type code generation was expanded from manual usage with conditions to all operations
allowing to get at bool target values more directly.

* For in-place operations, there is the infrastructure to generate them for improved performance, but so
far it's only used for Python2 int, and not for the many types normal operations are supported.

* Force usage of C boolean type for all indicator variables from the re-formulation. In some cases, we
are not yet there with detections, and this gives instant benefit.

» Complex constants didn't annotate their type shape, preventing compile time optimization for them.

» Python3.8: Also support vectorcall for compiled method objects. These are rarely used in new
Python, but can make a difference.

* Remove loops that have only a final break. This happens in static optimization in some cases, and
allows more optimization to be done.

* Avoid using a preparing a constant tuple value for calls with only constant arguments.

» Avoid using PyErr _For mat where it's not necessary by adding specialized helpers for common
cases.

 Detect del statements that will raise an exception and replace with that.

» Exception matching is boolean shape, allowing for faster code generation.

» Disable recursion checks outside of full compat mode.

* Avoid large blocks for conditional statements that only need to enclose the condition evaluation.

» Added shortcuts for interactions between compiled generator variants, to avoid calls to their C
methods with argument passing, etc.

Organisational

» Updated Developer Manual with changes that happened, removing the obsolete language choice
section.

» Added 3.8 support mentions in even more places.
» The mailing list has been deleted. We now prefer Gitter chat and Github issues for discussions.

« Visual Code recommended extensions are now defined as such in the project configuration and you
will be prompted to install them.

« Visual Code environents for Py38 and Py27 were added for easier switch.

« Catch usage of Python from the Microsoft App Store, it is not supported and seems to limit access to
the Python installation for security reasons that make support impossible.

» Make it clear that - - f ul | - conpat should not be used in help output.

» Added instructions for MSVC runtimes and standalone compilation to support Windows 7.
» More complete listing of copyright holders for Debian.

» Updated to newer black and PyLint.

» Enhanced gcc version check, properly works with gcc 10 and higher.

Tests

* Pylint cleanups for some of the tests.
» Added test for loading of user plugins.

» Removed useless outputs for sear ch mode skipping non-matches.

Cleanups

* Limit command line handling for multiprocessing module to when the plugin is actually used, avoiding
useless code of Windows binaries.

* Pylint cleanup also foreign code like oset and odi ct .

« In preparation of deprecating the alternative, - - enabl e- pl ugi n has become the only form used in
documentation and tests.

* Avoid numeric pylint symbols more often.

« Distutils: Cleanup module name for distutils commands, these are not actually enforced by distutils,
but very ugly in our coding conventions.

» The "cannot get here" code to mark unreachable code has been improved and no longer needs an
identifier passed, but uses the standard C mechanism for that.

* Removed accessors for lookup sources from nodes, allowing for faster usage and making sure,
lookups are only done where needed.

Summary

This release is huge in terms of bugs fixed, but also extremely important, because the new loop SSA and
type tracing, allows for many more specialized code usages. We now can trace the type for some loops to
be specifically an integer or long value only, and will become able to generate code that avoids using
Python objects, in these cases.

Once that happens, the performance will make a big jump. Future releases will have to consolidate the
current state, but it is expected that at least an experimental addition of C type f | oat or C | ong can be

added, add to that i t er at or type shape and value analsis, and an actual jump in performance can be
expected.

Nuitka Release 0.6.7

This release contains bug fixes and improvements to the packaging, for the RPM side as well as for
Debian, to cover Python3 only systems as they are now becoming more common.

Bug Fixes

» Compatibility: The value of _ nodul e__ for extension modules was not dependent into which
package the module was loaded, it now is.

» Anaconda: Enhanced detection of Anaconda for Python 3.6 and higher.
» CentOS6: Detect gcc version to allow saving on macro memory usage, very old gcc didn't have that.

* Include Python3 for all Fedora versions where it works as well as for openSUSE versions 15 and
higher.

» Windows: Using short path names to interact with Scons avoids problems with unicode paths in all
cases.

* macOS: The usage of i nstal |l _nane_t ool could sometimes fail due to length limits, we now
increase it at link time.

* macOS: Do not link against | i bpyt hon for module mode. This prevented extension modules from
actually being usable.

* Python3.6: Follow coroutine fixes in our asyncgen implementation as well.

* Fix, our version number handling could overflow with minor versions past 10, so we limited it for now.

New Features

» Added support for Python 3.8, the experimental was already there and pretty good, but now added
the last obscure features too.

* Plugins can now provide C code to be included in the compilation.

» Distutils: Added targets bui | d_nui t ka and i nst al | _nui t ka to complement bdi st _nui t ka, so
we support software other than wheels, e.g. RPM packaging that compiles with Nuitka.

» Added support for | | db the Clang debugger with the - - debugger mode.
Optimization

» Make the file prefix map actually work for gcc and clang, and compile files inside the build folder,
unless we are running in debugger mode, so we use ccache caching across different compilations
for at least the static parts.

 Avoid compilation of __f r ozen. ¢ in accelerated mode, it's not used.

* Prefer using the inline copy of scons over systems scons. The later will only be slower. Use the
fallback to external scons only from the Debian packages, since there we consider it forbidden to
include software as a duplicate.

Organisational

» Added recommended plugins for Visual Code, replacing the list in the Developer Manual.

» Added repository for Fedora 30 for download.

» Added repository for CentOS 8 for download.

» Updated inline copy of Scons used for Python3 to 3.1.2, which is said to be faster for large
compilations.

* Removed Eclipse setup from the manual, it's only infererior at this point and we do not use it
ourselves.

 Debian: Stop recommending PyQt5 in the package, we no longer use it for built-in GUI that was
removed.

» Debian: Bumped the standards version and modernized the packaging, solving a few warnings
during the build.

Cleanups

* Scons: Avoid to add Unix only include paths on Windows.

» Scons: Have the static source code in a dedicated folder for clarity.

Tests

» Added tests to Github Actions, for the supported Python versions for all of Linux, macOS and
Windows, covering the later publicly for the first time. We use Anaconda on macOS for the tests now,
rather than Homebrew.

» Enable 10 encoding to make sure we use UTF8 for more test suites that actually need it in case of
problems.

» Comparing module outputs now handles segfaults by running in the debugger too.

Summary

This release adds full support for Python 3.8 finally, which took us a while, and it cleans up a lot on the
packaging side. There aren't that many important bug fixes, but it's still nice to this cleaned up.

We have important actual optimization in the pipeline that will apply specialization to target types and for
comparison operations. We expect to see actual performance improvements in the next release again.

Nuitka Release 0.6.6

This release contains huge amounts of crucial bug fixes all across the board. There is also new
optimization and many organisational improvements.

Bug Fixes

* Fix, the top level module must not be bytecode. Otherwise we end up violating the requirement for an
entry point on the C level.

* Fix, avoid optimizing calls with default values used. This is not yet working and needed to be disabled
for now.

» Python3: Fix, missing keyword only arguments were not enforced to be provided keyword only, and
were not giving the compatible error message when missing.

* Windows: Find wi n32comDLLs too, even if they live in sub folders of site-packages, and otherwise
not found. They are used by other DLLs that are found.

« Standalone: Fixup for problem with standard library module in most recent Anaconda versions.

* Scons: Fix, was using CXXFLAGS and CPPFLAGS even for the C compiler, which is wrong, and could
lead to compilation errors.

» Windows: Make - - cl ang limited to cl ang- cl . exe as using it inside a MinGW64 is not currently
supported.

« Standalone: Added support for using | i b2t 02. pgen.
» Standalone: Added paths used by openSUSE to the Tcl/Tk plugin.

» Python3.6+: Fix, the __nmai n__ package was None, but should be
from itself.

which allows relative imports

» Python2: Fix, compile time optimization of floor division was using normal division.

» Python3: Fix, some run time operations with known type shapes, were falsely reporting error
message with uni code or | ong, which is of course not compatible.

* Fix, was caching parent package, but these could be replaced e.g. due to bytecode demotion later,
causing crashes during their optimization.

* Fix, the value of _ conpil ed__ could be corrupted when being deleted, which some modules
wrappers do.

* Fix, the value of __package__ could be corrupted when being deleted.

» Scons: Make sure we can always output the compiler output, even if it has a broken encoding. This
should resolve MSVC issues on hon-English systems, e.g. German or Chinese.

« Standalone: Support for newest skl ear n was added.
» macOS: Added resolver for run time variables in ot ool output, that gets PyQt5 to work on it again.

* Fix, floor division of run time calculations with float values should not result in i nt, but f | oat values
instead.

» Standalone: Enhanced support for bot 03 data files.
» Standalone: Added support for osgeo and gdal .

» Windows: Fix, there were issues with spurious errors attaching the constants blob to the binary due to
incorrect C types provided.

« Distutils: Fix, need to allow / as separator for package names too.

» Python3.6+: Fix reference losses in asyncgen when throwing exceptions into them.
» Standalone: Added support for di | | .

» Standalone: Added support for sci ki t -i mage and ski nage.

« Standalone: Added support for weasypri nt .

» Standalone: Added support for dask.

« Standalone: Added support for pendul um

« Standalone: Added support for pyt z and pyt zdat a.

* Fix, - - pyt hon- f | ags=no_docst ri ngs no longer implies disabling the assertions.

New Features

» Added experimental support for Python 3.8, there is only very few things missing for full support.

» Distutils: Added support for packages that are in a namespace and not just top level.

« Distutils: Added support for single modules, not only packages, by supporting py_nodul es as well.
» Distutils: Added support for distinct namespaces.

» Windows: Compare Python and C compiler architecture for MSVC too, and catch the most common
user error of mixing 32 and 64 bits.

 Scons: Output variables used from the outside, so the debugging is easier.

» Windows: Detect if clang installed inside MSVC automatically and use it if requested via - - cl ang
option. This is only the 32 bits variant, but currently the easy way to use it on Windows with Nuitka.

Optimization

 Loop variables were analysed, but results were only available on the inside of the loop, preventing
many optimization in these cases.

» Added optimization for the abs built-in, which is also a numerical operator.

» Added optimization for the al | built-in, adding a new concept of iteration handle, for efficient
checking that avoids looking at very large sequences, of which properties can still be known.

all (range(1, 100000)) # no need to look at all of them

» Added support for optimizing | mpor t Er r or construction with keyword-only arguments. Previously
only used without these were optimized.

raise InportError(path="1ala", nane="lele") # now optini zed
» Added manual specialization for single argument calls, sovling a TODO, as these will be very
frequent.

» Memory: Use single child form of node class where possible, the general class now raises an error if
used with used with only one child name, this will use less memory at compile time.

* Memory: Avoid list for non-local declarations in every function, these are very rare, only have it if
absolutely necessary.

* Generate more compact code for potential NanmeEr r or exceptions being raised. These are very
frequent, so this improves scalability with large files.

* Python2: Annotate comparison of None with i nt and st r types as not raising an exception.
» Shared empty body functions and generators.

One shared implementation for all empty functions removes that burden from the C compiler, and
from the CPU instruction cache. All the shared C code does is to release its arguments, or to return
an empty generator function in case of generator.

* Memory: Added support for automatic releases of parameter variables from the node tree. These are
normally released in a try finally block, however, this is now handled during code generation for much
more compact C code generated.

» Added specialization for i nt and | ong operations % <<, >>,| , & ", **, @
» Added dedicated nodes for representing and optimizing based on shapes for all binary operations.
» Disable gcc macro tracing unless in debug mode, to save memory during the C compilation.

» Restored Python2 fast path for i nt with unknown object types, restoring performance for these.

Cleanups

* Use dedicated Modul eNane type that makes the tests that check if a given module name is inside a
namespace as methods. This was hard to get right and as a result, adopting this fixed a few bugs and
or inconsistent results.

» Expand the use of nui t ka. Post Pr ocessi ng to cover all actions needed to get a runnable binary.
This includes using i nst al | _name_t ool on macOS standalone, as well copying the Python DLL
for acceleration mode, cleaning the x bit for module mode. Previously only a part of these lived there.

 Avoid including the definitions of dynamically created helper functions in the C code, instead just
statically declare the ones expected to be there. This resolves Visual Code complaining about it, and
should make life also easier for the compiler and caches like ccache.

» Create more helper code in closer form to what cl ang- f or mat does, so they are easier to compare
to the static forms. We often create hard coded variants for few arguments of call functions, and
generate them for many argument variations.

» Moved setter/getter methods for Nuitka nodes consistently to the start of the node class definitions.
» Generate C code much closer to what cl ang- f or mat would change it to be.

« Unified calling i nstal | _nanme_t ool on macOS into one function that takes care of all the things,
including e.g. making the file writable.

» Debug output from scons should be more consistent and complete now.
« Sort files for compilation in scons for better reproducible results.

» Create code objects version independent, avoiding python version checks by pre-processor, hiding
new stuff behind macros, that ignore things on older Python versions.

Tests

» Added many more built-in tests for increased coverage of the newly covered ones, some of them
being generic tests that allow to test all built-ins with typical uses.

» Many tests have become more PyLint clean as a result of work with Visual Code and it complaining
about them.

» Added test to check PyPI health of top 50 packages. This is a major GSoC 2019 result.
* Output the standalone directory contents for Windows too in case of a failure.

» Added generated tests to fully cover operations on different type shapes and their errors as well as
results for typical values.

» Added support for testing against installed version of Nuitka.

* Cleanup up tests, merging those for only Python 3.2 with 3.3 as we no longer support that version
anyway.
» Execute the Python3 tests for macOS on Travis too.

Organisational

» The donation sponsored machine called donat i x had to be replaced due to hardware breakage. It
was replaced with a Raspberry-Pi 4.

» Enhanced plugin documentation.
» Added description of the git workflow to the Developer Manual.

» Added checker script check- nui t ka-wi t h-codespel | that reports typos in the source code for
easier use of codespel | with Nuitka.

» Use newest PyLint and clang-format.

» Also check plugin documentation files for ReST errors.

» Much enhanced support for Visual Code configuration.

* Trigger module code is now written into the build directory in debug mode, to aid debugging.

» Added deep check function that descends into tuples to check their elements too.

Summary

This release comes after a long time of 4 months without a release, and has accumulated massive
amounts of changes. The work on CPython 3.8 is not yet complete, and the performance work has yet to
show actual fruit, but has also progressed on all fronts. Connecting the dots and pieces seems not far
away.

Nuitka Release 0.6.5

This release contains many bug fixes all across the board. There is also new optimization and many
organisational improvements.

Bug Fixes

» Python3.4+: Fixed issues with modules that exited with an exception, that could lead to a crash,
dealing with their __spec__ value.

» Python3.4+: The __| oader __ method i s_package had the wrong signature.
» Python3.6+: Fix for async wi t h being broken with uncompiled generators.

» Python3.5+: Fix for cor out i nes that got their awaited object closed behind their back, they were
complaining with Runt i neEr r or should they be closed themselves.

* Fix, constant values None in a bool target that could not be optimized away, lead to failure during
code generation.

if x() and None:

* Standalone: Added support for sha224, sha384, sha512 in crypto package.
» Windows: The icon wasn't properly attached with MinGW64 anymore, this was a regression.

» Windows: For compiler outputs, also attempt preferred locale to interpret outputs, so we have a better
chance to not crash over MSVC error messages that are not UTF-8 compatible.

» macOS: Handle filename collisions for generated code too, Nuitka now treats all filesystems for all
OS as case insensitive for this purpose.

» Compatibility: Added support for tolerant del in class exception handlers.

class C
try:
exce|.o'.[. Exception as e:
del e
At exception handler exit, "e" is deleted if still assigned

We already were compatible for functions and modules here, but due to the special nature of class
variables really living in dictionaries, this was delayed. But after some other changes, it was now
possible to solve this TODO.

« Standalone: Added support for Python3 variant of Pmw.
* Fix, the NumPy plugin now handles more installation types.

* Fix, the gt plugin now handles multiple library paths.

* Fix, need | i bmfor some Anaconda variants too.
* Fix, left over bytecode from plugins could crash the plugin loader.

* Fix, pkguti | .iter_packages is now working for loaded packages.

New Features

» Python3.8: Followed some of the changes and works with beta2 as a Python 3.7, but none of the new
features are implemented yet.

» Added support for Torch, Tensorflow, Gevent, Sklearn, with a new Nuitka plugin.
» Added support for "hinted" compilation, where the used modules are determined through a test run.

» Added support for including TCL on Linux too.
Optimization

» Added support for the any built-in. This handles a wide range of type shapes and constant values at
compile time, while also having optimized C code.

» Generate code for some CLONG operations in preparation of eventual per expression C type
selection, it then will allow to avoid objects in many instances.

» Windows: Avoid creating link libraries for MinGW64 as these have become unnecessary is the mean
time.

» Packages: Do not export entry points for all included packages, only for the main package name it is
importable as.

Organisational

» Added support for Visual Studio 2019 as a C compiler backend.
« Improved plugin documentation describing how to create plugins for Nuitka even better.

» The is now a mode for running the tests called al | which will execute all the tests and report their
errors, and only fail at the very end. This doesn't avoid wasting CPU cycles to report that e.g. all tests
are broken, but it allows to know all errors before fixing some.

» Added repository for Fedora 30 for download.
» Added repository for openSUSE 15.1 for download.

» Ask people to compile hello world program in the Github issue template, because many times, they
have setup problems only.

* Visual Studio Code is now the recommended IDE and has integrated configuration to make it
immediately useful.

» Updated internal copy of Scons to 3.1.0 as it incorporates many of our patches.
» Changed wordings for optimization to use "lowering" as the only term to describe an optimization that
simplifies.

Cleanups

* Plugins: Major refactoring of Nuitka plugin API.
* Plugins: To locate module kind, use core Nuitka code that handles more cases.

* The test suite runners are also now autoformatted and checked with PyLint.

» The Scons file is now PyLint clean too.

» Avoid bui | d_def i ni ti ons. h to be included everywhere, in that it's only used in the main program
part. This makes C linter hate us much less for using a non-existent file.

Tests

* Run the tests using Travis on macOS for Python2 too.

» More standalone tests have been properly whitelisting to cover openSSL usage from local system.
» Disabled PySide2 test, it's not useful to fail and ignore it.

» Tests: Fixups for coverage testing mode.

 Tests: Temporarily disable some checks for constants code in reflected tests as it only exposes
mar shal not being deterministic.

Summary

This release is huge again. Main points are compatibility fixes, esp. on the coroutine side. These have
become apparently very compatible now and we might eventually focus on making them better.

Again, GSoC 2019 is also showing effects, and will definitely continue to do soin the next release.

Many use cases have been improved, and on an organisational level, the adoption of Visual Studio Code
seems an huge improvement to have a well configured IDE out of the box too.

In upcoming releases, more built-ins will be optimized, and hopefully the specialization of operations will hit
more and more code with more of the infrastructure getting there.

Nuitka Release 0.6.4

This release contains many bug fixes all across the board. There is also new optimization and many
organisational improvements.

Bug Fixes

* When linking very large programs or packages, with gcc compiler, Scons can produce commands
that are too large for the OS. This happens sooner on the Windows OS, but also on Linux. We now
have a workaround that avoids long command lines by using @our ces. t np syntax.

 Standalone: Remove temporary module after its use, instead of keeping it in sys. nodul es where
e.g. Quart code tripped overits __fil e__ value that is illegal on Windows.

* Fixed non-usage of our enhanced detection of gcc version for compilers if given as a full path.
* Fixed non-detection of gnu- cc as a form of gcc compiler.

» Python3.4: The __spec__ value corrections for compiled modules was not taking into account that
there was a __spec__ value, which can happen if something is wrapping imported modules.

« Standalone: Added implicit dependencies for passl i b.

* Windows: Added workaround for OS command line length limit in compilation with MinGW64.
» Python2: Revive the enumplugin, there are backports of the buggy code it tries to patch up.

» Windows: Fixup handling of SxS with non zero language id, these occur e.g. in Anaconda.

* Plugins: Handle multiple PyQt plugin paths, e.g. on openSUSE this is done, also enhanced finding
that path with Anaconda on Windows.

* Plugins: For mul ti processi ng on Windows, allow the . exe suffix to not be present, which can
happen when ran from command line.

» Windows: Bett