|
7.5.7.0. weightedRing
Procedure from library nctools.lib (see nctools_lib).
- Usage:
- weightedRing(r); r a ring
- Return:
- ring
- Purpose:
- equip the variables of a ring with such weights,that the relations of new ring (with weighted variables) satisfies the ordering condition for G-algebras
- Note:
- activate this ring with the "setring" command
Example:
| LIB "nctools.lib";
ring r = (0,q),(a,b,c,d),lp;
matrix C[4][4];
C[1,2]=q; C[1,3]=q; C[1,4]=1; C[2,3]=1; C[2,4]=q; C[3,4]=q;
matrix D[4][4];
D[1,4]=(q-1/q)*b*c;
ncalgebra(C,D);
r;
==> // characteristic : 0
==> // 1 parameter : q
==> // minpoly : 0
==> // number of vars : 4
==> // block 1 : ordering lp
==> // : names a b c d
==> // block 2 : ordering C
==> // noncommutative relations:
==> // ba=(q)*ab
==> // ca=(q)*ac
==> // da=ad+(q2-1)/(q)*bc
==> // db=(q)*bd
==> // dc=(q)*cd
def t=weightedRing(r);
setring t; t;
==> // characteristic : 0
==> // 1 parameter : q
==> // minpoly : 0
==> // number of vars : 4
==> // block 1 : ordering M
==> // : names a b c d
==> // : weights 2 1 1 1
==> // : weights 0 0 0 1
==> // : weights 0 0 1 0
==> // : weights 0 1 0 0
==> // block 2 : ordering C
==> // noncommutative relations:
==> // ba=(q)*ab
==> // ca=(q)*ac
==> // da=ad+(q2-1)/(q)*bc
==> // db=(q)*bd
==> // dc=(q)*cd
| Gweights
|