
Cheetah Developers’ Guide
Release 0.9.15a1

Mike Orr with assistance from Tavis Rudd

October 6, 2002

iron@mso.oz.net

Contents

1 Introduction 4
1.1 Who should read this Guide?. 4
1.2 Contents. 4

2 .py Template Modules 5
2.1 An example. 5
2.2 A walk through the example. 8

3 Placeholders 10
3.1 Simple placeholders. 10
3.2 Complex placeholders. 13

4 Caching placeholders and #cache 20
4.1 Dynamic placeholder – no cache. 20
4.2 Static placeholder. 20
4.3 Timed-refresh placeholder. 21
4.4 Timed-refresh placeholder with braces. 23
4.5 #cache. 23
4.6 #cache with timer and id. 24
4.7 #cache with test: expression and method conditions. 24

5 Directives: Comments 27
5.1 Docstring and header comments. 27

6 Directives: Output 29
6.1 #echo . 29
6.2 #silent . 29
6.3 #raw . 29
6.4 #include. 30

#include raw. 30
#include from a string or expression (eval). 31

6.5 #slurp . 31
6.6 #filter . 32

7 Directives: Import, Inheritance, Declaration and Assignment 34
7.1 #import and #from . 34

7.2 #extends. 34
7.3 #implements. 34
7.4 #set and #set global. 34
7.5 #del . 35
7.6 #attr . 35
7.7 #def . 36
7.8 #block . 37
7.9 #settings. 38

8 Directives: Flow Control 39
8.1 #for . 39
8.2 #repeat. 39
8.3 #while . 40
8.4 #if . 40
8.5 #unless . 41
8.6 #break and #continue. 41
8.7 #pass . 42
8.8 #stop. 43
8.9 #return. 43

9 Directives: Error Handling 46
9.1 #try and #raise. 46
9.2 #assert. 47
9.3 #errorCatcher. 47

No error catcher. 47
Echo and BigEcho . 48
ListErrors . 49

10 Directives: Parser Instructions 53
10.1 #breakpoint. 53
10.2 #compiler . 53

11 Files 54

12 Template 55

13 The parser 56

14 The compiler 57

15 History of Cheetah 58

16 Design Decisions and Tradeoffs 60
16.1 Delimiters. 60
16.2 Late binding. 60
16.3 Caching framework. 60
16.4 Webware compatibility and the transaction framework. 61
16.5 Single inheritance. 61

17 Patching Cheetah 62
17.1 File Requirements. 62
17.2 Testing Changes and Building Regression Tests. 62

18 Documenting Cheetah 64

A A BNF Grammar of Cheetah 65

2 Contents

B Safe Delegation 66

c©Copyright 2002, Mike Orr. This document may be copied and modified under the terms of theOpen Publication
Licensehttp://www.opencontent.org/openpub/

Contents 3

1 Introduction

1.1 Who should read this Guide?

The Cheetah Developers’ Guide is for those who want to learn how Cheetah works internally, or wish to modify or
extend Cheetah. It is assumed that you’ve read the Cheetah Users’ Guide and have an intermediate knowledge of
Python.

1.2 Contents

This Guide takes a behaviorist approach. First we’ll look at what the Cheetah compiler generates when it compiles a
template definition, and how it compiles the various $placeholder features and #directives. Then we’ll stroll through
the files in the Cheetah source distribution and show how each file contributes to the compilation and/or filling of
templates. Then we’ll list every method/attribute inherited by a template object. Finally, we’ll describe how to submit
bugfixes/enhancements to Cheetah, and how to add to the documentation.

Appendix A will contain a BNF syntax of the Cheetah template language.

4 1 Introduction

2 .py Template Modules

This chapter examines the structure of a .py template module. The following few chapters will then show how each
placeholder and directive affects the generated Python code.

2.1 An example

Our first template follows a long noble tradition in computer tutorials. It produces a familiar, friendly greeting. Here’s
the template:

Hello, world!

... the output:

Hello, world!

... and the .py template module cheetah-compile produced, with line numbers added:

5

1 #!/usr/bin/env python

2 """
3 Autogenerated by CHEETAH: The Python-Powered Template Engine
4 CHEETAH VERSION: 0.9.12
5 Generation time: Sat Apr 20 14:27:47 2002
6 Source file: x.tmpl
7 Source file last modified: Wed Apr 17 22:10:59 2002
8 """

9 __CHEETAH_genTime__ = ’Sat Apr 20 14:27:47 2002’
10 __CHEETAH_src__ = ’x.tmpl’
11 __CHEETAH_version__ = ’0.9.12’

12 ##
13 ## DEPENDENCIES

14 import sys
15 import os
16 import os.path
17 from os.path import getmtime, exists
18 import time
19 import types
20 from Cheetah.Template import Template
21 from Cheetah.DummyTransaction import DummyTransaction
22 from Cheetah.NameMapper import NotFound, valueForName,

valueFromSearchList
23 import Cheetah.Filters as Filters
24 import Cheetah.ErrorCatchers as ErrorCatchers

25 ##
26 ## MODULE CONSTANTS

27 try:
28 True, False
29 except NameError:
30 True, False = (1==1), (1==0)

31 ##
32 ## CLASSES

33 class x(Template):
34 """
35
36 Autogenerated by CHEETAH: The Python-Powered Template Engine
37 """

6 2 .py Template Modules

38 ##
39 ## GENERATED METHODS

40 def __init__(self, *args, **KWs):
41 """
42
43 """

44 Template.__init__(self, *args, **KWs)
45 self._filePath = ’x.tmpl’
46 self._fileMtime = 1019106659

47 def respond(self,
48 trans=None,
49 dummyTrans=False,
50 VFS=valueFromSearchList,
51 VFN=valueForName,
52 getmtime=getmtime,
53 currentTime=time.time):

54 """
55 This is the main method generated by Cheetah
56 """

57 if not trans:
58 trans = DummyTransaction()
59 dummyTrans = True
60 write = trans.response().write
61 SL = self._searchList
62 filter = self._currentFilter
63 globalSetVars = self._globalSetVars
64
65 ##
66 ## START - generated method body
67
68 if exists(self._filePath) and getmtime(self._filePath) > \

self._fileMtime:
69 self.compile(file=self._filePath)
70 write(getattr(self, self._mainCheetahMethod_for_x)

(trans=trans))
71 if dummyTrans:
72 return trans.response().getvalue()
73 else:
74 return ""
75 write(’Hello, world!\n’)
76
77 ##
78 ## END - generated method body
79
80 if dummyTrans:
81 return trans.response().getvalue()
82 else:
83 return ""

2.1 An example 7

84
85 ##
86 ## GENERATED ATTRIBUTES

87 __str__ = respond

88 _mainCheetahMethod_for_x= ’respond’

89 # CHEETAH was developed by Tavis Rudd, Chuck Esterbrook, Ian Bicking
and Mike Orr;

90 # with code, advice and input from many other volunteers.
91 # For more information visit http://www.CheetahTemplate.org

92 ##
93 ## if run from command line:
94 if __name__ == ’__main__’:
95 x().runAsMainProgram()

(I added the line numbers for this Guide, and split a few lines to fit the page width. The continuation lines don’t have
line numbers, and I added indentation, backslashes and ’#’ as necessary to make the result a valid Python program.)

The examples were generated from CVS versions of Cheetah between 0.9.12 and 0.9.14.

2.2 A walk through the example

Lines 20-24 are the Cheetah-specific imports. Line 33 introduces our generated class,x , a subclass ofTemplate .
It’s called x because the source file was x.tmpl.

Lines 40-46 are the. init method called when the template is instantiated or used as a Webware servlet,
or when the module is run as a standalone program. We can see it calling its superclass constructor and setting
. filePath and. fileMtime to the filename and modification time (in Unix ticks) of the source .tmpl file.

Lines 47-84 are the main method.respond , the one that fills the template. Normally you call it without arguments,
but Webware calls it with a WebwareTransaction object representing the current request. Lines 57-59 set up the
trans variable. If a real or dummy transaction is passed in, the method uses it. Otherwise (if thetrans argument is
None), the method creates aDummyTransaction instance.dummyTrans is a flag that just tells whether a dummy
transaction is in effect; it’ll be used at the end of the method.

The other four.respond arguments aren’t anything you’d ever want to pass in; they exist solely to speed up access
to these frequently-used global functions. This is a standard Python trick described in question 4.7 of the Python
FAQ (http://www.python.org/cgi-bin/faqw.py). VFS andVFNare the functions that give your template the benefits of
NameMapper lookup, such as the ability to use the searchList.

Line 60 initializes thewrite variable. This important variable is discussed below.

Lines 60-63 initialize a few more local variables.SL is the searchList.filter is the current output filter.glob-
alSetVars are the variables that have been defined with#set global .

The comments at lines 65 and 78 delimit the start and end of the code that varies with each template. The code outside
this region is identical in all template modules. That’s not quite true –#import for instance generates additional
import statements at the top of the module – but it’s true enough for the most part.

Lines 68-74 exist only if the template source was a named file rather than a string or file object. The stanza recompiles
the template if the source file has changed. Lines 70-74 seem to be redundant with 75-83: both fill the template and

8 2 .py Template Modules

send the output. The reason the first set of lines exists is because the second set may become invalid when the template
is recompiled. (This is forre compilation only. The initial compilation happened in the. init method if the
template wasn’t precompiled.)

Line 75 is the most interesting line in this module. It’s a direct translation of what we put in the template definition,
“Hello, world!” Here the content is a single string literal.write looks like an ordinary function call, but remember
that line 60 made it an alias totrans.response().write , a method in the transaction. The next few chapters
describe how the different placeholders and directives influence this portion of the generated class.

Lines 80-83 finish the template filling. Iftrans is a real Webware transaction,write has already sent the output to
Webware for handling, so we return"" . If trans is a dummy transaction,write has been accumulating the output
in a PythonStringIO object rather than sending it anywhere, so we have to return it.

Line 83 is the end of the.respond method.

Line 87 makes code. str an alias for the main method, so that you canprint it or applystr to it and it will fill
the template. Line 88 gives the name of the main method, because sometimes it’s not.respond .

Lines 94-95 allow the module to be run directly as a script. Essentially, they process the command-line arguments and
them make the template fill itself.

2.2 A walk through the example 9

3 Placeholders

3.1 Simple placeholders

Let’s add a few $placeholders to our template:

10 3 Placeholders

>>> from Cheetah.Template import Template
>>> values = {’what’: ’surreal’, ’punctuation’: ’?’}
>>> t = Template("""\
... Hello, $what world$punctuation
... One of Python’s least-used functions is $xrange.
... """, [values])
>>> print t
Hello, surreal world?
One of Python’s least-used functions is <built-in function xrange>.

>>> print t.generatedModuleCode()
1 #!/usr/bin/env python

2 """
3 Autogenerated by CHEETAH: The Python-Powered Template Engine
4 CHEETAH VERSION: 0.9.12
5 Generation time: Sun Apr 21 00:53:01 2002
6 """

7 __CHEETAH_genTime__ = ’Sun Apr 21 00:53:01 2002’
8 __CHEETAH_version__ = ’0.9.12’

9 ##
10 ## DEPENDENCIES

11 import sys
12 import os
13 import os.path
14 from os.path import getmtime, exists
15 import time
16 import types
17 from Cheetah.Template import Template
18 from Cheetah.DummyTransaction import DummyTransaction
19 from Cheetah.NameMapper import NotFound, valueForName,

valueFromSearchList
20 import Cheetah.Filters as Filters
21 import Cheetah.ErrorCatchers as ErrorCatchers

22 ##
23 ## MODULE CONSTANTS

24 try:
25 True, False
26 except NameError:
27 True, False = (1==1), (1==0)

28 ##
29 ## CLASSES

30 class GenTemplate(Template):
31 """
32
33 Autogenerated by CHEETAH: The Python-Powered Template Engine
34 """

35 ##
36 ## GENERATED METHODS

3.1 Simple placeholders 11

37 def __init__(self, *args, **KWs):
38 """
39
40 """

41 Template.__init__(self, *args, **KWs)

42 def respond(self,
43 trans=None,
44 dummyTrans=False,
45 VFS=valueFromSearchList,
46 VFN=valueForName,
47 getmtime=getmtime,
48 currentTime=time.time):

49 """
50 This is the main method generated by Cheetah
51 """

52 if not trans:
53 trans = DummyTransaction()
54 dummyTrans = True
55 write = trans.response().write
56 SL = self._searchList
57 filter = self._currentFilter
58 globalSetVars = self._globalSetVars
59
60 ##
61 ## START - generated method body
62
63 write(’Hello, ’)
64 write(filter(VFS(SL,"what",1))) # generated from ’$what’ at

line 1, col 8.
65 write(’ world’)
66 write(filter(VFS(SL,"punctuation",1))) # generated from

’$punctuation’ at line 1, col 19.
67 write("\nOne of Python’s least-used methods is ")
68 write(filter(xrange)) # generated from ’$xrange’ at line 2,

col 39.
69 write(’.\n’)
70
71 ##
72 ## END - generated method body
73
74 if dummyTrans:
75 return trans.response().getvalue()
76 else:
77 return ""

12 3 Placeholders

78
79 ##
80 ## GENERATED ATTRIBUTES

81 __str__ = respond
82 _mainCheetahMethod_for_GenTemplate= ’respond’

83 # CHEETAH was developed by Tavis Rudd, Chuck Esterbrook, Ian Bicking
and Mike Orr;

84 # with code, advice and input from many other volunteers.
85 # For more information visit http://www.CheetahTemplate.org

86 ##
87 ## if run from command line:
88 if __name__ == ’__main__’:
89 GenTemplate().runAsMainProgram()

(Again, I have added line numbers and split the lines as in the previous chapter.)

This generated template module is different from the previous one in several trivial respects and one important respect.
Trivially, . filePath and. fileMtime are not updated in. init , so they inherit the valueNone from
Template . Also, that if-stanza in.respond that recompiles the template if the source file changes is missing –
because there is no source file. So this module is several lines shorter than the other one.

But the important way this module is different is that instead of the onewrite call outputting a string literal, this
module has a series ofwrite calls (lines 63-69) outputting successive chunks of the template. Regular text has been
translated into a string literal, and placeholders into function calls. Every placeholder is wrapped inside afilter
call to apply the current output filter. (The default output filter converts all objects to strings, andNone to "" .)

Placeholders referring to a Python builtin likexrange (line 68) generate a bare variable name. Placeholders to be
looked up in the searchList have a nested function call; e.g.,

write(filter(VFS(SL,"what",1))) # generated from ’$what’ at line 1, col 8.

VFS, remember, is a function imported fromCheetah.NameMapper that looks up a value in a searchList. So we
pass it the searchList, the name to look up, and a boolean (1) indicating we want autocalling. (It’s1 rather thanTrue
because it’s generated from anand expression, and that’s what Python 2.2 outputs for trueand expressions.)

3.2 Complex placeholders

Placeholders can get far more complicated than that. This example shows what kind of code the var-
ious NameMapper features produce. The formulas are taken from Cheetah’s test suite, in theChee-
tah.Tests.SyntaxAndOutput.Placeholders class.

3.2 Complex placeholders 13

1 placeholder: $aStr
2 placeholders: $aStr $anInt
2 placeholders, back-to-back: $aStr$anInt
1 placeholder enclosed in {}: ${aStr}
1 escaped placeholder: \$var
func placeholder - with (): $aFunc()
func placeholder - with (int): $aFunc(1234)
func placeholder - with (string): $aFunc(’aoeu’)
func placeholder - with (’’’\nstring’\n’’’): $aFunc(’’’\naoeu’\n’’’)
func placeholder - with (string*int): $aFunc(’aoeu’*2)
func placeholder - with (int*float): $aFunc(2*2.0)
Python builtin values: $None $True $False
func placeholder - with ($arg=float): $aFunc($arg=4.0)
deeply nested argstring: $aFunc($arg = $aMeth($arg = $aFunc(1))):
function with None: $aFunc(None)
autocalling: $aFunc! $aFunc().
nested autocalling: $aFunc($aFunc).
list subscription: $aList[0]
list slicing: $aList[:2]
list slicing and subcription combined: $aList[:2][0]
dict - NameMapper style: $aDict.one
dict - Python style: $aDict[’one’]
dict combined with autocalled string method: $aDict.one.upper
dict combined with string method: $aDict.one.upper()
nested dict - NameMapper style: $aDict.nestedDict.two
nested dict - Python style: $aDict[’nestedDict’][’two’]
nested dict - alternating style: $aDict[’nestedDict’].two
nested dict - NameMapper style + method: $aDict.nestedDict.two.upper
nested dict - alternating style + method: $aDict[’nestedDict’].two.upper
nested dict - NameMapper style + method + slice: $aDict.nestedDict.two.upper[:4]
nested dict - Python style, variable key: $aDict[$anObj.meth(’nestedDict’)].two
object method: $anObj.meth1
object method + complex slice: $anObj.meth1[0: ((4/4*2)*2)/$anObj.meth1(2)]
very complex slice: $(anObj.meth1[0: ((4/4*2)*2)/$anObj.meth1(2)])

We’ll need a big program to set up the placeholder values. Here it is:

14 3 Placeholders

#!/usr/bin/env python
from ComplexExample import ComplexExample

try: # Python >= 2.2.1
True, False

except NameError: # Older Python
True, False = (1==1), (1==0)

class DummyClass:
_called = False
def __str__(self):

return ’object’

def meth(self, arg="arff"):
return str(arg)

def meth1(self, arg="doo"):
return arg

def meth2(self, arg1="a1", arg2="a2"):
return str(arg1) + str(arg2)

def callIt(self, arg=1234):
self._called = True
self._callArg = arg

def dummyFunc(arg="Scooby"):
return arg

defaultTestNameSpace = {
’aStr’:’blarg’,
’anInt’:1,
’aFloat’:1.5,
’aList’: [’item0’,’item1’,’item2’],
’aDict’: {’one’:’item1’,

’two’:’item2’,
’nestedDict’:{1:’nestedItem1’,

’two’:’nestedItem2’
},

’nestedFunc’:dummyFunc,
},

’aFunc’: dummyFunc,
’anObj’: DummyClass(),
’aMeth’: DummyClass().meth1,

}

print ComplexExample(searchList=[defaultTestNameSpace])

Here’s the output:

3.2 Complex placeholders 15

1 placeholder: blarg
2 placeholders: blarg 1
2 placeholders, back-to-back: blarg1
1 placeholder enclosed in {}: blarg
1 escaped placeholder: $var
func placeholder - with (): Scooby
func placeholder - with (int): 1234
func placeholder - with (string): aoeu
func placeholder - with (’’’\nstring’\n’’’):
aoeu’

func placeholder - with (string*int): aoeuaoeu
func placeholder - with (int*float): 4.0
Python builtin values: 1 0
func placeholder - with ($arg=float): 4.0
deeply nested argstring: 1:
function with None:
autocalling: Scooby! Scooby.
nested autocalling: Scooby.
list subscription: item0
list slicing: [’item0’, ’item1’]
list slicing and subcription combined: item0
dict - NameMapper style: item1
dict - Python style: item1
dict combined with autocalled string method: ITEM1
dict combined with string method: ITEM1
nested dict - NameMapper style: nestedItem2
nested dict - Python style: nestedItem2
nested dict - alternating style: nestedItem2
nested dict - NameMapper style + method: NESTEDITEM2
nested dict - alternating style + method: NESTEDITEM2
nested dict - NameMapper style + method + slice: NEST
nested dict - Python style, variable key: nestedItem2
object method: doo
object method + complex slice: do
very complex slice: do

And here – tada! – is the generated module. To save space, I’ve included only the lines containing thewrite calls.
The rest of the module is the same as in the first example, chapter 2.1. I’ve split some of the lines to make them fit on
the page.

16 3 Placeholders

1 write(’1 placeholder: ’)
2 write(filter(VFS(SL,"aStr",1))) # generated from ’$aStr’ at line 1, col 16.
3 write(’\n2 placeholders: ’)
4 write(filter(VFS(SL,"aStr",1))) # generated from ’$aStr’ at line 2, col 17.
5 write(’ ’)
6 write(filter(VFS(SL,"anInt",1)))

generated from ’$anInt’ at line 2, col 23.
7 write(’\n2 placeholders, back-to-back: ’)
8 write(filter(VFS(SL,"aStr",1))) # generated from ’$aStr’ at line 3, col 31.
9 write(filter(VFS(SL,"anInt",1)))

generated from ’$anInt’ at line 3, col 36.
10 write(’\n1 placeholder enclosed in {}: ’)
11 write(filter(VFS(SL,"aStr",1))) # generated from ’${aStr}’ at line 4,

col 31.
12 write(’\n1 escaped placeholder: $var\nfunc placeholder - with (): ’)
13 write(filter(VFS(SL,"aFunc",0)())) # generated from ’$aFunc()’ at line 6,

col 29.
14 write(’\nfunc placeholder - with (int): ’)
15 write(filter(VFS(SL,"aFunc",0)(1234))) # generated from ’$aFunc(1234)’ at

line 7, col 32.
16 write(’\nfunc placeholder - with (string): ’)
17 write(filter(VFS(SL,"aFunc",0)(’aoeu’))) # generated from "$aFunc(’aoeu’)"

at line 8, col 35.
18 write("\nfunc placeholder - with (’’’\\nstring’\\n’’’): ")
19 write(filter(VFS(SL,"aFunc",0)(’’’\naoeu’\n’’’))) # generated from

"$aFunc(’’’\\naoeu’\\n’’’)" at line 9, col 46.
20 write(’\nfunc placeholder - with (string*int): ’)
21 write(filter(VFS(SL,"aFunc",0)(’aoeu’*2))) # generated from

"$aFunc(’aoeu’*2)" at line 10, col 39.
22 write(’\nfunc placeholder - with (int*float): ’)
23 write(filter(VFS(SL,"aFunc",0)(2*2.0))) # generated from ’$aFunc(2*2.0)’

at line 11, col 38.
24 write(’\nPython builtin values: ’)
25 write(filter(None)) # generated from ’$None’ at line 12, col 24.
26 write(’ ’)
27 write(filter(True)) # generated from ’$True’ at line 12, col 30.
28 write(’ ’)
29 write(filter(False)) # generated from ’$False’ at line 12, col 36.
30 write(’\nfunc placeholder - with ($arg=float): ’)
31 write(filter(VFS(SL,"aFunc",0)(arg=4.0))) # generated from

’$aFunc($arg=4.0)’ at line 13, col 40.
32 write(’\ndeeply nested argstring: ’)
33 write(filter(VFS(SL,"aFunc",0)(

arg = VFS(SL,"aMeth",0)(arg = VFS(SL,"aFunc",0)(1)))))
generated from ’$aFunc($arg = $aMeth($arg = $aFunc(1)))’
at line 14, col 26.
34 write(’:\nfunction with None: ’)
35 write(filter(VFS(SL,"aFunc",0)(None))) # generated from ’$aFunc(None)’ at

line 15, col 21.
36 write(’\nautocalling: ’)
37 write(filter(VFS(SL,"aFunc",1))) # generated from ’$aFunc’ at line 16,

col 14.
38 write(’! ’)
39 write(filter(VFS(SL,"aFunc",0)())) # generated from ’$aFunc()’ at line 16,

col 22.

3.2 Complex placeholders 17

40 write(’.\nnested autocalling: ’)
41 write(filter(VFS(SL,"aFunc",0)(VFS(SL,"aFunc",1)))) # generated from

’$aFunc($aFunc)’ at line 17, col 21.
42 write(’.\nlist subscription: ’)
43 write(filter(VFS(SL,"aList",1)[0])) # generated from ’$aList[0]’ at line

18, col 20.
44 write(’\nlist slicing: ’)
45 write(filter(VFS(SL,"aList",1)[:2])) # generated from ’$aList[:2]’ at

line 19, col 15.
46 write(’\nlist slicing and subcription combined: ’)
47 write(filter(VFS(SL,"aList",1)[:2][0])) # generated from ’$aList[:2][0]’

at line 20, col 40.
48 write(’\ndict - NameMapper style: ’)
49 write(filter(VFS(SL,"aDict.one",1))) # generated from ’$aDict.one’ at line

21, col 26.
50 write(’\ndict - Python style: ’)
51 write(filter(VFS(SL,"aDict",1)[’one’])) # generated from "$aDict[’one’]"

at line 22, col 22.
52 write(’\ndict combined with autocalled string method: ’)
53 write(filter(VFS(SL,"aDict.one.upper",1))) # generated from

’$aDict.one.upper’ at line 23, col 46.
54 write(’\ndict combined with string method: ’)
55 write(filter(VFN(VFS(SL,"aDict.one",1),"upper",0)())) # generated from

’$aDict.one.upper()’ at line 24, col 35.
56 write(’\nnested dict - NameMapper style: ’)
57 write(filter(VFS(SL,"aDict.nestedDict.two",1))) # generated from

’$aDict.nestedDict.two’ at line 25, col 33.
58 write(’\nnested dict - Python style: ’)
59 write(filter(VFS(SL,"aDict",1)[’nestedDict’][’two’])) # generated from

"$aDict[’nestedDict’][’two’]" at line 26, col 29.
60 write(’\nnested dict - alternating style: ’)
61 write(filter(VFN(VFS(SL,"aDict",1)[’nestedDict’],"two",1))) # generated

from "$aDict[’nestedDict’].two" at line 27, col 34.
62 write(’\nnested dict - NameMapper style + method: ’)
63 write(filter(VFS(SL,"aDict.nestedDict.two.upper",1))) # generated from

’$aDict.nestedDict.two.upper’ at line 28, col 42.
64 write(’\nnested dict - alternating style + method: ’)
65 write(filter(VFN(VFS(SL,"aDict",1)[’nestedDict’],"two.upper",1)))

generated from "$aDict[’nestedDict’].two.upper" at line 29, col 43.
66 write(’\nnested dict - NameMapper style + method + slice: ’)

18 3 Placeholders

67 write(filter(VFN(VFS(SL,"aDict.nestedDict.two",1),"upper",1)[:4]))
generated from ’$aDict.nestedDict.two.upper[:4]’ at line 30, col 50.

68 write(’\nnested dict - Python style, variable key: ’)
69 write(filter(VFN(VFS(SL,"aDict",1)

[VFN(VFS(SL,"anObj",1),"meth",0)(’nestedDict’)],"two",1)))
generated from "$aDict[$anObj.meth(’nestedDict’)].two" at line 31,
col 43.
70 write(’\nobject method: ’)
71 write(filter(VFS(SL,"anObj.meth1",1))) # generated from ’$anObj.meth1’ at

line 32, col 16.
72 write(’\nobject method + complex slice: ’)
73 write(filter(VFN(VFS(SL,"anObj",1),"meth1",1)

[0: ((4/4*2)*2)/VFN(VFS(SL,"anObj",1),"meth1",0)(2)]))
generated from ’$anObj.meth1[0: ((4/4*2)*2)/$anObj.meth1(2)]’
at line 33, col 32.
74 write(’\nvery complex slice: ’)
75 write(filter(VFN(VFS(SL,"anObj",1),"meth1",1)

[0: ((4/4*2)*2)/VFN(VFS(SL,"anObj",1),"meth1",0)(2)]))
generated from ’$(anObj.meth1[0: ((4/4*2)*2)/$anObj.meth1(2)])’
at line 34, col 21.
76 write(’\n’)

For each placeholder lookup, the the innermost level of nesting is aVFS call, which looks up the first (leftmost)
placeholder component in the searchList. This is wrapped by zero or moreVFNcalls, which perform Universal Dotted
Notation lookup on the next dotted component of the placeholder, looking for an attribute or key by that name within
the previous object (not in the searchList). Autocalling is performed byVFSandVFN: that’s the reason for their third
argument.

Explicit function/method arguments, subscripts and keys (which are all expressions) are left unchanged, besides ex-
panding any embedded $placeholders in them. This means they must result in valid Python expressions, following the
standard Python quoting rules.

Built-in Python values (None, True andFalse) are converted tofilter(None) , etc. They use normal Python
variable lookup rather thanVFS. (Cheetah emulatesTrue andFalse using global variables for Python ¡ 2.2.1, when
they weren’t builtins yet.)

3.2 Complex placeholders 19

4 Caching placeholders and #cache

4.1 Dynamic placeholder – no cache

The template:

Dynamic variable: $voom

The command line and the output:

% voom=’Voom!’ python x.py --env
Dynamic variable: Voom!

The generated code:

write(’Dynamic variable: ’)
write(filter(VFS(SL,"voom",1))) # generated from ’$voom’ at line 1, col 20.
write(’\n’)

Just what we expected, like any other dynamic placeholder.

4.2 Static placeholder

The template:

Cached variable: $*voom

The command line and output:

% voom=’Voom!’ python x.py --env
Cached variable: Voom!

The generated code, with line numbers:

20 4 Caching placeholders and #cache

1 write(’Cached variable: ’)
2 ## START CACHE REGION: at line, col (1, 19) in the source.
3 RECACHE = True
4 if not self._cacheData.has_key(’19760169’):
5 pass
6 else:
7 RECACHE = False
8 if RECACHE:
9 orig_trans = trans

10 trans = cacheCollector = DummyTransaction()
11 write = cacheCollector.response().write
12 write(filter(VFS(SL,"voom",1))) # generated from ’$*voom’ at line 1,

col 19.
13 trans = orig_trans
14 write = trans.response().write
15 self._cacheData[’19760169’] = cacheCollector.response().getvalue()
16 del cacheCollector
17 write(self._cacheData[’19760169’])
18 ## END CACHE REGION

19 write(’\n’)

That one little star generated a whole lotta code. First, instead of an ordinaryVFS lookup (searchList) lookup,
it converted the placeholder to a lookup in the. cacheData dictionary. Cheetah also generated a unique key
(’19760169’) for our cached item – this is its cache ID.

Second, Cheetah put a pair of if-blocks before thewrite . The first (lines 3-7) determine whether the cache value is
missing or out of date, and sets local variableRECHARGEtrue or false. This stanza may look unnecessarily verbose –
lines 3-7 could be eliminated if line 8 was changed to

if not self._cacheData.has_key(’19760169’):

– but this model is expandable for some of the cache features we’ll see below.

The second if-block, lines 8-16, do the cache updating if necessary. Clearly, the programmer is trying to stick as
close to normal (dynamic) workflow as possible. Remember thatwrite , even though it looks like a local function, is
actually a method of a file-like object. So we create a temporary file-like object to divert thewrite object into, then
read the result and stuff it into the cache.

4.3 Timed-refresh placeholder

The template:

Timed cache: $*.5m*voom

The command line and the output:

% voom=’Voom!’ python x.py --env
Timed cache: Voom!

The generated method’s docstring:

4.3 Timed-refresh placeholder 21

"""
This is the main method generated by Cheetah
This cache will be refreshed every 30.0 seconds.
"""

The generated code:

1 write(’Timed cache: ’)
2 ## START CACHE REGION: at line, col (1, 15) in the source.
3 RECACHE = True
4 if not self._cacheData.has_key(’55048032’):
5 self.__cache55048032__refreshTime = currentTime() + 30.0
6 elif currentTime() > self.__cache55048032__refreshTime:
7 self.__cache55048032__refreshTime = currentTime() + 30.0
8 else:
9 RECACHE = False

10 if RECACHE:
11 orig_trans = trans
12 trans = cacheCollector = DummyTransaction()
13 write = cacheCollector.response().write
14 write(filter(VFS(SL,"voom",1))) # generated from ’$*.5m*voom’ at

line 1, col 15.
15 trans = orig_trans
16 write = trans.response().write
17 self._cacheData[’55048032’] = cacheCollector.response().getvalue()
18 del cacheCollector
19 write(self._cacheData[’55048032’])
20 ## END CACHE REGION

21 write(’\n’)

This code is identical to the static cache example except for the docstring and the first if-block. (OK, so the cache ID
is different and the comment on line 14 is different too. Big deal.)

Each timed-refresh cache item has a corrsponding private attribute. cache######## refreshTime giving
the refresh time in ticks (=seconds since January 1, 1970). The first if-block (lines 3-9) checks whether the cache value
is missing or its update time has passed, and if so, setsRECHARGEto true and also schedules another refresh at the
next interval.

The method docstring reminds the user how often the cache will be refreshed. This information is unfortunately not
as robust as it could be. Each timed-cache placeholder blindly generates a line in the docstring. If all refreshes are at
the same interval, there will be multiple identical lines in the docstring. If the refreshes are at different intervals, you
get a situation like this:

"""
This is the main method generated by Cheetah
This cache will be refreshed every 30.0 seconds.
This cache will be refreshed every 60.0 seconds.
This cache will be refreshed every 120.0 seconds.
"""

The docstring tells only that “something” will be refreshed every 60.0 seconds, but doesn’t revealwhichplaceholder
that is. Only if you know the relative order of the placeholders in the template can you figure that out.

22 4 Caching placeholders and #cache

4.4 Timed-refresh placeholder with braces

This example is the same but with the long placeholder syntax. It’s here because it’s a Cheetah FAQ whether to put the
cache interval inside or outside the braces. (It’s also here so I can look it up because I frequently forget.) The answer
is: outside. The braces go around only the placeholder name (and perhaps some output-filter arguments.)

The template:

Timed with {}: $*.5m*{voom}

The output:

Timed with {}: Voom!

The generated code differs only in the comment. Inside the cache-refresh if-block:

write(filter(VFS(SL,"voom",1))) # generated from ’$*.5m*{voom}’ at line 1,
#col 17.

The reason this example is here is because it’s a Cheetah FAQ whether to put the cache interval inside or outside the
{} . (Also so I can look it up when I forget, as I frequently do.) The answer is: outside. The{} go around only the
placeholder name and arguments. If you do it this way:

Timed with {}: ${*.5m*voom} ## Wrong!

you get:

Timed with {}: ${*.5m*voom}

because${ is not a valid placeholder, so it’s treated as ordinary text.

4.5 #cache

The template:

#cache
This is a cached region. $voom
#end cache

The output:

This is a cached region. Voom!

The generated code:

4.4 Timed-refresh placeholder with braces 23

1 ## START CACHE REGION: at line, col (1, 1) in the source.
2 RECACHE = True
3 if not self._cacheData.has_key(’23711421’):
4 pass
5 else:
6 RECACHE = False
7 if RECACHE:
8 orig_trans = trans
9 trans = cacheCollector = DummyTransaction()

10 write = cacheCollector.response().write
11 write(’This is a cached region. ’)
12 write(filter(VFS(SL,"voom",1))) # generated from ’$voom’ at line 2,

col 27.
13 write(’\n’)
14 trans = orig_trans
15 write = trans.response().write
16 self._cacheData[’23711421’] = cacheCollector.response().getvalue()
17 del cacheCollector
18 write(self._cacheData[’23711421’])
19 ## END CACHE REGION

This is the same as the$*voom example, except that the plain text around the placeholder is inside the second if-block.

4.6 #cache with timer and id

The template:

#cache timer=’.5m’, id=’cache1’
This is a cached region. $voom
#end cache

The output:

This is a cached region. Voom!

The generated code is the same as the previous example except the first if-block:

RECACHE = True
if not self._cacheData.has_key(’13925129’):

self._cacheIndex[’cache1’] = ’13925129’
self.__cache13925129__refreshTime = currentTime() + 30.0

elif currentTime() > self.__cache13925129__refreshTime:
self.__cache13925129__refreshTime = currentTime() + 30.0

else:
RECACHE = False

4.7 #cache with test: expression and method conditions

24 4 Caching placeholders and #cache

The template:

#cache test=$isDBUpdated
This is a cached region. $voom
#end cache

(Analysis postponed: bug in Cheetah produces invalid Python.)

The template:

#cache id=’cache1’, test=($isDBUpdated or $someOtherCondition)
This is a cached region. $voom
#end cache

The output:

This is a cached region. Voom!

The first if-block in the generated code:

RECACHE = True
if not self._cacheData.has_key(’36798144’):

self._cacheIndex[’cache1’] = ’36798144’
elif (VFS(SL,"isDBUpdated",1) or VFS(SL,"someOtherCondition",1)):

RECACHE = True
else:

RECACHE = False

The second if-block is the same as in the previous example. If you leave out the() around the test expression, the
result is the same, although it may be harder for the template maintainer to read.

You can even combine arguments, although this is of questionable value.

The template:

#cache id=’cache1’, timer=’30m’, test=$isDBUpdated or $someOtherCondition
This is a cached region. $voom
#end cache

The output:

This is a cached region. Voom!

The first if-block:

4.7 #cache with test: expression and method conditions 25

RECACHE = True
if not self._cacheData.has_key(’88939345’):

self._cacheIndex[’cache1’] = ’88939345’
self.__cache88939345__refreshTime = currentTime() + 1800.0

elif currentTime() > self.__cache88939345__refreshTime:
self.__cache88939345__refreshTime = currentTime() + 1800.0

elif VFS(SL,"isDBUpdated",1) or VFS(SL,"someOtherCondition",1):
RECACHE = True

else:
RECACHE = False

We are planning to add a’varyBy’ keyword argument in the future that will allow a separate cache instances to
be created for a variety of conditions, such as different query string parameters or browser types. This is inspired by
ASP.net’s varyByParam and varyByBrowser output caching keywords. Since this is not implemented yet, I cannot
provide examples here.

26 4 Caching placeholders and #cache

5 Directives: Comments

The template:

Text before the comment.
The comment.
Text after the comment.
#* A multi-line comment spanning several lines.

It spans several lines, too.
*#
Text after the multi-line comment.

The output:

Text before the comment.
Text after the comment.

Text after the multi-line comment.

The generated code:

write(’Text before the comment.\n’)
The comment.
write(’Text after the comment.\n’)
A multi-line comment spanning several lines.
It spans several lines, too.
write(’\nText after the multi-line comment.\n’)

5.1 Docstring and header comments

The template:

##doc: .respond() method comment.
##doc-method: Another .respond() method comment.
##doc-class: A class comment.
##doc-module: A module comment.
##header: A header comment.

The output:

The beginning of the generated.respond method:

27

def respond(self,
trans=None,
dummyTrans=False,
VFS=valueFromSearchList,
VFN=valueForName,
getmtime=getmtime,
currentTime=time.time):

"""
This is the main method generated by Cheetah
.respond() method comment.
Another .respond() method comment.
"""

The class docstring:

"""
A class comment.

Autogenerated by CHEETAH: The Python-Powered Template Engine
"""

The top of the module:

#!/usr/bin/env python
A header comment.

"""A module comment.

Autogenerated by CHEETAH: The Python-Powered Template Engine
CHEETAH VERSION: 0.9.13a1
Generation time: Fri Apr 26 22:39:23 2002

Source file: x.tmpl
Source file last modified: Fri Apr 26 22:36:23 2002

"""

28 5 Directives: Comments

6 Directives: Output

6.1 #echo

The template:

Here is my #echo ’, ’.join([’silly’]*5) # example

The output:

Here is my silly, silly, silly, silly, silly example

The generated code:

write(’Here is my ’)
write(filter(’, ’.join([’silly’]*5)))
write(’ example\n’)

6.2 #silent

The template:

Here is my #silent ’, ’.join([’silly’]*5) # example

The output:

Here is my example

The generated code:

write(’Here is my ’)
’, ’.join([’silly’]*5)
write(’ example\n’)

OK, it’s not quite covert because that extra space gives it away, but it almost succeeds.

6.3 #raw

The template:

29

Text before raw.
#raw
Text in raw. $alligator. $croc.o[’dile’]. #set $a = $b + $c.
#end raw
Text after raw.

The output:

Text before raw.
Text in raw. $alligator. $croc.o[’dile’]. #set $a = $b + $c.
Text after raw.

The generated code:

write(’’’Text before raw.
Text in raw. $alligator. $croc.o[’dile’]. #set $a = $b + $c.
Text after raw.
’’’)

So we see that#raw is really like a quoting mechanism. It says that anything inside it is ordinary text, and Cheetah
joins a#raw section with adjacent string literals rather than generating a separatewrite call.

6.4 #include

The main template:

#include "y.tmpl"

The included template y.tmpl:

Let’s go $voom!

The shell command and output:

% voom="VOOM" x.py --env
Let’s go VOOM!

The generated code:

write(self._includeCheetahSource("y.tmpl", trans=trans, includeFrom="file",
raw=0))

#include raw

30 6 Directives: Output

The main template:

#include raw "y.tmpl"

The shell command and output:

% voom="VOOM" x.py --env
Let’s go $voom!

The generated code:

write(self._includeCheetahSource("y.tmpl", trans=trans, includeFrom="fil
e", raw=1))

That last argument,raw , makes the difference.

#include from a string or expression (eval)

The template:

#attr $y = "Let’s go $voom!"
#include source=$y
#include raw source=$y
#include source="Bam! Bam!"

The output:

% voom="VOOM" x.py --env
Let’s go VOOM!Let’s go $voom!Bam! Bam!

The generated code:

write(self._includeCheetahSource(VFS(SL,"y",1), trans=trans,
includeFrom="str", raw=0, includeID="481020889808.74"))

write(self._includeCheetahSource(VFS(SL,"y",1), trans=trans,
includeFrom="str", raw=1, includeID="711020889808.75"))

write(self._includeCheetahSource("Bam! Bam!", trans=trans,
includeFrom="str", raw=0, includeID="1001020889808.75"))

Later in the generated class:

y = "Let’s go $voom!"

6.5 #slurp

The template:

6.5 #slurp 31

#for $i in range(5)
$i
#end for
#for $i in range(5)
$i #slurp
#end for
Line after slurp.

The output:

0
1
2
3
4
0 1 2 3 4 Line after slurp.

The generated code:

for i in range(5):
write(filter(i)) # generated from ’$i’ at line 2, col 1.
write(’\n’)

for i in range(5):
write(filter(i)) # generated from ’$i’ at line 5, col 1.
write(’ ’)

write(’Line after slurp.\n’)

The space after each number is because of the space before#slurp in the template definition.

6.6 #filter

The template:

#attr $ode = ">> Rubber Ducky, you’re the one! You make bathtime so much fun! <<"
$ode
#filter WebSafe
$ode
#filter MaxLen
${ode, maxlen=13}
#filter None
${ode, maxlen=13}

The output:

>> Rubber Ducky, you’re the one! You make bathtime so much fun! <<
>> Rubber Ducky, you’re the one! You make bathtime so much fun! <<
>> Rubber Duc
>> Rubber Ducky, you’re the one! You make bathtime so much fun! <<

TheWebSafe filter escapes characters that have a special meaning in HTML. TheMaxLen filter chops off values at
the specified length.#filter None returns to the default filter, which ignores themaxlen argument.

32 6 Directives: Output

The generated code:

1 write(filter(VFS(SL,"ode",1))) # generated from ’$ode’ at line 2, col 1.
2 write(’\n’)
3 filterName = ’WebSafe’
4 if self._filters.has_key("WebSafe"):
5 filter = self._currentFilter = self._filters[filterName]
6 else:
7 filter = self._currentFilter = \
8 self._filters[filterName] = getattr(self._filtersLib,

filterName)(self).filter
9 write(filter(VFS(SL,"ode",1))) # generated from ’$ode’ at line 4, col 1.

10 write(’\n’)
11 filterName = ’MaxLen’
12 if self._filters.has_key("MaxLen"):
13 filter = self._currentFilter = self._filters[filterName]
14 else:
15 filter = self._currentFilter = \
16 self._filters[filterName] = getattr(self._filtersLib,

filterName)(self).filter
17 write(filter(VFS(SL,"ode",1), maxlen=13)) # generated from

#’${ode, maxlen=13}’ at line 6, col 1.
18 write(’\n’)
19 filter = self._initialFilter
20 write(filter(VFS(SL,"ode",1), maxlen=13)) # generated from

#’${ode, maxlen=13}’ at line 8, col 1.
21 write(’\n’)

As we’ve seen many times, Cheetah wraps all placeholder lookups in afilter call. (This also applies to non-
searchList lookups: local, global and builtin variables.) Thefilter “function” is actually an alias to the current
filter object:

filter = self._currentFilter

as set at the top of the main method. Here in lines 3-8 and 11-16 we see the filter being changed. Whoops, I lied.
filter is not an alias to the filter object itself but to that object’s.filter method. Line 19 switches back to the
default filter.

In line 17 we see themaxlen argument being passed as a keyword argument tofilter (not toVFS). In line 20 the
same thing happens although the default filter ignores the argument.

6.6 #filter 33

7 Directives: Import, Inheritance, Declaration and Assignment

7.1 #import and #from

The template:

#import math

This construct does not produce any output.

The generated module, at the bottom of the import section:

import math

7.2 #extends

The template:

#extends SomeClass

The generated import (skipped ifSomeClass has already been imported):

from SomeClass import SomeClass

The generated class:

class x(SomeClass):

7.3 #implements

The template:

#implements doOutput

In the generated class, the main method is.doOutput instead of.respond , and the attribute naming this method
is:

_mainCheetahMethod_for_x2= ’doOutput’

7.4 #set and #set global

The template:

34 7 Directives: Import, Inheritance, Declaration and Assignment

#set $namesList = [’Moe’,’Larry’,’Curly’]
$namesList
#set global $toes = [’eeny’, ’meeny’, ’miney’, ’moe’]
$toes

The output:

[’Moe’, ’Larry’, ’Curly’]
[’eeny’, ’meeny’, ’miney’, ’moe’]

The generated code:

1 namesList = [’Moe’,’Larry’,’Curly’]
2 write(filter(namesList)) # generated from ’$namesList’ at line 2, col 1.
3 write(’\n’)
4 globalSetVars["toes"] = [’eeny’, ’meeny’, ’miney’, ’moe’]
5 write(filter(VFS(SL,"toes",1))) # generated from ’$toes’ at line 4, col 1.
6 write(’\n’)

globalSetVars is a local variable shadowing. globalSetVars . Writes go into it directly, but reads take
advantage of the fact that. globalSetVars is on the searchList. (In fact, it’s the very first namespace.)

7.5 #del

The template:

#set $a = 1
#del $a
#set $a = 2
#set $arr = [0, 1, 2]
#del $a, $arr[1]

In the generated class:

1 a = 1
2 del a
3 a = 2
4 arr = [0, 1, 2]
5 del a, arr[1]

7.6 #attr

The template:

#attr $namesList = [’Moe’, ’Larry’, ’Curly’]

In the generated class:

7.5 #del 35

GENERATED ATTRIBUTES

namesList = [’Moe’, ’Larry’, ’Curly’]

7.7 #def

The template:

#def printArg($arg)
The argument is $arg.
#end def
My method returned $printArg(5).

The output:

My method returned The argument is 5.
.

Hmm, not exactly what we expected. The method returns a trailing newline because we didn’t end the last line with
#slurp . So the second period (outside the method) appears on a separate line.

The#def generates a method.printArg whose structure is similar to the main method:

36 7 Directives: Import, Inheritance, Declaration and Assignment

def printArg(self,
arg,
trans=None,
dummyTrans=False,
VFS=valueFromSearchList,
VFN=valueForName,
getmtime=getmtime,
currentTime=time.time):

"""
Generated from #def printArg($arg) at line 1, col 1.
"""

if not trans:
trans = DummyTransaction()
dummyTrans = True

write = trans.response().write
SL = self._searchList
filter = self._currentFilter
globalSetVars = self._globalSetVars

##
START - generated method body

write(’The argument is ’)
write(filter(arg)) # generated from ’$arg’ at line 2, col 17.
write(’.\n’)

##
END - generated method body

if dummyTrans:
return trans.response().getvalue()

else:
return ""

When.printArg is called from a placeholder, only the arguments the user supplied are passed. The other arguments
retain their default values.

7.8 #block

The template:

#block content
This page is under construction.
#end block

The output:

This page is under construction.

7.8 #block 37

This construct generates a method.content in the same structure as.printArg above, containing the write code:

write(’This page is under construction.\n’)

In the main method, the write code is:

self.content(trans=trans) # generated from (’content’, ’#block content’)
at line 1, col 1.

So a block placeholder implicitly passes the current transaction to the method.

7.9 #settings

This directive is undocumented because it’s likely to disappear in Cheetah 0.9.14.

38 7 Directives: Import, Inheritance, Declaration and Assignment

8 Directives: Flow Control

8.1 #for

The template:

#for $i in $range(10)
$i #slurp
#end for

The output:

0 1 2 3 4 5 6 7 8 9

The generated code:

for i in range(10):
write(filter(i)) # generated from ’$i’ at line 2, col 1.
write(’ ’)

8.2 #repeat

The template:

#repeat 3
My bonnie lies over the ocean
#end repeat
O, bring back my bonnie to me!

The output:

My bonnie lies over the ocean
My bonnie lies over the ocean
My bonnie lies over the ocean
O, bring back my bonnie to me!

(OK, so the second line should be “sea” instead of “ocean”.)

The generated code:

for i in range(3):
write(’My bonnie lies over the ocean\n’)

write(’O, bring back my bonnie to me!\n’)

39

8.3 #while

The template:

#set $alive = True
#while $alive
I am alive!
#set $alive = False
#end while

The output:

I am alive!

The generated code:

alive = True
while alive:

write(’I am alive!\n’)
alive = False

8.4 #if

The template:

#set $size = 500
#if $size >= 1500
It’s big
#else if $size < 1500 and $size > 0
It’s small
#else
It’s not there
#end if

The output:

It’s small

The generated code:

40 8 Directives: Flow Control

size = 500
if size >= 1500:

write("It’s big\n")
elif size < 1500 and size > 0:

write("It’s small\n")
else:

write("It’s not there\n")

8.5 #unless

The template:

#set $count = 9
#unless $count + 5 > 15
Count is in range.
#end unless

The output:

Count is in range.

The generated code:

count = 9
if not (count + 5 > 15):

write(’Count is in range.\n’)

Note: There is a bug in Cheetah 0.9.13. It’s forgetting the parentheses in theif expression, which could lead to it
calculating something different than it should.

8.6 #break and #continue

The template:

#for $i in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ’James’, ’Joe’, ’Snow’]
#if $i == 10

#continue
#end if
#if $i == ’Joe’

#break
#end if
$i - #slurp
#end for

The output:

8.5 #unless 41

1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 11 - 12 - James -

The generated code:

for i in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ’James’, ’Joe’, ’Snow’]:
if i == 10:

write(’’)
continue

if i == ’Joe’:
write(’’)
break

write(filter(i)) # generated from ’$i’ at line 8, col 1.
write(’ - ’)

8.7 #pass

The template:

Let’s check the number.
#set $size = 500
#if $size >= 1500
It’s big
#elif $size > 0
#pass
#else
Invalid entry
#end if
Done checking the number.

The output:

Let’s check the number.
Done checking the number.

The generated code:

write("Let’s check the number.\n")
size = 500
if size >= 1500:

write("It’s big\n")
elif size > 0:

pass
else:

write(’Invalid entry\n’)
write(’Done checking the number.\n’)

42 8 Directives: Flow Control

8.8 #stop

The template:

A cat
#if 1

sat on a mat
#stop
watching a rat

#end if
in a flat.

The output:

A cat
sat on a mat

The generated code:

write(’A cat\n’)
if 1:

write(’ sat on a mat\n’)
if dummyTrans:

return trans.response().getvalue()
else:

return ""
write(’ watching a rat\n’)

write(’in a flat.\n’)

8.9 #return

The template:

1
$test[1]
3
#def test
1.5
#if 1
#return ’123’
#else
99999
#end if
#end def

The output:

8.8 #stop 43

1
2
3

The generated code:

def test(self,
trans=None,
dummyTrans=False,
VFS=valueFromSearchList,
VFN=valueForName,
getmtime=getmtime,
currentTime=time.time):

"""
Generated from #def test at line 5, col 1.
"""

if not trans:
trans = DummyTransaction()
dummyTrans = True

write = trans.response().write
SL = self._searchList
filter = self._currentFilter
globalSetVars = self._globalSetVars

##
START - generated method body

write(’1.5\n’)
if 1:

return ’123’
else:

write(’99999\n’)

##
END - generated method body

if dummyTrans:
return trans.response().getvalue()

else:
return ""

44 8 Directives: Flow Control

def respond(self,
trans=None,
dummyTrans=False,
VFS=valueFromSearchList,
VFN=valueForName,
getmtime=getmtime,
currentTime=time.time):

"""
This is the main method generated by Cheetah
"""

if not trans:
trans = DummyTransaction()
dummyTrans = True

write = trans.response().write
SL = self._searchList
filter = self._currentFilter
globalSetVars = self._globalSetVars

##
START - generated method body

write(’\n1\n’)
write(filter(VFS(SL,"test",1)[1])) # generated from ’$test[1]’ at line 3, col 1.
write(’\n3\n’)

##
END - generated method body

if dummyTrans:
return trans.response().getvalue()

else:
return ""

8.9 #return 45

9 Directives: Error Handling

9.1 #try and #raise

The template:

#import traceback
#try
#raise RuntimeError
#except RuntimeError
A runtime error occurred.
#end try

#try
#raise RuntimeError("Hahaha!")
#except RuntimeError
#echo $sys.exc_info()[1]
#end try

#try
#echo 1/0
#except ZeroDivisionError
You can’t divide by zero, idiot!
#end try

The output:

A runtime error occurred.

Hahaha!

You can’t divide by zero, idiot!

The generated code:

try:
raise RuntimeError

except RuntimeError:
write(’A runtime error occurred.\n’)

write(’\n’)
try:

raise RuntimeError("Hahaha!")
except RuntimeError:

write(filter(VFN(sys,"exc_info",0)()[1]))
write(’\n’)

write(’\n’)
try:

write(filter(1/0))
write(’\n’)

except ZeroDivisionError:
write("You can’t divide by zero, idiot!\n")

46 9 Directives: Error Handling

#finally works just like in Python.

9.2 #assert

The template:

#assert False, "You lose, buster!"

The output:

Traceback (most recent call last):
File "x.py", line 117, in ?

x().runAsMainProgram()
File "/local/opt/Python/lib/python2.2/site-packages/Webware/Cheetah/

Template.py", line 331, in runAsMainProgram
CmdLineIface(templateObj=self).run()

File "/local/opt/Python/lib/python2.2/site-packages/Webware/Cheetah/
TemplateCmdLineIface.py", line 59, in run

print self._template
File "x.py", line 91, in respond

assert False, "You lose, buster!"
AssertionError: You lose, buster!

The generated code:

assert False, "You lose, buster!"

9.3 #errorCatcher

No error catcher

The template:

$noValue

The output:

9.2 #assert 47

Traceback (most recent call last):
File "x.py", line 118, in ?

x().runAsMainProgram()
File "/local/opt/Python/lib/python2.2/site-packages/Webware/Cheetah/

Template.py", line 331, in runAsMainProgram
CmdLineIface(templateObj=self).run()

File "/local/opt/Python/lib/python2.2/site-packages/Webware/Cheetah/
TemplateCmdLineIface.py", line 59, in run

print self._template
File "x.py", line 91, in respond

write(filter(VFS(SL,"noValue",1))) # generated from ’$noValue’ at line
1, col 1.
NameMapper.NotFound: noValue

The generated code:

write(filter(VFS(SL,"noValue",1))) # generated from ’$noValue’ at line 1,
col 1.

write(’\n’)

Echo and BigEcho

The template:

#errorCatcher Echo
$noValue
#errorCatcher BigEcho
$noValue

The output:

$noValue
===============<$noValue could not be found>===============

The generated code:

48 9 Directives: Error Handling

if self._errorCatchers.has_key("Echo"):
self._errorCatcher = self._errorCatchers["Echo"]

else:
self._errorCatcher = self._errorCatchers["Echo"] = ErrorCatchers.Echo(self)

write(filter(self.__errorCatcher1(localsDict=locals())))
generated from ’$noValue’ at line 2, col 1.

write(’\n’)
if self._errorCatchers.has_key("BigEcho"):

self._errorCatcher = self._errorCatchers["BigEcho"]
else:

self._errorCatcher = self._errorCatchers["BigEcho"] = \
ErrorCatchers.BigEcho(self)

write(filter(self.__errorCatcher1(localsDict=locals())))
generated from ’$noValue’ at line 4, col 1.

write(’\n’)

ListErrors

The template:

#import pprint
#errorCatcher ListErrors
$noValue
$anotherMissingValue.really
$pprint.pformat($errorCatcher.listErrors)
This is really self.errorCatcher().listErrors()

The output:

$noValue
$anotherMissingValue.really
[{’code’: ’VFS(SL,"noValue",1)’,

’exc_val’: <NameMapper.NotFound instance at 0x8170ecc>,
’lineCol’: (3, 1),
’rawCode’: ’$noValue’,
’time’: ’Wed May 15 00:38:23 2002’},

{’code’: ’VFS(SL,"anotherMissingValue.really",1)’,
’exc_val’: <NameMapper.NotFound instance at 0x816d0fc>,
’lineCol’: (4, 1),
’rawCode’: ’$anotherMissingValue.really’,
’time’: ’Wed May 15 00:38:23 2002’}]

The generated import:

import pprint

Then in the generated class, we have our familiar.respond method and several new methods:

9.3 #errorCatcher 49

def __errorCatcher1(self, localsDict={}):
"""
Generated from $noValue at line, col (3, 1).
"""

try:
return eval(’’’VFS(SL,"noValue",1)’’’, globals(), localsDict)

except self._errorCatcher.exceptions(), e:
return self._errorCatcher.warn(exc_val=e, code= ’VFS(SL,"noValue",1)’ ,

rawCode= ’$noValue’ , lineCol=(3, 1))

def __errorCatcher2(self, localsDict={}):
"""
Generated from $anotherMissingValue.really at line, col (4, 1).
"""

try:
return eval(’’’VFS(SL,"anotherMissingValue.really",1)’’’, globals(),

localsDict)
except self._errorCatcher.exceptions(), e:

return self._errorCatcher.warn(exc_val=e,
code= ’VFS(SL,"anotherMissingValue.really",1)’ ,
rawCode= ’$anotherMissingValue.really’ , lineCol=(4, 1))

def __errorCatcher3(self, localsDict={}):
"""
Generated from $pprint.pformat($errorCatcher.listErrors) at line, col
(5, 1).
"""

try:
return eval(’’’VFN(pprint,"pformat",0)(VFS(SL,

"errorCatcher.listErrors",1))’’’, globals(), localsDict)
except self._errorCatcher.exceptions(), e:

return self._errorCatcher.warn(exc_val=e, code=
’VFN(pprint,"pformat",0)(VFS(SL,"errorCatcher.listErrors",1))’ ,
rawCode= ’$pprint.pformat($errorCatcher.listErrors)’ ,
lineCol=(5, 1))

50 9 Directives: Error Handling

def respond(self,
trans=None,
dummyTrans=False,
VFS=valueFromSearchList,
VFN=valueForName,
getmtime=getmtime,
currentTime=time.time):

"""
This is the main method generated by Cheetah
"""

if not trans:
trans = DummyTransaction()
dummyTrans = True

write = trans.response().write
SL = self._searchList
filter = self._currentFilter
globalSetVars = self._globalSetVars

##
START - generated method body

if exists(self._filePath) and getmtime(self._filePath) > self._fileMtime:
self.compile(file=self._filePath)
write(getattr(self, self._mainCheetahMethod_for_x)(trans=trans))
if dummyTrans:

return trans.response().getvalue()
else:

return ""
if self._errorCatchers.has_key("ListErrors"):

self._errorCatcher = self._errorCatchers["ListErrors"]
else:

self._errorCatcher = self._errorCatchers["ListErrors"] = \
ErrorCatchers.ListErrors(self)
write(filter(self.__errorCatcher1(localsDict=locals())))

generated from ’$noValue’ at line 3, col 1.
write(’\n’)
write(filter(self.__errorCatcher2(localsDict=locals())))

generated from ’$anotherMissingValue.really’ at line 4, col 1.
write(’\n’)
write(filter(self.__errorCatcher3(localsDict=locals())))

generated from ’$pprint.pformat($errorCatcher.listErrors)’ at line
5, col 1.

write(’\n’)
This is really self.errorCatcher().listErrors()

##
END - generated method body

if dummyTrans:
return trans.response().getvalue()

else:
return ""

So whenever an error catcher is active, each placeholder gets wrapped in its own method. No wonder error catchers

9.3 #errorCatcher 51

slow down the system!

52 9 Directives: Error Handling

10 Directives: Parser Instructions

10.1 #breakpoint

The template:

Text before breakpoint.
#breakpoint
Text after breakpoint.
#raise RuntimeError

The output:

Text before breakpoint.

The generated code:

write(’Text before breakpoint.\n’)

Nothing after the breakpoint was compiled.

10.2 #compiler

The template:

// Not a comment
#compiler commentStartToken = ’//’
// A comment
#compiler reset
// Not a comment

The output:

// Not a comment
// Not a comment

The generated code:

write(’// Not a comment\n’)
A comment
write(’// Not a comment\n’)

So this didn’t affect the generated program, it just affected how the template definition was read.

53

11 Files

This chapter will be an overview of the files in the Cheetah package, and how they interrelate in compiling and filling
a template. We’ll also look at files in the Cheetah tarball that don’t get copied into the package.

54 11 Files

12 Template

This chapter will mainly walk through theCheetah.Template constructor and not at what point the template is
compiled.

(Also need to look at Transaction,py and Servlet.py .)

55

13 The parser

How templates are compiled: a walk through Parser.py’s source. (Also need to look at Lexer.py, but not too closely.)

56 13 The parser

14 The compiler

How templates are compiled: a walk through Compiler.py .

57

15 History of Cheetah

In spring 2001, several members of the webware-discuss mailing list expressed the need for a template engine. Web-
ware like Python is great for organizing analytical logic, but they both suffer when you need to do extensive variable
interpolation into large pieces of text, or to build up a text string from its nested parts. Python’s%operator gets
you only so far, the syntax is cumbersome, and you have to use a separate format string for each nested part. Most
of us had used template systems from other platforms–chiefly Zope’s DTML, PHPLib’s Template object and Java’s
Velocity–and wanted to port something like those so it could be used both in Webware servlets and in standalone
Python programs.

Since I (Mike Orr) am writing this history, I’ll describe how I encountered Cheetah. I had written a template module
called PlowPlate based on PHPLib’s Template library. Like PHPLib, it used regular expressions to search and destroy–
er, replace–placeholders, behaved like a dictionary to specify placeholder values, contained no directives, but did have
BEGIN and END markers which could be used to extract a named block (subtemplate). Meanwhile, Tavis Rudd was
also on webware-discuss and interested in templates, and he lived just a few hours away. So 12 May 12, 2001 we met
in Vancouver at a gelato shop on Denman Street and discussed Webware, and he drew on a napkin the outline of a
template system he was working on.

Instead of filling the template by search-and-replace, he wanted to break it up into parts. This was a primitive form
of template compiling: do the time-consuming work once and put it to a state where you can fill the template quickly
multiple times. A template without directives happens to break down naturally into a list of alternating text/placeholder
pairs. The odd subscript values are literal strings; the even subscripts are string keys into a dictionary of placeholder
values. The project was called TemplateServer.

In a couple months, Tavis decided that instead of compiling to a list, he wanted to compile to Python source code:
a series ofwrite calls that would output onto a file-like object. This was the nucleus that became Cheetah. I
thought that idea was stupid, but it turned out that this not-so-stupid idea blew the others out of the water in terms of
performance.

Another thing Tavis pushed hard for from near the beginning was “display logic”, or simple directives like#for ,
#if and#echo . (OK, #echo came later, but conceptually it belongs here. I thought display logic was even stupider
than compiling to Python source code because it would just lead to “DTML hell”–complicated templates that are
hard to read and maintain, and for which you have to learn (and debug) a whole new language when Python does
it just fine. But others (hi Chuck!) had templates that were maintained by secretaries who didn’t know Python, and
the secretaries needed display logic, so that was that. Finally, after working with Cheetah templates (with display
logic) and PlowPlate templates (with just blocks rather than display logic), I realized Tavis was smarter than I was and
display logic really did belong in the template.

The next step was making directives for all the Python flow-control statements:#while , #try , #assert , etc.
Some of them we couldn’t think of a use for. Nevertheless, they were easy to code, and “somebody” would probably
need them “someday”, so we may as well implement them now.

During all this, Chuck Esterbrook, Ian Bicking and others offered (and still offer) their support and suggestions, and
Chuck gave us feedback about his use of Cheetah–its first deployment in a commercial production environment. Later,
Edmund Lian became our #1 bug reporter and suggester as he used Cheetah in his web applications.

A breakthrough came in fall 2001 when Tavis figured out how to implement the name mapper in C. The name mapper
is what gives Cheetah its Autocalling and Uniform Dotted Notation features. This raised performance sufficiently to
rewrite Cheetah in a totally “late binding” manner like Python is. More about this is in the next chapter.

We were going to release 1.0 in January 2002, but we decided to delay it until more people used it in real-world
situations and gave us feedback about what is still needed. This has led to many refinements, and we have added
(and removed) features according to this feedback. Nevertheless, Cheetah has been changing but stable since the late-
binding rewrite in fall 2001, and anybody who keeps up with the cheetah-discuss mailing list will know when changes
occur that require modifying one’s template, and since most people use point releases rather than CVS, they generally
have a few week’s warning about any significant changes.

More detail on Cheetah’s history and evolution, and why it is the way it is, can be found in our paper for the Python10

58 15 History of Cheetah

conference,http://www.cheetahtemplate.org/Py10.html.

59

16 Design Decisions and Tradeoffs

16.1 Delimiters

One of the first decisions we encountered was which delimiter syntax to use. We decided to follow Velocity’s
$placeholder and#directive syntax because the former is widely used in other languages for the same pur-
pose, and the latter stands out in an HTML or text document. We also implemented the${longPlaceholder}
syntax like the shells for cases where Cheetah or you might be confused where a placeholder ends. Tavis went ahead
and made$(longPlaceholder} and$[longPlaceholder] interchangeable with it since it was trivial to
implement. Finally, the#compiler directive allows you to change the delimiters if you don’t like them or if they
conflict with the text in your document. (Obviously, if your document contains a Perl program listing, you don’t
necessarily want to backslash each and every$ and#, do you?)

The choice of comment delimiters was more arbitrary.## and #* ...*# doesn’t match any language, but it’s
reminiscent of Python and C while also being consistent with our “# is for directives” convention.

We specifically chosenot to use pseudo HTML tags for placeholders and directives, as described more thoroughly
in the Cheetah Users’ Guide introduction. Pseudo HTML tags may be easier to see in a visual editor (supposedly),
but in text editors they’re hard to distinguish from “real” HTML tags unless you look closely, and they’re many more
keystrokes to type. Also, if you make a mistake, the tag will show up as literal text in the rendered HTML page where
it will be easy to notice and eradicate, rather than disappearing as bogus HTML tags do in browsers.

16.2 Late binding

One of Cheetah’s unique features is the name mapper, which lets you write$a.$b without worrying much about the
type ofa or b. Prior to version 0.9.7, Cheetah did the entire NameMapper lookup at runtime. This provided maximum
flexibility at the expense of speed. Doing a NameMapper lookup is intrinsically more expensive than an ordinary
Python expression because Cheetah has to decide what type of containera is, whether the the value is a function
(autocall it), issue the appropriate Python incantation to look upb in it, autocall again if necessary, and then convert
the result to a string.

To maximize run-time (filling-time) performance, Cheetah 0.9.7 pushed much of this work back into the compiler. The
compiler looked upa in the searchList at compile time, noted its type, and generated an eval’able Python expression
based on that.

This approach had two significant drawbacks. What ifa later changes type before a template filling? Answer: un-
predictable exceptions occur. What ifa does not exist in the searchList at compile time? Answer: the template can’t
compile.

To prevent these catastrophes, users were required to prepopulate the searchList before instantiating the template
instance, and then not to changea’s type. Static typing is repugnant in a dynamic language like Python, and having to
prepopulate the searchList made certain usages impossible. For example, you couldn’t instantiate the template object
without a searchList and then setself attributes to specify the values.

After significant user complaints about the fragility of this system, Tavis rewrote placeholder handling, and in version
0.9.8a3 (August 2001), Tavis moved the name mapper lookup back into runtime. Performance wasn’t crippled because
he discovered that writing a C version of the name mapper was easier than anticipated, and the C version completed
the lookup quickly. Now Cheetah had “late binding”, meaning the compiler does not look upa or care whether it
exists. This allows users to createa or change its type anytime before a template filling.

The lesson we learned is that it’s better to decide what you want and then figure out how to do it, rather than assuming
that certain goals are unattainable due to performance considerations.

16.3 Caching framework

60 16 Design Decisions and Tradeoffs

16.4 Webware compatibility and the transaction framework

16.5 Single inheritance

16.4 Webware compatibility and the transaction framework 61

17 Patching Cheetah

How to commit changes to CVS or submit patches, how to run the test suite. Describe distutils and how the regression
tests work.

17.1 File Requirements

The codeTemplate class contains not only the Cheetah infrastructure, but also some convenience methods useful in
all templates. More methods may be added if it’s generally agreed among Cheetah developers that the method is
sufficiently useful to all types of templates, or at least to all types of HTML-output templates. If a method is too long
to fit into Template – especially if it has helper methods – put it in a mixin class underCheetah.Utils and
inherit it.

Routines for a specific problem domain should be put underCheetah.Tools , so that it doesn’t clutter the names-
pace unless the user asks for it.

Remember:Cheetah.Utils is for objects required by any part of Cheetah’s core.Cheetah.Tools is for
completely optional objects. It should always be possible to deleteCheetah.Tools without breaking Cheetah’s
core services.

If a core method needs to look up an attribute defined underCheetah.Tools , it should usehasattr() and
gracefully provide a default if the attribute does not exist (meaning the user has not imported that subsystem).

17.2 Testing Changes and Building Regression Tests

Cheetah ships with a regression test suite. To run the built-in tests, execute at the shell prompt:

cheetah test

Before checking any changes in, run the tests and verify they all pass. That way, users can check out the CVS version
of Cheetah at any time with a fairly high confidence that it will work. If you fix a bug or add a feature, please take the
time to add a test that exploits the bug/feature. This will help in the future, to prevent somebody else from breaking it
again without realizing it. Users can also run the test suite to verify all the features work on their particular platform
and computer.

The general procedure for modifying Cheetah is as follows:

1. Write a simple Python program that exploits the bug/feature you’re working on. You can either write
a regression test (see below), or a separate program that writesthe template output to one file and put
the expected output in another file; then you can rundiff on the two outputs. (diff is a utility in-
cluded on all Unix-like systems. It shows the differences between two files line by line. A precom-
piled Windows version is athttp://gnuwin32.sourceforge.net/packages/diffutils.htm, and MacOS sources at
http://perso.wanadoo.fr/gilles.depeyrot/DevTools en.html.)

2. Make the change in your Cheetah CVS sandbox or in your installed version of Cheetah. If you make it in the
sandbox, you’ll have to runpython setup.py install before testing it. If you make it in the installed
version, donot run the installer or it will overwrite your changes!

3. Runcheetah test to verify you didn’t break anything. Then run your little test program.

4. Repeat steps 2-3 until everything is correct.

5. Turn your little program into a regression test as described below.

62 17 Patching Cheetah

6. Whencheetah test runs cleanly with your regression test included, update theCHANGESfile and check
in your changes. If you made the changes in your installed copy of Cheetah, you’ll have to copy them back
into the CVS sandbox first. If you added any files that must be distributed,be sure tocvs add them before
committing. Otherwise Cheetah will run fine on your computer but fail on anybody else’s, and the test suite
can’t check for this.

7. Announce the change on the cheetahtemplate-discuss list and provide a tutorial if necessary. The documentation
maintainer will update the Users’ Guide and Developers’ Guide based on this message and on the changelog.

If you add a directory to Cheetah, you have to mention it insetup.py or it won’t be installed.

The tests are in theCheetah.Tests package, aka thesrc/Tests/ directory of your CVS sandbox. Most of the
tests are inSyntaxAndOutput.py . You can either run all the tests or choose which to run:

python Test.py Run all the tests. (Equivalent tocheetah test .)

python SyntaxAndOutput.py Run only the tests in that module.

python SyntaxAndOutput.py CGI Run only the tests in the classCGI inside the module. The class must be
a direct or indirect subclass ofunittest local copy.TestCase .

python SyntaxAndOutput.py CGI Indenter Run the tests in classesCGI andIndenter .

python SyntaxAndOutput.py CGI.test1 Run only testtest1 , which is a method in theCGI class.

etc...

To make a SyntaxAndOutput test, first see if your test logically fits into one of the existing classes. If so, sim-
ply add a method; e.g.,test16 . The method should not require any arguments exceptself , and should call
.verify(source, expectedOutput) , where the two arguments are a template definition string and a control
string. The tester will complain if the template output does not match the control string. You have a wide variety of
placeholder variables to choose from, anything that’s included in thedefaultTestNameSpace global dictionary.
If that’s not enough, add items to the dictionary, but please keep it from being cluttered with wordy esoteric items for
a single test).

If your test logically belongs in a separate class, create a subclass ofOutputTest . You do not need to do anything
else; the test suite will automatically find your class in the module. Having a separate class allows you to define
state variables needed by your tests (see theCGI class) or override.searchList() (see theIndenter class) to
provide your own searchList.

To modify another test module or create your own test module, you’ll have to study the existing modules, the
unittest local copy source, and theunittest documentation in the Python Library Reference. Note that
we are using a hacked version ofunittest to make a more convenient test structure for Cheetah. The differences
betweenunittest local copy and Python’s standardunittest are documented at the top of the module.

17.2 Testing Changes and Building Regression Tests 63

18 Documenting Cheetah

How to build the documentation. Why LaTeX, a minimum LaTeX reference, etc.

64 18 Documenting Cheetah

A A BNF Grammar of Cheetah

65

B Safe Delegation

Safe delegation, as provided by Zope and Allaire’s Spectra, is not implemented in Cheetah. The core aim has been to
help developers and template maintainers get things done, without throwing unnecessary complications in their way.
So you should give write access to your templates only to those whom you trust. However, several hooks have been
built into Cheetah so that safe delegation can be implemented at a later date.

It should be possible to implement safe delegation via a future configuration SettingsafeDelegationLevel
(0=none, 1=semi-secure, 2-alcatraz). This is not implemented but the steps are listed here in case somebody wants to
try them out and test them.

Of course, you would also need to benchmark your code and verify it does not impact performance when safe delega-
tion is off, and impacts it only modestly when it is on.” All necessary changes can be made at compile time, so there
should be no performance impact when filling the same TO multiple times.

1. Only give untrusted developers access to the .tmpl files. (Verifying what this means. Why can’t trusted devel-
opers access them?)

2. Disable the#attr directive and maybe the#set directive.

3. Use Cheetah’s directive validation hooks to disallow references toself , etc (e.g. #if
$steal(self.thePrivateVar))

4. Implement a validator for the $placeholders and use it to disallow ’’ in $placeholders so that tricks like
$obj. class . dict are not possible.

66 B Safe Delegation

	1 Introduction
	1.1 Who should read this Guide?
	1.2 Contents

	2 .py Template Modules
	2.1 An example
	2.2 A walk through the example

	3 Placeholders
	3.1 Simple placeholders
	3.2 Complex placeholders

	4 Caching placeholders and #cache
	4.1 Dynamic placeholder -- no cache
	4.2 Static placeholder
	4.3 Timed-refresh placeholder
	4.4 Timed-refresh placeholder with braces
	4.5 #cache
	4.6 #cache with timer and id
	4.7 #cache with test: expression and method conditions

	5 Directives: Comments
	5.1 Docstring and header comments

	6 Directives: Output
	6.1 #echo
	6.2 #silent
	6.3 #raw
	6.4 #include
	#include raw
	#include from a string or expression (eval)

	6.5 #slurp
	6.6 #filter

	7 Directives: Import, Inheritance, Declaration and Assignment
	7.1 #import and #from
	7.2 #extends
	7.3 #implements
	7.4 #set and #set global
	7.5 #del
	7.6 #attr
	7.7 #def
	7.8 #block
	7.9 #settings

	8 Directives: Flow Control
	8.1 #for
	8.2 #repeat
	8.3 #while
	8.4 #if
	8.5 #unless
	8.6 #break and #continue
	8.7 #pass
	8.8 #stop
	8.9 #return

	9 Directives: Error Handling
	9.1 #try and #raise
	9.2 #assert
	9.3 #errorCatcher
	No error catcher
	Echo and BigEcho
	ListErrors

	10 Directives: Parser Instructions
	10.1 #breakpoint
	10.2 #compiler

	11 Files
	12 Template
	13 The parser
	14 The compiler
	15 History of Cheetah
	16 Design Decisions and Tradeoffs
	16.1 Delimiters
	16.2 Late binding
	16.3 Caching framework
	16.4 Webware compatibility and the transaction framework
	16.5 Single inheritance

	17 Patching Cheetah
	17.1 File Requirements
	17.2 Testing Changes and Building Regression Tests

	18 Documenting Cheetah
	A A BNF Grammar of Cheetah
	B Safe Delegation

